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Riassunto

In questa tesi si presenta un metodo per la stima dei paraetttura cinematici
di un terremoto attraverso l'inversione di dati di spostatoelel suolo basato su di
un approccio di tipo Bayesiano. Attraverso l'utilizzo di yppaoccio Bayesiano il
metodo e’ in grado di fornire stime complete delle inceréegai parametri di rot-
tura. La capacita’ di quantificare la risoluzione dei paranaerottura risponde alla
richiesta di quantificare la non unicita’ delle stime deigraetri di rottura. Infatti

I modelli di rottura per uno stesso terremoto, sviluppatridarche indipendenti,
mostrano spesso grandi differenze. Parte di questa Vistlaabi certamente dovuta
a differenze nella modellazione e nella strategia di ineees dei dati. Tuttavia
ragioni intrinseche limitano la capacita’ di ricostruitegprocesso di rottura di un
terremoto a partire dai dati osservati: incertezze presenbella modellazione che
nei dati e mancanza di risoluzione dovuta all’utilizzo dinumero sempre finito di
osservazioni. Il lavoro presentato in questa tesi e’ irdato alla comprensione di
guanto questi fattori intrinsechi limitino la capacita’sfimare i parametri di rottura
cinematici di un terremoto e come queste incertezze possfuive sulla stima dei
corrispondenti parametri dinamici.

Si presenta il metodo considerando inizialmente un tesétsin. Attraverso
I'inversione di datistrong motion generati da un modello di rottura cinematico di
una faglia, si prova esplicitamente come diversi ultennodelli siano in grado di
riprodurre i dati generati dal modeli@ro, mostrando chiaramente la necessita’ di
una quantificazione rigorosa delle incertezze sui paradietttura. Siconfrontano
inoltre le stime delle incertezze ottenute attraversgdfapcio Bayesiano con quelle
ottenute utilizzando solamente un algoritmo di ottimizaae. Si mostra come i due
metodi diano sistematicamente stime diverse, e in paatieatome |'algoritmo di
ottimizzazione sottostimi le incertezze reali.

Si considera successivamente un caso reale, il terremotdedtern Tottori
avvenuto nel 2000 in Giappone. Questo evento offre condifevorevoli per
I'osservazione del processo di rottura, grazie all’ablamza di dati di alta-qualita’
di tipo strong motion e GPS nel campo vicino.

Inferenze sui parametri cinematici di rottura mostrano zm@a ad alto scorri-
mento localizzata tra I'ipocentro e il bordo superiore @édiglia. Questa asperita’ e’
stata identificata da tutti gli studi precedenti. A diffezardi alcuni studi precedenti
non si identifica tuttavia scorrimento significativo allesbalella faglia. Inferenze
ottenute utilizzando dati strong motion e strong motion$&Bnfermano entrambe
la presenza di un’asperita’ superficiale. Nelle altre regaella faglia si osserva
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che l'aggiunta di dati GPS riduce la probabilita’ assocedaalti valori di slip. In
altre parole, i dati GPS aiutano a ridurre la presenza drisgento spurio, cioe’ non
vincolato dai dati strong motion. Questa riduzione ha utefeffetto sulla stima del
momento sismico.

Si analizza inoltre I'effetto delle incertezze sui paramahematici sulla stima
dei parametri dinamici. Considerando il terremoto di Tottsirstima I'incertezza
su parametri dinamici quali la caduta di sforzo staticaféoze di taglio e I'energia
sismica irradiata. Si osserva che in corrispondenza dvaldiri di scorrimento, la
distribuzione dei valori di caduta di sforzo assume unaitistione di tipo Gaus-
siano con valori medi positivi, indicando percio’ un indébento della faglia. |
valori di deviazione standard sono tuttavia dello stesdnerdi grandezza dei val-
ori medi, indicando percio’ grandi incertezze sulla stinedlalcaduta di sforzo. Si
mostra come tali incertezze siano dovute ad un’anti-cazrehe tra valori di caduta
di sforzo in punti vicini della faglia, la quale a sua voltaddvuta ad un’anti-
correlazione tra i corrispondenti valori di scorrimentd. n#®stra cosi’ come una
correlazione tra parametri cinematici limiti la precisgosulla misura di parametri
dinamici. Nonostante la bassa precisione nella stima dirpatri di rottura locali,
si mostra invece come la misura di parametri di rottura dlpQaali I'energia irra-
diata, sia caratterizzata da una maggiore precisione.

Si deriva infine un modello dinamico del processo di rottugaipterremoto di
Tottori. Assumendo una legge costitutiva di tijpaear slip-weakening, si stimano i
corrispondenti parametri dal campo di sforzo generat@adgadlia dal modello cin-
ematico medio, in cui I'evoluzione temporale della velacdi scorrimento viene
assunta seguire la funzione regolarizzata di Yoffe. Il nlod#inamico ottenuto e’
in grado di spiegare i parametri cinematici stimati e diogurre lo spostamento
del suolo osservato ad un livello confrontabile con quettadptto dal modello cin-
ematico ottimale. Si considera quest’ultimo risultato ditwolare utilita’ pratica,
poiche’ il modello dinamico e’ stato ricavato senza utiéizz una particolare pro-
cedura di ottimizzazione, ma piuttosto interpretando un@o cinematico medio
per mezzo di una funzione sorgente consistente con un noatietbttura dinamica.



Abstract

In this thesis | present a method for the estimation of kinevearthquake rupture
parameters based on a Bayesian approach through fitting ohdnmotion data.
By using a Bayesian approach the method can provide compiieb@ssimates of
rupture parameters uncertainties. The capability of ththateto quantify rupture
parameters resolution responds to the quest for quardifyia non-uniqueness of
rupture parameters estimates. Indeed, earthquake sonages$ developed by dif-
ferent research teams for the same earthquake often shgevdédferences. Part
of this variability is certaintly due to different modeliramd parameter estimation
approaches. However, intrinsic reasons limit the imagirgpothquake source: un-
certainties in both data and modeling, and lack of resatutiee to the use of finite
data-sets. The work presented in this thesis aims at uathelisag how much these
intrinsic factors limit our ability in estimating kinematearthquake rupture para-
meters and how much these uncertainties may affect alsctimesgtion of dynamic
rupture parameters.

| present the methodology by considering initially a sytithéest. By fitting
strong motion waveforms generated by a synthetic kinenfatilt rupture 1 show
explicitly how multiple models may produce very similardof fit, proving clearly
the need for a rigorous quantification of the parameter waicdies to assess model
robustness. | also compare uncertainty estimates givehéfayesian approach
with those derived by using only an optmization algorithmshbw how the two
methods give sistematically different results, with theimzation algorithm un-
derestimating the actual uncertainties.

| then consider areal event: the 2000 Western Tottori (Jegethquake. Thanks
to the abundance of high-quality near-field strong motioth @GRS data, this event
provides favorable conditions for the observation of thehemake rupture process.

Inferences on kinematic parameters show that the bestvezbfgature of the
rupture process is a major slip patch located between thedayper and the top
edge of the fault. The presence of this shallow slip patcloisraon to all previous
studies. In contrast to previous works | do not identify amngicant slip at the
bottom of the fault. | compare inferences from both strongiomand GPS data
with results based on strong motion data only. In both cdsestiallow slip patch is
identified. At other locations, the main effect of GPS data iseducing the proba-
bility associated with high values of slip. GPS data redhiegaresence of spurious
fault slip and therefore strongly influence the resultingifseismic moment.

Additionaly, | investigate how uncertainties in kinematipture parameters af-
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fect the estimation of dynamic parameters. Still considgthe Tottori earthquake,
| analyse resolution of static stress drop, shear stredsaaiated energy. | find that
on the same locations where stable high slip is inferredueacy distributions of
static stress drop values have an approximately Gaussaqe stith positive mean
values, indicating that these locations undergo a wealepincess on average.
However, | find standard deviation values of the same orderagfhitude of the es-
timated mean values indicating therefore large uncerésnih the actual intensity
of static stress drop. | show how these large uncertainteeslae to a correlation
between stress drop values in neighbouring points of thie fehich is inherited
from a correlation between slip values. This shows how aetation between kine-
matic parameters limits the resolution of dynamic paramsefespite the difficulty
in constraining the rupture process locally on the faultdifihat a global quantity
like radiated energy can be well inferred.

[ finally derive a dynamic rupture model for the 2000 Westentidri earthquake
by estimating linear slip-weakening parameters from tlaisgemporal evolution
of on-fault stress generated by the mean kinematic slip madevhich the slip-
velocity time history is assumed to follow a regularized fédiunction. | obtain a
dynamic model able to explain the observed kinematic patersiand that provides
a level of fit with the observed strong motion and GPS data ewvaipe to that of
the best-fitting model. This last result should be consiiefeparticular practical
importance, because the dynamic model has been obtaineauivan explicit opti-
mization procedure, but rather interpreting a mean slipehading a dynamically
consistent source time function.



Introduction

The destructive power of large earthquakes is a signifi¢aaat in those regions of
the Earth where active seimogenic sources are located ne&ho large populated
areas. Seismic hazard must therefore be communicatedrolate the adoption of
preventive measures to reduce the harmful effects of stgpagnd shaking pro-
duced by large earthquakes. However, seismic hazard caorkecty estimated
and improved only through a continuous scientific effortedhat a quantitative un-
derstanding of the physical processes governing the Ea#smicity.

Earthquakes are one of the many phenomena through whichaittle hows
itself as a dynamically evolving system. Indeed, the Eatrittterior interacts with
the upper lithosphere and the transmitted stresses can tabrittle parts of the
Earth’s crust to rupture dynamically, causing the emissibseismic waves. Seis-
micity can be therefore considered as the short-timesdadegmenon of brittle
tectonics [Scholz, 2002].

Crustal earthquakes are therefore associated with themofi@ynamically
propagating ruptures occuring in geological structuresaknas faults, which can
be considered as “weak” zones of the Earth’s crust. Althdbghheory of plate tec-
tonics can explain well the spatial distribution of earthkges in the Earth’s crust, the
physical processes governing the nucleation and propemgatithe earthquake rup-
ture are still far from being completely revealed and quatitely understood. In-
deed, the earthquake rupture is a complex phenomenon ingolarious non-linear
dissipation processes coupled over a wide range of spatidlesnporal scales. No
theoretical solutions are available today for a physicatipsistent description of
the earthquake rupture dynamics based on a accurate refatase of the physics
of dissipation processes occurring at different scales¢@&cTinti, 2008].

Earthquake source physics is therefore an active resealdh Where differ-
ent approaches are required to investigate the multi-selee of the earthquake
source. For instance, geological investigations can sigéd into the structure
of real fault zones, and on microscale processes and dynaedkening mecha-
nisms occuring during earthquake ruptures (Chester et33]1 Chester & Chester
[1998], Wibberly & Shinamoto [2003]). However, geologicavestigations pro-
vide us with a “static” picture of the earthquake source, mmthformation is given
about the “dynamics”, that is the physical laws governirggpatio-temporal evo-
lution of the earthquake rupture. A possible way to get intsgnto the dynamics of
the earthquake source is through laboratory experimentsaking shear ruptures
in fault zones. Indeed, from laboratory experiments faatistitutive laws can be
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derived, that is, physical laws describing how the fault kezsng occurs (Dieterich
[1979], Ohnaka & Yamashita [1989], Beeler et al. [1994], Gbl & Tullis [2002],
Di Toro et al. [2004]). However, these constitutive laws degived at a laboratory
scale, and using experimental set-ups which only mimicfeadts. Their validity
in natural faults has to be proved.

To achieve a more complete understanding of the earthquakees geological
and laboratory-scale studies must be integrated with ensdagjical analysis, which
Is the only one that can provide observational constrainhemupture process of
real-Earth faults. The study of the earthquake source giragbe analysis of the
radiated wavefield is usually indicated with the term “equdke source imaging”.
Indeed, by inversion of the observed ground motion geneérayean earthquake,
it is possible to derive rupture models which can be consill@s images of the
earthquake source.

A key point in all earthquake imaging studies is how the rupfarocess is pa-
rameterized. Geological investigations show that the moostmon type of crustal
earthquakes is generated by a sudden slip in a “fault zonéld Bbservations
suggest that slip in individual events may be extremelylieed, and may occur
primarily within a thin shear zone, which is perhaps orl§-5 mm thick. This
localized shear zone lies within a finely granulated fauliecof typically tens to
hundreds millimeter thickness. The core itself fits withimach broader dam-
age zone of granulated or incompletely cracked rocks, psrbaveral meters thick
[Rice, 2006].

When using seismic and geodetic data to image the earthquakere, the
“fault zone” is usually approximated with a “fault surfaceVith no thickness. This
because for most seismological applications the fault zadéh is much less than
the minimum considered wavelength. The main consequentésapproximation
is that seismologically-derived quantities charactagzihe rupture process should
be considered in a macroscopic sense. For instance, slipdshe interpreted as
the relative displacement between the walls of the fauleZd@occo et al., 2006].

Assuming the “fault surface” approximation, the earthquakurce can be de-
scribed from two points of view: kinematic and dynamic. la #inematic approach
the slip process is seen as a dislocation: that is a displmediscontinuity. In a
kinematic model no source physics is invoked. On the coptiaa dynamic model
the slip process is seen as the result of a shear rupture. \bhabls the rupture is
the friction law (the constitutive law), and the elastodynes equations are solved
for a given friction law on the fault surface.

Both kinematic and dynamic models are defined in terms of a euwiypara-
meters. In a kinematic model the dislocation process on kaetion on the fault
surface must be defined. This is done usually in terms of maxiralip (or slip-
velocity), rake angle (i.e. the slip direction), rise time( the slip duration), and
rupture time (i.e. the slip onset time). In a dynamic model tlasic required pa-
rameters are the initial applied stress, the yield stress the static friction level
which must be overcomed to rupture the fault), and the dyadriaition level (i.e.
the stress value during fault sliding). Moreover, depegdin the assumed friction
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law, additional parameters are required to describe thé&eveag process (e.g. the
slip-weakening distance in a linear slip-weakening model)

Due to the large computational demand required by dynanptura simula-
tions, most earthquake source imaging studies are perébassuming a kinematic
model for the earthquake source. Within this approach,rkate rupture parame-
ters define the slip function on each location on the faultratate with the observed
ground motion through the representation theorem [Aki & Rids, 2002].

Although the slip vector is linearly related to the obsergedund motion, the
remaining parameters (rise time and rupture time) are ndter&fore, the kine-
matic imaging of the earthquake source is, in general, aineas inverse problem.
Without the computational power needed to solve non-liimearse problems, early
studies assumed a priori values for rise time and rupture mthe fault surface,
and solved only for the slip distribution by using the linéeast-square method
(Olson & Apsel [1982], Hartzell & Heaton [1983]). This mettadogy requires the
inversion of the forward modeling operator. Because of uag#res in both data
and theory and limited data coverage, this is often an iflgaband ill-conditioned
problem (multiple solutions may exist due to the presenca otill space in the
model space and small change in the data may lead to largdivas in the para-
meter estimates). Damping parameters are therefore @aalalyi required in order
to get a unique solution.

As already mentioned, relaxing the assumptions on ruptome and rise time
render the inversion non-linear. Under these conditioriseatized inversion can
be used to infer, together with slip, rupture time [Beroza &@&ph, 1988] and also
rise time values [Cotton & Campillo, 1995]. The main drawbatkhts approach
is that the inversion results depend on the starting modglraquiring the compu-
tation of the generalized inverse, damping parametersgaia aceded.

As computational resources improved, optimization metHid@ simulated an-
nealing (Hartzell et al. [1996]; Bouchon et al. [2000]; Datoat al. [2002]; Sali-
chon et al. [2003]; Liu & Archuleta [2004]), neighbourhood]lee & Bouchon,
2004] and genetic [Emolo & Zollo, 2005] algorithms startedé adopted in earth-
guake source imaging studies. With such methods no assumspin the objective
function are made and good data-fitting models are found tectly searching the
model space. Only the forward modeling operator is compatetino matrix in-
version is needed (hence no damping parameters are required

A key issue in any parameter-estimation technique is thesassent of uncer-
tainties which affect the inferred model parameters. ledmor linearized least-
square inversions the objective function is a quadratiction with a single mini-
mum. Uncertainties on model parameters can be obtainedrbputing the curva-
ture of this function around the minimum [Menke, 1989].

In non-linear inversions the structure of the objectivection is actually un-
known and it may presents multiple (and even degenerateyvilie) minima. Us-
ing optimization algorithms we can efficiently identify gibdata-fitting models but
we cannot directly estimate uncertainties. For this pugpesme strategies have
been recently proposed. Emolo & Zollo [2005] used a gendgiorahm to search
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the model space and estimated resolution by making a Gausg@oximation of
the objective function around the best-fitting model. Irsthpproach uncertainties
are estimated only locally, in the neighbourhood of the figgtg model, forcing
the objective function to be Gaussian around it. Other agugres estimate un-
certainties by statistically analyzing the set of modetsted during the search of
the model space. From the set of models produced by a neigidmmaialgorithm,
Peyrat & Olsen [2004] selected 19 models that fit the data stiequally well, and
then computed the standard deviation for each model paesrfiem this ensem-
ble. Piatanesi et al. [2007] computed weighted mean andatdmeviation for each
model parameter considering the whole ensemble of modetiuped by a simu-
lated annealing algorithm. The main limitation of theserapphes is that they de-
rive resolution estimates by statistically analyzing theeamble (or sub-ensemble)
of models produced by an optimization algorithm withoutingkinto account that
this ensemble does not reflect in general the actual unoiesi that is the topol-
ogy of the misfit function, but rather the operators adoptethb search algorithm.
Moreover all these techniques assume uncertainties to besiaa, which is gener-
ally not true for non-linear problems.

Accurate estimates of uncertainties are needed in ordesstesahe reliability
of the inverted solutions. As it has been pointed out by dkffé authors (Cohee
& Beroza [1994]; Beresnev [2003]; Ide et al. [2005]) and is algaresented in the
online database of earthquake rupture models (http:/\seemo.ethz.ch/srcmod),
for the same earthquake, acceptable fit to the data can beledavy different rup-
ture models. The discrepancies between models may be due different choices
adopted during the inversion concerning the forward modelthe model para-
metrization, the inversion methodology, the type of dataasel processing used.
However, independently of the particular approach, istdmeasons render imag-
ing the earthquake source a problem with multiple solutiamgertainties in data
and in forward modeling (which allow multiple models to bexsmlered acceptable)
and lack of resolution (due to the always limited data coyeya

The quantification of uncertainties in kinematic rupturegpaeters is also im-
portant for assessing uncertainties in dynamic rupturampaters. Indeed, kine-
matic slip models derived from the inversion of ground motitata can be used to
determine the spatio-temporal evolution of on-fault fr@sg. lde & Takeo [1997],
Bouchon [1997], Dalguer et al. [2002], Tinti et al. [2005kdhd from that some es-
timates of dynamic parameters such as stress drop, strexcghs (relative fracture
strength), and linear slip-weakening distance (in the &aork of slip weakening
friction models). As already mentioned, multiple kinematipture models may
satisfy the observations for a given earthquake and therefiocertainties in kine-
matic parameters propagate into the estimation of dynaari@meters.

Kinematic and dynamic images of earthquake ruptures am aise for earth-
guake source physics studies (e.g. Mai & Beroza [2002], ®Bhtal. [2005b],
Woessner et al. [2006]), and for ground motion predictiorfutfire earthquakes
(Olsen et al. [2006], Olsen et al. [2008], Olsen et al. [2009)nderstanding what
are the current limits in inferring kinematic and dynamigcgmaeters is important
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therefore for constraining what can be learnt from seisnaita cabout the earth-
quake source, and what can be the variability in ground madrediction given the
uncertainties in the definition of an earthquake ruptureehod

Given that most earthquake imaging studies largely ignorealer-simplified
the analysis of uncertainties, together with the imporasf@assessing the reliability
of earthquake images, especially in view of their applarain earthquake source
physics studies and hazard estimates, the main goal oh#ssstis the development
of a methodology for the estimation of kinematic earthqualture parameters to-
gether with their associated uncertainties.

The methodology presented in this thesis in based on a Bayaggoach. With
a Bayesian approach, inferences on model parameters aressggdrin terms of
marginal probability density functions (PDFs) derivednfra “posterior” PDF, rep-
resenting the conjunction of “prior” information on modedrameters, and infor-
mation derived through fitting observations. Resolution achemodel parameter
is investigated comparing prior and posterior marginal LBy using a Bayesian
approach, it is possible to overcome the main limitationpthazation based inver-
sions, which can only identify good-data fitting models, Which cannot provide
information on the actual resolution of model parameterseyressing model pa-
rameters estimates in terms of PDFs, rather than by congpatsingle best-fitting
model, or few good data-fitting models, it is possible to obtmore robust un-
derstanding of which degree of detail a model can be intexgravithout drawing
conclusions from unstable or unresolved features.

The general organization of the thesis is as follows:

In Chapter 1 | present the Bayesian inference method in thexoott an earth-
guake source imaging problem. To avoid complexities agisiom considering a
real event, | study a synthetic kinematic fault rupture pssc Data consist of strong
motion waveforms only. | estimate kinematic rupture parmrgeby using a two
step procedure. First, | explore the model space by using@ont®nary algorithm
to identify good data fitting regions. Second, by using a imeogirhood algorithm
and considering the entire ensemble of models found duhiegxploration stage,
| compute a geometric approximation of the posterior prditaldensity function
that is used to generate a second ensemble of models fronm Baesian infer-
ence is performed.

| apply the Bayesian inference method to a real case in Chaptec@nsider
the 2000 Western Tottori earthquake. Data consist of strangon waveforms
and surface static offsets derived from GPS measurementgesBa inference
is performed by using a Markov Chain Monte Carlo (MCMC) methodselolaon
the Metropolis algorithm. | study how resolution of kinematupture parameters
changes depending on two different data sets: strong motityp and strong mo-
tion plus GPS.
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From kinematic parameters it is possible to estimate dyograrameters by
solving the elastodynamics equation with the kinematjg siodel as a boundary
condition. In Chapter 3 | investigate how the estimation afayic parameters is
affected by uncertainties in the kinematic source modell. ceinsidering the 2000
Western Tottori earthquake, | map the uncertainties inrkigiec parameters esti-
mated in Chapter 2 into uncertainties in dynamic parameteysantify resolution
of static stress drop, shear stress, and radiated energy.

In Chapter 4 | derive a dynamic rupture model for the 2000 Wastettori
earthquake aimed at explaining the most prominent featyssrved in kinematic
images. By using a mean kinematic slip model, and a dynamicalfisistent source
time function (regularized Yoffe function), | estimatedar slip-weakening para-
meters. | validate the obtained dynamic model by compahegtedicted ground
motion with near-field strong motion and GPS data.

The thesis ends with a summary of the main findings, along antloutline of
potential future research directions.



Chapter 1

Bayesian inference of kinematic
earthguake rupture parameters
through fitting of strong motion data

Published in Geophysical Journal International as:

Monelli, D., and Mai, P. M. (2008), Bayesian inference of kivadic earthquake
rupture parameters through fitting of strong motion dataygbgs. J. Int., 173, 220-
232

11



12 1 BAYESIAN INFERENCE OF EARTHQUAKE PARAMETERS

Abstract

Due to uncertainties in data and in forward modeling, thesight limitations in
data coverage and the non-linearity of the governing egonagarthquake source
imaging is a problem with multiple solutions. The multipiycof solutions can be
conveniently expressed using a Bayesian approach, whimhstb state inferences
on model parameters in terms of probability density fumgioThe estimation of
the posterior state of information, expressing the contlinaf the a priori knowl-
edge on model parameters with the information containetendéta, is achieved
in two steps. First, we explore the model space using an gvnhary algorithm
to identify good data fitting regions. Secondly, using a hbaurhood algorithm
and considering the entire ensemble of models found duhageéarch stage, we
compute a geometric approximation of the true posteridrithased to generate a
second ensemble of models from which Bayesian inference e@etiormed. We
apply this methodology to infer kinematic parameters of @tlsgtic fault rupture
through fitting of strong motion data. We show how multipl@tire models are
able to reproduce the observed waveforms within the sane ¢d\it, suggesting
that the solution of the inversion cannot be expressed ma@f a single model but
rather as a set of models which show certain statisticalgtms. For all model
parameters we compute the posterior marginal distributideshow how for some
parameters the posterior does not follow a Gaussian disitribrendering the usual
characterization in terms of mean value and standard dewiabt correct. We
compare the posterior marginal distributions with the ‘ravarginal distributions
computed from the ensemble of models generated by the ewwdumy algorithm.
We show how they are systematically different proving themee that the search
algorithm we adopt cannot be directly used to estimate taicdies. We also an-
alyze the stability of our inferences comparing the postemarginals computed
by different independent ensembles. The solutions provideindependent ex-
plorations are similar but not identical because each ebkesearches the model
space differently resulting in different reconstructedteoiors. Our study illustrates
how uncertainty estimates derive from the topology of thcive function, and
how accurate and reliable resolution analysis is limitedhyintrinsic difficulty of
mapping the 'true’ structure of the objective function.

1.1 Introduction

Current earthquake source imaging studies use differeatsids (strong motion,
teleseimic, GPS, INSAR) and inference methods (linear @alized data inver-
sions, direct search techniques) to retrieve kinematiturepparameters. A fault
rupture can be described, kinematically, as a shear distocpropagating along
a surface within an elastic medium. Using seismic data thlechtion process at
each point on the fault is usually parametrized in terms ipf @r slip-velocity),

rake angle (direction of slip), rupture time (time at whitte tslip process starts)
and rise time (duration of slip). These parameters entdrarstip function which
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in turn determines the ground motion through the repretenttheorem [Aki &
Richards, 2002].

The mathematical parametrization of the slip function isumque in inverse
modeling studies, although the chosen functional form hgsortant implications
from the dynamic point of view. It determines in fact the trae evolution over the
fault surface [Piatanesi et al., 2004]. Two main methodsuaesl for representing
the slip function: the multi-time window and the single thwendow approach. In
the former, the slip function is not prescribed a priori Buexpanded into a number
of basis functions (Olson & Apsel [1982]; Wald & Heaton [1994le et al. [1996];
Sekiguchi et al. [2000]; Delouis et al. [2002]; Salichon {2003]). In the latter
the slip function is forced to assume a predefined functidorah, like a triangle
[Hartzell & Heaton, 1983], a boxcar [Emolo & Zollo, 2005] ornaore complex
form involving, for instance, trigonometric [Hartzell dt,8.996] or power-law [Liu
& Archuleta, 2004] functions.

Fixing, for each location on the fault, rise time and rupttinee (for a multi
time-window approach, rise time and rupture time for eadisfunction), the re-
lation between slip and ground motion becomes linear. Atgwmiucan then be
obtained using the linear least-square method (Olson & Ad€82]; Hartzell
& Heaton [1983]; Wald et al. [1991]; Ide et al. [1996]; Sekai et al. [2000];
Sekiguchi & lwata [2002]). This methodology requires theesirsion of the forward
modeling operator. Because of uncertainties in both datattzewty and limited
data coverage, this is often an ill-posed and ill-condiidmproblem (multiple so-
lutions may exist due to the presence of a null space in theehspéice and small
change in the data may lead to large variations in the pamrastimates). Damp-
ing parameters are therefore additionaly required in ai@eget a unique solution.
Possible constrains are: moment minimization, smoothinglip and filtering of
singular values [Hartzell & Heaton, 1983].

Relaxing the assumptions on rupture time and rise time retidemversion
non-linear. Under these conditions a linearized inversian be used to infer, to-
gether with slip, rupture time [Beroza & Spudich, 1988] ansbalise time values
[Cotton & Campillo, 1995]. The main drawback of this approastihat the in-
version results depend on the starting model and, requin@gomputation of the
generalized inverse, damping parameters are again needed.

As computational resources improved, optimization methi@ simulated an-
nealing (Hartzell et al. [1996]; Bouchon et al. [2000]; Detoat al. [2002]; Sali-
chon et al. [2003]; Liu & Archuleta [2004]), neighbourhoodllee & Bouchon,
2004] and genetic [Emolo & Zollo, 2005] algorithms startedée adopted in earth-
gquake source imaging studies. With such methods no assumspin the objective
function are made and good data-fitting models are found tegtlly searching the
model space. Only the forward modeling operator is compaitebho matrix inver-
sion is needed (hence no damping parameters are requiregit® these benefits,
these randomized search techniques require a certain mahtuming parameters
to guide the search, but no general theories are availabtehtip to chose opti-
mal values [Mosegaard & Sambridge, 2002]. Each problemmattquires its own
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tuning parameters values. Moreover, even if some algostim guaranteed to con-
verge to the global minimum (like some simulated annealiggr&hms with certain
cooling schedules, [Sen & Stoffa, 1995]), this convergaaamnly asymptotic, i.e.
the true global minimum is found only after an infinite numbérterations. Prac-
tically, finite computational resources limit our ability searching the model space
so that the solution found can never be proved to be optimal.

A key issue in any parameter-estimation technique is thesassent of uncer-
tainties which affect the inferred model parameters. ledmor linearized least-
square inversions the objective function is a quadratiction with a single mini-
mum. Uncertainties on model parameters can be obtainedrbpwuting the curva-
ture of this function around the minimum [Menke, 1989].

In non-linear inversions the structure of the objectivection is actually un-
known and it may presents multiple (and even degenerateyvile) minima. Us-
ing optimization algorithms we can efficiently identify gibdata-fitting models but
we cannot directly estimate uncertainties. For this puggbBerent strategies have
been proposed. Emolo & Zollo [2005] used a genetic algortinsearch the model
space and estimated resolution making a Gaussian appriixintd the objective
function around the best-fitting model. In this approachentainties are estimated
only locally, in the neighbourhood of the best fitting modelcing the objective
function to be Gaussian around it. Other approaches estioretertainties by sta-
tistically analyzing the set of models visited during tharsé of the model space.
From the set of models produced by a neighbourhood algoyiBegrat & Olsen
[2004] selected 19 models that fit the data almost equally, awed then computed
the standard deviation for each model parameter from tlsisrable. Piatanesi et al.
[2007] computed weighted mean and standard deviation fdr sedel parameter
considering the whole ensemble of models produced by a atedibnnealing al-
gorithm. The main limitation of these approaches is thay ttherive resolution
estimates by statistically analyzing the ensemble (oremsemble) of models pro-
duced by an optimization algorithm without taking into agebthat this ensemble
does not reflect in general the actual uncertainties, ththeisopology of the misfit
function, but rather the operators adopted by the seararitiigh. Moreover all
these techniques assume uncertainties to be Gaussiarh istgenerally not true
for non-linear problems.

The major goal of this paper is to estimate resolution onrkiatec earthquake
rupture parameters taking into account the full non-lirtgaf the problem, with-
out invoking any approximation on the objective functiorddrence allowing for
possible non-Gaussian uncertainties. We consider a syntest so that we can
control uncertainties in data and in forward modeling. ldesrto express the multi-
plicity of the solutions we adopt a Bayesian approach [Taan2005]. Inferences
on inverted parameters are derived from the posterior fibtyadensity function.
It is obtained as the conjunction of “states of informatig¢eXpressed in terms of
probability densities) reflecting our prior information omodel parameters, data
and their correlation (the physical law governing the favanodeling). We com-
pute the posterior using the strategy proposed by Sambfifii9]. First, using
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a direct search algorithm, we explore the model space t@dsdhe structure of
the posterior probability density function and to identifgod data fitting regions.
In this study we use an evolutionary algorithm [Beyer, 20@Lpe&rform this task.
Secondly, using a neighbourhood algorithm and considen@gvhole ensemble of
models produced during the search stage, we compute a geoapgiroximation
of the true posterior from which samples are generated anddtay inference per-
formed. Hence, the solution we provide for each model patanmestated in terms
of a marginal probability density function from which untanty estimates can be
derived.

1.2 The Bayesian approach

The general idea of a Bayesian approach to inverse theorgti@itbertain amount
of information or knowledge about the physical system umalagstigation (repre-
sented by the model parameter veata) and the datad) is available before the
inversion, and can be expressed in terms of a probabilitgilefunction. Together
with this 'a priori’ knowledge, another source of infornwatiis given by the corre-
lation between model parameters and data expressed byiagihge (d = g(m)).
The solution of the inverse problem is then obtained by compgithese two states
of information. The main difficulty in computing the solutias in extracting in-
formation contained in the correlation betwegmandm, in particular whemnm is
defined in a large dimensional space and the forward modefiegatorg is com-
putationally expensive. Under these conditions computtiegequatiord = g(m)
on a regular grid of points in the model space is unfeasibdeame is forced to use
randomized techniques in order to evaluate the above equata limited number
of points which should be representative of the most imporegions of the model
space (where the correlation betwaetandm is high). However, finite computa-
tion time and finite computing resources will always limitr@bility in extracting
this information. The consequence is that the solution es¢htypes of inverse
problems will be, for any realistic large scale problempimplete and always sub-
ject to a certain amount of variability that decreases agxipdoration of the model
space becomes more and more extensive.

1.2.1 The posterior state of information

In presenting the Bayesian approach, we follow the the@ldtiemulation of Taran-
tola [2005]. We assume th& -dimensional model space aietdimensional data
spaceM andD respectively, to be linear spaces. Indicating with(m) andpp(d)
the prior probability density functions on model parametend data respectively,
while with 6(d|m) the conditional probability density representing the etation
betweerd andm, the posterior state of information on the model space isrgby:

om(m) = kppy(m)L(m) (1.1)
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wherek is a normalization constant adidm) is the likelihood function:

L) = [ dd po()p(dm) (1.2)

Assuming that our a priori knowledge on model parametersistsof the only
information that each model parameter is strictly boundetilo valuesm? . and
me .., wherea € Iy, Iy = {1,..., M}, we write:

max?

pu(m) = J[ pa(m®) (1.3)
ap €l
where
( a) W for mgu'n < m* < m?nax
ML = mazx min A
p 0 otherwise

Is the prior marginal for each model parameter (that is aoumfprobability density
function).

In our synthetic test we add Gaussian noise to the seismagresduced by the
true model. Our prior information on the data can theref@ekpressed through
a Gaussian probability density function. Defining= d — d°** (whered are the
actual data and’® are the observed data, i.e. actual data contaminated wik)no
we write:

pp(d) = ((27)PdetCp) 2 exp {—%rTCDlr] (1.4)

where de€p is the determinant of the data covariance matrix.

In our synthetic test we do not introduce any modeling uadeties; the corre-
lation between data and model parameters is thereforesemter! by a Dirac delta
function:

6(djm) = §(d — g(m)) (1.5)

Substituting egs (1.5), (1.4) into eq (1.2), and the resuihe integration together
with eq (1.3) into eq (1.1), we obtain:

~f kexp[-ir"Chlr] mg,, <m® <ml,,
o(m) = { 0 otherwise (1.6)

where nowr = g(m) —d°*. Eq (1.6) represents, for our synthetic test, the solution
of the inverse problem. Being a multidimensional probapdensity function it can

be characterized in terms of its properties in the modelespdée can identify the
maximum likelihood model (in our case corresponding to thstlfitting model).
We can also compute the mean model:

(m) = / dm mo;(m) 1.7)
M
and the covariance matrix:

cM=AMMm—mMm—mm%mm> (1.8)
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Equations 1.7 and 1.8 give useful results only jf is Gaussian. In a Bayesian
approach this is possible onlydfm), p(d) andé(d|m) are Gaussian and the equa-
tiond = g(m) is linear. In case these conditions are not satisfied, we thn s
look at the information provided on a single parameter camguts corresponding
marginal probability density function:

M(m®) :/.../JM(m)kl_[ldmk (1.9)

k#a
Eq 1.9 involves computing the integral of the posterior jiuility density function
in all the dimensions of the model space except the one qunekng to the para-
meter of interest.

If additional knowledge on model parameters is availalies tmethodology
allows to introduce more complex a priori distributions #@rttle Gaussian assump-
tion for data uncertainties is not valid also different nercan be used. We empha-
size that eq (1.6) has been derived assuming no uncertaintibe forward model-
ing. This may be valid for a synthetic test. For a real caserevbacertainties and
approximations are present in the modeling, and if thestsffcan be quantified,
the correlation between model parameters and data can tesegped in terms of a
more complex probabilistic correlation rather then a saripirac delta function.

1.2.2 Computing the posterior

In practise, solving an inverse problem from a Bayesian vaatpmplies comput-
ing integrals in a multidimensional space (eq 1.7, 1.8,.118)s can be done using
Monte Carlo techniques which basically require generatanges according to
the posterior probability density function. A variety ofnggling methods can be
used for this purpose (for a review, see for instance Tal@af2005]). The applica-
bility of each of these algorithms depends on the problera $iinall or large model
space is considered, if an analytical, explicit expressiahe posterior is available
or not). Here, rather than directly using a sampling alhonitwe address the prob-
lem adopting a two stage procedure [Sambridge, 1999]: @isghg an optimization
algorithm, we explore the model space, possibly identgyits good data fitting
regions. Secondly, using the whole ensemble of models falumithg the search
stage, we compute a geometric approximation of the trueepgosthat is used for
generating a new ensemble of models from which Bayesianender can be per-
formed. Sambridge [1999] validate this methodology usiathla neighbourhood
and a genetic algorithm to perform the search of the modelespdere we use an
evolutionary algorithm [Beyer, 2001]. In principle any otltirect search method
can be used. Whitin this approach we can exploit the efficehaptimization algo-
rithms in identifying good data-fitting regions of the modphce and compute the
forward modeling operator only during the search stage ahduring the sampling
process which usually requires larger number of evaluat{onthis study 160100
models have been visited during the search stage, whereasathpling process
required generating 475000 models).
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Searching the model space

The optimization algorithm we use to explore the model sps@n evolutionary

algorithm (EA) [Beyer, 2001]. EA is the current denominatiased to identify

all those population-based stochastic optimization naghaspired by the Dar-
winian paradigm of evolution. Among EAs there are genetgoathms, evolu-

tionary strategies and evolutionary programming techesquAccording to these
methods an optimization problem is considered similar éopgfocess of evolution
of a population of individuals that, through an evolutionkrop defined by a series
of mechanisms like recombination, mutation and selectioprove their character-
istics (fitness) in order to better survive in the environmehere they are located.
In our problem an individual is a model belonging to the masjece and its “fit-

ness” is given by the misfit valug(m) — d°**)"C}' (g(m) — d***) expressing the
discrepancy between predictions and observations.

Among the many EAs available, we use, following the notatibBeyer [2001],
a(u/pnp, \)—Evolutionary Stratedy According to this algorithm, the exploration
of the model space starts with generating an initial poprdatorresponding to the
generatiory = 0, of u parent modeIsP,(f]):

79‘80) = {m!” m{”, .. m®} (1.10)
This set of models, obtained through uniform random sargpiirthe model space,
then evolves through the subsequent repeated applicdtibree operatorsDomi-
nant p-recombination(zaussian mutation andl'runcation selection.

The aim of the first two operators is to generate, from theeturparent pop-
ulation, a new set oh models, theoffsprings population. In theDominant u-
recombination, evenjth component of the offspringh is obtained by uniform ran-
dom selection from th@ i-components of the current parents. At each generation

g we have:
M

m =Y "(efm?)e;, j=1,..,A (1.11)
=1
wherek; is an integer uniform random number betwdén..., i} and the symbag;
stands for the unit vector in théh direction of the model space. The scalar product
gives theith component of the uniformly random selected parant
In the Gaussian mutation an additional perturbation is added using a normal
distribution ' with zero expectation value:

m{’ == m + (o, N(0,1), ..., N (0, 1)) (1.12)
wherej = 1,...,) and N (0,1) represents a normal random number with zero
expectation value and unit standard deviation. The finapoiigm is therefore

LIn this notation;: denotes the number of parents anthe number of offsprings. The comma
symbol “,” indicates that the: parents for the next generation are selected among the)ooff¢
springs of the current generation. Note that this imphes u. The notatior./up denotes that all
the i parents are used fdpominant (D) recombination.
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obtained around the parental recombination resulthrough the addition of a
Gaussian random vector. The mutation can be isotropic,ishiar all the para-
meters the standard deviation is the same, or anisotrap@afe model parameters
have different physical meanings therefore requiringedéht standard deviations).
The aim of the selection operator is to choose among the fetadfsoffsprings a
new ensemble of models to be used as a parent populationeforettt generation.
In the Truncation selection this is done in a deterministic way. The new parent
population is formed by selecting thebest fitting models among the onlyoft-
springs. This requires > p. This series of steps is repeated until a stop criterion
is reached (e.g. a stationary level of fit). Evidently, th& ktep of the algorithm is
the most expensive in terms of computation time becausgquines the calculation
of the misfit function for each offspring. Great improvemean be achieved paral-
lelizing the computation, i.e. distributing the calcutettiof the misfit over several
processors and, once collected the results, performingeieetion.

The EA requires a certain number of parameters to be tuned.niimber of
parents and offsprings; and A\ respectively, and the standard deviations for the
mutation operator. Unfortunately no general theory islatée that helps to choose
optimal values for these parameters, essentialy becaaggetformance of the al-
gorithm is strictly dependent on the unknown “fitness laaget. However, some
guidelines are available. The ratig/\ determines the tradeoff between explo-
ration/exploitation. Clearly the conditigm = )\ basically means pure exploration
(no selection among offsprings) and as the ratia decreases the exploitation ten-
dency increases. For the mutation operator, the algoriflfowsto choose a dif-
ferent standard deviation for each model parameter. Td timei number of tuning
parameters, we choose to use different standard deviatidgdor those parame-
ters that represents different physical quantities. Theefgth” of the mutations
(the magnitude of the standard deviations) is another itapbfactor. They should
not be too small, to ensure population diversity, and notaoge, to allow conver-
gence towards good data fitting regions of the model spaceveir, following
these guidelines is not sufficient to properly set the atgoris parameters, and
additional trial and error work is usually required.

Appraising the ensemble

The models produced by the evolutionary algorithm cannoudesd directly for
Bayesian inference, because they are not generated aartdire posterior proba-
bility density function. However all these models, togetivéh their corresponding
values ofo),(m) (easily computed knowing the value of the misfit, eq 1.6) tens
tute an important source of information about the structdrthe actual posterior;
this can be used to compute a geometric approximation abity fvhich samples
can be drawn. This is the basic idea behind the appraisingadelogy developed
by Sambridge [1999].

The ensemble of models found during the search stage agesah irregular
distribution of points in the model space. Around each os¢hpoints a nearest-
neighbor region can be calculated using a geometrical mgrtdénown as Voronoi
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cell. For any distribution of irregular points in any numlzérdimensions, Voronoi
cells are unique, space-filling, convex polyedra, whose @& shape are automati-
cally adapted to the distribution of the point set. This impkhat the size (volume)
of each cell is inversely proportional to the density of tlméngs. A geometric ap-
proximation of the true posterior is then calculated sgttime known value of the
posterior of each model to be constant inside its Vorondai cel

A new ensemble of models generated according to the appabedrposterior
Is produced using a Gibbs sampler. A Gibbs sampler genaxatplss performing a
random walk in the model space. From a given starting pdietatgorithm sequen-
tially performs a step along each parameter axis generatmagdom deviate from
the conditional probability density function of the appiroated posterior along the
considered direction. An iteration is completed when atieinsions have been cy-
cled through once, and a new model has been generated. Adter iterations, the
random walk will generate models with a distribution thatde towards the target
distribution, that is the approximated posterior.

The practical applicability of this methodology is limitéy the memory and
computation time needed to perform this appraising stepe stbrageS required
by the algorithm is controlled by the number of models caunstig the ensemble
N, and the number of dimensions of the model spate

S o N,M (1.13)

Computation timel is additionally dependent on the resampled ensemvh)ehat
is by the set of models sampled from the approximated posteri

T < N,N.M (1.14)

As in the in the search stage, computational time can belgatreased distribut-
ing the resampling process on several processors.

For the synthetic test we present, the dimension of the mepale is\/ = 38, the
number of models visited during the searclvis= 160100. The number of models
constituting the resampled ensemble\is = 475000. The resulting computation
time (on a 20 CPUs Linux cluster) 5 ~ 1 day.

1.3 A synthetic test

To control uncertainties in data and in forward modeling wasider a synthetic
test. The kinematic rupture model we use as “true” model esvshin fig 1.1. We
represent the fault as a 32 km long and 12 km deep, verticalpirth, plane surface.
The fault’s upper edge is at 2.75 km depth. The rupture peiisasharacterized by

a heterogeneous distribution of peak slip-velocity, whenake angle and rise time
are constant) degrees().8 s respectively). Peak slip-velocity values are defined
on a 4 by 4 km grid (nodes represented by black dots). The tiokitgon of the
rupture process is prescribed in terms of a circular froat gropagates from the
hypocenter (12.5 km deep) with constant rupture velodity= 2.7 km/s).
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Figure 1.1: The “true” kinematic rupture model . Only the maximum slagie is heterogeneous.
Rake angle is everywhere zero (pure left-lateral strike aslient) and rise time is con-
stant,7. = 0.8 s. Rupture times are given by the arrival times of a circulgture front
expanding from the hypocenter (white star) with constapture velocityV, = 2.7
km/s. The corresponding seismic momeniig = 1.28¢19 Nm. Black dots represent
locations where peak slip-velocity values are defined. Bdsthite rectangles delimit
the two main large-slip regions characterizing the slipritigtion. In the article we will
refer to them as asperity 1 (the one on the left) and aspe(itye2one on the right).

The observational network we use for the inversion is depiat fig 1.2. The
fault strikes atl50°, station locations and velocity model are adapted from @92
Western Tottori earthquake [Semmane et al., 2005]. Allstatare located within
60 km from the epicenter.

We compute ground velocities using the frequency-domaresentation the-
orem [Spudich & Archuleta, 1987]:

i (7, ) = //Z § (x,w) - T™ (x, w1 y, 0) A (1.15)

whereu,, is them component of ground velocity at the receiver locatygs is the
slip-velocity function, T™ is the traction exerted across the fault surfacat point
x generated by an impulsive force applied in théh direction at the receiver and
w = 2x f Is the angular frequency.

TractionsT'™ are computed, up to a frequency of 2 Hz, using a Discrete Wawen
ber / Finite Element method (Compsyn package, [Spudich & X02P), for a 1D
flat layered Earth model without attenuation. A trapezorddé quadrature of the
products - T™ is performed separately for each frequency, with the quacka
points being the sample points whér& have been computed. Peak slip-velocity
values at integration points are derived through bilineéerpolation of values of
surrounding grid nodes. The slip-velocity function is assd to be an isosceles tri-
angle. With this parametrization, the maximum slip-rateesponds to the hight of
the isosceles triangle and the rise time to the base lengith Eomputed synthetic
seismogram contains 4096 data points, from 0 to 40.95 s,auitine sampling of
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Figure 1.2: The observational network. 19 stations (gray triangles)lacated near the fault strike
(black solid line) within 60 km from the epicenter (white3ta

0.01s.

We do not introduce any uncertainties in the forward modgehat we perturb
synthetic seismograms produced by the true model with Gaus®ise so that a
data covariance matri', can be computed. We assume noise statistics to be the
same for each waveform and without correlation betweeemifft stations and be-
tween different components of the same station. Thus, th&ri@nce matrix for the
whole set of data reduces to a block diagonal matrix wherk bk matrix rep-
resent the covariance matrix for each single waveform. Toptde the covariance
matrix we follow the approach of Gouveia & Scales [1998]. Véat each synthetic
seismogram produced by our true model as a “mean” seismaogjt&itL We then
compute several realizations of noisy seismogrsaitfi&’ simply adding to the mean
seismogram a Gaussian time sed&%$** with zero mean and fixed standard devia-
tion (s"ois¢ = s™mean  g9auss) |f N is the number of realizations, an estimate of the
covariance matrix for each waveform is given by:

N
OD — %Z(S?oise _ Smean)(sgwise _ Smean)T —
i=1

S;(;]auss (Sgauss>T (116)
from which we see thaf', is the same for all inverted seismograms depending on
the Gaussian time series only. For our synthetic test wergen&aussian time se-
ries with zero mean and standard deviation equal to 1 cm/shwdre then filtered in
the frequency range 0.1-0.5 Hz. The resulting standarchtlemiof the noise is very
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Figure 1.3: The noise covariance function. The correlation is almosb adter 10 s. This is con-
sistent with the fact that the covariance matrix has beemat#td considering Gaussian
time series filtered in the frequency range [0.1 0.5] Hz, aiming therefore periods
between 2 and 10 s.

small, about 0.01 cm/s. The corresponding signal-to-n@ise (SNR) (calculated
as the ratio between the maximum value of the signal and thénmaan value of
noise) varies depending on the waveforms. The minimum SNdRmvkd is about
7. We performedV = 500 noise realizations and the resultiag, was smoothed
by replacing each element with the average of its diagomafigl1.3 we show the
resulting noise covariance function (i.e. the cross diaggerms). Note how the
filtering has introduced a certain level of correlation ie tioise that almost disap-
pears after 10 s, consistent with the fact that noise beldwHa. has been filtered
out.

We invert all components for all stations in order to reteigpeak slip-velocity
values at grid points, rupture velocity and rise time. Rakgl@and hypocenter
location are fixed to their true values. We define peak slipery values on the
same grid used for calculating the true seismograms. As weiomed in section
1.2.1, for each model parameter the prior marginal is unmifanside a predefined
range of values. Model parameter ranges are [0 600] cm/<sefak plip-velocity, [2
3] km/s for rupture velocity and [0.5 1.5] s for rise time. Tdoéal number of model
parameter we invert for is therefore 38.

The fitness function used during the search is calculateteatiuced,? value
of the data fit, where is the number of degrees of freedom (number of data minus
number of parameters):

V2 = (g(m) — d**)TC;! (g(m) — d**) (1.17)

v
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Equation 1.17 contains the inverse of the covariance métfjx In our case each
waveform contains 4096 data points so that the covariandeexnfier each wave-
forms is a4096 x 4096 matrix. As a first order approximation we consider, in the
calculation of the misfit, only the main diagonal (i.e. theiaace of the noise).

From equation 1.17 we also see that the misfit value depemdsighd®*, on the
particular noise realization added to the “mean” seismmograln this study we
present results obtained using a single data realizaticgar{yla different data re-
alization would produce, for the same model, a differentgalf fit. However it is
beyond the scope of this paper to investigate the effecffigrdnt noise realizations
in the computed posterior.

1.4 Inversion results

1.4.1 The maximum likelihood model

As explained in section 1.2.2 the first step in our inversionsists of searching
the parameter space. After several trial inversions thugeoary algorithm para-
meters have been fixed to the following valugs= 100, A = 4000. The standard
deviations for the mutation operator, for peak slip-vetigaupture velocity and rise
time are, respectivelys4,,,. = 10 cm/s,oy,. = 0.3 km/s ando,, = 0.3 s. We do
not expect these values to be optimal (in rendering the Bahre most efficient)
and as already stated in section 1.2.2, even if some guadsdire available trial and
error work is usually required to set these parameters.

In fig 1.4 we show the best fitness function value for each geioer versus the
generation number. After about the 20th generation the tméesdiches an approx-
imately stationary level that lasts until the search is géap The total number of
models visited is 160100. On a 20-CPU Linux cluster the segrghired about 1
day of computation time.

The first result of the search we may look at is the maximuniiiked model
(corresponding to the best fitting model in our problem, the with the lowesf?
value). We show it in fig 1.5. Comparing with the true model (fifj) e can see
that the general characteristics of the rupture processetnieved. The locations
of the two slip patches are correctly imaged and also ruptelecity and rise time
values are close to the true ones. These similarities pedlsp a corresponding
seismic moment near the true value. However, we can alsdaeewven if the large
scale features are correctly imaged, the details are mptatthe bottom of the fault
the peak slip-velocity is significantly over estimated. piesthese differences the
corresponding level of fit is visually very good (Fig 1.6 an@)1 Numerically it
corresponds tq? ~ 118. This high value (for uncorrelated noigé > 1 means
that predicted data are not able to reproduce, in averagegltberved data whitin
the assumed standard deviation) is basically due to thesrmeal uncertainties we
consider in measuring the data-fit (we recall that the stahdaviation of noise is
~ 0.01 cm/s).
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Figure 1.4: 2 reduction during the search. The best fitness function vidu@ach generation
versus generation number is shown. After about the 20thrggae the misfit reaches
an approximately stationary level.
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Figure 1.5: The maximum likelihood model (corresponding to the lowgstvalue). The general
shape of the slip distribution is correctly retrieved angtune velocity, rise time and
seismic moment values are close to the true ones. Howevenaxanum slip-rate is
over estimated at the bottom of the fault.
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1.4.2 Uncertainties estimates

The need for estimating uncertainties comes from the fatthtie maximum-likeliho-
od model is not the only model that produces a good level obfihé data. In fig
1.8 we show peak-slip velocity distributions for 40 modésind during the search,
with ax? < 1000. The visual analysis of the peak slip-velocity distribngshows
that all these models share some large scale features alsenpin the best-fitting
solution: low slip-rate at the top, right and left borderstlo¢ fault and near the
hypocenter; a major slip patch located between -20 and -1@lkny strike; and a
second slip patch above the hypocenter. Despite this conumaracteristics, the
details of each peak slip-velocity distribution variesnfronodel to model. In fig
1.9 and 1.10 we show the level of fit produced by all these nsodehey all gen-
erate waveforms very similar to the observed ones. Fromettasnple it can be
seen that, within a certain level of fit, the inverted datancarconstrain a single
model but rather a set of models which are different one frowtlteer but share
some common properties. Quantifying and expressing th@senon properties is
the ultimate goal of the inversion.

Following the methodology described in section 1.2.2 we mat@ for each
model parameter its corresponding 1D posterior margiraaiility density func-
tion. In fig 1.11 we show the posterior and the prior margiriaishe peak slip-
velocity, together with the true value, for each grid nodetlos fault surface. We
also plot the raw marginals computed from the ensemble ofetsagenerated by
the evolutionary algorithm. Each subplot corresponds toderposition. We indi-
cate node’s coordinates (along strike, along dip) in kmhwéspect to a reference
system centered at the epicenter and pointing toward sastth&he hypocenter is
at (0,12.5). For each posterior marginal we compute mearev@a) and standard
deviation ¢). All marginals are normalized to unit area so that relaitnfermation
can be compared.

Comparing raw and posterior marginals we see that they areriargl different,
that is, they do not follow the same distribution. The raw giaals often present
a much better defined peak then the posterior suggestingftinerbetter resolu-
tion then the actual one (see for instance posteriors atqsZ25), (-16.75,2.5)).
This shows that the statistical properties of the ensenfbiedels produced by the
evolutionary algorithm do not represents the actual uagdrés affecting model
parameters.

We also notice that in general posteriors do not show a Gaussiape (espe-
cially for those parameters for which the true value is clos@ or to the maximum
boundary value, like the posteriors at (-24.75,2.5) an@.73,10.5)). For these
cases, the standard characterization in terms of mean aatlistandard deviation
is not really meaningful: the mean value would not corresptinthe maximum
likelihood value and the standard deviation cannot be pnéted as a symmetric
error bar on the mean value. For these parameters we theredmnot use the
Gaussian uncertainty hypothesis.

Without the support of the Gaussian assumption resolutianadel parameters
can be better understood by looking at the difference betyweéers and posteriors.
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Figure 1.12: 1D posterior (black solid line) and prior (black dashed Jingrginal probability den-
sity functions for rise time (a), rupture velocity (b), aage peak slip-velocity on as-
perity 1 (c), and 2 (d), and seismic moment (e)
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At some fault locations a single well defined peak in the piomtean be identi-
fied (at the right and left sides of the fault surface, for amse), at some others
locations there is little difference with respect to thefarm prior (see posteriors
at (-20.75,2.5), (-16.75,2.5), (-20.75,10.5), (16.755)@or instance), suggesting
therefore poor resolution.

We can also see that at the lower edge of the fault (nodesa76,14.75), (-
8.75,14.75)) and at node (-0.75,10.75) the true value iatéaton the tail of the
computed marginal posterior. For these parameters thenpmsseems to miss the
true value. A tentative explanation for these results catihaefor these parameters
the search algorithm did not reach the true values but gielbanto a solution pre-
maturely. Assuming these parameters to be very poorly vedaqlsomething that
we can expect for nodes located in the bottom part of the)fghdt “fitness” land-
scape for those parameters will be something similar to layadlf then the search
is stopped before exploring the entire valley and therefotieout reaching the true
values, the reconstructed posterior will be incomplete &ifidcontain that valley
only partially. Therefore, even if the true posterior is stamt for these parameters,
the approximated posterior will be peaked only around tis¢-fiing models found
during the search. This is important to bear in mind. The metracted posterior
reflects only what the search algorithm illuminated. Thiplies that the recon-
structed posterior may not completely reflect the true,-datarmined posterior. A
similar behaviour can also be find in the results provided &yn&xidge [1999]. In
the synthetic reciver function problem he considers, theginal posterior for the
thickness of the bottom layer completely misses the trugevéiigure 7, pag. 738).

We present also the 1D marginals for rise time and rupturecitgl (1.12 (a)
and (b)). Again, a well defined single peak of the raw margiraintrasts with a
smoother and broader a posteriori distribution. For thesepgarameters the pos-
teriors shows approximately a Gaussian shape so that timelyecaharacterized in
terms of mean value and standard deviation. The mean rigaunterestimates the
true value of about 0.1 s. The true rupture velocity is ingide standard deviation
(about 0.1 km/s) from the estimated mean rupture value.

Besides single model parameters, we can also analyze riesotut combina-
tion of model parameters. As we have noticed before ofterhmuare resolution is
achieved on the large scale features of the slip distributidher then on the local
details. In fig 1.12 (c) and (d) we present 1D marginals foraberage peak slip-
velocity on the two main asperity regions characterizirgttioe model (asperities
extensions are: 7 by 6 km for asperity 1 and 10 by 6 km for agp2)i Here we
see that our a priori marginal is not uniform anymore becéusgresents informa-
tion on a combination of the original parameters. In botresdbke true values are
correctly retrieved with a good resolution (standard dewns of the order of 50
cm/s, corresponding to relative errorief’ ). Good resolution is achieved also for
the seismic moment (standard deviation equal to 2.44e18rblatjve error18%)
(fig 1.12 (e)).
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1.5 Reconstructing the posterior

Our resolution analysis derives from the reconstructedepios computed from
the ensemble of models visited during the search stage. iffipiges that our un-
certainty estimates depend on the way the search developth@ imodel space.
To further elucidate this point we perform three independsarches, with the
same settings for the evolutionary algorithm parametarswith different seeds
for the random number generator. We carry out the searchésdsame number
of generation. In fig 1.13 and 1.14 we show posterior margifalall the original
parameters investigated in this study considering theetim@ependent ensembles
produced. We can see some variability affecting espediaiymarginal probabil-
ity densities for local peak slip-velocity parameters, the general features of the
inverse solution are maintained. The variability we obe@wmes from the fact that
these three ensembles search the model space in differgatedhat each of them
provides different approximation of the actual posteribhis is an inherent diffi-
culty because an exhaustive search is unfeasible and weraetlfto explore the
parameter space only in a limited number of points. Thispeemlly true for large
dimensional model spaces. Merging the set of models pradbgandependent
searches into one single ensemble can be a good strateggréase the results’
stability. However one has to bear in mind that, for this kafchnalysis, memory
requirement and computation time scale with the size of tisemble (see eq 1.13
and 1.14).

1.6 Discussion

Accurate estimates of uncertainties are needed in ordessesahe reliability of
the inverted solutions. As it has been pointed out by diffesuthors (Cohee &
Beroza [1994]; Beresnev [2003]; Ide et al. [2005]) and is atgmresented in the
online database of earthquake rupture models (http://\s@amo.ethz.ch/srcmod),
for the same earthquake, acceptable fit to the data can b&edoby different
rupture models. The discrepancies between models may béodhe different
choices adopted during the inversion concerning the faiwaodeling, the model
parametrization, the inversion methodology, the type dadset and processing
used. However, independently of the particular approadhnsic reasons render
imaging the earthquake source a problem with multiple gmist uncertainties in
data and in forward modeling (which allow multiple modelsh® considered ac-
ceptable) and lack of resolution (due to the always limitathccoverage). For a
linear or linearized inversion, these factors render tlodlem ill-conditioned and
ill-posed. For instance, Graves & Wald [2001], considemngear slip inversion,
explicitly showed that uncertainties in Green'’s funtionsrease ill-conditioness of
the problem, requiring increasing value of damping param@moothing of slip in
their case) to stabilize the matrix inversion.

In the context of earthquake source inversions real wanef@re contaminated
with ambient noise and also by uncertainties in the aligriroéthe recording sen-
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Figure 1.14: 1D posterior marginals (black solid lines) for rise time &ud rupture velocity (b),
computed considering three independent ensembles.

sors. More important, in our opinion, are the uncertainties to approximations
in the forward modeling. Real waveforms often show compiesi{due to source,
path and site effects) which the adopted modeling is not @béxplain. The best-
fitting model (the model which provides the best numericdbfihe data) is there-
fore not so meaningful because we do not know precisely td extent the best-
fitting model is reproducing the modeled part of the dataawathan the unmodeled
one. Providing the best-fitting model as an image of the gagke source can be
therefore misleading. We suggest therefore that a bettgtevahow results of an
earthquake source estimation is to provide multiple moaéish are able to repro-
duce the data within a certain level of fit (determined by tbeusacy of our data
and modeling). In such a way we can visually identify whattaeemain features of
the inverted solutions whitout trying to draw conclusiorafi the unstable details.

Lack of resolution is another important factor to bear in anifrhe fact that
linear inversions practically always require damping pagters implies the pres-
ence of a null space in the model space (or in other words of eleise-to-zero
singular values). In physical terms what happens is thatl#ite we consider may
contain very little information about certain parameteeswant to invert for. In our
methodology, which does not require any matrix inversioa,tsy to measure this
lack of resolution rather than reducing it through the addibf damping parame-
ters.

Considering a simple synthetic test, we point out that imggie earthquake
source implies a process of extraction of information frosegof data (in our case
waveforms) which cannot be reduced to simply providing d btgsig model. Ef-
forts should be put in estimating resolution on invertechpaaters. Multiple rupture
models may in fact produce very similar waveforms. We warsttess that uncer-
tainty analysis should be carried out using an appropriaeretical framework in
order to get meaningful results. We have shown how the us& @ipéimization
algorithm to estimate uncertainties is not suitable. Wegssgthat a Bayesian ap-
proach instead provides a possible way to face this problem.
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The main consequence in using this approach is that our letgelof the earth-
quake rupture process, as derived by the fitting of some kirtthta, can be only
probabilistic. In other words, available data and theoedtinowledge do not allow
us to identify a single model but rather a set of models whinglres certain statistical
properties. ldentifying and quantifying these statidtwaperties should be the real
aim of any inversion.

We used this approach considering only strong motion datary] this method-
ology can be applied also to investigate resolution on mpdeimeters considering
different data sets (teleseismic data, geodetic data)hwddidogheter can improve
the quality of our inferences. Wald & Graves [2001] showed & linear slip inver-
sion, that adding geodetic data to seismic data has a sigmtifcontribution. They
found that features imaged by inversion of individual dadts lone may not be
recognized when using combined data.

1.7 Conclusions

In this paper we address the problem of inferring kinemadithgjuake rupture pa-
rameters following a Bayesian approach. Imaging the eaatkegsource is seen
as a problem of combination of information: a priori infortoa (available before
the inversion) and information contained in the data. Tloisination gives the
posterior state of information, represented by a prolighilensity function over
the model space. We compute the posterior using a two steggueoe. First we
explore the model space through an evolutionary algoritiine. search of the para-
meter space reveals that within the same level of fit the obdawvaveforms can be
reproduced by multiple models. All of them, though beinded#nt one from an-
other, share some similarities. Quantifying and exprestiese similarities is the
aim of the second step. We use the ensemble of models foumydbe search to
compute a geometric approximation of the true posteriona@dise it to compute
marginal probability density functions for each model paeser. Each marginal
represents the combination of the prior information witk thformation that we
have been able to extract from the data. From each marginahwelerive uncer-
tainty estimates.

We point out how this second step of the procedure is paatituimportant in
order to correctly compute resolution on inverted paramsefehe search algorithm
alone, though being effective in finding good data fitting eisddoes not provide
direct information about uncertainties. Misleading résahn be obtained if simple
statistical analysis of the ensemble of models is used imat resolution. We also
point out how the information content on the inverted para@nmsecannot be always
represented in terms of Gaussian probability density fanst We show explicitly
how for some parameters the posterior marginal does nawfal Gaussian shape:
for these parameters the standard characterization irstefmean value and stan-
dard deviation is not meaningful. The fact that Gaussiaretatty hypothesis is
not valid for non-linear problems is widely known but stilircent non-linear source
estimations adopt this approximation. We also point out Betimating resolution
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can be limited by our ability in reconstructing the true stte of the posterior.

This is an intrinsic difficulty due to the fact that exhaustisearch is unfeasible
and that we are always forced to explore the model space anit&di number of

points. The consequence is that uncertainties estimatelsenalways subject to a
certain amount of variability which decreases as the eafilam of the model space
becomes more and more extensive.
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Abstract

We image the rupture process of the 2000 Western Tottorhgaake (/,=6.6)
through fitting of strong motion and GPS data. We considerlameivational net-
work of 18 strong motion and 16 GPS stations located withiedHault lengths
from the epicentre. We assume a planar fault and computenGrmctions for
a 1D velocity model. The earthquake rupture is described sfsear dislocation
parameterised in terms of peak slip-velocity, rake anglgture time and rise time,
defined on a regular grid of nodes on the fault surface andeteat inner points
through bilinear interpolation.

Our inversion procedure is based on a Bayesian approach. olites of the in-
verse problem is stated in terms opasterior probability density function (pdf)
representing the conjunction pffior information with information contained in the
data and in the physical law relating model parameters watia.d Inferences on
model parameters are thus expressed in terms of posterigimabpdfs. Due to
the non-linearity of the problem we use a Markov Chain MonteldCaviCMC)
method based on the Metropolis algorithm to compute pastaerarginals.

Except for a few cases posterior marginals do not show a (zenibke distribution.
This prevents us from providing a mean model and from charaatg uncertain-
ties in terms of standard deviations only. Resolution on edegle parameter is
analyzed by looking at the difference between prior andgrastmarginal pdfs.
Posterior marginals indicate that the best resolved feasta major slip patch (peak
value of3114140 cm) located between the hypocentre and the top edge of the fau
centered at a depth of 4.5 km. This shallow slip patch is &igd about 3 s after
the earthquake nucleated and required about 4 s to reachatssfip value. The
presence of this shallow slip patch is common to all prevaiudies. In contrast to
some previous studies we do not identify any significant(Shgd m) at the bottom
of the fault.

We also compare inferences from both strong motion and GRSndth inferences
derived from strong motion data only. In both cases the eWadlip patch is iden-
tified. At other locations, the main effect of the GPS dataiseiducing the proba-
bility associated with high values of slip. GPS data redhegaresence of spurious
fault slip and therefore strongly influence the resultinglfseismic moment.

2.1 Introduction

The M,,=6.6 Tottori earthquake struck southwestern Japan on 6b@c2000, at
04:30:17.75 UTC. The hypocentre was located at 35°A3.33.350°E at a depth
of 9.6 km [Fukuyama et al., 2003]. The best-fitting doubleqde focal mechanism
estimated by Fukuyama et al. [2003] indicates an almost lpiir&ateral strike-slip
event with a strike angle of 13@nd a dip of 85 (Fig 2.1). No clear surface rupture
was observed near the epicentre although some crackseatipatallel to the esti-
mated fault were found on a paved road [Umeda, 2002]. Sysieiaplacement
of 10-20 cm was also found in a concrete lining, in a tunnel@dgelow the surface
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Figure 2.1: Location and focal mechanism for the 2000 Western Tottorihgaake [Fukuyama
etal., 2003].

near the source region.

To reveal the details of the earthquake rupture process d@uai studies de-
rived kinematic images. Using a linearized frequency-dameethod and an initial
slip model obtained through GPS data inversion, Semmank 085] inverted
strong motion data to infer values of slip amplitude, rupttime and rise time.
They proposed different rupture models that all show a msljprpatch located
near the top edge of the fault (elongated towards southedsthg strong motion
data only and a backprojection method, Festa & Zollo [200&¢rred two ma-
jor slip patches: one located above the hypocentre, clo#eeteurface, extending
southwards to the bottom of the fault; a second one locatetth nbthe hypocentre
at depths between 10 and 18 km. Fitting simultaneously gtroation and GPS
data and using a direct search method based on a simulatedlagnalgorithm,
Piatanesi et al. [2007] estimated peak slip-velocity, tiise, rupture time and rake
angle. They confirm the presence of a major slip patch betweehypocentre and
the surface, but also identify an additional slip patch 2+8) located at the bottom
of the fault.

A dynamic model of the rupture process has also been deroethé Tottori
earthquake. Assuming constant upper yield stress andrangtp-weakening dis-
tance, and using a direct search method based on the neitolodualgorithm,
Peyrat & Olsen [2004] inferred the distribution of stressplover the fault surface
by fitting strong motion data. The resulting slip patterniagdows that most of
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the slip is concentrated in the uppermost part of the fault.

All these proposed images are similar in their general featurhey all show a
high slip patch near the surface. However, the presencepodtsthe bottom of the
fault is ambiguous: it has been recognized by Festa & Zoli®§? and Piatanesi
et al. [2007], but not by Semmane et al. [2005]. Also the Refr®Isen [2004]
model does not require any slip at depth to fit the data, evemgthn they consider
a fault with a smaller depth extent compared to the ones wsebttin kinematic
Images.

One more aspect that has been investigated by both Semmah¢e05] and
Piatanesi et al. [2007] is the rise time distribution on tdfsurface. The model by
Semmane et al. [2005] shows a highly heterogeneous paftese dime values that
vary mostly between 0.5 and 2 s. Piatanesi et al. [2007]'sahsigows a distribu-
tion that is instead more homogeneous (probably due to aepgrid discretization
and because they present a mean model) with rise time vatugmg mostly be-
tween 2.5 and 3.5 s. Clearly, these discrepancies can pabadiue to the different
approaches and parametrizations. However, no commorrésatan be identified
between the rise time distributions presented in these twdies, highlighting the
intrinsic difficulty in imaging rise time in finite source iavsions.

The Tottori earthquake is one of several examples wheraptautupture mod-
els have been proposed to explain the observed data. Alllsadesimilar in some
aspects but their obvious differences require a betterrstateding of where this
variability comes from. Are these discrepancies in the e@images only due to
different approaches and modeling assumptions or do the@arsome more fun-
damental lack of resolution?

Rupture-parameter estimates depend on how the inverseeprablstated, a
well-known fact since the initial works of Olson & Apsel [12Band Hartzell &
Heaton [1983] who showed that results of linear slip invarsidepend on the sta-
bilization constraints and the data-set used. More regetinsidering the 2004
Parkfield earthquake, Custodio et al. [2005] analyzed howrkatic rupture pa-
rameters depend on the chosen data-set, while Hartzell gx0f17] showed how
source-inversion results may depend on the definition ofmtiefit function, the
bounds on model parameters, and the size of the model fanlépl

However, once a model parametrization, an inversion medginoida data-set are
chosen, uncertainties on model parameters are determyredrs in data, model-
ing, and finite data coverage. All these factors influencedpelogy of the misfit
function and therefore its minimum. Every minimum is chaesized by a certain
local topology which determines the uncertainties on threesponding model pa-
rameters. This is evident for the linear least-square pralWwhere the covariance
matrix for model parameters is proportional to the inversthe 2"¢ derivative of
the misfit function at the minimum [Menke, 1989]: The shargher minimum, the
smaller the uncertainties. In case of non-linear probldrasiinimization problem
may even have multiple solutions because the misfit functiap have multiple (or
degenerate) minima.

To estimate these uncertainties some methods have beeosptbpEmolo &
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Zollo [2005] used a genetic algorithm to search the modetspad estimated res-
olution on the best-fitting model by defining a Gaussian podita density function
centered around it. For each model parameter they deriveargimal probability
density function by computing the objective function in tighbourhood of the
best-fitting model varying the parameter of interest butpkeg all the remaining
parameters fixed to their best-fitting values. With this apprthe posterior prob-
ability density function is forced to be Gaussian aroundiést-fitting model and,
more importantly, the computed marginals do not take intmant the correlation
between different model parameters. Peyrat & Olsen [200dtish et al. [2007]
and Piatanesi et al. [2007] derived uncertainty estimayestdtistically analyzing
models generated by the optimization algorithm minimizihg misfit. The main
drawback of this approach is that the statistical propeuiea set of models, pro-
duced by optimization, do not necessarily represents thimabigncertainties (Sam-
bridge [1999], Monelli & Mai [2008]), but rather the tuningagameters and the
operators adopted by the algorithm.

The aim of this paper is to investigate the rupture procesheflottori earth-
guake focusing on determining resolution on model parammetsing a Bayesian
approach (Mosegaard & Tarantola [1995], Tarantola [2Q005Bayesian approach
allows one to estimate uncertainties taking into accouetrtbn-linearity of the
problem. It requires defining a posterior probability dgn&iunction (pdf) on the
model space representing the conjunction of our prior médron with informa-
tion contained in the data (strong motion and GPS data incéé&), and in the
physical law relating model parameters with data. Infeesran model parameters
are then expressed in terms of posterior marginal pdfs. Dtleetnon-linearity and
large-dimensionality of the problem, we use a Markov Chaimdd&arlo (MCMC)
method based on the Metropolis algorithm to compute pasterarginals. Resolu-
tion on each model parameter is analyzed by looking at tHerdiice between the
corresponding prior and posterior pdfs. With this approaehcan identify which
regions of the fault surface are better illuminated by tha @ad which features of
the rupture process can be considered well resolved.

2.2 The observational network

The observational network we use consists of 18 strong matiol 16 GPS stations
located within about 90 km from the epicentre (Fig 2.2). Amdime strong motion
stations, we use 11 K-net stations and 7 KiK-net borehokgosts (SMNHO1 and
SMNHO02 at 101 m depth, TTRHO04 at 207 m depth, OKYHO07, OKYH08 Y39,
OKYH14 at 100 m depth).

The strong motion data (available at http://www.kik.bogaijp/) come as raw
accelerations with absolute time. We band-pass filter theefeams in the fre-
guency range 0.1-1 Hz usind & order band-pass Butterworth filter applied both in
the forward and reverse directions to preserve phase. Wertegrate the filtered
waveforms to obtain ground velocities which we resample sampling interval



2 BAYESIAN IMAGING OF THE 2000 WESTERNTOTTORI EARTHQUAKE

46

"(oDORHIS e} paWNsse ay} sayedlpul dul| pijos
oe|q ayl ‘(sojbuely BuinpoEmumop) suonels adepuns TT pue (sajbueln bunudedmn) suoneis ajoyaloq 2 asn apn “(Jeis oe|q) anuadids ay)
WoJ) W 06 IN0ge uIyneJmy(siop 3ae|q) suonels Sdo 9T pue (sajbuell yoe|gisiouonow Buons 8T 0 SISISUOI YI0MIBU [euOlIeAIaSqO By ] :Z'Z ainbi4

3,00.v€1 3.9€.661 321.661 38v.2€t
I J
E . . . N.8P.7E
69, v6€ €99
80HAMO
_:_.cc_o v
NHn Y00AMOA 86¢
e 50010 Nwws_.;v_o
L6€ L
60HAYO i mcoth TR
18€ ZOHNINS gge N.ZL.S€
v

08¢ SLOAMOA 68¢ 1004 L1A

FOHNWS YOONINS A

A
SILONINS
GOOHLl1lA 800dLLAa

Sdo ° .
aoeyins uonow Buoss a

N.9€.S€

sjoyaioq uonow Buoss v
|




2.3 THE FORWARD MODELING 47

Table 2.1: Seismic velocity and density model for the Tottori regionkbyama et al., 2003].

Depth (km) V,, (km/s) Vi (km/s) p(g/cm?)

0.0 3.00 1.73 2.3
1.0 4.00 2.31 2.5
3.0 6.00 3.46 2.7
30.0 8.00 4.62 2.9

of 0.015 s. The horizontal components of station OKYH14 Hasen also rotated
by 76> anticlockwise to correct for sensor misalignment. Eachef@wn lasts for
61.425 s and contains 4096 data points. Considering all coens at all stations,
the total number of waveform data points is therefore 221184

The GPS stations belong to the GEONET array operated by tbhgr@ehical
Survey Institute of Japan [Sagiya, 2004]. At each statiomdefine the coseismic
static offset as the difference between the mean valuesilyf piasitions during
the five days before and the five days after the earthquake. |80ecampute the
corresponding standard deviations that we then propagatenhpute the error on
the final static displacement. For each station we consiogr the two horizontal
components and the vertical component, resulting in a tatalber of GPS data
points of 48.

2.3 The forward modeling

We adopt a 1D piecewise-linear velocity- density-depthridistion based on the
velocity model used by Fukuyama et al. [2003] for the maie&Hocation (Table
2.1). S-wave velocities are assumed talB¢’3 of the P-wave speed. Density val-
ues are deduced from P-wave velocities using the Gardredganship [Gardner
etal., 1974].

We represent the fault as a 40 km long and 20 km deep, veytidgping,
plane surface with a strike a60°. The same strike and dip has been used by Peyrat
& Olsen [2004], Festa & Zollo [2006] and Piatanesi et al. [2D0he fault’s upper
edge is at 0.5 km depth, because coseismic surface ruptgressantialy absent.
On the fault surface we define a regular grid of nodes with aisgaf 4 km along
strike and along dip. The total number of nodes on the fatitasefore 66. At each
node we define four parameters: peak slip velocity, rise,tmngure time and rake
angle.

We compute ground velocities using the frequency-domairesentation theo-
rem [Spudich & Archuleta, 1987]:

U (Y, w) = //2 S(x,w) - TN (x,w;y,0)dX (2.1)
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where1,, is them!” component of ground velocity at the receiver locatigrs is
the slip-velocity function,T™ is the traction exerted across the fault surfacat
pointx generated by an impulsive force applied in thé& direction at the receiver
(w = 27 f: angular frequency). TractioriB™ are computed, up to a frequency of
1 Hz, using a Discrete Wavenumber / Finite Element method [&ym package,
[Spudich & Xu, 2002]], for a 1D flat layered Earth model with@itenuation. A
trapezoidal-rule quadrature of the prodactT™ is performed separately for each
frequency, with the quadrature points being the sampletparthereT™ have been
computed. Rupture-parameter values at integration paiaetsexived through bilin-
ear interpolation of values at surrounding grid nodes, lainto the approach taken
by Liu & Archuleta [2004] and Piatanesi et al. [2007].

In this study we assume the slip-velocity function to be asdgles triangle.
With this parametrization the peak-slip velocity corresg® to the height of the
triangle and the rise time to the base length. Rupture timeesponds to the first
point of the base segment. With this parametrization rise &nd rupture time are
non-linearly related to ground velocity. Previous studissd different parametriza-
tions, like a smooth ramp [Semmane et al., 2005] or a boxwaetion [Piatanesi
et al., 2007].

Following Eq 2.1, we convolve tractions with the assumep-gélocity func-
tion to compute ground velocity at the strong motion stakimations. We compute
GPS data predictions by integrating ground velocities tamgd displacements and
then selecting the final static offsets.

2.4 The Bayesian approach

In a Bayesian approach, inferences on model parametersi{eam values, standard
deviations, 1D/2D marginals) are derived from a posterifrdefined on the model
space. In section 2.4.1 we introduce the general equatefirsray the posterior pdf.
We then apply these equations to our specific case, definmdifferent posteriors:
one considering strong motion data only, and one consigldraith strong motion
and GPS data. Our aim is to compare inferences from these ¢stenors and
analyze how GPS data influence the results. In section 2.4.8efine the model
space. We pay special attention to defining a physically istet® model space
to avoid considering unrealistic models. Finally, we prétbe numerical scheme
used to derive inferences on the model parameters (sectd) 2

2.4.1 The posterior pdf

We assume thé/-dimensional model space ahgdimensional data spack] and
D respectively, to be linear spaces. The prior probabilitysity functions on model
parameters and data are indicated wiff(m) and pp(d), respectively.d(d|m)
denotes the conditional probability density representimggcorrelation betweed
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andm. The posterior pdf on the model space is given by [Tarang8a5]:
oy (m) = kpyr(m)L(m) (2.2)

wherek is a normalization constant addm) is the likelihood function:

L(m) = / dd pp(d)6(dm) (2.3)

which gives a measure of how well a moaelexplains the data.

In this study we assume that our prior knowledge consistg ainihe informa-
tion that each model parameter is strictly bounded by twoa&h.,. andmg, ...
wherea € Iy, Iy = {1, ..., M}. We then write the prior pdf as:

pm) =[] pra(m®) (2.4)
an €1
where
(m®) = ——1—— formg,, <m* <ms,,
Pal) =1 0 otherwise

is the prior marginal for each model parameter (i.e. a unifprobability density
function [Monelli & Mai, 2008]).

The common approach to define the likelihood function rexguiteriving a data
covariance matrix for data uncertainties, and a modelinvgugance matrix for un-
certainties in the forward modeling. Assuming Gaussiaretamties the likeli-
hood function takes a Gaussian functional form where thect®d covariance
matrix is the sum of the data and modeling covariance mat{iGeuveia & Scales
[1998], Tarantola [2005]).

Because we consider two different data sets (strong motidrG&#S data) we
define two distinct likelihood functions. For the strong matdata we do not have
a complete estimate of the associated uncertainties. gtnmtion data represent a
single measurement of the ground motion produced by ancsakie, and we there-
fore have a single realization of the data errors. A possiplaoach to still derive
a data covariance matrix would be to analyze the portionrbdfe P-wave arrival
of each trace and to assume this portion to be representdtite seismic noise.
More problematic is to derive the modeling covariance matvhich would require
knowing the uncertainties in the velocity and fault modeisknown in our case)
and then propagating them into the Green'’s functions usedrtgpute the predicted
ground motion.

Due to the difficulty of deriving a realistic covariance nwafior strong motion
data, we propose an alternative approach. First, we assupefact instrument”
condition [Tarantola, 2005]. This assumption is valid ifalancertainties are negli-
gible compared to modeling uncertainties. We propose thpsaach for the strong
motion waveforms considered in this study, for which we fiightsignal-to-noise
ratios thanks to the vicinity of the recording stations wispect to the source and
the magnitude of the event. This assumption translateshettollowing condition:

pp'(d) = 6(d - d™) (2.5)
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wherep37(d) represents prior knowledge on strong motion datadthdrepresents
the observed data.

We define now the correlatigi{d|m) between data and model parameters. Due
to our lack of knowledge of the amplitude and type of unceites affecting our
modeling we cannot deriv&(d|m) from a formal theory. We therefore propose an
empirical formulation. Using an optimization algorithm wramine which model
produces the best fit given the observed data. We then ugaftiisiation to define
a correlation function that assigns to each maded correlation value that depends
on how well it fits the data with respect to the level of fit prodd by the best-
fitting model. Models producing a level of fit close to the origh® best fitting
models should then have a higher value of correlation thadefsoproducing a
worse level of fit. Indicating withy(d, m) the percentage difference between the
misfit produced by a modah and the misfit produced by the best-fitting model
m* (which depends on the dadh, we obtain:

S(m) — S(m"(d))

¢(d,m) = S(mbest(d))

- 100 (2.6)

whereS indicates the misfit function used, and**!(d) represents the best-fitting
model given datal. We define the correlation between (strong motion) data and
model parameter as:

c ,YmeM: ¢(d, m)<0

0" (d]m) = {cexp[—gb(d, m)} Vm € M: ¢(d, m)>0 @D

where c is a normalization constant. Equation 2.7 prednasfor all models pro-
ducing a lower misit value then the best-fitting model ther@ation assumes its
maximum value. This condition accounts for the possibilitgt the best-fitting
model found during the optimization process may not cowedpo the absolute
misfit minimum. For all other models the value of the corrielatdecreases expo-
nentially depending on the percentage difference betweegénerated misfit and
the minimum misfit associated with the best-fitting model.wiriting eq 2.7 we
follow the analogy with a Gaussian correlation function. Whssuming Gaussian
modeling uncertainties , the correlation functiéfl|m) assumes an exponential
functional form where the argument is tihe norm of the data misfit weighted by
the modeling covariance matrix. In our study we keep the egptal functional
form, but we substitute the argument with eq 2.6. Insertipgagions 2.5 and 2.7
into equation 2.3, the integration yields:

c VmeM: ¢(d°**, m)<0

Lsm(m):{c expl—(d*", m)Lvm € M: ¢(d", m)>0 (2:8)

whereL*(m) represents the likelihood function for strong motion data.

For GPS data we define a data covariance matrix. As descbsettion 2.2,
we define the observed static offset as the difference bette=mean values of
daily positions during the five days before and after thehegrake. By comput-
ing the corresponding standard deviations we can deduc#dhdard deviation on
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the final static displacement. Assuming uncorrelated uacgies we then define a
covariance matrix for GPS data which is a diagonal matrixathd/ariances. As-
suming Gaussian uncertainties the prior pdf on (GPS) data is

S 1 o0s —
pi°(d) = Cexp |~ (d — d™)"Cyy

daps(d —d?) (2.9
whereC' is a normalization constant ard, ,,, is the data covariance matrix for
GPS data.

As for the strong motion data, the modeling covariance mé&br uncertainties
in the predicted GPS displacement requires knowing thertainges in the velocity
and fault models. However GPS data, measuring a statictofisiect the zero
frequency component of the wavefield which is less sendibinemplexities in the
velocity model. Also, GPS data seems to be well explained exgng a simple
planar fault [Piatanesi et al., 2007]. We hence assume f& &®a to have neglible
uncertainties in the forward modeling. This assumptiondlates into the following
condition:

0%"(d|m) = 6(d — g(m)) (2.10)

whereg(m) is the forward modeling operator. Inserting equations 2d®210 into
equation 2.3, the result of the integration is:

1 _
L% (m) = Cexp {—ErTCdépsr} (2.11)
where L9%(m) represents the likelihood function for GPS data and g(m) —
dObS.

Considering equation 1.1 we can define a posterior pdf reptiegethe con-
junction of our prior information with information contad in strong motion data:

o3 (m) = kipys (o) L (m). (2.12)

Equation 2.12 can then be used as prior information to defmeaaposterior pdf
for the model parameters, which also considers the GPS data:

o3P () = kpas () L () L7 (m). (2.13)

2.4.2 The model space

The posterior pdf is defined over the model space. Infereanesodel parame-
ters are therefore dependent on the chosen model spacerestogefinition of the
model space is of vital importance to avoid testing unragallmodels that make the
inference process inefficent. We thus pay special attetdi@efining a physically
consistent model space.

In our inversion we assume the peak slip-velocity (and floeeethe slip) to be
zero at the fault edges. Non-zero slip at the fault boundasieuld constitute a
discontinuity in slip that lead to unrealistically high uak of stress change at the
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edges. This condition is assumed to be valid also for the tiye ef the fault,
because no surface rupture was reported for the Tottomeaeike. For the inner
nodes the peak slip-velocity is allowed to vary between 040@icm/s. With these
conditions we generate peak slip-velocity distributionthwnon-zero values only
inside the fault and tapered to zero at the edges.

The moment tensor solution for the Tottori earthquake iaidis an almost pure
left-lateral strike slip event [Fukuyama et al., 2003]. erlieless we allow the rake
angle to vary between -3@0 +30° degrees at each node. Positive angles indicate a
down-dip component whereas negative angles an up-dip coempo

The range of rupture times at each grid node is defined asrtieeititerval be-
tween the arrival times of two circular rupture fronts progéng from the hypocen-
tre (at 9.6 km depth) at two limiting rupture velocities: kri/s and 4 km/s.

The range of possible values for rise time has been chosendaag to the fre-
guency band used in the inversion. Having band-pass filtleed/aveforms in the
frequency band 0.1-1 Hz we consider as minimum and maximuoeséor rise
time 1 and 10 s respectively. However, from dynamic ruptiumeukations (Day
[1982], Madariaga et al. [1998]) it is known that when a ruptfront reaches the
unbreakable boundaries of a fault it generates stoppinggshthat propagate in-
wardly and heal the slip process as they spread over the fsili consequence the
duration of slip at fault locations is influenced by the stogphases emitted from
the edges of the fault. In our case the hypocentre is locgiptbaimately in the
center of the assumed fault plane; we may therefore expattith inner portion of
the fault will start slipping earlier and will be reached Ine tstopping phases, later
than regions near the borders of the fault. For this reas@ninimum allowed
rise time is assumed to be 1 s for each node, while the maxiniomeal rise time
is assumed to decrease from the maximum value (10 s) acgaihe following

equation:
dn
#) (2.14)

T m n
dhyp + dbound

wherer™*" is the maximum rise time at the node 7" andr™** are the min-
imum and maximum rise time values allowed by the considereguiency range,
dp,, 1S the distance of the nodefrom the hypocentre, and;,, , is the minimum
distance of the node from the boundaries of the fault. This equation predicts$ tha
the maximum allowed rise time is equal to 10 s only for a nodia@thypocentre
(dy,, = 0) and that for all the nodes on the boundarig,(,, = 0) the maximum
rise time corresponds to the minimum allowed rise time. Moreaaining nodes
the maximum rise time decreases as their distance from thedaoy decreases
(Fig 2.3). For the nodes having the same minimum distance (@odes 14, 15,
16, 17) the maximum allowed rise time decreases with inangaistance from the
hypocentre. Eq 2.14 only predicts the maximum allowed iige tat each node
and expresses the fact that long rise times are not expeetedhre borders of the
fault simply because stopping phases are expected to rédueideration of the slip
process in these locations. The minimum rise time is eveeya/i s. Between

the minimum and maximum allowed rise time values the pridrgssumes uni-

7, =7 T,

mazx,n __ 7_’min + (Trmax _ :un)(
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Figure 2.3: The maximum allowed rise time (s) on the fault surface. Numthéabels indicate node
locations. The white star represents the hypocentre mtati

form probability at each node. In other words, a crack-likpture behaviour or a
pulse-like propagation are assumed to be equally likely.

2.4.3 Sampling the posterior pdf

Once the posterior pdf and the model space are defined, iafammon each model
parametem® can be quantified by computing the corresponding 1D margiosi
terior pdf:

M (m®) :/.../UM(m)ﬁdmk (2.15)
iy

Eq 2.15 involves computing the integral of the posterior oedr all dimensions of
the model space except the one corresponding to the paraohétéerest. Due to
the large dimensionality of the problem (204 model paramgteq 2.15 can be es-
timated only using Monte Carlo methods that generate madeds samples of the
posterior pdfr,,(m). Once a large ensemble of such samples has been generated
the 1D marginal of each parameter can be approximated byist@gham of the
corresponding sampled values.

Among the different possible sampling algorithms (for ai@evsee Taran-
tola [2005]), we use a Markov Chain Monte Carlo (MCMC) method Hasethe
Metropolis algorithm (Martinez & Martinez [2002], Tarataq2005]). A Markov
chain is a sequence of random variabiag m,, ..., m;, such that the next value
or state of the sequenan,,; depends only on the previous ong. An MCMC
method based on the Metropolis algorithm generates a Matkaw where the state
of the chain at + 1 is obtained by sampling @ndidate point m from a symmetric
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Figure 2.4: Misfit reduction during the search. After about the 40th gatien the level of fit
reaches an approximately stationary level.

proposal distributiory(.|m;). An example of a distribution like this is the normal
distribution with meanm, and fixed covariance. In order to generate variables that
are samples of a given pdf, the candidate point is accepted as the next state of the
chain with a probability given by:

. . P(m)
a(my, m) = min {1, Plmy) } ) (2.16)
This means that i’(m) > P(m,), that is if the proposed model corresponds to
an higher value of the target pdf, the move is always acceptedusey(m,;, m)
will be equal to one. In the opposite case, if the move prosadewer value of the
target pdf the proposed model is accepted with probabilitgrgby 15((:3)- If the
pointm is not accepted, then the chain does not progressiangd = m,.

Our aim is to generate models that are samples of the paspelffioln our case
the posterior pdf is given by the product of several pdfs ésecofo;,***(m), the
prior and the likelihoods for strong motion and GPS data)n{ya general notation

we write:

oy (m) = kP (m)P;(m)Ps;(m). (2.17)

To generate samples according to the posterior defined mtieq2.17 we use the
Cascaded Metropolis algorithm [Tarantola, 2005]. We starti&fining a random
walk that generates samples according to the first pdf. Avengstep the random
walker is at pointm, (which is a sample of’;). Using a proposal distribution we
generate a modeh. We accept the new model as a next step of the random walk
according to the following rules:
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(@) if Py(m) > P»(m,), then go to step (c).

(b) if P(m) < P,(m,), then decide randomly to go to step (c) or to reject the pro-
posed model with a probability to go to step (c) givernby: P (m)/ Py (my).

(c) if Py(m) > P3(my), then accept the new model.

(d) if Py(m) < P;(m,), then decide randomly to accept a new model or to stay at
m; with a probability to accept the new model givendoy= P;(m)/P;(m;).

2.5 Results

In section 2.4.1 we defined the posterior paf§'(m) (Eq 2.12), for strong mo-
tion data, andr;,"***(m) (Eq 2.13), for both strong motion and GPS data. We
now present the corresponding estimated maximum likeihmodels, and com-
pare their predictions with the observed data (sectiorL.9hen we compute the
corresponding 1D marginals and analyze how GPS data chafeyence results
(section 2.5.2). In section 2.5.3 we finally compute 2D maats for a number of
model parameters and investigate possible correlations.

2.5.1 The maximum likelihood models

The maximum likelihood model for$7*(m) corresponds to the model maximizing
the likelihood functionZ*™(m). By definition (equations 2.6 and 2.7) the maxi-
mum is attained in correspondence with the best-fitting rho@e/en a modeim
we measure the level of fit with strong motion data using a L&mof the mis-
fit between observed and predicted waveforms in the time dorige explore the
model space to identify the best-fitting model using a diseetrch method based on
an evolutionary algorithm (Beyer [2001], Monelli & Mai [20[)8 An evolutionary
algorithm is a population-based stochastic optimizati@thod. According to this
algorithm the search of the model space starts with genegrati initial set of mod-
els which is obtained through a uniform random sampling efrttodel space. This
initial population then evolves through the subsequenliegtpon of both stochastic
and deterministic operators. Goal of these operators isrteigte a new population
of models that hopefully show better properties (i.e. lomesfit values). The cre-
ation of a new population is referred as a new generation.

We consider an initial population of 100 models from whichpveduce at each
generation 2000 new models. The search lasts for 100 geresaand the total
number of models produced is therefore 200100. The besttgdunction value
for each generation versus the generation number is showigiB.4. We can see
that after the 40th generation the level of fit reaches anceqpately stationary
level. The best-fitting model (generating the lowest misfitdtion value) is shown
in figure 2.5.
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sm,gps

The maximum likelihood model far, ;"9 (Fig 2.6) corresponds to the model
minimizing the sum of the exponents of the two likelihooddtions, L*™(m) and
L9%(m). We identify it among the models visited during the samplprgcess
which we describe in detail in section 2.5.2.

Comparing the two rupture models we can see that both of thesept sev-
eral high slip-velocity patches. In both cases we can ifieatihigh slip-velocity
patch between the hypocentre and the top edge of the fadltg&m depth). The
maximume-likelihood model for ;" presents significant peak slip-velocity SE of
the hypocentre, which is not observed in the maximum-liieid model for ;9.
The latter presents also a low peak slip-velocity region N\itie hypocentre which
is also visible, but less extensive, in the maximum liketidenodel foro 37"

In both cases, the rise time pattern shows higher valuegime&iypocentre and
lower values near the borders, following approximatelyghttern of the maximum
allowed rise time.

In comparing the final slip distributions, we notice in bothses a high slip
patch (maximum value about 4 m) between the hypocentre andofh edge of
the fault, with an elongation of the slip distribution towlarSE. The major dif-
ference concerns the presence of deep slip. The maximwihldod model for
oy P presents little slip at the bottom of the fault, especiailytie NW, while the
maximume-likelihood model foe;;* contains instead more deep slip.

The seismic moments of the maximume-likelihood modelsdfft andoy; 9"
arel.9 x 10 Nm and1.6 x 10 Nm, respectively. Semmane et al. [2005] inferred
values of seismic moment betweeérs — 1.7 x 10! Nm, Festa & Zollo [2006]
2.6 x 10 Nm and Piatanesi et al. [2007]7 x 10! Nm.

In Fig 2.7 and 2.8 we show the level of fit produced by both m®deth the
observed strong motion data. For some components both swsbduce the po-
larity of the first arrival and the amplitude and durationtwd tnain phase (see fault
parallel component at stations SMN003, SMNO015, TTR005, SANFEMNHO02,
TTRHO4 for instance). For some other components the forwardetmg does not
reproduce the observed complexity (see waveforms at stafi®®008 for instance).
Both models produce a similar level of fit. Without any uncetiacharacterization
we cannot say which model is performing better in reprodyitire observed strong
motion data.

In Fig 2.9 we compare the horizontal static displacementiypeced by both
models with the one deduced from GPS data. Ellipses refdr88epercent con-
fidence level. We notice that at some stations (74, 379, 66D, 881) the static
displacement produced by the maximum likelihood modeldffjt lies just on or
slightly outside the error ellipse. The maximum likelihaoddel foro;; %" instead
reproduces the observed surface displacements withinstiraaged displacement
error at all stations.
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Observed (with 95% confidence level) 4@
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Figure 2.9: Horizontal static displacement predicted by the maximualihood models fow37"
(thin dark gray) andry;"9"* (thick light gray) compared with the observed one (thin
black). Ellipses represent 95 percent confidence levels.
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2.5.2 The 1D marginals

According to section 2.4.3 we express our inferences onrnbestigated rupture
parameters in terms of marginal pdfs derived from the twagras pdfs defined in
eqs 2.12 and 2.13.

Following the algorithm described in section 2.4.3 we seedl, for both cases,
four random walks starting from different models obtainkecbtigh uniform ran-
dom sampling of the model space. Each random walk has alsfiezedi seed
value for the random number generator. At each step we genaraew model
using a Gaussian probability distribution with fixed coaae matrix. We assume
the covariance matrix to be diagonal with standard dewnatequal for parameters
of the same type. After several trial random walks we fix tl@dard deviations
for peak slip velocity, rake angle, rupture time and riseetito be 5 cm/s, 2 0.1
s, and 0.1 s, respectively. With these values the acceptateef the Metropo-
lis algorithm (ratio between accepted and generated mpidelsH0 per cent when
samplings$* and~30 per cent when sampling;;"*"*. Tarantola [2005] suggests
that the size of the perturbations in the model space shaowtdagy acceptance rate
of ~30-50 per cent.

Models produced by the Metropolis sampler are not indepatrstamples of the
posterior pdf since each model depends on the previous ooneevdr, the esti-
mation of the integral in equation 2.15 requires indepehdamples. Only with
n independent samples can equation 2.15 be approximated@astaty as needed
by increasing: [Martinez & Martinez, 2002]. After taking one sample, a pess
ble strategy to generate a new independent sample is to waffieient number of
moves before collecting a new sample, such that the randdknhaa “forgotten”
the previous sample. Unfortunately no general rule exnstshelps to set the num-
ber of moves that should be done before collecting a new sajfigtantola, 2005].
From a practical point of view, this parameter is also depahdn the computation
time available. After some experimentation we decided ttecbsamples every
100 steps.

To generate samples accordingstfy’, we ran each random walk for 2000000
steps and collected samples every 100 moves. Each randdaprealuced there-
fore 10000 approximately independent samples. We ran tlxdom walks in
parallel, each of them requiring a single processor. Theptaation time needed
was ~40 days on a Linux cluster based on AMD Opteron 64-bit CPUs. MWa t
merged all ensembles produced by the different random visti&s single ensem-
ble which we finally used to estimate marginals.

To generate samples accordingtj~*"* the sampling algorithm requires solv-
ing the forward modeling for the GPS data prediction. Witts thadditional cal-
culation, each random walk produced 300000 models in ajpeigly the same
computation timeA 35 days). From each random walk we extracted 3000 approx-
imately independent samples, which we then merged to estithe corresponding
marginals. Even with a smaller number of samples we obseihvatdeach sin-
gle random walk was able to produce approximately the sarmginad, indicating
therefore an acceptable convergence.
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In Fig 2.10 we present 1D marginals for peak slip-velocitgad points, dis-
playing only inner grid points because on the fault planendlawies peak slip ve-
locity is assumed to be zero (section 2.4.2). For each nodere@gent the 1D prior
marginal, the posterior obtained from;* and the one frona; ;.

The most important feature to note is that the posteriorsigdiy do not show a
Gaussian shape but rather a skewed distribution. The omyptgterior marginals
with a Gaussian-like distribution corresponds to nodeshemi6 and 17. For these
two nodes the posteriors froaf;*** predict a peak slip velocity of22 + 57 and
140 £+ 57 cm/s, respectively. The relative error for both these twdesois about
47 and 41 per cent, respectively. These two posteriors ocortfie presence of a
near-surface high slip-velocity patch as imaged in the mar likelihood models
(Fig 2.5, Fig 2.6).

For all the remaining nodes posteriors show a distributi@wed towards the
minimum allowed peak-slip velocity value (0 cm/s). Notetttiee skeweness de-
pends on the node location. As a general trend we find thatkiweeness, and
therefore the posterior peak, become less clear from thedge of the fault to-
wards the bottom (see subplots along the columns). Thisricpkarly evident for
posteriors from strong motion data only. This implies thn tesolution power of
the data sets (measured at each node by the difference lbgposeerior and prior
pdfs) follows the same trend and decreases with increagipthd

Comparing posterior marginals obtained freffir ando;;"*"*, we find that GPS
data have a noticeable effect in constraining the peakvslipeity distribution. In
fact, GPS data are sensitive to the final slip distributionodir modeling the final
slip at each fault location is directly proportional to pesip-velocity (assuming
an isosceles triangle as source time function, final slipeakpslip-velocityx rise
time)/2). Looking at nodes 16 and 17, we see that GPS datareotiie pres-
ence of a high slip-velocity patch. However, for node 17, @B suggest an even
higher value of peak slip-velocity with respect to the orfelired when using strong
motion data only. In most of the remaining locations, GP& tiatve an effect in re-
ducing the tail of the posteriors obtained frerfj*. This is evident at nodes 21, 32,
43, for instance. It is also interesting to notice that theSGRta used in this study
have the same effect at the bottom of the fault (see nodesenusdh 47, 48). This
shows that, at least in this case, GPS data bring usefulnvation on the rupture
process also for the deeper part of the fault.

We show 1D marginals for rise time in Fig 2.11: the posteriargmals present
a well defined peak only for the nodes located near the highvsliocity patch
(nodes 15, 16, 17, 18 and 27, 28, 29). For all remaining nodstepor marginals
present very little difference with respect to the priorfarm indicating therefore
very poor resolution for rise time. At node 17, correspogdio the highest in-
ferred peak slip-velocity value, the mean rise time is al#bdts. We also notice
that the maximum estimated mean rise time (7.2 s) correspndode 28, which
is associated with low peak slip-velocity values [see agpoading posterior in Fig
2.10]. We could expect to have little resolution on rise tifmea node associated
with low slip-velocity. However, we recall that rupture pateters are defined on
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a coarse grid on the fault surface and then derived on a fifg(\ghere the actual
integration is carried out) through bilinear interpolaticEven if a node is associ-
ated with a low value of peak slip-velocity, its vicinity magt have low values if a
neighbouring node is associated with an high value of pepkvslocity. Node 17,
where the highest value of peak slip-velocity is inferrada ineighbouring node of
node 28. This means that between these two nodes, signifieaktslip-velocity
may be present. In that case, the long rise time correspgidinode 28 is needed
to describe the slip process in its neighbourhood. When cangposteriors from
oy andoy"?"° we notice the greatest differences only at nodes 17 and 1B. Fo
these nodes GPS data increase the probability associatetavger values of rise
time.

In Fig 2.12 we show 1D marginals for rupture time. In this cageconsider
also nodes located at the edges of the fault. Marginals fr§ffnando;;"9"° are
very similar, since GPS data do not contribute informatibowa rupture timing.
Again, we find that posteriors present a well defined peak weisipect to the prior
marginals only in the upper-most part of the fault (espéci nodes 4, 5, 6 and
15, 16, 17). Nodes 16 and 17 correspond to the nodes wherenéttievs high
slip-velocity patch is located. Assuming mean values asnasts of the actual
rupture times, the rupture front triggers the high slipee#ly patch located below
the top edge of the fault (hodes 17) approximately 3.1 s #ierupture initiated.
The average rupture velocity from the hypocentre in theugdection is therefore
1.6 km/s, corresponding to 44 percent of the average shé&auityein the involved
depth range. For some nodes located on the boundary of the4ab and 6 es-
pecially) the posterior pdfs show a clear peak, althoughthese nodes the peak
slip-velocity is assumed to be zero. The fact that data amsitbee to these para-
meters is an effect of the bilinear interpolation schemeerEw these parameters
correspond to nodes where the peak slip-velocity is assuméd zero, the rup-
ture time defined on these nodes determines the rupture ithe ineighbourhood
points. Hence, if these neighbourhood points are assdondth well resolved slip,
the rupture time in the neighbourhood nodes will also be vesiblved.

Comparing 1D marginals for the rake angle (Fig 2.13) with nmeg for peak
slip-velocity (Fig 2.10), rise time (Fig 2.11) and ruptuira¢ (Fig 2.12) we find that
the rake angle is the least resolved parameter in the copsdideodel space. Differ-
ences between priors and posteriors are generally lesstaated than for the other
parameters. We also observe that GPS data have a notic#febtdreconstraining
the rake angle at some locations. This is evident at node$71&7, 28. In these
locations posterior marginals suggest that the high spsity patch is associated
with a positive rake angle, which implies a downdip movememur modeling.

Fig 2.14 shows posterior marginals for final slip (deriveahirpeak slip-velocity
and rise time values). Note that prior marginals are notaunmifbecause they rep-
resent prior information on a combination of the originaldebparameters. Again
we find that posteriors show mostly a skewed distributionly@osteriors at nodes
16 and 17 show a Gaussian-like shape. For these two nodexipostpredict a
final slip of 250 + 120 cm and311 + 140 cm, respectively. The relative error4g18
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Figure 2.15: 1D marginals for seismic moment as obtained from the prié(gashed) 37" (gray)
andoy;""* (black).

and 45 per cent, respectively. We also infer a low slip regNovi of the hypocentre
(nodes from 24 to 27 and 35 to 38). In these locations 1D malgpresent a distri-
bution skewed towards the minimum allowed slip (0 cm) witlinstard deviations
< 50 cm. SE of the hypocentre 1D marginals present instead latgedard devia-
tions: ~ 100 cm at nodes 28 and 40 and140 cm at node 29 indicating therefore a
wider range of likely values. This feature may suggest angation of the slip dis-
tribution towards SE. The effect of GPS data in constraitivegpeak slip-velocity
is reflected in the marginals for the final slip. GPS data hanet&eable effect in
reducing the tail of the marginals (see nodes 21, 32, 43 nftance). They help
also in constraining the shallow slip (see node 16 and 17).

These changes have a strong effect when computing the jposterginal for
seismic moment (Fig 2.15). GPS data reduce the probabgggaated with high
values of slip and produce a shift of the peak of the postéoaards lower val-
ues of seismic moment than obtained frefji'. From the posterior marginal from
oy 9 we infer a value of seimic moment equal t@ & 0.16 x 10" Nm. The
corresponding relative error is about 10 percent.

In Fig 2.16 we present posterior 1D marginals (derived fegffi*”* only) for
seismic moment and moment rate as they evolve in time. I gtheds we com-
pute moment and moment rate time histories for each sampt§;0f* and then
compute at each time step the corresponding 1D marginahisnatay we obtain
a 'probabilistic’ image of the moment and moment rate fumtdi where at each
time step we have not a single value but rather a distribudforalues. From the
seismic moment time history we see that most of the seismimeno starts to be



2.5 RESULTS 71

25— T T T T T T T T T T T T T T T T o s e e e e e

o

&)

15¢

\

Seismic moment rate (Nm/s)
5

|
il N

05} B ] ]
-. = IR W

012345678 91011121314151617181920 012345678 910111213141516171819
Time (s) Time (s)

() (b)

w

Seismic moment (Nm)
N

i

Figure 2.16: 1D marginals for moment (a) and moment rate (b) (derived f#Gfv?* only) as they
evolve in time.

released only after about 3 seconds from the origin times Thtonsistent with
the fact that the shallow slip patch is triggered, on averdgeafter the earthquake
initiated. The moment rate function assumes its peak vdlabaut 5 s. Again con-
sidering node 17, we infer a value of rise time of 4.4 s [avenague deduced from
posterior marginal for rise time, see Fig 2.11 (b)]. In otherds, at node 17, the
slip-velocity reaches its peak value about 2 s after theuregtme, that is at about 5
s. We therefore see a correlation between the peak of the ntoate function and
the peak of the source time function at node 17 which is agtegtivith the highest
inferred slip.

2.5.3 The 2D marginals

1D marginals represent all information we have on a singtarpater. However,
they do not contain any information about possible cori@hst with other para-
meters, which constitutes an integral part in any unceastanalysis. If a pair of
parameters is correlated, this implies that we cannot nmmedgkam independently.
Correlations between pairs of different parameters can bzed computing 2D
marginals.

Due to the large number of parameters (204 in this study) Wendt explore
all possible correlations. We focused our attention on theure parameters de-
scribing the shallow high slip patch, at nodes 16 and 17. Wieetk2D marginals
from o3;"%"* only because it considers all the data. We first computed 2i@imels
between rupture parameters (mainly peak slip-velocifture time and rise time)
defined on the same node [Fig 2.17, Fig 2.18]. We do not ideatiy significant
correlation between these parameters. In Fig 2.19 we ihgtesssent 2D marginals
between rupture parameters defined on different nodes., Werelentify a strong
anti-correlation between peak slip-velocity values. Inestwords, if the peak slip-
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Figure 2.17: 2D marginals between peak slip velocity, rise time and negptime values at node 16.

velocity at node 16 increases, the peak slip-velocity aenbd will decrease, and
vice versa.

2.6 Discussion

From the analysis of the 1D marginals computed frgjfi*”* we identify the fol-
lowing main features in the rupture process of the 2000 Tiattrthquake:

1. between the hypocentre and the top edge of the fault,sfyreling to a depth
of 4.5 km (nodes 16, 17), we find a high slip-velocity patchsteoor mar-
ginals show a Gaussian-like shape from which we deduce yvaluygeak slip-
velocity of 122 + 57 cm/s andl40 + 57 cm/s.

2. in correspondence to the high slip-velocity patch thegras marginals for
rise time show a skewed distribution with the maximum a#diat the maxi-
mum allowed rise time. The mean values for rise time at no@esntl 17 are
4.1 s and 4.4 s, respectively.
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3. combining values of peak slip-velocity and rise time wieiirior the shallow
slip patch final displacements 850 + 120 cm and311 4+ 140 cm on nodes
16 and 17, respectively.

4. 1D marginals for rupture time indicate that the shallaw phtch is triggered
about 3.1 s (mean value of posterior at node 17) after thewreitiated at
the hypocentre. We can therefore estimate an average ewglocity in the
updip direction of about 1.6 km/s.

5. the rake angle is generally poorly resolved in the modetsponsidered.
Only on the shallow slip patch (nodes 16, 17) posterior nmaigi suggest
that a positive angle (down-dip component) is more likelgrntta negative
one.

The presence of a high slip patch near the top edge of thetfaslalso been recog-
nized in previous studies (Semmane et al. [2005], Festa $42006], Piatanesi
et al. [2007]). Their models indicate a maximum value of slipbout 4 m, roughly
in agreement with our estimate®l( 4+ 140 cm). We do not identify any significant
slip at the bottom of the fault. For the deepest nodes (frodertb to 54) posterior
1D marginals of slip fromy};"%"* exhibit a skewed distribution with maximum at-
tained at the minimum allowed slip (0 cm) (see Fig 2.14). Assig that standard
deviations represent the range of most likely values, wer ifdr the deepest nodes
values of slip between 0 and80 cm. Our inferences for the final slip distribution
are therefore more consistent with the preferred model ofrSane et al. [2005],
which does not show significant slip at the bottom, rathen tiveth the models
proposed by Festa & Zollo [2006] and Piatanesi et al. [20@/Hich suggest the
presence of significant deep slip (up to 2.5 m).

Regarding the rupture timing we infer a value of about 1.6 Kiovshe rupture
velocity in the updip direction. Festa & Zollo [2006] and fRiaesi et al. [2007]
inferred values equal to 2.1 and 2.2 km/s, respectively.s&hegher values may
be due to the deeper hypocentre assumed in these studiBk@IFesta & Zollo
[2006] and 12.5 km Piatanesi et al. [2007]) with respect eodhe we adopted (9.6
km).

Another difference from previous studies concerns thetiise pattern. Our re-
sults show that rise time values are well resolved only invibmity of the shallow
high slip patch. At these locations (nodes 16, 17 for ingatite rise time values
equal~ 4 s. Semmane et al. [2005]'s preferred model shows at the karatons
lower values between 0.5 and 1.5 s. Piatanesi et al. [208v&sage model shows
instead more comparable values between 2.5 s and 3 s.

As recognized in all studies (including this work), a peaufeature of the Tot-
tori earthquake is the presence of considerable slip aloshdepth ¢11 + 140 cm
at 4.5 km depth) without any evident surface rupture. Idgnty the reasons why
the slip did not reach the surface is beyond the scope of gpsmand requires dy-
namic modeling of the earthquake rupture process. Quaétatwe can imagine
that possible reasons impeding slip propagation to theaser€an be a velocity-
strengthening behaviour of the shallow layers or low presstin the upper-most
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part of the fault, or a combination of these two effects.

Also, the Tottori earthquake is not the only event showirglsiv slip with no

surface breaks. An earthquake showing similar behaviotlrei003My, = 6.5,
Bam (Iran) earthquake. From the inversion of radar data &ietlal. [2005] showed
how the Bam earthquake is characterized by right-laterglali®ements having a
maximum amplitude of about 2 m at a depth of 3 to 7 km. Howevén bedar data
and field investigations confirm lack of surface rupture esded with the faulting
event.
Finally, we stress that all the results we show in this stuelyeshd and are limited
by the chosen model space. For instance, in our study we fatddh some pa-
rameters (e.g. concerning rise time and rupture time), tstepior marginals are
skewed towards the maximum allowed value, suggestingltleatdlution, for these
parameters, is located beyond the upper bound of the coadidange of values.
We acknowledge therefore that a natural extension of thik would be consider-
ing a larger model space (e.g. by removing constraints eninse), and checking
if the inference results remain stable or if new solutioresfaund.

2.7 Conclusions

In this study we investigate the rupture process of the 2088t&vn Tottori earth-
guake through fitting of strong motion and GPS data. Our sivarmethodology
is based on a Bayesian approach. We state our inferencesis ¢émarginal pdfs
derived from two distinct posterior pdfs: one that conssdmnly strong motion data
and one that considers both strong motion and GPS data.

With both posteriors, we identify as a stable feature of t#wthguake rupture
process the presence of a high slip patch between the hypeaard the top edge
of the fault. This feature is common with previous studieke &nalysis of the 1D
marginals for rupture time, rise time and rake angle inéisalhat these parameters
are well resolved only where this shallow slip patch is ledatmeaning that the
signal emitted by this patch determines most of the wavefietwe fitted.

When using both strong motion and GPS data, we do not idemyfgignificant
slip (> 1 m) at the bottom of the fault. For this aspect, our inferemsailts disagree
with some previous studies (Festa & Zollo [2006] and Piagaetal. [2007]).

We compare inferences obtained considering strong moataahly with ones
derived considering both strong motion and GPS data. In towysve notice that
the main effect of GPS data is in reducing the precence of@muslip on the fault
which in turn has a strong influence on the estimate of the $i@igimic moment.

A clear point in our analysis is that resolution on kinematipture parameters
cannot be explained generally using the Gaussian uncsriaypothesis. In our
study most of the 1D posterior marginals do not show a Gausksribution. Un-
derstanding the actual resolution requires taking intmantthe non-linearity of
the problem and therefore dealing with non-Gaussian digions.
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Abstract

Estimating dynamic source parameters from past earthguakaportant to inves-
tigate the weakening process of real faults, and to deriakste dynamic rupture
models for ground motion simulations of future earthquakes

Dynamic parameters can be estimated from the on-faultsstyerserated by a kine-
matic slip model. However, multiple kinematic rupture misdmay satisfy the
observations for a given earthquake and therefore unoéesiin kinematic para-
meters propagate into the estimation of dynamic parameters

In this study we investigate how the estimation of dynami@peeters is affected
by uncertainties in the kinematic source model. For thigopse we consider the
2000 Western Tottori earthquake for which we previoushaot#d an ensemble of
3000 kinematic models through Bayesian inference (i.e. &srgf the posterior
probability density function) which are consistent witke thbserved strong motion
and GPS data. For each model of this ensemble we compute dhie-sgmporal
evolution of stress over the fault. We therefore obtain aearble of dynamic rup-
ture models, which all explain the observations, and frontivive can statistically
explore the resolution of dynamic parameters.

We statistically analyse resolution of static stress didfe find that on the same
locations where stable high slip is inferred, frequencyritistions of static stress
drop values have an approximately Gaussian shape withiygosiean values in-
dicating that on average these locations undergo a weak@notess. However,
we find standard deviation values of the same order of magdmitd the estimated
mean values indicating therefore large uncertaintieseraittual intensity of static
stress drop. We show how these large uncertainties are duectwelation between
stress drop values at neighboring points of the source mdueh is inherited from
a correlation between slip values. This shows how a coroeldetween kinematic
parameters limits resolution of dynamic parameters. Regpe difficulty in con-
straining the rupture process locally on the fault, we firat etnglobal quantity like
radiated energy can be well inferred instead. The 95 perm®rfidence level indi-
cates that the final radiated energy lies in betwénx 104 J and4.0 x 104 J,
with a mean value equal 9 x 10'* J. This is consistent with previous independent
studies which estimate radiated energy to be aBduk 104 J.

3.1 Introduction

A major goal for earthquake seismology is to understand tlysips governing the
fault rupture process. This is a complex phenomenon cdatrbly various factors:
the fault geometry, the stress acting on the fault, the nateroperties surround-
ing the fault and the constitutive law, that is the physieat relating stress to slip,
slip velocity and other factors, like pressure, tempesamnd chemical effects, for
instance.
When using seismic or geodetic data, the earthquake souseadly approxi-

mated as a shear crack propagating dynamically over a hexkness fault surface
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[Scholz, 2002]. Within this approximation, the earthquakpture process can be
described in terms of kinematic and dynamic parameterseridatic parameters are
those defining the slip process at each location on the fangkimum slip (or slip-
velocity), rupture time (time at which the slip processtsfarise time (duration of
slip) and rake angle (direction of slip). Kinematic paraenstare directly linked to
the observed ground motion through the representatiorréhepAki & Richards,
2002]. By posing the representation theorem as a linearseyanoblem, kinematic
parameter estimates can be obtained through linear ioveddiseismic data (e.g.
Olson & Apsel [1982], Hartzell & Heaton [1983]). Over the ygaestimation of
kinematic parameters improved with considering additiaiaa sets (GPS, InSar)
(e.g. Wald et al. [1996], Delouis et al. [2002], Salichonlef2003]) and with aban-
doning the linear approximation (e.g. Liu & Archuleta [2004

Together with this improvements, it became clear that theesaarthquake can
be explained by different kinematic rupture models (Cohee &B&[1994], Beres-
nev [2003], Ide et al. [2005], Custodio et al. [2005], Harteelal. [2007]). This is
also evident in the on line database of earthquake ruptudels¢http://www.seismo-
.ethz.ch/srcmod). Some of the observed discrepanciesiat® different model pa-
rameterizations, inversion schemes, and data-sets,dtanoe. However, indepen-
dently of the particular approach, intrinsic reasons remu@ging the earthquake
source a problem with multiple solutions: uncertaintiedata and in forward mod-
eling (which allow multiple models to be considered accelag and lack of res-
olution (due to the always limited data coverage). To désctiis multiplicity of
solutions, several innovative methods have been propesemtly (Emolo & Zollo
[2005], Piatanesi et al. [2007], Monelli & Mai [2008], Motigdt al. [2009]). These
studies recognise that the kinematic image of the eartregugkure process cannot
be expressed in terms of a single best-fitting model but ratheerms of a set of
models which show certain statistical properties.

Dynamic parameters describe instead the stress evolutgacth location on the
fault. The most common used dynamic parameter is the firedstirop (difference
between initial and final stress), which is often referre@sd‘static” stress drop.
For those locations on the fault undergoing a weakeningga®dhe stress evolu-
tion is characterised also in terms of dynamic stress driffg{eince between initial
and minimum stress) and strength excess (difference betpask stress and initial
stress). Some attempts to infer dynamic parameters dirtgtbugh fitting seis-
mic data have been made (Peyrat & Olsen [2004], Corish et@0.72. However,
the commonly used approach requires first estimating trenkatic parameters and
then solving the elastodynamics equation for the spatigptgal evolution of on-
fault stress using the kinematic parameters as a boundawitam (e.g. Ide &
Takeo [1997], Bouchon [1997], Dalguer et al. [2002], Tintiagét[2005b]). With
this approach dynamic parameters can be determined frorkitkeenatic source
characterization.

As mentioned above multiple kinematic rupture models foivargearthquake
may be consistent with the corresponding seismic and geantetervations. To our
knowledge no study has been published that investigatesihoertainties in kine-
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matic parameters propagate into the estimation of dynaararpeters. The usual
procedure is to consider only the best-fitting model to deawlynamic image of
the rupture process.

The major goal of this paper is to investigate how uncerigsnin a kinematic
rupture model map into the corresponding dynamic rupturamaters, and to in-
vestigate how well constrained is the spatio-temporalwdian of stress over the
fault. Estimating resolution of dynamic parameters is aparnmant aspect in un-
derstanding how reliably we can image the constitutive lamnfseismic data and
related quantities (e.g. fracture energy).

In this study we consider a real event, the 2000 Western attythquake.
We use a Monte Carlo approach to propagate uncertainties Koematic into
dynamic parameters. We make use of the ensamble of modéeledidry Mon-
elli et al. [2009] which are consistent with the observedrstr motion and GPS
data. To reduce the computational demand, we select a sdadte of models
which show approximately the same statistical propertigeeoriginal ensemble.
For each model of this sub-ensemble we compute the spatipetel evolution of
stress over the fault. We therefore obtain an ensemble drdigrupture models
from which we can statistically investigate resolution ghdmic parameters.

3.2 Computation of dynamic parameters

For a given kinematic model we compute the correspondinticspemporal evolu-
tion of on-fault stress using a velocity-stress stagg@mdifinite difference scheme,
based on the Staggered-Grid Split-Node (SGSN) method tolaienthe fault rup-
ture [Dalguer & Day, 2007]. We use a grid spacing of 250 m ancha step of 0.01
s. Monelli et al. [2009] show that after approximately 10 e thpture is almost
complete. To ensure that the on-fault stress field reachtgiarsary condition we
simulate a time window of 20 s. We consider the same velocitgehused by
Monelli et al. [2009].

Monelli et al. [2009] defined kinematic parameters on a 4 bymidcid over
the fault surface (Figure 3.1). To avoid stress singuksijtwe use a bicubic in-
terpolation scheme to derive kinematic parameters valneh® finite difference
grid. In some cases, we find that the bicubic interpolatidreste produces neg-
ative values when interpolating peak slip-velocity valuEsr those points having
negative values we force the peak slip-velocity to be zere.adsume the absolute
initial traction to be equal to an arbitrary value of 70 MPd anllinear with the slip
vector.

3.3 Anuncertain slip model for the 2000 Western Tot-
tori earthquake

Using a Bayesian approach, Monelli et al. [2009] inferredekmatic rupture pa-
rameters for the 2000 Western Tottori (Japan) earthquakedgh fitting of strong
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Figure 3.1: Fault discretization used by Monelli et al. [2009]. Numlktabels indicate node lo-
cations. The grid spacing is 4 km. The black star repres@ethiypocentre location
according to Fukuyama et al. [2003].

motion and GPS data. The rupture parameters investigatepleak slip velocity,
rise time, rupture time and rake angle. They are defined ogwaegrid of nodes
on the fault surface and their values at inner points areeléthrough bilinear in-
terpolation. The assumed source time function is an ises¢glngle.

Monelli et al. [2009] expressed inferences on rupture patars in terms of
marginal probability density functions (PDFs) derivednfran ensemble of models
which are samples of the posterior PDF. This ensemble hasge®rated simulat-
ing 4 random walks each of them producing 3000 samples. lar€%33.2, 3.3, 3.4
and 3.5 we present the corresponding 1D marginals comprgedthe ensembles
of models.

Examining the 1D marginals for peak slip-velocity we not&ttine Tottori earth-
guake is characterised mainly by a single high slip-veygadttch (nodes 16 and 17)
located between the hypocentre and the top edge of the fawdtl other locations
we cannot identify other stable patches of high slip-véyockFor a more detailed
analysis and interpretation of the 1D marginals we refetht work of Monelli
et al. [2009]. For this study, the important point to notisehat each random walk
produces approximately the same results. We can thereboider the ensemble
of 3000 models produced by a single random walk to be suftiteerepresent un-
certainties on kinematic rupture parameters.

The selected ensemble of models truly represents the @olofi the inverse
problem in the sense that all models produce very similaa gaedictions and
should be all considered as plausible models. In Figurear®i@.7 we show the ob-
served strong ground motion waveforms and we compare thémtlhe 95 percent
confidence levels of the predicted strong ground motion Yeewres. In other words,
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for each component we compute at each time step the 0.025.9n%8 Quantiles of
the distribution of predicted ground motion values. In thigy, we statistically
compare the observations with the predictions of all the etedonstituting the en-
semble. We perform a similar analysis to compare observiddmedicted surface
static displacement (Figure 3.8).

Looking at strong motion data, we see that all the ensembieaafels pro-
duce very similar waveforms which capture the essentidlifea of the observed
wavefield. Also for GPS data, we see that the 95 percent cordfedievels of data
predictions overlap with the 95 percent confidence leveldad& observations, at
all station. We find therefore that all models in the consgdeznsemble produce
similar data. We hence propose that robust conclusionstabeuupture process
of the 2000 Tottori earthquake should be drawn analysingetiige ensemble of
kinematic models and not only the best-fitting one. In otherds, given the uncer-
tainties in the data and the simplifications in the modelmmstrong reasons exist
to consider the best-fitting model as the only model able pieéx the data. Hence,
only those features which appear to be statistically sigguifi in all the ensemble of
models should be considered as well resolved.

Before statistically investigating the resolution of dynaimarameters we want
to show explicitly how uncertainties in kinematic modelteaf the estimation of
dynamic parameters. In Figure 3.9 and 3.10 we show two kitiemgture mod-
els (both samples of the posterior PDF defined by Monelli.g28i09]) producing
very similar ground motions. These two models show the éisdématures of the
Tottori earthquake: near the hypocentre, in the NW directiow slip/slip-velocity
values are inferred. A high slip/slip-velocity patch isadbed instead between the
hypocentre and the top edge of the fault. Together with thege scale common
features the two models present also several differencgs (@gh slip-velocity
patches at the bottom of the fault in model 1, which are nosgmein model 2;
significant slip right of the hypocentre in model 1, whichlsf®d to the bottom in
model 2).

The two kinematic models are significantly different in terof the on-fault
stress evolution. In Figure 3.11 we show the temporal eimiunf shear traction
produced by models 1 and 2. We show only the inner nodes, beaauthe fault
edges the slip is assumed to be zero and stresses are tadozebad to increase in
both models. We see how the differences in the kinematiaraphodels produce
several differences in the spatio-temporal evolution ofaurit stress. At nodes 16
and 17, where a stable high slip patch is inferred [Monelkalet2009], model 1
predict a decrease of shear stress of about 50 and 10 MPactesfy, whereas
model 2 predict values of 10 and 30 MPa, respectively. It hlapens that at the
same nodes (e.g. nodes 29, 36, 37, 40) the two models prédtict stress drops
of opposite sign. These differences are reflected also isghgal distribution of
static stress drop (Figure 3.12 (a) and (b)). As a commonifeaboth models show
significant positive stress drop above the the hypocentoeueder, model 2 shows a
positive stress drop patch just right of the hypocentrectvis not present in model
1. Moreover, model 1 presents a deep positive stress drop pdtich is absent in
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Figure 3.8: Surface static displacement produced by the selected d&ts@aimodels (gray) com-
pared with the one deduced from GPS data (black).



92

3 DvNAMIC PARAMETERS FROM AN UNCERTAIN KINEMATIC MODEL

05 NW peak slip-velocity SE cmls
200
4.5
£ — I E— 150
— 85
o < 3
©
= § / 100
c
S —
© L \ 50
——
\
20—'50 -16 12 -8 4 4 8 12 16 20 0
along strike (km)
(@)
05 NW rise time SE s
— ] 8
4.5
: 14
= 85 Q °
212.5 ] 4
o
©
16.5
— 2
20—'50 -16 12 -8 4 8 12 16 20
along strike (km)
(b)
05 NW — final sILp>\ 0SE _ cm
| < 55 o\ 400
4.5/ . i .
€ N\ / 300
< 85k { \N o /1 I
e N D] ™
c12.5 Y )4 K
§ I 2 =T |/ ”
© 10, ~ 4 v B
16.55 ;’ /;9 ; 100
s >\’6/AY‘7’ %
20—'50 -16 12 ’ 8 4 0 4 8 12 16 20 0

along strike (km)

()

Figure 3.9: Kinematic rupture model 1.
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Figure 3.10: Kinematic rupture model 2.
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Figure 3.12: Static stress drop (MPa) in the strike direction producednioglel 1 (a) and model 2
(b).

model 2.

These two models illustrate how uncertainties in the estonaof a kinematic
slip model propagate into the calculation of dynamic patanse They show also
how estimating uncertainties is important to understandhah degree of detail
we should interpret kinematic and dynamic images of an gagke source.

3.4 Uncertainties on static stress drop

In the previous section we have shown the case of two kinemapiture models
which provide approximately the same level of fit with the@ived data, but which
present several differences in the stress-fields they generThese two models
represent only two realizations of the kinematic paransetient still illustrate the
associated uncertainties. As explained in section 3.3,omeconsider a set of 3000
slip models which provide a more comprehensive representat the uncertainties
that map into the variability of the dynamic source paramset€&or each of these
kinematic models we compute the corresponding dynamicceotgpresentation,
and then examine their statistics.

The first dynamic parameter we investigate is the staticstdeop. Depend-
ing only on the final slip distribution, static stress dropeiss dependent than other
parameters (like strength excess and dynamic stress dnoghlectemporal evolu-
tion of traction which is affected by uncertainties in risae and rupture time also.

The Tottori earthquake is mainly a strike-slip event (Fukmg et al. [2003],
Monelli et al. [2009]), with negligible or unresolved rakanability. We hence
consider the static stress drop in the strike directionctvicontributes most to the
overall static stress drop. In Figure 3.13 we show frequelistyibutions of static
stress drop values on the same locations where kinematicreuparameters have
been defined by Monelli et al. [2009]. We see how at the faugesdhe frequency
distributions are defined over negative values of stregs dnal are mainly skewed
toward zero. This is consistent with the condition of zeip at the fault edges that
Monelli et al. [2009] assume in their study. We see that aesdd and 17, where a
stable high slip patch is inferred, the frequency distidng assume approximately
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Figure 3.14: Scatter plot of static stress drop values in the strike tveat nodes 16 and 17.

a Gaussian shape with mean values and standard deviatidistol 9 MPa and
19 + 23 MPa, respectively. This means that on average these twesnoakergo a
positive stress drop. However, the large standard dewsi{for both nodes the rela-
tive error—ratio between standard deviation and mean va&ggeater than 1) show
the large uncertainties affecting the estimation of thécstress drop in these two
nodes. This is also evident from the shear traction evoistmredicted by model 1
and 2 [see Figure 3.11]. We also see that at nodes 4, 5 and &theshcy distrib-
utions do not show a strongly skewed shape (like on the oth@eslocated on the
edges of the fault) but rather a bell shape. For these nodestiveate static stress
drop values of-2.4 + 0.9 MPa,—4.9 + 1.6 MPa and—5.3 + 1.6 MPa, respectively.
For these three nodes we infer well resolved values of negatiess drop, indicat-
ing that these nodes undergo a fault restrengthening owg®nly because of the
zero slip condition but also because they are sensitivedstifess increase due to
the positive stress drop undergoing on nodes 16 and 17.

The large uncertainties associated with stress drop onsnb@l@nd 17 can be
explained in terms of the anti-correlation existing betwstatic stress-drop values
on these two nodes (Figure 3.14). In fact, Monelli et al. P{ddentified an anti-
correlation between peak slip-velocity values defined atesd.6 and 17. This pro-
duces an anti-correlation between final slip values (finpl=sl(peak slip-velocity
x rise time)/2), for an isosceles triangle source time fumjtwhich translates into
an anti-correlation between static stress drop values ghows clearly how corre-
lations between kinematic parameters map into correlatetween dynamic para-
meters.
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3.5 Uncertainties on temporal evolution of shear trac-
tion

Dynamic parameters like dynamic stress drop and strengtsexare more sensitive
on the temporal evolution of the shear traction. Resolutioth@se parameters is
therefore dependent on how well we can constrain the terh@avhution of on-fault
stress. To investigate this point, we compute the disiobuif shear traction values
at each time step on the same fault nodes used to define kioepaahmeters.
Due to the general non-Gaussian shape of these distrisytiom characterize the
range of possible values of shear traction at each time stégrins of quantiles.
More precisely, we compute, at each time step, the 0.025 @%b @uantiles of
the corresponding distribution of shear traction valudss Bpproach allows us to
specify, at each time step, the 95 percent confidence levelshiw the results of
this analysis in Figure 3.15. To understand if these confidéevels really capture
the uncertainties affecting the shear traction temporalution, we plot also the
shear traction time histories produced by model 1 and 2. \Wets# for all nodes
except nodes 27, 28 and 30, the traction time histories froth imodels lie inside
the confidence levels. We see also that the confidence leselside enough to
contain the large differences in traction evolution we seeodes 15, 16, 51 and
62, for instance.

From this analysis we see that the estimation of the sheeatidratemporal
evolution on a certain location on the fault is subject tgéauncertainties. On all
the inner nodes, the 95 percent confidence level extendsdhewar traction values
lower than the initial value to values greater than initialue, indicating therefore
that there is always a finite probability of having both a favéakening or a fault
strengthening process.

3.6 Uncertainties on radiated energy

From the previous section, we see that imaging the ruptuseess on a single
location on the fault is subject to large uncertainties. \Wade explore resolution
of global quantities, which reflect the rupture process @whole fault surface. A
global quantity which reflects the spatio-temporal evolutf both slip and traction
over the entire fault is the radiated energy. The radiatedg is defined as the
amount of energy that would be carried to the far field in thenfof seismic waves
if an earthquake occurred in an infinite and non-attenuatieglium. It can be
calculated from either the far-field seismic waves or thesstiand displacement on
the fault plane. Rivera & Kanamori [2005] show that the ragticénergyrr can be
computed as:

1
Ep == / (o3 — 0iy) A dS — / 2YersdS =
N %

2
t1
to 3(t)
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Figure 3.16: 0.025 and 0.975 quantiles (solid gray lines) computed ftoerdistribution of radiated
energy values at each time step. We show also the averagdeddinergy (dashed
black line) and the radiated energy produced by model 1 asdii(black lines).

whereX. represents the fault surface); the initial stress at a reference timg o,
the stress acting at time, v, the slip, «; the slip-velocity and/; the unit vector
normal toX. . is the effective surface energy, a lumped parameter inatudil
dissipation within the process zone at the crack-tip. That includes not only sur-
face energy, but also other dissipative mechanisms suckeds@occo et al. [2006]
pointed out that for crack models in which the stress is mgudar at the crack tip
(like in our case), the effective surface energy is zero. unsiudy, we compute
therefore the radiated energy for each kinematic modepusquation 3.1, neglect-
ing the second term on the right-hand side.

In Figure 3.16 we show the 0.025 and 0.975 quantiles comgdued the dis-
tribution of radiated energy values at each time step. Weavsileo the average
radiated energy, and the radiated energy produced by mbdeid 2. In this case
uncertainties allow us to identify a clear temporal evalntior radiated energy. We
see that only between 2 and &g starts increasing. This is consistent with the fact
the main slip patch is triggered on average only 3 s after énhguake nucleated
[Monelli et al., 2009]. Radiated energy reaches a maximumevat around 8 s and
then decreases reaching approximately a stationary [Elelfinal average radiated
energy is equal t@.9 x 10** J which is consistent with the estimates of Izutani &
Kanamori [2001] 8.0 x 10 J) and of Jin & Fukuyama [20053(1 x 104 J). The
decrease of radiated energy is due to the rupture termmatioother words, the
reduction of radiated energy during the later stages of dip¢ure process is due
to those regions of the fault surface which experience agthening process and
therefore absorb energy without emission of seismic waves.
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3.7 Discussion and conclusions

Explaining a given kinematic slip model in terms of dynamiéggmeters is impor-
tant to understand how the weakening process occurs onawéd and therefore
how we can realistically parameterise a dynamic ruptureehtmpredict a future
earthquake. Guatteri & Spudich [2000] discuss the issuestrhating linear slip-
weakening parameters from a kinematic slip model obtairegyh fitting of strong
motion data. They find a trade off between strength excessland/eakening dis-
tance which do not allow them to identify a unique set of dyitgmarameters which
explain a given kinematic slip model. They conclude thatafis-stress drop is well
determined than only fracture energy can be reliably resblin other words, if the
final slip distribution is well inferred, all the uncertaigg on dynamic parameters
come from the intrinsic trade off existing between the dymaparameters them-
selves.

However, our study shows that uncertainties in kinematatuxe parameters
(and on final slip therefore) are not negligible. These uateties have immediate
consequences on the estimation of dynamic parametershé&adottori earthquake,
we see that static stress drop is only qualitatively weleiréd. Stress drop on
locations where high slip is estimated have positive vatresverage, indicating
therefore a weakening process. However, the associatedesthdeviations are of
the same order as the estimated average values indicagéirejdare large uncertain-
ties which do not allow us to identify well resolved staticesss drop values. We
see that these large uncertainties are also due to a trattedi$ inherited from the
estimated kinematic parameters. This is important to eptiecause it shows that
not only the uncertainties but also the statistical prapenf the uncertainties (like
correlations) map into the estimation of dynamic paranset€he large uncertain-
ties on static stress drop reflect the large uncertaintidsaithe temporal evolution
of shear traction.

Our study shows that the inference of the on-fault strestugga during an
earthquake rupture is subject to large uncertainties. R&gplof kinematic pa-
rameters is not sufficient to infer the stress evolution oingle location of the
fault. These large uncertainties are basically due to the#dd amount of data and
the limited frequency band. We can expect that increasiagpatial coverage of
the recording stations and the maximum considered frequeay improve reso-
lution of both kinematic and dynamic parameters. With thailable data we find
that only parameters characterising the overall ruptuoegss over the entire fault
surface (e.g. radiated energy) can be well resolved.
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Abstract

In this study we derive a dynamic rupture model for the 2008téf@ Tottori earth-
guake based on a linear slip-weakening friction law. Ouheisdevelops in three
stages. First, using a Bayesian approach we estimate kiiterpture parameters
(peak slip-velocity, rake angle, rise time, rupture timgYiling strong motion and
GPS data. Second, using a dynamically consistent souredtimetion (regularized
Yoffe function), we compute the spatio-temporal evolutajron-fault stress asso-
ciated with the mean kinematic slip model. Third, estimgitynamic stress-drop,
strength excess, and slip-weakening distance, we deriugearlslip-weakening
model for the rupture process. We obtain a dynamic rupturdeinable to repro-
duce the observed kinematic parameters. We compare algwebeted ground
motion with the near-field strong motion and GPS data. We fvad the level of
fit provided by the dynamic model is comparable to that of thstdfitting kine-
matic model. We consider this result of particular pradiicgportance, because the
dynamic model has been obtained without an explicit optton procedure but
rather interpreting a mean kinematic slip model by using @adyically consistent
source time function.

4.1 Introduction

The ground motion produced by an earthquake on a certaitidncan the Earth
surface is due to three main effects: the source, the pattharsite. To realistically
model all these factors, state-of-the-art ground motionugtions employ 3D Earth
structures and finite fault dynamic rupture models (Olsead.g2008], Olsen et al.
[2009]).

In a dynamic rupture model the spatio-temporal evolutioslgf results from
solving the elastodynamics equations, and by assumingt#ofrilaw to describe
the fault slip process. Parameters, usually referred asdiayc”, are required to
define the initial state of stress and the friction law itself

To derive realistic dynamic rupture models, dynamic patenseare usually
constrained from past earthquakes. Two approaches arélgos©ne requires
estimating kinematic parameters first. The inferred sp@&toporal evolution of
slip is then used as a boundary condition to solve the elgstodics equations for
the on-fault stress, from which dynamic parameters can tirm&®d (Ide & Takeo
[1997], Bouchon [1997], Dalguer et al. [2002], Tinti et alO[Z5b]). As noticed by
Piatanesi et al. [2004], in this methodology the estimatbdynamic parameters
can be biased by the assumed source time function. An dite¥rapproach is to
perform a dynamic inversion, that is a search for the setsyn&hic parameters
which produce the best level of fit with the observed groundiono In this ap-
proach the source time function at each location on the faulbt chosen a priori
but is a solution of the dynamic rupture problem. The mostmoam dynamic in-
versions are based on a trial and error approach, where tzad gynamic model,
usually constrained from a previously estimated kinenrabdel, is manually mod-
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ified until satisfactory fit with the data is achieved (Peyaal. [2001], Favreau &

Archuleta [2003], Ma & Archuleta [2006], Ma et al. [2008])o Dur knowledge, a

systematic dynamic inversion has been performed only 82600 Western Torrori

earthquake by Peyrat & Olsen [2004]. In their study, the arstlhuse a direct search
method based on the Neighbourhood algorithm to estimagssstirop distribution

assuming a linear slip-weakening fault model with uniforpper yield stress and
slip-weakening distance.

The goal of our study is to extend the work of Peyrat & OlserOf0deriv-
ing a linear slip-weakening rupture model for the 2000 WeesT®ttori earthquake
with heterogeneous distribution of strength excess, dymatress drop, and slip-
weakening distance. We first estimate kinematic parametng a Bayesian ap-
proach. This analysis shows that multiple kinematic modedy produce satisfac-
tory level of fit with the observed data. We hence considentkan kinematic slip
model as representative of the most likely features of thihgaake rupture process.
Using the mean kinematic slip model and a dynamically ceesissource time
function (regularized Yoffe function proposed by Tinti €t[2005a]), we compute
the spatio-temporal evolution of on-fault stress, from athwe estimate strength
excess, dynamic stress drop, and slip-weakening distasgédtions on the fault
surface. These estimates are then used to define a lineavesdigening model for
the rupture process. The predicted ground motion is therpaoed with the ob-
served strong motion and GPS data.

4.2 Bayesian inference of kinematic rupture parame-
ters

Monelli et al. [2009] inferred kinematic rupture paramstésr the 2000 Western
Tottori earthquake using a Bayesian approach. In this stuglyepeat their analy-
sis using the same methodology, same data (strong motiog}GBme modeling
scheme, but considering a larger model space. Monelli §2@09] observed that
for some parameters the solution converged toward the upmend of the con-
sidered range of values, possibly suggesting that theisolig located above the
imposed upper limit.

We refer to Monelli et al. [2009] for the details of the inviers procedure. Here
we recall the main results. The solution of the inverse mabis stated in terms of
a posterior probability density function (PDF) which regegts the conjunction of
prior information on model parameters and information\a=tithrough fitting of
the observed data. The posterior pdf is expressed as:

™94 (m) = kp(m)L*"(m) L% (m). (4.1)

wherek is a normalization constani(m) is the PDF representing prior information
on model parametens: (a uniform PDF in this study), anf*"(m) and L9*(m)
are the likelihood functions (measuring how well a moaeéxplains the data) for
strong motion and GPS data, respectively [Eq. 8 and 11 in Maeteal. [2009],



106 4 ALINEAR SLIP-WEAKENING MODEL FOR THETOTTORI EARTHQUAKE

respectively]. Information on a single model parameter lmamexpressed in terms
of a 1D posterior marginal PDF, given by:

M(m®) = / / asvaPS(m)ﬁdmk 4.2)

k#a
wherem® is the considered model parameter. Eq. 4.2 requires irttegtthe poste-
rior PDF over all dimensions of the model spadé)(except the one corresponding
to the parameter of interest.
Data consist of ground velocity waveforms from 18 strongiorostations and sur-
face static displacements from 16 GPS stations (Fig 4.1igif@d strong motion
data were bandpass filtered in the frequency band 0.1-1 Hzeak coseimic static
offset at each GPS station was estimated as the differenaede mean values of
daily positions during the 5 days before and the 5 days dfteearthquake.

We represent the fault as a 24 km long and 16 km deep, veytidgdping plane
surface, with a strike aof50° degrees. The fault upper edge is at 0.5 km depth. Mon-
elli et al. [2009] used a longer and deeper fault plane. Hewehey noticed that
good resolution on model parameters is achieved mostlydarcémtral and upper
part of the fault. In this study, we consider therefore a san&hult surface, which
helps in decreasing the total number of parameters.

On the fault surface, we define a regular grid of nodes, witreaing of 4 km along-
strike and along-dip. The total number of nodes on the faulierefore 35. At each
node we define 4 parameters: peak slip-velocity, rake arnigéetime, rupture time.
The total number of parameters is therefore 140.

We compute ground velocities using the frequency-domairesentation theo-
rem [Spudich & Archuleta, 1987]:

U (Y, w) = //2 s (x,w) - T™ (x,w;y,0)dX (4.3)

whereu,, is them'® component of ground velocity at the receiver locatigrs is
the slip-velocity functionIT™ is the traction exerted across the fault surfacat
pointx generated by an impulsive force applied in th# direction at the receiver
(w = 27 f: angular frequency). TractioriB™ are computed, up to a frequency of
1 Hz, using a Discrete Wavenumber / Finite Element method [@&ym package,
[Spudich & Xu, 2002]], for a 1D flat layered Earth model withh@itenuation. A
trapezoidal-rule quadrature of the prodactT™ is performed separately for each
frequency, with the quadrature points being the sampletparthereT™ have been
computed. Rupture-parameter values at integration poistsl@rived through bi-
linear interpolation of values at surrounding grid nodes.

We assume the slip-velocity function to be an isoscelesdi&a With this para-
metrization the peak-slip velocity corresponds to the ltedd the triangle and the
rise time to the base length. Rupture time corresponds tortebint of the base
segment.

Following Eq 4.3, we convolve tractions with the assumep-gélocity func-
tion to compute ground velocity at the strong motion stakimations. We compute
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GPS data predictions by integrating ground velocities tamgd displacements and
then selecting the final static offsets.

The posterior PDF is defined over the model space. Inferemcesodel para-
meters are therefore dependent on the chosen model spacellidd al. [2009]
find that the computed 1D posterior marginals are skewedrtbtee upper limit
of the considered range of values for some parameters (afipdor rise time and
rupture time), suggesting that the solution is located altbg imposed upper limit.
To test this hypothesis we consider a larger model spacésistiidy. As in Monelli
et al. [2009], peak slip-velocity can vary between 0 and 40(s®n the inner nodes
of the fault. On the fault edges we assume a zero-slip camdjpeak slip-velocity
is forced to be zero therefore). Rake angle can vary betwe&8f to +90° degrees
(Monelli et al. [2009] assumed 30° to +30° degrees). The range of rupture times
at each grid node is defined as the interval between the kiinves of two circular
rupture fronts, propagating from the hypocenter [at 9.6 leptd [Fukuyama et al.,
2003]] at two limiting rupture velocities: 1 and 4 km/s (Mdinet al. [2009] consid-
ered 1.5 and 4 km/s). Rise time can vary between 1 and 10 s dreatiner nodes
(Monelli et al. [2009] assumed minimum value equal to 1 s anthaimum value
decreasing as the distance from the hypocenter of the amesichode increases).
Rise time on the fault edges is assumed equal to 1 s (to gems@tene distribu-
tions which are tapered to the minimum value at the fault sgdgéonsidering the
zero-slip condition and the minimum rise time assumptiothatfault edges, the
number of free parameters is 104.

4.3 1D marginals for kinematic parameters

We estimate 1D marginals using a Markov Chain Monte Carlo (MCMEhwd,
based on the Metropolis algorithm [Monelli et al., 2009]. Simulate three random
walks, each of them producing 890000 samples. To get appedgly independent
samples we collect models every 100 steps. From each rancgdknwe extract
therefore 8900 models. All the produced samples are thegedeanto a single
ensemble to estimate 1D marginals.

In Fig. 4.2 we show 1D marginals for peak slip-velocity. Ttslpow the same
pattern obtained by Monelli et al. [2009]: that is an evideigh slip-velocity patch
(peak value 0206+89 cm/s) located between the hypocenter and the top edge of the
fault (nodes 2 and 3). On the other nodes posterior margamalskewed toward the
minimum allowed value (0 cm/s). This means that, except s@dend 3, we cannot
identify any other node slipping with a clear high slip-vaty value. This does not
mean that a node cannot slip with an high slip-velocity, ltiter that we have not
enough resolution to say which node is slipping with high-silocity. We see also
that the skewness of the posterior marginals is not unifanrthe fault surface. In
particular, we observe that on the nodes located SE of thedeypier the posteriors
skewness is lower than in the NW. This means that the prababflhaving nodes
slipping with high slip-velocity values is higher in the Séction of the fault rather
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than in the NW. This features are consistent with the kinematages obtained
for this earthquake (Semmane et al. [2005], Festa & Zoll®@0Piatanesi et al.
[2007]), which show significant slip above the hypocentet @longated toward SE.

The fact that the observed wavefield is dominated by the greyming from
the high slip-velocity patch located on nodes 2 and 3 is cowfir by the good
resolution of the rake angle for these two nodes (Fig. 4.3) nOdes 2 and 3
we clearly see that the slip process is mainly strike-stiggreement with the focal
mechanism estimation [Fukuyama et al., 2003]. We see addpdsterior marginals
located SE of the hypocenter (nodes 4, 5, 10) show a broadgreakd +10/+15
degrees (in our modeling corresponding to a down-dip mowmé{owever, the
large uncertainties (standard deviations of the order aletfrees) do not allow us
to draw definite conclusions. We observe also that NW of th@obgnter, at the
bottom of the fault (nodes 11, 12), the posterior marginaésexidently skewed
toward negative values of the rake angle (corresponding topadip movement).
We see therefore that posterior marginals for rake angh shear (although broad)
peaks on nodes where the posterior marginals for peak slgeiy do not identify
clear high slip-velocity values. We can interpret this faaying that even if the
posterior PDFs for peak slip velocity assign the highesbabdity near 0, there is
still finite probability of having non-zero, significantjsivelocities. If this occurs
then the rake angle can be inferred.

The 1D marginals for rise time (Fig. 4.4) do not show exadily $ame pattern
as in Monelli et al. [2009]. This differences are producedsy different model
space. However, we still see that in the central part of thi,faear the hypocenter
(nodes 7 and 8), the posterior marginals show a broad peak@®5 and 6.2 s,
respectively. On the other nodes posteriors are mostlyattéaward the minimum
allowed value (1 s). We observe therefore a pattern whereehigalues of rise
time are more likely to appear in the central part of the faudiar the hypocenter,
whereas lower values are more likely approaching the edgée dault.

Rupture time results to be well inferred (Fig. 4.5). We sede&ni peaks above
the hypocenter and SE of it. On nodes 2 and 3, the rupture sirabautd.7 + 0.8
and3.8 + 0.7 s, respectively. The percentage errors are about 17 andré8mnpe
respectively. For rupture time we see clearly what we ndtioce the rake angle,
that is posterior marginals show evident peaks even on thodes for which no
clear high slip-velocity is identified.

Fig. 4.6 show 1D marginals for final slip. We see that the pR®F is not
uniform anymore because it represents information on a gwatibn of the original
model parameters. We see again that at nodes 2 and 3, thredhifégh slip-velocity
values produce an high slip-patch (mean value of about 3 amsistent with the
estimate provided by Monelli et al. [2009]. We also see that probability of
having high values of final slip is higher in the SE sectionhaf tault rather than in
the NW (compare posteriors at nodes 4, 5, 9, and 10, with posteat nodes 1,6,
and 7, for instance).

To compute the spatio-temporal evolution of on-fault Enee use a velocity-
stress staggered-grid finite difference scheme, basedeo8tHygered-Grid Split-
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Node (SGSN) method to simulate the fault rupture [Dalgueray[®2007]. We use
a grid spacing of 100 m and a time step of 0.00625 s, and mapipheadel into
the finite difference grid using bicubic interpolation. Wmslate a time window of
20 s, applying the same velocity model used by Monelli et2410P].

In Fig.4.7 we show the computed shear traction versus shyeswn a 2 by 2
km grid on the fault surface, for inner grid nodes only. Framlecurve we visually
estimate strength excess, dynamic stress drop, and sigeneng distance. We de-
fine the slip-weakening distance as the amount of slip cpomding to a change in
the traction weakening rate. To clarify this approach, wenstwo examples. At
node 39, near the hypocenter, we can identify a clear mininmuthe traction vs.
slip curve. We identify the slip-weakening distance as thpecerresponding to the
minimum. At node 16, located where the highest slip is irderiwe can identify
a clear change in the weakening rate at a slip value of abédunlwhich we as-
sume as the local slip-weakening distance. For most of tidengides it's possible
to identify a clear change in the traction weakening ratd,taerefore to apply the
described procedure to estimate the slip-weakening distarlowever, for some
nodes, especially for those located near the fault edgesewbe slip is inferred
(e.g. nodes 1, 2, 12, 13, 23, 24), the traction versus slipesuappear to be rather
complex. For those nodes, we assume the slip-weakeningndistto be equal to
the final slip.

4.4 Alinear slip-weakening model

In Fig. 4.8 we show the linear slip-weakening parametersddyic stress drop,
strength excess, slip-weakening distance) estimatedtfrerinaction vs. slip curves
in Fig. 4.7, interpolated (through bicubic interpolati@m) the finite difference grid
(dz = 100 m) on the fault surface. We see that the highest dynamicssthexsp
(about 15 MPa) is located at the same locations where thesiighp/slip-velocity
Isinferred. Significant dynamic stress drop is located SE@f the hypocenter. The
strength excess pattern results to be very close to zeroarramregion extending
from the bottom to the top edge of the fault and centered ardbe hypocenter.
A region of low strength-excess is located also SE of the bgpter. The slip-
weakening distance distribution results to be correlat@tl the final slip. The
highest value is reached where the highest final slip is refer Slip-weakening
distance values vary mostly between 0.5 and 1.5 m. In Fig.(d).8e show the
resulting fracture energy density distribution.

To perform the dynamic rupture simulation we assume the upiedd stress
to be uniform on the fault surface. The normal stress is asduegual to 125
MPa (a representative value for effective normal stressrigstal earthquakes, Rice
[2006]). The static friction coefficient is assumed equd.8b (from Byerlee’s law
at low normal stress, Scholz [2002]). The upper yield stissberefore 106.25
MPa. The initial stress is given by the upper yield stressusithe strength excess.
This implies that regions of low strength excess match wathians of pre-stress
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close to the yield stress, and therefore near to a crities st

We start the numerical rupture simulation by means of a tarcaoucleation
patch centered on the hypocenter. By trial and error, we fdbhatla nucleation
patch of radius equal to 0.8 km and subject to an appliedsste$09.3 MPa, pro-
vide the best temporal alignment between the predicted bsereed strong motion
data.

The resulting slip-velocity temporal evolution is depitia Fig. 4.9. We iden-
tify three main phases. In the initial phase, soon after tkalking of the nucleation
patch, the rupture quickly expands (with low slip-veloesfi, mostly toward SE and
toward the bottom edge of the fault. This initial expansitiage stops at about 1.5
s. In the second phase (from about 1.5 to 3 s), the ruptureskgreping, but with
low rupture velocity and still with low slip-velocities (fetens of cm/s). In the third
phase, after about 3 s, the rupture accelerates, and rahelteghest slip-velocities
toward SE and the top edge of the fault (peak slip-velocitgtmut 2 m/s). We see
also that NW of the hypocenter the rupture propagate withetoslip-velocities
(about 0.5 m/s).

The peak slip-velocity distribution [Fig: 4.10 (a)] is castent with the results
of the Bayesian analysis. We see that near and NW of the hyfadde rupture
develops with low peak slip-velocities (of the order of 0.6mor less). The highest
slip-velocities are reached in the SE section of the faudo@ 1 m/s) and below
the top edge of the fault (about 2 m/s). The final slip distidou [Fig: 4.10 (a)]
shows a maximum value of about 2.5 m, between 4 and 6 km depthobaerve
an elongation of the slip distribution also to SE, whereas df\he hypocenter we
find the lowest values of slip. The rise time distributionrfgmuted at each grid
point as the time interval between 10 and 90 percent of thediipd [Fig: 4.10 (c)]
shows a pattern where long rise times (maximum value abolafedocated near
the hypocenter, and then decrease approaching the eddes faiitt. The rupture
time distribution (computed at each grid point as the timeemthe slip-velocity
exceeds a value of 1 mm/s) [Fig: 4.10 (c)] shows an initialgeh@during which the
rupture propagates fast (until about 1.5 s), then slowsad@mwm 1.5 to 3-3.5 s),
and then accelerates again.

To test the validity of the dynamic model we compare the mtedi ground mo-
tion with the observed strong motion and GPS data, and wélptadictions of the
best-fitting kinematic model found during the sampling adure for the Bayesian
analysis. In Fig. 4.11 we compare the ground velocity ptediby the dynamic and
the best-fitting kinematic models with the observed one, staof four near-field
stations. These stations are the only included in the coatipul domain used for
the dynamic rupture simulation. For this set of stations,see that the dynamic
model produces almost the same level of fit of the best-fikingmatic model. For
the fault normal component of station SMNO015, the dynamidehcan reproduce
the observed waveform even better than the kinematic médehlso compute the
surface static offset at a set of four stations (654, 660, 88 381, Fig. 4.12). At
stations 654, and 660 the horizontal displacement vectoduged by the dynamic
model reproduce the observations inside the error elligdewever, at stations 379
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Figure 4.8: Dynamic stress drop (@), strength excess (b), and slip-eveéad distance (c) estimated
from traction vs. slip curves in Fig. 4.7 and interpolatedtos fault surface. We show
also the corresponding fracture energy density distiaioui).

and 381, the dynamic model predictions lie outside the atigrses, although we
do not observe large discrepancies.

4.5 Discussion and conclusions

Peyrat & Olsen [2004] performed a dynamic inversion for tAB@Western Tottori
earthquake, using a direct search method based on the Meididod algorithm.
They consider a linear slip-weakening fault model, and mgsuniform upper yield
stress and slip-weakening distance (equal to 28 cm). Therglsdor the on-fault
distribution of dynamic stress drop, which is allowed topaetween -2 and 5 MPa
at each subfault. The best-fitting model shows a slip pat&tanding from the
hypocenter to the top edge of the fault (at 1 km depth), whegentaximum slip
(about 2 m) is reached. The maximum slip-velocity is abobitnfls, and the maxi-
mum stress drop is 5 MPa.

Although the model by Peyrat & Olsen [2004] produces a sattsty level of
fit in the considered frequency range (0.05-0.5 Hz), it d@dfeith what is usually
shown in kinematic images. First of all, there is no evidesynametry of the slip
pattern with respect to the hypocenter, that is no elongatislip toward SE. This
feature is shown in all published kinematic images (Semneaaé [2005], Festa &
Zollo [2006], Piatanesi et al. [2007], Monelli et al. [2009&nd also confirmed in
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Figure 4.10: Peak slip-velocity (m/s), final slip (m), rise time (s), angbture time (s) distributions,
resulting from dynamic rupture simulation.

this study. The maximum slip-velocity is less than whatreated in this study and
by Piatanesi et al. [2007] (about 2 m/s). The maximum stdesp-is lower than

what we infer (about 15 MPa) and what computed by Dalguer.¢2@02] (about

30 MPa) from a kinematic image of the rupture process.

Differently to the model proposed by Peyrat & Olsen [2004F tinear slip-
weakening model we derive in this study does not assume aranglip-weakening
distance. Moreover, it can explain better what is usuallgeped in kinematic
images. More importantly, it has been obtained without gpliex optimization
procedure but rather interpreting a mean kinematic slipehasing a dynamically
consistent source time function. For the considered setfrong motion stations,
we show that the dynamic model performs practically at timeeskevel of the best-
fitting kinematic model. For the considered set of GPS statithe dynamic model
Is not able to reproduce all the observations inside the &awcs, however we do
not see large discrepancies.

We acknowledge that to better understand how well the dynamodel is able
to explain the observations, a larger number of strong madiod GPS stations
should be considered. We plan to perform this analysis asieefwork. Moreover,
the fact the static offset of two of four GPS stations canreofitted inside the 95
percent confidence level may indicate that the rupture mecatektill be improved.
The dynamic model we derived can be easily used as a startdglrfor a gradient
based optimization procedure.

Estimating dynamic parameters from past earthquakes essary to derive re-
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Figure 4.11: Near-field ground velocity predicted by the best-fittingddmatic model (light gray)
and dynamic model (dark gray) compared with the observedluaek).
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Figure 4.12: Surface coseismic offsets predicted by the best-fittingtiatic model (thick light
gray) and dynamic model (thin dark gray) compared with theeobed ones (black).
The limited computational domain used for the dynamic regsimulation allowed us
to compute surface displacements only at stations 654,3@0),and 381.
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alistic dynamic rupture models for ground motion simulasiof future earthquakes.
Dynamic rupture simulations are computationally expemsind therefore system-
atic dynamic inversions are still of limited applicabilityt is important therefore
to derive strategies helping in inferring dynamic ruptueggmeters, limiting the
number of dynamic rupture simulations, and at the same timiérig the number
of assumptions (e.g. allowing slip-weakening distancegdéterogeneous). Our
study shows that using a mean kinematic slip model (reptiegetne most likely
features of the rupture process) and a dynamically comsistrce time function
may help in deriving a dynamic model which, without trial ardor modifications,
produce a level of fit which is comparable to that of a bestifjtkinematic model.
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Conclusions and Outlook

Conclusions

In this thesis | present a methodology for the estimationinékatic earthquake
source parameters based on a Bayesian approach. The maiit bénsing a
Bayesian approach is that it allows to give comprehensivemat# of errors asso-
ciated with kinematic rupture parameters taking into aotole full non-linearity
of the problem. From uncertainty estimates for kinematiapeeters | also provide
uncertainty estimates for dynamic parameters. In thewviatlg | summarize the
main findings of each study.

In Chapter 1 | use the Bayesian approach to infer kinematiairagiarameters
by fitting strong motion waveforms produced by a synthetmture model. By us-
ing an optimization algorithm, it is shown explitly how miple rupture models are
able to reproduce the observed waveforms within the sanst dd\fit, suggesting
therefore that the solution of the inversion should not beressed in terms of a
single model but rather as a set of models which show certatistical proper-
ties. | show how in general inferences on rupture parametaraot be expressed
in terms of Gaussian probability density functions, remdethe usual characteri-
zation of uncertainties in terms of mean values and stardiaritions not correct.
| also show that an optimization algorithm cannot be usedtionate uncertainties,
because the set of models found by optimization do not retthectopology of the
misfit function.

In Chapter 2 | consider a real event: the 2000 Western Totaothhguake. Kine-
matic parameters are inferred by fitting strong motion ands@RBta. Inference
results indicate that the best resolved feature of the rapgitocess is a major slip
patch located between the hypocentre and the top edge ohulte The presence
of this shallow slip patch is common to all previous studigs.contrast to some
previous studies no significant slip is identified at the drottof the fault. | also
compare inferences from both strong motion and GPS datainféhences derived
from strong motion data only. In both cases the shallow sifglpis identified. At
other locations, the main effect of the GPS data is in redyttie probability asso-
ciated with high values of slip. GPS data reduce the presehsgurious fault slip
and therefore strongly influence the resulting final seismatnent.

125
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In Chapter 3 | investigate how the estimation of dynamic patens is af-
fected by uncertainties in the kinematic source model. Cemgig the 2000 West-
ern Tottori earthquake, | select an ensemble of kinematideisoobtained through
Bayesian inference which are consistent with the observedgmotion and GPS
data. For each model of this ensemble the spatio-tempocdlitesn of on-fault
stress is computed. | statistically analyse resolutiontatics stress drop. | find
that on the same locations where stable high slip is inferredjuency distribu-
tions of static stress drop values have an approximatelyssian shape with pos-
itive mean values indicating that on average these locaitimlergo a weakening
process. However, standard deviation values are of the sadee of magnitude
of the estimated mean values indicating therefore largenminties on the actual
intensity of static stress drop. | show how these large uac#res are due to a cor-
relation between stress drop values which is inherited faooorrelation between
slip values. This shows how the statistical properties eftithcertainties affecting
kinematic parameters are mapped into the estimation ofrdimparameters. De-
spite the difficulty in constraining the rupture processaltycon the fault, | find that
a global quantity like radiated energy can be well inferrestead.

In Chapter 4 | derive a linear slip-weakening model for the@@g&stern Tot-
tori earthquake by using a mean kinematic slip model, andnamfycally consis-
tent source time function (regularized Yoffe function). dtain a dynamic rupture
model able to reproduce the observed kinematic parametarsmpare the pre-
dicted ground motion with the near-field strong motion andSG@Rta. | find that
the level of fit provided by the dynamic model is comparablé¢htat of the best-
fitting kinematic model. | consider this result of partiauf@actical importance,
because the dynamic model has been obtained without aciexypliimization pro-
cedure.

Outlook

The wavefield generated by an earthquake rupture in the @#h B a complex
signal: its analysis can potentially provide detailed kiemlge of the physics of the
earthquake source, however even state-of-the-art imrensethods can only extract
a small portion of the information contained in real waveier

The major limitation in imaging the details of the earthgeiakipture comes
from the narrow frequency band (0-1 Hz) which can be used feform fitting.
This is due to the often very poor knowledge of the velocityciure surrounding
the earthquake source, and to the large computational dereguired by numer-
ical wave propagation simulations at high frequencies. hwhe frequency band
limitation, the spatial resolution that can be achievedt@rupture process is of
the order of kilometers.

The modeling of the earthquake source is another importatiorf especially
for the quality of the rupture parameter estimates. Ideallglynamic description
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of the rupture process is preferable over a kinematic oneyrachic modeling al-

lows to generate spatio-temporal evolutions of slip whats$y, at least, very basic
physical laws. Kinematic models do not satisfy any physicadstrain in general,

and given the little information that band limited wavefarigan provide, there can
be many kinematic models compatible with the same eartleguagain, the large

computational demand required by dynamic rupture simuiatput a strong prati-
cal limit in the use of this approach for estimating ruptuaggmeters.

With the present limitations, kinematic inversions are ahéy effective tool to
image the earthquake rupture. Despite the fact that kinersatirce inversions
started almost 30 years ago (beginning of the 80s), the latierimaging of the
earthquake source is a problem which is not yet fully sol&dst of all, the non-
linearity of the problem has been taken into account onlyiarg approximate way
up to now (most of the time by providing a best-fitting modeiadhed using a non-
linear optmization algorithm with very crude uncertainstimations). The large
discrepancies between source images for the same earthpguakded by different
and indipendent studies show that this is not enough. With@mareful quantifica-
tion of the parameter uncertainties it is not possible toewsind which features
of the rupture process are well constrained and which areonbbw different data
sets contributes in constraining rupture parameters.

The Bayesian approach proposed in thesis offers a possilyléonenage the
earthquake rupture taking into account the full non-litgaof the problem and to
give comprehensive estimates of parameter uncertainfiesetter achieve these
goals, several improvements can be foreseen.

Imaging the earthquake source by using a Bayesian approatibitgx shows
that inferring rupture parameters implies combining pmdormation (independent
of the measured data), with information extracted from olzgens. Two key quan-
tities must be therefore defined: the prior PDF, quantifingprior knowledge on
model parameters, and the likelihood function, expressow well a given model
explains the observations.

In this thesis, the prior PDF has been always assumed to lb@rmmnover the
model space. With this approach, the parameters definingribe PDF are the
minimum and maximum value for each model parameter. Thisi@mphat a good
knowledge of plausible values for each parameter is knovaredhe inversion.
However, this may not be always possible. For instance, inp@n&, it can be seen
that for rupture parameters like rise time and rupture tifig.(2.11, Fig. 2.12)
posterior marginals are skewed towards the maximum allovedek, which sug-
gest that the solution is actually located outside the irada®arch space. In order
to avoid the definition of a maximum allowed value, for whiatop information
may not be available, the use of prior PDFs whitout “hard”rbaries is an advan-
tage. An example of PDF with “soft” boundaries, and which bansuitable for
defining prior information for parameters which are only stwained to be positive,
is the log-normal PDF. The main property of a log-normal P®that the logarithm
of the variable has a normal (Gaussian) probability densihen the dispersion
parameter goes to infinity, the log-normal distributiondgito a log-uniform distri-
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bution, impling that the logarithm of the variable has a ami distribution. The
use of a log-normal PDF avoids therefore the definition of aimam allowed
value, and by considering a large dispersion parameterga fange of values can
be tested.

The prior PDF can also be used to introduce physical conssrai the inverse
problem. By defining specific prior PDFs for each fault locat@md by introducing
correlations between neighbouring parameters it is plestibdefine more physi-
cally consistent source models. A possible way to deriveredycally consistent a
priori information is by using a Monte Carlo approach. Giveredain fault geom-
etry and velocity structure, given a certain hypocenteatioos, it is possible to
generate an ensamble of dynamic rupture models (for instapaising heteroge-
nous initial stress distributions), whose statisticalpgamties can be used as prior
information to constrain kinematic parameters.

Together with the prior information, the posterior PDF negsi the definition
of the likelihood function which quantifies how well a mode&péains the observa-
tions. As expressed in Eq 1.2, the likelihood function stdake into account the
uncertainties in both data and forward modeling.

In this thesis, the likelihood function used in the analysfithe Tottori earth-
quake quantifies the “quality” of a model only in terms of thenorm of the differ-
ence(observations — predictions). Uncertainties were not included in the calcula-
tion of the data misfit for ground motion waveforms becausknufed knowledge
of both data and modeling errors. Developing strategieshferestimation of un-
certainties in both data and modeling would be thereforgmifstant improvement
towards a more correct computation of the data misfit functio

When fitting strong ground motion waveforms, uncertaintreslata (due for
instance to seismic noise) are usually negligible with eespo uncertainties in
forward modeling. The latter are responsible for most ofithi&fit and can be both
aleatory (e.g. due to intrinsic uncertainties in the estiomeof wave velocities), and
epistemic (e.g. due to an insufficient knowledge of the vigljonodel). Therefore,
together with velocity model uncertainties, the proper patation of the likelihood
function requires removing epistemic uncertaintis frortedd he use of 3D veloc-
ity models which can take into account 3D path effects areledfect is therefore
high desirable in this regard. A more realistic modeling bamalso achieved by
using empirical Green’s functions. If reliably estimateethpirical Green’s func-
tions may also help in expanding the frequency band useddeeferm fitting and
potentially provide better resolution on the earthqualgure process.
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