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Riassunto

In questa tesi si presenta un metodo per la stima dei parametri di rottura cinematici
di un terremoto attraverso l’inversione di dati di spostamento del suolo basato su di
un approccio di tipo Bayesiano. Attraverso l’utilizzo di un approccio Bayesiano il
metodo e’ in grado di fornire stime complete delle incertezze sui parametri di rot-
tura. La capacita’ di quantificare la risoluzione dei parametri di rottura risponde alla
richiesta di quantificare la non unicita’ delle stime dei parametri di rottura. Infatti
i modelli di rottura per uno stesso terremoto, sviluppati daricerche indipendenti,
mostrano spesso grandi differenze. Parte di questa variabilita’ e’ certamente dovuta
a differenze nella modellazione e nella strategia di inversione dei dati. Tuttavia
ragioni intrinseche limitano la capacita’ di ricostruire il processo di rottura di un
terremoto a partire dai dati osservati: incertezze presenti sia nella modellazione che
nei dati e mancanza di risoluzione dovuta all’utilizzo di unnumero sempre finito di
osservazioni. Il lavoro presentato in questa tesi e’ indirizzato alla comprensione di
quanto questi fattori intrinsechi limitino la capacita’ distimare i parametri di rottura
cinematici di un terremoto e come queste incertezze possanoinfluire sulla stima dei
corrispondenti parametri dinamici.

Si presenta il metodo considerando inizialmente un test sintetico. Attraverso
l’inversione di datistrong motion generati da un modello di rottura cinematico di
una faglia, si prova esplicitamente come diversi ulteriorimodelli siano in grado di
riprodurre i dati generati dal modellovero, mostrando chiaramente la necessita’ di
una quantificazione rigorosa delle incertezze sui parametri di rottura. Si confrontano
inoltre le stime delle incertezze ottenute attraverso l’approccio Bayesiano con quelle
ottenute utilizzando solamente un algoritmo di ottimizzazione. Si mostra come i due
metodi diano sistematicamente stime diverse, e in particolare come l’algoritmo di
ottimizzazione sottostimi le incertezze reali.

Si considera successivamente un caso reale, il terremoto diWestern Tottori
avvenuto nel 2000 in Giappone. Questo evento offre condizioni favorevoli per
l’osservazione del processo di rottura, grazie all’abbondanza di dati di alta-qualita’
di tipo strong motion e GPS nel campo vicino.

Inferenze sui parametri cinematici di rottura mostrano unazona ad alto scorri-
mento localizzata tra l’ipocentro e il bordo superiore della faglia. Questa asperita’ e’
stata identificata da tutti gli studi precedenti. A differenza di alcuni studi precedenti
non si identifica tuttavia scorrimento significativo alla base della faglia. Inferenze
ottenute utilizzando dati strong motion e strong motion+GPS confermano entrambe
la presenza di un’asperita’ superficiale. Nelle altre regioni della faglia si osserva
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2 RIASSUNTO

che l’aggiunta di dati GPS riduce la probabilita’ associataad alti valori di slip. In
altre parole, i dati GPS aiutano a ridurre la presenza di scorrimento spurio, cioe’ non
vincolato dai dati strong motion. Questa riduzione ha un forte effetto sulla stima del
momento sismico.

Si analizza inoltre l’effetto delle incertezze sui parametri cinematici sulla stima
dei parametri dinamici. Considerando il terremoto di Tottori, si stima l’incertezza
su parametri dinamici quali la caduta di sforzo statica, lo sforzo di taglio e l’energia
sismica irradiata. Si osserva che in corrispondenza di altivalori di scorrimento, la
distribuzione dei valori di caduta di sforzo assume una distribuzione di tipo Gaus-
siano con valori medi positivi, indicando percio’ un indebolimento della faglia. I
valori di deviazione standard sono tuttavia dello stesso ordine di grandezza dei val-
ori medi, indicando percio’ grandi incertezze sulla stima della caduta di sforzo. Si
mostra come tali incertezze siano dovute ad un’anti-correlazione tra valori di caduta
di sforzo in punti vicini della faglia, la quale a sua volta e’dovuta ad un’anti-
correlazione tra i corrispondenti valori di scorrimento. Si mostra cosi’ come una
correlazione tra parametri cinematici limiti la precisione sulla misura di parametri
dinamici. Nonostante la bassa precisione nella stima di parametri di rottura locali,
si mostra invece come la misura di parametri di rottura globali, quali l’energia irra-
diata, sia caratterizzata da una maggiore precisione.

Si deriva infine un modello dinamico del processo di rottura per il terremoto di
Tottori. Assumendo una legge costitutiva di tipolinear slip-weakening, si stimano i
corrispondenti parametri dal campo di sforzo generato sulla faglia dal modello cin-
ematico medio, in cui l’evoluzione temporale della velocita’ di scorrimento viene
assunta seguire la funzione regolarizzata di Yoffe. Il modello dinamico ottenuto e’
in grado di spiegare i parametri cinematici stimati e di riprodurre lo spostamento
del suolo osservato ad un livello confrontabile con quello prodotto dal modello cin-
ematico ottimale. Si considera quest’ultimo risultato di particolare utilita’ pratica,
poiche’ il modello dinamico e’ stato ricavato senza utilizzare una particolare pro-
cedura di ottimizzazione, ma piuttosto interpretando un modello cinematico medio
per mezzo di una funzione sorgente consistente con un modello di rottura dinamica.



Abstract

In this thesis I present a method for the estimation of kinematic earthquake rupture
parameters based on a Bayesian approach through fitting of ground motion data.
By using a Bayesian approach the method can provide comprehensive estimates of
rupture parameters uncertainties. The capability of the method to quantify rupture
parameters resolution responds to the quest for quantifying the non-uniqueness of
rupture parameters estimates. Indeed, earthquake source images developed by dif-
ferent research teams for the same earthquake often show large differences. Part
of this variability is certaintly due to different modelingand parameter estimation
approaches. However, intrinsic reasons limit the imaging of earthquake source: un-
certainties in both data and modeling, and lack of resolution due to the use of finite
data-sets. The work presented in this thesis aims at understanding how much these
intrinsic factors limit our ability in estimating kinematic earthquake rupture para-
meters and how much these uncertainties may affect also the estimation of dynamic
rupture parameters.

I present the methodology by considering initially a synthetic test. By fitting
strong motion waveforms generated by a synthetic kinematicfault rupture I show
explicitly how multiple models may produce very similar level of fit, proving clearly
the need for a rigorous quantification of the parameter uncertainties to assess model
robustness. I also compare uncertainty estimates given by the Bayesian approach
with those derived by using only an optmization algorithm. Ishow how the two
methods give sistematically different results, with the optimization algorithm un-
derestimating the actual uncertainties.

I then consider a real event: the 2000 Western Tottori (Japan) earthquake. Thanks
to the abundance of high-quality near-field strong motion and GPS data, this event
provides favorable conditions for the observation of the earthquake rupture process.

Inferences on kinematic parameters show that the best resolved feature of the
rupture process is a major slip patch located between the hypocenter and the top
edge of the fault. The presence of this shallow slip patch is common to all previous
studies. In contrast to previous works I do not identify any significant slip at the
bottom of the fault. I compare inferences from both strong motion and GPS data
with results based on strong motion data only. In both cases the shallow slip patch is
identified. At other locations, the main effect of GPS data isin reducing the proba-
bility associated with high values of slip. GPS data reduce the presence of spurious
fault slip and therefore strongly influence the resulting final seismic moment.

Additionaly, I investigate how uncertainties in kinematicrupture parameters af-
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4 ABSTRACT

fect the estimation of dynamic parameters. Still considering the Tottori earthquake,
I analyse resolution of static stress drop, shear stress, and radiated energy. I find that
on the same locations where stable high slip is inferred, frequency distributions of
static stress drop values have an approximately Gaussian shape with positive mean
values, indicating that these locations undergo a weakening process on average.
However, I find standard deviation values of the same order ofmagnitude of the es-
timated mean values indicating therefore large uncertainties in the actual intensity
of static stress drop. I show how these large uncertainties are due to a correlation
between stress drop values in neighbouring points of the fault which is inherited
from a correlation between slip values. This shows how a correlation between kine-
matic parameters limits the resolution of dynamic parameters. Despite the difficulty
in constraining the rupture process locally on the fault, I find that a global quantity
like radiated energy can be well inferred.

I finally derive a dynamic rupture model for the 2000 Western Tottori earthquake
by estimating linear slip-weakening parameters from the spatio-temporal evolution
of on-fault stress generated by the mean kinematic slip model, in which the slip-
velocity time history is assumed to follow a regularized Yoffe function. I obtain a
dynamic model able to explain the observed kinematic parameters and that provides
a level of fit with the observed strong motion and GPS data comparable to that of
the best-fitting model. This last result should be considered of particular practical
importance, because the dynamic model has been obtained without an explicit opti-
mization procedure, but rather interpreting a mean slip model using a dynamically
consistent source time function.



Introduction

The destructive power of large earthquakes is a significant threat in those regions of
the Earth where active seimogenic sources are located near or within large populated
areas. Seismic hazard must therefore be communicated to stimulate the adoption of
preventive measures to reduce the harmful effects of strongground shaking pro-
duced by large earthquakes. However, seismic hazard can be correctly estimated
and improved only through a continuous scientific effort aimed at a quantitative un-
derstanding of the physical processes governing the Earth’s seismicity.

Earthquakes are one of the many phenomena through which the Earth shows
itself as a dynamically evolving system. Indeed, the Earth’s interior interacts with
the upper lithosphere and the transmitted stresses can cause the brittle parts of the
Earth’s crust to rupture dynamically, causing the emissionof seismic waves. Seis-
micity can be therefore considered as the short-timescale phenomenon of brittle
tectonics [Scholz, 2002].

Crustal earthquakes are therefore associated with the notion of dynamically
propagating ruptures occuring in geological structures known as faults, which can
be considered as “weak” zones of the Earth’s crust. Althoughthe theory of plate tec-
tonics can explain well the spatial distribution of earthquakes in the Earth’s crust, the
physical processes governing the nucleation and propagation of the earthquake rup-
ture are still far from being completely revealed and quantitatively understood. In-
deed, the earthquake rupture is a complex phenomenon involving various non-linear
dissipation processes coupled over a wide range of spatial and temporal scales. No
theoretical solutions are available today for a physicallyconsistent description of
the earthquake rupture dynamics based on a accurate representation of the physics
of dissipation processes occurring at different scales [Cocco & Tinti, 2008].

Earthquake source physics is therefore an active research field, where differ-
ent approaches are required to investigate the multi-scalenature of the earthquake
source. For instance, geological investigations can shed light into the structure
of real fault zones, and on microscale processes and dynamicweakening mecha-
nisms occuring during earthquake ruptures (Chester et al. [1993], Chester & Chester
[1998], Wibberly & Shinamoto [2003]). However, geologicalinvestigations pro-
vide us with a “static” picture of the earthquake source, andno information is given
about the “dynamics”, that is the physical laws governing the spatio-temporal evo-
lution of the earthquake rupture. A possible way to get insights into the dynamics of
the earthquake source is through laboratory experiments mimicking shear ruptures
in fault zones. Indeed, from laboratory experiments fault constitutive laws can be
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6 INTRODUCTION

derived, that is, physical laws describing how the fault weakening occurs (Dieterich
[1979], Ohnaka & Yamashita [1989], Beeler et al. [1994], Goldsby & Tullis [2002],
Di Toro et al. [2004]). However, these constitutive laws arederived at a laboratory
scale, and using experimental set-ups which only mimic realfaults. Their validity
in natural faults has to be proved.

To achieve a more complete understanding of the earthquake source, geological
and laboratory-scale studies must be integrated with a seismological analysis, which
is the only one that can provide observational constrains onthe rupture process of
real-Earth faults. The study of the earthquake source through the analysis of the
radiated wavefield is usually indicated with the term “earthquake source imaging”.
Indeed, by inversion of the observed ground motion generated by an earthquake,
it is possible to derive rupture models which can be considered as images of the
earthquake source.

A key point in all earthquake imaging studies is how the rupture process is pa-
rameterized. Geological investigations show that the mostcommon type of crustal
earthquakes is generated by a sudden slip in a “fault zone”. Field observations
suggest that slip in individual events may be extremely localized, and may occur
primarily within a thin shear zone, which is perhaps only<1-5 mm thick. This
localized shear zone lies within a finely granulated fault core of typically tens to
hundreds millimeter thickness. The core itself fits within amuch broader dam-
age zone of granulated or incompletely cracked rocks, perhaps several meters thick
[Rice, 2006].

When using seismic and geodetic data to image the earthquake rupture, the
“fault zone” is usually approximated with a “fault surface”, with no thickness. This
because for most seismological applications the fault zonewidth is much less than
the minimum considered wavelength. The main consequence ofthis approximation
is that seismologically-derived quantities characterizing the rupture process should
be considered in a macroscopic sense. For instance, slip should be interpreted as
the relative displacement between the walls of the fault zone [Cocco et al., 2006].

Assuming the “fault surface” approximation, the earthquake source can be de-
scribed from two points of view: kinematic and dynamic. In the kinematic approach
the slip process is seen as a dislocation: that is a displacement discontinuity. In a
kinematic model no source physics is invoked. On the contrary, in a dynamic model
the slip process is seen as the result of a shear rupture. What controls the rupture is
the friction law (the constitutive law), and the elastodynamics equations are solved
for a given friction law on the fault surface.

Both kinematic and dynamic models are defined in terms of a number of para-
meters. In a kinematic model the dislocation process on eachlocation on the fault
surface must be defined. This is done usually in terms of maximum slip (or slip-
velocity), rake angle (i.e. the slip direction), rise time (i.e. the slip duration), and
rupture time (i.e. the slip onset time). In a dynamic model the basic required pa-
rameters are the initial applied stress, the yield stress (i.e. the static friction level
which must be overcomed to rupture the fault), and the dynamic friction level (i.e.
the stress value during fault sliding). Moreover, depending on the assumed friction
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law, additional parameters are required to describe the weakening process (e.g. the
slip-weakening distance in a linear slip-weakening model).

Due to the large computational demand required by dynamic rupture simula-
tions, most earthquake source imaging studies are performed assuming a kinematic
model for the earthquake source. Within this approach, kinematic rupture parame-
ters define the slip function on each location on the fault andrelate with the observed
ground motion through the representation theorem [Aki & Richards, 2002].

Although the slip vector is linearly related to the observedground motion, the
remaining parameters (rise time and rupture time) are not. Therefore, the kine-
matic imaging of the earthquake source is, in general, a non-linear inverse problem.
Without the computational power needed to solve non-linearinverse problems, early
studies assumed a priori values for rise time and rupture time on the fault surface,
and solved only for the slip distribution by using the linearleast-square method
(Olson & Apsel [1982], Hartzell & Heaton [1983]). This methodology requires the
inversion of the forward modeling operator. Because of uncertainties in both data
and theory and limited data coverage, this is often an ill-posed and ill-conditioned
problem (multiple solutions may exist due to the presence ofa null space in the
model space and small change in the data may lead to large variations in the para-
meter estimates). Damping parameters are therefore additionaly required in order
to get a unique solution.

As already mentioned, relaxing the assumptions on rupture time and rise time
render the inversion non-linear. Under these conditions a linearized inversion can
be used to infer, together with slip, rupture time [Beroza & Spudich, 1988] and also
rise time values [Cotton & Campillo, 1995]. The main drawback of this approach
is that the inversion results depend on the starting model and, requiring the compu-
tation of the generalized inverse, damping parameters are again needed.

As computational resources improved, optimization methods like simulated an-
nealing (Hartzell et al. [1996]; Bouchon et al. [2000]; Delouis et al. [2002]; Sali-
chon et al. [2003]; Liu & Archuleta [2004]), neighbourhood [Vallee & Bouchon,
2004] and genetic [Emolo & Zollo, 2005] algorithms started to be adopted in earth-
quake source imaging studies. With such methods no assumptions on the objective
function are made and good data-fitting models are found by directly searching the
model space. Only the forward modeling operator is computedand no matrix in-
version is needed (hence no damping parameters are required).

A key issue in any parameter-estimation technique is the assessment of uncer-
tainties which affect the inferred model parameters. In linear or linearized least-
square inversions the objective function is a quadratic function with a single mini-
mum. Uncertainties on model parameters can be obtained by computing the curva-
ture of this function around the minimum [Menke, 1989].

In non-linear inversions the structure of the objective function is actually un-
known and it may presents multiple (and even degenerate valley-like) minima. Us-
ing optimization algorithms we can efficiently identify good data-fitting models but
we cannot directly estimate uncertainties. For this purpose, some strategies have
been recently proposed. Emolo & Zollo [2005] used a genetic algorithm to search
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the model space and estimated resolution by making a Gaussian approximation of
the objective function around the best-fitting model. In this approach uncertainties
are estimated only locally, in the neighbourhood of the bestfitting model, forcing
the objective function to be Gaussian around it. Other approaches estimate un-
certainties by statistically analyzing the set of models visited during the search of
the model space. From the set of models produced by a neighbourhood algorithm,
Peyrat & Olsen [2004] selected 19 models that fit the data almost equally well, and
then computed the standard deviation for each model parameter from this ensem-
ble. Piatanesi et al. [2007] computed weighted mean and standard deviation for each
model parameter considering the whole ensemble of models produced by a simu-
lated annealing algorithm. The main limitation of these approaches is that they de-
rive resolution estimates by statistically analyzing the ensemble (or sub-ensemble)
of models produced by an optimization algorithm without taking into account that
this ensemble does not reflect in general the actual uncertainties, that is the topol-
ogy of the misfit function, but rather the operators adopted by the search algorithm.
Moreover all these techniques assume uncertainties to be Gaussian, which is gener-
ally not true for non-linear problems.

Accurate estimates of uncertainties are needed in order to asses the reliability
of the inverted solutions. As it has been pointed out by different authors (Cohee
& Beroza [1994]; Beresnev [2003]; Ide et al. [2005]) and is alsorepresented in the
online database of earthquake rupture models (http://www.seismo.ethz.ch/srcmod),
for the same earthquake, acceptable fit to the data can be provided by different rup-
ture models. The discrepancies between models may be due to the different choices
adopted during the inversion concerning the forward modeling, the model para-
metrization, the inversion methodology, the type of data set and processing used.
However, independently of the particular approach, intrinsic reasons render imag-
ing the earthquake source a problem with multiple solutions: uncertainties in data
and in forward modeling (which allow multiple models to be considered acceptable)
and lack of resolution (due to the always limited data coverage).

The quantification of uncertainties in kinematic rupture parameters is also im-
portant for assessing uncertainties in dynamic rupture parameters. Indeed, kine-
matic slip models derived from the inversion of ground motion data can be used to
determine the spatio-temporal evolution of on-fault stress (e.g. Ide & Takeo [1997],
Bouchon [1997], Dalguer et al. [2002], Tinti et al. [2005b]),and from that some es-
timates of dynamic parameters such as stress drop, strengthexcess (relative fracture
strength), and linear slip-weakening distance (in the framework of slip weakening
friction models). As already mentioned, multiple kinematic rupture models may
satisfy the observations for a given earthquake and therefore uncertainties in kine-
matic parameters propagate into the estimation of dynamic parameters.

Kinematic and dynamic images of earthquake ruptures are used also for earth-
quake source physics studies (e.g. Mai & Beroza [2002], Tintiet al. [2005b],
Woessner et al. [2006]), and for ground motion prediction offuture earthquakes
(Olsen et al. [2006], Olsen et al. [2008], Olsen et al. [2009]). Understanding what
are the current limits in inferring kinematic and dynamic parameters is important
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therefore for constraining what can be learnt from seismic data about the earth-
quake source, and what can be the variability in ground motion prediction given the
uncertainties in the definition of an earthquake rupture model.

Given that most earthquake imaging studies largely ignoredor over-simplified
the analysis of uncertainties, together with the importance of assessing the reliability
of earthquake images, especially in view of their application in earthquake source
physics studies and hazard estimates, the main goal of this thesis is the development
of a methodology for the estimation of kinematic earthquakerupture parameters to-
gether with their associated uncertainties.

The methodology presented in this thesis in based on a Bayesian approach. With
a Bayesian approach, inferences on model parameters are expressed in terms of
marginal probability density functions (PDFs) derived from a “posterior” PDF, rep-
resenting the conjunction of “prior” information on model parameters, and infor-
mation derived through fitting observations. Resolution on each model parameter
is investigated comparing prior and posterior marginal PDFs. By using a Bayesian
approach, it is possible to overcome the main limitation of optmization based inver-
sions, which can only identify good-data fitting models, butwhich cannot provide
information on the actual resolution of model parameters. Byexpressing model pa-
rameters estimates in terms of PDFs, rather than by computing a single best-fitting
model, or few good data-fitting models, it is possible to obtain a more robust un-
derstanding of which degree of detail a model can be interpreted, without drawing
conclusions from unstable or unresolved features.

The general organization of the thesis is as follows:

In Chapter 1 I present the Bayesian inference method in the context of an earth-
quake source imaging problem. To avoid complexities arising from considering a
real event, I study a synthetic kinematic fault rupture process. Data consist of strong
motion waveforms only. I estimate kinematic rupture parameters by using a two
step procedure. First, I explore the model space by using an evolutionary algorithm
to identify good data fitting regions. Second, by using a neighbourhood algorithm
and considering the entire ensemble of models found during the exploration stage,
I compute a geometric approximation of the posterior probability density function
that is used to generate a second ensemble of models from which Bayesian infer-
ence is performed.

I apply the Bayesian inference method to a real case in Chapter 2. I consider
the 2000 Western Tottori earthquake. Data consist of strongmotion waveforms
and surface static offsets derived from GPS measurements. Bayesian inference
is performed by using a Markov Chain Monte Carlo (MCMC) method, based on
the Metropolis algorithm. I study how resolution of kinematic rupture parameters
changes depending on two different data sets: strong motiononly, and strong mo-
tion plus GPS.
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From kinematic parameters it is possible to estimate dynamic parameters by
solving the elastodynamics equation with the kinematic slip model as a boundary
condition. In Chapter 3 I investigate how the estimation of dynamic parameters is
affected by uncertainties in the kinematic source model. Still considering the 2000
Western Tottori earthquake, I map the uncertainties in kinematic parameters esti-
mated in Chapter 2 into uncertainties in dynamic parameters.I quantify resolution
of static stress drop, shear stress, and radiated energy.

In Chapter 4 I derive a dynamic rupture model for the 2000 Western Tottori
earthquake aimed at explaining the most prominent featuresobserved in kinematic
images. By using a mean kinematic slip model, and a dynamically consistent source
time function (regularized Yoffe function), I estimate linear slip-weakening para-
meters. I validate the obtained dynamic model by comparing the predicted ground
motion with near-field strong motion and GPS data.

The thesis ends with a summary of the main findings, along withan outline of
potential future research directions.



Chapter 1

Bayesian inference of kinematic
earthquake rupture parameters
through fitting of strong motion data

Published in Geophysical Journal International as:
Monelli, D., and Mai, P. M. (2008), Bayesian inference of kinematic earthquake
rupture parameters through fitting of strong motion data, Geophys. J. Int., 173, 220-
232
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12 1 BAYESIAN INFERENCE OF EARTHQUAKE PARAMETERS

Abstract

Due to uncertainties in data and in forward modeling, the inherent limitations in
data coverage and the non-linearity of the governing equation, earthquake source
imaging is a problem with multiple solutions. The multiplicity of solutions can be
conveniently expressed using a Bayesian approach, which allows to state inferences
on model parameters in terms of probability density functions. The estimation of
the posterior state of information, expressing the combination of the a priori knowl-
edge on model parameters with the information contained in the data, is achieved
in two steps. First, we explore the model space using an evolutionary algorithm
to identify good data fitting regions. Secondly, using a neighbourhood algorithm
and considering the entire ensemble of models found during the search stage, we
compute a geometric approximation of the true posterior that is used to generate a
second ensemble of models from which Bayesian inference can be performed. We
apply this methodology to infer kinematic parameters of a synthetic fault rupture
through fitting of strong motion data. We show how multiple rupture models are
able to reproduce the observed waveforms within the same level of fit, suggesting
that the solution of the inversion cannot be expressed in terms of a single model but
rather as a set of models which show certain statistical properties. For all model
parameters we compute the posterior marginal distribution. We show how for some
parameters the posterior does not follow a Gaussian distribution rendering the usual
characterization in terms of mean value and standard deviation not correct. We
compare the posterior marginal distributions with the ’raw’ marginal distributions
computed from the ensemble of models generated by the evolutionary algorithm.
We show how they are systematically different proving therefore that the search
algorithm we adopt cannot be directly used to estimate uncertainties. We also an-
alyze the stability of our inferences comparing the posterior marginals computed
by different independent ensembles. The solutions provided by independent ex-
plorations are similar but not identical because each ensemble searches the model
space differently resulting in different reconstructed posteriors. Our study illustrates
how uncertainty estimates derive from the topology of the objective function, and
how accurate and reliable resolution analysis is limited bythe intrinsic difficulty of
mapping the ’true’ structure of the objective function.

1.1 Introduction

Current earthquake source imaging studies use different data sets (strong motion,
teleseimic, GPS, InSAR) and inference methods (linear or linearized data inver-
sions, direct search techniques) to retrieve kinematic rupture parameters. A fault
rupture can be described, kinematically, as a shear dislocation propagating along
a surface within an elastic medium. Using seismic data the dislocation process at
each point on the fault is usually parametrized in terms of slip (or slip-velocity),
rake angle (direction of slip), rupture time (time at which the slip process starts)
and rise time (duration of slip). These parameters enter in the slip function which
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in turn determines the ground motion through the representation theorem [Aki &
Richards, 2002].

The mathematical parametrization of the slip function is not unique in inverse
modeling studies, although the chosen functional form has important implications
from the dynamic point of view. It determines in fact the traction evolution over the
fault surface [Piatanesi et al., 2004]. Two main methods areused for representing
the slip function: the multi-time window and the single time-window approach. In
the former, the slip function is not prescribed a priori but is expanded into a number
of basis functions (Olson & Apsel [1982]; Wald & Heaton [1994]; Ide et al. [1996];
Sekiguchi et al. [2000]; Delouis et al. [2002]; Salichon et al. [2003]). In the latter
the slip function is forced to assume a predefined functionalform, like a triangle
[Hartzell & Heaton, 1983], a boxcar [Emolo & Zollo, 2005] or amore complex
form involving, for instance, trigonometric [Hartzell et al., 1996] or power-law [Liu
& Archuleta, 2004] functions.

Fixing, for each location on the fault, rise time and rupturetime (for a multi
time-window approach, rise time and rupture time for each basis function), the re-
lation between slip and ground motion becomes linear. A solution can then be
obtained using the linear least-square method (Olson & Apsel [1982]; Hartzell
& Heaton [1983]; Wald et al. [1991]; Ide et al. [1996]; Sekiguchi et al. [2000];
Sekiguchi & Iwata [2002]). This methodology requires the inversion of the forward
modeling operator. Because of uncertainties in both data andtheory and limited
data coverage, this is often an ill-posed and ill-conditioned problem (multiple so-
lutions may exist due to the presence of a null space in the model space and small
change in the data may lead to large variations in the parameter estimates). Damp-
ing parameters are therefore additionaly required in orderto get a unique solution.
Possible constrains are: moment minimization, smoothing of slip and filtering of
singular values [Hartzell & Heaton, 1983].

Relaxing the assumptions on rupture time and rise time renderthe inversion
non-linear. Under these conditions a linearized inversioncan be used to infer, to-
gether with slip, rupture time [Beroza & Spudich, 1988] and also rise time values
[Cotton & Campillo, 1995]. The main drawback of this approach is that the in-
version results depend on the starting model and, requiringthe computation of the
generalized inverse, damping parameters are again needed.

As computational resources improved, optimization methods like simulated an-
nealing (Hartzell et al. [1996]; Bouchon et al. [2000]; Delouis et al. [2002]; Sali-
chon et al. [2003]; Liu & Archuleta [2004]), neighbourhood [Vallee & Bouchon,
2004] and genetic [Emolo & Zollo, 2005] algorithms started to be adopted in earth-
quake source imaging studies. With such methods no assumptions on the objective
function are made and good data-fitting models are found by directly searching the
model space. Only the forward modeling operator is computedand no matrix inver-
sion is needed (hence no damping parameters are required). Despite these benefits,
these randomized search techniques require a certain number of tuning parameters
to guide the search, but no general theories are available that help to chose opti-
mal values [Mosegaard & Sambridge, 2002]. Each problem often requires its own
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tuning parameters values. Moreover, even if some algorithms are guaranteed to con-
verge to the global minimum (like some simulated annealing algorithms with certain
cooling schedules, [Sen & Stoffa, 1995]), this convergenceis only asymptotic, i.e.
the true global minimum is found only after an infinite numberof iterations. Prac-
tically, finite computational resources limit our ability in searching the model space
so that the solution found can never be proved to be optimal.

A key issue in any parameter-estimation technique is the assessment of uncer-
tainties which affect the inferred model parameters. In linear or linearized least-
square inversions the objective function is a quadratic function with a single mini-
mum. Uncertainties on model parameters can be obtained by computing the curva-
ture of this function around the minimum [Menke, 1989].

In non-linear inversions the structure of the objective function is actually un-
known and it may presents multiple (and even degenerate valley-like) minima. Us-
ing optimization algorithms we can efficiently identify good data-fitting models but
we cannot directly estimate uncertainties. For this purpose different strategies have
been proposed. Emolo & Zollo [2005] used a genetic algorithmto search the model
space and estimated resolution making a Gaussian approximation of the objective
function around the best-fitting model. In this approach uncertainties are estimated
only locally, in the neighbourhood of the best fitting model,forcing the objective
function to be Gaussian around it. Other approaches estimate uncertainties by sta-
tistically analyzing the set of models visited during the search of the model space.
From the set of models produced by a neighbourhood algorithm, Peyrat & Olsen
[2004] selected 19 models that fit the data almost equally well, and then computed
the standard deviation for each model parameter from this ensemble. Piatanesi et al.
[2007] computed weighted mean and standard deviation for each model parameter
considering the whole ensemble of models produced by a simulated annealing al-
gorithm. The main limitation of these approaches is that they derive resolution
estimates by statistically analyzing the ensemble (or sub-ensemble) of models pro-
duced by an optimization algorithm without taking into account that this ensemble
does not reflect in general the actual uncertainties, that isthe topology of the misfit
function, but rather the operators adopted by the search algorithm. Moreover all
these techniques assume uncertainties to be Gaussian, which is generally not true
for non-linear problems.

The major goal of this paper is to estimate resolution on kinematic earthquake
rupture parameters taking into account the full non-linearity of the problem, with-
out invoking any approximation on the objective function and hence allowing for
possible non-Gaussian uncertainties. We consider a synthetic test so that we can
control uncertainties in data and in forward modeling. In order to express the multi-
plicity of the solutions we adopt a Bayesian approach [Tarantola, 2005]. Inferences
on inverted parameters are derived from the posterior probability density function.
It is obtained as the conjunction of “states of information”(expressed in terms of
probability densities) reflecting our prior information onmodel parameters, data
and their correlation (the physical law governing the forward modeling). We com-
pute the posterior using the strategy proposed by Sambridge[1999]. First, using
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a direct search algorithm, we explore the model space to discover the structure of
the posterior probability density function and to identifygood data fitting regions.
In this study we use an evolutionary algorithm [Beyer, 2001] to perform this task.
Secondly, using a neighbourhood algorithm and consideringthe whole ensemble of
models produced during the search stage, we compute a geometric approximation
of the true posterior from which samples are generated and Bayesian inference per-
formed. Hence, the solution we provide for each model parameter is stated in terms
of a marginal probability density function from which uncertainty estimates can be
derived.

1.2 The Bayesian approach

The general idea of a Bayesian approach to inverse theory is that a certain amount
of information or knowledge about the physical system underinvestigation (repre-
sented by the model parameter vectorm) and the data (d) is available before the
inversion, and can be expressed in terms of a probability density function. Together
with this ’a priori’ knowledge, another source of information is given by the corre-
lation between model parameters and data expressed by a physical law (d = g(m)).
The solution of the inverse problem is then obtained by combining these two states
of information. The main difficulty in computing the solution is in extracting in-
formation contained in the correlation betweend andm, in particular whenm is
defined in a large dimensional space and the forward modelingoperatorg is com-
putationally expensive. Under these conditions computingthe equationd = g(m)
on a regular grid of points in the model space is unfeasible and one is forced to use
randomized techniques in order to evaluate the above equation in a limited number
of points which should be representative of the most important regions of the model
space (where the correlation betweend andm is high). However, finite computa-
tion time and finite computing resources will always limit our ability in extracting
this information. The consequence is that the solution of these types of inverse
problems will be, for any realistic large scale problem, incomplete and always sub-
ject to a certain amount of variability that decreases as theexploration of the model
space becomes more and more extensive.

1.2.1 The posterior state of information

In presenting the Bayesian approach, we follow the theoretical formulation of Taran-
tola [2005]. We assume theM -dimensional model space andD-dimensional data
space,M andD respectively, to be linear spaces. Indicating withρM(m) andρD(d)
the prior probability density functions on model parameters and data respectively,
while with θ(d|m) the conditional probability density representing the correlation
betweend andm, the posterior state of information on the model space is given by:

σM(m) = kρM(m)L(m) (1.1)
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wherek is a normalization constant andL(m) is the likelihood function:

L(m) =

∫

D

dd ρD(d)θ(d|m) (1.2)

Assuming that our a priori knowledge on model parameters consists of the only
information that each model parameter is strictly bounded by two valuesmα

min and
mα

max, whereα ∈ IM , IM = {1, ...,M}, we write:

ρM(m) =
∏

αM∈IM

ρα(mα) (1.3)

where

ρα(mα) =

{ 1
mα

max−mα

min

for mα
min ≤ mα ≤ mα

max

0 otherwise

is the prior marginal for each model parameter (that is a uniform probability density
function).

In our synthetic test we add Gaussian noise to the seismograms produced by the
true model. Our prior information on the data can therefore be expressed through
a Gaussian probability density function. Definingr = d − dobs (whered are the
actual data anddobs are the observed data, i.e. actual data contaminated with noise),
we write:

ρD(d) = ((2π)DdetCD)−1/2 exp

[

−1

2
rTC−1

D r

]

(1.4)

where detCD is the determinant of the data covariance matrix.
In our synthetic test we do not introduce any modeling uncertainties; the corre-

lation between data and model parameters is therefore represented by a Dirac delta
function:

θ(d|m) = δ(d − g(m)) (1.5)

Substituting eqs (1.5), (1.4) into eq (1.2), and the result of the integration together
with eq (1.3) into eq (1.1), we obtain:

σM(m) =

{

k exp
[

−1
2
rTC−1

D r
]

mα
min ≤ mα ≤ mα

max

0 otherwise
(1.6)

where nowr = g(m)−dobs. Eq (1.6) represents, for our synthetic test, the solution
of the inverse problem. Being a multidimensional probability density function it can
be characterized in terms of its properties in the model space. We can identify the
maximum likelihood model (in our case corresponding to the best fitting model).
We can also compute the mean model:

〈m〉 =

∫

M

dm mσM(m) (1.7)

and the covariance matrix:

CM =

∫

M

dm (m − 〈m〉)(m − 〈m〉)T σM(m) (1.8)
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Equations 1.7 and 1.8 give useful results only ifσM is Gaussian. In a Bayesian
approach this is possible only ifρ(m), ρ(d) andθ(d|m) are Gaussian and the equa-
tion d = g(m) is linear. In case these conditions are not satisfied, we can still
look at the information provided on a single parameter computing its corresponding
marginal probability density function:

M(mα) =

∫

...

∫

σM(m)
M
∏

k=1
k 6=α

dmk (1.9)

Eq 1.9 involves computing the integral of the posterior probability density function
in all the dimensions of the model space except the one corresponding to the para-
meter of interest.

If additional knowledge on model parameters is available, this methodology
allows to introduce more complex a priori distributions andif the Gaussian assump-
tion for data uncertainties is not valid also different norms can be used. We empha-
size that eq (1.6) has been derived assuming no uncertainties in the forward model-
ing. This may be valid for a synthetic test. For a real case where uncertainties and
approximations are present in the modeling, and if these effects can be quantified,
the correlation between model parameters and data can be represented in terms of a
more complex probabilistic correlation rather then a simple Dirac delta function.

1.2.2 Computing the posterior

In practise, solving an inverse problem from a Bayesian viewpoint implies comput-
ing integrals in a multidimensional space (eq 1.7, 1.8, 1.9). This can be done using
Monte Carlo techniques which basically require generating samples according to
the posterior probability density function. A variety of sampling methods can be
used for this purpose (for a review, see for instance Tarantola [2005]). The applica-
bility of each of these algorithms depends on the problem (ifa small or large model
space is considered, if an analytical, explicit expressionof the posterior is available
or not). Here, rather than directly using a sampling algorithm, we address the prob-
lem adopting a two stage procedure [Sambridge, 1999]: first,using an optimization
algorithm, we explore the model space, possibly identifying its good data fitting
regions. Secondly, using the whole ensemble of models foundduring the search
stage, we compute a geometric approximation of the true posterior that is used for
generating a new ensemble of models from which Bayesian inference can be per-
formed. Sambridge [1999] validate this methodology using both a neighbourhood
and a genetic algorithm to perform the search of the model space. Here we use an
evolutionary algorithm [Beyer, 2001]. In principle any other direct search method
can be used. Whitin this approach we can exploit the efficency of optimization algo-
rithms in identifying good data-fitting regions of the modelspace and compute the
forward modeling operator only during the search stage and not during the sampling
process which usually requires larger number of evaluations (in this study 160100
models have been visited during the search stage, whereas the sampling process
required generating 475000 models).
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Searching the model space

The optimization algorithm we use to explore the model spaceis an evolutionary
algorithm (EA) [Beyer, 2001]. EA is the current denominationused to identify
all those population-based stochastic optimization methods inspired by the Dar-
winian paradigm of evolution. Among EAs there are genetic algorithms, evolu-
tionary strategies and evolutionary programming techniques. According to these
methods an optimization problem is considered similar to the process of evolution
of a population of individuals that, through an evolutionary loop defined by a series
of mechanisms like recombination, mutation and selection,improve their character-
istics (fitness) in order to better survive in the environment where they are located.
In our problem an individual is a model belonging to the modelspace and its “fit-
ness” is given by the misfit value(g(m)−dobs)TC−1

D (g(m)−dobs) expressing the
discrepancy between predictions and observations.

Among the many EAs available, we use, following the notationof Beyer [2001],
a (µ/µD, λ)–Evolutionary Strategy1. According to this algorithm, the exploration
of the model space starts with generating an initial population, corresponding to the
generationg = 0, of µ parent modelsP(0)

µ :

P(0)
µ := {m(0)

1 ,m
(0)
2 , ...,m(0)

µ } (1.10)

This set of models, obtained through uniform random sampling of the model space,
then evolves through the subsequent repeated application of three operators:Domi-
nant µ-recombination,Gaussian mutation andTruncation selection.

The aim of the first two operators is to generate, from the current parent pop-
ulation, a new set ofλ models, theoffsprings population. In theDominant µ-
recombination, everyith component of the offspring̃m is obtained by uniform ran-
dom selection from theµ i-components of the current parents. At each generation
g we have:

m̃
(g)
j :=

M
∑

i=1

(eT
i m

(g)
ki

)ei, j = 1, ..., λ (1.11)

whereki is an integer uniform random number between{1, ..., µ} and the symbolei

stands for the unit vector in theith direction of the model space. The scalar product
gives theith component of the uniformly random selected parentmki

.
In the Gaussian mutation an additional perturbation is added using a normal

distributionN with zero expectation value:

m̂
(g)
j := m̃

(g)
j + (σ1N (0, 1), ..., σMN (0, 1)) (1.12)

where j = 1, ..., λ andN (0, 1) represents a normal random number with zero
expectation value and unit standard deviation. The final offspringm̂ is therefore

1In this notationµ denotes the number of parents andλ the number of offsprings. The comma
symbol “,” indicates that theµ parents for the next generation are selected among the onlyλ off-
springs of the current generation. Note that this impliesλ ≥ µ. The notationµ/µD denotes that all
theµ parents are used forDominant (D) recombination.
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obtained around the parental recombination resultm̃ through the addition of a
Gaussian random vector. The mutation can be isotropic, thatis for all the para-
meters the standard deviation is the same, or anisotropic (in case model parameters
have different physical meanings therefore requiring different standard deviations).
The aim of the selection operator is to choose among the final set of offsprings a
new ensemble of models to be used as a parent population for the next generation.
In the Truncation selection this is done in a deterministic way. The new parent
population is formed by selecting theµ best fitting models among the onlyλ off-
springs. This requiresλ ≥ µ. This series of steps is repeated until a stop criterion
is reached (e.g. a stationary level of fit). Evidently, the last step of the algorithm is
the most expensive in terms of computation time because it requires the calculation
of the misfit function for each offspring. Great improvementcan be achieved paral-
lelizing the computation, i.e. distributing the calculation of the misfit over several
processors and, once collected the results, performing theselection.

The EA requires a certain number of parameters to be tuned. The number of
parents and offsprings,µ andλ respectively, and the standard deviations for the
mutation operator. Unfortunately no general theory is available that helps to choose
optimal values for these parameters, essentialy because the performance of the al-
gorithm is strictly dependent on the unknown “fitness landscape”. However, some
guidelines are available. The ratioµ/λ determines the tradeoff between explo-
ration/exploitation. Clearly the conditionµ = λ basically means pure exploration
(no selection among offsprings) and as the ratioµ/λ decreases the exploitation ten-
dency increases. For the mutation operator, the algorithm allows to choose a dif-
ferent standard deviation for each model parameter. To limit the number of tuning
parameters, we choose to use different standard deviationsonly for those parame-
ters that represents different physical quantities. The “strength” of the mutations
(the magnitude of the standard deviations) is another important factor. They should
not be too small, to ensure population diversity, and not toolarge, to allow conver-
gence towards good data fitting regions of the model space. However, following
these guidelines is not sufficient to properly set the algorithm’s parameters, and
additional trial and error work is usually required.

Appraising the ensemble

The models produced by the evolutionary algorithm cannot beused directly for
Bayesian inference, because they are not generated according to the posterior proba-
bility density function. However all these models, together with their corresponding
values ofσM(m) (easily computed knowing the value of the misfit, eq 1.6) consti-
tute an important source of information about the structureof the actual posterior;
this can be used to compute a geometric approximation of it, from which samples
can be drawn. This is the basic idea behind the appraising methodology developed
by Sambridge [1999].

The ensemble of models found during the search stage constitute an irregular
distribution of points in the model space. Around each of these points a nearest-
neighbor region can be calculated using a geometrical construct known as Voronoi
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cell. For any distribution of irregular points in any numberof dimensions, Voronoi
cells are unique, space-filling, convex polyedra, whose size and shape are automati-
cally adapted to the distribution of the point set. This implies that the size (volume)
of each cell is inversely proportional to the density of the points. A geometric ap-
proximation of the true posterior is then calculated setting the known value of the
posterior of each model to be constant inside its Voronoi cell.

A new ensemble of models generated according to the approximated posterior
is produced using a Gibbs sampler. A Gibbs sampler generate samples performing a
random walk in the model space. From a given starting point, the algorithm sequen-
tially performs a step along each parameter axis generatinga random deviate from
the conditional probability density function of the approximated posterior along the
considered direction. An iteration is completed when all dimensions have been cy-
cled through once, and a new model has been generated. After many iterations, the
random walk will generate models with a distribution that tends towards the target
distribution, that is the approximated posterior.

The practical applicability of this methodology is limitedby the memory and
computation time needed to perform this appraising step. The storageS required
by the algorithm is controlled by the number of models constituting the ensemble
Ne and the number of dimensions of the model spaceM :

S ∝ NeM (1.13)

Computation timeT is additionally dependent on the resampled ensembleNr, that
is by the set of models sampled from the approximated posterior:

T ∝ NrNeM (1.14)

As in the in the search stage, computational time can be greatly decreased distribut-
ing the resampling process on several processors.
For the synthetic test we present, the dimension of the modelspace isM = 38, the
number of models visited during the search isNe = 160100. The number of models
constituting the resampled ensemble isNr = 475000. The resulting computation
time (on a 20 CPUs Linux cluster) isT ∼ 1 day.

1.3 A synthetic test

To control uncertainties in data and in forward modeling we consider a synthetic
test. The kinematic rupture model we use as “true” model is shown in fig 1.1. We
represent the fault as a 32 km long and 12 km deep, vertically dipping, plane surface.
The fault’s upper edge is at 2.75 km depth. The rupture process is characterized by
a heterogeneous distribution of peak slip-velocity, whereas rake angle and rise time
are constant (0◦ degrees,0.8 s respectively). Peak slip-velocity values are defined
on a 4 by 4 km grid (nodes represented by black dots). The time evolution of the
rupture process is prescribed in terms of a circular front that propagates from the
hypocenter (12.5 km deep) with constant rupture velocity (Vr = 2.7 km/s).
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Figure 1.1: The “true” kinematic rupture model . Only the maximum slip-rate is heterogeneous.
Rake angle is everywhere zero (pure left-lateral strike slip event) and rise time is con-
stant,τr = 0.8 s. Rupture times are given by the arrival times of a circular rupture front
expanding from the hypocenter (white star) with constant rupture velocityVr = 2.7
km/s. The corresponding seismic moment isM0 = 1.28e19 Nm. Black dots represent
locations where peak slip-velocity values are defined. Dashed white rectangles delimit
the two main large-slip regions characterizing the slip distribution. In the article we will
refer to them as asperity 1 (the one on the left) and asperity 2(the one on the right).

The observational network we use for the inversion is depicted in fig 1.2. The
fault strikes at150◦, station locations and velocity model are adapted from the 2000
Western Tottori earthquake [Semmane et al., 2005]. All stations are located within
60 km from the epicenter.

We compute ground velocities using the frequency-domain representation the-
orem [Spudich & Archuleta, 1987]:

u̇m (y, ω) =

∫∫

Σ

ṡ (x, ω) · Tm (x, ω;y,0)dΣ (1.15)

whereu̇m is them component of ground velocity at the receiver locationy, ṡ is the
slip-velocity function,Tm is the traction exerted across the fault surfaceΣ at point
x generated by an impulsive force applied in themth direction at the receiver and
ω = 2πf is the angular frequency.

TractionsTm are computed, up to a frequency of 2 Hz, using a Discrete Wavenum-
ber / Finite Element method (Compsyn package, [Spudich & Xu, 2002]), for a 1D
flat layered Earth model without attenuation. A trapezoidal-rule quadrature of the
product ṡ · Tm is performed separately for each frequency, with the quadrature
points being the sample points whereTm have been computed. Peak slip-velocity
values at integration points are derived through bilinear interpolation of values of
surrounding grid nodes. The slip-velocity function is assumed to be an isosceles tri-
angle. With this parametrization, the maximum slip-rate corresponds to the hight of
the isosceles triangle and the rise time to the base length. Each computed synthetic
seismogram contains 4096 data points, from 0 to 40.95 s, witha time sampling of
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Figure 1.2: The observational network. 19 stations (gray triangles) are located near the fault strike
(black solid line) within 60 km from the epicenter (white star).

0.01 s.
We do not introduce any uncertainties in the forward modeling but we perturb

synthetic seismograms produced by the true model with Gaussian noise so that a
data covariance matrixCD can be computed. We assume noise statistics to be the
same for each waveform and without correlation between different stations and be-
tween different components of the same station. Thus, the covariance matrix for the
whole set of data reduces to a block diagonal matrix where each block matrix rep-
resent the covariance matrix for each single waveform. To compute the covariance
matrix we follow the approach of Gouveia & Scales [1998]. We treat each synthetic
seismogram produced by our true model as a “mean” seismogramsmean. We then
compute several realizations of noisy seismogramssnoise simply adding to the mean
seismogram a Gaussian time seriessgauss with zero mean and fixed standard devia-
tion (snoise = smean + sgauss). If N is the number of realizations, an estimate of the
covariance matrix for each waveform is given by:

ĈD =
1

N

N
∑

i=1

(snoise
i − smean)(snoise

i − smean)T =

s
gauss
i (sgauss

i )T (1.16)

from which we see that̂CD is the same for all inverted seismograms depending on
the Gaussian time series only. For our synthetic test we generate Gaussian time se-
ries with zero mean and standard deviation equal to 1 cm/s which are then filtered in
the frequency range 0.1-0.5 Hz. The resulting standard deviation of the noise is very



1.3 A SYNTHETIC TEST 23

−50 −40 −30 −20 −10 0 10 20 30 40 50
−4

−2

0

2

4

6

8
x 10

−5

Time (s)

C
ov

ar
ia

nc
e 

fu
nc

tio
n 

(c
m

/s
)

2

Figure 1.3: The noise covariance function. The correlation is almost zero after 10 s. This is con-
sistent with the fact that the covariance matrix has been estimated considering Gaussian
time series filtered in the frequency range [0.1 0.5] Hz, containing therefore periods
between 2 and 10 s.

small, about 0.01 cm/s. The corresponding signal-to-noiseratio (SNR) (calculated
as the ratio between the maximum value of the signal and the maximum value of
noise) varies depending on the waveforms. The minimum SNR observed is about
7. We performedN = 500 noise realizations and the resultinĝCD was smoothed
by replacing each element with the average of its diagonal. In fig 1.3 we show the
resulting noise covariance function (i.e. the cross diagonal terms). Note how the
filtering has introduced a certain level of correlation in the noise that almost disap-
pears after 10 s, consistent with the fact that noise below 0.1 Hz has been filtered
out.

We invert all components for all stations in order to retrieve peak slip-velocity
values at grid points, rupture velocity and rise time. Rake angle and hypocenter
location are fixed to their true values. We define peak slip-velocity values on the
same grid used for calculating the true seismograms. As we mentioned in section
1.2.1, for each model parameter the prior marginal is uniform, inside a predefined
range of values. Model parameter ranges are [0 600] cm/s for peak slip-velocity, [2
3] km/s for rupture velocity and [0.5 1.5] s for rise time. Thetotal number of model
parameter we invert for is therefore 38.

The fitness function used during the search is calculated as the reducedχ2
ν value

of the data fit, whereν is the number of degrees of freedom (number of data minus
number of parameters):

χ2
ν =

1

ν
(g(m) − dobs)TC−1

D (g(m) − dobs) (1.17)
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Equation 1.17 contains the inverse of the covariance matrixC−1
D . In our case each

waveform contains 4096 data points so that the covariance matrix for each wave-
forms is a4096 × 4096 matrix. As a first order approximation we consider, in the
calculation of the misfit, only the main diagonal (i.e. the variance of the noise).
From equation 1.17 we also see that the misfit value depends, throughdobs, on the
particular noise realization added to the “mean” seismograms. In this study we
present results obtained using a single data realization. Clearly a different data re-
alization would produce, for the same model, a different value of fit. However it is
beyond the scope of this paper to investigate the effect of different noise realizations
in the computed posterior.

1.4 Inversion results

1.4.1 The maximum likelihood model

As explained in section 1.2.2 the first step in our inversion consists of searching
the parameter space. After several trial inversions the evolutionary algorithm para-
meters have been fixed to the following values:µ = 100, λ = 4000. The standard
deviations for the mutation operator, for peak slip-velocity, rupture velocity and rise
time are, respectively:σAmax

= 10 cm/s,σVr
= 0.3 km/s andστr

= 0.3 s. We do
not expect these values to be optimal (in rendering the search the most efficient)
and as already stated in section 1.2.2, even if some guidelines are available trial and
error work is usually required to set these parameters.

In fig 1.4 we show the best fitness function value for each generation versus the
generation number. After about the 20th generation the misfit reaches an approx-
imately stationary level that lasts until the search is stopped. The total number of
models visited is 160100. On a 20-CPU Linux cluster the searchrequired about 1
day of computation time.

The first result of the search we may look at is the maximum likelihood model
(corresponding to the best fitting model in our problem, the one with the lowestχ2

ν

value). We show it in fig 1.5. Comparing with the true model (fig 1.1) we can see
that the general characteristics of the rupture process areretrieved. The locations
of the two slip patches are correctly imaged and also rupturevelocity and rise time
values are close to the true ones. These similarities produce also a corresponding
seismic moment near the true value. However, we can also see that even if the large
scale features are correctly imaged, the details are not, e.g. at the bottom of the fault
the peak slip-velocity is significantly over estimated. Despite these differences the
corresponding level of fit is visually very good (Fig 1.6 and 1.7). Numerically it
corresponds toχ2

ν ≃ 118. This high value (for uncorrelated noiseχ2
ν > 1 means

that predicted data are not able to reproduce, in average, the observed data whitin
the assumed standard deviation) is basically due to the verysmall uncertainties we
consider in measuring the data-fit (we recall that the standard deviation of noise is
∼ 0.01 cm/s).
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Figure 1.4: χ2

ν reduction during the search. The best fitness function valuefor each generation
versus generation number is shown. After about the 20th generation the misfit reaches
an approximately stationary level.

Figure 1.5: The maximum likelihood model (corresponding to the lowestχ2

ν value). The general
shape of the slip distribution is correctly retrieved and rupture velocity, rise time and
seismic moment values are close to the true ones. However themaximum slip-rate is
over estimated at the bottom of the fault.
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1.4.2 Uncertainties estimates

The need for estimating uncertainties comes from the fact that the maximum-likeliho-
od model is not the only model that produces a good level of fit to the data. In fig
1.8 we show peak-slip velocity distributions for 40 models,found during the search,
with aχ2

ν ≤ 1000. The visual analysis of the peak slip-velocity distributions shows
that all these models share some large scale features also present in the best-fitting
solution: low slip-rate at the top, right and left borders ofthe fault and near the
hypocenter; a major slip patch located between -20 and -10 kmalong strike; and a
second slip patch above the hypocenter. Despite this commoncharacteristics, the
details of each peak slip-velocity distribution varies from model to model. In fig
1.9 and 1.10 we show the level of fit produced by all these models. They all gen-
erate waveforms very similar to the observed ones. From thisexample it can be
seen that, within a certain level of fit, the inverted data cannot constrain a single
model but rather a set of models which are different one from another but share
some common properties. Quantifying and expressing these common properties is
the ultimate goal of the inversion.

Following the methodology described in section 1.2.2 we compute for each
model parameter its corresponding 1D posterior marginal probability density func-
tion. In fig 1.11 we show the posterior and the prior marginalsfor the peak slip-
velocity, together with the true value, for each grid node onthe fault surface. We
also plot the raw marginals computed from the ensemble of models generated by
the evolutionary algorithm. Each subplot corresponds to a node position. We indi-
cate node’s coordinates (along strike, along dip) in km, with respect to a reference
system centered at the epicenter and pointing toward southeast. The hypocenter is
at (0,12.5). For each posterior marginal we compute mean value (µ) and standard
deviation (σ). All marginals are normalized to unit area so that relativeinformation
can be compared.
Comparing raw and posterior marginals we see that they are in general different,

that is, they do not follow the same distribution. The raw marginals often present
a much better defined peak then the posterior suggesting therefore better resolu-
tion then the actual one (see for instance posteriors at (-20.75,2.5), (-16.75,2.5)).
This shows that the statistical properties of the ensemble of models produced by the
evolutionary algorithm do not represents the actual uncertainties affecting model
parameters.

We also notice that in general posteriors do not show a Gaussian shape (espe-
cially for those parameters for which the true value is closeto 0 or to the maximum
boundary value, like the posteriors at (-24.75,2.5) and (-12.75,10.5)). For these
cases, the standard characterization in terms of mean valueand standard deviation
is not really meaningful: the mean value would not correspond to the maximum
likelihood value and the standard deviation cannot be interpreted as a symmetric
error bar on the mean value. For these parameters we therefore cannot use the
Gaussian uncertainty hypothesis.

Without the support of the Gaussian assumption resolution on model parameters
can be better understood by looking at the difference between priors and posteriors.
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(a) (b)

(c) (d)

(e)

Figure 1.12: 1D posterior (black solid line) and prior (black dashed line) marginal probability den-
sity functions for rise time (a), rupture velocity (b), average peak slip-velocity on as-
perity 1 (c), and 2 (d), and seismic moment (e)
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At some fault locations a single well defined peak in the posterior can be identi-
fied (at the right and left sides of the fault surface, for instance), at some others
locations there is little difference with respect to the uniform prior (see posteriors
at (-20.75,2.5), (-16.75,2.5), (-20.75,10.5), (16.75, 10.5) for instance), suggesting
therefore poor resolution.

We can also see that at the lower edge of the fault (nodes at (-12.75,14.75), (-
8.75,14.75)) and at node (-0.75,10.75) the true value is located on the tail of the
computed marginal posterior. For these parameters the posterior seems to miss the
true value. A tentative explanation for these results can bethat for these parameters
the search algorithm did not reach the true values but got locked into a solution pre-
maturely. Assuming these parameters to be very poorly resolved (something that
we can expect for nodes located in the bottom part of the fault) the “fitness” land-
scape for those parameters will be something similar to a valley. If then the search
is stopped before exploring the entire valley and thereforewithout reaching the true
values, the reconstructed posterior will be incomplete andwill contain that valley
only partially. Therefore, even if the true posterior is constant for these parameters,
the approximated posterior will be peaked only around the best-fitting models found
during the search. This is important to bear in mind. The reconstructed posterior
reflects only what the search algorithm illuminated. This implies that the recon-
structed posterior may not completely reflect the true, data-determined posterior. A
similar behaviour can also be find in the results provided by Sambridge [1999]. In
the synthetic reciver function problem he considers, the marginal posterior for the
thickness of the bottom layer completely misses the true value (figure 7, pag. 738).

We present also the 1D marginals for rise time and rupture velocity (1.12 (a)
and (b)). Again, a well defined single peak of the raw marginals contrasts with a
smoother and broader a posteriori distribution. For these two parameters the pos-
teriors shows approximately a Gaussian shape so that they can be characterized in
terms of mean value and standard deviation. The mean rise time underestimates the
true value of about 0.1 s. The true rupture velocity is insideone standard deviation
(about 0.1 km/s) from the estimated mean rupture value.

Besides single model parameters, we can also analyze resolution on combina-
tion of model parameters. As we have noticed before often much more resolution is
achieved on the large scale features of the slip distribution rather then on the local
details. In fig 1.12 (c) and (d) we present 1D marginals for theaverage peak slip-
velocity on the two main asperity regions characterizing the true model (asperities
extensions are: 7 by 6 km for asperity 1 and 10 by 6 km for asperity 2). Here we
see that our a priori marginal is not uniform anymore becauseit represents informa-
tion on a combination of the original parameters. In both cases the true values are
correctly retrieved with a good resolution (standard deviations of the order of 50
cm/s, corresponding to relative error of14% ). Good resolution is achieved also for
the seismic moment (standard deviation equal to 2.44e18 Nm,relative error18%)
(fig 1.12 (e)).
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1.5 Reconstructing the posterior

Our resolution analysis derives from the reconstructed posterior computed from
the ensemble of models visited during the search stage. Thisimplies that our un-
certainty estimates depend on the way the search developed in the model space.
To further elucidate this point we perform three independent searches, with the
same settings for the evolutionary algorithm parameters, but with different seeds
for the random number generator. We carry out the searches for the same number
of generation. In fig 1.13 and 1.14 we show posterior marginals for all the original
parameters investigated in this study considering the three independent ensembles
produced. We can see some variability affecting especiallythe marginal probabil-
ity densities for local peak slip-velocity parameters, butthe general features of the
inverse solution are maintained. The variability we observe comes from the fact that
these three ensembles search the model space in different ways so that each of them
provides different approximation of the actual posterior.This is an inherent diffi-
culty because an exhaustive search is unfeasible and we are forced to explore the
parameter space only in a limited number of points. This is especially true for large
dimensional model spaces. Merging the set of models produced by independent
searches into one single ensemble can be a good strategy to increase the results’
stability. However one has to bear in mind that, for this kindof analysis, memory
requirement and computation time scale with the size of the ensemble (see eq 1.13
and 1.14).

1.6 Discussion

Accurate estimates of uncertainties are needed in order to asses the reliability of
the inverted solutions. As it has been pointed out by different authors (Cohee &
Beroza [1994]; Beresnev [2003]; Ide et al. [2005]) and is also represented in the
online database of earthquake rupture models (http://www.seismo.ethz.ch/srcmod),
for the same earthquake, acceptable fit to the data can be provided by different
rupture models. The discrepancies between models may be dueto the different
choices adopted during the inversion concerning the forward modeling, the model
parametrization, the inversion methodology, the type of data set and processing
used. However, independently of the particular approach, intrinsic reasons render
imaging the earthquake source a problem with multiple solutions: uncertainties in
data and in forward modeling (which allow multiple models tobe considered ac-
ceptable) and lack of resolution (due to the always limited data coverage). For a
linear or linearized inversion, these factors render the problem ill-conditioned and
ill-posed. For instance, Graves & Wald [2001], consideringa linear slip inversion,
explicitly showed that uncertainties in Green’s funtions increase ill-conditioness of
the problem, requiring increasing value of damping parameter (smoothing of slip in
their case) to stabilize the matrix inversion.

In the context of earthquake source inversions real waveforms are contaminated
with ambient noise and also by uncertainties in the alignment of the recording sen-
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(a) (b)

Figure 1.14: 1D posterior marginals (black solid lines) for rise time (a)and rupture velocity (b),
computed considering three independent ensembles.

sors. More important, in our opinion, are the uncertaintiesdue to approximations
in the forward modeling. Real waveforms often show complexities (due to source,
path and site effects) which the adopted modeling is not ableto explain. The best-
fitting model (the model which provides the best numerical fitto the data) is there-
fore not so meaningful because we do not know precisely to what extent the best-
fitting model is reproducing the modeled part of the data rather than the unmodeled
one. Providing the best-fitting model as an image of the earthquake source can be
therefore misleading. We suggest therefore that a better way to show results of an
earthquake source estimation is to provide multiple modelswhich are able to repro-
duce the data within a certain level of fit (determined by the accuracy of our data
and modeling). In such a way we can visually identify what arethe main features of
the inverted solutions whitout trying to draw conclusions from the unstable details.

Lack of resolution is another important factor to bear in mind. The fact that
linear inversions practically always require damping parameters implies the pres-
ence of a null space in the model space (or in other words of very close-to-zero
singular values). In physical terms what happens is that thedata we consider may
contain very little information about certain parameters we want to invert for. In our
methodology, which does not require any matrix inversion, we try to measure this
lack of resolution rather than reducing it through the addition of damping parame-
ters.

Considering a simple synthetic test, we point out that imaging the earthquake
source implies a process of extraction of information from aset of data (in our case
waveforms) which cannot be reduced to simply providing a best fitting model. Ef-
forts should be put in estimating resolution on inverted parameters. Multiple rupture
models may in fact produce very similar waveforms. We want tostress that uncer-
tainty analysis should be carried out using an appropriate theoretical framework in
order to get meaningful results. We have shown how the use of an optimization
algorithm to estimate uncertainties is not suitable. We suggest that a Bayesian ap-
proach instead provides a possible way to face this problem.
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The main consequence in using this approach is that our knowledge of the earth-
quake rupture process, as derived by the fitting of some kind of data, can be only
probabilistic. In other words, available data and theoretical knowledge do not allow
us to identify a single model but rather a set of models which share certain statistical
properties. Identifying and quantifying these statistical properties should be the real
aim of any inversion.

We used this approach considering only strong motion data. Clearly, this method-
ology can be applied also to investigate resolution on modelparameters considering
different data sets (teleseismic data, geodetic data) which all togheter can improve
the quality of our inferences. Wald & Graves [2001] showed, for a linear slip inver-
sion, that adding geodetic data to seismic data has a significant contribution. They
found that features imaged by inversion of individual data sets alone may not be
recognized when using combined data.

1.7 Conclusions

In this paper we address the problem of inferring kinematic earthquake rupture pa-
rameters following a Bayesian approach. Imaging the earthquake source is seen
as a problem of combination of information: a priori information (available before
the inversion) and information contained in the data. This combination gives the
posterior state of information, represented by a probability density function over
the model space. We compute the posterior using a two step procedure. First we
explore the model space through an evolutionary algorithm.The search of the para-
meter space reveals that within the same level of fit the observed waveforms can be
reproduced by multiple models. All of them, though being different one from an-
other, share some similarities. Quantifying and expressing these similarities is the
aim of the second step. We use the ensemble of models found during the search to
compute a geometric approximation of the true posterior andwe use it to compute
marginal probability density functions for each model parameter. Each marginal
represents the combination of the prior information with the information that we
have been able to extract from the data. From each marginal wecan derive uncer-
tainty estimates.

We point out how this second step of the procedure is particularly important in
order to correctly compute resolution on inverted parameters. The search algorithm
alone, though being effective in finding good data fitting models, does not provide
direct information about uncertainties. Misleading results can be obtained if simple
statistical analysis of the ensemble of models is used to estimate resolution. We also
point out how the information content on the inverted parameters cannot be always
represented in terms of Gaussian probability density functions. We show explicitly
how for some parameters the posterior marginal does not follow a Gaussian shape:
for these parameters the standard characterization in terms of mean value and stan-
dard deviation is not meaningful. The fact that Gaussian uncertainty hypothesis is
not valid for non-linear problems is widely known but still current non-linear source
estimations adopt this approximation. We also point out howestimating resolution



1.7 CONCLUSIONS 39

can be limited by our ability in reconstructing the true structure of the posterior.
This is an intrinsic difficulty due to the fact that exhaustive search is unfeasible
and that we are always forced to explore the model space on a limited number of
points. The consequence is that uncertainties estimates will be always subject to a
certain amount of variability which decreases as the exploration of the model space
becomes more and more extensive.
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Abstract

We image the rupture process of the 2000 Western Tottori earthquake (Mw=6.6)
through fitting of strong motion and GPS data. We consider an observational net-
work of 18 strong motion and 16 GPS stations located within three fault lengths
from the epicentre. We assume a planar fault and compute Green’s functions for
a 1D velocity model. The earthquake rupture is described as ashear dislocation
parameterised in terms of peak slip-velocity, rake angle, rupture time and rise time,
defined on a regular grid of nodes on the fault surface and derived at inner points
through bilinear interpolation.
Our inversion procedure is based on a Bayesian approach. The solution of the in-
verse problem is stated in terms of aposterior probability density function (pdf)
representing the conjunction ofprior information with information contained in the
data and in the physical law relating model parameters with data. Inferences on
model parameters are thus expressed in terms of posterior marginal pdfs. Due to
the non-linearity of the problem we use a Markov Chain Monte Carlo (MCMC)
method based on the Metropolis algorithm to compute posterior marginals.
Except for a few cases posterior marginals do not show a Gaussian-like distribution.
This prevents us from providing a mean model and from characterizing uncertain-
ties in terms of standard deviations only. Resolution on eachsingle parameter is
analyzed by looking at the difference between prior and posterior marginal pdfs.
Posterior marginals indicate that the best resolved feature is a major slip patch (peak
value of311±140 cm) located between the hypocentre and the top edge of the fault,
centered at a depth of 4.5 km. This shallow slip patch is triggered about 3 s after
the earthquake nucleated and required about 4 s to reach its final slip value. The
presence of this shallow slip patch is common to all previousstudies. In contrast to
some previous studies we do not identify any significant slip(> 1 m) at the bottom
of the fault.
We also compare inferences from both strong motion and GPS data with inferences
derived from strong motion data only. In both cases the shallow slip patch is iden-
tified. At other locations, the main effect of the GPS data is in reducing the proba-
bility associated with high values of slip. GPS data reduce the presence of spurious
fault slip and therefore strongly influence the resulting final seismic moment.

2.1 Introduction

TheMw=6.6 Tottori earthquake struck southwestern Japan on 6 October 2000, at
04:30:17.75 UTC. The hypocentre was located at 35.275◦N, 133.350◦E at a depth
of 9.6 km [Fukuyama et al., 2003]. The best-fitting double-couple focal mechanism
estimated by Fukuyama et al. [2003] indicates an almost pureleft-lateral strike-slip
event with a strike angle of 150◦ and a dip of 85◦ (Fig 2.1). No clear surface rupture
was observed near the epicentre although some cracks oriented parallel to the esti-
mated fault were found on a paved road [Umeda, 2002]. Systematic displacement
of 10-20 cm was also found in a concrete lining, in a tunnel 200m below the surface
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Figure 2.1: Location and focal mechanism for the 2000 Western Tottori earthquake [Fukuyama
et al., 2003].

near the source region.
To reveal the details of the earthquake rupture process a number of studies de-

rived kinematic images. Using a linearized frequency-domain method and an initial
slip model obtained through GPS data inversion, Semmane et al. [2005] inverted
strong motion data to infer values of slip amplitude, rupture time and rise time.
They proposed different rupture models that all show a majorslip patch located
near the top edge of the fault (elongated towards southeast). Using strong motion
data only and a backprojection method, Festa & Zollo [2006] inferred two ma-
jor slip patches: one located above the hypocentre, close tothe surface, extending
southwards to the bottom of the fault; a second one located north of the hypocentre
at depths between 10 and 18 km. Fitting simultaneously strong motion and GPS
data and using a direct search method based on a simulated annealing algorithm,
Piatanesi et al. [2007] estimated peak slip-velocity, risetime, rupture time and rake
angle. They confirm the presence of a major slip patch betweenthe hypocentre and
the surface, but also identify an additional slip patch (2-2.5 m) located at the bottom
of the fault.

A dynamic model of the rupture process has also been derived for the Tottori
earthquake. Assuming constant upper yield stress and uniform slip-weakening dis-
tance, and using a direct search method based on the neighbourhood algorithm,
Peyrat & Olsen [2004] inferred the distribution of stress drop over the fault surface
by fitting strong motion data. The resulting slip pattern again shows that most of
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the slip is concentrated in the uppermost part of the fault.
All these proposed images are similar in their general features: They all show a

high slip patch near the surface. However, the presence of slip at the bottom of the
fault is ambiguous: it has been recognized by Festa & Zollo [2006] and Piatanesi
et al. [2007], but not by Semmane et al. [2005]. Also the Peyrat & Olsen [2004]
model does not require any slip at depth to fit the data, even though they consider
a fault with a smaller depth extent compared to the ones used to obtain kinematic
images.

One more aspect that has been investigated by both Semmane etal. [2005] and
Piatanesi et al. [2007] is the rise time distribution on the fault surface. The model by
Semmane et al. [2005] shows a highly heterogeneous pattern of rise time values that
vary mostly between 0.5 and 2 s. Piatanesi et al. [2007]’s model shows a distribu-
tion that is instead more homogeneous (probably due to a coarser grid discretization
and because they present a mean model) with rise time values varying mostly be-
tween 2.5 and 3.5 s. Clearly, these discrepancies can partially be due to the different
approaches and parametrizations. However, no common features can be identified
between the rise time distributions presented in these two studies, highlighting the
intrinsic difficulty in imaging rise time in finite source inversions.

The Tottori earthquake is one of several examples where multiple rupture mod-
els have been proposed to explain the observed data. All models are similar in some
aspects but their obvious differences require a better understanding of where this
variability comes from. Are these discrepancies in the source images only due to
different approaches and modeling assumptions or do they reveal some more fun-
damental lack of resolution?

Rupture-parameter estimates depend on how the inverse problem is stated, a
well-known fact since the initial works of Olson & Apsel [1982] and Hartzell &
Heaton [1983] who showed that results of linear slip inversions depend on the sta-
bilization constraints and the data-set used. More recently, considering the 2004
Parkfield earthquake, Custodio et al. [2005] analyzed how kinematic rupture pa-
rameters depend on the chosen data-set, while Hartzell et al. [2007] showed how
source-inversion results may depend on the definition of themisfit function, the
bounds on model parameters, and the size of the model fault plane.

However, once a model parametrization, an inversion methodand a data-set are
chosen, uncertainties on model parameters are determined by errors in data, model-
ing, and finite data coverage. All these factors influence thetopology of the misfit
function and therefore its minimum. Every minimum is characterized by a certain
local topology which determines the uncertainties on the corresponding model pa-
rameters. This is evident for the linear least-square problem where the covariance
matrix for model parameters is proportional to the inverse of the 2nd derivative of
the misfit function at the minimum [Menke, 1989]: The sharperthe minimum, the
smaller the uncertainties. In case of non-linear problems the minimization problem
may even have multiple solutions because the misfit functionmay have multiple (or
degenerate) minima.

To estimate these uncertainties some methods have been proposed. Emolo &
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Zollo [2005] used a genetic algorithm to search the model space and estimated res-
olution on the best-fitting model by defining a Gaussian probability density function
centered around it. For each model parameter they derived a marginal probability
density function by computing the objective function in theneighbourhood of the
best-fitting model varying the parameter of interest but keeping all the remaining
parameters fixed to their best-fitting values. With this approch the posterior prob-
ability density function is forced to be Gaussian around thebest-fitting model and,
more importantly, the computed marginals do not take into account the correlation
between different model parameters. Peyrat & Olsen [2004],Corish et al. [2007]
and Piatanesi et al. [2007] derived uncertainty estimates by statistically analyzing
models generated by the optimization algorithm minimizingthe misfit. The main
drawback of this approach is that the statistical properties of a set of models, pro-
duced by optimization, do not necessarily represents the actual uncertainties (Sam-
bridge [1999], Monelli & Mai [2008]), but rather the tuning parameters and the
operators adopted by the algorithm.

The aim of this paper is to investigate the rupture process ofthe Tottori earth-
quake focusing on determining resolution on model parameters using a Bayesian
approach (Mosegaard & Tarantola [1995], Tarantola [2005]). A Bayesian approach
allows one to estimate uncertainties taking into account the non-linearity of the
problem. It requires defining a posterior probability density function (pdf) on the
model space representing the conjunction of our prior information with informa-
tion contained in the data (strong motion and GPS data in thiscase), and in the
physical law relating model parameters with data. Inferences on model parameters
are then expressed in terms of posterior marginal pdfs. Due to the non-linearity and
large-dimensionality of the problem, we use a Markov Chain Monte Carlo (MCMC)
method based on the Metropolis algorithm to compute posterior marginals. Resolu-
tion on each model parameter is analyzed by looking at the difference between the
corresponding prior and posterior pdfs. With this approachwe can identify which
regions of the fault surface are better illuminated by the data and which features of
the rupture process can be considered well resolved.

2.2 The observational network

The observational network we use consists of 18 strong motion and 16 GPS stations
located within about 90 km from the epicentre (Fig 2.2). Among the strong motion
stations, we use 11 K-net stations and 7 KiK-net borehole stations (SMNH01 and
SMNH02 at 101 m depth, TTRH04 at 207 m depth, OKYH07, OKYH08, OKYH09,
OKYH14 at 100 m depth).

The strong motion data (available at http://www.kik.bosai.go.jp/) come as raw
accelerations with absolute time. We band-pass filter the waveforms in the fre-
quency range 0.1-1 Hz using a1st order band-pass Butterworth filter applied both in
the forward and reverse directions to preserve phase. We then integrate the filtered
waveforms to obtain ground velocities which we resample to asampling interval
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Table 2.1: Seismic velocity and density model for the Tottori region [Fukuyama et al., 2003].

Depth (km) Vp (km/s) Vs (km/s) ρ (g/cm3)
0.0 3.00 1.73 2.3
1.0 4.00 2.31 2.5
3.0 6.00 3.46 2.7
30.0 8.00 4.62 2.9

of 0.015 s. The horizontal components of station OKYH14 havebeen also rotated
by 76◦ anticlockwise to correct for sensor misalignment. Each waveform lasts for
61.425 s and contains 4096 data points. Considering all components at all stations,
the total number of waveform data points is therefore 221184.

The GPS stations belong to the GEONET array operated by the Geographical
Survey Institute of Japan [Sagiya, 2004]. At each station, we define the coseismic
static offset as the difference between the mean values of daily positions during
the five days before and the five days after the earthquake. We also compute the
corresponding standard deviations that we then propagate to compute the error on
the final static displacement. For each station we consider both the two horizontal
components and the vertical component, resulting in a totalnumber of GPS data
points of 48.

2.3 The forward modeling

We adopt a 1D piecewise-linear velocity- density-depth distribution based on the
velocity model used by Fukuyama et al. [2003] for the mainshock location (Table
2.1). S-wave velocities are assumed to be1/

√
3 of the P-wave speed. Density val-

ues are deduced from P-wave velocities using the Gardner’s relationship [Gardner
et al., 1974].

We represent the fault as a 40 km long and 20 km deep, vertically dipping,
plane surface with a strike of150◦. The same strike and dip has been used by Peyrat
& Olsen [2004], Festa & Zollo [2006] and Piatanesi et al. [2007]. The fault’s upper
edge is at 0.5 km depth, because coseismic surface rupture was essentialy absent.
On the fault surface we define a regular grid of nodes with a spacing of 4 km along
strike and along dip. The total number of nodes on the fault istherefore 66. At each
node we define four parameters: peak slip velocity, rise time, rupture time and rake
angle.

We compute ground velocities using the frequency-domain representation theo-
rem [Spudich & Archuleta, 1987]:

u̇m (y, ω) =

∫∫

Σ

ṡ (x, ω) · Tm (x, ω;y,0)dΣ (2.1)
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whereu̇m is themth component of ground velocity at the receiver locationy, ṡ is
the slip-velocity function,Tm is the traction exerted across the fault surfaceΣ at
pointx generated by an impulsive force applied in themth direction at the receiver
(ω = 2πf : angular frequency). TractionsTm are computed, up to a frequency of
1 Hz, using a Discrete Wavenumber / Finite Element method [Compsyn package,
[Spudich & Xu, 2002]], for a 1D flat layered Earth model without attenuation. A
trapezoidal-rule quadrature of the productṡ · Tm is performed separately for each
frequency, with the quadrature points being the sample points whereTm have been
computed. Rupture-parameter values at integration points are derived through bilin-
ear interpolation of values at surrounding grid nodes, similar to the approach taken
by Liu & Archuleta [2004] and Piatanesi et al. [2007].

In this study we assume the slip-velocity function to be an isosceles triangle.
With this parametrization the peak-slip velocity corresponds to the height of the
triangle and the rise time to the base length. Rupture time corresponds to the first
point of the base segment. With this parametrization rise time and rupture time are
non-linearly related to ground velocity. Previous studiesused different parametriza-
tions, like a smooth ramp [Semmane et al., 2005] or a box-car function [Piatanesi
et al., 2007].

Following Eq 2.1, we convolve tractions with the assumed slip-velocity func-
tion to compute ground velocity at the strong motion stationlocations. We compute
GPS data predictions by integrating ground velocities to ground displacements and
then selecting the final static offsets.

2.4 The Bayesian approach

In a Bayesian approach, inferences on model parameters (e.g.mean values, standard
deviations, 1D/2D marginals) are derived from a posterior pdf defined on the model
space. In section 2.4.1 we introduce the general equations defining the posterior pdf.
We then apply these equations to our specific case, defining two different posteriors:
one considering strong motion data only, and one considering both strong motion
and GPS data. Our aim is to compare inferences from these two posteriors and
analyze how GPS data influence the results. In section 2.4.2 we define the model
space. We pay special attention to defining a physically consistent model space
to avoid considering unrealistic models. Finally, we present the numerical scheme
used to derive inferences on the model parameters (section 2.4.3).

2.4.1 The posterior pdf

We assume theM -dimensional model space andD-dimensional data space,M and
D respectively, to be linear spaces. The prior probability density functions on model
parameters and data are indicated withρM(m) andρD(d), respectively.θ(d|m)
denotes the conditional probability density representingthe correlation betweend
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andm. The posterior pdf on the model space is given by [Tarantola,2005]:

σM(m) = kρM(m)L(m) (2.2)

wherek is a normalization constant andL(m) is the likelihood function:

L(m) =

∫

D

dd ρD(d)θ(d|m) (2.3)

which gives a measure of how well a modelm explains the data.
In this study we assume that our prior knowledge consists only of the informa-

tion that each model parameter is strictly bounded by two valuesmα
min andmα

max,
whereα ∈ IM , IM = {1, ...,M}. We then write the prior pdf as:

ρ(m) =
∏

αM∈IM

ρα(mα) (2.4)

where

ρα(mα) =

{ 1
mα

max−mα

min

for mα
min ≤ mα ≤ mα

max

0 otherwise

is the prior marginal for each model parameter (i.e. a uniform probability density
function [Monelli & Mai, 2008]).

The common approach to define the likelihood function requires deriving a data
covariance matrix for data uncertainties, and a modeling covariance matrix for un-
certainties in the forward modeling. Assuming Gaussian uncertainties the likeli-
hood function takes a Gaussian functional form where the associated covariance
matrix is the sum of the data and modeling covariance matrices (Gouveia & Scales
[1998], Tarantola [2005]).

Because we consider two different data sets (strong motion and GPS data) we
define two distinct likelihood functions. For the strong motion data we do not have
a complete estimate of the associated uncertainties. Strong motion data represent a
single measurement of the ground motion produced by an earthquake, and we there-
fore have a single realization of the data errors. A possibleapproach to still derive
a data covariance matrix would be to analyze the portion before the P-wave arrival
of each trace and to assume this portion to be representativeof the seismic noise.
More problematic is to derive the modeling covariance matrix, which would require
knowing the uncertainties in the velocity and fault models (unknown in our case)
and then propagating them into the Green’s functions used tocompute the predicted
ground motion.

Due to the difficulty of deriving a realistic covariance matrix for strong motion
data, we propose an alternative approach. First, we assume a“perfect instrument”
condition [Tarantola, 2005]. This assumption is valid if data uncertainties are negli-
gible compared to modeling uncertainties. We propose this approach for the strong
motion waveforms considered in this study, for which we find high signal-to-noise
ratios thanks to the vicinity of the recording stations withrespect to the source and
the magnitude of the event. This assumption translates intothe following condition:

ρsm
D (d) = δ(d − dobs) (2.5)
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whereρsm
D (d) represents prior knowledge on strong motion data anddobs represents

the observed data.
We define now the correlationθ(d|m) between data and model parameters. Due

to our lack of knowledge of the amplitude and type of uncertainites affecting our
modeling we cannot deriveθ(d|m) from a formal theory. We therefore propose an
empirical formulation. Using an optimization algorithm weexamine which model
produces the best fit given the observed data. We then use thisinformation to define
a correlation function that assigns to each modelm a correlation value that depends
on how well it fits the data with respect to the level of fit produced by the best-
fitting model. Models producing a level of fit close to the one of the best fitting
models should then have a higher value of correlation than models producing a
worse level of fit. Indicating withφ(d,m) the percentage difference between the
misfit produced by a modelm and the misfit produced by the best-fitting model
mbest (which depends on the datad), we obtain:

φ(d,m) =
S(m) − S(mbest(d))

S(mbest(d))
· 100 (2.6)

whereS indicates the misfit function used, andmbest(d) represents the best-fitting
model given datad. We define the correlation between (strong motion) data and
model parameter as:

θsm(d|m) =

{

c ,∀m∈M :φ(d,m)<0
c exp[−φ(d,m)],∀m∈M :φ(d,m)≥0

(2.7)

where c is a normalization constant. Equation 2.7 predicts that for all models pro-
ducing a lower misit value then the best-fitting model the correlation assumes its
maximum value. This condition accounts for the possibilitythat the best-fitting
model found during the optimization process may not correspond to the absolute
misfit minimum. For all other models the value of the correlation decreases expo-
nentially depending on the percentage difference between the generated misfit and
the minimum misfit associated with the best-fitting model. Inwriting eq 2.7 we
follow the analogy with a Gaussian correlation function. When assuming Gaussian
modeling uncertainties , the correlation functionθ(d|m) assumes an exponential
functional form where the argument is theL2 norm of the data misfit weighted by
the modeling covariance matrix. In our study we keep the exponential functional
form, but we substitute the argument with eq 2.6. Inserting equations 2.5 and 2.7
into equation 2.3, the integration yields:

Lsm(m)=

{

c ,∀m∈M :φ(dobs,m)<0
c exp[−φ(dobs,m)],∀m∈M :φ(dobs,m)≥0

(2.8)

whereLsm(m) represents the likelihood function for strong motion data.
For GPS data we define a data covariance matrix. As described in section 2.2,

we define the observed static offset as the difference between the mean values of
daily positions during the five days before and after the earthquake. By comput-
ing the corresponding standard deviations we can deduce thestandard deviation on
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the final static displacement. Assuming uncorrelated uncertainties we then define a
covariance matrix for GPS data which is a diagonal matrix of data variances. As-
suming Gaussian uncertainties the prior pdf on (GPS) data is:

ρgps
D (d) = C exp

[

−1

2
(d − dobs)TC−1

d,gps(d − dobs)

]

(2.9)

whereC is a normalization constant andCd,gps is the data covariance matrix for
GPS data.

As for the strong motion data, the modeling covariance matrix for uncertainties
in the predicted GPS displacement requires knowing the uncertainties in the velocity
and fault models. However GPS data, measuring a static offset, reflect the zero
frequency component of the wavefield which is less sensitiveto complexities in the
velocity model. Also, GPS data seems to be well explained even using a simple
planar fault [Piatanesi et al., 2007]. We hence assume for GPS data to have neglible
uncertainties in the forward modeling. This assumption translates into the following
condition:

θgps(d|m) = δ(d − g(m)) (2.10)

whereg(m) is the forward modeling operator. Inserting equations 2.9 and 2.10 into
equation 2.3, the result of the integration is:

Lgps(m)=Cexp

[

−1

2
rTC−1

d,gpsr

]

(2.11)

whereLgps(m) represents the likelihood function for GPS data andr = g(m) −
dobs.

Considering equation 1.1 we can define a posterior pdf representing the con-
junction of our prior information with information contained in strong motion data:

σsm
M (m) = kρM(m)Lsm(m). (2.12)

Equation 2.12 can then be used as prior information to define anew posterior pdf
for the model parameters, which also considers the GPS data:

σsm,gps
M (m) = kρM(m)Lsm(m)Lgps(m). (2.13)

2.4.2 The model space

The posterior pdf is defined over the model space. Inferenceson model parame-
ters are therefore dependent on the chosen model space. A correct definition of the
model space is of vital importance to avoid testing unrealistic models that make the
inference process inefficent. We thus pay special attentionto defining a physically
consistent model space.

In our inversion we assume the peak slip-velocity (and therefore the slip) to be
zero at the fault edges. Non-zero slip at the fault boundaries would constitute a
discontinuity in slip that lead to unrealistically high values of stress change at the
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edges. This condition is assumed to be valid also for the top edge of the fault,
because no surface rupture was reported for the Tottori earthquake. For the inner
nodes the peak slip-velocity is allowed to vary between 0 and400 cm/s. With these
conditions we generate peak slip-velocity distributions with non-zero values only
inside the fault and tapered to zero at the edges.

The moment tensor solution for the Tottori earthquake indicates an almost pure
left-lateral strike slip event [Fukuyama et al., 2003]: nevertheless we allow the rake
angle to vary between -30◦ to +30◦ degrees at each node. Positive angles indicate a
down-dip component whereas negative angles an up-dip component.

The range of rupture times at each grid node is defined as the time interval be-
tween the arrival times of two circular rupture fronts propagating from the hypocen-
tre (at 9.6 km depth) at two limiting rupture velocities: 1.5km/s and 4 km/s.

The range of possible values for rise time has been chosen according to the fre-
quency band used in the inversion. Having band-pass filteredthe waveforms in the
frequency band 0.1-1 Hz we consider as minimum and maximum values for rise
time 1 and 10 s respectively. However, from dynamic rupture simulations (Day
[1982], Madariaga et al. [1998]) it is known that when a rupture front reaches the
unbreakable boundaries of a fault it generates stopping phases that propagate in-
wardly and heal the slip process as they spread over the fault. As a consequence the
duration of slip at fault locations is influenced by the stopping phases emitted from
the edges of the fault. In our case the hypocentre is located approximately in the
center of the assumed fault plane; we may therefore expect that the inner portion of
the fault will start slipping earlier and will be reached by the stopping phases, later
than regions near the borders of the fault. For this reason, the minimum allowed
rise time is assumed to be 1 s for each node, while the maximum allowed rise time
is assumed to decrease from the maximum value (10 s) according to the following
equation:

τmax,n
r = τmin

r + (τmax
r − τmin

r )(1 −
dn

hyp

dn
hyp + dn

bound

) (2.14)

whereτmax,n
r is the maximum rise time at the noden, τmin

r andτmax
r are the min-

imum and maximum rise time values allowed by the considered frequency range,
dn

hyp is the distance of the noden from the hypocentre, anddn
bound is the minimum

distance of the noden from the boundaries of the fault. This equation predicts that
the maximum allowed rise time is equal to 10 s only for a node atthe hypocentre
(dn

hyp = 0) and that for all the nodes on the boundaries (dn
bound = 0) the maximum

rise time corresponds to the minimum allowed rise time. For all remaining nodes
the maximum rise time decreases as their distance from the boundary decreases
(Fig 2.3). For the nodes having the same minimum distance (e.g. nodes 14, 15,
16, 17) the maximum allowed rise time decreases with increasing distance from the
hypocentre. Eq 2.14 only predicts the maximum allowed rise time at each node
and expresses the fact that long rise times are not expected near the borders of the
fault simply because stopping phases are expected to reducethe duration of the slip
process in these locations. The minimum rise time is everywhere 1 s. Between
the minimum and maximum allowed rise time values the prior pdf assumes uni-
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Figure 2.3: The maximum allowed rise time (s) on the fault surface. Numbered labels indicate node
locations. The white star represents the hypocentre location.

form probability at each node. In other words, a crack-like rupture behaviour or a
pulse-like propagation are assumed to be equally likely.

2.4.3 Sampling the posterior pdf

Once the posterior pdf and the model space are defined, information on each model
parametermα can be quantified by computing the corresponding 1D marginalpos-
terior pdf:

M(mα) =

∫

...

∫

σM(m)
M
∏

k=1
k 6=α

dmk (2.15)

Eq 2.15 involves computing the integral of the posterior pdfover all dimensions of
the model space except the one corresponding to the parameter of interest. Due to
the large dimensionality of the problem (204 model parameters) Eq 2.15 can be es-
timated only using Monte Carlo methods that generate modelsm as samples of the
posterior pdfσM(m). Once a large ensemble of such samples has been generated
the 1D marginal of each parameter can be approximated by the histogram of the
corresponding sampled values.

Among the different possible sampling algorithms (for a review see Taran-
tola [2005]), we use a Markov Chain Monte Carlo (MCMC) method based on the
Metropolis algorithm (Martinez & Martinez [2002], Tarantola [2005]). A Markov
chain is a sequence of random variablesm1,m2, ...,mt, such that the next value
or state of the sequencemt+1 depends only on the previous onemt. An MCMC
method based on the Metropolis algorithm generates a Markovchain where the state
of the chain att + 1 is obtained by sampling acandidate point m̃ from a symmetric
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Figure 2.4: Misfit reduction during the search. After about the 40th generation the level of fit
reaches an approximately stationary level.

proposal distributionq(.|mt). An example of a distribution like this is the normal
distribution with meanmt and fixed covariance. In order to generate variables that
are samples of a given pdfP , the candidate point is accepted as the next state of the
chain with a probability given by:

α(mt, m̃) = min

{

1,
P (m̃)

P (mt)

}

. (2.16)

This means that ifP (m̃) ≥ P (mt), that is if the proposed model corresponds to
an higher value of the target pdf, the move is always acceptedbecauseα(mt, m̃)
will be equal to one. In the opposite case, if the move produces a lower value of the
target pdf the proposed model is accepted with probability given by P (m̃)

P (mt)
. If the

pointm̃ is not accepted, then the chain does not progress andmt+1 = mt.
Our aim is to generate models that are samples of the posterior pdf. In our case

the posterior pdf is given by the product of several pdfs (in case ofσsm,gps
M (m), the

prior and the likelihoods for strong motion and GPS data). Using a general notation
we write:

σM(m) = kP1(m)P2(m)P3(m). (2.17)

To generate samples according to the posterior defined in equation 2.17 we use the
Cascaded Metropolis algorithm [Tarantola, 2005]. We start by defining a random
walk that generates samples according to the first pdf. At a given step the random
walker is at pointmt (which is a sample ofP1). Using a proposal distribution we
generate a model̃m. We accept the new model as a next step of the random walk
according to the following rules:
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(a) if P2(m̃) ≥ P2(mt), then go to step (c).

(b) if P2(m̃) < P2(mt), then decide randomly to go to step (c) or to reject the pro-
posed model with a probability to go to step (c) given byα = P2(m̃)/P2(mt).

(c) if P3(m̃) ≥ P3(mt), then accept the new model.

(d) if P3(m̃) < P3(mt), then decide randomly to accept a new model or to stay at
mt with a probability to accept the new model given byα = P3(m̃)/P3(mt).

2.5 Results

In section 2.4.1 we defined the posterior pdfsσsm
M (m) (Eq 2.12), for strong mo-

tion data, andσsm,gps
M (m) (Eq 2.13), for both strong motion and GPS data. We

now present the corresponding estimated maximum likelihood models, and com-
pare their predictions with the observed data (section 2.5.1). Then we compute the
corresponding 1D marginals and analyze how GPS data change inference results
(section 2.5.2). In section 2.5.3 we finally compute 2D marginals for a number of
model parameters and investigate possible correlations.

2.5.1 The maximum likelihood models

The maximum likelihood model forσsm
M (m) corresponds to the model maximizing

the likelihood functionLsm(m). By definition (equations 2.6 and 2.7) the maxi-
mum is attained in correspondence with the best-fitting model. Given a modelm
we measure the level of fit with strong motion data using a L2 norm of the mis-
fit between observed and predicted waveforms in the time domain. We explore the
model space to identify the best-fitting model using a directsearch method based on
an evolutionary algorithm (Beyer [2001], Monelli & Mai [2008]). An evolutionary
algorithm is a population-based stochastic optimization method. According to this
algorithm the search of the model space starts with generating an initial set of mod-
els which is obtained through a uniform random sampling of the model space. This
initial population then evolves through the subsequent application of both stochastic
and deterministic operators. Goal of these operators is to generate a new population
of models that hopefully show better properties (i.e. lowermisfit values). The cre-
ation of a new population is referred as a new generation.

We consider an initial population of 100 models from which weproduce at each
generation 2000 new models. The search lasts for 100 generations, and the total
number of models produced is therefore 200100. The best objective function value
for each generation versus the generation number is shown inFig 2.4. We can see
that after the 40th generation the level of fit reaches an approximately stationary
level. The best-fitting model (generating the lowest misfit function value) is shown
in figure 2.5.
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Peak slip-velocity

(a)

Rise time

(b)

Final slip with rupture time contour lines

(c)

Figure 2.5: Peak slip velocity vector (cm/s) (a), rise time (s) (b) and final slip (cm) (c) distributions
(with rupture time contour lines every 1 s) of the maximum likelihood models forσsm

M .
The grid indicates the subfault discretization. The white star represents the hypocentre
location.
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Peak slip-velocity

(a)

Rise time

(b)

Final slip with rupture time contour lines

(c)

Figure 2.6: Peak slip velocity vector (cm/s) (a), rise time (s) (b) and final slip (cm) (c) distribu-
tions (with rupture time contour lines every 1 s) of the maximum likelihood models for
σsm,gps

M . The grid indicates the subfault discretization. The whitestar represents the
hypocentre location.
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The maximum likelihood model forσsm,gps
M (Fig 2.6) corresponds to the model

minimizing the sum of the exponents of the two likelihood functions,Lsm(m) and
Lgps(m). We identify it among the models visited during the samplingprocess
which we describe in detail in section 2.5.2.

Comparing the two rupture models we can see that both of them present sev-
eral high slip-velocity patches. In both cases we can identify a high slip-velocity
patch between the hypocentre and the top edge of the fault (at4.5 km depth). The
maximum-likelihood model forσsm

M presents significant peak slip-velocity SE of
the hypocentre, which is not observed in the maximum-likelihood model forσsm,gps

M .
The latter presents also a low peak slip-velocity region NW of the hypocentre which
is also visible, but less extensive, in the maximum likelihood model forσsm

M .
In both cases, the rise time pattern shows higher values nearthe hypocentre and

lower values near the borders, following approximately thepattern of the maximum
allowed rise time.

In comparing the final slip distributions, we notice in both cases a high slip
patch (maximum value about 4 m) between the hypocentre and the top edge of
the fault, with an elongation of the slip distribution towards SE. The major dif-
ference concerns the presence of deep slip. The maximum-likelihood model for
σsm,gps

M presents little slip at the bottom of the fault, especially in the NW, while the
maximum-likelihood model forσsm

M contains instead more deep slip.
The seismic moments of the maximum-likelihood models forσsm

M andσsm,gps
M

are1.9× 1019 Nm and1.6× 1019 Nm, respectively. Semmane et al. [2005] inferred
values of seismic moment between1.5 − 1.7 × 1019 Nm, Festa & Zollo [2006]
2.6 × 1019 Nm and Piatanesi et al. [2007]1.7 × 1019 Nm.

In Fig 2.7 and 2.8 we show the level of fit produced by both models with the
observed strong motion data. For some components both models reproduce the po-
larity of the first arrival and the amplitude and duration of the main phase (see fault
parallel component at stations SMN003, SMN015, TTR005, SMNH01, SMNH02,
TTRH04 for instance). For some other components the forward modeling does not
reproduce the observed complexity (see waveforms at station TTR008 for instance).
Both models produce a similar level of fit. Without any uncertainty characterization
we cannot say which model is performing better in reproducing the observed strong
motion data.

In Fig 2.9 we compare the horizontal static displacement produced by both
models with the one deduced from GPS data. Ellipses represent 95 percent con-
fidence level. We notice that at some stations (74, 379, 660, 662, 381) the static
displacement produced by the maximum likelihood model forσsm

M lies just on or
slightly outside the error ellipse. The maximum likelihoodmodel forσsm,gps

M instead
reproduces the observed surface displacements within the estimated displacement
error at all stations.
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Figure 2.9: Horizontal static displacement predicted by the maximum likelihood models forσsm
M

(thin dark gray) andσsm,gps
M (thick light gray) compared with the observed one (thin

black). Ellipses represent 95 percent confidence levels.
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2.5.2 The 1D marginals

According to section 2.4.3 we express our inferences on the investigated rupture
parameters in terms of marginal pdfs derived from the two posterior pdfs defined in
eqs 2.12 and 2.13.

Following the algorithm described in section 2.4.3 we simulated, for both cases,
four random walks starting from different models obtained through uniform ran-
dom sampling of the model space. Each random walk has also a different seed
value for the random number generator. At each step we generate a new model
using a Gaussian probability distribution with fixed covariance matrix. We assume
the covariance matrix to be diagonal with standard deviations equal for parameters
of the same type. After several trial random walks we fix the standard deviations
for peak slip velocity, rake angle, rupture time and rise time to be 5 cm/s, 2◦, 0.1
s, and 0.1 s, respectively. With these values the acceptancerate of the Metropo-
lis algorithm (ratio between accepted and generated models) is ∼50 per cent when
samplingσsm

M and∼30 per cent when samplingσsm,gps
M . Tarantola [2005] suggests

that the size of the perturbations in the model space should give an acceptance rate
of ∼30-50 per cent.

Models produced by the Metropolis sampler are not independent samples of the
posterior pdf since each model depends on the previous one. However, the esti-
mation of the integral in equation 2.15 requires independent samples. Only with
n independent samples can equation 2.15 be approximated as accurately as needed
by increasingn [Martinez & Martinez, 2002]. After taking one sample, a possi-
ble strategy to generate a new independent sample is to wait asufficient number of
moves before collecting a new sample, such that the random walk has “forgotten”
the previous sample. Unfortunately no general rule exists that helps to set the num-
ber of moves that should be done before collecting a new sample [Tarantola, 2005].
From a practical point of view, this parameter is also dependent on the computation
time available. After some experimentation we decided to collect samples every
100 steps.

To generate samples according toσsm
M , we ran each random walk for 1000000

steps and collected samples every 100 moves. Each random walk produced there-
fore 10000 approximately independent samples. We ran the 4 random walks in
parallel, each of them requiring a single processor. The computation time needed
was∼40 days on a Linux cluster based on AMD Opteron 64-bit CPUs. We then
merged all ensembles produced by the different random walksinto a single ensem-
ble which we finally used to estimate marginals.

To generate samples according toσsm,gps
M the sampling algorithm requires solv-

ing the forward modeling for the GPS data prediction. With this additional cal-
culation, each random walk produced 300000 models in approximately the same
computation time (∼ 35 days). From each random walk we extracted 3000 approx-
imately independent samples, which we then merged to estimate the corresponding
marginals. Even with a smaller number of samples we observedthat each sin-
gle random walk was able to produce approximately the same marginal, indicating
therefore an acceptable convergence.
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In Fig 2.10 we present 1D marginals for peak slip-velocity atgrid points, dis-
playing only inner grid points because on the fault plane boundaries peak slip ve-
locity is assumed to be zero (section 2.4.2). For each node wepresent the 1D prior
marginal, the posterior obtained fromσsm

M and the one fromσsm,gps
M .

The most important feature to note is that the posteriors generally do not show a
Gaussian shape but rather a skewed distribution. The only two posterior marginals
with a Gaussian-like distribution corresponds to nodes number 16 and 17. For these
two nodes the posteriors fromσsm,gps

M predict a peak slip velocity of122 ± 57 and
140 ± 57 cm/s, respectively. The relative error for both these two nodes is about
47 and 41 per cent, respectively. These two posteriors confirm the presence of a
near-surface high slip-velocity patch as imaged in the maximum likelihood models
(Fig 2.5, Fig 2.6).

For all the remaining nodes posteriors show a distribution skewed towards the
minimum allowed peak-slip velocity value (0 cm/s). Note that the skeweness de-
pends on the node location. As a general trend we find that the skeweness, and
therefore the posterior peak, become less clear from the topedge of the fault to-
wards the bottom (see subplots along the columns). This is particularly evident for
posteriors from strong motion data only. This implies that the resolution power of
the data sets (measured at each node by the difference between posterior and prior
pdfs) follows the same trend and decreases with increasing depth.

Comparing posterior marginals obtained fromσsm
M andσsm,gps

M , we find that GPS
data have a noticeable effect in constraining the peak slip-velocity distribution. In
fact, GPS data are sensitive to the final slip distribution. In our modeling the final
slip at each fault location is directly proportional to peakslip-velocity (assuming
an isosceles triangle as source time function, final slip = (peak slip-velocity× rise
time)/2). Looking at nodes 16 and 17, we see that GPS data confirm the pres-
ence of a high slip-velocity patch. However, for node 17, GPSdata suggest an even
higher value of peak slip-velocity with respect to the one inferred when using strong
motion data only. In most of the remaining locations, GPS data have an effect in re-
ducing the tail of the posteriors obtained fromσsm

M . This is evident at nodes 21, 32,
43, for instance. It is also interesting to notice that the GPS data used in this study
have the same effect at the bottom of the fault (see nodes number 46, 47, 48). This
shows that, at least in this case, GPS data bring useful information on the rupture
process also for the deeper part of the fault.

We show 1D marginals for rise time in Fig 2.11: the posterior marginals present
a well defined peak only for the nodes located near the high slip-velocity patch
(nodes 15, 16, 17, 18 and 27, 28, 29). For all remaining nodes posterior marginals
present very little difference with respect to the prior uniform indicating therefore
very poor resolution for rise time. At node 17, corresponding to the highest in-
ferred peak slip-velocity value, the mean rise time is about4.4 s. We also notice
that the maximum estimated mean rise time (7.2 s) corresponds to node 28, which
is associated with low peak slip-velocity values [see corresponding posterior in Fig
2.10]. We could expect to have little resolution on rise timefor a node associated
with low slip-velocity. However, we recall that rupture parameters are defined on
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a coarse grid on the fault surface and then derived on a finer grid (where the actual
integration is carried out) through bilinear interpolation. Even if a node is associ-
ated with a low value of peak slip-velocity, its vicinity maynot have low values if a
neighbouring node is associated with an high value of peak slip-velocity. Node 17,
where the highest value of peak slip-velocity is inferred, is a neighbouring node of
node 28. This means that between these two nodes, significantpeak slip-velocity
may be present. In that case, the long rise time corresponding to node 28 is needed
to describe the slip process in its neighbourhood. When comparing posteriors from
σsm

M andσsm,gps
M we notice the greatest differences only at nodes 17 and 18. For

these nodes GPS data increase the probability associated with larger values of rise
time.

In Fig 2.12 we show 1D marginals for rupture time. In this casewe consider
also nodes located at the edges of the fault. Marginals fromσsm

M andσsm,gps
M are

very similar, since GPS data do not contribute information about rupture timing.
Again, we find that posteriors present a well defined peak withrespect to the prior
marginals only in the upper-most part of the fault (especially at nodes 4, 5, 6 and
15, 16, 17). Nodes 16 and 17 correspond to the nodes where the shallow high
slip-velocity patch is located. Assuming mean values as estimates of the actual
rupture times, the rupture front triggers the high slip-velocity patch located below
the top edge of the fault (nodes 17) approximately 3.1 s afterthe rupture initiated.
The average rupture velocity from the hypocentre in the updip direction is therefore
1.6 km/s, corresponding to 44 percent of the average shear velocity in the involved
depth range. For some nodes located on the boundary of the fault (4, 5 and 6 es-
pecially) the posterior pdfs show a clear peak, although forthese nodes the peak
slip-velocity is assumed to be zero. The fact that data are sensitive to these para-
meters is an effect of the bilinear interpolation scheme. Even if these parameters
correspond to nodes where the peak slip-velocity is assumedto be zero, the rup-
ture time defined on these nodes determines the rupture time in the neighbourhood
points. Hence, if these neighbourhood points are associated with well resolved slip,
the rupture time in the neighbourhood nodes will also be wellresolved.

Comparing 1D marginals for the rake angle (Fig 2.13) with marginals for peak
slip-velocity (Fig 2.10), rise time (Fig 2.11) and rupture time (Fig 2.12) we find that
the rake angle is the least resolved parameter in the considered model space. Differ-
ences between priors and posteriors are generally less accentuated than for the other
parameters. We also observe that GPS data have a noticeable effect in constraining
the rake angle at some locations. This is evident at nodes 16,17, 27, 28. In these
locations posterior marginals suggest that the high slip-velocity patch is associated
with a positive rake angle, which implies a downdip movementin our modeling.

Fig 2.14 shows posterior marginals for final slip (derived from peak slip-velocity
and rise time values). Note that prior marginals are not uniform because they rep-
resent prior information on a combination of the original model parameters. Again
we find that posteriors show mostly a skewed distribution. Only posteriors at nodes
16 and 17 show a Gaussian-like shape. For these two nodes posteriors predict a
final slip of250± 120 cm and311± 140 cm, respectively. The relative error is∼48
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Figure 2.15: 1D marginals for seismic moment as obtained from the prior pdf (dashed),σsm
M (gray)

andσsm,gps
M (black).

and 45 per cent, respectively. We also infer a low slip regionNW of the hypocentre
(nodes from 24 to 27 and 35 to 38). In these locations 1D marginals present a distri-
bution skewed towards the minimum allowed slip (0 cm) with standard deviations
. 50 cm. SE of the hypocentre 1D marginals present instead largerstandard devia-
tions:∼ 100 cm at nodes 28 and 40 and∼ 140 cm at node 29 indicating therefore a
wider range of likely values. This feature may suggest an elongation of the slip dis-
tribution towards SE. The effect of GPS data in constrainingthe peak slip-velocity
is reflected in the marginals for the final slip. GPS data have anoticeable effect in
reducing the tail of the marginals (see nodes 21, 32, 43, for instance). They help
also in constraining the shallow slip (see node 16 and 17).

These changes have a strong effect when computing the posterior marginal for
seismic moment (Fig 2.15). GPS data reduce the probability associated with high
values of slip and produce a shift of the peak of the posteriortowards lower val-
ues of seismic moment than obtained fromσsm

M . From the posterior marginal from
σsm,gps

M we infer a value of seimic moment equal to1.7 ± 0.16 × 1019 Nm. The
corresponding relative error is about 10 percent.

In Fig 2.16 we present posterior 1D marginals (derived fromσsm,gps
M only) for

seismic moment and moment rate as they evolve in time. In other words we com-
pute moment and moment rate time histories for each sample ofσsm,gps

M and then
compute at each time step the corresponding 1D marginal. In this way we obtain
a ’probabilistic’ image of the moment and moment rate functions where at each
time step we have not a single value but rather a distributionof values. From the
seismic moment time history we see that most of the seismic moment starts to be
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Figure 2.16: 1D marginals for moment (a) and moment rate (b) (derived fromσsm,gps
M only) as they

evolve in time.

released only after about 3 seconds from the origin time. This is consistent with
the fact that the shallow slip patch is triggered, on average, 3 s after the earthquake
initiated. The moment rate function assumes its peak value at about 5 s. Again con-
sidering node 17, we infer a value of rise time of 4.4 s [average value deduced from
posterior marginal for rise time, see Fig 2.11 (b)]. In otherwords, at node 17, the
slip-velocity reaches its peak value about 2 s after the rupture time, that is at about 5
s. We therefore see a correlation between the peak of the moment rate function and
the peak of the source time function at node 17 which is associated with the highest
inferred slip.

2.5.3 The 2D marginals

1D marginals represent all information we have on a single parameter. However,
they do not contain any information about possible correlations with other para-
meters, which constitutes an integral part in any uncertainty analysis. If a pair of
parameters is correlated, this implies that we cannot measure them independently.
Correlations between pairs of different parameters can be analyzed computing 2D
marginals.

Due to the large number of parameters (204 in this study) we did not explore
all possible correlations. We focused our attention on the rupture parameters de-
scribing the shallow high slip patch, at nodes 16 and 17. We derived 2D marginals
from σsm,gps

M only because it considers all the data. We first computed 2D marginals
between rupture parameters (mainly peak slip-velocity, rupture time and rise time)
defined on the same node [Fig 2.17, Fig 2.18]. We do not identify any significant
correlation between these parameters. In Fig 2.19 we instead present 2D marginals
between rupture parameters defined on different nodes. Here, we identify a strong
anti-correlation between peak slip-velocity values. In other words, if the peak slip-
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Figure 2.17: 2D marginals between peak slip velocity, rise time and rupture time values at node 16.

velocity at node 16 increases, the peak slip-velocity at node 17 will decrease, and
vice versa.

2.6 Discussion

From the analysis of the 1D marginals computed fromσsm,gps
M we identify the fol-

lowing main features in the rupture process of the 2000 Tottori earthquake:

1. between the hypocentre and the top edge of the fault, corresponding to a depth
of 4.5 km (nodes 16, 17), we find a high slip-velocity patch. Posterior mar-
ginals show a Gaussian-like shape from which we deduce values of peak slip-
velocity of122 ± 57 cm/s and140 ± 57 cm/s.

2. in correspondence to the high slip-velocity patch the posterior marginals for
rise time show a skewed distribution with the maximum attained at the maxi-
mum allowed rise time. The mean values for rise time at nodes 16 and 17 are
4.1 s and 4.4 s, respectively.



2.6 DISCUSSION 73

0 100 200 300 400
1

1.5

2

2.5

3

3.5

4

4.5

peak slip velocity (cm/s) at node 17

ris
e 

tim
e 

(s
) 

at
 n

od
e 

17

(a)

0 100 200 300 400

1.5

2

2.5

3

peak slip−velocity (cm/s) at node 17

ru
pt

ur
e 

tim
e 

(s
) 

at
 n

od
e 

17

(b)

1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

rupture time (s) at node 17

ris
e 

tim
e 

(s
) 

at
 n

od
e 

17

(c)

Figure 2.18: 2D marginals between peak slip velocity, rise time and rupture time values at node 17.
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Figure 2.19: 2D marginals between peak slip velocity, rise time and rupture time values at node 16
and 17.
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3. combining values of peak slip-velocity and rise time we infer for the shallow
slip patch final displacements of250 ± 120 cm and311 ± 140 cm on nodes
16 and 17, respectively.

4. 1D marginals for rupture time indicate that the shallow slip patch is triggered
about 3.1 s (mean value of posterior at node 17) after the rupture initiated at
the hypocentre. We can therefore estimate an average rupture velocity in the
updip direction of about 1.6 km/s.

5. the rake angle is generally poorly resolved in the model space considered.
Only on the shallow slip patch (nodes 16, 17) posterior marginals suggest
that a positive angle (down-dip component) is more likely then a negative
one.

The presence of a high slip patch near the top edge of the faulthas also been recog-
nized in previous studies (Semmane et al. [2005], Festa & Zollo [2006], Piatanesi
et al. [2007]). Their models indicate a maximum value of slipof about 4 m, roughly
in agreement with our estimates (311± 140 cm). We do not identify any significant
slip at the bottom of the fault. For the deepest nodes (from node 46 to 54) posterior
1D marginals of slip fromσsm,gps

M exhibit a skewed distribution with maximum at-
tained at the minimum allowed slip (0 cm) (see Fig 2.14). Assuming that standard
deviations represent the range of most likely values, we infer for the deepest nodes
values of slip between 0 and∼80 cm. Our inferences for the final slip distribution
are therefore more consistent with the preferred model of Semmane et al. [2005],
which does not show significant slip at the bottom, rather than with the models
proposed by Festa & Zollo [2006] and Piatanesi et al. [2007],which suggest the
presence of significant deep slip (up to 2.5 m).

Regarding the rupture timing we infer a value of about 1.6 km/sfor the rupture
velocity in the updip direction. Festa & Zollo [2006] and Piatanesi et al. [2007]
inferred values equal to 2.1 and 2.2 km/s, respectively. These higher values may
be due to the deeper hypocentre assumed in these studies (13.5 km Festa & Zollo
[2006] and 12.5 km Piatanesi et al. [2007]) with respect to the one we adopted (9.6
km).

Another difference from previous studies concerns the risetime pattern. Our re-
sults show that rise time values are well resolved only in thevicinity of the shallow
high slip patch. At these locations (nodes 16, 17 for instance) the rise time values
equal∼ 4 s. Semmane et al. [2005]’s preferred model shows at the samelocations
lower values between 0.5 and 1.5 s. Piatanesi et al. [2007]’saverage model shows
instead more comparable values between 2.5 s and 3 s.

As recognized in all studies (including this work), a peculiar feature of the Tot-
tori earthquake is the presence of considerable slip at shallow depth (311 ± 140 cm
at 4.5 km depth) without any evident surface rupture. Identifying the reasons why
the slip did not reach the surface is beyond the scope of this paper and requires dy-
namic modeling of the earthquake rupture process. Qualitatively, we can imagine
that possible reasons impeding slip propagation to the surface can be a velocity-
strengthening behaviour of the shallow layers or low pre-stress in the upper-most
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part of the fault, or a combination of these two effects.
Also, the Tottori earthquake is not the only event showing shallow slip with no

surface breaks. An earthquake showing similar behaviour isthe 2003MW = 6.5,
Bam (Iran) earthquake. From the inversion of radar data Fialko et al. [2005] showed
how the Bam earthquake is characterized by right-lateral displacements having a
maximum amplitude of about 2 m at a depth of 3 to 7 km. However both radar data
and field investigations confirm lack of surface rupture associated with the faulting
event.
Finally, we stress that all the results we show in this study depend and are limited
by the chosen model space. For instance, in our study we find that for some pa-
rameters (e.g. concerning rise time and rupture time), the posterior marginals are
skewed towards the maximum allowed value, suggesting that the solution, for these
parameters, is located beyond the upper bound of the considered range of values.
We acknowledge therefore that a natural extension of this work would be consider-
ing a larger model space (e.g. by removing constraints on rise time), and checking
if the inference results remain stable or if new solutions are found.

2.7 Conclusions

In this study we investigate the rupture process of the 2000 Western Tottori earth-
quake through fitting of strong motion and GPS data. Our inversion methodology
is based on a Bayesian approach. We state our inferences in terms of marginal pdfs
derived from two distinct posterior pdfs: one that considers only strong motion data
and one that considers both strong motion and GPS data.

With both posteriors, we identify as a stable feature of the earthquake rupture
process the presence of a high slip patch between the hypocentre and the top edge
of the fault. This feature is common with previous studies. The analysis of the 1D
marginals for rupture time, rise time and rake angle indicates that these parameters
are well resolved only where this shallow slip patch is located, meaning that the
signal emitted by this patch determines most of the wavefieldthat we fitted.

When using both strong motion and GPS data, we do not identify any significant
slip (> 1 m) at the bottom of the fault. For this aspect, our inference results disagree
with some previous studies (Festa & Zollo [2006] and Piatanesi et al. [2007]).

We compare inferences obtained considering strong motion data only with ones
derived considering both strong motion and GPS data. In our study we notice that
the main effect of GPS data is in reducing the precence of spurious slip on the fault
which in turn has a strong influence on the estimate of the finalseismic moment.

A clear point in our analysis is that resolution on kinematicrupture parameters
cannot be explained generally using the Gaussian uncertainty hypothesis. In our
study most of the 1D posterior marginals do not show a Gaussian distribution. Un-
derstanding the actual resolution requires taking into account the non-linearity of
the problem and therefore dealing with non-Gaussian distributions.
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Abstract

Estimating dynamic source parameters from past earthquakes is important to inves-
tigate the weakening process of real faults, and to derive realistic dynamic rupture
models for ground motion simulations of future earthquakes.
Dynamic parameters can be estimated from the on-fault stress generated by a kine-
matic slip model. However, multiple kinematic rupture models may satisfy the
observations for a given earthquake and therefore uncertainties in kinematic para-
meters propagate into the estimation of dynamic parameters.
In this study we investigate how the estimation of dynamic parameters is affected
by uncertainties in the kinematic source model. For this purpose we consider the
2000 Western Tottori earthquake for which we previously obtained an ensemble of
3000 kinematic models through Bayesian inference (i.e. samples of the posterior
probability density function) which are consistent with the observed strong motion
and GPS data. For each model of this ensemble we compute the spatio-temporal
evolution of stress over the fault. We therefore obtain an ensemble of dynamic rup-
ture models, which all explain the observations, and from which we can statistically
explore the resolution of dynamic parameters.
We statistically analyse resolution of static stress drop.We find that on the same
locations where stable high slip is inferred, frequency distributions of static stress
drop values have an approximately Gaussian shape with positive mean values in-
dicating that on average these locations undergo a weakening process. However,
we find standard deviation values of the same order of magnitude of the estimated
mean values indicating therefore large uncertainties in the actual intensity of static
stress drop. We show how these large uncertainties are due toa correlation between
stress drop values at neighboring points of the source modelwhich is inherited from
a correlation between slip values. This shows how a correlation between kinematic
parameters limits resolution of dynamic parameters. Despite the difficulty in con-
straining the rupture process locally on the fault, we find that a global quantity like
radiated energy can be well inferred instead. The 95 percentconfidence level indi-
cates that the final radiated energy lies in between2.1 × 1014 J and4.0 × 1014 J,
with a mean value equal to2.9×1014 J. This is consistent with previous independent
studies which estimate radiated energy to be about3.0 × 1014 J.

3.1 Introduction

A major goal for earthquake seismology is to understand the physics governing the
fault rupture process. This is a complex phenomenon controlled by various factors:
the fault geometry, the stress acting on the fault, the material properties surround-
ing the fault and the constitutive law, that is the physical law relating stress to slip,
slip velocity and other factors, like pressure, temperature and chemical effects, for
instance.

When using seismic or geodetic data, the earthquake source isusually approxi-
mated as a shear crack propagating dynamically over a zero-thickness fault surface
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[Scholz, 2002]. Within this approximation, the earthquakerupture process can be
described in terms of kinematic and dynamic parameters. Kinematic parameters are
those defining the slip process at each location on the fault:maximum slip (or slip-
velocity), rupture time (time at which the slip process starts), rise time (duration of
slip) and rake angle (direction of slip). Kinematic parameters are directly linked to
the observed ground motion through the representation theorem [Aki & Richards,
2002]. By posing the representation theorem as a linear inverse problem, kinematic
parameter estimates can be obtained through linear inversion of seismic data (e.g.
Olson & Apsel [1982], Hartzell & Heaton [1983]). Over the years, estimation of
kinematic parameters improved with considering additional data sets (GPS, InSar)
(e.g. Wald et al. [1996], Delouis et al. [2002], Salichon et al. [2003]) and with aban-
doning the linear approximation (e.g. Liu & Archuleta [2004]).

Together with this improvements, it became clear that the same earthquake can
be explained by different kinematic rupture models (Cohee & Beroza [1994], Beres-
nev [2003], Ide et al. [2005], Custodio et al. [2005], Hartzell et al. [2007]). This is
also evident in the on line database of earthquake rupture models (http://www.seismo-
.ethz.ch/srcmod). Some of the observed discrepancies are due to different model pa-
rameterizations, inversion schemes, and data-sets, for instance. However, indepen-
dently of the particular approach, intrinsic reasons render imaging the earthquake
source a problem with multiple solutions: uncertainties indata and in forward mod-
eling (which allow multiple models to be considered acceptable), and lack of res-
olution (due to the always limited data coverage). To describe this multiplicity of
solutions, several innovative methods have been proposed recently (Emolo & Zollo
[2005], Piatanesi et al. [2007], Monelli & Mai [2008], Monelli et al. [2009]). These
studies recognise that the kinematic image of the earthquake rupture process cannot
be expressed in terms of a single best-fitting model but rather in terms of a set of
models which show certain statistical properties.

Dynamic parameters describe instead the stress evolution at each location on the
fault. The most common used dynamic parameter is the final stress drop (difference
between initial and final stress), which is often referred toas “static” stress drop.
For those locations on the fault undergoing a weakening process, the stress evolu-
tion is characterised also in terms of dynamic stress drop (difference between initial
and minimum stress) and strength excess (difference between peak stress and initial
stress). Some attempts to infer dynamic parameters directly through fitting seis-
mic data have been made (Peyrat & Olsen [2004], Corish et al. [2007]). However,
the commonly used approach requires first estimating the kinematic parameters and
then solving the elastodynamics equation for the spatio-temporal evolution of on-
fault stress using the kinematic parameters as a boundary condition (e.g. Ide &
Takeo [1997], Bouchon [1997], Dalguer et al. [2002], Tinti etal. [2005b]). With
this approach dynamic parameters can be determined from thekinematic source
characterization.

As mentioned above multiple kinematic rupture models for a given earthquake
may be consistent with the corresponding seismic and geodetic observations. To our
knowledge no study has been published that investigates howuncertainties in kine-
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matic parameters propagate into the estimation of dynamic parameters. The usual
procedure is to consider only the best-fitting model to derive a dynamic image of
the rupture process.

The major goal of this paper is to investigate how uncertainties in a kinematic
rupture model map into the corresponding dynamic rupture parameters, and to in-
vestigate how well constrained is the spatio-temporal evolution of stress over the
fault. Estimating resolution of dynamic parameters is an important aspect in un-
derstanding how reliably we can image the constitutive law from seismic data and
related quantities (e.g. fracture energy).

In this study we consider a real event, the 2000 Western Tottori earthquake.
We use a Monte Carlo approach to propagate uncertainties fromkinematic into
dynamic parameters. We make use of the ensamble of models derived by Mon-
elli et al. [2009] which are consistent with the observed strong motion and GPS
data. To reduce the computational demand, we select a sub-ensemble of models
which show approximately the same statistical properties of the original ensemble.
For each model of this sub-ensemble we compute the spatio-temporal evolution of
stress over the fault. We therefore obtain an ensemble of dynamic rupture models
from which we can statistically investigate resolution of dynamic parameters.

3.2 Computation of dynamic parameters

For a given kinematic model we compute the corresponding spatio-temporal evolu-
tion of on-fault stress using a velocity-stress staggered-grid finite difference scheme,
based on the Staggered-Grid Split-Node (SGSN) method to simulate the fault rup-
ture [Dalguer & Day, 2007]. We use a grid spacing of 250 m and a time step of 0.01
s. Monelli et al. [2009] show that after approximately 10 s the rupture is almost
complete. To ensure that the on-fault stress field reaches a stationary condition we
simulate a time window of 20 s. We consider the same velocity model used by
Monelli et al. [2009].

Monelli et al. [2009] defined kinematic parameters on a 4 by 4 km grid over
the fault surface (Figure 3.1). To avoid stress singularities, we use a bicubic in-
terpolation scheme to derive kinematic parameters values on the finite difference
grid. In some cases, we find that the bicubic interpolation scheme produces neg-
ative values when interpolating peak slip-velocity values. For those points having
negative values we force the peak slip-velocity to be zero. We assume the absolute
initial traction to be equal to an arbitrary value of 70 MPa and collinear with the slip
vector.

3.3 An uncertain slip model for the 2000 Western Tot-
tori earthquake

Using a Bayesian approach, Monelli et al. [2009] inferred kinematic rupture pa-
rameters for the 2000 Western Tottori (Japan) earthquake through fitting of strong
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Figure 3.1: Fault discretization used by Monelli et al. [2009]. Numbered labels indicate node lo-
cations. The grid spacing is 4 km. The black star represents the hypocentre location
according to Fukuyama et al. [2003].

motion and GPS data. The rupture parameters investigated are peak slip velocity,
rise time, rupture time and rake angle. They are defined on a regular grid of nodes
on the fault surface and their values at inner points are derived through bilinear in-
terpolation. The assumed source time function is an isosceles triangle.

Monelli et al. [2009] expressed inferences on rupture parameters in terms of
marginal probability density functions (PDFs) derived from an ensemble of models
which are samples of the posterior PDF. This ensemble has been generated simulat-
ing 4 random walks each of them producing 3000 samples. In Figures 3.2, 3.3, 3.4
and 3.5 we present the corresponding 1D marginals computed from the ensembles
of models.

Examining the 1D marginals for peak slip-velocity we note that the Tottori earth-
quake is characterised mainly by a single high slip-velocity patch (nodes 16 and 17)
located between the hypocentre and the top edge of the fault.In all other locations
we cannot identify other stable patches of high slip-velocity. For a more detailed
analysis and interpretation of the 1D marginals we refer to the work of Monelli
et al. [2009]. For this study, the important point to notice is that each random walk
produces approximately the same results. We can therefore consider the ensemble
of 3000 models produced by a single random walk to be sufficient to represent un-
certainties on kinematic rupture parameters.

The selected ensemble of models truly represents the solution of the inverse
problem in the sense that all models produce very similar data predictions and
should be all considered as plausible models. In Figures 3.6and 3.7 we show the ob-
served strong ground motion waveforms and we compare them with the 95 percent
confidence levels of the predicted strong ground motion waveforms. In other words,
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for each component we compute at each time step the 0.025 and 0.975 quantiles of
the distribution of predicted ground motion values. In thisway, we statistically
compare the observations with the predictions of all the models constituting the en-
semble. We perform a similar analysis to compare observed with predicted surface
static displacement (Figure 3.8).

Looking at strong motion data, we see that all the ensemble ofmodels pro-
duce very similar waveforms which capture the essential features of the observed
wavefield. Also for GPS data, we see that the 95 percent confidence levels of data
predictions overlap with the 95 percent confidence levels ofdata observations, at
all station. We find therefore that all models in the considered ensemble produce
similar data. We hence propose that robust conclusions about the rupture process
of the 2000 Tottori earthquake should be drawn analysing theentire ensemble of
kinematic models and not only the best-fitting one. In other words, given the uncer-
tainties in the data and the simplifications in the modeling,no strong reasons exist
to consider the best-fitting model as the only model able to explain the data. Hence,
only those features which appear to be statistically significant in all the ensemble of
models should be considered as well resolved.

Before statistically investigating the resolution of dynamic parameters we want
to show explicitly how uncertainties in kinematic models affect the estimation of
dynamic parameters. In Figure 3.9 and 3.10 we show two kinematic rupture mod-
els (both samples of the posterior PDF defined by Monelli et al. [2009]) producing
very similar ground motions. These two models show the essential features of the
Tottori earthquake: near the hypocentre, in the NW direction, low slip/slip-velocity
values are inferred. A high slip/slip-velocity patch is located instead between the
hypocentre and the top edge of the fault. Together with theselarge scale common
features the two models present also several differences (e.g. high slip-velocity
patches at the bottom of the fault in model 1, which are not present in model 2;
significant slip right of the hypocentre in model 1, which is shifted to the bottom in
model 2).

The two kinematic models are significantly different in terms of the on-fault
stress evolution. In Figure 3.11 we show the temporal evolution of shear traction
produced by models 1 and 2. We show only the inner nodes, because on the fault
edges the slip is assumed to be zero and stresses are therefore forced to increase in
both models. We see how the differences in the kinematic rupture models produce
several differences in the spatio-temporal evolution of on-fault stress. At nodes 16
and 17, where a stable high slip patch is inferred [Monelli etal., 2009], model 1
predict a decrease of shear stress of about 50 and 10 MPa, respectively, whereas
model 2 predict values of 10 and 30 MPa, respectively. It alsohappens that at the
same nodes (e.g. nodes 29, 36, 37, 40) the two models predict static stress drops
of opposite sign. These differences are reflected also in thespatial distribution of
static stress drop (Figure 3.12 (a) and (b)). As a common feature, both models show
significant positive stress drop above the the hypocentre. However, model 2 shows a
positive stress drop patch just right of the hypocentre, which is not present in model
1. Moreover, model 1 presents a deep positive stress drop patch which is absent in
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predicted

Figure 3.8: Surface static displacement produced by the selected ensemble of models (gray) com-
pared with the one deduced from GPS data (black).
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Figure 3.9: Kinematic rupture model 1.
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Figure 3.10: Kinematic rupture model 2.
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Figure 3.12: Static stress drop (MPa) in the strike direction produced bymodel 1 (a) and model 2
(b).

model 2.
These two models illustrate how uncertainties in the estimation of a kinematic

slip model propagate into the calculation of dynamic parameters. They show also
how estimating uncertainties is important to understand towhich degree of detail
we should interpret kinematic and dynamic images of an earthquake source.

3.4 Uncertainties on static stress drop

In the previous section we have shown the case of two kinematic rupture models
which provide approximately the same level of fit with the observed data, but which
present several differences in the stress-fields they generate. These two models
represent only two realizations of the kinematic parameters, but still illustrate the
associated uncertainties. As explained in section 3.3, we now consider a set of 3000
slip models which provide a more comprehensive representation of the uncertainties
that map into the variability of the dynamic source parameters. For each of these
kinematic models we compute the corresponding dynamic source representation,
and then examine their statistics.

The first dynamic parameter we investigate is the static stress drop. Depend-
ing only on the final slip distribution, static stress drop isless dependent than other
parameters (like strength excess and dynamic stress drop) on the temporal evolu-
tion of traction which is affected by uncertainties in rise time and rupture time also.

The Tottori earthquake is mainly a strike-slip event (Fukuyama et al. [2003],
Monelli et al. [2009]), with negligible or unresolved rake variability. We hence
consider the static stress drop in the strike direction, which contributes most to the
overall static stress drop. In Figure 3.13 we show frequencydistributions of static
stress drop values on the same locations where kinematic rupture parameters have
been defined by Monelli et al. [2009]. We see how at the fault edges the frequency
distributions are defined over negative values of stress drop and are mainly skewed
toward zero. This is consistent with the condition of zero slip at the fault edges that
Monelli et al. [2009] assume in their study. We see that at nodes 16 and 17, where a
stable high slip patch is inferred, the frequency distributions assume approximately
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Figure 3.14: Scatter plot of static stress drop values in the strike direction at nodes 16 and 17.

a Gaussian shape with mean values and standard deviations of17 ± 19 MPa and
19 ± 23 MPa, respectively. This means that on average these two nodes undergo a
positive stress drop. However, the large standard deviations (for both nodes the rela-
tive error–ratio between standard deviation and mean value–is greater than 1) show
the large uncertainties affecting the estimation of the static stress drop in these two
nodes. This is also evident from the shear traction evolutions predicted by model 1
and 2 [see Figure 3.11]. We also see that at nodes 4, 5 and 6 the frequency distrib-
utions do not show a strongly skewed shape (like on the other nodes located on the
edges of the fault) but rather a bell shape. For these nodes weestimate static stress
drop values of−2.4± 0.9 MPa,−4.9± 1.6 MPa and−5.3± 1.6 MPa, respectively.
For these three nodes we infer well resolved values of negative stress drop, indicat-
ing that these nodes undergo a fault restrengthening process not only because of the
zero slip condition but also because they are sensitive to the stress increase due to
the positive stress drop undergoing on nodes 16 and 17.

The large uncertainties associated with stress drop on nodes 16 and 17 can be
explained in terms of the anti-correlation existing between static stress-drop values
on these two nodes (Figure 3.14). In fact, Monelli et al. [2009] identified an anti-
correlation between peak slip-velocity values defined on nodes 16 and 17. This pro-
duces an anti-correlation between final slip values (final slip = (peak slip-velocity
× rise time)/2), for an isosceles triangle source time function) which translates into
an anti-correlation between static stress drop values. This shows clearly how corre-
lations between kinematic parameters map into correlations between dynamic para-
meters.
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3.5 Uncertainties on temporal evolution of shear trac-
tion

Dynamic parameters like dynamic stress drop and strength excess are more sensitive
on the temporal evolution of the shear traction. Resolution of these parameters is
therefore dependent on how well we can constrain the temporal evolution of on-fault
stress. To investigate this point, we compute the distribution of shear traction values
at each time step on the same fault nodes used to define kinematic parameters.
Due to the general non-Gaussian shape of these distributions, we characterize the
range of possible values of shear traction at each time step in terms of quantiles.
More precisely, we compute, at each time step, the 0.025 and 0.975 quantiles of
the corresponding distribution of shear traction values. This approach allows us to
specify, at each time step, the 95 percent confidence level. We show the results of
this analysis in Figure 3.15. To understand if these confidence levels really capture
the uncertainties affecting the shear traction temporal evolution, we plot also the
shear traction time histories produced by model 1 and 2. We see that for all nodes
except nodes 27, 28 and 30, the traction time histories from both models lie inside
the confidence levels. We see also that the confidence levels are wide enough to
contain the large differences in traction evolution we see on nodes 15, 16, 51 and
62, for instance.

From this analysis we see that the estimation of the shear traction temporal
evolution on a certain location on the fault is subject to large uncertainties. On all
the inner nodes, the 95 percent confidence level extends fromshear traction values
lower than the initial value to values greater than initial value, indicating therefore
that there is always a finite probability of having both a fault weakening or a fault
strengthening process.

3.6 Uncertainties on radiated energy

From the previous section, we see that imaging the rupture process on a single
location on the fault is subject to large uncertainties. We hence explore resolution
of global quantities, which reflect the rupture process on the whole fault surface. A
global quantity which reflects the spatio-temporal evolution of both slip and traction
over the entire fault is the radiated energy. The radiated energyER is defined as the
amount of energy that would be carried to the far field in the form of seismic waves
if an earthquake occurred in an infinite and non-attenuatingmedium. It can be
calculated from either the far-field seismic waves or the stress and displacement on
the fault plane. Rivera & Kanamori [2005] show that the radiated energyER can be
computed as:

ER =
1

2

∫

Σ

(σ1
ij − σ0

ij)∆uiνjdS −
∫

Σ

2γeffdS −
∫ t1

t0

dt

∫

Σ(t)

(σij − σ0
ij)∆u̇iνjdS (3.1)
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Figure 3.16: 0.025 and 0.975 quantiles (solid gray lines) computed from the distribution of radiated
energy values at each time step. We show also the average radiated energy (dashed
black line) and the radiated energy produced by model 1 and 2 (solid black lines).

whereΣ represents the fault surface,σ0
ij the initial stress at a reference timet0, σ1

ij

the stress acting at timet1, ui the slip, u̇i the slip-velocity andνj the unit vector
normal toΣ. γeff is the effective surface energy, a lumped parameter including all
dissipation within the process zone at the crack-tip. That is, it includes not only sur-
face energy, but also other dissipative mechanisms such as heat. Cocco et al. [2006]
pointed out that for crack models in which the stress is not singular at the crack tip
(like in our case), the effective surface energy is zero. In our study, we compute
therefore the radiated energy for each kinematic model using Equation 3.1, neglect-
ing the second term on the right-hand side.

In Figure 3.16 we show the 0.025 and 0.975 quantiles computedfrom the dis-
tribution of radiated energy values at each time step. We show also the average
radiated energy, and the radiated energy produced by models1 and 2. In this case
uncertainties allow us to identify a clear temporal evolution for radiated energy. We
see that only between 2 and 4 sER starts increasing. This is consistent with the fact
the main slip patch is triggered on average only 3 s after the earthquake nucleated
[Monelli et al., 2009]. Radiated energy reaches a maximum value at around 8 s and
then decreases reaching approximately a stationary level.The final average radiated
energy is equal to2.9 × 1014 J which is consistent with the estimates of Izutani &
Kanamori [2001] (3.0 × 1014 J) and of Jin & Fukuyama [2005] (3.1 × 1014 J). The
decrease of radiated energy is due to the rupture termination. In other words, the
reduction of radiated energy during the later stages of the rupture process is due
to those regions of the fault surface which experience a strengthening process and
therefore absorb energy without emission of seismic waves.
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3.7 Discussion and conclusions

Explaining a given kinematic slip model in terms of dynamic parameters is impor-
tant to understand how the weakening process occurs on real faults and therefore
how we can realistically parameterise a dynamic rupture model to predict a future
earthquake. Guatteri & Spudich [2000] discuss the issue of estimating linear slip-
weakening parameters from a kinematic slip model obtained trough fitting of strong
motion data. They find a trade off between strength excess andslip-weakening dis-
tance which do not allow them to identify a unique set of dynamic parameters which
explain a given kinematic slip model. They conclude that if static-stress drop is well
determined than only fracture energy can be reliably resolved. In other words, if the
final slip distribution is well inferred, all the uncertainties on dynamic parameters
come from the intrinsic trade off existing between the dynamic parameters them-
selves.

However, our study shows that uncertainties in kinematic rupture parameters
(and on final slip therefore) are not negligible. These uncertainties have immediate
consequences on the estimation of dynamic parameters. For the Tottori earthquake,
we see that static stress drop is only qualitatively well inferred. Stress drop on
locations where high slip is estimated have positive valueson average, indicating
therefore a weakening process. However, the associated standard deviations are of
the same order as the estimated average values indicating therefore large uncertain-
ties which do not allow us to identify well resolved static stress drop values. We
see that these large uncertainties are also due to a trade offthat is inherited from the
estimated kinematic parameters. This is important to notice, because it shows that
not only the uncertainties but also the statistical properties of the uncertainties (like
correlations) map into the estimation of dynamic parameters. The large uncertain-
ties on static stress drop reflect the large uncertainties inthe the temporal evolution
of shear traction.

Our study shows that the inference of the on-fault stress evolution during an
earthquake rupture is subject to large uncertainties. Resolution of kinematic pa-
rameters is not sufficient to infer the stress evolution on a single location of the
fault. These large uncertainties are basically due to the limited amount of data and
the limited frequency band. We can expect that increasing the spatial coverage of
the recording stations and the maximum considered frequency may improve reso-
lution of both kinematic and dynamic parameters. With the available data we find
that only parameters characterising the overall rupture process over the entire fault
surface (e.g. radiated energy) can be well resolved.
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Abstract

In this study we derive a dynamic rupture model for the 2000 Western Tottori earth-
quake based on a linear slip-weakening friction law. Our analysis develops in three
stages. First, using a Bayesian approach we estimate kinematic rupture parameters
(peak slip-velocity, rake angle, rise time, rupture time) by fitting strong motion and
GPS data. Second, using a dynamically consistent source time function (regularized
Yoffe function), we compute the spatio-temporal evolutionof on-fault stress asso-
ciated with the mean kinematic slip model. Third, estimating dynamic stress-drop,
strength excess, and slip-weakening distance, we derive a linear slip-weakening
model for the rupture process. We obtain a dynamic rupture model able to repro-
duce the observed kinematic parameters. We compare also thepredicted ground
motion with the near-field strong motion and GPS data. We find that the level of
fit provided by the dynamic model is comparable to that of the best-fitting kine-
matic model. We consider this result of particular practical importance, because the
dynamic model has been obtained without an explicit optimization procedure but
rather interpreting a mean kinematic slip model by using a dynamically consistent
source time function.

4.1 Introduction

The ground motion produced by an earthquake on a certain location on the Earth
surface is due to three main effects: the source, the path andthe site. To realistically
model all these factors, state-of-the-art ground motion simulations employ 3D Earth
structures and finite fault dynamic rupture models (Olsen etal. [2008], Olsen et al.
[2009]).

In a dynamic rupture model the spatio-temporal evolution ofslip results from
solving the elastodynamics equations, and by assuming a friction law to describe
the fault slip process. Parameters, usually referred as “dynamic”, are required to
define the initial state of stress and the friction law itself.

To derive realistic dynamic rupture models, dynamic parameters are usually
constrained from past earthquakes. Two approaches are possible. One requires
estimating kinematic parameters first. The inferred spatio-temporal evolution of
slip is then used as a boundary condition to solve the elastodynamics equations for
the on-fault stress, from which dynamic parameters can be estimated (Ide & Takeo
[1997], Bouchon [1997], Dalguer et al. [2002], Tinti et al. [2005b]). As noticed by
Piatanesi et al. [2004], in this methodology the estimationof dynamic parameters
can be biased by the assumed source time function. An alternative approach is to
perform a dynamic inversion, that is a search for the sets of dynamic parameters
which produce the best level of fit with the observed ground motion. In this ap-
proach the source time function at each location on the faultis not chosen a priori
but is a solution of the dynamic rupture problem. The most common dynamic in-
versions are based on a trial and error approach, where an initial dynamic model,
usually constrained from a previously estimated kinematicmodel, is manually mod-
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ified until satisfactory fit with the data is achieved (Peyratet al. [2001], Favreau &
Archuleta [2003], Ma & Archuleta [2006], Ma et al. [2008]). To our knowledge, a
systematic dynamic inversion has been performed only for the 2000 Western Torrori
earthquake by Peyrat & Olsen [2004]. In their study, the authors use a direct search
method based on the Neighbourhood algorithm to estimate stress drop distribution
assuming a linear slip-weakening fault model with uniform upper yield stress and
slip-weakening distance.

The goal of our study is to extend the work of Peyrat & Olsen [2004] deriv-
ing a linear slip-weakening rupture model for the 2000 Western Tottori earthquake
with heterogeneous distribution of strength excess, dynamic stress drop, and slip-
weakening distance. We first estimate kinematic parametersusing a Bayesian ap-
proach. This analysis shows that multiple kinematic modelsmay produce satisfac-
tory level of fit with the observed data. We hence consider themean kinematic slip
model as representative of the most likely features of the earthquake rupture process.
Using the mean kinematic slip model and a dynamically consistent source time
function (regularized Yoffe function proposed by Tinti et al. [2005a]), we compute
the spatio-temporal evolution of on-fault stress, from which we estimate strength
excess, dynamic stress drop, and slip-weakening distance distributions on the fault
surface. These estimates are then used to define a linear slip-weakening model for
the rupture process. The predicted ground motion is then compared with the ob-
served strong motion and GPS data.

4.2 Bayesian inference of kinematic rupture parame-
ters

Monelli et al. [2009] inferred kinematic rupture parameters for the 2000 Western
Tottori earthquake using a Bayesian approach. In this study we repeat their analy-
sis using the same methodology, same data (strong motion+GPS), same modeling
scheme, but considering a larger model space. Monelli et al.[2009] observed that
for some parameters the solution converged toward the upperbound of the con-
sidered range of values, possibly suggesting that the solution is located above the
imposed upper limit.

We refer to Monelli et al. [2009] for the details of the inversion procedure. Here
we recall the main results. The solution of the inverse problem is stated in terms of
a posterior probability density function (PDF) which represents the conjunction of
prior information on model parameters and information derived through fitting of
the observed data. The posterior pdf is expressed as:

σsm,gps(m) = kρ(m)Lsm(m)Lgps(m). (4.1)

wherek is a normalization constant,ρ(m) is the PDF representing prior information
on model parametersm (a uniform PDF in this study), andLsm(m) andLgps(m)
are the likelihood functions (measuring how well a modelm explains the data) for
strong motion and GPS data, respectively [Eq. 8 and 11 in Monelli et al. [2009],
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respectively]. Information on a single model parameter canbe expressed in terms
of a 1D posterior marginal PDF, given by:

M(mα) =

∫

...

∫

σsm,gps(m)
M
∏

k=1
k 6=α

dmk (4.2)

wheremα is the considered model parameter. Eq. 4.2 requires integrating the poste-
rior PDF over all dimensions of the model space (M ) except the one corresponding
to the parameter of interest.
Data consist of ground velocity waveforms from 18 strong motion stations and sur-
face static displacements from 16 GPS stations (Fig 4.1). Original strong motion
data were bandpass filtered in the frequency band 0.1-1 Hz, whereas coseimic static
offset at each GPS station was estimated as the difference between mean values of
daily positions during the 5 days before and the 5 days after the earthquake.
We represent the fault as a 24 km long and 16 km deep, vertically dipping plane

surface, with a strike of150◦ degrees. The fault upper edge is at 0.5 km depth. Mon-
elli et al. [2009] used a longer and deeper fault plane. However, they noticed that
good resolution on model parameters is achieved mostly in the central and upper
part of the fault. In this study, we consider therefore a smaller fault surface, which
helps in decreasing the total number of parameters.
On the fault surface, we define a regular grid of nodes, with a spacing of 4 km along-
strike and along-dip. The total number of nodes on the fault is therefore 35. At each
node we define 4 parameters: peak slip-velocity, rake angle,rise time, rupture time.
The total number of parameters is therefore 140.

We compute ground velocities using the frequency-domain representation theo-
rem [Spudich & Archuleta, 1987]:

u̇m (y, ω) =

∫∫

Σ

ṡ (x, ω) · Tm (x, ω;y,0)dΣ (4.3)

whereu̇m is themth component of ground velocity at the receiver locationy, ṡ is
the slip-velocity function,Tm is the traction exerted across the fault surfaceΣ at
pointx generated by an impulsive force applied in themth direction at the receiver
(ω = 2πf : angular frequency). TractionsTm are computed, up to a frequency of
1 Hz, using a Discrete Wavenumber / Finite Element method [Compsyn package,
[Spudich & Xu, 2002]], for a 1D flat layered Earth model without attenuation. A
trapezoidal-rule quadrature of the productṡ · Tm is performed separately for each
frequency, with the quadrature points being the sample points whereTm have been
computed. Rupture-parameter values at integration points are derived through bi-
linear interpolation of values at surrounding grid nodes.

We assume the slip-velocity function to be an isosceles triangle. With this para-
metrization the peak-slip velocity corresponds to the height of the triangle and the
rise time to the base length. Rupture time corresponds to the first point of the base
segment.

Following Eq 4.3, we convolve tractions with the assumed slip-velocity func-
tion to compute ground velocity at the strong motion stationlocations. We compute
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GPS data predictions by integrating ground velocities to ground displacements and
then selecting the final static offsets.

The posterior PDF is defined over the model space. Inferenceson model para-
meters are therefore dependent on the chosen model space. Monelli et al. [2009]
find that the computed 1D posterior marginals are skewed toward the upper limit
of the considered range of values for some parameters (especially for rise time and
rupture time), suggesting that the solution is located above the imposed upper limit.
To test this hypothesis we consider a larger model space in this study. As in Monelli
et al. [2009], peak slip-velocity can vary between 0 and 400 cm/s on the inner nodes
of the fault. On the fault edges we assume a zero-slip condition (peak slip-velocity
is forced to be zero therefore). Rake angle can vary between−90◦ to +90◦ degrees
(Monelli et al. [2009] assumed−30◦ to +30◦ degrees). The range of rupture times
at each grid node is defined as the interval between the arrival times of two circular
rupture fronts, propagating from the hypocenter [at 9.6 km depth [Fukuyama et al.,
2003]] at two limiting rupture velocities: 1 and 4 km/s (Monelli et al. [2009] consid-
ered 1.5 and 4 km/s). Rise time can vary between 1 and 10 s on all the inner nodes
(Monelli et al. [2009] assumed minimum value equal to 1 s and amaximum value
decreasing as the distance from the hypocenter of the considered node increases).
Rise time on the fault edges is assumed equal to 1 s (to generaterise time distribu-
tions which are tapered to the minimum value at the fault edges). Considering the
zero-slip condition and the minimum rise time assumption atthe fault edges, the
number of free parameters is 104.

4.3 1D marginals for kinematic parameters

We estimate 1D marginals using a Markov Chain Monte Carlo (MCMC) method,
based on the Metropolis algorithm [Monelli et al., 2009]. Wesimulate three random
walks, each of them producing 890000 samples. To get approximately independent
samples we collect models every 100 steps. From each random walk we extract
therefore 8900 models. All the produced samples are then merged into a single
ensemble to estimate 1D marginals.

In Fig. 4.2 we show 1D marginals for peak slip-velocity. Theyshow the same
pattern obtained by Monelli et al. [2009]: that is an evidenthigh slip-velocity patch
(peak value of206±89 cm/s) located between the hypocenter and the top edge of the
fault (nodes 2 and 3). On the other nodes posterior marginalsare skewed toward the
minimum allowed value (0 cm/s). This means that, except nodes 2 and 3, we cannot
identify any other node slipping with a clear high slip-velocity value. This does not
mean that a node cannot slip with an high slip-velocity, but rather that we have not
enough resolution to say which node is slipping with high slip-velocity. We see also
that the skewness of the posterior marginals is not uniform on the fault surface. In
particular, we observe that on the nodes located SE of the hypocenter the posteriors
skewness is lower than in the NW. This means that the probability of having nodes
slipping with high slip-velocity values is higher in the SE section of the fault rather
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than in the NW. This features are consistent with the kinematic images obtained
for this earthquake (Semmane et al. [2005], Festa & Zollo [2006], Piatanesi et al.
[2007]), which show significant slip above the hypocenter and elongated toward SE.

The fact that the observed wavefield is dominated by the energy coming from
the high slip-velocity patch located on nodes 2 and 3 is confirmed by the good
resolution of the rake angle for these two nodes (Fig. 4.3). On nodes 2 and 3
we clearly see that the slip process is mainly strike-slip, in agreement with the focal
mechanism estimation [Fukuyama et al., 2003]. We see also that posterior marginals
located SE of the hypocenter (nodes 4, 5, 10) show a broad peakaround +10/+15
degrees (in our modeling corresponding to a down-dip movement). However, the
large uncertainties (standard deviations of the order of 40degrees) do not allow us
to draw definite conclusions. We observe also that NW of the hypocenter, at the
bottom of the fault (nodes 11, 12), the posterior marginals are evidently skewed
toward negative values of the rake angle (corresponding to an up-dip movement).
We see therefore that posterior marginals for rake angle show clear (although broad)
peaks on nodes where the posterior marginals for peak slip-velocity do not identify
clear high slip-velocity values. We can interpret this factsaying that even if the
posterior PDFs for peak slip velocity assign the highest probability near 0, there is
still finite probability of having non-zero, significant, slip-velocities. If this occurs
then the rake angle can be inferred.

The 1D marginals for rise time (Fig. 4.4) do not show exactly the same pattern
as in Monelli et al. [2009]. This differences are produced bythe different model
space. However, we still see that in the central part of the fault, near the hypocenter
(nodes 7 and 8), the posterior marginals show a broad peak around 5.5 and 6.2 s,
respectively. On the other nodes posteriors are mostly skewed toward the minimum
allowed value (1 s). We observe therefore a pattern where higher values of rise
time are more likely to appear in the central part of the fault, near the hypocenter,
whereas lower values are more likely approaching the edges of the fault.

Rupture time results to be well inferred (Fig. 4.5). We see evident peaks above
the hypocenter and SE of it. On nodes 2 and 3, the rupture time is about4.7 ± 0.8
and3.8 ± 0.7 s, respectively. The percentage errors are about 17 and 18 percent,
respectively. For rupture time we see clearly what we noticed for the rake angle,
that is posterior marginals show evident peaks even on thosenodes for which no
clear high slip-velocity is identified.

Fig. 4.6 show 1D marginals for final slip. We see that the priorPDF is not
uniform anymore because it represents information on a combination of the original
model parameters. We see again that at nodes 2 and 3, the inferred high slip-velocity
values produce an high slip-patch (mean value of about 3 m), consistent with the
estimate provided by Monelli et al. [2009]. We also see that the probability of
having high values of final slip is higher in the SE section of the fault rather than in
the NW (compare posteriors at nodes 4, 5, 9, and 10, with posteriors at nodes 1,6,
and 7, for instance).

To compute the spatio-temporal evolution of on-fault stress we use a velocity-
stress staggered-grid finite difference scheme, based on the Staggered-Grid Split-
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Node (SGSN) method to simulate the fault rupture [Dalguer & Day, 2007]. We use
a grid spacing of 100 m and a time step of 0.00625 s, and map the slip model into
the finite difference grid using bicubic interpolation. We simulate a time window of
20 s, applying the same velocity model used by Monelli et al. [2009].

In Fig.4.7 we show the computed shear traction versus slip curves on a 2 by 2
km grid on the fault surface, for inner grid nodes only. From each curve we visually
estimate strength excess, dynamic stress drop, and slip-weakening distance. We de-
fine the slip-weakening distance as the amount of slip corresponding to a change in
the traction weakening rate. To clarify this approach, we show two examples. At
node 39, near the hypocenter, we can identify a clear minimumin the traction vs.
slip curve. We identify the slip-weakening distance as the slip corresponding to the
minimum. At node 16, located where the highest slip is inferred, we can identify
a clear change in the weakening rate at a slip value of about 1.5 m, which we as-
sume as the local slip-weakening distance. For most of the grid nodes it’s possible
to identify a clear change in the traction weakening rate, and therefore to apply the
described procedure to estimate the slip-weakening distance. However, for some
nodes, especially for those located near the fault edges where low slip is inferred
(e.g. nodes 1, 2, 12, 13, 23, 24), the traction versus slip curves appear to be rather
complex. For those nodes, we assume the slip-weakening distance to be equal to
the final slip.

4.4 A linear slip-weakening model

In Fig. 4.8 we show the linear slip-weakening parameters (dynamic stress drop,
strength excess, slip-weakening distance) estimated fromthe traction vs. slip curves
in Fig. 4.7, interpolated (through bicubic interpolation)on the finite difference grid
(dx = 100 m) on the fault surface. We see that the highest dynamic stress drop
(about 15 MPa) is located at the same locations where the highest slip/slip-velocity
is inferred. Significant dynamic stress drop is located alsoSE of the hypocenter. The
strength excess pattern results to be very close to zero in a narrow region extending
from the bottom to the top edge of the fault and centered around the hypocenter.
A region of low strength-excess is located also SE of the hypocenter. The slip-
weakening distance distribution results to be correlated with the final slip. The
highest value is reached where the highest final slip is inferred. Slip-weakening
distance values vary mostly between 0.5 and 1.5 m. In Fig. 4.8(d) we show the
resulting fracture energy density distribution.

To perform the dynamic rupture simulation we assume the upper yield stress
to be uniform on the fault surface. The normal stress is assumed equal to 125
MPa (a representative value for effective normal stress forcrustal earthquakes, Rice
[2006]). The static friction coefficient is assumed equal to0.85 (from Byerlee’s law
at low normal stress, Scholz [2002]). The upper yield stressis therefore 106.25
MPa. The initial stress is given by the upper yield stress minus the strength excess.
This implies that regions of low strength excess match with regions of pre-stress
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close to the yield stress, and therefore near to a critical state.
We start the numerical rupture simulation by means of a circular nucleation

patch centered on the hypocenter. By trial and error, we foundthat a nucleation
patch of radius equal to 0.8 km and subject to an applied stress of 109.3 MPa, pro-
vide the best temporal alignment between the predicted and observed strong motion
data.

The resulting slip-velocity temporal evolution is depicted in Fig. 4.9. We iden-
tify three main phases. In the initial phase, soon after the breaking of the nucleation
patch, the rupture quickly expands (with low slip-velocities), mostly toward SE and
toward the bottom edge of the fault. This initial expansion phase stops at about 1.5
s. In the second phase (from about 1.5 to 3 s), the rupture keeps growing, but with
low rupture velocity and still with low slip-velocities (few tens of cm/s). In the third
phase, after about 3 s, the rupture accelerates, and reachesthe highest slip-velocities
toward SE and the top edge of the fault (peak slip-velocity ofabout 2 m/s). We see
also that NW of the hypocenter the rupture propagate with lower slip-velocities
(about 0.5 m/s).

The peak slip-velocity distribution [Fig: 4.10 (a)] is consistent with the results
of the Bayesian analysis. We see that near and NW of the hypocenter the rupture
develops with low peak slip-velocities (of the order of 0.5 m/s or less). The highest
slip-velocities are reached in the SE section of the fault (about 1 m/s) and below
the top edge of the fault (about 2 m/s). The final slip distribution [Fig: 4.10 (a)]
shows a maximum value of about 2.5 m, between 4 and 6 km depth. We observe
an elongation of the slip distribution also to SE, whereas NWof the hypocenter we
find the lowest values of slip. The rise time distribution (computed at each grid
point as the time interval between 10 and 90 percent of the final slip) [Fig: 4.10 (c)]
shows a pattern where long rise times (maximum value about 6 s) are located near
the hypocenter, and then decrease approaching the edges of the fault. The rupture
time distribution (computed at each grid point as the time when the slip-velocity
exceeds a value of 1 mm/s) [Fig: 4.10 (c)] shows an initial phase during which the
rupture propagates fast (until about 1.5 s), then slows-down (from 1.5 to 3-3.5 s),
and then accelerates again.

To test the validity of the dynamic model we compare the predicted ground mo-
tion with the observed strong motion and GPS data, and with the predictions of the
best-fitting kinematic model found during the sampling procedure for the Bayesian
analysis. In Fig. 4.11 we compare the ground velocity predicted by the dynamic and
the best-fitting kinematic models with the observed one, at aset of four near-field
stations. These stations are the only included in the computational domain used for
the dynamic rupture simulation. For this set of stations, wesee that the dynamic
model produces almost the same level of fit of the best-fittingkinematic model. For
the fault normal component of station SMN015, the dynamic model can reproduce
the observed waveform even better than the kinematic model.We also compute the
surface static offset at a set of four stations (654, 660, 379, and 381, Fig. 4.12). At
stations 654, and 660 the horizontal displacement vectors produced by the dynamic
model reproduce the observations inside the error ellipses. However, at stations 379
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NW SE NW SE

NW SENW SE

a) b)

c) d)

Figure 4.8: Dynamic stress drop (a), strength excess (b), and slip-weakening distance (c) estimated
from traction vs. slip curves in Fig. 4.7 and interpolated onthe fault surface. We show
also the corresponding fracture energy density distribution (d).

and 381, the dynamic model predictions lie outside the errorellipses, although we
do not observe large discrepancies.

4.5 Discussion and conclusions

Peyrat & Olsen [2004] performed a dynamic inversion for the 2000 Western Tottori
earthquake, using a direct search method based on the Neighbourhood algorithm.
They consider a linear slip-weakening fault model, and assume uniform upper yield
stress and slip-weakening distance (equal to 28 cm). They search for the on-fault
distribution of dynamic stress drop, which is allowed to vary between -2 and 5 MPa
at each subfault. The best-fitting model shows a slip patternextending from the
hypocenter to the top edge of the fault (at 1 km depth), where the maximum slip
(about 2 m) is reached. The maximum slip-velocity is about 0.5 m/s, and the maxi-
mum stress drop is 5 MPa.

Although the model by Peyrat & Olsen [2004] produces a satisfactory level of
fit in the considered frequency range (0.05-0.5 Hz), it differs with what is usually
shown in kinematic images. First of all, there is no evident asymmetry of the slip
pattern with respect to the hypocenter, that is no elongation of slip toward SE. This
feature is shown in all published kinematic images (Semmaneet al. [2005], Festa &
Zollo [2006], Piatanesi et al. [2007], Monelli et al. [2009]), and also confirmed in
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Figure 4.10: Peak slip-velocity (m/s), final slip (m), rise time (s), and rupture time (s) distributions,
resulting from dynamic rupture simulation.

this study. The maximum slip-velocity is less than what estimated in this study and
by Piatanesi et al. [2007] (about 2 m/s). The maximum stress-drop is lower than
what we infer (about 15 MPa) and what computed by Dalguer et al. [2002] (about
30 MPa) from a kinematic image of the rupture process.

Differently to the model proposed by Peyrat & Olsen [2004], the linear slip-
weakening model we derive in this study does not assume a uniform slip-weakening
distance. Moreover, it can explain better what is usually observed in kinematic
images. More importantly, it has been obtained without an explicit optimization
procedure but rather interpreting a mean kinematic slip model using a dynamically
consistent source time function. For the considered set of strong motion stations,
we show that the dynamic model performs practically at the same level of the best-
fitting kinematic model. For the considered set of GPS stations, the dynamic model
is not able to reproduce all the observations inside the error bars, however we do
not see large discrepancies.

We acknowledge that to better understand how well the dynamic model is able
to explain the observations, a larger number of strong motion and GPS stations
should be considered. We plan to perform this analysis as a future work. Moreover,
the fact the static offset of two of four GPS stations cannot be fitted inside the 95
percent confidence level may indicate that the rupture modelcan still be improved.
The dynamic model we derived can be easily used as a starting model for a gradient
based optimization procedure.

Estimating dynamic parameters from past earthquakes is necessary to derive re-
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Figure 4.11: Near-field ground velocity predicted by the best-fitting kinematic model (light gray)
and dynamic model (dark gray) compared with the observed one(black).
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Figure 4.12: Surface coseismic offsets predicted by the best-fitting kinematic model (thick light
gray) and dynamic model (thin dark gray) compared with the observed ones (black).
The limited computational domain used for the dynamic rupture simulation allowed us
to compute surface displacements only at stations 654, 660,379, and 381.
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alistic dynamic rupture models for ground motion simulations of future earthquakes.
Dynamic rupture simulations are computationally expensive and therefore system-
atic dynamic inversions are still of limited applicability. It is important therefore
to derive strategies helping in inferring dynamic rupture parameters, limiting the
number of dynamic rupture simulations, and at the same time limiting the number
of assumptions (e.g. allowing slip-weakening distance to be heterogeneous). Our
study shows that using a mean kinematic slip model (representing the most likely
features of the rupture process) and a dynamically consistent source time function
may help in deriving a dynamic model which, without trial anderror modifications,
produce a level of fit which is comparable to that of a best-fitting kinematic model.
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Conclusions and Outlook

Conclusions

In this thesis I present a methodology for the estimation of kinematic earthquake
source parameters based on a Bayesian approach. The main benefit of using a
Bayesian approach is that it allows to give comprehensive estimate of errors asso-
ciated with kinematic rupture parameters taking into account the full non-linearity
of the problem. From uncertainty estimates for kinematic parameters I also provide
uncertainty estimates for dynamic parameters. In the following I summarize the
main findings of each study.

In Chapter 1 I use the Bayesian approach to infer kinematic rupture parameters
by fitting strong motion waveforms produced by a synthetic rupture model. By us-
ing an optimization algorithm, it is shown explitly how multiple rupture models are
able to reproduce the observed waveforms within the same level of fit, suggesting
therefore that the solution of the inversion should not be expressed in terms of a
single model but rather as a set of models which show certain statistical proper-
ties. I show how in general inferences on rupture parameterscannot be expressed
in terms of Gaussian probability density functions, rendering the usual characteri-
zation of uncertainties in terms of mean values and standarddeviations not correct.
I also show that an optimization algorithm cannot be used to estimate uncertainties,
because the set of models found by optimization do not reflectthe topology of the
misfit function.

In Chapter 2 I consider a real event: the 2000 Western Tottori earthquake. Kine-
matic parameters are inferred by fitting strong motion and GPS data. Inference
results indicate that the best resolved feature of the rupture process is a major slip
patch located between the hypocentre and the top edge of the fault. The presence
of this shallow slip patch is common to all previous studies.In contrast to some
previous studies no significant slip is identified at the bottom of the fault. I also
compare inferences from both strong motion and GPS data withinferences derived
from strong motion data only. In both cases the shallow slip patch is identified. At
other locations, the main effect of the GPS data is in reducing the probability asso-
ciated with high values of slip. GPS data reduce the presenceof spurious fault slip
and therefore strongly influence the resulting final seismicmoment.

125
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In Chapter 3 I investigate how the estimation of dynamic parameters is af-
fected by uncertainties in the kinematic source model. Considering the 2000 West-
ern Tottori earthquake, I select an ensemble of kinematic models obtained through
Bayesian inference which are consistent with the observed strong motion and GPS
data. For each model of this ensemble the spatio-temporal evolution of on-fault
stress is computed. I statistically analyse resolution of static stress drop. I find
that on the same locations where stable high slip is inferred, frequency distribu-
tions of static stress drop values have an approximately Gaussian shape with pos-
itive mean values indicating that on average these locations undergo a weakening
process. However, standard deviation values are of the sameorder of magnitude
of the estimated mean values indicating therefore large uncertainties on the actual
intensity of static stress drop. I show how these large uncertainties are due to a cor-
relation between stress drop values which is inherited froma correlation between
slip values. This shows how the statistical properties of the uncertainties affecting
kinematic parameters are mapped into the estimation of dynamic parameters. De-
spite the difficulty in constraining the rupture process locally on the fault, I find that
a global quantity like radiated energy can be well inferred instead.

In Chapter 4 I derive a linear slip-weakening model for the 2000 Western Tot-
tori earthquake by using a mean kinematic slip model, and a dynamically consis-
tent source time function (regularized Yoffe function). I obtain a dynamic rupture
model able to reproduce the observed kinematic parameters.I compare the pre-
dicted ground motion with the near-field strong motion and GPS data. I find that
the level of fit provided by the dynamic model is comparable tothat of the best-
fitting kinematic model. I consider this result of particular practical importance,
because the dynamic model has been obtained without an explicit optimization pro-
cedure.

Outlook

The wavefield generated by an earthquake rupture in the real Earth is a complex
signal: its analysis can potentially provide detailed knowledge of the physics of the
earthquake source, however even state-of-the-art inversion methods can only extract
a small portion of the information contained in real waveforms.

The major limitation in imaging the details of the earthquake rupture comes
from the narrow frequency band (0-1 Hz) which can be used for waveform fitting.
This is due to the often very poor knowledge of the velocity structure surrounding
the earthquake source, and to the large computational demand required by numer-
ical wave propagation simulations at high frequencies. With the frequency band
limitation, the spatial resolution that can be achieved on the rupture process is of
the order of kilometers.

The modeling of the earthquake source is another important factor especially
for the quality of the rupture parameter estimates. Ideally, a dynamic description
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of the rupture process is preferable over a kinematic one. A dynamic modeling al-
lows to generate spatio-temporal evolutions of slip which satisfy, at least, very basic
physical laws. Kinematic models do not satisfy any physicalconstrain in general,
and given the little information that band limited waveforms can provide, there can
be many kinematic models compatible with the same earthquake. Again, the large
computational demand required by dynamic rupture simulations put a strong prati-
cal limit in the use of this approach for estimating rupture parameters.

With the present limitations, kinematic inversions are theonly effective tool to
image the earthquake rupture. Despite the fact that kinematic source inversions
started almost 30 years ago (beginning of the 80s), the kinematic imaging of the
earthquake source is a problem which is not yet fully solved.First of all, the non-
linearity of the problem has been taken into account only in avery approximate way
up to now (most of the time by providing a best-fitting model obtained using a non-
linear optmization algorithm with very crude uncertainty estimations). The large
discrepancies between source images for the same earthquake provided by different
and indipendent studies show that this is not enough. Without a careful quantifica-
tion of the parameter uncertainties it is not possible to understand which features
of the rupture process are well constrained and which are not, or how different data
sets contributes in constraining rupture parameters.

The Bayesian approach proposed in thesis offers a possible way to image the
earthquake rupture taking into account the full non-linearity of the problem and to
give comprehensive estimates of parameter uncertainties.To better achieve these
goals, several improvements can be foreseen.

Imaging the earthquake source by using a Bayesian approach explicitly shows
that inferring rupture parameters implies combining priorinformation (independent
of the measured data), with information extracted from observations. Two key quan-
tities must be therefore defined: the prior PDF, quantifing our prior knowledge on
model parameters, and the likelihood function, expressinghow well a given model
explains the observations.

In this thesis, the prior PDF has been always assumed to be uniform over the
model space. With this approach, the parameters defining theprior PDF are the
minimum and maximum value for each model parameter. This implies that a good
knowledge of plausible values for each parameter is known before the inversion.
However, this may not be always possible. For instance, in Chapter 2, it can be seen
that for rupture parameters like rise time and rupture time (Fig. 2.11, Fig. 2.12)
posterior marginals are skewed towards the maximum allowedvalue, which sug-
gest that the solution is actually located outside the imposed search space. In order
to avoid the definition of a maximum allowed value, for which prior information
may not be available, the use of prior PDFs whitout “hard” boundaries is an advan-
tage. An example of PDF with “soft” boundaries, and which canbe suitable for
defining prior information for parameters which are only constrained to be positive,
is the log-normal PDF. The main property of a log-normal PDF is that the logarithm
of the variable has a normal (Gaussian) probability density. When the dispersion
parameter goes to infinity, the log-normal distribution tends to a log-uniform distri-
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bution, impling that the logarithm of the variable has a uniform distribution. The
use of a log-normal PDF avoids therefore the definition of a maximum allowed
value, and by considering a large dispersion parameter, a large range of values can
be tested.

The prior PDF can also be used to introduce physical constraints in the inverse
problem. By defining specific prior PDFs for each fault location and by introducing
correlations between neighbouring parameters it is possible to define more physi-
cally consistent source models. A possible way to derive a dynamically consistent a
priori information is by using a Monte Carlo approach. Given acertain fault geom-
etry and velocity structure, given a certain hypocenter locations, it is possible to
generate an ensamble of dynamic rupture models (for instance by using heteroge-
nous initial stress distributions), whose statistical properties can be used as prior
information to constrain kinematic parameters.

Together with the prior information, the posterior PDF requires the definition
of the likelihood function which quantifies how well a model explains the observa-
tions. As expressed in Eq 1.2, the likelihood function should take into account the
uncertainties in both data and forward modeling.

In this thesis, the likelihood function used in the analysisof the Tottori earth-
quake quantifies the “quality” of a model only in terms of theL2 norm of the differ-
ence(observations−predictions). Uncertainties were not included in the calcula-
tion of the data misfit for ground motion waveforms because oflimited knowledge
of both data and modeling errors. Developing strategies forthe estimation of un-
certainties in both data and modeling would be therefore a significant improvement
towards a more correct computation of the data misfit function.

When fitting strong ground motion waveforms, uncertainties in data (due for
instance to seismic noise) are usually negligible with respect to uncertainties in
forward modeling. The latter are responsible for most of themisfit and can be both
aleatory (e.g. due to intrinsic uncertainties in the estimation of wave velocities), and
epistemic (e.g. due to an insufficient knowledge of the velocity model). Therefore,
together with velocity model uncertainties, the proper computation of the likelihood
function requires removing epistemic uncertaintis from data. The use of 3D veloc-
ity models which can take into account 3D path effects and site effect is therefore
high desirable in this regard. A more realistic modeling canbe also achieved by
using empirical Green’s functions. If reliably estimateed, empirical Green’s func-
tions may also help in expanding the frequency band used for waveform fitting and
potentially provide better resolution on the earthquake rupture process.
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