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Abstract

A dry snow slab avalanche is released by a sequence of failure processes in the snow cover.

When a weak layer in the snow cover is damaged over a certain area, the weak layer starts

to fail progressively in slope parallel direction. This shear failure disconnects the overlaying
slab from the basal layer. Finally, a tensile fracture occurs in slope normal direction across

the layering which releases the slab. For a better understanding of these mechanisms a

well founded understanding of the fracture mechanical properties of homogeneous and

layered snow is essential.

The aim of this work was to investigate the fracture mechanical properties of snow under

tension (mode I) and under shear (mode II) with homogeneous and layered snow samples

on the basis of experiments in the cold laboratory and in the field and to relate the results

to dry slab avalanche release. The experimental work was structured in three groups of

fracture experiments: experiments in mode I with homogeneous snow samples in the cold

laboratory, experiments in mode II with layered snow samples in the cold laboratory and

mode II experiments with in-situ snow beams in the field.

For the mode I experiments, beam-shaped snow specimens cut from homogeneous layers
of naturally deposited snow were subjected to three-point bending and cantilever beam

tests. Uncracked specimens were used to determine the tensile strength of snow and

notched specimens to determine the critical stress intensity factor in mode I. The three-

point bending tests provided higher values than the cantilever beam tests. Furthermore

the cantilever beam tests depended on cantilever length. The differences between the test

methods were significant and were attributed to non-negligible size and shape effects.

The fracture process zone was experimentally determined and was estimated to be in

the order of several centimeters, implying that snow has to be considered as a quasi-

brittle material at the scale of our experiments. For a quasi-brittle material linear elastic

fracture mechanics is applicable only with a size correction. As a method to correct the

critical stress intensity factor to the size-independent fracture toughness, K]r, which is

a material property, the equivalent fracture toughness, KfIc, was determined according

to Bazant and Planas (1998) and a size correction function was proposed. The results

for Kcn, ranged from O.SkPay/m for a density of p = 150kg/m3 up to GkPay7 for

a density of p ~ 350kg/W for typical slab layers. It was confirmed that snow has an

extremely low value of KIc. Fracture toughness is expected to be size dependent up to
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the scale of a slab avalanche.

Layered snow samples including a weak layer were tested in mode II to determine the

energy release rate of a crack propagating along the weak layer A new experimental

setup based on a cantilever beam experiment was designed and proved to be applicable
for layered snow samples In absence of an analytical solution, the finite element method

(FEM) was used to simulate the experiments and determine the energy release rate

numerically A critical energy release rate Gj — 0 04 ± 0 02 J/m2 was found for the

tested weak layers Gf was primarily a material property of the weak layer For similar

snow densities, mode I fracture toughness results were about two times as large as for

the tested weak layers in mode II Two analytical approaches were tested and compared
to the FEM results Both analytical approaches, a homogeneous cantilever beam with

a deep crack, and a bilayer beam with interface crack were highly correlated with the

results obtained from the FE model The analytical results of both approaches were

too large by a factor of about two Due to the higher coefficient of determination, the

cantilever beam approach should be preferred In addition, the dynamic Young's modulus

of the tested snow samples was determined The results for the Young's modulus were

strongly correlated with an index for the Young's modulus derived from a penetration
resistance profile recorded with a snow micro-penetrometer SMP

A field test was developed in which a weak layer in an isolated snow beam was tested in

mode II in-situ on a slope The critical energy release rate Gf was determined numerically

in a FEM simulation The result for the tested weak layers was Gj — 0 07±0 01 J/m2 It

was found that slope normal bending of the slab contributed considerably to the energy

release rate G of our tests and was more important than the component due to shear

loading for angles between 30° and 45° Critical crack sizes of about 25 cm were required

to start fracture propagation along the weak layer of the isolated beams

By applying new test methods to snow and acquiring a considerable data set of fracture

mechanical properties of snow in laboratory and field tests, it was possible to improve

the knowledge and the understanding of the fracture mechanical behaviour of snow It

could be shown that for fracture propagation the material properties of the weak layer
as well as of the overlaying slab play an important role Whereas the energy to fracture

a weak layer depends on the material properties of the weak layer, the available energy

for crack propagation depends mainly on the material properties of the overlaying slab

and the slope normal collapse height of a weak layer It is expected that this behaviour

holds also for the scale of a slab avalanche
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Zusammenfassung

Bevor eine Schneebrettlawine abgleitet, kommt es in der Schneedecke zu einer Reihe

von Bruchprozessen Sobald eine genügend grosse Fläche einer Schwachschicht in der

Schneedecke geschädigt ist, kommt es zu einer selbstständigen Bruchausbreitung ent¬

lang dieser Schwachschicht in hangparalleler Richtung. Durch diesen Scherbruch wird

das Schneebrett von der darunter liegenden Schicht getrennt. Unter der zunehmenden

Last kommt es zu einem Zugbruch senkrecht zur Hangrichtung der zum abgleiten des

Schneebrettes führt. Um diese Mechanismen besser verstehen zu lernen ist es wichtig,
vorerst einmal die bruchmechanischen Eigenschaften von homogenem und geschichtetem
Schnee zu kennen.

Die Zielsetzung dieser Arbeit war es, in Labor- und in Feldexperimenten die bruchme¬

chanischen Eigenschaften von Schnee unter Zugbelastung (Mode I) und unter Scherbe¬

lastung (Mode II) experimentell zu bestimmen und die Resultate auf die Auslöseprozesse

einer Schneebrettlawine zu übertragen. Die experimentelle Arbeit wurde in drei Gruppen

unterteilt: Mode I Experimente mit homogenen Schneeproben im Kältelabor, Mode II

Experimente mit geschichteten Schneeproben im Kältelabor und Mode II Experimente

mit Schneeblöcken im Gelände

Für die Mode I Tests wurden balkenförmige Schneeproben aus einer homogenen Schicht

der Schneedecke ausgestochen. Diese wurden in Drei-Punkt-Biegeversuchen und in Bal¬

kenversuchen mit einem Ausleger (Cantilever beam tests) getestet. Dabei wurden unge¬

kerbte Proben verwendet um die Zugfestigkeit zu bestimmen und vorgekerbte Proben zur

Bestimmung der kritischen Spannungsintensitätsfaktoren. Die Resultate der Drei-Punkt-

Biegeversuchen fielen höher aus als diejenigen der Balkenversuche. Die Resultate der Bal¬

kenversuche wurden zudem durch die Länge des Auslegers beeinflusst. Die signifikanten
Unterschiede zwischen den verschiedenen Testmethoden wurden nicht vernachlässigbaren
Grössen- und Formabhängigkeiten zugeordnet. Die Grösse der Bruchprozesszone wurde

aus Experimenten auf einige Zentimeter geschätzt. Dies zeigt, dass für die Grössenord-

nung unserer Experimente Schnee als quasi-brüchiges Material angesehen werden muss.

Handelt es sich um ein quasi-brüchiges Material, ist die linear elastische Bruchmechanik

nur mit einer Grössenkorrektur anwendbar. Um die gemessenen kritischen Spannungsin¬
tensitätsfaktoren auf die grössenunabhängige Bruchzähigkeit, KjP, zu korrigieren, wurde

die äquivalente Bruchzähigkeit KJr, nach Bazant und Planas (1998) bestimmt. Für ty-
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pische Schneeschichten reichten die Resultate für Kjc von O.SkPav'fn für eine Dichte

von p = 150 kg/m3 bis 6kPav/m für eine Dichte von p = 350kg/m3. Damit konnte

bestätige werden, dass Schnee eine extrem niedrige Bruchzähigkeit hat. Es wird erwartet,

dass die Bruchzähigkeit bis hin zur Grösse eines Schneebrettes Grössenabhängig ist.

Aus Experimenten mit geschichteten Schneeproben die eine Schwachschicht enthiel¬

ten wurde die Energiefreisetzungsrate in Mode II bestimmt. Dafür wurde ein neuer

experimenteller Aufbau entwickelt, der auf einem Balkenexperiment beruht. Da kei¬

ne analytische Lösung für die Bestimmung der Energiefreisetzungsrate zur Verfügung

stand, wurde diese numerisch, mittels der finiten Element Methode (FEM) bestimmt.

Für die getesteten Schwachschichten wurde eine kritische Energiefreisetzungsrate von

Gf — 0.04 ± 0.02 J/m2 bestimmt. Gf war in erster Linie eine Materialeigenschaft der

Schwachschicht. Für Schnee vergleichbarer Dichte war die Bruchzähigkeit in Mode I etwa

doppelt so gross wie in Mode II. In der Folge wurden die FEM Resultate mit den Resulta¬

ten zweier adaptierter analytischer Lösungen verglichen. Es handelte sich dabei um eine

analytische Lösung eines homogenen Auslegerbalkens mit einem tiefen Riss und einer

Lösung für einen Balken bestehend aus zwei Schichten mit einem Schichtgrenzenriss.
Die Resultate der analytischen Lösungen waren gut korreliert mit den FEM Resultaten,

aber überstiegen diese für beide Lösungen um einen Faktor zwei. Auf Grund des höheren

Bestimmtheitsmasses, sollte die Auslegerbalken-Lösung vorgezogen werden. Zusätzlich

wurde das Elastizitätsmodul der getesteten Schneeproben bestimmt. Die Resultate waren

gut korreliert mit einem Elastizitätsindex der aus einem Eindringwiderstandsprofil eines

Schnee-Mikro-Penetrometers (SMP) bestimmt wurde.

Ein Feldtest wurde entwickelt in dem Schwachschichten in allseitig isolierten Schnee¬

blöcken direkt im Hang in Mode II getestet wurden. Die kritische Energiefreisetzungsrate
wurde numerisch in einer FEM Simulation bestimmt. Für die getesteten Schwachschich¬

ten lag die kritische Energiefeisetzungsrate bei Gf = 0.07 =t 0.01 J/m2. Ein Durchbie¬

gen des Schneebrettes rechtwinklig zum Hang trägt erheblich zu G bei und kann für

Hangneigungen zwischen 30° und 45° den Beitrag auf Grund der Scherbelastung so¬

gar überwiegen. Kritische Schnittlängen von 25 cm waren nötig, um eine selbstständige

Bruchausbreitung entlang der Schwachschicht auszulösen.

Mit den neuen Testmethoden konnte im Labor und im Feld eine repräsentative Da¬

tenmenge der bruchmechanischen Eigenschaften von Schnee gesammelt werden. Damit

war es möglich das Wissen und Verständnis um die Bruchmechanik von Schnee zu er¬

weitern. Es konnte gezeigt werden, dass für die Bruchausbreitung im Schnee sowohl die

Schwachschicht als auch das darüber liegende Schneebrett eine entscheidende Rolle spie¬

len. Während die Energie die benötigt wird um eine Schwachschicht zu brechen von den

Eigenschaften der Schwachschicht abhängt, hängt die für den Bruchprozess zur Verfü¬

gung stehende Energie vor allem vom Schneebrett ab. Es wird angenommen, dass dies

nicht nur für den experimentellen Fall, sondern auch für den Fall eines Schneebrettes

gilt.
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List of Symbols

Symbol Description Unit

A Cross sectional area m2

a Crack length or cut length m

da., Aa, Crack or cut extension m

a,. Critical crack or cut length m

b Ligament width m

D Specimen or structure size m

Do Characteristic structure size m

E Young's modulus Pa

F Applied force N

Vf
G

Force leading to specimen failure

Energy release rate

N

J/m2
Of Critical energy release rate J/m2

Gc Effective critical energy release rate J/m2

9 Gravitational acceleration m/s2
JI Slab thickness m

h Specimen height m

K Stress intensity factor Pa^m

k-i, 11,111
Stress intensity factor in mode 1, mode II and mode III Pay/m

a; Fracture toughness Pav'ïïï

ax Equivalent fracture toughness Pa^

A'/ Critical stress intensity factor Pa^m
L Length of protruding part (CB-test) m

I Specimen length m

M Moment Nm

MF Bending moment due to applied force (per specimen width) N

Ma Bending moment due to body weight i per specimen w dth) N

III: Mass kg
P Applied load N

R Size of the fracture process zone m

Rl: Maximum size of the fracture process zone m

r, f Position, position vector m
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.s

/

U

u*

a

K

vf

y,
w

"'I

Shear modulus

Span (Distance between supporting points, 3PB-test)

Layer thickness

Stored elastic strain energy

Complementary strain energy

Displacement
Elastic energy

Fracture energy

Gravitational energy

Specimen or body width

Specific fracture energy

Pa

m

m

J

J

m

J

J

J

m

J/m2

Greek

a

OU)
v

i

p

(T, <7(

&roh

acoh

aN

T

T,

Inclination of weak layer to the vertical

Crack tip opening displacement (CTOD)
Deformation

Deformation rate

Heaviside step function

Poisson 's ratio

Bimaterial constant

Density

Stress, stress component (/' = 1, 2, 3; j — 1, 2, 3)
Tensile strength (Maximum stress a material can

sustain. Equal to 07 if no crack is present)
Cohesive stress (cohesive crack model)
Maximum cohesive stress (cohesive crack model)
Nominal failure stress = nominal strength
Nominal stress (Load divided by the original undeformed

and uncracked cross section)
Effective stress (Load divided by the remaining cross section)
Plastic yield strength (Stress that is necessary to initiate

inelastic behaviour in ductile materials)
Shear stress

Shear strength
Shear stress due to a gravitational load

Peak (maximum) shear stress

Residual shear stress

Position angle (polar coordinate system)
Slope angle, inclination of weak layer to the horizontal

Phase angle of loading

m

1/s

kg/m3
Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Pa

Others

Flexural rigidity Nm
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Subscript
b bottom

c critical (for material properties)
f failure

t top

WL weak layer

y yield, yielding

VII



Seite Leer /
Blank leaf



Contents

Acknowledgements v

1 Introduction 1

1 1 Living with avalanche danger 1

1 2 Snow as a material 2

1 3 Snow avalanche formation 5

1 4 Dissertation outline 12

2 Fracture mechanics 15

2 1 Definition and history 15

2 2 Strength of materials vs fracture mechanics 16

2 3 Linear elastic fracture mechanics 17

2 3 1 Energy release rate and specific fracture energy 17

2 3 2 Stress intensity factor and fracture toughness 18

2 3 3 Energy release rate versus stress intensity factor 20

2 4 Non linear extensions 20

2 4 1 Brittle, ductile and quasi-brittle fracture behaviour 21

2 4 2 Fracture process zone 22

2 4 3 Consequences of quasi brittle behavior 24

2 5 Failure of interfaces 27

2 5 1 The complex stress intensity factor 27

2 5 2 Energy release rate for an interface crack 28

2 6 Application of fracture mechanical concepts to snow 29

2 6 1 Experimental studies 29

2 6 2 A model for shear fracture propagation 30

2 6 3 A model for a slope normal displacement of the slab 32

3 Methods 35

3 1 Standard measurement techniques for snow characterization 35

3 2 Laboratory tests 37

3 2 1 Sample collection 37

3 2 2 Three-point bending test 38

3 2 3 Cantilever beam test 41

IX



Contents

3 2 4 Shear fracture test 43

3 2 5 FE model of shear fracture test 45

3 3 Field test 47

3 3 1 FE model of field test 49

3 4 Young's modulus 49

3 4 1 Dynamic measurement with cyclic loading device 51

3 4 2 Derived from penetration resistance 51

3 5 High-speed photography 53

4 Results 55

4 1 Fracture in homogeneous snow samples 55

4 11 Behaviour of snow under loading 57

4 12 Tensile strength 58

4 13 Critical stress intensity factor in mode I from 3PB-tests 59

4 14 Critical stress intensity factor in mode I from CB-tests 61

4 15 Quantification of the size effect 63

4 16 Fracture process zone 68

4 17 Application of the failure assessment diagram 69

4 18 Fracture speed in mode I 70

4 2 Fracture in layered snow samples 73

4 2 1 Tested weak layers 73

4 2 2 Young's modulus 75

4 2 3 Energy release rate in mode II 79

4 2 4 Comparison of analytical approaches to FEM results 81

4 2 5 Comparison of mode I and mode II results 83

4 3 Fracture of weak layers on slopes 85

4 3 1 Shear strength of the tested weak layer 85

4 3 2 Energy release rate for the tested weak layer 88

4 3 3 Influence of bending 90

4 3 4 Analytical approach for the field experiments 95

5 Discussion 99

5 1 Fracture in mode I 99

5 11 The load-displacement curve 99

5 12 The bending experiment to determine tensile strength 100

5 13 Comparison of 3PB-tests and CB-tests 101

5 14 Fracture speed 103

5 2 The limitation of LEFM for snow 105

5 2 1 The size correction function 105

5 2 2 The fracture process zone 106

5 2 3 The FAD 107

5 3 Fracture in mode II 108

53 1 Determination of the Young's modulus 108

5 3 2 Energy release rate in a mode II fracture 110

x



Contents

5 3 3 Comparing numerical and analytical solutions 111

5 3 4 Comparing mode I and mode II results 112

5 4 Field experiments 112

5 4 1 Failure behaviour 112

5 4 2 Energy release rate measured in the field 113

5 4 3 FEM results 114

5 4 4 Analytical approach 115

5 4 5 Further use of the field test 116

6 Conclusions 117

6 1 Summary 117

6 2 Conclusions 117

6 3 Outlook 122

Bibliography 125

A Calculation of errors 133

A 1 The error of aN 133

B Stratigraphie snow cover profiles 135

Acknowledgements

Curriculum Vitae

XI



Chapter 1

Introduction

1.1 Living with avalanche danger

The oldest documents reporting on avalanches can be traced back to the time between

the 12th and 14th century. In this period, the Walser and the Alemanni started to

settle even the remotest valleys of the European Alps in search of new living space

(Ammann et al., 1997). From that time on the settlers were increasingly exposed to

the specific dangers of the alpine terrain including mud flows, rock falls, landslides and

snow avalanches, the subject of this thesis. Step by step they learned to live with the

danger and began to search for protection. Already in medieval times people recognized
that avalanche frequency increased when they cut down too much of the alpine forest.

Letters dating from this time testify that the clearing of forest was prohibited in some

exposed areas. In the 19th century people started to build avalanche defence structures

high up the mountain slopes in areas where avalanches tended to release. First they used

wood or stones to build up fences or walls which were replaced by large steel structures

from the beginning of the 1950ies. Countless damage could be prevented since then,

but up to now it is not possible to control the danger caused by avalanches completely.
Avalanches can not be predicted in space and time nor can their extension and runout

path be foreseen in detail.

Nowadays avalanches are not only threatening alpine infrastructure like buildings, roads

or railways but also an increasing number of people following their outdoor activities

in the snow covered mountains. Skiing and snowboarding beyond the controlled runs

has become very popular in recent years and about 90% of an average of 26 fatalities

per year in the Swiss Alps can be attributed to winter sports (Tschirky et al., 2000).
The fatal human triggered avalanches are in 90% triggered by the victims or by another

member of their group (Schweizer and Lütschg, 2001), or in other words, the victims

actively expose themselves to danger.

Since the 1940ies the Swiss avalanche warning service has provided information on the
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Chapter 1 Introduction

actual avalanche situation in Switzerland. Today, a forecast of the avalanche danger
for the next day, the so called avalanche bulletin1, provides the basis for decisions of

local authorities, persons in charge of road safety, ski patrols and backcountry skiers.

The avalanche forecast has proved to be an indispensable tool to prevent accidents over

the past years. However, the predictability of the avalanche danger is limited. Today,
avalanche forecasters use a heuristic approach to estimate the avalanche probability and

characteristics. For a specific situation, the influence of the contributory factors, such

as terrain, meteorological conditions (precipitation, temperature, wind, radiation) and

snowpack including its stability, are empirically weighted. Provided that the relevant

factors are considered, the precision of the forecast depends on how precise every con¬

tributory factor can be determined, if measurable at all. Especially the stability of the

snowpack is still difficult to assess. Another approach to assess avalanche danger would

be to study and model the physical and mechanical processes of avalanche formation

(Schweizer et al., 2003).

With the aim to increase and improve the knowledge of the physical and mechanical

processes involved in avalanche formation, an internal research program was initiated

at the Swiss Federal Institute for Snow and Avalanche Research, SLF, five years ago.

The results of this program should help to increase the predictability of the avalanche

release potential and should further improve the avalanche warning in general. Therefore,

several research projects were launched including projects on spatial variability of the

snow cover, on an improved description of the vertical layering of the snow cover with

special emphasis on so called weak layers, on modelling of the slab release process in

3D, and on fracture nucleation and propagation in the snow cover. The present work is

a contribution to the last topic.

1.2 Snow as a material

Consulting the Encyclopaedia Britannica on "Snow" results in: "Snow is the solid form of

water that crystallizes in the atmosphere and, falling to the Earth, covers, permanently
or temporarily, about 23 % of the Earth's surface. " It is true that the atmosphere is the

only place where natural snow is formed. If not, the development of man made snow

would probably never have been necessary. However, we will only focus on natural snow

in this work.

The appearance of snow lying on the ground is completely different from the well known

hexagonal shape of a snow flake (Figure 1.1.a). In the following, the most relevant

microstructural and mechanical properties of natural snow will be described. The order

of the properties in the following list was chosen in order to give a logical sequence of

the necessary definitions. The properties were not arranged according to their relevance.

1Between November and April, the avalanche bulletin is provided on a daily basis and available free

of charge on the internet: http://www.slf.ch/avalanche/bulletin-de.html
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1.2 Snow as a material

(a) (b) (c)

Figure 1.1: (a) Typical hexagonal snow flake, 1mm in diameter (b) Small rounded

grains, 0.25-0.5 mm. (c) Depth hoar, 1-2 mm, (Pictures: archive SLF).

Highly temperature dependent: The temperature of the seasonal snow cover is close

to its melting point Tsnow > 0.95 Tmtll (rfm,u — 273.2 K) resulting in a strong

temperature dependence of all mechanical properties When the temperature in¬

creases in a snow slab, the microstructural stability tends to increase on a long

term, because, due to the metamorphism, bonds grow more quickly (McClung,

1996). However, on a short term the stiffness or hardness of a slab decreases

with increasing temperature favouring fracture processes in a slope (Schweizer
and Jamieson, 2003). This shows that it is of great importance to control the

temperature while performing mechanical experiments with snow. The use of a

cold laboratory can guarantee the best possible control over temperature.

Sintering: Sintering is a thermal process in which particles are bonded together via

mass transport events (German, 1996). Sintering is used in industry to form many

objects out of powders. Snow and ice are probably the only natural materials that

experience this effect without external force. This is a result of the existence of

snow close to its melting point. If two snow blocks are brought into contact, even

without pressure, they start to sinter together within seconds, or in other words,

snow has the ability to "heal" after a fracture. The same happens when snow

flakes touch the ground and get in contact with each other, they start to sinter

and change from an almost cohesionless to a bonded, porous or foam like material

with a complex, three-dimensional microstructure.

Complex micro structure: Natural snow is an ice-matrix filled with air and water

vapour (Figure 1.2). When the snow temperature is around 0°C, the ice-matrix

can also contain water. Very soft, newly fallen snow has a density (/;„„„„) of about

60kg/m3. Well settled old snow has a density of about 550kg/m3, above this

density one speaks of firn. Hence, a relative density range {piriow/p><-r) of 0.05

to 0 60 results, where the density of ice is plce = 917kg/m\ This corresponds

to a porosity of 95% to 40%. At first sight snow seems to be comparable to

other cellular solids such as wood, bone or industrial foams. Kirchner et al. (2000)

suggested to describe snow as a foam of ice and to use the theory of cellular

3



Chapter 1 Introduction

Table 1.1: Snow compared to other porous materials. Data from Gibson and Ashby

(1997).

Material Density Relative density Porosity Tensile strength

p (kg/mH) p/pwhd or (kPa)

Snow 50-550 0.05-0.60 40%-95% 0.5-200

Cancellous Bone 95-1330 0.05-0.70 30%-95% 2'000-20'000

Wood 200-750 0.13-0.50 50%-87% 70'000-100'000

materials of Gibson and Ashby (1997) for interpreting mechanical data of snow.

However, there is a difference between most cellular solids and snow: Snow includes

a lot of ice structures protruding into space with no connection to the surrounding

ice-matrix. Such structures contribute to the ice mass but they do not contribute

to the overall strength of the material, because they can not take any load. This

leads to the fragile nature of snow and to a low tensile strength (Table 1.1).

Brittle to ductile transition: The behaviour of snow under loading, depends very

much on how fast it is loaded. For fast loading, i.e. for high strain rates

(è > 10~;is-1), snow behaves brittle and can approximately be considered as

linear elastic material. (Limitations will be discussed in Section 2.4). For low strain

rates (è < 10~r>K~'), snow behaves ductile and has to be considered as viscoelastic

material. A transition from brittle to ductile behaviour can be found at a strain rate

of approximately 10_1s 1
depending on temperature and microstructure (Narita,

1980). Snow creep is a common phenomenon in the ductile range and the de¬

termination of snow creep forces on avalanche defence structures was one of the

problems which prompted the study of snow mechanics in the first half of the 20th

century (Bader et al., 1939). Avalanche formation however, involves fast loading

processes and therefore the brittle range will be of relevance in this thesis.

Low specific strength: The very brittle nature of snow is manifested in its low specific

strength, meaning the tensile strength divided by the density {u,/p). Jamieson

and Johnston (1990) found a relation between tensile strength of snow and snow

density of a,, - 79.7 ('pjplcc)2'39 kPa, which might hold up to densities of about

350kg/rn3. As an example this relation leads to a tensile strength of 2.1 kPa

for a snow density of 200kg/m3. The density of ice pwe is 917kg/m3. Thus,

for a very low snow density of GOkg/m3 a specific strength of 2Nm/kg results.

For 350kg/m3 the specific strength equals 23Nm/kg. These are extremely low

values compared to the specific strength of ice, 10'OOONm/kg (<r„f = 9MPa),
or aluminium, 30'000Nm/kg. Even commonly used industrial foams have much

larger specific strengths ranging from 1000 to 10'000Nin/kg.

Metamorphism: Snow microstructure changes with time due to its existence close

to the melting point. Ice sublimates in the snow cover and if a vapour pressure

4



1 3 Snow avalanche formation

Figure 1.2. Three-dimensional reconstruction of a snow sample imaged by micro com¬

puter tomography. Fine rounded grains on top of an ice layer. Below the ice layer are

faceted grams (M Schneebeli, SLF)

gradient is present, the vapour is transported upwards along the gradient and finally

recondensates at a colder position in the ice-matrix (Arons and Colbeck, 1995)
These processes have a time scale of hours to days The ice-matrix is commonly

divided in grains which are connected by bonds. The metamorphism changes the

shape and the size of the grains Formerly rounded grains (Figure 1.1.b) change to a

more angular shape (Figure lie) and increase in size. The various grain shapes are

classified in gram types (Colbeck et al
, 1990). Although the mechanical properties

of snow consisting of different gram types can vary strongly, snow of different grain

types can have the same density Therefore, density is not a sufficient criterion to

characterize mechanical properties Additional to the density, the grain type has

always to be specified

1.3 Snow avalanche formation

Snow avalanches are generally divided in two categories, loose snow avalanches and slab

avalanches (e g McClung and Schaerer, 1993, p 61) Loose snow avalanches start at

a single point at the snow surface and move down the slope as a cohesionless mass

spreading out to a triangular shape, comparable to the slipping of sand Generally, only

a cohesionless surface layer is involved Slab avalanches consist of a cohesive snow slab

that is released over a plane of weakness (Figure 1 3). During the release the slab breaks

apart Slab avalanches are far more dangerous than loose snow avalanches because they
involve much larger snow masses and higher speeds. Slab avalanches can further be
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Figure 1 3 Dry snow slab avalanche released at Gnaletsch Switzerland in March 2006

divided in dry snow and wet snow avalanches While wet snow avalanches occur mainly
in spring in the European Alps when temperatures are rising dry snow slab avalanches

are endangering people and infrastructure during the whole winter season and can be

attributed for most of the fatalities In this thesis we concentrate on the formation of

dry snow slab avalanches

Snow avalanche formation is an interplay between several factors The five most relevant

formation factors and therefore the most contributing factors to avalanche danger are

terrain (a slope angle of more than 30 is required) precipitation (snow fall occasionally

ram) temperature (including radiation effects) wind and the snow cover (Schweizer
et ai 2003)

The natural snow cover is vertically layered comparable to a sandwich Each layer is

the result of a snow fall or a wind transport event Each interface between two layers
was once the surface of the snow cover and was influenced by the atmosphere before it

was buried by a new layer of snow The layers can be characterized and distinguished

according to the gram type the gram size and the hardness A critical situation occurs

when two layers are badly connected either because the bonds at the interface are weak

or because in between is a small layer that is weaker than the adjacent layers below and

above (Figure 1 4) A weak layer or an interface below a thicker cohesive slab within

the snow cover is a prerequisite but not a sufficient condition for slab avalanche release

Ä W%0»
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1.3 Snow avalanche formation

Figure 1,4: (a) A weak layer consisting of buried surface hoar crystals, collapsed on

the left side and still intact on the right, from Jamieson and Schweizer (2000) (b)
Crown fracture of an avalanche. A cohesive slab lays on top of a thin weak layer, from

Schweizer et al (2003)

The properties of the overlaying slab have also to be taken into account (McClung and

Schweizer, 1999)

Up to now, there is practically no hard evidence about how a slab avalanche is released.

This is due to the fact, that all essential processes occur in the snow cover and can not

directly be observed. A closer look at the snow cover while a slab avalanche is released

would simply be too dangerous However, based on observations of slab triggering by

persons or explosives, many of them recorded on videotape, there is indirect evidence

that the release process can be divided in three successive steps (Figure 1.5): First, a

fracture is initiated in a weak layer, then the weak layer fails progressively in a slope

parallel direction and finally a tensile fracture occurs vertical to the slope which releases

the avalanche.

The terms fracture and failure are used as follows in this thesis: The term fracture is

used to describe an explicit fracture mechanical process in tension or shear. The more

general term failure is used, when it is not clear from a macroscopic point of view,

if the process can be treated in a classic fracture mechanical sense. However, from a

microscopic point of few, any failure in snow will involve fracture of ice bonds, thus the

distinction between fracture and failure is also a matter of scale

1. Failure initiation: A failure in a weak layer can be triggered either artificially,

by an abrupt stress increase due to a skier or the detonation of an explosive, or

alternatively, the failure can be triggered naturally, by increasing stress due to a

snow fall event or wind accumulated snow. The majority of dry slab avalanches

7
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Figure 1.5: Schematic illustration of the slab release process in three steps: Triggering
of a failure in a weak layer by a skier (1) Propagating failure along the weak layer

(2) Tensile fracture of the slab (3).

release due to loading by new snowfall (McClung and Schaerer, 1993). Once an

initial failure has reached a critical size, it leads to a progressive self-propagating
failure.

2 Progressive failure of weak layer: After an initial failure has reached a certain

size, a self-propagating failure spreads out in the weak layer in all directions, similar

to the circular waves after a stone has been thrown into water Self-propagating
means that no further increase of the load is needed to propagate the failure

This failure was described as a fracture mechanical process where a crack in the

weak layer is loaded in shear due to the inclination of the slope (e.g. McClung,
1979: Schweizer and Jamieson, 2003) However, observations show that the fail¬

ure of weak layers include a vertical collapse (Figure 1.4a). Recently, the propaga¬

tion velocity of a collapse in a weak layer was measured in flat terrain (Johnson
et al., 2004) Measurements in inclined terrain showed that failures of the tested

weak layers were accompanied by a slope normal displacement (van Herwijnen and

Jamieson, 2005). The assumption that the failure of a weak layer includes a shear

fracture and a compressive failure seems justified.

3. Tensile fracture: Once the loading due to the weight of the separated slab gets

large enough a tensile or crown fracture crosses the overlaying slab layers (Figure
1 4b) The tensile fracture occurs upslope of the fractured weak layer area because

tensile stresses are largest there. This fracture combined with two shear fractures

on both sides of the slab and a compressive failure at the lower end of the slab

8



1.3 Snow avalanche formation

finally releases the slab which slips downslope over the plane of weakness (Figure

1.3).

One crucial question in the research of avalanche formation is how large an initial failure

in a weak layer has to be to become critical, leading to failure propagation without further

loading. This corresponds to the transition between step one and step two in Figure 1.5.

A further question is, once a failure has occurred (step 1) and propagates (step 2), if it

still can be arrested by spatial variations in the weak layer. If failure propagation would

be arrested, then the failure would most possibly not lead to an avalanche release.

In the following, a summary of recent contributions to the research of avalanche formation

is given. The contributions are divided in three groups according to their main focus. The

division is meant to give a clearer picture of the topic by collecting contributions that

base on similar ideas thereby highlighting interconnections between the contributions.

However, the division shall not make the impression that the presented contributions and

theories are contradictory, they simply approach the avalanche formation process from

different directions.

Failure of weak layer: Focus on shear fracture

McClung (1979) started to apply fracture mechanical concepts to model dry snow slab

avalanche release, because snow strength turned out to be not a sufficient criterion to

determine if a snow slab can be released or not (McClung, 1979, 1981, 1987). He focused

on ductile shear failure of the weak layer, followed by shear fracture and propagation. His

two dimensional model is based on the work of Palmer and Rice (1973) which describes

the growth of a slip interface in a clay mass. A slope parallel fracture in mode II and

III is driven by the stress concentrations at the crack tip that form the boundary of the

fractured area (Figure 1.6). The model will be discussed in detail in Section 2.6.2.

The numerical models of Bader and Salm (1990) and Stoffel and Bartelt (2003) base

on a similar idea. They assume a shear crack propagation based on a linear elastic

fracture energy approach. Bader and Salm (1990) assumed an a priori existing zone of

weakness (deficit zone) in a weak layer of length 2o (Figure 1.6). Based on their model,

Schweizer (1999) calculated the length of the deficit zone that is needed for brittle

fracture propagation to be between 5 and 35 m, for typical slab properties. By reviewing
the existing slab release models, Schweizer (1999) stated that in general a critical length
of between 0.1 and 10 m can be calculated. The results of Stoffel and Bartelt (2003)
imply that an existing deficit zone in a weak layer of more than 8 m is required to start

brittle fracture propagation. McClung and Schweizer (1999) stated that for the case of

rapid loading (e.g. induced by a skier) the critical length for fracture propagation would

reduce to 0.1-1 m.

The models summarized above have in common that the existence of a deficit zone of a

considerable size with zero or negligible strength is a prerequisite. However, nobody has

9



Chapter 1 Introduction

£\ü09
^

»à#
aoo

se»°

fc**1^

Figure 1.6: Snow slab release models with preexisting weakness (deficit zone) A two-

dimensional slope inclined with a slope angle </? and slab height H including a deficit

zone of length 2« Slope parallel shear stress distribution for two models: McClung

(1979) in the middle and Bader and Salm (1990) at bottom, where t(J is the shear

stress due to the slab, tp the peak stress and t, the residual stress. After Schweizer

et al. (2003).

ever observed such a pre-existing crack in a snowpack. And if such a crack or zone would

exist, a most recent contribution by Birkeland et al (2006) indicates that sintering

processes would increase the strength between the fractured layers within minutes to

hours.

Bazant et al. (2003) applied the model of McClung (1979) to formulate a size effect law

for fracture triggering in dry snow slabs Bazant et al (2003) suggested that there is a

strong thickness effect on the fracture toughness in mode II with the fracture toughness

increasing as snow thickness to the power of 1.8 {Kllc ex H18). They stated that by

fitting the proposed size effect law to fracture data for various slab thicknesses would

permit to identify material fracture parameters. This has been done by McClung (2005b).
He combined field data with the cohesive crack model to yield estimates for the mode II

shear fracture toughness. The values he found ranged from 0.02kPaA/m to 13kPay/m.

The above mentioned theoretical and numerical models base on the theory of fracture

mechanics. However, it is only recently that experimental studies were carried out to

determine fracture mechanical parameters of snow (Kirchner et al., 2000, 2002a,b; Fail-

lettaz et al., 2002, Schweizer et al., 2004; Sigrist et al., 2005, 2006). Their findings will

10



1.3 Snow avalanche formation

be discussed in detail in Section 2.6 after the necessary background in fracture mechanics

has been introduced.

Based on the findings of Wei et al. (1996) on ice-metal interfaces, Schweizer and Cam¬

ponovo (2001) suggested that fracture propagation would depend on the difference in

stiffness between the weak layer and the slab, more precisely the layer just adjacent to

the weak layer. In fact, observations at fracture lines of slab avalanches showed that

a significant difference in hardness and grain size existed between the layers adjacent

to the fracture interface (Schweizer and Jamieson, 2003). Schweizer and Camponovo

(2001) proposed that interfacial fracture mechanics should be used to describe these

phenomena.

Failure of weak layer: Focus on slope normal collapse

Johnson et al. (2004) studied the fracture propagation of remotely triggered avalanches.

They measured the speed of fracture propagating in flat terrain by capturing the char¬

acteristic "whumpf" sound with geophones, and found a speed of about 20 m/s. They
observed a collapse of the weak layer of 1-2 mm and postulated that compressive frac¬

ture of the weak layer, initially triggered by an over-snow traveller on low angle terrain,

would provide the work needed for fracture propagation, and that the velocity of the

resulting flexural wave in the overlying slab that progressively fractures the weak layer,
would depend on the stiffness of the slab.

Heierli (2005), motivated by the experiment of Johnson et al. (2004), proposed an

analytical model for a solitary flexural wave, propagating in a layered snowpack including
a collapsible weak layer. The energy for fracture propagation is delivered by the release

of potential energy. This means that a collapsible weak layer with a defined vertical

extension is a prerequisite, in contrast to the model for shear fracture propagation of

McClung (1979) which assumes a weak layer with no slope normal extension. With

this model it is possible to calculate propagation velocity of the wave, its characteristic

length and maximum strain rate at the crack front of the wave. Heierli (2005) calculated

a fracture speed of 20 m/s, for the conditions of the experiment performed by Johnson

et al. (2004).

van Herwijnen and Jamieson (2005) recorded self-triggered fractures in weak snowpack

layers with a high-speed camera. Independent of the slope angle, they observed slope
normal displacement in all fractured weak layers. They measured an average propaga¬

tion speed of 20 m/s. However, they could not determine whether the fracture was

accelerating or not.

Most recently, Heierli and Zaiser (2006) proposed an analytical model on fracture nucle-

ation in a collapsible stratification. The crack energy associated with a localized collapse
of the weak layer is calculated. Thereby, size and energy of a critical crack can be evalu¬

ated as function of the material properties of the overlaying slab and the fracture energy

of the weak layer. This model will be discussed in detail in Section 2.6.3.
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Spatial variability

Schweizer (2002), Kronholm and Schweizer (2003) and Kronholm et al. (2004) proposed
that the spatial irregularity of the snow cover in respect to snow depth, layering, hardness

and grain size - the so-called spatial variability of a snow slope - may also have an

important influence on the fracture propagation potential and on avalanche formation

in general. A high spatial variability on a small scale, that is within one square meter,

may increase the probability of a fracture initiating in this area, whereas a high spatial

variability on a larger scale, that is within a few square meters, may have a stabilizing
effect on the snow slope, because a fracture cannot propagate far enough to release a slab

avalanche. Consequently, scale effects have also a big influence on fracture propagation.

Zaiser (2004) and Fyffe and Zaiser (2004) formulated a theoretical model to investigate
the influence of random variations in strength of the weak layer. They used a cellular

automata model and modelled the weak layer as a displacement softening interface.

No pre-existing crack is necessary in their model. They concluded that the critical flaw

leading to failure is neither an extended shear band nor a point like deficit, but damage
clusters of widely varying sizes.

Kronholm and Birkeland (2005) also considered the effect of spatial variation and used a

cellular automata model as well. In contrast to Zaiser (2004) and Fyffe and Zaiser (2004),
they did not use random variations of shear strength in the weak layer but used field

data of spatial variability of weak layers (Kronholm, 2004) as input. They concluded that

fractures through snowpack weak layers with large-scale spatial structure are much more

likely to propagate over large areas than fractures through weak layers with smaller-scale

spatial structure.

1.4 Dissertation outline

Before this study, there was only limited data available on fracture mechanical properties
of snow (see also Section 2.6). Furthermore, the experimental studies that were made

had the following restrictions:

• Tests have only been carried out on homogeneous snow samples.

• Field tests were performed with no adequate temperature control.

• A linear elastic fracture behaviour was assumed, although the specimen size re¬

quirements were not fulfilled.

• The mode I experiments were in fact mixed mode experiments (including mode I

and II).

• A dependence of fracture toughness on the cantilever length could not be explained

plausibly.

12
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• The few available data for mode II fractures are based on an experimental setup

which includes also a mode I component.

The aim of this thesis was to measure relevant fracture mechanical parameters of snow,

assess the applicability of different fracture mechanical theories for snow and propose a

conceptual model for the fracture processes involved in slab release. To achieve this aim,

the following objectives were defined:

1. Assess the relevance of fracture toughness for fracture propagation / resistance

in snow and for snow slab release in general. Relate fracture toughness to other

mechanical properties.

2. Design a suitable experimental setup and determine snow fracture toughness in

tension for homogeneous snow samples.

3. Design a suitable experimental setup and determine snow fracture toughness in

shear for layered snow samples.

4. Quantify size and shape effects, so that the results of small scale experiments can

be transferred to the slope scale.

5. Develop a conceptual model which relates measurable fracture mechanical prop¬

erties of snow (objectives 1.-4.) to the fracture processes involved in slab release.

6. Design a field test, based on the experience with the different laboratory tests and

determine in-situ fracture mechanical properties.

The thesis proceeds as follows: Chapter 2 gives the necessary background on fracture

mechanics and points out what has been done so far to adapt fracture mechanical theories

to snow. Chapter 3 explains the required common measurement techniques in snow and

goes into detail on the experimental setups for the different fracture mechanical tests

that were designed and tested in the laboratory and the field. In Chapter 4 the results

of the fracture experiments are presented that were acquired with homogeneous snow

samples for the tensile experiments and with layered samples for the shear experiments.

A discussion of the results including some extrapolations of the laboratory results to the

slope scale are given in Chapter 5. Overall conclusions are drawn in Chapter 6 and an

outlook is given together with recommendations for future work.

13
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Chapter 2

Fracture mechanics

The basic problem in fracture

mechanics is to find the amount of

energy available for crack growth and

to compare it to the energy required to

extend the crack. Although

conceptually simple, the problem is far

from trivial.

Bazant and Planas (1998)

2.1 Definition and history

A fracture is a process which partly or fully separates an originally intact body under

external loading. The difficulty to describe fracture processes analytically origins in the

fact that these processes take place in a very local area around the crack tip and are

affected by non-linear effects. Therefore, the strength of materials theory is hardly suited

to describe fractures. The description of such processes is part of a failure theory called

fracture mechanics. The theory of fracture mechanics complements the strength of ma¬

terials theory (e.g. Schindler, 2004).

The roots of fracture mechanics reach back to experiments of Leonardo da Vinci, who

found that the strength of iron wires decreased with increasing length of the wire (An¬
derson, 1995). In the last century, Griffith (1921) was the first to formalize the basic

equations for crack propagation based on a global energy balance criterion. However, the

breakthrough of fracture mechanics took only place in the late 1950s, Irwin (1957) was

the first to characterize the situation at the crack tip with the stress intensity factor.

The resulting A'-concept is a cornerstone of linear elastic fracture mechanics. From the
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Chapter 2 Fracture mechanics

beginning of the 1960s linear elastic fracture mechanics was expanded to elastic-plastic

problems and in the 1980s forms of fracture mechanics appeared that could be applied
to so called quasi-brittle materials such as concrete. Despite the substantial progress

that has been made in the past decades, the theory of fracture mechanics is by far not

completed. Still intensive research takes place in many different fields of fracture me¬

chanics. The author had the opportunity to experience this large effort on occasion of

the 11th International Conference on Fracture in Turin, Italy in spring 2005, where more

than l'OOO contributors were presenting their work.

2.2 Strength of materials vs. fracture mechanics

The problem of general interest in engineering is how a material macroscopically reacts

when stresses or strains are applied. With the continuum mechanics the theoretical basis

has been given to describe the mechanical behaviour of a material. When the question
has to be answered if a material fails or not, load parameters, like the applied stresses

or strains, are compared to material parameters, e.g. the tensile strength. The tensile

strength indicates the critical stress that, if applied, will bring the material to failure.

However, the situation changes when cracks are present in a material. An example can

be found in everyday life: Considering two sheets of paper, an intact one and one with

a small crack in it. Much less force will be needed to tear the one with the crack in two

pieces. Or in other words, for the same amount of applied stress, a completely different

behaviour results: Material failure in one case, no failure in the other. This is a result of

the stress situation at the crack tip. Stresses and strains can get singular at the crack

tip and therefore these parameters are no longer suited for the description of material

behaviour in presence of a crack.

To complement the strength of materials theory in cases where cracks are present, an

additional theory - the theory of fracture mechanics - was developed. New parameters

were introduced in fracture mechanics such as the stress intensity factor (SIF) K which

is a measure of the "magnitude" of the stress singularity at the crack tip (Section 2.3.2)
or the energy release rate G which describes how much energy is set free when a crack

is extended a certain distance (Section 2.3.1).

In the concept of strength, mechanical parameters like stresses or strains are compared
to material parameters like the tensile or compressive strength or the critical strain,

in order to judge if a structure will fail or not. In analogy, in linear elastic fracture

mechanics the fracture mechanical parameters K and G are compared to the critical

stress intensity factor Kr, the so called fracture toughness, or the critical energy release

rate Gc, which is also called the specific fracture energy. Both are material parameters

and thus independent of size and shape of the material
.
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2.3 Linear elastic fracture mechanics

2.3 Linear elastic fracture mechanics

Linear elastic fracture mechanics (LEFM) deals with materials in which non-linear effects

are restricted to small areas. In linear elasticity and under uniaxial loading the strain s is

proportional to the applied stress a and the factor of proportionality is called the elastic

modulus or Young's modulus E = aJe. Linear elasticity is the simplest form of material

behaviour and therefore all mechanical theories were first developed for linear elasticity
and later on extended to more complex material behaviour, such as elastic-plastic or

viscoelastic behaviour.

Throughout this thesis a quasistatic fracture process is assumed. The focus is set on the

point where the energy available for crack growth starts to exceed the energy required to

extend the crack, or in other words the point where a crack starts to self-propagate. The

dynamic fracture process that occurs once the required energy for fracture propagation
is exceeded is not considered.

2.3.1 Energy release rate and specific fracture energy

Following the terminology of Bazant and Planas (1998), we consider a body of thickness

w in which a crack of length u is present. The energy required to extend the crack

a certain distance da can be written as the newly cracked area times a crack growth
resistance, Wf\

dWf = in da Wf. (2-1)

The crack growth resistance Wf can also be associated as the specific fracture energy,

where specific means an energy per unit area of crack growth.

All the energy supply to the body comes from the external work dW = P du, where P

is the applied load and u the displacement of the loading point. The external work is

stored fully or partly as elastic energy dll. When the only energy-consuming process is

fracture, i.e. when no dissipation occurs, the residual energy is the available energy for

a crack advance:

dWrt = dW - dll. (2.2)

Generally, it is more convenient to work with a specific energy G (energy per unit area

of crack growth), than directly with dWp. G is called the energy release rate,

G w da = dWR = dW - dU. (2.3)

Accordingly, the criterion for crack propagation is:

G>Wf. (2.4)

Thus, a crack can propagate when the energy release rate G reaches a critical level,

the critical energy release rate Gc, which if equal to the specific fracture energy of the

material:

Gc = Wf. (2.5)
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In cases in which it is not clear if the conditions for an application of linear elastic fracture

mechanics are fulfilled, Gc will be notated as Gf. In such a case, the value of Gf might

depend on the specimen size (see also Section 2.4).

The load P and the elastic strain energy U stored in the material are both functions of

load point displacement u and cut length a. Thus Equation (2.3) can be written as

G w do, = P(u, a) du
dU{u,a)

du
du +

0U(u, a)
da

da (2.6)

For an equilibrium situation with da = 0 one obtains the second Castigliano's theorem

dU(u,a
P(u, a)

du

For an equilibrium situation in which du = 0, Equation (2.6) reduces to

dU(u, a)
G I

w da

(2.7)

(2.8)

For a given displacement u, the energy release rate is thus the change in the stored

elastic strain energy due to a change in the crack length a per specimen width w. By

introducing the complementary energy U* as LI* — Pu — U (which is equal to U in case

of a linear elastic behaviour) and substituting U with U* in Equations (2.6) to (2.8) it

can be shown that (Bazant and Planas, 1998, p.26)

G
1

w

dU'iP,a)
da

(2.9)

For a given load P, the energy release rate is thus the change in the complementary

energy due to a change in the crack length a per specimen width w.

2.3.2 Stress intensity factor and fracture toughness

Depending on how a crack is loaded, three different crack opening modes are defined.

The three modes are presented in Figure 2.1. Mode I is an opening in tension in the x-y

plane. Mode II is an in-plane shear opening, where one crack plane slides on the other

in ,i;-di recti on. Mode III is an out-of-plane shear opening. The two crack planes slide in

opposite >directions.

When a crack in a homogeneous1 and isotropic2 material is loaded in one of the three

modes a stress singularity occurs at the crack tip of the form 1/a/t, where r indicates

the distance to the crack tip. A proportionality constant, k, and a function ftj depend
on the mode. It is convenient to replace k with A' = k\/2Ïr, where A is called the

homogeneous denotes a material whose microstructure does not change in any direction,

isotropic denotes a medium whose physical properties are independent of direction.

18
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Mode I Mode II Mode III

Figure 2.1: Crack opening modes.

stress intensity factor. Therefore, not the stresses themselves, but the magnitude of the

singularity K is defined as the parameter which controls crack instability. When a crack

is loaded in mode I, the stress field around the crack tip can be written as

<r„(r»
Ki

Jlitr
//M (2.10)

where r and <p denote a polar coordinate system with the origin in the crack tip. The

stresses close to the crack tip for an arbitrarily loaded structure are the sum of the three

components due to the three different modes (e.g. Bazant and Planas, 1998, p.89):

'2nr
[K,f^) f A'„/i7(0) + Knrflf'W] (2.11)

The A'-concept is only useful when it is possible to determine A". If the stresses near the

crack tip are known, K can be determined according to

K( = lim \/'2nr o,t (<f> ~ 0).
r->()

(2.12)

For a few simple geometries a closed-form solution exists. For more complex structures

K has to be determined numerically For a crack in an infinite plate under tension the

stress intensity factor is given by

A/ = uNsfïïâ, (2.13)

where un is the nominal stress and a is the crack length. The nominal stress is defined

as the load divided by the original cross section, i.e. the undeformed and uncracked cross

section before loading. In a more general formulation the stress intensity factor in mode

I can be described as

KI = aN^7iY(a/D), (2.14)

where Y(a/D) is a geometry function depending on the relative cut length ajD, where

D is the specimen dimension. Similar expressions can be found for mode II and III.
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The fracture toughness in mode I, Kjr., can now be determined according to Equation

(2.14) when a specimen is loaded up to failure and the failure stress is recorded o-j.

The measured failure stress o-j can also be associated as the critical nominal stress. The

value of the stress intensity factor at failure Kij - the critical stress intensity factor -

coincides with the fracture toughness of the material for linear elastic fracture mechanics

(LEFM):

Kic = Kif = (TfVïmY(a/d). (2.15)

The criterion for crack propagation is similar to the criterion for the energy release rate

(Equation 2.4):

K > Kc. (2.16)

2.3.3 Energy release rate versus stress intensity factor

Whereas the energy release rate G is a global parameter providing information about the

released energy of the whole structure due to a crack advance, the stress intensity factor

A' is a local parameter providing information about the stress field around the crack tip.

However, a relation exists between the local parameter K and the global parameter G.

G can be written as

A"2
G =

W, (217)

where A2 = K'j -f KjT + KjTT. For plain strain E* = E/{\ - u2), where E is the

Young's modulus of the material and v the Poisson's ratio. For plain stress, E* simplifies
to E* - E.

2.4 Non linear extensions

There are only few materials that have a purely linear elastic behaviour. Commonly, the

materials are categorized according to their behaviour and one speaks of a linear elastic

material or a viscoplastic material for example. But it is important to know that material

behaviour might depend on the material size and the loading rate. For example, the

failure behaviour of an extremely large concrete structure - such as a concrete dam -

can be described by linear elastic fracture mechanics, whereas the failure behaviour of

a small concrete element can not. Or the behaviour of a material such as snow can

be described linear elastically under rapid loading and ductile (i.e. undergoes plastic

deformation) when it is loaded with a low strain rate. The reason for these transitions

will be given in the next section.
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linear elastic

*\
softening

linear elastic

<=f^
softening

(a) (b) (c)

Figure 2.2: Types of fracture process zones: (a) brittle
, (b) ductile, (c) quasi-brittle

In the ductile case, the nonlinear zone in the linear elastic material can be divided

in a strain softening zone and a plastic deformation zone Adapted from Bazant and

Planas (1998).

2.4.1 Brittle, ductile and quasi-brittle fracture behaviour

The material behaviour in the case of fracture is mainly related to the size of the nonlinear

zone that evolves in front of a crack tip. This nonlinear zone consists of a strain softening

zone, for which the stress decreases at increasing deformation - the fracture process

zone - and is in some cases (ductile materials) surrounded by a zone in which plastic

deformation occurs (Bazant and Planas, 1998, p 104). In the following, three types of

material behaviour are distinguished, which will be of importance in this work.

Brittle: In a material with a brittle behaviour the process zone is negligibly small com¬

pared to the structure size The entire fracture process takes place almost at one

point (Figure 2.2.a). The whole body behaves in good approximation elastically
and linear elastic fracture mechanics can be applied without restrictions. Material

examples are. glass, brittle ceramics, brittle metals

Ductile: In ductile materials a zone evolves in which plastic deformation takes place
The nonlinear zone is no longer negligibly small compared to the structure size

The fracture process zone (strain softening) in which the breaking of the material

takes place is still small. As it is shown in Figure 2 2 b, the extension of the

nonlinear zone normal to the crack is similar to the extension in crack direction

This process can be described by elastic-plastic fracture mechanics. An example
of ductile materials are tough alloys

Quasi-brittle: In quasi-brittle materials the fracture process zone, in which softening
takes place, is no longer small compared to the structure size. Its extension in

crack direction is much larger than normal to the crack (Figure 2.2.c). Examples
for quasi-brittle materials are materials with a granular structure such as concrete,

rock, clay or ice (compare Dempsey et al. (1999a,b)). For quasi-brittle materials

LEFM is no longer applicable. However, if the nonlinear zone is not very large
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Chapter 2 Fracture mechanics

compared to the structure size, there are still possibilities to apply LEFM in an

equivalent sense, see Section 2.4.3.

As it was mentioned already, the applicability of LEFM depends on the structure size

If for example a very small piece of a brittle metal is tested, it will behave quasi-brittle,
because the size of the process zone is a material constant and if the size of the structure

gets very small, the process zone is no longer negligible compared to the structure size.

On the other hand, if a concrete dam is considered, LEFM can be applied without

restrictions because the size of the dam is so large that the finite size of the process

zone is negligibly small.

Depending on the strain rate, snow can behave either brittle or ductile. The transition

between brittle and ductile behavior can be found at a strain rate of approximately
10~4 s_1 (Narita, 1980). The processes involved in avalanche release occur within seconds

or even a fraction of a second. Therefore, snow can be assumed to behave brittle in

avalanche release. But snow does also show strain softening when loaded (McClung,
1987; Schweizer, 1998). This implies that snow should be considered as a quasi-brittle
material. This assumption will be justified in Chapter 4 and the question will be answered

how large a snow specimen should be to behave brittle.

2.4.2 Fracture process zone

As it was described above, in the presence of a crack, a local non-linear zone evolves

in any material due to the extreme stress concentration at the crack-tip. Although in

linear elastic fracture mechanics this zone is assumed to be of no extension, in reality,
this zone will have a finite size /?. For a given load, the size of the process zone depends
on the microstructural properties of the material and is therefore a material constant

and independent of the structural size.

For plastic (ductile) materials B was estimated by Irwin (1958) to be

R = -(—)\ (218)
7T \cry J

where ay is the plastic yield strength. The maximum length of the fracture process

zone Rc is obtained from Equation (2.18) by setting KL = Klt, i.e. when the load is

increased until the structure fails. For steel this equation results in R*tccl = 0.99 mm

and for aluminium Rfu = 0.92 mm (Bazant and Planas, 1998, p. 108). As long as the

length RL of this non-linear zone remains small compared to the crack length and the

characteristic dimensions of the specimen, LEFM can still be applied (e.g. Anderson,

1995, p 376) In fracture toughness testing of elastic-plastic materials, the applicable
standards require A, at crack instability to be about 8 times smaller than the crack

length a or the ligament width h = h — a, whichever is smaller (ASTM E 399, 1983):

//, a, b > 2.5 (—) = 7.9 R,. (2.19)
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2.4 Non linear extensions

Figure 2.3: Cohesive crack model (Barenblatt, 1962) with a linear distribution of the

cohesive stresses o-coh(.r) acting on the virtual crack-faces. 6 denotes the crack tip

opening displacement (CTOD) and ocnhmax the maximum cohesive stress, which is

expected to be about the tensile strength a,, of the material.

As snow is a non-ductile material at the strain rates applied in our tests, the non-linear

zone is restricted to the fracture process zone at the crack-tip. In the fracture process zone

the material behavior is characterised by strain softening, i.e. decreasing stresses with

increasing deformation. This behavior can be described by Barenblatt's cohesive force

model (Barenblatt, 1962). The strain-dependent strength of the material is interpreted

as cohesive stresses acoh{x) acting on virtual crack-faces in the range 0 < ,r < Rc, i.e.

the process zone (Figure 2.3). The distribution of cr,,„/,(x) is usually unknown, but for

physical reasons it has to be a decreasing function between the maximum at x = Rc

and zero at x — 0. By replacing the yield strength by the tensile strength of snow crc and

by assuming, for the sake of simplicity, Pt, <£ a and a linear behaviour of the cohesive

stress with x, this model yields (Schindler, 1996):

32
(2.20)

This is about three times the value given by Equation 2.18. Moreover, if the condition

Rr <C a is not fulfilled, then Rc becomes dependent on the crack length and specimen

geometry. Beyond LEFM, even Equation 2.20 can considerably underestimate the actual

length of the non-linear zone. Concerning the size requirement which has to be fulfilled

for an application of LEFM, there is only little experience on non-ductile materials in

general and snow in particular. A simplified application of Barenblatt's model to a deeply
cracked beam in bending (Schindler, 1996) indicates that the corresponding requirement
should be at least as restrictive as the one given by ASTM E399 for elastic-plastic
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Figure 2.4: Fracture mechanical size effect on the strength of a material. Dépendance
of the nominal strength <7/v on the structure size D. According to Bazant and Planas

(1998).

materials. For snow Iic was found to be in the order of several centimeters (Section

4.16).

2.4.3 Consequences of quasi-brittle behavior

If LEFM does not apply, the fracture process is no longer governed by the stress intensity
factors only. This means that the critical stress intensity factor Kj, determined in an

experiment, does not represent the actual fracture toughness A',- of the material, but an

apparent fracture toughness that depends on the geometry and the size of the specimen

used in the experiment The difference between the two parameters is, that Ac is a

material property, while Kf is not If the size criterion for LEFM, Equation (2.19), is not

fulfilled, then

A, /Ac. (2.21)

In this case, Kf is smaller than Kc and thus the measured Kf values have to be corrected,

either to a sample size where LEFM applies to get the real Kjc or to the size of the

problem which has to be solved to get a size corrected Kf value Before a correction of

the measured Kf values is possible, a scaling law has to be found.

Scaling law

It is known that fracture processes governed by nominal stresses or plastic collapse
are scalable, whereas those governed by crack instability are not (Bazant and Planas,

1998) The reason is that for a larger structure, more energy is released at the crack
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2.4 Non linear extensions

front by the same crack extension, Ao. Accordingly, there is no size effect in nominal

strength Of for specimens which are smaller than a certain size. For large sizes a pure

brittle behaviour is dominant and structures fail at a fixed stress intensity factor, which

depends on the absolute crack length. This general behaviour is schematically shown

in Figure 2.4 (Bazant and Planas, 1998), using a general size parameter D. Based on

experimental data of tensile fracture, Bazant and Planas (1998) proposed the following

general scaling law for the nominal strength

of =

,

Q
(2.22)'

v/1 + D/A,

where Q is a constant of the dimensions N/m2, and Du a characteristic size. In Figure 2.4,

Do is the point where the line for linear elastic behaviour intersects with the horizontal

line for plastic collapse. However, Equation (2.22) can only serve to predict the size effect

in cases of short cracks or geometrically similar crack systems. For our snow experiments,
the specimen sizes D were between 10cm and 30 cm. A) was found to be around 30cm,

thus a ratio D/D0 of about 1 results (Section 4.1.5).

Equivalent fracture toughness

According to Bazant and Planas (1998) it is possible to experimentally obtain an equiv¬
alent fracture toughness Kelc, which is an estimate of fracture toughness KIc. By rear¬

ranging Equation (2.22) a linear dependence of the specimen size D is obtained:

1\2
— = n -H czD, (2.23)

with r2 = 1/ (D0Q2) and (\ — i/Q2. D as well as <if are determined in experiments.
If these data are then plotted as (1/oy) versus D, Ai and Q can be estimated from

slope and intercept of a linear regression by

A) = ~ (2.24)
<"2

Q =

-^=. (2.25)

and

By substituting Equations (2.22), (2.24) and (2.25) into Equation (2.14), K,j can be

written as

\/nä ( a

k" =

77^DY\-d)- (226)

For large D, c\ can be neglected in Equation 2.26. According to Figure 2.4 the speci¬
men behaviour is linear elastic for large D, i.e. A"// tends to Kjr, and Equation (2.26)
simplifies to

lit f°N)y (a
f'2 Id, \D

*/W- [n)y
n

D»D«- (2-27)
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Figure 2.5: Theoretical failure assessment diagram (FAD) for brittle material behaviour.

If Equation (2.26) is combined with Equation (2.27), a correction of the measured A'//
values to size independent equivalent fracture toughness values, Kfr, is possible, as long
as the characteristic size A> is known

L/c
• + £*„. (2.28)

The failure assessment diagram

Beyond LEFM, the fracture process is governed by the interaction of the stress intensity

factors Kj and the effective stresses uNa acting in the region of the crack tip. A practical
tool to cope with this complex situation of an interaction of local and global stresses

is the so-called failure assessment diagram (FAD), which represents the interaction as a

failure line in the plane A'/ - aNll, as schematically shown in Figure 5 (British Energy
Generation Ltd., 2001). FADs are often used to asses the stability of a cracked structural

component in elastic-plastic fracture mechanics. The shape of the FAD depends on the

material of the tested structure. Reversing the idea, the FAD might serve to estimate

fracture toughness KIc from the apparent fracture toughness values Kjj- determined

with specimens that did not fulfil the size requirement (Figure 2.5). In British Energy

Generation Ltd. (2001) a universal FAD was given as

0.3 + 0.7f.i;j;(-0.6L;i)

v/l+0.5L2
(2.29)

In the terminology of the present paper, Kr = Kjf/Klc and L, = cta/o/ov
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2.5 Failure of interfaces

2.5 Failure of interfaces

There is an important difference between fracture behaviour of homogeneous materials

and layered materials, i.e materials that consist of two or more layers with different ma¬

terial properties. Whereas the crack propagation in a homogeneous material is normally
not restricted to a defined direction, in layered materials cracks propagate in general

along the interfaces between two layers. Due to this restriction, considerably different

loading situations can occur. It is known that mode II experiments in homogeneous ma¬

terials are difficult to perform, because cracks tend to change direction, resulting in a

pure mode I situation (Anderson, 1995, p. 91). On the other hand, mode II failures are

particularly a problem in layered materials (Hutchinson and Suo, 1992).

Interfacial fracture mechanics is of importance in many research areas dealing with mod¬

ern layered materials such as laminates, fibers and composites. It has also been applied
to study natural processes, for example, the icing of electrical transmission cables leading
to ice/metal interfaces (Wei et al., 1996). Since snow is also a layered material and the

layering is a precondition for slab avalanche release, an application of interfacial fracture

mechanics seems self-evident and was proposed by Schweizer and Camponovo (2001).

2.5.1 The complex stress intensity factor

The phase angle of loading vp is a measure of the relative shear to tension loading.
^ = 0 means pure tension and $ = +tt/2 means pure shear. One important feature of

bimaterial interface cracks is that ty is often non-zero even when the external loading is

normal to the interface plane (Rice, 1988), i.e. even when the external loading is in pure

tension or shear a mode-mixety can exist.

As a result, the crack tip field of an interfacial crack between two dissimilar solids has

not the same shape as in a homogeneous material. It can be described with the complex
interface stress intensity factor K = h\ + ? K2, In this formulation, A| describes not

only tensile stresses but also shear stresses, the same holds for K2, i.e in a bimaterial

crack the two modes are coupled and can not be easily separated. The normal and shear

stresses of the singular field acting on the interface a distance r ahead of the crack tip

are given by Rice (1988):

0-22 + /Via = -r^r*. (2.30)
v2tit

The bimaterial constant £ is defined as:

where li(fi, v2l //i, p2) is a function of the shear modulus and the Poisson's ratio of

the two components (e.g. Erdogan and Sih, 1990). If £ - 0 the complex stress intensity

(2.31)
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factors K\ and K2 reduce to the corresponding stress intensity factors Kj and Kn. The

energy release rate G is defined as (Malyshev and Salganik, 1965):

G
(l-ß2) 1

+ i1 '*'" (2.32)

where \K\2 = K2 + K2 and A and E2 are the elastic moduli of the two materials. In the

following, we will focus on the energy release rate G of an interface crack rather than

on the complex stress intensity factor K. As it is shown in Equation 2.32, from G the

absolute value |A"| can be derived, but not the components A"! and K2. In other words,

the energy release rate contains no information about the mode I and II mixing. But

as we will be primarily interested in whether a crack propagates or not, this additional

information is not needed and would not be worth the much bigger effort.

2.5.2 Energy release rate for an interface crack

Due to the complexity of the interface problem, there are only a few analytical solutions

for special geometries available. It is common, not only in interfacial fracture mechan¬

ics but in fracture mechanics in general, to determine fracture mechanical parameters

numerically with the aid of a finite element model.

As an example for an analytical solution, the one by Suo and Hutchinson (1990),

(Hutchinson and Suo, 1992) will be given. They described an analytical solution for

a general interface crack problem. Their aim was to analyse interface cracks between

thin films and substrates under fairly general loading conditions (Figure 2.6). Their model

consists of two layers. The solution for the energy release rate G in plain strain is given

by:

G
2A

P2

ÎE, \ H

Pt
-f + 12

Ml

Ah

M2
(2.33)

where Pt are the applied loads per specimen width and M, the applied moments per

specimen width {i = 1,2,3). A and A are the elastic moduli of the two components

and h, H their heights. A — I/77 + S with £ = A/A and ry = h/H. I is given as-

;)-KH n
+

3r?3'
(2.34)

with

1 + 2Ery + Elf

2ry(l + ^/)
(2.35)
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Figure 2.6: A bilayer material with a half-plane interface crack. After Hutchinson and

Suo (1992).

2.6 Application of fracture mechanical concepts to

snow

2.6.1 Experimental studies

Fracture mechanical experiments with snow were only performed in the last six years.

Thereby, the focus was set on the determination of the fracture toughness of snow in

mode I and mode II. However, most experiments were done in mode I because the

experimental setup for a mode I test is simpler than for one in mode II, and their exist

anyway only few tests that can be adapted to snow, due to its fragile nature. In the

following, the contributions are listed in chronological order.

Kirchner et al. (2000) were the first to measure a critical stress intensity factor in mode

I for snow. They performed cantilever experiments in the field and evaluated their data

by applying fracture mechanical theories of foams by Gibson and Ashby (1997). They
found a relation of

Ku. = A(p„rww/pirt)B, (2.36)

with A — 7.84 kPa sjm and B = 2.3. They suggested that with these extraordinarily
low values of fracture toughness, snow would be one of the most brittle materials known

to man. The data was recorded at temperatures near the melting point and for snow

types that are not known in detail.

Kirchner et al. (2002a,b) used cantilever beam tests to determine fracture toughness in

tension and shear. Notched cantilever beams of snow (50cm x 20cm x 10cm) were

broken under their own weight. This time, all experiments were performed in a cold

laboratory at SLF. A linear elastic approach was used to determine the critical stress

intensity factor A'/y which was directly associated with the fracture toughness Klc.

They concluded that snow fracture toughness in shear is about the same as in tension.

Faillettaz et al. (2002) performed the same field experiments as Kirchner et al. (2000)
had done and found fracture toughness values of the same order. They found that the

fracture toughness values depend on the cantilever length and suggested that this could
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Chapter 2 Fracture mechanics

be a result of a fractal branching pattern of the crack.

Schweizer et al. (2004) measured in the cold laboratory at a temperature of — 10°C and

found for Equation (2.36) values for A between 13.0 kPa ,/m and 21.6kPa1/m, and for

B between 1.9 and 2.1, depending on snow type. They proposed that this snow type

dependence can be taken into account by including a microstructural parameter dmax,

characterizing the grain size,

\J Umar \Picc

where dmaj. is the grain size and C = 0.35 kPa m is a constant. This lead to Kjr =

600 —900Pav^îîï for a typical slab density of p = 180 kg/in3. Based on some experiments

in shear (Kirchner et al., 2002a), they suggested that fracture toughness in shear is

slightly smaller than fracture toughness in tension (Schweizer et al., 2004). Schweizer

et al. (2004) showed that fracture toughness decreases with increasing temperature

until it reaches a minimum between — 10°C and —5UC. This means that fractures can

propagate more easily with increasing snow temperature. However, for temperatures

above this minimum the fracture toughness increases again towards 0°C.

So far, all attempts to determine snow fracture toughness in mode II were performed
with homogeneous snow samples. However, as it was mentioned in Section 2.5, mode

II experiments in homogeneous materials are difficult to perform and the cracks tend to

change direction, resulting in a pure mode I situation. Therefore, it is essential to test

layered samples in mode II.

McClung (2005b) estimated the shear fracture toughness, Kllc from slab avalanche data

to be between 0.02 and 13kPav/m.

Most recently, Gauthier and Jamieson (2006) proposed a drop hammer test for layered
snow beams on the slope. Thereby, they used a similar geometry to our field test. But

instead of notching the isolated snow beams they applied a drop load at the upper end

of the snow beam and assessed if they could trigger the propagation of a fracture in the

weak layer or not.

2.6.2 A model for shear fracture propagation

McClung (1979, 1981) proposed a model for a shear fracture propagation in a thin, planar
weak layer underneath a cohesive, strong slab. The model originates from Palmer and

Rice (1973), who introduced the idea of a shear band in overconsolidated clay. Bazant

et al. (2003) based their formulation of a size effect law for fracture triggering in dry

snow slabs on this model.

The slope model consists of three layers including a rigid basal layer overlaid by an

elastically behaving slab with height H (measured slope normal), and in between a weak

layer (Figure 2.7). The slab is inclined by an angle ip. The weak layer is damaged on a

(2.37)
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.o*H^

Figure 2.7: Geometry of a two-dimensional snow slab after (Bazant et al
, 2003) 2o is

the cohesive crack. Forces acting on an element of slab (top left). Typical shear stress

distribution (bottom)

length 2a. The Young's modulus of the slab E as well as the density of the slab p are

considered as uniform over H. A crack is propagating symmetrically up and downwards

along the weak layer

The equilibrium condition for a unit element dx of the slab leads to (Figure 2.7)

(dxHp)q$m(y)
{rr + der) =n — — + t, , (2 38)

where rr is the residual shear stress due to friction. As a first approximation no residual

shear stress is assumed, rr = 0 When integrating Equation (2.38)

a = -pyx bin(^) (2.39)

results If 2<7 » H the transition zone of r can be neglected Calculating the comple¬

mentary strain energy of one half of the sliding layer leads to

ir

"
l
-as H wdx
2

-2„-s,
F1 a'2 n9

Ha^w rf,a"w

I ^Hud>r=i-pa,u^)}2^^
= ^Tr, (2 40)

GE 6EH

where E is the Young's modulus of the snow layer, w the lateral width and rg is the

shear stress that is required to support the weight of the slab if no crack is present (no
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tensile forces are acting):

Tg = pgH sin(^). (2.41)

Bazant et al. (2003) state that the one dimensional solution of Equation (2.40) might
even be acceptable as long as a > H. Furthermore, they point out that situations in

which a <£ H are of no practical interest, because small imperfections always exist in

an alpine snowpack and thus a snow layer would never be stable on a slope.

The energy release rate, G, can be calculated according to Equation (2.9) and (2.40)

1 DU* T2a2
G(a)

= -^- = -J—. (2.42)
v '

w da 2EII
K '

Since we have set rr = 0, the resulting energy release rate, G, is an upper boundary for

the true energy release rate in case a residual friction would be present.

2.6.3 A model for a slope normal displacement of the slab

Heierli and Zaiser (2006) proposed an analytical model on the gravitational collapse of

horizontal stratifications. In contrast to ordinary fracture dynamics, they assume an ini¬

tially relaxed slab that quits its metastable equilibrium once the weak layer underneath

the slab locally collapses. In this model, the energy functional associated with a localized

collapse of the weak layer is calculated as the sum of the elastic energy Ve, the gravita¬
tional energy of the slab Vg and the energy that is required to fracture the weak layer
over a given length, Vf

^(u) = K.(u) + V,(u) + V>(u), (2.43)

where u is the displacement in direction normal to the slab Explicitly, the total energy

functional is (Heierli and Zaiser, 2006):

V{u) = I J| {^-^j + pHcju{x) + W/0(-u(x))| dr, (2.44)

where p is the density of the slab and H the slab thickness, g is the gravitational
acceleration, V the flexural rigidity of the slab and 8 the Heaviside step function {0{u) —

1. it > 0 and 0 else). The collapse has to be divided in three phases Bending of the

slab due to a localized collapse without contact to the slab underneath the weak layer,
followed by a contact to this layer in one point, followed by a contact over a finite interval.

However, they showed that only the first phase is relevant for fracture propagation
because the first derivative of the total energy (Equation 2.44) becomes negative before

the slab touches the substratum (Figure 2.8).The half length of a critical crack rr can

be evaluated in terms of the material properties of the overlaying slab and the fracture

energy of the weak layer Wf\

" = (w"') (Z45)
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Figure 2.8: Scaled crack energy in function of scaled crack extension in dimensionless

units (Heierli and Zaiser, 2006). Different weak layer fracture energies are displayed. A

crack gets critical when the energy passes a maximum. (Source: Geophysical Research

Letters, 33, L06501, 2006)

The flexural rigidity S can be evaluated using the expression for a uniform slab

EH*
S

12(1
(2.46)
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Chapter 3

Methods

3.1 Standard measurement techniques for snow

characterization

In comparison to most other materials, the microstructural and mechanical properties of

snow are highly variable. Therefore, it is essential to characterize the microstructure of

snow whenever experiments are performed. Standard measurement techniques for snow

characterization have been developed in the past, which have now been successfully

applied in snow science for many years. This section gives an overview of the techniques

and procedures that were applied during the experimental work.

Snow classification: Each time when snow samples were collected in the field, the

stratigraphy of the snow cover was characterized in stratigraphie snow cover pro¬

files. Therefore, a snow pit was dug and the snow was analysed regarding its

horizontal layering, the snow type, temperature and density. A snow layer is char¬

acterized by a given snow type. The separation of layers is based on visual and

tactile variations in the snow type. The snow type includes the classification of

three snow properties: the grain shape, the grain size and the snow hardness in¬

dex. They are classified according to the International Classification of Seasonal

Snow on the Ground (ICSSG) (Colbeck et al., 1990). The snow hardness index

is a subjective classification with six classes of penetration resistance: Fist (F),
Four-fingers (4F), One-finger (IF), Pencil (P), Knife (K) and Ice (I). In addition

to the identification of the layering a temperature profile was recorded from the

snow surface to the ground, the densities of the different layers were measured

(see next item) and occasionally the ram hardness was measured. See Appendix B

for examples.

Density measurements: The density of a snow layer or a snow specimen is measured

by cutting out small samples with an aluminium cylinder or alternatively with a
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small aluminium box and weighing it on a scale. A standard volume is 100 cm3

but there are also larger cylinders in use. It is common to average two to four

measurements to reduce the effect of measurement errors.

Stability tests: To identify weak layers suited for sampling, stability tests were made.

We used the compression test in which the top of an isolated column of snow

(30 cm x 30 cm) is loaded by tapping on a shovel (Jamieson, 1999). The first ten

taps are done with the fingertips moving the hand from the wrist. The next ten

taps are done by moving the forearm from the elbow. Finally, ten taps are done

moving the arm from the shoulder. Depending on the number of taps the ease of

triggering can be estimated as: 0 — very easy, 1-10 — easy, 11-20 — moderate,

21-30 = hard.

Shear frame test: To measure the shear strength, the shear frame test was used. A

steel frame with an area of 0.025 m2 was placed about half a centimeter above a

weak layer, then the frame was pulled with a force gauge smoothly and quickly,
resulting in a planar failure of the weak layer (Jamieson and Johnston, 2001). Due

to the scatter of the test results it is common to average 8 to 12 tests to get a

reliable result.

Snow micro-penetrometer: The SnowMicroPen (SMP) is a high-resolution constant

speed penetrometer. It records the penetration resistance of a small cone (diameter:
4 mm, cone angle 60°) which is pushed through the sample perpendicular to the

layering of the snow cover or the snow specimen (Schneebeli and Johnson, 1998;

Schneebeli et al., 1999). Due to the high resolution of the SMP, it is possible to

resolve details in layers that are considered as homogeneous. The SMP resistance

profile is especially qualified to assess the detailed layering of a snow specimen
and allows to derive additional parameters, e.g. an index for the Young's modulus

(Johnson and Schneebeli, 1999) as will be discussed in Section 3.4.

Sample characterization: Small snow samples of interesting snow layers, especially of

weak layers were occasionally collected. The samples were cut out of the snow

with small containers of the dimension 5 cm x 5 cm x 5 cm. Then, liquid and dyed
black Diethyl-phthalate was added which filled up the pores in the snow sample.
After freezing, the cube was sliced in a microtome and the surface was successively

photographed with a digital camera. Finally, the image was binarized to distinguish
between ice and pore-space (Good, 1987).

A further standard test in materials science is to measure the tensile and compressive

strength of a material. However, no standard procedures exist to measure the tensile or

the compressive strength of snow, up to now.
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(a) (b)

Figure 3.1. Homogeneous snow samples were collected by pushing the aluminium cases

with the height parallel to the layering into a thick layer of the snow cover (a) while

for layered samples the cases were used upright (b) in order to include more than one

layer

3.2 Laboratory tests

About 80% of all experiments were performed in the cold laboratory, the rest was per¬

formed in the field For all laboratory tests the snow samples had to be collected in the

field and transported to the laboratory

3.2.1 Sample collection

All snow samples were collected in the field They were either collected close to the

building of the Swiss Federal Institute for Snow and Avalanche Research in Davos

Switzerland at an altitude of 1562m as I or close to the old institute building on

the Weissfluhjoch Davos at 2668 m a s I At both places a cold laboratory is available

with a temperature range of 20 C to 0 C The samples had to be carried to the cold

laboratory one by one in order not to destroy the snow structure Especially for layered
snow samples the transport was delicate Therefore the collecting area for snow samples

was restricted to a radius of a few hundred meters around the two institute buildings
After transport the samples were stored at a temperature of —10JC for a maximum of

two days before testing The experiments were performed at a cold room temperature

of 10 C and occasionally at -15 C

The specimen were cut out of the natural snowpack with beam-shaped aluminium cases

Four different sizes of aluminium cases were used to collect samples The largest was

close to the limit of what could be handled in the field and transported to the laboratory
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Table 3.1: Snow specimen dimensions The standard specimen size is marked in bold

Height // Length / \\ Kit ll </'

(cm) (cm) (cm)

S 20 10

13 .31 10

20 50 10

32 80 10

without destroying the natural snow structure. The other sizes were chosen such that a

size range of 1.4 was achieved. The thickness ir was the same for all specimen sizes -

this is called "2D similarity", according to Bazant and Planas (1998, p 458) - in order to

avoid a possible thickness effect The dimensions are given in Table 3 1 In the standard

size, nineteen cases were available, in all other sizes five. The standard size was already
used by Kirchner et al (2002a,b) and Schweizer et al (2004)

For the laboratory tests two kind of samples were used: homogeneous snow samples

consisting of only one layer (.— monolayer) and layered snow samples consisting of two

or more layers ( = multilayer) Snow samples were defined to be homogeneous when no

visible layering was present, i.e. when they consisted of one snow type Homogeneous

snow samples were taken out of the snow cover by selecting a thick enough snow layer

(«• 12 cm) in which the whole aluminium case could be placed without any contact to

adjacent layers Suitable layers were previously defined in a snow profile The aluminium

cases were pushed into the snow cover horizontally with the height of the case parallel to

the layering (Figure 3 la), but later on tested upright This was done, because even within

one layer of the snow cover the density tends to slightly increase with increasing snow

depth. By testing the specimens normal to the layering of the snow cover an influence

of this density increase or a slight undiscovered layering was minimized. Schweizer et al

(2004) showed that tests are influenced by a layering parallel to the test direction. For the

collection of layered snow samples the aluminium cases were pushed into the snow cover

upright with the height of the case vertical to the layering (Figure 3.1b), so that the weak

layer was caught in the middle of the case, resulting in snow specimens consisting of two

homogeneous snow layers separated by a weak layer. Weak layers suited for sampling
were identified previous to collection by applying compression tests

3.2.2 Three-point bending test

The three-point bending test (3PB-test) is a common test configuration in material

science to determine fracture toughness in mode I (eg Tada et al., 2000, p.58) A

beam shaped specimen is notched on one side with a cut of a given depth (normally
between 0 1 and 0 5 times the beam height), placed on two supporters and loaded in
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Figure 3 2 (a) Schematic diagram of the three point bending test setup (b) Snow

specimen in place before testing The aluminium plates on top of the cylindrical sup

ports are missing in this image

the middle of the opposite side with an increasing force until the specimen fails

All 3PB-tests were performed with a standard material testing machine (ERICHSEN-
Umversalprufmaschine 490) The machine has an upper force limit of 20 kl\l After a first

winter of testing (winter 2003/2004) it turned out that the force range was unnecessarily

high for experiments with snow In the tests forces of a maximum of 200 IM were achieved

On the other hand the force resolution was much too low Therefore the machine was

upgraded during summer 2004 with a new sensor head including a new force sensor

(Figure 3 3) Additionally an improved data processing software was written based on

LabView With the new force sensor the time resolution could be improved from 72 ms to

4 ms with a sampling rate of 2000 Hz where every 8 samples were averaged to decrease

signal noise resulting in an effective sampling rate of 250 Hz The force sensitivity could

be improved from 1 N to less than 15 mN

The standard 3PB test setup needed two slight modifications to be applicable to snow

specimens It was not possible to place soft snow on sharp triangular supporters without

a considerable penetration of the supporters into the fragile snow specimen Instead

aluminium cylinders were used to increase the contact area and to prevent local snow

deformation at the loading points (Figure 3 2) The aluminium cylinders had a diameter

of 6 cm The diameter of the cylinders was expected to have only a minor influence

on the test results The load was applied in displacement control at a constant rate
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Figure 3.3 (a) Design drawing of the new sensor head including the more accurate

force sensor (thin black bolt) (b) Image of the new sensor head (c) Image of the

ERICHSEN Umversalprufmaschine 490 (height ^ 15m including the old sensor head

of 200 mm/mm through another cylinder with a diameter of 5 cm The velocity was

chosen high in order to cause a brittle fracture and to avoid viscous effects As a second

modification small aluminium plates were placed between the cylinders and the specimen

to prevent friction between the supporters and the specimen while testing

The critical force Ff that had to be applied to break the specimens ranged up to 200 N

depending on beam size and snow density Due to this rather low force the weight of the

beam had to be taken into account in calculating the applied stress and stress intensity

factor The weight of a typical sample of a density of 250kg/rn1 is about 25 N

The bending moment in the center of a beam due to an applied force 7 per specimen

width u is

'"' -

tt <3 *>

where s is the span i e the distance between the two supporters The bending moment

in the center of the beam per specimen width due to the body weight can be written as

W, -f'[s' (/ s)JJ (3 2)

where p is the density of the specimen h its height and / its length q is the gravitational
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acceleration According to Tada et al. (2000) the nominal stress is given as

<y^ = ~{My \ Mu) (33)
Ir

The nominal stress is defined as the load divided by the original cross section, i.e. the

undeformed and uncracked cross section before loading The effective stress, a\„, i.e.

the load divided by the remaining cross section, will be defined in Section 4.1.7 The

critical stress intensity factor or the apparent fracture toughness A'// can be calculated

according to Equation (2 15) as a combination of the 3PB-solution and the pure bending

case given by Tada et al. (2000)'

l\,, = y2
V^~« [0.95 M,, V, (a/h ) t Mr,Y2(a/l,)\ . (3 4)

Here, A// is the critical bending moment, i e the force at failure, F), has to be inserted

in Equation (3.1) The functions Y\{a/h) and Y^u/h) can be found in Tada et al.

(2000).

1 1.9!) - (a/h)[\ - (u/h)\ [2.15 ,3.n;$(«///) + 2.7(al!,y\
,_

_.

t [1| 2(«//;)][l - (a/h)]lL

Y,(a/h) - \.\22- \.\(){a/h) i- 7.lYMa/h)2 - ]:].()H(a/h)' ] \H){a/li) '. (3 6)

V, is valid for a span to height ratio of s/h — \ Since in our experiments the specimens

have a ratio of s/h ~ 2 a correction factor was necessary. According to Schindler

(personal communication) a factor of 0 95 had been found in a numerical computation

to account for the difference in the ratio s/h. For our 3PB-experiments the part due to

the moment M(1 in Equation (3.4), is about 60% of the part due to the force at failure

3.2.3 Cantilever beam test

In addition to the 3PB-tests, cantilever beam tests (CB-tests) were performed Thereby,

the same setup was used that had previously been used by Kirchner et al (2000), Kirchner

et al. (2002a,b) and Schweizer et al. (2004). In the winter 2003/2004 CB-tests were done

simultaneously to the 3PB-tests with specimens from the same snow layer The aim was

to acquire a data set with the CB-tests suited for a direct comparison with the above

mentioned studies and thus to relate the 3PB-tests to previous CB-test results

In the CB-test, one part of the specimen was supported while the other part with length

/, was protruding L was chosen to be either 10 cm or 15 cm of a total specimen length
of 50 cm. For the CB-tests the standard specimen dimensions of 50cm x 20 cm x 10cm

were used (compare Table 3 1). A cut was made from the top, exactly above the line

where the support ended, until the protruding part broke off under its own weight. This

happened at a critical cut length a — a, (Figure 3.4)
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(a) (b)

Figure 3.4: (a) Schematic diagram of the cantilever beam test setup (b) Image of a

cantilever beam test

In a cantilever beam test the crack front is loaded in mixed mode Therefore, the stress

intensity factor in mode II, A//, had to be taken into account

g
I\j t h2,

/<;
(3 7)

For /; - a L, the system is equivalent to the asymptotic case of a deep edge crack

under a bending moment and a shear force The corresponding stress intensity factors

are given m Tada et al (2000)

A,
Ai A/,

( B

\}Vi
(3 8)

A// (3 9)

where \l( /; is the moment per specimen width ( \fcii — kh/x/ (L/2)) b is the ligament

length, b — h a 1\ « is the cantilever weight per specimen width (J'< n — kli/jg) The

constants /M and f,2 have to be determined by finite element modelling and were found

to be

A | -.-S<)7r) A, - I 163 (3 10)

for homogeneous samples (Tada et al
, 2000) In a brittle material like snow, the mode

interaction is likely to be governed by the criterion of maximum hoop stress suggested by
Evans et al (1963), which leads approximately to the following failure criterion Schindler

(2004)
^

' "<

(311)K_n_
A,

Im

K,
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3 2 Laboratory tests

Rearranging Equation (3 11), and replacing A', by the critical stress intensity factor for

the combined mode I and mode II loading, K/ yields'

hj _

'urn
_ v»7]^ (312)

Equation (3 12) slightly deviates from the formulation for the critical stress intensity

factor given by Kirchner et al (2002a), Kj — sjKj \ Kj,. Particularly for deep cuts,

Equation (3.12) is the more appropriate approximation. Taking A'// into account in

Equation (3 12) increases Kf for our experiments, compared to a pure mode I htj, by
about 6% for a density of 220 kg/m3 and 37% for a density of 335 kg/m^ The influence

of h'n is thus more important for snow of high densities

3.2.4 Shear fracture test

Mode II testing is primarily of importance in layered materials, see Section 2 5 Although,

much less information is available on mode II than on mode I testing, there exist some

standard test setups for mode II (e.g Hutchinson and Suo, 1992, pp 114). The end-

notched-flexure test (ENF), a kind of 3PB test but with a horizontal cut at one end

instead of a vertical cut in the middle, or the end-loaded-split test (ELS), which was

adapted for snow by Kirchner et al. (2002a) but did not work satisfactory, because rather

a tensile fracture of one part of the split beam was observed than a shear fracture. Due

to the fragile nature of snow, these standard tests are not suited for snow Furthermore,

the handling of layered samples turned out to be even more delicate than the handling of

homogeneous samples. Therefore, a simple cantilever beam experiment was developed

The mode II fracture test consists of a notched cantilever beam that is fixed on one

side. After the layered snow samples had been carried into the cold laboratory, they were

frozen on one side to an aluminium bar. For testing, the bar was rotated 90
'

so that the

horizontal snow layering was now vertical, see Figure 3 5 The height / of the specimen

in Figure 3.5 corresponds to the length of the aluminium case with which the specimen

was cut out of the snowpack (see Table 3.1). The aluminium bar with the upright snow

beam was placed on a table, such that one part of thickness tt was protruding and one

part of thickness //, was supported by the table The weak layer was placed exactly above

the edge of the table The protruding layer of thickness /, corresponds to the layer that

was on top of the weak layer in the snow cover (index t — top) and the supported layer
of thickness tj, was below (index /; — bottom). On top of the protruding layer a mass of

wUm<i — I A// was placed to increase the shear load at the crack tip and thus to decrease

the cut length With a thin metal saw blade a cut was made along the weak layer from

the top of the specimen towards the bottom until the protruding part of thickness //

broke off.

For the calculation of the energy release rate G for our test geometry, no analytical
solution could be found However, as a first approximation the cantilever deep crack

solutions of Equations (3 7)-(3.9) could be used. This seemed justified because for our
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Figure 3.5: (a) Schematic diagram of the shear fracture test setup (b) Image of the

shear fracture test while cutting is in progress A weight is placed on top of the

protruding part

tests the ligament length b was in the order of the total tickness h ~ /; As for the CB-test

the loading of the crack tip was expected to be in mixed mode The Young's modulus

h in Equation (3 7) was set equal to E,, the Young's modulus of the protruding part

The Young s modulus of the supported part was assumed to have only a minor influence

due to its fixation on two sides This was confirmed in FE simulations However, in case

of two different materials, A i and k2 may differ from the values given in Equation (3 9)

depending on the material mismatch

To maximize the shear component and minimize the tensile component the whole setup

was tilted by an angle n A minimum tensile load results when the opening moment

equals the normal force at the location of the crack tip Because the cut length varied

from one experiment to the other and because the exact cut length was not known prior

to a test an exact determination of rv was not possible Instead, we looked at the mean

cut length and estimated that for <v = 5 the tensile stress would be close to zero in

most cases

In a specimen fixed coordinate system, where the /y-axis points along the interface (Figure
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3.5) the torsional moment of Equation (3 8)

0) can be written as

Mru, with center of rotation o. y

Mr I X /;/ g

r,

In

m(j s///(n)

ni()co^((\)
0 / ,»i(/(«s((i) - i ,/inq s//;(fv)

(3 13)

where f is the position vector and in is the mass of the protruding snow layer per

specimen width n>
- ttlp with /, the length of the protruding layer and / its height g is

the gravitational acceleration l'en, the loading due to the body weight parallel to the

interface, depends on <\ as well and can be written as

l\<n = ingro^{(\) (3.14)

Without any additional loading the center of mass is in the middle of the protruding

layer and r, and /',, can be set to r, - l,/2 and /',,
- 1/2 in a more general situation,

i e when an additional weight //?/„,„/ is added on top of the protruding part, the total

mass is increased m = {m,l!(Hl I niitmil) and the center of mass is lifted towards the

additional weight rv transforms to

1 +
»I had

"'s/, +" '"/„„</
(3 15)

where />>„„„„ -~ tjp is the mass of the protruding snow beam per specimen width.

Accordingly, the additional mass /»/,„„? is also per specimen width Consequently, the

moment Men as a function of the rotation angle a and the additional weight is given

as

Mch ~ {riK,<„,< + l"i,m,i)q rosffv^
//

s///(n)- 1 +
'»lllllll

(3 16)

3.2.5 FE model of shear fracture test

Since the available analytical solutions for a determination of the energy release rate G

did not match our experimental set up a finite element (FE) model of the experimental

geometry was created. For the modelling the ANSYS workbench was used The geometry

was modelled consisting of two beams of two different materials, shown in Figure 3 6a

The weak layer was considered to have no extension
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Figure 3 6- (a) Geometry of the FE model Black triangles indicate the boundary
conditions Nodes are fixed in i and/or in /y direction (b) Detail of the shear stress

pattern rl(/ acting around the crack tip (ANSYS output) The dashed square in the

center of (a) indicates the magnification of (b) The crack tip is in the center of the

crosshairs The crack is coming down from the top (Material 1 p
— 250kg/m3

A-5MPa Material 2 ^-300kg/mJ / -20MPa a
- 5 27 |/'|-981N (c)

For comparison a pure shear stress case is simulated (d) The material properties of

material 1 and 2 are the same as for (b) (j f j - 20 N no gravity is applied )
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3.3 Field test

In two steps the total strain energy lT{u) for a situation with a cut length a, and

11 {a I Aa) for a cut length a t Aa were calculated, where An is a small increase in the

cut length The energy release rate G could then be calculated according to Equation

(2.9) as the difference of these two energies divided by the specimen thickness ir and

the cut length increment Aa-

«M-<'i«±M^W (317)
irAa

Aa must be chosen small enough for G{a) to converge but large enough to avoid errors

due to the limited precision of the FE model

To verify the numerical model, the infinitely long thin film of Figure 2 6 was modelled

(/ » /,,. /,) for which Suo and Hutchinson (1990) had derived an exact analytical solution

(Equation 2 33) The difference between numerical results and analytical solution did not

exceed 4% for various loading conditions Subsequently, the model was adapted to our

experimental geometry The geometry, loads and boundary conditions are indicated in

Figure 3 6a Nodes on the left boundary were fixed in x and /y direction, to model

the icing of the snow block to the aluminium bar Nodes on the bottom left boundary

were fixed in </ direction, corresponding to the support of the specimen on the table. The

gravitational acceleration // was implemented, acting with an angle a to the vertical. The

additional weight which was placed on top of the protruding snow layer was modelled

as a point load. Figure 3 6b shows the shear stress r,v acting around the crack tip. The

shear stress can be compared qualitatively to the simulation of a pure shear case (Figure
3.6c and d). The stress distributions looks qualitatively the same, although the stress

amplitudes are different, what explains the different colour code The similarity of the

stress patterns should thus justify the assumed 5' for the inclination angle <v

3.3 Field test

As the name implies, weak layers are in general not suited for any kind of transportation.

The shear fracture tests involved a highly delicate transport of some more robust weak

layer specimen to the cold laboratory. However, for many weak layers a transport is not

feasible These weak layers are assumed to be the most relevant for slab avalanche release.

Therefore the development of a field test was a major step towards more "realistic"

experiments even though less accurate More realistic means in this context that larger

samples could be tested in-situ on slopes where avalanches potentially could occur.

The field test was designed to answer the following questions:

• Is it possible to determine the energy release rate of a weak layer directly in the

field?

• Does the cut length depend on the specimen length7
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(a) (b)

Figure 3.7" (a) Schematic diagram of the field test (b) Cutting along the weak layer

of an isolated snow block in a slope

Is a crack propagation possible in slopes less steep than 30 ?

• Can a field test be further developed into a standard field test for operational
avalanche forecasting that would be useful to assess the potential for fracture

propagation7

The field test consisted of snow beams with a width of 30 cm and a variable length of

60cm 120 cm or 180 cm The beams were isolated on all four sides on a slope (Figure
3 7) After the weak layer had been identified by compression tests a cut was made

along the weak layer with a snow saw (thickness 2 mm) until the crack length became

critical and self-propagation of the crack started The cut was usually made in downslope
direction and occasionally in upslope direction

In order to make the field experiments comparable to the laboratory tests the width of

the snow beams was kept short in relation to the length For the laboratory tests the

ratio of width to length was «// — 1/5 for the field tests it was u jl —1/2 1/4 l/(>

depending on the beam length The width was kept constant for all beam length as it

was done for the different specimen sizes used in the laboratory for the fracture tests in

mode I The major difference between the field test and the shear fracture test is the

inclination of the weak layer Whereas in the laboratory n was set to 5 corresponding

to an inclination of the weak layer of
r

- 90 n
— S5 the field tests were performed

in slopes with an inclination of 25
r

55
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3.4 Young's modulus

Figure 3.8: Geometry of the FE model. Black triangles indicate the boundary conditions.

Nodes are fixed in x and y direction

3.3.1 FE model of field test

As for the shear fracture experiments a FE model was generated for the geometry of the

field experiments. The energy release rate was calculated according to Equation (3.17).
A schematic diagram of the FE model can be seen in Figure 3.8. The model consisted of

a basal layer which was fixed in x and y direction at the bottom (black triangles in Figure

3.8) overlayed by a slab consisting of 7? layers. For our experiments the slab was modelled

as to consist of three layers n = 3, because in the SMP penetration resistance signals
three layers could be clearly distinguished. For a future application the model could be

adjusted to more layers by including additional layers in the input file for ANSYS.

Not only the length of the cut ac, that was made with the snow saw, was modelled but

also the cut thickness. The snow saw had a thickness of 2 mm and therefore this gap

of 2 mm indicated as gap in Figure 3.8. The cut surfaces were modelled as contact and

target areas, in case the two surfaces would get in contact due to bending. However, the

results showed that for the measured critical cut length the slab was stiff enough so that

the two crack surfaces did not get in contact (Section 4.3). The bending of the slab due

to the cut length ac was at maximum half of the gap size of 2 mm.

3.4 Young's modulus

The determination of the Young's modulus E of a given snowpack layer is of prime

importance, since the calculation of fracture mechanical parameters, such as the energy
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release rate or the critical stress intensity factor (in a layered material), requires the

knowledge of the Young's modulus.

A precise measurement of the Young's modulus is still a difficult task and far from being

a standard procedure. One reason for this is again the fragile nature of snow which

makes standard measurement techniques very difficult and sometimes even impossible.

Furthermore, the Young's modulus will depend on the direction of loading. A loading

in lateral direction will result in a different modulus than a loading in vertical direction

due to the vertical layering of the snowpack. Basically, four different approaches can be

distinguished:

• Quasi static: The elasic modulus has traditionally been measured from the linear

elastic region of a uniaxial tensile stress-strain curve, and is defined as the ratio of

stress to strain during elastic loading (Mellor, 1975). Recently, Scapozza (2004)
has made uniaxial compression experiments. His findings agreed well with the ones

summarized by Mellor (1975) (see Figure 4.14).

• Dynamic: In dynamic experiments the snow specimen is activated with small

displacements of a given frequency, normally between 10 Hz and 10 kHz. The pulse

propagation, flexural vibration or the force response is measured from which the

Young's modulus is calculated. Mellor (1975, p.257) reports that the results for a

dynamic measurement can be a factor of 2 higher than quasistatic measurements.

Camponovo and Schweizer (2001) performed dynamic torsional shear experiments

at a frequency of 1 Hz with a stress-controlled rheometer and determined the shear

modulus of snow for different snow densities and temperatures.

• Derived from microstructural properties: With the aid of computer micro-

tomography (Schneebeli, 2002) the exact ice-matrix of a given snow sample can

be modelled. By applying the mechanical properties of ice to the matrix, an elastic

modulus for the snow sample can be calculated. This might be the method with

the highest precision, however measurements are time consuming, can only be

made for small samples with a volume of a few cubic centimeters and require an

expensive equipment.

• Derived from penetration resistance: Probably the most promising method

is to calculate an Young's modulus based on the penetration resistance signal
of a SnowMicroPen (Johnson and Schneebeli, 1999). A resistance profile can be

acquired directly in the field and within minutes. However, the conversion of the

penetration resistance into an Young's modulus is rather complex and seems to

need a calibration with field measurements first (Kronholm, 2004).

For our experiments we used a dynamic measurement method to evaluate the Young's

modulus and compared the results to the results derived from the SMP penetration

resistance signal.
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3.4.1 Dynamic measurement with cyclic loading device

A prototype of a cyclic loading device, developed at SLF, was used to determine the

Young's modulus (Hempel, 2004) Small cylindrical samples with a diameter of 48 mm

and a height of 30 mm were cut out of the snow specimens after a fracture test Then,

the samples were mounted on a device where they were loaded and unloaded with

a frequency of 100 Hz (Figure 3 9 a) The force response F due to the predefined

displacement Ah = 8//m was recorded A displacement of Ah — 8//m corresponds to a

deformation of e = Ah/h — 2 7 • 10~4 and with the applied frequency of 100 Hz a strain

rate of e = 2 7 10~2s-1 results With the force-displacement information a dynamic

Young's modulus was determined, according to the relation

E =

°

=

* A
s A Ah'

where h is the height of the sample and A its cross sectional area The calculated Young's

modulus increases rapidly with increasing loading frequency between 0 1 Hz and 50 Hz

and then successively flattens with a further increase in the frequency (Figure 3 9 b) At

frequencies around 200 Hz a resonance was observed which influenced the measurements

considerably This resonance is believed to be either the result of a resonance frequency

of the steel frame or the result of an improper icing of the snow sample to the sample

holder or the pressure plate The icing of the snow sample was a sensitive procedure It

happened that above a certain frequency, the contact between snow and pressure plate

or snow and sample holder deteriorated

From experiments with polycrystallme ice (Smha, 1978) it is known that the Young's

modulus increases with increasing loading frequency (Figure 3 10) For lower frequencies

there is a steep increase which levels off between 100 and 200 Hz

For our measurements a frequency of 100 Hz was chosen, to be as close to a flat region

as possible but still far enough away from the resonance frequency

3.4.2 Derived from penetration resistance

Kronholm (2004) was the first who used the penetration resistance signal of the SnowMi¬

croPen to estimate the Young's modulus of different layers of the snowpack According

to Kronholm (2004), the values of the modulus derived from the SMP signal are too

small by a factor of about 150 compared to the measurements of Mellor (1975)

The theory to calculate the Young's modulus from penetration resistance was developed

by Johnson and Schneebeli (1999) and is based on mechanical theories for cellular solids

(Gibson and Ashby, 1997) The Young's modulus E of a given snow layer can be calcu¬

lated as a function of the average rupture force for the microstructural element within

(3 18)
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Elastic modulus
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Figure 3.9: (a) Image of the cyclic loading device (F Hempel SLF) (A) solid steel

frame (B) piezo-actuator (C) force sensor, (D) pressure plate, (E) snow sample, (F)
sample holder (steel) (b) Young's modulus m dépendance of the applied frequency
Measurements were performed in winter 2004/2005 by Felix Book for snow consisting

of small rounded grams 0 5-1 mm 1F with a density of about 270 kg/m3
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Figure 3.10: Frequency dependence of effective Young s modulus for polycrystallme ice

at 10 C From Smha (1978)
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3.5 High-speed photography

the layer, fr, and the average microstructural element length in the layer, Ln

E = —
à (3.19)

Ln {sin 6 + pros6)

where 9 is half of the angle of the SMP tip (30°) and // the frictional coefficient between

the SMP tip and the snow grains. The frictional coefficient between ice and metal p is

assumed to be 0.25. Ln can be calculated as a function of the number of elements that

fail Ufa,i when the SMP cone with area /I, travels over a distance of Az

i„={^aS
\nf0,, J

3.5 High-speed photography

To document in detail the fracture process during the 3PB-tests and the shear fracture

tests, several tests were captured with a high-speed camera. The Vosskühler HCC-1000

camera features a maximum of 462 pps (pictures per second) with an image resolution

of 1024 x 1024 pixels. For lower image resolutions the image rate can even be increased

up to 1825 pps.

The system consists of a camera and a laptop which controls the camera and on which the

data are stored. First data analysis can be done on the laptop right after recording. The

number of images that can be stored is limited to 512 images. Therefore, a higher image

rate results in a shorter recording time. Tests were made with image rates of 115 pps,

230 pps and 462 pps, resulting in recording times of 4.5 s, 2.2 s and 1.1s, respectively.
Since the triggering of the camera was made by hand, the image rate could not be

further increased without the risk of missing the fracture. For a further increase of the

image rate an automatic triggering would be necessary. This would be, at least for the

3PB-tests, relatively easy to realize. In the data acquisition program for the 3PB-tests

written in LabView, a trigger signal could be sent to the camera as soon as the recorded

force signal exceeds a given threshold value. As long as the mean peak force is known for

a given specimen size it would be possible to decrease the time between trigger signal

and opening of the camera to approximately 100//s. A further decrease of the time would

not be suitable because the threshold would then be too close to the mean peak force

and, due to the scattering, some tests would fall below the threshold and would not

trigger the camera.

(3.20)
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Chapter 4

Results

During three winter seasons, 2003/2004, 2004/2005 and 2005/2006 experiments to de¬

termine fracture mechanical properties of snow were performed. In the first two winter

seasons most of the experiments were performed in the cold laboratory. This had the

advantage that precise measuring instruments could be used that would not have been

transportable to the field. Furthermore, the temperature could be controlled and the

experiments were independent of atmospherical conditions like wind, snowfall or radia¬

tion. All snow specimens that were tested in the cold laboratories were collected in the

field and transported to the lab. In the third winter season experiments were performed
in the field. Experimenting in the field had the advantage, that test conditions were

representative for the conditions in which fracture processes occur in the snow cover on

a slope. Very fragile weak layers could be tested that could not be transported to the

laboratory without destroying the weak layer.

The chapter is divided in three sections according to the three main experimental focuses:

In Section 4.1 the results of the experiments with homogeneous snow samples performed
in the cold laboratory are presented. Section 4.2 summarizes the experiments with layered
snow samples in the cold laboratory. In Section 4.3 the results of the field experiments
will be given.

4.1 Fracture in homogeneous snow samples

Although a shear fracture in the layered snow cover occurs before the snow slab fails

in tension, as explained in Section 1.3, we started to experiment with homogeneous
snow samples for several reasons: Experiments in homogeneous snow were essential to

improve the understanding of the general fracture mechanical behaviour of snow, to

test and confirm previous results and to gain experience for the more difficult mode II

experiments in layered snow samples. In addition, layered snow samples are in general
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4.1 Fracture in homogeneous snow samples
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Figure 4.1: Load-displacement curve for a three-point bending fracture experiment with

a snow specimen. The test was performed with a displacement rate of 200 mm/min and

a sampling rate of 250 Hz. The inset shows the peak load and the single measurement

points. (Specimen dimensions: 50 cm x 20cm x 10cm, density: 240kg/m3).

even more fragile than homogeneous snow samples.

For the mode I experiments we focused on experiments in three-point bending (3PB-

tests). Additionally, cantilever beam tests (CB-tests) were made in order to directly

compare our results with previously published results obtained with similar cantilever

tests. The 3PB-tests were performed with a standard material testing machine, described

in Section 3.2.2, which recorded a force-displacement signal while testing.

4.1.1 Behaviour of snow under loading

In mechanics and engineering load-displacement or stress-strain diagrams play a crucial

role for the characterization of material behaviour.

For each 3PB-experiment a load-displacement signal was recorded. This information was
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Chapter 4 Results

used to determine the peak load at failure, Fs. Figure 4.1 shows one representative

example of a force-displacement signal At Omm the sensor head applying the load and

including the force sensor touched the snow specimen. After getting in contact, the

force increased approximately linear until the specimen failed at a displacement of about

1.2 mm and a peak load of Fj = 29.4 N. After failure, the force signal dropped down to

0 N The inset in Figure 4.1 shows the force signal at peak load. The single measurement

points are displayed. The time resolution between successive points was 4/ys. It can be

seen that during the increase of the force several small drops of the force occurred.

These drops became more pronounced and more frequent the closer they occurred to

the specimen failure. Once the peak load was reached, the force signal dropped down to

ON only after a further displacement of about 100pm or a time of 25ms.

4.1.2 Tensile strength

Many field and laboratory experiments have been done in the past to determine the

tensile strength of snow (e.g. Mellor, 1975; Narita, 1980; Jamieson and Johnston, 1990).
Although we focus on fracture mechanical properties of snow, tensile strength is still an

important parameter for the calculation of certain fracture mechanical parameters. We

needed the tensile strength for the evaluation of the fracture process zone, Hc, Equation

(2.20), and for the determination of the failure assessment diagram (FAD), Equation

(2.29). First evaluations were made by using literature data for the tensile strength,
but the results were not satisfactory, because the nominal stresses of notched specimen
exceeded in several cases the tensile strength. This was most probably due to the fact that

previous results were obtained with different test methods and sample sizes. Therefore,

we decided to measure the tensile strength in a 3PB-test, to be able to directly compare

3PB fracture tests with 3PB tensile strength tests.

The tensile strength o> was calculated according to Equation (3.3). In contrast to the

fracture experiments, the specimens were not notched. The specimens were taken from

the same snow layers as for the fracture experiments.

The results are compiled in Figure 4.2 The tested snow consisted mainly of small rounded

grains and mixed forms with densities between 80kg/m3 and 350kg/m3. Details can be

found in Table 4.1. The errors displayed in Figure 4.2 were calculated according to the

elementary laws of error propagation. A detailed description of the error calculation and

a list of the main contributory parameters can be found in Appendix A. The mean error

was 7% and the errors did not exceed 13%. A power law relation a, = ApH was fitted to

the data with {A = 2 x 10"5±5 x 10-r') Nm/kg and an exponent B = 2.44±0.50. The

fit function had a coefficient of determination of R2 = 0.61 (dash-dotted line in Figure

4.2). If one considers the relative density (p/p„>), as it is commonly done in literature,

the resulting tensile strength to relative density function for our 3PB-tests can be written

as (/Vp = 917 kg/rrv*)
/ \ '2 44

ctc = 240 ( -?- j kPa. (4.1)
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50 100 150 200 250 300 350

Snow density p (kg/m3)

Figure 4.2: Density dependence of the tensile strength measured in 3PB-tests and

comparison to literature data of Jamieson and Johnston (1990) and others (area A)
and of Mellor (1975) (area B). The inset is a magnification of the diagram for low snow

densities. The dash-dot line indicates the best power-law fit for our data (Equation

4.1), and the dashed line the power-law fit given by Jamieson and Johnston (1990).

Jamieson and Johnston (1990) found in their field experiments for similar snow types a

relation of: <x(, = 79.7 (p/plce)2'39 kPa (dashed line in Figure 4.2). The data in Figure

4.2 are compared to the results of Jamieson and Johnston (1990) and others and to the

data summarized by Mellor (1975). Our data fall within the range of these two studies.

4.1.3 Critical stress intensity factor in mode I from 3PB-tests

In 3PB-tests with pre-cracked snow beams the critical stress intensity factor, Kjf, was

evaluated according to Equation (3.4). Eight series were made in total, series A to I with

exception of series G, with densities ranging from 150 kg/m3 up to 370 kg/m3. Detailed

information of the series is given in Table 4.1. The results are compiled in Figure 4.3.
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Figure 4.3: Dependence of the critical stress intensity factor in mode I, Kjf, on snow

density. Only three-point bending tests of the standard size 50 cm x 20 cm x 10 cm of

series A to I are included. The series are colour coded and the number of experiments
of every series is indicated. (Series E to I were performed with the new and better

resolving force sensor). A power-law relation (Equation 4 2) was fitted to the data

(dash-dot line)

Data were colour coded according to the experimental series.

The dependence of mechanical properties on density were analysed in the past and best

fits have been achieved by assuming a power-law relation, y = AxR, where A and B

are constants to be determined (Perla et al., 1982). (The choice of the fit function

will be discussed in section 5.1.3). Our data were best fitted by a power-law with A —

(4.20 x H)-7 ±6.56 x 1()"7) kN m3/'2 kg"
' and B = 2.76 ± 0.27 with a coefficient of

correlation of R2 = 0.70:

K,j = 4.20 x 10 -V7(,kPa in. (4.2)

The errors of A'// in Figure 4.3 were calculated analogous to the errors in section 4.1.2

(Appendix A). The mean error was 10% and the errors did not exceed 15%.
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4 1 Fracture in homogeneous snow samples

Table 4.2: Mean critical stress intensity factor K*If (normalized to the mean density)
for the three experiment types (3PB = three-point bending; CB ~ cantilever beam)
Series C was normalized to a density of 220 kg/m3 and Series D to 330 kg/m3

Series C

Dt

Scries D

Type of

experiment

Mean K*lf
(kPav^m)

•viation

(%)

Mean A?/
(kPav/ni)

Deviation

(%)

3PB

CB (L = 10cm)
CB (L= 15cm)

0.64 ± 0.23

0.42 ±0.12

0.51 ±0.13

-34

-20

4.27 ±0.66

2.69 ± 0.57

3.18 ±0.53

-37

-25

4.1.4 Critical stress intensity factor in mode I from CB-tests

In series C and D, 3PB-tests were made simultaneously to CB-tests. The aim was to

acquire a data set with the CB-tests suited for a direct comparison with previous studies

and thus to relate the 3PB-tests to previous CB-test results. Cantilever beams with two

different beam length of the protruding part were tested, L = 15 cm and L = 10 cm.

Since we aimed at a comparison of Im/ obtained by different experimental methods and

since the density of the specimens varied slightly, we had to normalize the data to a

defined density

Series C had a mean density of 220±7kg/m3 (Table 4.1). The data were thus normalized

to a density of p() = 220 kg/m'3 in order to eliminate the density dependence. The

density converted value for the critical stress intensity factor A7/ was found by K}f =

Kit + (^A)S " ApB), where A and B are the coefficients found in relation (4.2) The

mean K*f of the CB-tests with L = 10 cm were found to be 34% smaller than the mean

K*If for the 3PB-tests. The CB-tests with L = 15cm were 20% smaller (Table 4.2).
The deviations were within the standard errors of the K*j values.

Series D, with a mean density of 328 ± 17kg/m3, was normalized to pn = 330kg/m3.
The mean K*[f of the CB-tests with L — 10 cm were found to be 37% smaller than

the mean K*^ for the 3PB-tests The CB-tests with L — 15 cm were 25% smaller. In

contrast to series C the deviations were no longer within the standard errors of the Kjj
values.

Figure 4.4a shows the calculated K}j values according to Equation (3 12) for series C

and Figure 4.4b for series D. The CB-tests were distinguished according to the length of

the protruding beam and compared to the 3PB-tests of series C and D.

Among the CB-tests, the ones with a cantilever length of L — 10cm failed at smaller

K}f than the ones with L = 15 cm. For the CB-tests, K*lf increased with increasing

cantilever length L (Figure 4.4b). In contrast to the 3PB-tests, the CB-tests showed a

significant dépendance of A^ on the relative cut length a/h (Figure 4.4b).
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Figure 4.4: Dependence of the critical stress intensity factor K\s (normalized to the

mean density) on the relative cut depth a/h, (a) for series C and (b) for series D.

Cantilever beam (CB) tests with two different length of the protruding beam are

compared to three-point bending (3PB) tests.
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4.1 Fracture in homogeneous snow samples

4.1.5 Quantification of the size effect

This section summarizes the results of the experiments to determine the size dépendance
of the critical stress intensity factor, A//. All experiments were performed in three-point

bending. Four different specimen sizes were used for the tests (see Table 3.1), and four

experimental series were performed (Series E, F, H and I, see Table 4.1).

As it was presented in Section 2.4.3 it is possible to experimentally obtain a characteristic

size D0 and an equivalent fracture toughness AT. by plotting the inverse of the square of

the nominal strength aj2 against the specimen height h, and by determining intercept

and slope of a linear regression (Bazant and Planas, 1998). The nominal strength can

be determined according to Equation (3.3) as the nominal stress at failure. Therefore,

the force at failure Ff has to be inserted. Figures 4.5 and 4.6 show the data for series

E, F, H and I. Out of these four diagrams the parameters q and c2 were determined as

intercept and slope of a linear regression line (Equation 2.23).

In the data of series I, Figure 4.6b, two points were excluded in the linear regression

analysis. These two points are marked with an arrow. They were neglected because the

SMP penetration resistance signal was in one case much higher and in one case very low

compared to all other specimen, indicating that these two specimen had different snow

properties.

The coefficients of determination R2 were for all four series low (Table 4.3). However, if

we judge linear regressions with a level of P < 0.05 as statistically significant, the linear

regressions of series E and F were statistically significant and series H was even highly

significant. Only the regression for series I was statistically not significant. The level of

significance P is indicated in Table 3.1.

According to Bazant and Planas (1998), the characteristic size D0 can be calculated out

of the coefficients c\ and c2. The results for series E, F, H and I are listed in Table 3.1.

The mean characteristic size Do was then calculated as mean of the results for the three

statistically significant series E, F and H:

D„ = 0.29 ± 0.08 m. (4.3)

If series I, which was statistically not significant, is also included, D0 = 0.34 ± 0.09 m

results.

In Figure 4.7 the logarithm of the nominal strength as is plotted against the logarithm
of the specimen height h for all four series (E, F, H and I). The diagram corresponds to

the schematic diagram in Figure 2.4 showing the fracture mechanical size effect on the

strength of a material (Bazant and Planas, 1998). A linear regression (dash-dotted line

in Figure 4.7) resulted in

log{(Tf) = 0.74 - 0.21lag{h): (4.4)

with a level of significance P = 0.0002 and a coefficient of determination R2 — 0.12. The

slope of the linear regression of —0.21 ±0.05 is significantly lower than the required slope
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regression to the data.

of -1/2 corresponding to the specimen size range in which LEFM would be applicable

(Figure 2.4).

With the mean value for the characteristic size D{) and Equation (2.28) a correction

function can be found to determine the size independent equivalent fracture toughness

KIc depending on the measured A'//- values:

,

0.29
r,

\ + —Kl}. (4.5)

Using this function, the Kjf results of the 3PB-tests of series A to I were corrected to

the according Kfh values. In Figure 4.8 the Kclt as well as the Kjf values are presented
in relation to snow density. For the corrected data a power-law fit resulted in A =

(7.03 x 10"H ± 7.25 x 10"h) kN mH>2 kg
' and B = 2.33 ± 0.18 with an R2 = 0.59.

The relation between Kfr and density can thus be written as

Kjc = 7.03 x KrV'33 kPa m. (4.6)
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4.1 Fracture in homogeneous snow samples

Table 4.3: The characteristic size D0 for the four series E, F, H and I. The coefficients

ci and c2 are intercept and slope of a linear regression in a Of~2 versus h diagram.
R2 is the coefficient of determination and P is the level of significance of the linear

regression.

Series Number Snow density f'i c2 DQ R2 P

of tests (kg/nr3) (m4/N2) (m3/N2) (m)

E 17 186 ±12 0.020 ± 0.005 0.066 ± 0.024 0.30 ±0.13 0.34 0.015

F 53 310 ± 19 0.0.11 ± 0.003 0.034 ± 0.015 0.32 ±0.17 0.09 0.0.31

H 22 239 ±9 0.010 ±0.002 0.040 ±0.011 0.25 ± 0.09 0.39 0.002

1 23 256 ±19 0.010 ± 0.002 0.020 ± 0.010 0.50 ± 0.27 0.18 0.059

10

8-

« 6

^ 4
Hi

2

3PB-tests, all sizes

K.

N = 170

150 200 250 300 350 400

Snow density, p (kg/m )

Figure 4.8: The critical SIF, Kjf, and the critical SIF corrected to an equivalent fracture

toughness, Kjr, in relation to snow density. Only three-point bending (3PB) test are

presented but the results for all four specimen sizes are included. The dash-dot line is

the best fit for the KJC to density relation (Equation 4.6). The dotted line is the fit

for Kjf (Equation 4.2).
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1 1 | f -fi ', i < i

0 100 200 300 400 500

Snow density p (kg/m3)

Figure 4.9: Size of the fracture process zone for snow in relation to snow density. The

black line indicates the mean size for a given density and the dashed area the standard

error.

4.1.6 Fracture process zone

If the tensile strength ar and the fracture toughness Kic are known, the size of the

fracture process zone R,: can be estimated according to Equation (2.20). Since we have

evaluated both, a,, and Kfr. the size of the process zone can be calculated from the

tensile strength to density relation (Equation 4.1) and the relation for the equivalent
fracture toughness A'J?t. to density (Equation 4.6). Figure 4.9 shows that the size of the

fracture process zone Rc was between 12 cm and 4cm depending on the snow density.
The standard error can be calculated out of the errors for the fit parameters A and

B according to the rules of error propagation. The standard error is indicated by the

dashed area in Figure 4.9. A slight trend can be seen, that the size of Rr decreases with

increasing density.
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Figure 4.10: Failure assessment diagram (FAD) for the 3PB-test results for four dif¬

ferent specimen sizes.

4.1.7 Application of the failure assessment diagram

With the measured tensile strength, a,., and the calculated equivalent fracture toughness

values, Itf,., a failure assessment diagram can be calculated (Section 2.4.3). The critical

stress intensity factor, A'//, was divided by Kjc and plotted against the effective stress

a^n divided by the tensile strength ac.

The effective stress <7/va of a 3PB-specimen is similar to the nominal stress a^ (Equation

3.3) of the remaining cross section {h — a). Assuming for the sake of simplicity - as

common in FAD-application - an ideal plastic stress distribution in the ligament, the

elastic stress given by Equation (3.3) is reduced by a factor of 2/3, thus

1
0~Nn —

(h - a)2
— + I hpg [s2 - {I
w 2

(4.7)

Figure 4.10 shows our data in a Kjf/K^ over o-Nl,Ja,. plot. For every 3PB experiment
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Chapter 4 Results

Table 4.4: Fracture speed, captured with a high-speed camera in 3PB tests.

Test Time resolution Snow density Specimen size Max. fracture speed

(pps) (kg/m3) {I, h, w) (cm) «/,moj (m/s)

115 266 (50, 20, 10) 8.4 ±0.8

230 252 (50, 20, 10) 14.0 ±1.6

400 278 (50, 20, 10) 13.6 ±3.3

230 277 (80, 32, 10) 19.1 ± 1.6

460 255 (80, 32, 10) 22.7 ±3.3

Kjj and <7/vH were determined. Then the corresponding value of Kj, was calculated

according to Equation (4.6) and the ac value according to Equation (4.1). Since the

shape of a FAD curve - indicating the interaction between local and global failure of

the structure - is not known for snow, the simplest version, a straight line between

AV//A7, = I and oNa/a, = 1 was assumed, indicated by the dashed line in Figure 4.10

The data points form four distinct lines. The four lines correspond to the data of the four

different specimen sizes. The results of the largest specimen size form the most upper

line, indicated as "large" in Figure 4.10, whereas the results of the smallest specimen

size form the lowest line ("small"). Each line is the result of the large scattering of the

experimental results. The points where the potential FAD (dashed line) intersects with

the data lines coincide approximately with the mean value of each data line.

The larger the specimen is, the larger is the amount the crack front, i.e. the local

processes acting at the crack tip, contribute to the failure of the whole specimen. The

smaller the specimen, the more the global stresses contribute to specimen failure.

4.1.8 Fracture speed in mode I

Seven 3PB tests of series I were recorded with a high speed camera. Five of these seven

image series could be evaluated. In the remaining two series, the point when fracture

started was not captured. The results of the five experiments are listed in Table 4.4.

Different image rates of 115 pps, 230 pps and 460 pps were used for recording Best

results were achieved with an image rate of 460 pps. However, high resolution resulted

in a short recording time of approximately Is, making it difficult to manually trigger the

camera at the right time.

Figure 4.12 shows a sequence of six images recorded with an image resolution of 460 pps.

Every third image was printed in Figure 4.12, this corresponds to a time difference of

6.5 ms between two images. The specimen size was 80 cm x 32 cm x 10 cm. On the first

image (top left) the notch is visible that was made with a saw previous to testing. In

image two to six a fracture is propagating from the notch upwards in direction of the

loading cylinder which can be seen at the upper image boarder. The fracture speed
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Figure 4.11: Evolution of the crack speed in relation to the crack depth for (a)
to 3 with a specimen size of 50cm x 20cm x 10cm, and for (b) Test 5 and 6

specimen size of 80 cm x 32 cm x 10 cm.

Test 1

with a

for the mode I fracture, vj, was measured by identifying the crack tip on successive

images, calculating the crack advance between the two images and multiplying by the

image resolution Figure 4.11a shows the evolution of the crack speed in relation to

the position of the crack in the specimen for the three tests with a specimen dimen¬

sion of 50 cm x 20 cm x 10 cm and 4.11b for the two specimens with a dimension of

80cm x 32cm x 10cm. The fracture speeds increase until a certain crack depth and

decrease again after that point. The maximum fracture speeds v^mix, are summarized in

Table 4.4.
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Chapter 4 Results

Figure 4.12: Crack propagation sequence recorded with a high-speed camera during a

3PB-test (Test 6, Table 4.4). The time difference between the images shown is 6.5 ms

The fracture process was recorded with an image rate of 460 pps.
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4.2 Fracture in layered snow samples

4.2 Fracture in layered snow samples

After assessing the fracture behaviour of snow under tensile loading, we focussed on

fracture mechanical experiments in shear In contrast to previous shear fracture experi¬

ments by Kirchner et al. (2002a,b) who performed experiments with homogeneous snow

samples, we focused on layered snow samples. First, because shear fracture processes in

avalanche release always occur between different snow layers of different snow type and

second, because shear fractures in homogeneous materials tend to kink off, resulting in

a pure tensile failure (see Section 2.5). Because our main interest was to determine, if a

fracture can propagate or not, and not the determination of the stress field around the

crack tip, and in order to avoid the complexities of a determination of interfacial stress

intensity factors K,nt ~ A7 + iK2, the focus was set on the energy release rate G,

instead (Section 2.5.1). Consequently, the determination of the Young's modulus, E, of

a given layer in the snowpack was of prime importance, because the Young's modulus

was used to determine the energy release rate G (Equation 2,32).

4.2.1 Tested weak layers

During winter 2004/2005 four series (2A-2D) of shear fracture tests were performed

(Table 4.5). The specimens were fixed to an aluminium bar so that the weak layers

could be tested vertically in a simple cantilever beam experiment (Section 3.2.4). In

all series a weak layer was detected by compression tests, observed in a manual snow

profile and recorded with the SMP. Figure 4.13 shows that weak layers corresponded to

a local minimum in the SMP penetration resistance signal. Weak layers typically consist

of snow types with low hardness, resulting in a low penetration resistance. In Figure 4.13

one example of the penetration resistance profile is given for each of the four series.

With exception of series 2B, the tested weak layers correspond to the lowest penetration
resistance in the profiles. The weak layers had in most cases a hand hardness index (Fist)
that was one step lower than the adjacent layers (Four-fingers to One-finger). For series

2B, the weak layer was adjacent to a crust. Details on the different series and the weak

layer types can be found in Table 4.5.

The mean critical cut depth a, was 0.39 ± 0.05 m, resulting in a mean ligament size at

failure, br = (/ — ar), of 0.08 ± 0.03 m, where / was the specimen height. The mean

thicknesses of the two layers t,[t l2 were: /, = 0.11 ±0.02m, t2 = 0.09±0.02m (Figure

3.5).

27 experiments were performed in total. The experiments were difficult to perform due

to the fragile nature of the layered snow beams. Up to 20% of the experiments failed

before the fracture test could be performed. The main failure sources were the transport

to the laboratory, the fixation at the aluminium bar and the placing of the snow specimen

attached to the aluminium bar in the test position. The failures that occurred involved

either a failure of the weak layer or the breaking off of a part of the beam vertical to the
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Figure 4.13: Penetration resistance recorded with a SnowMicroPen SMP. For each of

the four tested weak layer types, series 2A to 2D, one example is given. With the

exception of series 2B, the tested weak layers correspond to the lowest penetration

resistances in the profiles.

layering.

4.2.2 Young's modulus

After performing fracture tests, small samples were cut out of the different layers of the

tested specimens. A dynamic Young's modulus of these samples was then measured in a

cyclic loading experiment (see Section 3.4.1). Due to the time consuming measurement

technique, the Young's modulus could not be determined for each specimen that had

been tested in fracture. Each specimen would have required two measurements, one for

the upper layer and one for the lower layer. A selection of 27 measurements was made:

10 in series 2A, 2 in series 2B, 9 in series 2C and 6 in series 2D. The dynamic Young's

modulus, Edyn, of these 27 experiments are shown in Figure 4.14. EdyR is plotted against
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200 240 280 320 360

Snow density, p (kg/m3)

Figure 4.14. Dynamic Young's modulus in relation to snow density, measured at a

frequency of 100 Hz (squares) The dash-dot line indicates the best fit of the data

(Equation 4 9) The dashed area (B) indicates the range of the Young s modulus

found by Scapozza (2004) in quasistatic compression experiments (A) are uniaxial

compression and tension experiments compiled by Mellor (1975) and (C) pulse prop

agation or flexural vibration tests at high frequencies, also compiled by Mellor (1975)

Additionally, the results of the dynamic torsional shear experiments of Schweizer and

Camponovo (2002) were converted to Young's modulus values (circles)

snow density A power law relation can be fitted to the data

Edll„ = 1 89 x 10~b p2 "l
MPa, (4 8)

with a coefficient of determination of R2 — 0 80 The power law relation is indi

cated as dash-dot line in Figure 4 14 (An exponential relation resulted in Edyn —

2 71 fooos5pMPa ^2 = q 78) For comparison? the range of results summarized by
Mellor (1975) (area A and C) and by Scapozza (2004) (dashed area B) are added to

Figure 4 14 Furthermore, the results obtained by Schweizer and Camponovo (2002) are

added They determined the shear modulus, S, m dynamic torsional shear experiments
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Figure 4.15: Correlation of the dynamically measured Young's modulus Edyn with

the index Esmp derived from the penetration resistance signal, recorded with the

SnowMicroPen SMP.

with a rheometer. The shear modulus results of Schweizer and Camponovo (2002) were

converted to Young's modulus values according to the relation for linear elastic material

behaviour: E = 2S{\. 4 v). The Poisson's ratio v was set to 0.17 for the snow densities

of about 230 kg/m3 they used for their experiments.

Alternatively, the SMP penetration resistance signal was used to estimate the Young's
modulus. The big advantage of this method is that an SMP signal is easy and fast to

acquire, the disadvantage is that the conversion from penetration resistance to Young's
modulus is badly calibrated up to now. An IDL (Interactive Data Language) algorithm,

developed by Kronholm (2004) and based on a theory of Johnson and Schneebeli (1999),
was used to calculate an index for the Young's modulus as a function of the penetration
resistance (Equations 3.19 and 3.20). However, according to Kronholm (2004), the values

of the index derived from the SMP signal are too small and have to be corrected by a

factor of about 150 to get an appropriate estimate for the Young's modulus.
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{F/Ah) of an initial tangent (black line) and of a tangent over the whole range

where the force increases (black dashed line).

Correlating the index values derived from the SMP data, ESah->, with the results from

the cyclic loading tests, Ed!)„, resulted in a correction factor of Edyn — (186 ± 7) Esmp

with a coefficient of determination of R2 = 0.81 and a level of significance P < 0.0001

(Figure 4.15). Of the 27 measurements with the cyclic loading device only for 24 an

SMP signal was available. Therefore, Figure 4.15 includes only 24 data points.

A further possibility to estimate the Young's modulus would be to use the force-

displacement signals acquired during the three-point bending tests. Out of a force-

displacement diagram the slope of the force increase {F/Ah) can be determined (Figure

4.16). By multiplying this slope with hjA the elastic modulus can be determined ac¬

cording to

(4.9)
e A Ah/

where /; is the height of the specimen and A the area of contact of the force sensor.

The height of the specimen in Figure 4.16 was 20 cm and the area of contact is given

by the width of the beam (10 cm) times the width of the contact of the force cylinder.
The contact width is assumed to be approximately 1cm. The resulting Young's modulus

for the indicated slopes of F/Ah = 27.4 N/mm and of F/Ah = 32.6N/nun are
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4.2 Fracture in layered snow samples

E = 5.5 MPa and E = 6.5 MPa, respectively. The specimen in Figure 4.16 had a

density of 240 kg/m3. Compared to the Young's modulus results compiled in Figure

4.14, the values are well within the range of the results of Mellor (1975) and Scapozza

(2004).

However, in a three-point bending test the displacement Ah is a combination of compres¬

sion of the specimen and bending of the specimen. Only the compression is relevant for

the determination of the Young's modulus. Since in the above estimate both components

are included the effective Young's modulus might be underestimated.

4.2.3 Energy release rate in mode II

To evaluate the critical energy release rate Gf for our experiments, no analytical solution

was found. Therefore, Gf was determined numerically in an FE simulation (Section

3.2.5). The critical energy release rate is denoted as Gf in this work and not as G,, as it

is usually done in literature, because index / expresses that the energy release rate will

most probably depend on the test specimen size (compare with K/f vs. Klc in Section

4.1,5)

For every single experiment an FE simulation was run based on the exact geometry

of the experiment. The input parameters were: specimen length, thickness and width

(/, tf.tb, i"), elastic properties of the two layers (Et, Ei,} vu z^), density of the two layers

{pt,pb) cut length at failure (ac), as well as angle of rotation (a) and the additional

mass {niioad) The Poisson's ratio vh v\t were estimated from density according to

v = uo +{p- Po) 5 x 10"' m7kg, (4.10)

with v0 = 0.2 and p0 = 300 kg m-'* according to Mellor (1975). The cut length increment

Aa was set to 0.002 m resulting in Aa/h = 0.004 Changes in Aa did not change the

energy release rate G The Young's modulus of the slab [Et) and the basal layer {Eh)
as well as of the weak layer {Ewl) were derived from the SMP penetration resistance

signal This was done by dividing the penetration resistance signal (compare Figure 4.13)
in three sections: slab, weak layer and basal layer. In the following the Young's modulus

was derived as average over a whole section, even if the penetration resistance signal
showed variations in one section. The results are compiled in Table 4.6.

Since the crack length a was set equal to the critical crack length a,_ the energy release

rate at the point of failure was assessed. The energy release rate at failure is equal to

the critical energy release rate Gj, the energy that has to be overcome to propagate a

fracture. Gf can thus also be seen as the specific fracture energy of the weak layer, the

energy needed to fracture a weak layer over a unit area.

The results for the critical energy release rate Gf for the different series (2A-2D) are

shown in Figure 4.17. Gj is plotted against various elastic properties of the specimen.

Only for the correlation of Gf with the elastic mismatch between slab and basal layer,

Et/Eb, a slight trend to increase with increasing elastic mismatch could be observed
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Figure 4.17: Critical energy release rate Gj in relation to the elastic properties of the

specimen: (a) Gf in relation to the Young's modulus of the slab Ef, (b) in relation to

the Young's modulus of the weak layer EWL, (c) in relation to the elastic mismatch

of slab and basal layer Et/Eh, (d) in relation to the elastic mismatch of slab and weak

layer EjEwl- The results are coded according to the four series of winter 2004/2005
(Table 4.5).

Table 4.6: Details of the shear fracture experiments.

Series Relative cut

length, a,/I

Thickness

ratio, tt/tb

Young's modulus Gl

Et

(MPa)

Ewl

(MPa)

Eh

(MPa) (mJ/m2)

2A

2B

2C

2D

0.85 ± 0.05

0.80 ± 0.08

0.78 ± 0.07

0.82 ± 0.08

0.96 ±0.15

0.88 ±0.01

1.21 ±0.53

1.26 ±0.63

25.9 ±3.6

20.4 ± 6.0

19.7 ±1.9

54.6 ±2.5

9.1 ±2.5

14.6 ±2.7

11.2 ±2.8

1 4.5 ± 2.8

39.1 ±6.0

30.8 ± 1.7

23.6 ±29

59.3 ±5.4

50 ± 26

55 ± 12

39 ± 6

40 ± 24
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4.2 Fracture in layered snow samples

(P(4.17a) - 0.49, P(4.17b) = 0.04, P(4.17c) = 0.61, P(4.17d) = 0.49). However, if

the four data points in Figure 4.17c were excluded, for which the Young's modulus of the

slab was bigger than of the basal layer Et/Eb > 1 no statistically significant correlation

could be observed (P = 0.36). The exclusion of these four points from a correlation

is justified because the elastic mismatch starts to increase again for Et/Eb > 1, after

decreasing in positive ./-direction for E,/Eb < 1. Figure 4.17b suggests that the energy

release rate does not depend on the Young's modulus of the weak layer. However, the

range of the Young's modulus for the weak layers tested in our experiments was relatively

narrow, since the properties of the weak layers were similar for all series (Table 4.5). A

multiple regression for Gf and the Young's modulus of Et, Eh and of the weak layer EWl

did not reveal any statistically significant correlation {R2 = 0.15, N — 26, P ~ 0.15).

The mean critical energy release rate for all series was

Gf = 0.044 ±0.020 J/m2. (4.11)

4.2.4 Comparison of analytical approaches to FEM results

To determine the energy release rate G for our experimental geometry no analytical solu¬

tion was available. Therefore, we adapted two general analytical approaches to determine

G. To overcome some of the limitations of the analytical solutions we compared them

to a numerical approach. In the following, the two approaches are described: (1) The

analytical cantilever beam approach is valid for deep cracks but assumes a homogeneous

material, see Section 3.2.4. (2) The analytical bilayer approach assumes two different

materials, but an infinitesimally extended specimen, see Section 2.5.2. An analytical so¬

lution is of importance, even if it is an approximation, because it can render FE modelling

unnecessary for future experiments.

Figure 4.18a compares the cantilever deep crack approach with the FEM results. Energy

release rates were calculated according to Equations (3.7)-(3.9) and Equation (3.16) for

different geometry and material properties. The cantilever results were larger than the

FEM results, but the values were highly correlated {R2 = 0.93, iV = 21, p < 0.0001).
The slope was 0.49±0.03. The value of the slope slightly depends on the elastic mismatch

between slab and basal layer, Et/Eb (Figure 4.18c). A linear regression showed a level

of significance of P = 0.003.

The analytical solution of Suo and Hutchinson (1990) for an interface crack between

thin films, Equation (2.33), was adapted to our geometry. For our geometry and loading
situation /?, = th H — tb and we assume P to be the force due to the body weight

plus the additional weight that was placed on top of the protruding part, therefore,

P\ = P3 = PCh in Equation (3.14). P2 was zero, hî\ was equal to Mob (Equation

3.16). A/3 was zero because the specimen was placed on the table at the point where

A/3 would act. With these assumptions Equation (2.33) simplified to

G-2-Ët[~ir + u^r)+ 2Eh \- au
+ u

h> ) (412)
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Figure 4.18: Comparison of the energy release rates obtained with the FE model and

(a) the analytical deep crack cantilever approach, and (b) the analytical bilayer with an

interface crack approach. Figures (c) and (d) show the ratio of the energy release rates

in relation to the elastic mismatch EtJEi, for the two analytical solutions. {M = 21).

Overall equilibrium of moments provides a constraint so that the moment A/2 can be

calculated:

M2 = Pc
tt
+ lb - Alt + M( (4.13)

M2 compensates for the fixed side of the beam in our experiments.

In Figure 4.18b the adapted analytical solution for a bilayer material (Suo and Hutchin¬

son, 1990) is compared with the FEM results. The analytical results were larger than

the FEM results. A linear regression resulted in a slope of 0.49 ± 0.08 (P2 = 0.69, N =

21. p < 0.0001). Consequently, for the bilayer approach the slope did not depend on the

elastic mismatch between slab and basal layer, Et/Eb (P = 0.62), because Et as well

as Eb are included in the bilayer approach. (Figure 4.18d).

If the analytical solutions are multiplied with the according correlation factors, they are

valuable solutions to replace the finite element modelling.
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4.2.5 Comparison of mode I and mode II results

In order to compare the energy release rate of the mode I experiments and of the mode II

experiments, Equation (2.17): G = K2JE, can be used to transform the critical energy

release rate results in mode I into an energy release rate in mode I. To get the critical

energy release rate in mode I, G/(modeI), in relation to the density, Equation (4.2)
was used for the critical stress intensity factor A'// and Equation (4.9) for the Young's
modulus. Figure 4.19 shows the resulting relation (dotted line). To get the specimen size

independent effective critical energy release rate in mode I, G\.(modc I), in relation to the

density, Equation (4.6) was used for the equivalent fracture toughness Kjr (dashed line).
For the mode II experiments the density of the weak layer was estimated by converting

the Young's modulus EWL into a density for the weak layer by using Equation (4.9).
The mode I critical energy release rate is on average 2.2 times higher than the critical

energy release rate in mode II for the same density of snow. The effective critical energy

release rate Gc is on average 6.5 times higher than the Gf in mode II.

On the other side, Equation (3.7) can be used to get a rough estimate of the magnitude
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of the fracture toughness for our weak layer type: \/G Ewl =

v Ef + Imi' The

average weak layer Young's modulus Ewl of our samples was 11.6 MPa (Figure 4.17b).
Corresponding to a density of about 200 kg/m3 if Equation (4.9) is used. The mixed

mode interfacial critical stress intensity factor for a shear fracture along a weak layer,

Kfff, resulted in

Kfff = 0.49 ± 0.36 kPaml/2 (4.14)

which is about a factor of 1.9 lower than the critical stress intensity factor in mode I,

Kjf, for samples of similar snow density (see Figure 4.3).
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4.3 Fracture of weak layers on slopes

4.3 Fracture of weak layers on slopes

Field experiments were performed during three days between 25 January and 3 February

2006. For the test a snow beam including a weak layer was isolated on all for sides and

then a cut was made along the weak layer with a snow saw until the specimen failed

(Section 3.3 and Figure 4.20). An east-facing slope was selected with a slope angle close

to 30° at Strela-Schönenboden, Davos, Switzerland (779 920 / 186 365). In this slope

a weak layer was present in a depth of about 30 cm which consisted of faceted crystals
and partly depth hoar. The weak layer was formed under a 2 mm thick crust during a

period of fine weather in January 2006. Three test series were performed with this weak

layer at intervals of 2 days and 7 days, respectively. Details of the tests can be found in

Table 4.7 and in the stratigraphie snow cover profiles for the three days in Appendix B.

33 experiments were performed in these three days.

The tests can be divided in two groups according to their failure behaviour. The first

group of snow beams failed along the entire weak layer plane after a critical cut length ac

was reached with the saw. Because most of our experiments were performed at a slope

angle of about 30°, the detached part of the beam (the slab) did not slide down over

the failed weak layer plane, but a noticeable displacement of the whole slab could be

observed. A displacement of the upper part of the beam (slab) of approximately 5 mm

can be observed in Figure 4.20c. The weak layer can be identified in the image as darker

area due to higher porosity. In the second group, a fracture propagated along the weak

layer when reaching ac but the weak layer did not fail entirely. The crack was arrested

after a certain distance. In some cases a vertical tensile crack could be observed through
the overlaying slab. Of the 33 experiments, the weak layer fractured entirely in 22 or

two-thirds of all tested specimen and in 11 tests the crack was arrested.

Tests that were made on slopes steeper than 30° showed that the slab slid down over

the plane of weakness. Tests on slopes with an inclination of about 25° showed that a

similar displacement could be observed as in tests at 30°. Results of the tests with an

other inclination than 30° are not further considered, because only few tests were made

and the weak layers are not comparable to the other data set.

4.3.1 Shear strength of the tested weak layer

The shear strength measurements were performed with the shear frame (Section 3.1).
The shear strength is calculated as the measured force divided by the shear frame area

and multiplied with a correction factor (Jamieson and Johnston, 2001). The results of

the shear strength measurements are summarized in Table 4.8.

The mean shear strength was between a factor of 3.4 and 5.4 higher than the effective

shear stress. The effective shear stress is calculated as the slope parallel component of

the load due to the weight {rnsiabgcos{>p)) divided by the base area of the isolated beam

reduced by the area that had been cut with the snow saw («;(/ — ar)).
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4.3 Fracture of weak layers on slopes

WÈÊÈÊÊ

(b) (c)

Figure 4.20: (a) Image of the study site at Strela-Schönenboden, Davos after testing.
It is schematically indicated how a row of field test beams was located. (A) Test

specimen with length of 1.8 m followed by a beam divided in a (B) 0.6 m and a (C)
1.2 m beam. (D) Downslope of every test beam a SMP penetration resistance profile
was taken, (b) Field test setup. Cutting along the weak layer of a field test specimen
with length 1.2 m and width 0.3 m. (c) Lower edge of a test specimen. The failure of

the weak layer resulted in a slight downslope displacement of the upper part of the

beam (the slab) of about 5 mm.
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Table 4.8: Data of shear frame measurements compared to the effective shear stresses.

Series Number of shear Mean force Mean shear Effective shear

frame tests strength stress

(N) (Pa) (Pa)

3A 11 51 ±6 1540 ± 180 284 ± 16

3B 10 35 ± 6 1080 ±170 315 ± 61

3C 8 49 ± 4 1440 ± 100 282 ±11

4.3.2 Energy release rate for the tested weak layer

A finite element model (FEM) was used to determine the energy release rate for the

tested weak layer (Section 3.3.1). Every field test was modelled with finite elements

according to its specific geometry and snow properties. The following parameters were

required as input for the model: length / and width w of the beam, thickness, density

and elastic properties of the different layers of the slab {hi, Etl p/) for i = 1,..., n,

as well as for the basal layer (/ib„„,R, -EW,e, phase), cut length at failure a,c, and the slope

angle <p. The Poisson's ratio v\ was estimated from density according to Equation 4.10.

The cut length increment Aa was set to 0.002 m resulting in Aa/h < 3 x If)-3.

The Young's modulus for a given layer was determined by converting the SMP penetra¬

tion resistance signal into an index for the Young's modulus and multiplying it by a factor

of 186, the factor that had been found in Section 4.2.2. Series 3B was the only series

for which SMP profiles were acquired. Therefore, it was the only series that could be

evaluated in respect of Gf, because a precise modelling was only possible if the Young's
modulus of the different layers were known. The SMP signals of series 3B indicated that

the slab should be subdivided in three layers with different material properties (see also

the snow profiles in Appendix B).

Figure 4.22 shows the critical energy release rates Gf determined from FEM for the test

day on 27 January 2006 (Series 3B) in relation to the beam length. Three different beam

length were tested: 0.6m, 1.2m and 1.8m (Figure 4.20a). Figure 4.22 confirms what

would be expected for a fracture mechanical process: The critical energy release rate for

fracture propagation is independent of the length of a test beam {N = 21, P — 0.31).
The mean Gf of series 3B resulted in:

Gf = 0.066 ± 0.014 J/m2. (4.15)

The critical energy release rate of the weak layer tested in the field was about 65% higher

than the mean critical energy release rate of the weak layers tested in the laboratory

{G,. — 0.04 ± 0.02 J/m2). However, the tested weak layers as well as the tested slabs in

the field were not the same as the ones that were tested in the laboratory.

Figure 4.22 shows the dépendance of the energy release rate G on the cut length a.

The statistically significant correlation (N = 21, R2 = 0.76, P < 0.0001) is a result of
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Figure 4.21: Critical energy release rate Gf determined with FEM in relation to the

beam length for the field tests of 27 January 2006. A linear regression (dotted line)
was statistically not significant, i.e. Gf does not depend on the beam length.

the fact that for the different test beams the geometry and the elastic properties were

approximately the same. Thus, if the cut length is increased, the energy release rate

increases too. However, the scattering of the data points represents the fact that the

elastic properties of the various test were not exactly the same.

Figure 4.23 shows a box plot which shows the distribution of the critical crack length

a,, for the three testing days. In statistics, the box plot is a convenient way to display a

summary of five numbers which describe the distribution of a parameter. It consists of the

smallest observation, lower quartile, median, upper quartile and largest observation. The

height of the box, defined by the upper and lower quartile is known as the interquartile

range (IQR) and includes 50% of all values. The position of the median in the box gives

information of the skewness of the distribution. The cross indicates the mean value and

the circles indicate the largest and smallest observation. The so called whiskers indicate

the 5% and 95% level. Figure 4.23 shows that between the three measurement days the

critical cut length tended to increase, although, the mass of the slab did not increase

because there was no snow fall event during this period.
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Figure 4.22: Energy release rate G in dépendance of the cut length a. All tests were

made with the same weak layer on 27 January 2006. A linear regression (dotted line)
was statistically significant.

4.3.3 Influence of bending

In this section additional results based on the FE model of the field experiment will be

presented.

Although the thickness of the cut that was made in the weak layer was only 2 mm,

corresponding to the 2 mm thick snow saw, the cut surfaces were far from getting in

contact to each other for our cut length ac < 30 cm. Simulations showed that a cut

length of more than 50 cm would have been required to bring the slab in contact with

the basal layer for the elastic properties of the tested slabs. For our cut length, the

vertical displacement of the slab due to bending did never exceed 50% of the gap size

of 2 mm and was in most cases much less than 50% (Figure 4.24).

First simulations were made with a model which included a slab consisting of only one

layer. However, the penetration resistance signals of the slab suggested that the slab

should rather be modelled as to consist of three different layers. In the following the

model was extended to a slab consisting of three layers (see Figure 3.8). Figure 4.25

shows the resulting tensile stresses in slope parallel direction o~y for a model with a one
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Figure 4.23: The distribution of the critical cut length ac in a box plot for the three

test days. Mean compression test (CT) results and number of compression tests are

indicated at the bottom.

layer slab and for a model with a slab consisting of three layers with different material

properties. Both beams had a length of 1.2 m and a width of 0.3 m. The basal layer had

a slope normal tickness of h = 13.6 cm, a density of 246 kg/m3 and a Young's modulus

of E = 12.2 MPa. The slab properties are indicated in the caption of Figure 4.25.

Whereas for the one layer slab no stress concentrations can be seen, a different stress

pattern is visible for the three layer slab (Figure 4.25). The stress concentration was not

located where it would have been expected for a bending case, right above the crack tip,

but a certain distance ahead of the crack tip. Obviously this stress concentration was a

result of the combination of different layers with different material properties. However,

results showed that the existence of stress concentrations depended very much on the

properties and thicknesses of the three slab layers.

Finally, the influence of an existing gap on the energy release rate was tested. Therefore,

a beam with rectangular shape was modelled, in contrast to the beam shape in Figure
4.25 in which the left and right face are always vertical, independent of the slope angle.
The rectangular shape was chosen to be able to model also high slope angles up to
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Figure 4.24: Detail of the upslope end of a test beam simulation (ANSYS output).
The upper part (slab) bends due to gravity The vertical displacement is indicated as

Au. The horizontal displacement between slab and basal layer has modelling reasons.

80°. The model had the following dimensions: beam length = 1.2 m, beam width —

0.3m, slab thickness — 0.3 m, height of basal layer = 0.1m, cut length — 0.2 m, slab

density = 250 kg/m3, basal layer density - 300 kg/m3, Young's modulus of the slab

E^/ab — 20 MPa, Young's modulus of the basal layer Ehn^ — 30 MPa. (This time the slab

was again modelled as only one layer). The values for the Young's modulus correspond

approximately to what can be found by Equation (4.9). With this model the energy

release rate G was calculated for different slope angles tp for the case when a cut

thickness or gap of 2 mm was included, and for the case when the cut thickness was

set to zero. The cut surfaces were modelled as contact and target area, so that no

penetration of the upper cut surface (the slab) was allowed into the lower cut surface

(the basal layer). Therefore, in case the gap size was set to zero no bending of the

slab was possible. No slope parallel friction between the cut surfaces was assumed. The

results are presented in Figure 4.26a. For a slope angle of 30°, the energy release rate

due to the combined bending and shearing was about 6 times the energy release rate

due to pure shearing.
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Figure 4.25: Top: Tensile stresses in slope parallel direction av for the modelled

geometry with slab consisting of n—1 layer. (Slab properties: h = 26.6 cm, p =

167kg/m3, E = 6.24MPa). Bottom. ay for a slab with n=3 layers. (Slab properties:

hi = 10.5cm, pi = 120kg/m3, Ex = 3.72MPa; h2 = 15.2cm, p2 = 190kg/m3,
E2 = 6.01 MPa; hz = 0.9 cm, p-A - 273 kg/m3, EA = 10.5 MPa).
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Figure 4.26: Finite element calculation of the energy release rate in dependence of slope

angle for a model including a gap of 2 mm (squares), so that bending is possible, and

for a model with a gap of zero extension (circles). The material properties for the

calculation (a) were: pshlb = 250 kg/m3, pbavf, = 300 kg/m3, Eslnh = 20 MPa, E,ja,w

= 30 MPa; and for (b): ftUj - 250 kg/m3, /W = 300 kg/m3, E,lab = 4 MPa, Ebl
= 10 MPa.
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In a second simulation the Young's modulus of slab and basal layer were reduced to

4 MPa and 10 MPa, respectively. These values correspond to what could be assumed

from the results summarized by Mellor (1975) (Figure 4.14) The result is shown in

Figure 4.26b. The energy release rates G where higher for the lower Young's modulus.

This would be expected from the theory. However, the shape of the curves stayed the

same. Again, the combined bending and shearing was about 6 times the energy release

rate due to pure shearing for a slope angle of 30°.

4.3.4 Analytical approach for the field experiments

An analytical approximation for the calculation of the critical energy release rate for

our field experiments was searched, in order to test if adequate results for Gf could be

obtained without the precise but time consuming finite element simulation.

The findings in Section 4.3.3, that the slab was bending over the length of the cut a,

without a contact to the layer underneath the 2 mm thick cut, suggested to concentrate

on a bending model rather than on a shear force model.

An analytical model for collapse in horizontal stratifications from Heierli and Zaiser

(2006) can be used for the determination of the fracture energy of a weak layer in

relation to the crack half length i\, due to a slope normal collapse (Equation 2.45). The

model must be adapted for the asymmetric situation in our experiments and for the

slope angle. Instead of an internal collapse of the weak layer on the length 2r, (resulting
in bending of the slab), a collapse at one edge of the beam with length rc = «c was

assumed.

The solution space for the displacement in slope normal direction (Heierli and Zaiser,

2006) is given by

U{X) = -X4 + r3X3 + c2X'2 ± c\X ± c0, (4.16)

where U and X are dimensionless and defined by: U ~ u/hwL where hWL is the

collapse height, and X = x/r{) where r0l = 2\hwL&/pBg, with T> the rigidity of

the slab (Equation 2.46) and H the slab thickness. The four coefficients r, had to be

reevaluated with new boundary conditions. The new boundary conditions for a beam

fixed at X = R and free bending a X = 0 are: U{R) - 0, U'{R) = 0, f/"(0) - 0 and

U'"(0) = 0. Equation (4.16) becomes

U{X, R) = -X4 + 4R3X - 3/?4. (4.17)

The total energy of Equation (2.44) in dimension-less form can be written as (Heierli
and Zaiser, 2006)

m) ~ J {è i^^ivW)2 + u{x) + Wf0H;W)} **> (4-18)

with R — r/r0, <i> — V/Vq where Vb — pHghr0 and Wj = uf/pHyh.
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By substitution of Equation (4.17) into Equation (4.18), the result for the energy in

dependence of the dimension-less crack extension R is obtained:

<f>(Ii) = -ïiïi + WfR. (4.19)

The energy gets critical when it reaches a maximum, as it was explained in Section 2.6.3.

Thus Equation (4.19) yields

^P = 0 = -3Ä* + Wf. (4.20)
dR

By rearranging Equation (4.20) and re-transformation of the dimensionless variables,

a relation between the fracture energy of the weak layer wj which corresponds to the

critical energy release rate Gf (Equation 2.8) and the critical cut length ac can be found:

Equation (4.21) is still for a horizontal situation (slope angle ip = 0). Since our experi¬

ments took place on a slope with a given angle we have to correct for that by ycos{ip).

Furthermore, the cut length ac has to be corrected, because our beam geometry is not

rectangular but a parallelogram with angle <p (see Figure 3.8). The corrected cut length

o,c = ac ± H/'2tan{ip) compensates for the additional weight due to the geometry

difference. Thus, for our experimental situation, Equation (4.21) transforms to

3(pgcos(<p))* <

1
2 EH

v ;

The resulting critical energy release rate Gf in relation to the cut depth a,, are presented

in Figure 4.27. The data are compared to the numerical FEM results of Figure 4.22. On

average, the analytical results are a factor four lower than the numerical results. If for

comparison Gf is calculated according to the pure shear approach proposed by McClung

(1979), Equation (2.42), the results differ from the numerical results by a factor of 60

up to a factor of 150 (Figure 4.27).
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Chapter 5

Discussion

5.1 Fracture in mode I

5.1.1 The load-displacement curve

In mechanics and engineering load-displacement or stress-strain diagrams play a crucial

role for the characterization of material behaviour. Since a load-displacement curve was

recorded for each three-point bending (3PB) test, a representative example of a load

displacement curve (Figure 4.1) will be discussed here.

The strain rates ê for the 3PB-tests were between 4.2 x 10"1 s"l for the smallest specimen

with a height of 8 cm and 1.3 x 10~2 s_1 for the largest specimen with a height of 32 cm.

Thus the strain rates were clearly in the brittle range according to the brittle to ductile

transition which is between è ~ 1 x l()~3s_1 and ê ~ 1 x 10~5s_1 depending on grain

type and temperature (Narita, 1980). Brittle behaviour is manifested in a linear increase

of the load due to a displacement until failure. However, Figure 4.1 shows that this holds

only to a limited extent for our fracture experiments. The slope decreases slightly towards

the failure point. After the peak load is reached, the force signal does not instantly drop

down to 0 N but remains at a level of about 28 N for a duration of 25 ms
.
These two

observations indicate that strain softening processes took place during the experiment.

Strain softening processes imply that snow behaves quasi-brittle (see Section 2.4.1).

The small drops in the force signal that became more pronounced and more frequently

towards the point of global specimen failure resemble the so called pop-ins, known

from other materials. Pop-ins are the result of very small brittle crack extensions (e.g.
Sumpter, 1991). However, we suggest that these drops in the force signal are rather the

result of local crushing of the ice matrix close to the point of loading. Comparable to

the crushing of honeycombs described by Gibson and Ashby (1997). The load applied by

the sensor head leads to a local compaction of the ice-matrix. This compaction is not
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continuous but step wise provoking the drops The compaction increases the contact area

and decreases the pressure until the load can be applied to the surrounding ice-matrix

without further local compaction This assumption is supported by the observation of

local deformation of the snow specimen close to the sensor head The deformations

increased with decreasing density but did not exceed a few millimeters

In conclusion, it was found that even for fast loading rates snow undergoes strain soft¬

ening This indicates that the mechanical behaviour of snow involves non-linear effects

that can not be neglected The behaviour can not be assumed as to be purely linear

elastic

5.1.2 The bending experiment to determine tensile strength

The tensile strength of snow was measured in 3PB-tests with unnotched specimens of

different snow densities

Our results for the tensile strength are in good agreement with the results found by

Mellor (1975) and the compilation by Jamieson and Johnston (1990) and others Our

data as well as the fit function fall into the ranges indicated in Figure 4 2 However,

our data are constantly at the upper boundary of the range denoted by Jamieson and

Johnston (1990) and for higher densities even beyond This becomes obvious when our

fit function (dash-dot line) is compared to the fit function of Jamieson and Johnston

(1990) (dashed line) The difference is most probably due to the different type of test

used While Jamieson and Johnston (1990) performed a direct tension experiment, we

performed a bending experiment According to Schindler (private communication), it can

be observed that the results for the tensile strength determined in bending experiment are

generally higher than the ones determined in direct tension experiments Furthermore,

Jamieson and Johnston (1990) report in their study, that their experiments appeared
lower for snow densities above 250 kg/m3 than other in-situ studies We confirm this

observation with our data A further explanation might be, that our experiments were

performed in the cold laboratory at a constant snow temperature of —10°C, while the

experiments of Jamieson and Johnston (1990) were performed in the field with no control

on the temperature Typical slab temperatures might be around —5°C Since strength
tends to decrease with increasing temperature (Nanta, 1983) one part of the observed

difference can be attributed to this effect And finally, part of the difference could also

origin in a size effect Our specimen sizes were larger than the ones used by Jamieson

and Johnston (1990) or (Narita, 1983)

In conclusion, the 3PB-test was well suited for the determination of the tensile strength,
it was easy to perform and the obtained results were comparable to previously published
data The main advantage was that strength and fracture mechanical experiments could

be performed simultaneously, with specimens of the same size and the same snow type

This guaranteed the best possible comparability between fracture and strength data
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5.1 Fracture in mode I

5.1.3 Comparison of 3PB-tests and CB-tests

Mode I fracture experiments were made with homogeneous snow samples in three-point

bending (3PB-tests). Additionally, cantilever beam tests (CB-tests) were made in order

to directly compare our results with previously published results obtained with similar

cantilever tests.

First, the results of the 3PB-tests will be discussed, especially the relation of the critical

stress intensity factor (SIF), A'//-, to snow density. Then, the 3PB-tests are compared

to the CB-tests, and finally, the CB-tests and 3PB-tests are compared to similar tests

performed in recent years.

For the first time, the 3PB-test was adapted to snow to determine the critical stress

intensity factor KIf. (In the 1960ies Stearns (1964) used a hand-operated press to

apply a three-point load on natural snow-ice samples and measured the flexural strength
and elastic properties of the samples). The results of KIf determined in 3PB-tests are

presented in relation to snow density in Figure 4.3. For this diagram only the data

acquired with the standard specimen size 50 cm x 20 cm x 10 cm were considered. The

data show a large scatter, which is however comparable to other experimental results in

snow. Surprising is, that Kjf for series D is about twice the Ktf for series F, although

both series have about the same mean density of 320 kg/m3 (see Table 4.1 for more

details). The variation can not be attributed to a different snow temperature since the

difference in temperature was small for the two series. It is assumed that the variation

originates in the different snow type of the two series. While the samples for series D were

collected in Davos and consisted of old snow with small rounded grains and partly mixed

forms, the samples of series F were collected about 1000 meter higher at Weissfluhjoch.

The snow was not older than four days and was cut out of a wind slab consisting of

small rounded and partly decomposed and fragmented snow particles. The hand hardness

index was higher for series D (1F-K) than for series F (IF) and a higher penetration

resistance could be identified in the SMP signals (^ 1 N compared to ^0.5N). This

shows that although the series had the same density they differed in other mechanical

properties such as the hardness, the penetration resistance or the Young's modulus.

It is not known, if a power-law best describes the density dépendance of A'//. In fact,

Perla et al. (1982) who used a power-law to describe a strength to density relation,

stated that there is probably little justification for favouring any particular strength to

density correlation, and this might be the same for other mechanical properties such

as Kjf. Our data could also be fitted by a bi-linear model or a more general model

consisting of different functions for different density ranges. In fact, such transitions are

known for other materials but also for snow. According to Golubev and Frolov (1998),
there exist several transitions in snow. Two of them can physically be explained and are

well known. The critical densities 550 kg/m3 and 820 kg/m3 are the borderlines between

snow, firn and porous ice. Golubev and Frolov (1998) observed three more borderlines at

about 150, 330 and 700 kg/m3. However, they stated that the structural stages of snow

corresponding to these values remain unclear. In Figure 4.3 a transition could possibly be
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located at a density of about 280 kg/m3. However, much more data would be required to

assess such a density dépendance. The choice of a particular correlation function would

remain somehow arbitrary. Generally power-law fits are chosen to describe mechanical

properties in relation to density, because the data linearize well in log-log plots.

In Figure 4.4 the CB-tests are compared to the 3PB-tests. According to LEFM, K/f

should be a material constant and independent of the test method, i.e. equivalent to

the fracture toughness Kjc. However, the KIf values for the CB-tests in Figure 4.4a

and Figure 4.4b were considerably smaller than those for the 3PB-tests. Among the

CB-tests, the ones with a cantilever length of L — 10 cm failed at smaller A'// than the

ones with L = lb cm. Hence, a dependence of KIf on the test method can be observed.

The essential difference between the test methods is their different specimen shape,

since the effect due to mixed-mode fracture in the CB-tests was taken into account

(Equation 3,12). Therefore, the geometry of the specimens seems to be responsible for

the difference.

The dependence of Kjf on the cantilever length has previously been described by Faillet-

taz et al. (2002). They proposed that the elastic energy might be stored along a fractal

force pattern instead of being stored homogeneously in the material. Our explanation

is that due to the different cantilever length, the specimen have different shapes. This

shape dependence of A'// is a result of the fact that LEFM can not fully be applied for

the present specimen dimensions, because the size criterion Equation (2.19) is not ful¬

filled. This is also supported by the fact that we estimated the size of the fracture process

zone Rc in the order of 5 cm. Thus for cantilever beam specimen in which a/h > 0.7,

the ligament size gets smaller than the fracture process zone. Therefore, the fracture

process will be mostly governed by plasticity.

In Figure 4.4b linear regressions are applied to the 3PB data and the CB data. The linear

regressions for the CB-tests are statistically significant, while the one for the 3PB-tests

is not. This is due to the fact that for the CB-tests the loading of the crack tip is due

to the weight of the protruding beam. No additional load is applied. Therefore, the load

is approximately the same for different tests with a given L and thus for a longer cut

depth a a higher critical stress intensity factor A'// will result. For the 3PB-tests the

load is constantly increased up to failure for a given cut depth. For differing cut depths,

different loadings will be required to bring the specimen to failure and thus the resulting

Kjf is approximately constant.

The power-law fits suggested by Schweizer et al. (2004) show that their Kjf values

were on average lower than the ones we obtained. Schweizer et al. (2004) reported

values for A between 3.1 x K)-5kNnrV2/kg and 1.3 x 10-r,kNm;V2/kg and for B

between 1.9 and 2.1 depending on snow type. The difference is relatively small up to

a density of about 250 kg/m'3 and further increases with increasing density. The main

reason for the difference can be attributed to the equations used for the determination of

Kjf. Especially for deep cracks, which are expected for higher densities, Equation (3.4)
can differ considerably from the one used by Schweizer et al. (2004). Figure 5.1 shows

variations of up to 40% for our data. Since most of our cantilever experiments involved
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Figure 5.1: The critical energy release rate, Kjf, in relation to the relative cut length.
The CB-test data evaluated with Equation (3.12) (circles) compared to an evaluation

of the same data with the Equation used by Schweizer et al. (2004) (triangles).

deep cracks it is assumed that Ktf might have been underestimated by Schweizer et al,

(2004).

In conclusion a clear shape dépendance of Kjf was found for the different experimental

methods. This was attributed to a violation of the size criterion of LEFM (Equation 2.19).
Our Kjf results were in general higher than previously found values This was attributed

to a more appropriate evaluation method compared to previous studies. For future studies

it should be considered to relate Kjf to other mechanical properties than the density.

A relation to the Young's modulus or the penetration resistance might decrease scatter

considerably.

5.1.4 Fracture speed

3PB-tests were recorded with a high-speed camera. From the recordings the fracture

speed was calculated.

The measurement of the fracture speed was not a primary objective of the high-speed

recording. Primarily, the high speed photography was used to get an impression of the

fracture processes. The measurement of the fracture speed was not very accurate, be¬

cause the crack tip had to be identified on subsequent photos, in order to measure the

crack advance. The identification of the crack tip could be done with a precision not
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better than Al, = ±5 mm, because of the low contrast in snow. Maybe the contrast could

be increased by illuminating the specimen with ultra-violet light. However, an ultra-violet

light source was not at our disposal.

The fracture velocity in mode I increased until a maximum fracture speed of vpninr

and then decreased again with further crack advance (Figure 4.11). This decrease is

due to the compression forces in the upper part of a bending beam. Figure 4.11 shows

that the maximum fracture speed depends on the specimen size. In the larger specimen

{h = 30 cm) the fracture speed was about 40% higher than in the smaller specimen

{h = 20cm), this suggests that the maximum fracture speed that could be reached in

snow of the tested density was not reached for our specimen sizes.

Observations show that the maximum crack speed in brittle materials reaches hardly

more than half of the Rayleigh wave speed vp (Rafiee et al., 2004). vp is less than 10%

smaller than the shear wave velocity i's (Studer and Koller, 1997), thus

•5$TO (5"1)

where ,9 is the shear modulus, E the Young's modulus, v the Poisson's ratio and p the

snow density.

All recorded 3PB-tests were of series I with a mean snow density of 256 kg/m3 and if we

assume a Young's modulus between 2.5 MPa and 20 MPa, corresponding to what can be

found in literature for this density (e.g. Mellor, 1975; Scapozza, 2004), and a Poisson's

ratio of 0.2 a range of fracture speeds of

24m/b < (0.5 vs) < 67m/s (5.2)

is achieved. If however, the Young's modulus for every test is calculated according to

the relation we found in Equation (4.9), the results for half of the shear wave velocity

are somewhat higher (96 m/s < 0.5 î;^ < 105 m/s). Therefore, the measured fracture

speeds of ~ 20 m/s achieved in our largest specimen is most likely in a region where the

fracture speed accelerated.

Recently, Johnson et al (2004) and van Herwijnen and Jamieson (2005) measured inde¬

pendently propagation speeds of a fracture in a weak snowpack layer of about 20 m/s.
However, their experiments were under shear loading and not under tensile loading like in

our tests. Furthermore it is in both cases not clear if the maximum velocity was reached

or if the fracture speed was still accelerating.

Heierli (2005) proposed an analytical model for fracture propagation in a partly collapsible

snow stratification. For the fracture speed he proposed a velocity of v = y/vövs W|th

d2 = gH'2/{12hWi\l ~ t/)), where H is the slab height and hwL the collapse height of

the weak layer. By using the experimental data of Johnson et al (2004), Heierli (2005)
was able to reproduce the measured velocity of 20 m/s. Comparing the propagation of

a shear fracture along a weak layer to the shear fracture propagation of earthquakes,
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McClung (2005a) suggested that the shear fracture speed would be in the order of

v = (0.7... 0.9) us- However, if the processes in an earthquake can be compared to the

processes in the snow cover remains unclear.

In conclusion we found fracture speeds of about 20 m/s for tensile fractures in snow.

Indications were found that the measured fracture speeds were still accelerating and

that a terminal velocity could not be measured because of the limited specimen size.

The terminal velocity is assumed to be a factor 1.5 to 5 higher than the measured

fracture speeds.

5.2 The limitation of LEFM for snow

5.2.1 The size correction function

3PB experiments with for different specimen sizes were performed to determine the size

dépendance of Kjf and to find a suitable size correction function. Four experimental

series were performed (Series E, F, H and I).

In Figures 4.5 and 4.6 the coefficients C[ and c2 of the four series E, F, H and I were

determined. With these coefficients it was possible to evaluate the characteristic size D0

being the point where the line for linear elastic behaviour intersects with the horizontal

line for plastic collapse in Figure 2.4. The mean value of the characteristic size for the

three statistically significant series was D0 = 0.29 ± 0.08 m. Thus, Ai is of similar size

as our specimen sizes. This suggests that our specimens were not large enough to be

in a range where LEFM would be applicable (see Figure 2.4). The slope of a linear

regression of —0.21 ± 0.05 in Figure 4.4 was significantly lower than the required slope

of —1/2 corresponding to the specimen size range in which LEFM would be applicable

(Figure 2.4). The reason for this is the large size of the fracture process zone as it will

be discussed in the next section. Snow specimens would need to have a size of several

meters to be in the linear elastic range. However, it is not possible to increase the sample

size substantially, because larger samples cannot be handled any more.

Bazant and Planas (1998, p. Ill) suggested that for concrete Do would be a multiple of

the maximum aggregate size of about 2 to 20, depending on the test conditions. Based on

this assumption and on volume fraction considerations, McClung (2005b) estimated D0

to be about 10 cm for snow. Bazant and Planas (1998) wrote that the ratio b = D/D0
should be at least 25 if the deviation from LEFM should be less than 2%. At best we

obtain a ratio of b c^ 1, because Do is similar to our specimen dimensions. This confirms

that the specimen dimensions required for LEFM are not feasible for any experiments.

Even in the case of a snow slab avalanche this criterion is not fulfilled. Mean fracture

depths measured slope perpendicular at the crown (tensile fracture) of slab avalanches

were about 65cm for a data set including natural and human triggers (Perla, 1977) and

about 40cm for only human-triggered avalanches (Schweizer and Liitschg, 2001).
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With A) the so called equivalent fracture toughness, Kjr (Equation 4.5), was determined.

Kjc is an experimental estimate of the real fracture toughness KIt. As can be seen

in Equation (4.5), the equivalent fracture toughness, KJr, is always larger than the

measured critical stress intensity factors, Kjf. Once the equivalent fracture toughness

is determined it is also possible to determine the critical SIF for any other problem size

D by rearranging Equation (4.5). For example, Equation (4.5) can be used for a first

estimate of a critical stress intensity value representative for a slab avalanche with a

slab thickness D of 50 cm. However, to get a realistic value it would be necessary to

add a shape correction factor accounting for the different shapes between laboratory

experiments and slab geometry. For instance, the ratio {a/h) was kept at 1/10 for the

various sizes of our 3PB specimen. There is no reason, why in a tensile fracture of a slab

on a real slope the ratio between a crack and the slab thickness should also be 1:10.

With our experiments, we confirmed that fracture toughness for snow is very low com¬

pared to other materials, as it was previously stated by others (Kirchner et al., 2000;

Schweizer et al., 2004). For the density range we observed (Figure 4.8) the equiva¬

lent fracture toughness did not exceed lOkPa-y/m. To point out the order of mag¬

nitude a few examples for other materials are given (Gross and Seelig, 2001, p.85):
concrete {K,, = 150... 950 MPa y/m"), glass (Klc = 630

...
1250 MPa y/rTi), or steel

{Kir = 30'000... 120'00() MPa^E).

In conclusion, we determined the order of magnitude of the characteristic size ü() for

snow. The size of D0 of several centimeters indicated that we are not in the LEFM range

with our specimen dimensions. With D0 an equivalent fracture toughness, KeIc, could be

determined and a size correction function could be proposed. A size correction will be

required for the results of any mechanical experiments in snow. We confirmed that snow

has an extremely low value of Kj, (A'/f < lOkPav/m).

5.2.2 The fracture process zone

With the results for the tensile strength and the equivalent fracture toughness for snow,

the fracture process zone in snow could be determined according to Equation (2.20)

The size of the fracture process zone Rc was estimated to be in the range of five

centimeters (Figure 4.9) with a slight trend to decrease with increasing snow density. At

a density of 100 kg/m3, Rr had a size of 8.9 cm and decreased to 4.1cm for a density
of 400 kg/m3. However, it was observed that this trend depended very much on the

exponents of the fit functions for ac and K% (Equations 4.1 and 4.6). Depending on

how the data are fitted this trend can change, but, and this is important, the influence

on the mean size of R,. stays low.

Nevertheless, it is assumed that R, should decrease with increasing density, because

according to Bazant and Planas (1998) the size of the fracture process zone is linked to

the characteristic structural size of the material. Whereas in a metal, the characteristic

structural size might be in the atomic scale, in snow, the characteristic structural size is
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rather given by the size of the ice grains which build up the ice-matrix, comparable to

the edges which interconnect vertices in a cellular solid (Gibson and Ashby, 1997, p.26).

Typically this size will be in the order of 1/10 millimeter. If the snowpack settles, the

grains get closer packed together which increases the density, resulting in a decrease of

the characteristic size and thus in a decrease of the process zone.

The criterion for LEFM, introduced in Section 2.4.2, that the fracture process zone 7?c

should be smaller than a/8 or {h — «)/8 is clearly not fulfilled for our specimen sizes.

We introduced a pre-crack of length a = /?/10 in our specimens. The crack length a was

between 1cm and 3 cm depending on specimen size. Thus, Rc should be smaller than

a few millimeters to fulfill the criterion. The determined Rt is larger by a factor of 10

Our experiments can therefore not be considered as to be in the linear elastic range. The

fracture behaviour of a non-ductile material due to a relatively large fracture process

zone is often called "quasi-brittle" (Bazant and Planas, 1998).

In conclusion, for the first time, the size of the fracture process zone was experimentally
determined in snow. The fracture process zone is in the order of centimeters. This proves,

that snow has to be considered as quasi-brittle material for feasible specimen sizes.

5.2.3 The FAD

A failure assessment diagram was established by plotting A'///A'J, over o-Na/cr,, for our

data. Therefore, the fit functions for ac and A7C (Equations 4.1 and 4.6) were used.

The failure assessment diagram (FAD) in Figure 4.10 shows that the method might work

in principle but that the applicability to snow is questionable due to the large scatter of

the data. In the diagram the critical stress intensity factor was divided by the equivalent

fracture toughness and plotted against the effective stress aNa divided by the tensile

strength ac. The results should lie on a curve between 1 on the y-axis and 1 on the

x-axis indicated in Figure 2.5. Because we do not know how the shape of such a curve

looks like for snow, the simplest possibility, a straight line between 1 on the (/-axis and

1 on the ./-axis was assumed in Figure 4.10 (dashed line). A fracture process governed

only by the stress concentration at the crack tip would lie on the y-axis at 1 (pure brittle

behaviour) whereas a failure process governed by overall strength would lie on the x-axis

at point 1 (pure plastic collapse). Thus the closer the points in an FAD are to the y-axis,

the more a fracture process is governed by the stress concentration at the crack tip and

the better the fracture can be described by LEFM.

The four lines of data points originating from calculating the ratio of Kjf/K}c represent

the four different specimen sizes. Figure 4.10 illustrates that the larger the tested snow

specimens were, the closer were the data points found to the ,y-axis Or in other words,

the larger a specimen is, the more important the processes acting at the crack tip

become. Again, the size of the fracture process zone is a key parameter, because for a

large specimen the process zone is negligible while for a small specimen it is not. This

confirms what has been discussed in Section 5.2.1, the larger a specimen is, the closer
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its behaviour gets to LEFM. This conclusion corresponds to the scaling law of Bazant

and Planas (1998) (Figure 2.4).

The advantage of the FAD method compared to the scaling law of Bazant and Planas

(1998) is that the FAD is independent of the test, whereas the scaling law is limited to

short edge cracks.

Due to the large scatter the data do not concentrate on or around one point. If one

considers the mean value of every specimen size, the mean values lie approximately on

the dashed line.

In conclusion, one can say that due to the limited amount of experimental data and the

large scatter, the shape of an FAD curve for snow could not yet be established. However,

the results are in agreement with the principles of a FAD and the findings correspond to

what had been found based on the scaling law of Bazant and Planas (1998).

5.3 Fracture in mode II

5.3.1 Determination of the Young's modulus

The Young's modulus of our samples was measured with a prototype of a cyclic loading
device which was operated at a frequency of 100 Hz. The measured Young's modulus

was compared to a calculated index for the Young's modulus derived from the SMP

penetration resistance signal.

The dynamically measured Young's modulus for our samples was up to a factor of ten

higher than previous quasistatic measurements summarized by Mellor (1975) (area A in

Figure 4.14) and up to a factor of two higher than the results of Scapozza (2004) (area

B). Mellor (1975) mentions that dynamically measured Young's modulus can be up to

a factor of 2 higher than quasistatic ones. Our results are approximately a factor of two

higher than the upper boundary of the Young's modulus reported by Scapozza (2004).
The difference between our measurements and the ones compiled by Mellor (1975) (area

A) can not entirely be explained by the different measurement techniques. However, the

variations in the Young's modulus seem to be high even for comparable measurement

techniques, since the results by Scapozza (2004) differ for low densities up to a factor

of ten from the ones compiled by Mellor (1975), although both measurements were

quasistatic.

As it was explained in Section 3.4.1, the frequency and the amplitude of a dynamic
test can also have a distinct influence on the resulting Young's modulus (see Figure

3.9b and 3.10). Therefore, we used clear and reproducible criteria for the choice of

these parameters: A frequency which ensures a measurement of the Young's modulus in

the plateau region, a strain rate that ensures measurements in the brittle region and a

deformation that does not cause any inelastic deformation of the snow sample.
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The dynamic measurements compiled by Mellor (1975) (area C) are unfortunately only

available for snow densities higher than 300 kg/m3. These values are even higher than

our dynamic values, but again the measurement technique is different.

Since the slope of our data, in Figure 4.14, is flatter than a slope for the Scapozza

(2004) data or the Mellor (1975) data, the deviations decrease between the results for

increasing snow density.

The dynamically measured Young's modulus Edyr, showed good correlation with the

index for the Young's modulus derived from the SMP penetration resistance signal Esmp

{N = 24, R'2 = 0.81, P < 0.0001) (Figure 4.15). The factor of 186±7 is comparable to

the factor of 150 found by Kronholm (2004). However, since Kronholm (2004) correlated

his values to the ones found by Mellor (1975) and our measurements are a factor of ten

higher than the Mellor (1975) results the question arises why our correlation factor is

not a factor often higher than the one by Kronholm (2004). The origin of the difference

remains unclear.

On the theoretical side, it is unclear why the theoretical approach by Johnson and Schnee¬

beli (1999) to convert the penetration resistance into a Young's modulus needs a cor¬

rection factor at all. Obviously, the conversion theory should further be investigated and

calibrated.

It has to be pointed out that the cyclic loading device is only a prototype and that it

was used for the first time on a regular basis for our experiments apart from a few tests

in winter 2003/2004.

A further possibility to estimate the Young's modulus arouse from the load-displacement
curves recorded in our three-point bending tests. The slope of a tangent to the force-

displacement curve can be used to estimate the Young's modulus of the tested specimen.

For our example in Figure 4.16 this resulted in an Young's modulus between 5.5 and

6.5 MPa, depending on how the tangent was chosen. These values are well in the range

of the results found by Scapozza (2004) and at the upper limit of the results summa¬

rized by Mellor (1975). However, the bending of the three-point bending beam was not

considered, what would result in a decrease of the displacement and thus in an increase

of the Young's modulus. Therefore, the estimated values might be lower limit values.

This method might be useful for an independent determination of the Young's modulus in

relation to specimen density, but it would not be useful as an accompanying measurement

to the shear fracture test, because after a shear fracture test the specimen is already

destroyed and can not be used for a further three-point bending test. In this regard, the

advantage of the cyclic loading device is that it needs only very small samples.

In conclusion, the cyclic loading device proved to provide reliable and reproducible results

and seems therefore suited for further laboratory measurements of the Young's modulus.

However, independent verification is recommended. The SMP measurement is by far the

simplest, fastest and most suited for field testing. Therefore for the future, the goal has to

be to further investigate and calibrate the conversion algorithm for the SMP penetration
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resistance to a Young's modulus. More experiments with different snow types will be

required as well as a sound measurement technique for the Young's modulus which

can serve as basis for the calibration. We believe that the cyclic loading device has the

potential to be used for calibrations.

5.3.2 Energy release rate in a mode II fracture

Mode II fracture experiments were made with layered snow samples. The energy release

rate, G, was calculated by using a finite element model of the experimental geometry.

Based on the findings of Wei et al. (1996), it has been proposed by Schweizer and

Camponovo (2001) that fracture propagation potential in snow would depend on the

material mismatch between the snow layers, or in other words the difference in elastic

properties. The fracture propagation potential is high, when a high critical energy release

rate Gf can be achieved
,

i.e. when a high specific fracture energy uf can be overcome

by a crack extension. Gf was correlated to various elastic properties of the test specimen

(Figure 4.17). However, only a slight trend for an increase in Gf with increasing elastic

mismatch Ef/Eb could be observed which was statistically not significant. The findings

on metal-ice interfaces showed that even for large changes in Et/Eb only slight changes
in Gf occurred (Wei et al., 1996). Since for our samples, the difference of the Young's
modulus between the two adjacent layers was relatively small, typically not larger than

a factor of two, and the scatter due to the inhomogeneity of the snow and/or due to

the experimental method was large, a possible trend might be hidden. Wei et al. (1996)

suggested decreasing Gf with increasing mismatch. The lack of dependence on the

mismatch suggests Gf to be primarily a material property of the weak layer rather than

to depend on the properties of the adjacent layers. In other words, the energy needed to

destroy the bonds between the weak layer and the adjacent layers seems not to depend

on the elastic mismatch between the two layers. This interpretation should be valid as

long as the mismatch is not large {Ef/Eh 5 10) which might be the case for most

situations in a natural snow cover.

On the other hand, Gf did not depend on the Young's modulus of the weak layer either.

However, the range of the Young's modulus for the weak layers tested in our experiments

was relatively narrow, since the properties of the weak layers were similar for all series. For

different types of weak layers, e.g. surface hoar, distinctly different material properties

are expected. Therefore, we assume that different critical energy release rates would

result and it. should be possible to determine the critical energy release rate for various

weak layer types, as long as the weak layer properties differ significantly so that potential

relations of the energy release rate to material properties are not hidden by the inherently

large scatter.

Compared to energy release rates, for example of ice-aluminium ((7,, ~ 1 J/m2) or of

ice-steel (Gc = 5.J/m2) (Wei et al., 1996), the mean energy release rate for our weak

layers of Gj- ~ 0.04 J/m2 is extremely low. This coincides with other findings in snow,
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for example the very low fracture toughness in mode I.

In conclusion, the obtained energy release rate for the tested weak layer were very low

compared to other materials. No statistically significant dépendance of Gf on the elastic

mismatch of the adjacent layers could be observed.

5.3.3 Comparing numerical and analytical solutions

Two analytical approaches to determine G for our shear fracture experiment were com¬

pared to the FEM results. A cantilever beam with deep crack approach and a bilayer

with interface crack approach. Therefore, specimens with different simulated material

properties were modelled with finite elements and compared to the solutions of the two

analytical approaches.

The results showed that for both approaches the resulting energy release rates correlated

well with the modelled ones (Figure 4.18a and b).

The cantilever approach which considers a homogeneous material with a deep crack -

in our experiments the ligament length b was for most cases smaller than the length

of the protruding part b/tt < 1 - showed a dépendance on the elastic mismatch of

the two layers. Obviously, this is a result of the fact that for the deep crack approach

the Young's modulus of the protruding layer EL was used as elastic property for the

whole specimen (homogeneous specimen). Thus, the more the Young's modulus of the

basal layer Eb differs from Et the more the analytical solution differs from the FEM

solution (Figure 4.18c). The factor of about 0.5 between the FEM results and the deep

crack cantilever results seems to be plausible because the analytical calculation is for

a cantilever experiment with free boundary conditions. However, in our experiment one

side is fixed and contributes, if at all, only to a limited extent to the energy release.

The bilayer solution adapted from Hutchinson and Suo (1992) did correlate as well with

the results of the FE simulations. Here, no dépendance of the correlation on the elastic

mismatch was observed (Figure 4.18d). This is what would be expected, since both, the

Young's modulus for the slab Et and for the basal layer Eb, are used in bilayer approach.

As for the deep cantilever approach, a factor of 0.5 between the FEM results and the

bilayer with interface crack approach was observed. The reason might be the same. A

result of the fixation of one side of our experimental specimen.

In conclusion, the results of both analytical approaches showed a good correlation with

the FEM results: Cantilever beam with deep crack approach {R2 = 0.93, N = 21.p <

0.0001), bilayer with interface crack approach (7?2 = 0.69, N = 21,p < 0.0001). For

both a correction factor of about 0.5 was found. However, due to the higher coefficient of

determination {R2), the cantilever beam with deep crack approach should be preferred.

With the cantilever beam with deep crack approach an analytical solution was found to

calculate an approximate energy release rate for our experiments without the need of

finite element simulation.
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5.3.4 Comparing mode I and mode II results

In Figure 4.19 the critical energy release rates for the interfacial fractures in mode II

were compared to fractures in mode I. Thereby, Gf for a mode II fracture was about 2.2

times smaller than Gf for mode I fracture.

In a homogeneous material, the critical energy release rate in mode I is in general lower

than in mode II. This is a further reason why shear fractures in a homogeneous material

kink of resulting in a pure tensile fracture. The reason why this is different in snow is

that results from homogeneous mode I experiments are compared to results of layered
mode II experiments. The stability of a homogeneous snow block is much higher than

the stability of a weak layer in snow, therefore it is not surprising, that the resulting
critical energy release rates are lower in mode II than in mode I.

Additionally, the effective critical energy release rate Gc for the mode I tests, i.e. the size

corrected critical energy release rates, comparable to the effective fracture toughness

K}c, are shown in Figure 4.19. The values are on average 6.5 times bigger than Gf for

the mode II experiments. It is assumed that a size correction function for the mode II

experiments would result in a similar correction factor than for the mode I experiments,

since the specimen size was the same. However, a specific size correction function was

not developed for the mode II experiments. The methodology of Bazant and Planas

(1998) would not have been applicable, because it is only valid for short edge cracks.

5.4 Field experiments

Tests were made in the field with isolated snow beams on an east-facing and 30° steep

slope.

5.4.1 Failure behaviour

As explained in Section 4.3 the failure behaviour of the field tests could be divided into

two categories. In the first category the weak layer failed over the whole beam area and

in the second category the propagating fracture in the weak layer was arrested.

First the question has to be answered if what we observed was a true fracture process or

if it was a global failure of the weak layer because the shear strength was overcome. That

the shear strength was not overcome could be proved by the shear frame measurements,

see Table 4.8. The shear strength was in all tests more than three times the effective

shear stress applied on the remaining area of the weak layer. Two other evidences for

a true fracture propagation were found. First, it was observed that a failure happened
which did not fracture the whole weak layer. These failures could be heard by a cracking
sound but could rarely be observed by eye because the snow did not offer enough contrast
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to detect a fracture. However, occasionally the slab failed in a tensile failure ahead of the

saw position, providing an evidence that a fracture had propagated a certain distance,

generally between 20 cm and 50cm. The position of such a tensile fracture seems to

coincide with the location of the stress concentrations of the ANSYS simulation in

Figure 4.25b. This image shows a stress concentration at a position ahead of the crack

tip where such tensile fractures tended to occur. The second evidence is, that beams of

different beam length / failed at the same critical cut length ac. Since beams of different

length were tested within meters on the same slab and at the same day, the differences

in layer properties for the different beams can be neglected. Thus, a failure due to the

strength exceeding stresses can definitely be excluded, since for the different beam length
the failure area doubled or even tripled.

To conclude, field tests confirmed that a fracture started to propagate in a weak layer at

a shear stress that was less than 30% of the shear strength of the weak layer, implying
that a fracture mechanical processes led to the failure of the weak layer.

5.4.2 Energy release rate measured in the field

The geometry of the field experiments was modelled with finite elements. With this

model the energy release rates were calculated.

By using the FE model a mean critical energy release rate of Gf = 0.07 ± 0.01 J/m2
was found for the tested weak layer on 27 January 2006. This is about 65% higher than

the value observed in the lab {Gf ~ 0,04 J/m2). To compare these two values means to

compare two characteristic values for two different weak layer types. One would assume

that the weak layer tested in the field is less "weak" than the one tested in the laboratory,

because the energy barrier that has to be overcome to fracture the weak layer is lower for

the lab experiments. However, this did not coincide with our subjective impression of the

weak layers. The weak layers tested in the field seemed to be weaker, from a visual and

tactile point of view, than the ones tested in the laboratory. There are three explanations
for this disagreement of subjective impression and results: First, the difference between

the results is not large and since the results depended substantially on the numerous

input parameters, the two results might have an error bar which is at least as large

as the difference between the two values. Second, if a size effect is present as it was

observed for fractures in mode I, what will most likely be the case, the Gf results of the

field experiments will be higher, due to the larger specimen sizes in the field. Therefore,

the effective critical energy release rate might be underestimated for the lab experiments

compared to the field. Third, the compression tests showed for both weak layers results

in the moderate stability range. This is a further indication that the stability of the weak

layers was relatively similar.

The critical crack length a,, of our asymmetrical beam can be used to estimate a critical

crack length in an intact slope. This can be done by calculating a^'m the critical cut or

failure length in case of a symmetrical beam, i.e. a beam with an interior crack instead
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of an edge crack. ascym can be estimated by comparing Equation (2.45), the Equation

for the half length of a critical crack r\. (Heierli and Zaiser, 2006) with Equation (4.21),
the analytical calculation of ac for our asymmetrical case. The result is

a>vm = 2 rc = ^3fj(Ji _ 2.45 ac. (5.3)

Thus, for our critical cut length of about 0.25 m, an (fcym of about 0.6 m results. A similar

estimate was made by Kirchner et al. (2002a). From their experiments in homogeneous

snow, Kirchner et al. (2002a) estimated the energy release rate to be of the order of

0.12 J/m2. This would result in critical crack sizes in the order of tenth of centimeters.

Our results confirm this estimate. The critical crack length is much less than the necessary

length of more than 5 m that were proposed by various authors who modelled slab

avalanche release (Bader and Salm, 1990; Stoffel and Bartelt, 2003) (see Section 1.3).
The results correspond also to the suggestion of Bazant et al. (2003) that the crack

half length r,, should be larger but in the order of the slab height H. However, asfyrn is

- like all the other mentioned critical crack length - still derived from two dimensional

considerations. In a 3D case, «*<"" is expected to slightly increase.

We can assume that disturbances a*ym of less than one meter in the weak layer can lead

to a fracture propagation in snow. This is a size that can easily be destroyed by an over

snow traveller (Schweizer and Camponovo, 2001).

In conclusion, the energy release rate Gf of a weak layer was for the first time measured

in field experiments. The results for Gf are very low. Our results indicate that critical

crack sizes of less than one meter might be required to start fracture propagation along

a weak layer in a real slope.

5.4.3 FEM results

The FEM results showed, that even a small gap of 2 mm induced by a snow saw can

provoke bending of the slab. The bending contributes a considerable amount of energy

to the available energy for crack propagation.

Figure 4.26a compares the resulting energy release rates G for the case of a pure slope

parallel shear loading of a crack tip (due to the fact that no gap is present between the

cut surfaces) and for the case of a slope parallel shear loading combined with a slope

normal bending component. For slope angles between 30° and 45°, i.e. in the relevant

slope angle range for snow avalanche release, the combined loading provides much more

energy per cracked area. No friction was considered between the cut interfaces for the

pure shear case, therefore the curve (dots) in Figure 4.26 is an upper boundary A critical

energy release rate for the cracking of a weak layer can much easier be overcome by a

combined loading.

In a second simulation with different Young's modulus for the slab and the basal layer

(Figure 4.26b) it could be shown that the shape of the curves did not change, only the

magnitude of the released energy G changed.
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The assumption of a combined loading situation is not restricted to our field experiments.

If a weak layer is collapsible, even a small collapse in the order of millimeters or even

less (compare Figure 4.24) is sufficient to cause bending in the slab. However, a gap

will not be present and the bending will be restricted by the collapsed weak layer but it

will contribute to the total energy release rate. The resulting strain energy will thus be

smaller than for the assumption of a gap.

Critical energy release rates or fracture toughness values which base on the shear fracture

propagation model of McClung (1979) may therefore overestimate the actual values.

The small kink in the pure shear curve at a slope angle of 55° in Figure 4.24 originates
from an opening moment that decreases the shear loading. For slope angles > 55° the

crack has a mode I component due to bending of the slab in opposite direction of the

bending for lower slope angles. This small kink and the point where the two curves start

to coincide depend on the geometry of the modelled specimen. However, the qualitative
behaviour will stay the same for geometry variations.

In conclusion, it was found that for our test beams a slope normal bending of the slab

contributed considerably to the energy release rate G. Under certain conditions the

bending component was more important than the component due to shear loading. It is

assumed that this holds too for the fracture processes leading to slab release.

5.4.4 Analytical approach

The numerically obtained Gf results for our field experiments were compared to the

results of an analytical solution for collapse in horizontal stratifications. The analytical
solution was adapted from a model for a localized collapse of the weak layer in flat

terrain proposed by Heierli and Zaiser (2006).

Due to the findings discussed in the last section a model which considers the slope
normal component was adapted to our geometry.

The results obtained with the adapted analytical approach were about a factor of four

lower than the modelled results. Several reasons lead to this underestimation of the

critical energy release rate Gf\ First, the energy contribution due to the shear forces

acting at the crack tip, being a result of the slope angle Lp (see Figure 4.26), are neglected.

Second, the Young's modulus that was used in Equation (4.22), was derived from the

SMP signal as an average over the layering of the slab height IP The determination of

an equivalent Young's modulus for an arbitrary layered slab will be a challenging task.

An equivalent Young's modulus applied to a homogeneous slab would result in the same

deformation for a given load than the real layered slab. Third, the solution proposed by
Heierli and Zaiser (2006) was developed for a thin beam, which means that the crack

length is long in relation to the slab thickness {a 3> H), which leads to a minimal value

for Gf, as the bending energy for a thick beam [a ~ H) increases due to the shear

deformation.
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In conclusion, an analytical solution was found that shows a good correlation with the

results of the FE simulation. The analytical results were lower by about a factor of four,

for our specific geometry. However, further experiments will be necessary to approve

these findings, it is assumed that the factor will change when the geometry or the weak

layer properties change.

5.4.5 Further use of the field test

The field test proved to be reproducible and easy to perform. It is of high importance

that every fracture experiment is accompanied with structural information, e.g. by SMP

measurements. The SMP signal is used to evaluate the layering and to get and index of

the elastic properties. This information is indispensable for a subsequent determination

of the energy release rate. About 30 minutes are required to perform a compression test

to identify the weak layer, one or two fracture tests and to acquire a SMP profile.

The field test is suited to assess the propensity for crack propagation in terms of the

critical crack length or the critical energy release rate. Whereas the crack length gives

information about how long a failure in the weak layer has to be until a fracture starts

to propagate, the critical energy release rate provides information about the energy that

is needed to fracture the weak layer. The energy release rate is a mechanical property of

snow that has not been considered in field tests so far.

The advantage of this field test compared to common stability tests, such as the compres¬

sion test, is that it does not only consider the weak layer but focuses on the interaction

between the properties of the weak layer and the properties of the overlaying slab. This

information is believed to be essential for slab avalanche release. Furthermore, it is as¬

sumed, that because the beams are long compared to a compression test, the fracture

process zone might be fully incorporated in the beam and thus lead to results which are

directly comparable to the processes in the snowpack without a size correction.

However more experiments will be needed. It will be important to test different types of

weak layer to see how they influence the test results. If the field test should become a

standard field test in snow science a calibration of the analytical solution or the analytical

adaptation to thick beams would be necessary to replace the time consuming FEM

simulations.
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Conclusions

6.1 Summary

Fracture mechanical experiments with samples of naturally fallen snow were performed
in the cold laboratory and in-situ with snow beams in the field. Three different types of

experiments were designed or adapted to snow for fracture tests in mode I and mode

II By determining the critical stress intensity factor in mode I with different specimen

sizes, the limitations of linear elastic fracture mechanics for snow could be quantified.
A size correction function could be proposed. The energy release rate for a mode II

fracture in a weak layer was evaluated in the laboratory and in the field. Layered snow

specimen were used. Experimental and FEM results suggest that in case of slab avalanche

release bending of the slab due to a slope normal collapse of the weak layer can supply

a substantial amount of energy to the fracture process.

6.2 Conclusions

By applying new test methods to snow and acquiring a considerable data set of fracture

mechanical properties of snow with laboratory and field tests, it was possible to improve

the knowledge and the understanding of the fracture mechanical behaviour of snow and

to experimentally confirm several hypotheses in snow mechanics.

In the following the Conclusions are structured according to the objectives that were

defined for this thesis and presented in Section 1.4 The order of the objectives was

rearranged to fit the structure of the thesis.

1. Assess the relevance of fracture toughness for fracture propagation resistance in snow

and for snow slab release in general. Relate fracture toughness to other mechanical

properties. (Objective 1)
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Field tests confirmed that a fracture started to propagate in a weak layer

at a shear stress that was less than 30% of the shear strength of the weak

layer, implying that a fracture mechanical processes led to the failure of the

weak layer.

Fracture mechanical parameters, such as the fracture toughness or the criti¬

cal energy release rate, are essential to determine if a fracture under a certain

loading condition can start to propagate or not. It might be one of the most

important stability criteria for slab release.

Numerical slab release models base on fracture toughness as an input pa¬

rameter. However, the experimental data on fracture mechanical properties

were found to be scarce and only obtained from samples of homogeneous

snow.

Fracture mechanical parameters were related to other material and mechan¬

ical properties such as the snow density and the Young's modulus, see the

following paragraphs.

2. Design a suitable experimental setup and determine snow fracture toughness in tension

for homogeneous snow samples. (Objective 2)

The classical three-point bending test method was successfully adapted to

experiments with snow. The three-point bending test proved to be applicable

and suitable for fracture mechanical experiments in mode I, as well as for

the determination of the tensile strength.

Simultaneously to the three-point bending tests, cantilever beam tests were

made. The critical stress intensity factors, A'//-, of the cantilever beam tests

were in general slightly higher than previously found values of similar tests.

The discrepancy was attributed to a more appropriate evaluation method

compared to previous studies.

Cantilever beam tests provided approximately 30% lower stress intensity fac¬

tors than the three-point bending tests for specimens of the same snow type.

The results of the cantilever beam tests depended furthermore on the can¬

tilever length. The differences between the test methods were significant and

attributed to non-negligible size and shape effects.

3. Quantify size and shape effects, so that the results of small scale experiments can be

transferred to the slope scale. (Objective 4)

In order to investigate the size and shape-dependence of fracture tough¬

ness measurements on laboratory-sized specimens of snow, tests with three

different specimen geometries and four different sizes were performed.
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The three test geometries consisted of a three-point bending test and two

cantilever beam tests with cantilever lengths of 10cm and of 15 cm. A clear

shape dépendance of the critical stress intensity factor, Kjf, was found for

the different test geometries. The influence of an additional size effect was

minimized by using the same specimen size for all three test methods.

In three-point bending tests with four different specimen sizes the size ef¬

fect was experimentally determined and quantified according to Bazant and

Planas (1998). The characteristic size D0, a measure for the "deviation"

from linear elastic behaviour (Section 2.4.3), was determined to be about

30 cm for snow or about the same size as our specimens. The specimen size

D should be about 25 times larger than Do in order to apply linear elastic

fracture mechanics without a size correction.

As a method to correct the critical stress intensity factor to the size-

independent material property K,,. the equivalent fracture toughness, KeIc,

was determined according to Bazant and Planas (1998) and a size cor¬

rection function based on the specimen size D was proposed: KrIc =

\/\ + 0.29/D Kjf. The results for K}c ranged from 0.8kPa^/m for a den¬

sity of p = 150 kg/m-3 up to 6kPav/îïï for a density of p = 350 kg/m3.
This corresponds to an effective critical energy release rate G,_ of 0.14 J/m2

(E = 4.7NfPa) and 0.62 J/m2 {E - 57MPa) (Section 4.2.5). We con¬

firmed that snow has an extremely low value of Kjc.

The large Do suggests that fracture toughness is size dependent up to the

scale of a slab avalanche.

The size of the fracture process zone, R,, was estimated from measurements

of the equivalent fracture toughness, A'/,,, and the tensile strength, a,, to

be in the order of several centimeters. R, was in the same order as the cut

length or ligament length of our tests, and thus snow has to be considered

as a quasi-brittle material at the scale of our experiments. For a quasi-brittle
material linear elastic fracture mechanics (LEFM) is applicable only with a

size correction. The assumption of snow as a quasi-brittle material could be

experimentally confirmed.

If linear elastic fracture mechanics is used to describe snow failure, size

and shape effects have to be taken into account when results of laboratory

or field experiments have to be extrapolated to the slope scale. Therefore,

appropriate scaling laws are essential. This might be of particular importance

for slab release models or for stability assessment by numerical simulations

of snow stratigraphy.

4. Design a suitable experimental setup and determine snow fracture toughness in shear

for layered snow samples. (Objective 3)

Layered snow samples including a weak layer were tested in shear to deter¬

mine the energy release rate of a crack propagating along the weak layer. A
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new experimental setup was designed and proved to be applicable for layered

samples.

In absence of an analytical solution, the finite element method (FEM) was

used to simulate the experiments and determine the energy release rate

numerically A critical energy release rate of Gf — 0.04 ± 0.02 J/m2 was

found for the tested weak layers (mainly faceted crystals and mixed forms).
No correlation was found between Gf and the elastic properties of the slab,

the weak layer or the basal layer. However, Gf is expected to depend on the

elastic properties of the weak layer for distinctly different weak layer types.

Two analytical approaches were tested and compared to the FEM results.

Both analytical approaches, a homogeneous cantilever beam with a deep

crack, and a bilayer beam with interface crack were highly correlated with

the results obtained from the FE model. The analytical results were too large

by a factor of about 2. Due to the higher coefficient of determination, the

cantilever beam approach should be preferred.

For similar snow densities, critical energy release rates in mode I were on

average a factor of about 2 higher than in mode II.

It is assumed that the size dépendance of the critical energy release rate is

in the same order as for the critical stress intensity factor in mode I, since

the specimen had the same size. However, the size correction function of

Bazant and Planas (1998) can not be adapted to mode II because it is only
valid for short edge cracks.

5. Design a field test, based on the experience with the different laboratory tests and

determine in-situ fracture mechanical properties. (Objective 6)

A new type of field test was developed in which isolated snow beams were

tested in-situ on a slope The field test is suited to assess the propensity for

crack propagation in terms of the critical crack length or the critical energy

release rate. Whereas the crack length gives information about how long

a failure in the weak layer has to be until a fracture starts to propagate,

the critical energy release rate provides information about the energy that is

needed to fracture the weak layer.

A critical cut length of about 25 cm was required to start fracture propaga¬

tion in the tested weak layers (mainly faceted crystals). The critical energy

release rate was Gf = 0.07 ± 0.01 J/m2. The critical energy release rate of

a weak layer was for the first time measured in a field experiment.

The measured critical energy release rates Gf are expected to be much closer

to the effective size independent critical energy release rate G,_. Since the

beams are long, the fracture process zone might be fully incorporated in the

beam and thus lead to results which are comparable to the processes in the

snowpack without a size correction.
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6. Develop a conceptual model which relates measurable fracture mechanical properties

of snow to the fracture processes involved in slab release. (Objective 5)

In finite element simulations of our field test beams it was found that bending

of the slab in slope normal direction contributes considerably to the energy

release rate G and dominates the component due to shear loading for slope

angles between 30° and 45°. Bending in slope normal direction can be the

result of a gap induced by a snow saw but can also be the result of a collapse

of the weak layer. It is assumed that this will hold for the real slab release

case too,

Critical energy release rates or fracture toughness values calculated based

on the shear fracture propagation model of McClung (1979) may therefore

overestimate the actual values.

Critical crack length found in field tests can be multiplied by a factor of 2.5

to get a rough estimate of the required failure length in a slab. From our

tests results, a failure length of less than one meter would result.

The specific fracture energy that has to be overcome to fracture a weak layer

in the snowpack will depend on the material properties of the weak layer. In

contrast, the available energy for crack propagation will mainly depend on

the material properties of the overlaying slab and the slope normal collapse

height of a weak layer, i.e. for a given weak layer with a given fracture energy

the critical crack length will strongly depend on the slab properties.

7. Additional work

The tensile strength was measured in three-point bending tests. The results

were comparable to previously published data. The main advantage was that

strength and fracture mechanical experiments could be performed simulta¬

neously, with specimens of the same size and snow type.

Mode I fracture speeds were derived from high-speed recordings. The max¬

imum fracture speeds were about 20 m/s. As the samples were small the

fracture speed was still accelerating and a terminal velocity could not be

observed. The terminal velocity is assumed to be a factor of 1.5 to 5 higher
than the measured fracture speeds.

The Young's modulus of our samples was determined in dynamic measure¬

ments with a frequency of 100 Hz using a prototype of a cyclic loading device.

The device provided reliable and reproducible results which were at the upper

limit of previously published data.

The results for the Young's modulus were strongly correlated with an in¬

dex for the Young's modulus derived from a penetration resistance profile
recorded with a snow micro-penetrometer SMP.

121



Chapter 6 Conclusions

6.3 Outlook

We generally recommend for future fracture mechanical studies in snow, to concentrate

on the determination of the energy release rate rather than on the stress intensity factor.

This has several reasons: First, in most cases the additional information about the mode

interaction at the crack tip is not needed. Second, apart from homogeneous materials a

determination of the stress intensity factor is complex. Third, a global energy approach

is more adequate and more intuitive to the avalanche release problem than a local stress

field approach. Once, the sum of the contributory energies exceeds a given threshold a

fracture can propagate.

There are two important points concerning a further development of the field test: First,

different types of weak layers should be tested to see if, and how much their specific
fracture energies vary. These results could be very important for stability assessment in

numerical simulations of the snow stratigraphy. Therefore, a calibration of the analytical

solution would be helpful, to replace the time consuming FEM simulations. Second, if

the field test should become a standard field test for snow slope stability assessment, it

should be investigated if it is not sufficient to measure the critical crack length ac to judge
the fracture propagation propensity. ac is supposed to provide the combined information

about how much energy can be released by the slab and how much is required to destroy

the weak layer.

The interaction of slope parallel shear loading at the crack tip and slope normal collapse

has to be further investigated. Therefore more simulations with different geometries and

material properties would be helpful.

To derive the Young's modulus from SMP measurement is by far the simplest and fastest

option, and the most suited one for field testing. Therefore for the future, the goal should

be to further calibrate the conversion algorithm for the SMP penetration resistance to a

Young's modulus. More experiments with different snow types will be required as well as

a sound measurement technique for the Young's modulus which can serve as basis for the

calibration. The cyclic loading device is promising in this respect but further verification

will be needed.

The influence of slab layering on its elastic properties should be assessed in more detail.

After all it will be of interest, if an equivalent Young's modulus of the slab can be

determined or estimated from an SMP penetration resistance signal, this would simplify

calculations or simulations considerably because a homogeneous slab could be assumed

instead of a layered one. This could be done by determining an equivalent Young's
modulus from the bending of a slab in field experiments or simulations. The problem to

be solved would be to find an appropriate algorithm to convert the penetration resistance

signal into an index for an equivalent Young's modulus which could be correlated with

the field data.

For future studies, it should be considered to relate Kjf to other mechanical properties
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than snow density. A relation to the Young's modulus or the penetration resistance might

decrease scatter considerably.
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Appendix A

Calculation of errors

A.l The error of <rN

In this section the calculation of the error for the nominal stress <t/v of a three-point

bending test, defined in Equation (3.3) ,
will be detailed.

By substitution of Equations (3.1) and (3.2) into Equation (3.3), aN is expressed as a

function of the specimen dimensions /, ,s, // and w, the force F and the density p

aN

6

V2

Fb hpq r

iw 8
L (I -)2]} (Al)

The dimensions of the specimen could be measured with a precision of 5 mm. Thus,

A/ = A.s = Ah — Am = ±0.005m. Divided by the standard specimen dimensions

(Table 3.1), following relative errors result:

Al

T
~ 1%,

As

b

~ 1.2%

Ah

~h~
~ 2.5%

Aw

w

5%.

The error of the density measurement was Ap = ±10 kg/m3 and the force was measured
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with a precision of AE = ±0.02 N, resulting in relative errors of

^ > 2.5%,
P

AF
< 0.1%.

In the following, errors smaller or around 1% were neglected. Thus, only h, w and p were

considered in the error calculation. Equation (A.2) can thus be rearranged to

(TN = r-iin ]h 2
-f c2ph 1, (A.2)

with Ci = 3/2 Fs and c2 = 3/4(s2 - {I — s)2)g. According to the elementary laws of

error propagation (e.g. Gränicher, 1996) the error of A = w~[h~'2 and B = pfr1 can

be calculated as

AA

AB\2

B )

A.V/A*

w / V h

Ap\'2 {Ah\

P

+ i~)

The error of c/v can then be calculated as

Actn2 = c/2AÄ2^C22AB2,

and by substitution:

Arryv2
SFsY 1

2 J >w2hA ¥) W£

3-i „ .,a^V
:(«J-(l-«Y)g

Ap

p

+

+

Ah

(A.3)

(A.4)

(A.5)

(A.6)
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Appendix B

Stratigraphie snow cover profiles

Eidg Institut für Schnee und Lawinenforschung Davos

Figure B.l: Stratigraphie snow cover profile including the weak layers tested in series

2A and 2B
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Figure B.2: Stratigraphie snow cover profile including the weak layers tested in series

2C and 2D.
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Figure B.3: Stratigraphie snow cover profile of the field test day on 25 January 2006
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Figure B.4: Stratigraphie snow cover profile of the field test day on 27 January 2006.
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Figure B.5: Stratigraphie snow cover profile of the field test day on 3 February 2006.
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