DISS. ETH NO. 16832

Uncertainty Analysis in Distributed Hydrological Modelling

Using a Bayesian Framework

A dissertation submitted to

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Sciences

presented by

Jing Yang
Master of Engineering, Wuhan University
born 22 May1977
citizen of China

accepted on the recommendation of

Prof. Dr. Peter Reichert, examiner
Prof. Dr. Alexander J.B. Zehnder, co-examiner
Dr. Karim C. Abbaspour, co-examiner
Dr. Hong Yang, co-examiner
Dr. Jasper A. Vrugt, co-examiner

Zirich, 2007






Contents

Summary 5
Zusammenfassung 9
1 Introduction 13
11 Background and MOVATOR ...ttt 13
12 Goals and ReSearch UESHONS ................ .o s st e es 15
1.3 Contents and SrUCTUFE OF TRE TRESTS ....o.vvveevecieiic i e b s s 16
14 REFEVENCE oot et et h bbb e 17
2 Hydrological Modelling of the Chaohe Basin in China: Statistical Model Formulation and
Bayesian Inference. 19
2.1 TRIPOGUCTION ... e bbbt bbb s e s s s eh b e b et e 20
22 MEIROUS ..o e b b et sttt s e e e a bbb R s 23
2.3 Study Site and Data COMPIIGHON..........c...cvciriii ittt s 30
24 APPLICATIOT ..ot e et e it ab s d bt e b b s b b e e e s s ae et naranas 33
2.5 RESUIES QR DISCUSSIOR. ..o oottt et et et ee b h s st ar e b e e se s snr e 36
26 SUMAPY QA CONCIUSIONS ..ottt st b e ea e an s 44
2.7 ACKROWIRAGEIMENL. ...ttt e s s s e e b s 46
28 REJEFEICES ..ovieeeeeeieee ettt e e e bbb b d b bR e bRt 47
3 Bayesian Uncertainty Analysis in Distributed Hydrologic Modelling: A Case Study in the
Thur River Basin (Switzerland) . 53
3.1 TRUFOQUCITON ... oot e e e e bbb bbb oo 54
3.2 Bayesian inference for a continuous-time autoregressive error Model. ..., 56
33 Study Area and SWAT MOGEL...............ooviiviviieiniin i v st 61
34 Results and DISCUSSION. ...........cooeiiiuiiiiioinieee et b b st b bbb s s 66
35 Summary and CORCIUSTON ..........c..ccoovcuineiiiiriiie e bbbttt e s 74
3.6 ACKROWIEUAZIENES ...ttt e e bbb e 75
3.7 REFEFEICES .ottt e e e e e s 75
4 Comparing Uncertainty Analysis Techniques for a SWAT Application to the Chaohe Basin
in China 81
4.1 TRUEFOAUCTION ...t ke b ek s bt et b et e e e e r e r et e ed e eb ks aba s sae s 82
4.2 Methodology, Selected Techniques, and Criteria for COMPAriSOn...............coicinininnen 84
4.3 Study Site, SWAT Watershed Simulation Program, and Model Application..................c.ccinenn, 93
4.4 Results and Discussion
45 L0 1ol 172 T A O OO TSR 116



4.6 ACKROWIEAZEMENE ..ottt s 18
4.7 REFEFENCES ..ottt et b e e d b s e et s s a s e et AR R s 118
5 Conclusions and Outlook 123
5.1 SUIRIGEY «..coooovooeoeee oottt et s s s it s bbb s 123
5.2 CORCIUSIONS .o eeveeeeeeeeeee e ev v e et s ens e se e s bt b e st 2t et s ene s aee s ees e s ere s men s er b shesab b s et se s e b e e e b e e e s bna sre e 124
5.3 OUHOOK ..ottt e ettt et e b a1 b b e s s e s h kst s 124
54 REJEIEACES ..ottt e ettt e e e R e 125
Appendix A: Interfacing SWAT with Systems Analysis Tools: A Generic Platform............ 127
Appendix B: Explanation of some terms 138
Curriculum Vitae. 139
Acknowledgements . 141




Summary

Summary

Distributed hydrological modelling is useful to improve our understanding of the mechanics
of natural processes in a watershed and their interaction with human activity. It can support
the estimation of water availability, and the assessment of the impacts of climate and land use
change or other activities within a watershed. This can support decision-making about
measures to improve flood protection, water quality, aquatic ecosystems, and potential for
recrcational activities in the watershed. As all hydrologic modelling results are subject to
uncertainty due to mecasurement errors in input and response and error in model structure, the
reliability of modelling results must be assessed by cstimating their uncertainty. In the last
two decades, many uncertainty analysis techniques were developed and applied in the field of
hydrology. Most of the uncertainty analysis (UA) methodologies focus only on parameter
uncertainty and other sources of uncertainties are not or only partially represented, and the

advantage and disadvantage of different UA techniques are not comparatively investigated.

The aim of this study is to develop a UA methodology which describes the effect of both
parameter uncertainty and other sources of uncertainty and combines prior knowledge about
parameter values with empirical evidence from the catchment to reduce prediction
uncertainty. The applicability and effectiveness of this UA technique is tested by applying it
to two case studies with different climatic conditions, and further by a comparison with other

UA methodologies.

The two case study areas are the Chaohe basin and the Thur river basin. The Chaohe
basin, with a drainage area of 5300 km?’, lies in the north of China and is a very important
water source to Beijing city’s water supply. Its climate is characterized as temperate
continental and semi-arid. The Thur river basin, with a drainage area of 1700 km?, is located

in the north-castern Switzerland, and has a pre-alpine/alpine climate.

Hydrology of the two watersheds was modelled using the program Soil and Water
Assessment Tool (SWAT; Arold et al., 1998). SWAT implements a semi-physically based
and distributed hydrological model. This model accounts for the major processes influencing
water transport in the watershed, such as soil water movement, surface water movement,
groundwater movement, evapotranspiration, channel routing, etc. SWAT has been widely
applied in the USA, Europe, Africa and Asia, and there are over 160 pecr-reviewed published
articles using this program (Gassman ct al., 2005). As the distributed parametcrs of SWAT
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are separated in distributed files, an interface which automatically manages the change of
distributed paramcter is highly desirable for the uncertainty analysis on SWAT. This
interface, named iISWAT, was first developed to interface SWAT and systems analysis tool

and facilitate our uncertainty analysis (Yang et al., 2005; or Appendix A).
In order to fulfil the aim of this study, the work is divided into three research tasks:

First a UA methodology is developed and applied to the Chaohe basin. This method must
overcome difficulties of calibration of hydrologic models due to measurement errors in input
and responsc, errors in model structure, and the large number of non-identifiable parameters
of distributed models. The difficulties cven increase in arid regions with high seasonal
variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity
and autocorrclation. Extending earlier work in the ficld, we developed a procedure to
overcome (i) the problem of non-identifiability of distributed parameters by introducing
aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of
errors by combining a Box-Cox transformation of results and data with seasonally dependent
error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission
with a continuous-time autoregressive error model, and (iv) the problem of the seasonal
variation of error correlations with seasonally dependent characteristic correlation times. The
posterior distribution of the parameters of the hydrologic model and the error model is
calculated using a Markov Chain Monte Carlo (MCMC) technique. Our methodology was
tested with the calibration of the hydrologic sub-model of the Soil and Water Assessment
Tool (SWAT) in the Chaohe Basin in North China. The result demonstrated the good
performance of this approach to uncertainty analysis, particularly with respect to fulfilment of
statistical assumptions of the error model. A comparison with an independent error model

clearly showed the superiority of our approach.

In the second step, the developed continuous-time autoregressive error model is further
extended and testcd with an application of SWAT to the Thur river basin in Switzerland,
which has completely different climatic conditions compared to the Chaohe basin. This
application corroborates the applicability of the approach, but also demonstrates the necessity
of accounting for the heavy tails in the distributions of residuals and innovations. This is done
by replacing the normal distribution of the innovations by a Student t distribution, the degrees
of freedom of which is adapted to best represent the shape of the empirical distribution of the
innovations. We conclude that with this extension the continuous-time autoregressive crror

model is applicable and flexible for hydrologic modelling under different climatic conditions.
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The major remaining conceptual disadvantage is that this class of approaches does not lead to
a separate identification of model input and model structural errors. The major practical

disadvantage is the high computational demand characteristic for all MCMC techniques.

In a third step the developed technique is compared with other uncertainty analysis
techniques widely used in hydrology to identify differences and similarities of these
approaches. We compared 5 uncertainty analysis procedures: Generalized Likelihood
Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Sequential Uncertainty Fltting
algorithm (SUFI-2), and Bayesian-based continuous-time autoregressive model based on
Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS). For the comparison we
used the SWAT model of the Chaohe Basin in China. As all of these techniques in fact are
classes of techniques, we had to make choices of priors, likelihood functions and goal
functions. We chose these according to their typical uses in applications of hydrological
models. An analysis of the differences in the results of the selected techniques showed that
many of the differences are consequences of not only the choice of the goal function but also
the techniques. As far as the prediction uncertainty is concerned, except ParaSol and simple
IS, all techniques lead to similar results. However, different techniques result in different
posterior distributions of the parameters, best parameter sets, and performances of their
corresponding simulation results. ParaSol leads to narrow parameter ranges because it only
considers parameter uncertainty and uses an incorrect error model, while simple importance
sampling failed due to its inefficient search stratcgy. From the point view of the authors, due
to its superior theoretical foundation, Bayesian-based approaches are most recommendable.
However, construction of the likelihood function and testing of the statistical assumption must
require critical attention. Our continuous-time autoregressive error model contributes to this

cffort.

General conclusions:

It can be concluded that the developed continuous-time autoregressive crror model is
applicable and efficient for uncertainty analysis in distributed hydrological modelling. It
accounts for the effects of parameter uncertainty, uncertainty in the input and response, and
uncertainty in model structure on model predictions. The examination of the residuals and
innovations between the observation and simulations shows that the assumption of
independent t-distributions (or normal distributions) is adequate to describe the distribution of
the innovations of the autoregressive error model. A comparison with the applications of

other uncertainty analysis techniques in hydrology shows that the primary advantage of our
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approach is not the difference in derived prediction uncertainty, but the testable fulfilment of

the statistical assumptions of the error model. This improves the confidence in the uncertainty

estimates.

The major conceptual disadvantage of the approach is the missing separation of error
sources that contribute to total prediction uncertainty. It is an interesting research field to
scarch for error models that would add this element. The major practical disadvantage is the

high computational demand characteristic for all Markov Chain Monte Carlo techniques.



Zusammenfassung

Zusammenfassung

Hydrologische Modellierung mit rdumlich verteilten Modellen ist niitzlich um unser
Verstindnis fiir die Mechanismen der natiirlichen Prozesse in einem Einzugsgebiet und deren
Wechselwirkung mit anthropogenen Einfliissen zu verbessern. Sie kann zur Schétzung der
Wasserverfiigbarkeit, der Beurteilung der  Konsequenzen von  Klima- und
Landnutzungsidnderungen, und zu den Effekten anderer Verinderungen im Einzugsgebiet
beitragen. Damit konnen Entscheidungen iiber Massnahmen zur Verbesscrung des
Hochwasserschutzes, der Wasserqualitit, der aquatischen Oeckosysteme, und der
Freizeitnutzung in einem Einzugsgebiet unterstiitzt werden. Da die Resultate aller
hydrologischen Berechnungen aufgrund von Messfehlern in Eingangs- und Ausgangsgrossen,
sowie von Modellstrukturfehlern unsicher sind, muss die Zuverldssigkeit der Modellresultate
durch eine Unsicherheitsschitzung beurteilt werden. In den letzten zwei Jahrzehnten sind
viele Methoden der Unsicherhcitsschitzung in der Hydrologie entwickelt worden. Die meisten
diescr Methoden fokussicren auf die Unsicherheit der Modellparameter und deren
Auswirkungen und vernachlissigen andere Quellen der Unsicherheit. Zudem gibt es kaum

vergleichende Studien tiber Vor- und Nachteile der verschiedenen Methoden.

Das Ziel dieser Untersuchung ist es, eine Methode der Unsicherheitsanalyse von
hydrologischen Modellen zu entwickeln, die sowohl den Effekt von Parameterunsicherheit als
auch den von Unsicherheit anderer Ursachc beriicksichtigt, zusitzlich Vorwissen iber
Parameterwerte mit empirischer Evidenz aus dem Einzugsgebiet kombiniert und dadurch die
Unsicherheit der Prognosen reduziert. Die Anwendbarkeit und Effektivitit dieser Mecthode

wird in zwei Fallstudien und durch Vergleich mit anderen Methoden getestet.

Die beiden Fallstudien betreffen die Einzugsgebiete der Fliisse Chaohe und Thur. Das
Chaohe-Einzugsgebiet liegt in Nordchina und hat eine Fliche von 5300 km®. Es steht unter
dem Einfluss von kontinentalem, semi-aridem Klima und hat eine sehr grosse Bedeutung fiir
die Trinkwasserversorgung von Peking. Das Thur-Einzugsgebiet liegt in der Nordostschweiz

und hat eine Fliche von 1700 km®. Das Klima ist voralpin/alpin.

Dic Hydrologie der beiden Einzugsgebiete wurde mit Hilfe des Programms “Soil and
Water Asscssment Tool” (SWAT, Amold et al., 1998) modelliert. In SWAT ist ein auf
physikalischen Grundlagen basierendes vertetltes hydrologisches Modell implementicrt, das
die wichtigsten den Wassertransport beeinflussenden Prozesse, wie Wassertransport im

Boden, Oberflichenabfluss, Grundwassertransport, Verdunstung, Wassertransport in
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Fliessgewissern, usw. beschreibt. SWAT wurde schon sehr oft auf Einzugsgcebicte in den
Vereinigten Staaten, Europa, Afrika und Asien angewandt. Das hat zu mehr als 160
begutachteten wissenschaftlichen Publikationen gefiihrt, die SWAT anwenden (Grassman et

al., 2005).
Um die Ziele dieser Arbeit zu erreichen, wurde sie in drei Forschungsarbeiten unterteilt:

Als erster Schritt wurde eine Methode fiir die Analyse der Unsicherheit von
hydrologischen Modellen entwickelt und auf das Chaohe-Einzugsgebiet angewandt. Diese
Methode musste mit den Schwierigkeiten der Kalibrierung hydrologischer Modelle durch
Messfehler in Eingangs- und Ausgangsgrossen, durch Fehler in der Modellstruktur und durch
die grosse Zahl nicht-identifizierbarer Parameter umgehen. Diese Schwierigkeiten wurden in
dieser Fallstudie noch durch das aride Klima mit der grossen saisonalen Verdnderung des
Niederschlags erhéht, das zu einer Vergrosserung der Verdnderungen der Varianz und
Autokorrelation der Residuen fiihrt. Als Erweiterung frither publizierter Methoden wurde ein
Verfahren entwickelt, das (i) die Schwierigkeiten der nicht-ldentifizierbarkeit der verteilten
Parameter durch die Einfithrung aggregierter Parameter und die Verwendung von Bayesscher
Inferenz, (ii) das Problem der Verinderungen der Varianz der Fehler durch die Kombination
einer Box-Cox Transformation mit saisonal variierenden Fehlervarianzen, (iii) die Probleme
der Autokorrelation der Fehler, fehlender Daten und Ausreisserelimination mit einem zeitlich
kontinuierlichen autoregressiven Fehlermodel und (iv) das Problem der saisonal abhdngigen
Stirke der Autokorrelation mit saisonal variierenden charakteristischen Korrelationszeiten
iiberwindet. Die a posteriori Verteilung der Parameter des hydrologischen Modells und des
Fehlermodells wird mit einem Markovketten Monte Carlo Verfahren berechnet. Die Methodik
wurde durch die Kalibration des in SWAT implementierten hydrologischen Modells im

Chaohe-Einzugsgebiet in Nordchina getestet.

Als zweiter Schritt wurde das Fehlermodell erweitert und auf das Thur-Einzugsgebiet in
der Schweiz angewandt. Dieses hat ein Klima, das schr stark vom Klima im Chaohe-
Einzugsgebiet abweicht. Diese Anwendung bestitigte die Anwendbarkeit der Methodik,
zeigte aber auch die Notwendigkeit auf, die Abweichung der Verteilungsform der Residuen
von einer Normalverteilung zu beriicksichtigen. Dies wurde durch die Einfiihrung einer t-
Verteilung implementiert, deren Anzahl Freiheitsgrade ein Anpassen der Form an die
empirische Verteilung der Residuen erlaubt. Damit ergibt jetzt das Verfahren gute Resultate
fiir Einzugsgebiete mit schr unterschiedlichen klimatischen Einflissen. Der hauptsachliche

verbleibende konzeptionelle Nachteil ist, dass diese Klasse von Fehlermodellen nicht zu einer
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separaten ldentifikation von Input- und Modellstrukturfehlern fiihrt. Der hauptséchliche
praktische Nachteil ist der hohe Rechenaufwand, der charakteristisch ist fiir alle

Markovketten-Verfahren.

In einem dritten Schritt wurde das entwickelte Verfahren mit andem in der Hydrologie
hiufig verwendeten Unsicherheitsanalyseverfahren verglichen. Dies diente der ldentifikation
von Unterschieden und Aehnlichkeiten der verschiedenen Ansitze. Es wurden dic folgenden
Verfahren verglichen: Generalized Likelihood Uncertainty Estimation (GLUE), Parameter
Solution (ParaSol), Sequential Uncertainty Fltting algorithm (SUFI-2), und Bayessche
Inferenz mit dem neuen zeitlich kontinuierlichen autoregressiven Fehlermodel basicrend auf
der numerischen Approximation mittels Markovketten Monte Carlo (MCMC) und muttels
Importance Sampling (IS). Fiir den Vergleich wurde das in SWAT implementierte Modell fiir
das Chaohc-Einzugsgebict in China gewdhlt. Da alle diese Techniken eigentlich Klassen von
Techniken sind, mussten noch a priori Verteilungen und Likelihood-Funktionen oder
Zielfunktionen gewihlt werden. Diese wurden gemdss typischen Anwendungen in der
Hydrologie gewihlt. Danach wurde analysiert, inwieweit die Unterschiede in den Resultaten
der verschiedenen Verfahren die Konsequenzen der Zielfunktionen oder der Verfahren an sich
sind. Was die Unsicherheit der Modellprognosen betrifft, ergaben alle Verfahren mit
Ausnahme von ParaSol und einfachem IS &dhnliche Resultate. Demgegeniiber waren die
Resultate fiir die a posteriori Verteilungen der Parameter verschieden. ParaSol fiihrt wegen
der ausschlicsslichen Beriicksichtigung der Parameterunsicherheit und wegen eines
unkorrekten Fehlermodells zu sehr kleinen Unsicherheitsbereichen. Primitives Importance
Sampling ausgehend von der a priori Verteilung fithrt wegen der zu grossen Ineffizienz zu
keinen brauchbaren Resultaten. Aus unserer Sicht sind die Bayesschen Methoden wegen ihrer
besseren theoretischen Begrindung am empfehlenswertesten. Bei der Anwendung dieser
Methoden muss aber der Konstruktion der Likelihood Funktion und dem Testen der
statistischen Annahmen entscheidende Beachtung geschenkt werden. Unser neucr Ansatz
tragt zu einer solchen Entwicklung bei.

Allgemeine Schlussfolgerungen

Das in dieser Arbeit entwickelte zeitlich kontinuierliche autoregressive Fehlermodell
scheint sich sehr gut fiir die Anwendung auf hydrologische Probleme zu eignen. Es
bertlicksichtigt die Effekte von Parameterunsicherheit, Unsicherheit in Eingangs- und
Ausgangsgrossen und Unsicherheit in der Modellstruktur auf Modellprognosen. Ein Vergleich

der empirischen und der angenommenen Verteilungen der Inkremente des autoregressiven

11
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Modells zeigt dic Angcmessenheit der Annahmen von unabhéngigen t-Verteilungen (oder
Normalverteilungen). Ein Vergleich mit den Resultaten anderer
Unsicherheitsanalysetechniken zeigt, dass der Hauptvorteil unseres Ansatzes die testbare
Erfiillung der statistischen Annahmen des Fehlermodells ist. Das erhoht das Vertrauen in die

Resultate der Unsicherheitsschitzung.

Der grosste verbleibende konzeptionelle Nachteil unsers Verfahrens ist die fchlende
Aufspaltung der Fehlerquellen, dic zur Gesamtunsicherheit beitragen. Dies ist ein
interessantes Forschungsgebict fiir weitere Untersuchungen. Der grésste verbleibene
praktische Nachteil ist der hohe Rechenaufwand, der fir alle Markovketten Monte Carlo
Verfahren typisch ist.
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Introduction

1 Introduction

1.1 Background and Motivation

Distributed hydrological models are widely used in many applications such as estimating
water availability and assessing the impacts of climate change and land use change within the
study watershed. They assist decision-making in water management and contribute in
research to understanding the mechanisms of the natural process and the interaction with
human activities. However, all modelling results are subject to uncertainty due to the
measurement errors in input and response and error in model structure. The assessment of the
reliability of the modelling results is very much dependent on the way the uncertainties are

described.
A. Distributed hydrological modelling

In hydrological models the watershed can be characterized differently depending on the
modelling purpose. Hydrologic models can be classified as lumped or distributed models
based on the description of the processes of the system geometry, model input, governing
laws, initial and boundary conditions, and model output. Difterent from lumped models,
distributed models take an explicit account of spatial variability of processes, input, boundary
conditions, and output (Singh, 1995). Examples of implementations of such models include
SHE (Abbott et al., 1986a and 1986 b) and SWMM 9 (Metcalf and Eddy, Inc., et al., 1971).
Based on the physical basis of the described processes, the distributed model can be further
classified as conceptual distributed model, physically based distributed model, and semi-
physically based / semi-conceptual distributed model. However, no matter how spatially
explicit and how physically based the distributed model is, some parameters should be
estimated indirectly through calibration. For cxample, the soil hydraulic conductivity can be
correctly measured for a particular location, but such a measurcment is often invalid as a
representative average over the model grid cell, let alone the entire domain (Kavestski et al.,

2002).

Recently, distributed models were coupled with Geographic Information System (GIS) or
Remote sensing (RS) to make use of the topographic data, land use data, remote sensing data,
etc for more precise and reasonable prediction, and integrated with biological and ecological

sub-models to model water related issues. Examples of such models include the Soil and
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Water Asscssment Tool (SWAT) (Amold et al., 1998), AGNPS (Young et al., 1989), and
HSPF (Bicknell et al., 2000).

On the other hand, users of distributed models face the challenging task of calibration and
uncertainty analysis. The difficulty is due to the interaction of different processes and
parameters, the nonlincar and non-monotone characteristics of relationships parameterized in
the model, and the large number of non-identifiable distributed parameters, while only a

relatively small number of observations arc available.

The program SWAT (Arnold et al., 1998) was chosen in this study. SWAT is a semi-
physically based and distributed watershed model. It describes the climatic and topographic
heterogeneity through sub-basins based on DEM and climatic stations. It describes the
heterogeneities in land use, soil, management practices through HRUs (Hydrologic Response
Units), which is the unique combination of land use, soil, and management practises for each
HRU. The SWAT program has been widely applied in the USA, Europe, Africa and Asia,
and there are over 160 peer-reviewed published articles using this program (Gassman ct al.,

2005).

In this paper, the SWAT is applied to the Chaohe basin and the Thur river basin. The
Chaohe basin, in North China, is characterized by a temperate continental and semi-arid
climate, and the Thur river basin, in north-east of Switzerland, is characterized by a pre-

alpine/alpine climate.
B. Uncertainty analysis in hydrological modelling

The uncertainties in hydrologic modelling are normally classified as input uncertainty, model
parameter uncertainty, model structural uncertainty and uncertainty in the measurement of
response which is used for model calibration. Input uncertainty is often related to imprecise
measurement of model input or initial condition and spatial aggregation of model input, such
as DEM data, land use data, rainfall, temperature and initial groundwater level, etc. Model
parameter uncertainty is caused by the indirect/dependent measurement, imprecise
measurement or conceptualization process of the model parameters. Model structural
uncertainty may arise from the simplification of the reality, or in crroneous conceptualization
of the procecsses. Uncertainty in the measurement response often refers to imprecision of the
measured response (e.g. observed streamflow and groundwater level). In some literatures, the
input uncertainty and uncertainty in the measurement response are called data uncertainty

(Gupta, Beven and Wagener, 2005).

14



Introduction

Because of the existence of those uncertainties, it has been accepted by most hydrologists
that the process of calibration cannot lead to a single optimal parameter set but one has to find
a probability distribution of parameters that represents the knowledge of parameter values.
This is called the principle of “equifinality” by Beven (2001), but it fits more generally into

any Bayesian approach of statistical inference (Gelman et al., 1995).

In the last two decades, many uncertainty analysis methodologies have been
developed/introduced and applied in hydrological modelling. These methodologies include
Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992), Parameter
Solution (ParaSol; Van Griensven et al., 2006), Markov Chain Monte Carlo (MCMC) and
Importance Sampling (IS) within the Bayesian Approach, Sequential Uncertainty Fltting
algorithm (SUFI-2; Abbaspour et al., 2006), ¢tc. Most of these methodologies and/or their
applications only focus on paramcter uncertainty. To better understand the contribution of
different uncertainty sources to the prediction uncertainty, there is a need to investigate the
uncertainties in other sources in addition to parameter uncertainty. It is also useful to
investigate the strengths and weaknesses of different methodologies so as to provide an

overview on how to select a suitable UA methodology in (distributed) hydrologic modelling.

1.2 Goals and Research Questions

Goals:

The primary goal of this project is to develop a UA methodology that accounts for
different uncertainty sources in hydrologic modelling and the statistical assumptions of which
are testable and not violated. The second goal is to compare this technique with other UA
methodologics by studying their strengths and weaknesses, and providing guidance for UA

methodology selection.

In order to illustrate the usefulness and applicability/flexibility of our methodology, two
study sites with different climatic conditions were selected. One of these sites is the Chaohe
basin in North China, which is characterized by a temperate continental and semi-arid climate,
the other is the Thur river basin, in north-eastern Switzerland, which is characterized by a pre-
alpine/alpine climate. Detailed data records such as rainfall, temperature, DEM, land use and

river discharge are available.

To achieve the above goals, the work is divided into three major research tasks:

15
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1. Development of the continuous-time autoregressive error model and its application to

the Chaohe basin;
2. Extension of the developed methodology and its application to the Thur river basin;

3. Comparison of our technique with other UA methodologies.

Research Questions:
The research objective is addressed by answering three major questions:

1. How can the uncertainty in model structure and in the measurement of input and

response be described within the Bayesian framework in hydrological modelling?
2. Is the developed methodology applicable for other watersheds as well?

3. What are the advantages and disadvantages of the developed methodology in

comparison with other UA methodologics that are also used in hydrological modelling?

1.3 Contents and Structure of the thesis

This thesis is structured in 4 main sections as described below:

Section 2: Hydrological Modelling of the Chaohe Basin in China: Statistical Model
Formulation and Bayesian Inference. In this section, the importance of uncertainty analysis
is addressed and a brief literature review on uncertainty analysis is given. In addition, the
problems and difficulties in the separation of uncertainty sources are discussed. In the
methodology part, a continuous-time autoregressive error model within the Baycsian
framework is developed. This is the key issue of this paper. The developed methodology is
then applied to a SWAT model for the Chaohc basin, China, which has an obvious seasonal

rainfall/flow variation.

Section 3: Bayesian Uncertainty Analysis in Distributed Hydrologic Modelling: A
Case Study in the Thur River Basin (Switzerland)., Following section 2, the statistical
assumption of the continuous-time autoregressive error model is strengthened and further
generalized in this section. The generalized methodology is then applied to the application of
the SWAT model to the Thur river basin, Switzerland, which has different climatic conditions

compared to the Chaohe basin.

Section 4: Comparing different uncertainty analysis techniques in a SWAT
application to the Chaohe Basin in China. This section is concerned about the relative

advantages and disadvantages of different UA methodologies: GLUE, ParaSol, SUFI-2, and

16



Introduction

the continuous-time autoregressive model based on two different numerical implementations.
The different methodologies are introduced and applied to the application of the SWAT model
to the Chaohe basin with the same prior setup. The derived posterior parameter distributions,
the quality of the best fit, prediction uncertainty, the efficiency of the techniques and the

conceptual basis of the techniques are compared.

Section 5: Conclusions and outlook. The results from the above sections are analyzed,
and the effectiveness of the developed methodology is discussed. An outlook is given for

future research on the separation of uncertainty source in hydrologic modelling.
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2 Hydrological Modelling of the Chaohe Basin in China:
Statistical Model Formulation and Bayesian Inference

Jing Yang, Peter Reichert, Karim C. Abbaspour, Hong Yang
(Accepted by Journal of Hydrology)
Abstract

Calibration of hydrologic models is very difficult because of measurement errors in input and
response, errors in model structure, and the large number of non-identifiable parameters of
distributed models. The difficulties even increasc in arid regions with high seasonal variation
of precipitation, where the modelled residuals often exhibit high heteroscedasticity and
autocorrelation. On the other hand, support of water management by hydrologic models is
important in arid regions, particularly if there is increasing water demand due to urbanization.
The use and asscssment of model results for this purpose requires a careful calibration and
uncertainty analysis. Extending earlier work in this field, we developed a procedure to
overcome (i) the problem of non-identifiability of distributed parameters by introducing
aggregate paramcters and using Bayesian inference, (ii) the problem of heteroscedasticity of
errors by combining a Box-Cox transformation of results and data with seasonally dependent
error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission
with a continuous-time autoregressive error model, and (iv) the problem of the seasonal
variation of error correlations with scasonally dependent characteristic correlation times. The
technique was tested with the calibration of the hydrologic sub-model of the Soil and Water
Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the
good performance of this approach to uncertainty analysis, particularly with respect to the
fulfilment of statistical assumptions of the error model. A comparison with an independent
error model and with error models that only considered a subset of the suggested techniques
clearly showed the superiority of the approach based on all the features (i) to (iv) mentioned
above.

Keywords.: Watershed model calibration; Uncertainty analysis; Bayesian inference;
Continuous-time autorcgressive error model; MCMC; SWAT; UNCSIM; Aggregate

parameters,
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2.1 Introduction

With continuous urbanization and economic development, water scarcity and deterioration of
water quality have become increasingly severe in many river basins in the world, especially in
arid regions, such as North China. Tackling these problems with effective water management
strategies is crucial for sustaining the economic development and meeting the water demand
of a growing population. Hydrologic models can assist decision-makers in dealing with these
problems by providing systematic and consistent information on water availability, water
quality, and impacts of human activities, particularly land use change, on the hydrologic
systems. However, the confidence in model predictions relies on their uncertaintics. These
are difficult to estimate. As hydrologic models need site-specific calibration, uncertainty
estimation must be based on the results of the calibration and validation processes (Yapo et al,

1996; Duan et al., 2003).

Parameter uncertainty in hydrological modelling has gained a lot of interest over the past
two decades. It has been accepted by most hydrologists that the process of calibration cannot
Icad to a single “‘optimal” parameter set but one has to find a probability distribution of
paramecters that represents the knowledge about parameter values. This is called the principle
of “equifinality” by Beven (2001) and Beven and Freer (2001), but it fits more generally into
any Bayesian approach of statistical inference (Gelman et al., 1995). Many techniques have
been proposed to quantify paramcter uncertainty of hydrologic models. Early approachcs
with quite sophisticated error models were based on first-order approximations of the model
equations for Bayesian inference (e.g. Kuczera 1983). Duec to the difficulty of quantifying the
errors of linearization (Vrugt and Bouten, 2002) and the increasing availability of
computational power, these approaches have been replaced by Monte Carlo based numerical
approximations to the posterior that account for model nonlinearity. Monte Carlo approaches
can be divided into global random (mostly uniform) importance sampling approaches
including some generalizations (Beven and Binley 1992; Lamb, 1999; Beven and Freer 2001),
regional or iterative importance sampling and similar approaches (Abbaspour et al., 1997,
2004, 2007), and Markov Chain Monte Carlo techniques (Kuczera and Parent, 1998; Bates
and Campbell, 2001; Vrugt et al., 2003). The techniques based on global scanning of the
parameter space have the conceptual advantage of being, in principle, able to deal with
arbitrary shapes of posterior distributions. In particular, this includes multi-modal
distributions. However, as shown by Kuczera and Parent (1998) and others, they are very

inefficient and can even lead to misleading results unless a very large samplc of parameters is
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drawn. This is increasingly difficult if the parameter space has a high dimension. The
efficiency of importance sampling can be improved by iteratively adapting the sampling
distribution and by using efficient sampling techniques (Reichert et al., 2002). Such a
“regionalization” should be based on a global search and not on a small sample from global
scanning, as this can propagate the above-mentioned problem of a misleading paramecter
selection due to a too small sample to the local search. Nevertheless, iterative adaptation of
the sampling distribution to approximate the posterior in importance sampling remains
difficult, particularly in high dimensional parameter spaces. For these reasons, the Markov
Chain Monte Carlo approach seems to be the most promising general approach. In order to
avoid problems of finding the maximum of the posterior and long burn-in phases, Markov
Chains should be started in the neighbourhood of the maximum of the posterior probability
density calculated with a global search algorithm (e.g. Duan et al., 1992, 1993, 1994). This is
the numerical approach we follow also in this paper. Still the choice of an adequate error

model to construct the model likelihood function remains a challenge.

Conventional watershed models consist of a deterministic description of rainfall, runoff,
evaporation, storage and transport processes. Due to the representation of internal storage
processes by the model, measurement crrors of input and errors in model structure lead to
sequentially dependent errors in model results. These errors, together with the measurement
errors of response, can be accounted for by an overall additive autoregressive error model
(e.g. Kuczera 1983, Bates and Campbell, 2001) or by considering the error sources separately
and propagating them through the model. The methodology of including input uncertainty in
Bayesian inference is well known (Zellner, 1971). However, it has rarely been applied in
hydrological modelling (Kavetski et al., 2003), probably because its application to (rainfall)
time series introduces a large number of additional parameters and interferes with errors in
model structure. Errors in model structure have been addressed by making the deterministic
hydrologic model stochastic and combining parameter cstimation with the estimation of
model state variables (e.g. Vrugt et al., 2005). As the first approach involves many additional
parameters to be estimated and the second is hard to implement in an existing large hydrologic
simulation program, we¢ will base our analysis on an overall additive autoregressive error
modcl that accounts for the joint effect of measurement errors of input and response and errors
in model structure. We extend previous approaches with discrete-time autoregressive error

models by introducing a continuous-time autoregressive error model.
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Since the development of the Stanford Watershed Model (Crawford and Linsley, 1966),
there has been a proliferation of watershed models and corresponding simulation programs.
Currently, such simulation programs are coupled with GIS and are being integrated with
biological and ecological sub-models. Such simulation programs include AGNPS (Young et
al, 1989), SWAT (Amold ct al., 1998) and HSPF (Bicknell et al, 2000). Coupling with GIS
makes it easier to represent the watersheds in more and more detail. This increases the
number of model parameters, decreases their identifiability, and makes calibration and
uncertainty analysis even morc difficult. To limit this increase in model complexity, we
define aggregate global or regional parameters to modify distributed parameters. With this
concept, distributed parameters are changed by additively or multiplicatively modifying their
initial, spatially varying values, or by defining values that depend on potentially important

influence factors, such as soil or land use categories or sub-basin index.

The Chaohe Basin in North China is selected as a case study for model calibration and
uncertainly analysis. The scvere water scarcity and growing population makes efficient water
management an important issue in North China. The Chaohe Basin is a large part of the
catchment of the Miyun reservoir, an important drinking water source for the city of Beijing.
Previous hydrological modelling studies in North China had the objectives of simulating river
discharge and water quality and assessing the impact of land use and climate change. Some
commonly used models include the Xinanjiang model (Zhao, 1992; Zhao and Liu, 1995), the
Distributed Time Variant Gain Model (Wang et al., 2002), the TOPKAPI model
(TOPographic Kinematic APproximation and Integration) (Liu, 2004), and also SWAT. The
application of SWAT in China includes the application in the Heihe Basin (Huang and Zhang,
2004; Wang et al., 2003), the Suomo Basin (Chen and Chen, 2004), the Luohe Watershed
(Zhang et al., 2003a, 2003b), the Yuzhou Reservoir Basin (Zhang et al., 2004) and the Luxi
Watershed (Hu et al.,, 2003). However, to the authors’ knowledge, none of the above
applications includes an uncertainty analysis, and hence, these studics arc of limited use for

water management as their reliability cannot be quantified.

The goal of the present study is to calibrate the SWAT program (Arnold et al., 1998) for
the Chaohe Basin in North China and to perform a state of the art uncertainty analysis for this
model application. The calibration of the model duplicates to some degree earlier efforts (see
above). However, it is hoped that the calibration and uncertainty estimation techniques and

tools developed and used for this case study will stimulate similar development in future
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studies. This would improve future support of watershed management by hydrologic models

in general and particularly in North China.

This paper is structured as follows: Scction 2.2 outlines the techniques used in this paper.
This section starts with an introduction of the Soil and Water Assessment Tool (SWAT), a
description of the aggregate parameters used for model calibration and a brief description of
the software developed for interfacing SWAT (Yang et al., 2005) with our systems analysis
tool UNCSIM (Reichert, 2005). We then focus on the construction of the likelihood function
for heteroscedastic and autocorrelated errors by a detailed description of the continuous-time
autoregressive error model which we will use for optimal flexibility in representing the
deviation of Box-Cox transformed measurements from (transformed) SWAT output. This
section ends with a brief outline of the (standard) techniques of numerical Bayesian inference
by Markov Chain Monte Carlo as we will use them in our application. Section 2.3 contains a
description of the study site and of data acquisition and compilation. In section 2.4, we
describe our application of the model to the Chaohe Basin, and in section 2.5, we present and
discuss the results. Finally the main results are summarized and conclusions are drawn in

section 2.6.

2.2 Methods

2.2.1 Deterministic Hydrological Model

We use the Soil and Water Asscssment Tool (SWAT; Amold et al., 199§;
http://www brc.tamus.edu/swat) as the simulation softwarc that implements the deterministic
hydrologic model to describe the hydrologic processes in the catchment. A major reason for
this choice was that, in addition to hydrology, SWAT provides modules for the simulation of
sediment, nutrients and pesticides in the watershed. This gives us the opportunity to extend
the present work to water quality in future studies. SWAT implements a partially physically
based and semi-distributed model that operates on a daily time step. In SWAT, a watershed is
divided into a number of sub-basing based on a given DEM (Digital Elevation Model).
Within each sub-basin, soil and land use maps are overlaid to create a number of hydrologic
response units (HRUs), which are the basic working units. SWAT simulates the land phase of
the hydrologic cycle for each HRU. The land phase controls the amount of water, sediment,
nutrients and pesticides delivered to the main channcl in cach sub-basin. The resulting loads

arc then routed through the channel network of the watershed to the basin outlet.
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Water storage in each HRU in SWAT is represented by four storage volumes: snow, soil
profile, shallow aquifer and deep aquifer. The water mass balance then considers
precipitation, interception, runoff, infiltration, evapotranspiration, percolation, *“revap” (water
flux from the shallow aquifer to the soil by evaporation, diffusion and condensation), lateral
movement and, finally, routing in the rivers. Surface runoff from daily rainfall is calculated
using a modified SCS curve number mcthod (Soil Conservation Service, 1972), which
estimates the amount of runoff based on local land use, hydrologic soil group, and antecedent
soil moisture. SWAT can estimate potential evapotranspiration using Penman-Monteith
(Monteith, 1965; Allen, 1986; Allen et al., 1989), Preistley-Taylor (Priestley and Taylor,
1972), or Hargrcaves (Hargreaves ct al., 1985) methods based on data availability. The
Hargreaves method is used in this study to estimate potential evapotranspiration. For actual
evapotranspiration, SWAT first evaporates any rainfall intercepted by the plant canopy, and
then calculates transpiration, sublimation and soil evaporation based on potential
evapotranspiration and water availability. SWAT’s root zone water processes include
evapotranspiration, percolation into deep soil, and lateral movement, while the shallow runoff,
lateral flow and aquifer contribute to the strcam flow. SWAT provides two water routing
methods, the variable storage (Williams, 1969) and Muskingum (Cunge, 1969; Chow et al,
1988) methods. In this study we use the Muskingum routing method.

2.2.2 Aggregate Parameters

Calibration of a distributed hydrologic model using discharge data from a small number of
river sites always leads to non-identifiable parameters due to strong overparameterization.
Onc way of dealing with overparameterized models is to combine prior knowledge about
parameter values with data using Bayesian inference. Due to the very large number of model
paramcters, this would be computationally very demanding. In order to use the information
about spatial variation or about the dependence on important influence factors, but to keep the
number of parameters small, an alternative approach is used in this study. For distributed
paramcters either a value or a multiplicative or additive modification term to the prior
parameter values can be used instead of using the parameter values in all HRUs. Such a
modification term can be chosen to have a global value, or different values for diffcrent

categories of important influence factors such as soil type, land use, etc.

To do this, an interface program iSWAT (Yang et al., 2005; http://www.uncsim.cawag.ch/

interfaces/swat) was implemented that allows its users to encode information into an extended

parameter name on how to apply a parameter value conditionally on important influence
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factors and location and hence aggregate distributed parameters. The name of the SWAT

aggregate parameters uses the following format:
X__ <parname>.<cxt> <hydrogrp> <soltext> <landuse>__<subbsn> (2.1)

Where x represents the type of change to be applied to the parameter (v: value; a: absolute
change; r: relative change), <parname> is the SWAT parameter name; <ext> represents the
extension of the SWAT input file which contains the parameter value; <hydrogrp>, <soltext>,
<landuse™>, and <subbsn> represent the dependent factors, referring to soil hydrologic group,
the type of soil texture, the land use category, and sub-basin number/crop index/fertilizer
index, respectively. For these factors, single values or groups of values can be specified, or
they can be omitted to indicate that the change is applied independently of the factor. For
example, v.__ CN2.mgt = 75 will cause a global replacement of CN2 values (v=value) in the
management files by 75, and a CN2.mgt ~ AGRR__1,5 = 5 will increase the CN2
values by 5 (a=absolute change) in subbasin 1 and 5 in which the landuse types are “AGRR”
independent of hydrologic group and soil texture (corresponding codcs omitted in the

extended parameter name).

< Systems analysis program=>

SWAT program

Figure 2.1: A schematic flowchart shows the linkage of the systems analysis program and

SWAT model.

The interface program iSWAT recads the parameter names and values from a file written
by a systems analysis tool and modifies the SWAT input files accordingly. After cxecution of
SWAT it compiles the results to a format that can easily be interpreted by the systems analysis
tool. This makes it possible to couple SWAT with any systems analysis tool that supports the
simple file-based information exchange format described by Recichert (2006). Figure 2.1
illustrates the intcraction between iSWAT, SWAT and the systems analysis tool. More details

are given in Yang et al. (2005),
2.2.3 Likelihood Functions

The deterministic hydraulic simulation model can be written in the form of the function
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v (8) = (7 (0), 5 (8),... ' (8)) 22)

where y,f_u (0) represents the model output at time ¢; for model parameter values 0 = (6’1 ,...,6’")

(in our casec mostly aggregate parameters as described in scction 2.2.2), and M indexes the

model.

As mentioned in the introduction, measurement errors of input and response and errors in
model structure lead to deviations of simulation results from measurements. These are
modelled as an additive random process to Box-Cox transformed model results (Box and Cox,
1964; 1982). The parameters of the Box-Cox transformation give us degrees of freedom to
improve the degree of fulfillment of simple distributional assumptions of the errors. After
adding the random error to the transformed results, we need a transformation back to the
original scale for comparison with data. This leads to the following model formulation as

random variables at all observation time points:
Y=g (gl ®)+E,) (23)

In this equation, g and "' are forward and backward Box-Cox transformations

(r+4,)" -1
MR 320 __

g(» = A 17 ,g‘(2)={
In(y+4,) A4 =0

Az -2, A4, 20  dg
(4 ) 2 M ’ i:(y-k/lz)&
exp(z) — A4, A, =0 dy

(2.4)
A and X, arc Box-Cox transformation parameters (y+ 1) must be larger than zero for all
values of y; 41 = 4, = | leads to the identity transformation), E, is the random variable

quantifying the total effects of measurement errors of input and response and errors in model

structure on model results, and Y,” is the random variable describing model response at time
1.
The simplest assumption for the error term, E,, is that it consists of independent,

normally distributed random variables with mean zero and standard deviation ¢. In this case,

the probability density of E, is given by

. 1 1 1 &
i, (€,) B P e 2:5)
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However, due to the memory effect of storage processes, even independent input and
model structure errors will lead to correlated response errors. For this reason, we use an

autoregressive model to formulate the error term £, . In the past, this has usually been done

with discrete-time autoregressive error models (e.g. Kuczera, 1983; Bates and Campbell,
2001). Our approach is similar, but we use a continuous-time autoregressive error model (e.g.
Brockwell and Davis, 1996; Brockwell, 2001) because this seems to be a more reasonable
representation of continuous-time processes in the catchment and because this significantly
facilitates dealing with missing data and outliers. Because of the adequateness and simplicity
of the mean-reverting Ornstein-Uhlenbeck process, we use it to describe this error term (e.g.
Kloeden and Platen, 1992; the same process was used for describing continuous, time-
dependent model parameters in Tomassini et al. 2007). The conditional probability densities

of the individual errors are then given by

fu (60 =L - 12
Ly My mo_ p 2 0,2

£ —£& expl — t’m_l_ll) ’
N ] 1 exp| — 1 WO PP T
| - 2 f o~
2 o“\/l —CXP(_ 2wj 0'2 (1 ‘—"exp(m ,JWWTI_—IJ]
T g

where o is the asymptotic standard deviation of the errors and 7 the characteristic corrclation

f‘EIIIEIi-l (81 81, I) =

i

time. The assumption here is that the random disturbances, sometimes called innovations
(Chatfield, 2003),

. -t
I, =E ~E, exp(w :

i J 2.7)

T

rather than the individual errors, £, , are independent and normally distributed. Keeping the
asymptotic standard deviation of the errors F, at o, the innovations must have standard

deviations of

o, = cr\/l - exp(m 2£‘-:ut~'-ij (2.8)
: T

They reach o if the time difference between two observations is large compared to the

characteristic correlation time, 7, and they are significantly smaller if subsequent observations

are within that time or even closer. Note that the formulation of this likelihood function is
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similar to the approach suggested by Duan et al. (1988) for use with unequally spaced data.
However, equation (2.8) formulates the essential difference: when decreasing temporal
distance of measurement points in our error model not only the correlation increases, but also
the standard deviation of the error term decrcases. This guarantees its applicability on a

continuous time scalc.

Combining the deterministic hydrologic model (2.2) with the Box-Cox transformation
(2.3, 2.4) and the independent error model (2.5), we end up with the following likelihood
function:

n _ M 0 2
Fene GO =] ﬁéexp—g[ﬂy«) s o) e

i=0 o < y=py

(2.9)

Note that when keeping the transformation parameters A, and A, constant, maximum
likelihood parameter estimation results in minimizing the sum of weighted squares of the
deviations of transformed model results from transformed data. In the special case of the
identity transformation this reduces to the minimization of the sum of squares of model results
from measured data what is equivalent to maximizing the Nash-Sutcliffe coefficient (Nash
and Sutcliffe, 1970).

Similarly, combining the deterministic hydrologic model (2.2) with the Box-Cox
transformation (2.3, 2.4) and the Ornstein-Uhlenbeck continuous-time autoregressive error

model (2.6) leads to the likelihood function

N exp[ 1lg0r) -2l (e))]‘]_

dg |
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t. —1.
_ _ M 9 _ i i
ﬁ 1 1 exp| —— ) g(y,, ) ))]exp( 4 J 9]
it V27 0'\/1 - cxp(— 2 di t"‘LJ 2 o’ (1 - cxp(— 2 ‘—_‘—“B b
T T
) (2.10)

In the following, we will call the likelihood function (2.9) independent error model and we
will use it for comparative purposes only. We call the likelihood function (2.10)

autoregressive error model and will use it for the actual application of the model.
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In order to test the statistical model assumptions of the likelihood function (2.9), we will

check the standardized residuals of transformed data and model results

_ g0 -gl ®)

e}

ACR S (2.11)

for independent normality (with mean zero and standard deviation unity) and for the
likelihood function (10) the standardized obscrved innovations of the transformed data and

model results

g™ - gl @) (g - gl (9)))exp("~ bl _Tt"" ]

0'\/1 - exp(— 2 Mj
T

for fulfillment of the same statistical assumption. In these equations, y°* are the observations

i, (8,y°") = (2.12)

corresponding to the model outputs. To check for heteroscedasticity and correlation of
standardized residuals (Equation 2.11) and standardized observed innovations (Equation

2.12), we plotted their time series, autocorrelation functions and cumulative periodograms.

2.2.4 Bayesian Inference and Numerical Implementation
We will derive a posterior probability density function of the parameters, f, v (()’y"hs ), from

the prior density, fg (8),and data, vy, according to Bayes’ theorem

S0 10 fo, ©)
0) /,_(6')de

Jo.x(® (2.13)

obs
N R ™
[Fome ™

where the model likelihood function, f 'YMle) (yObs 0), is either (for comparative purposes)

given by equation (2.9) or by equation (2.10). A numerical sample of the posterior
distribution is derived by applying the Metropolis-Hastings Markov Chain Monte Carlo
algorithm (Gelman et al., 1995). In order to avoid long bum-in periods (or even lack of
convergence to the distribution) the chain is started at a numerical approximation to the
maximum of the posterior density calculated with the aid of the shuffled complex global
optimization algorithm (Duan ct al., 1992, 1993, 1994). Markov Chains were run until 20 000
model runs were reached after the convergence criterion of Heidelberger and Welch was

fulfilled (Cowles and Carlin, 1996; Best et al., 1995). The likelihood function, optimization
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algorithm and Markov Chain algorithm were implemented in an updated version of the

UNCSIM program (Reichert, 2005).

2.3 Study Site and Data Compilation

2.3.1 Site Description

The Chaohe Basin is situated in North China with a drainage area of 5,300 km? above the
Xiahui station (see Figure 2.2). The characteristic of the climate is temperate continental and
semi-arid. From 1980 to 1990 the average daily maximum temperature was 6.2°C, the
average daily minimum temperature in this period was 0.9°C, and the yearly rainfall varied
between 350 to 690 mm. The elevation varies from 200 m at the basin outlet to 2,400 m at the
highest point in the catchment. The topography is characterized by high mountain ranges,
steep slopes and deep valleys. Water flows fast in the river and the average channel slope 1s
1.87%. Average daily flow at the catchment outlet is 9.3 m’ s™ and varies irrcgularly from
around 800 m’ s during the flood season to lower than 1 m’ s™ in the dry scason at the
Xiahui station. The ratio of runoff at the Xiahui station to the rainfall in this basin decreased
from 0.24 in 1980 to 0.09 in 1990. It is believed that the decline is mainly due to the
intensified human activities, including incrcasing water use and build up of more water

retention structures.

The Chaohe River is one of two tributaries flowing into the Miyun reservoir, which is an
important drinking water reservoir for Beijing city and provides nearly half of the city’s water
supply (Jia and Cheng, 2002). As a major drinking water source of Beijing city, both water
quality and water quantity are important concerns in this river basin. However, due to the
decrease in incoming water and increase in soil loss and pollution from the upper stream, the
water level of the Miyun Reservoir has been declining continuously and the water quality has
been deteriorating. The reservoir is severely affected by dissolved pollutants and pollutants
attached to suspended particles and sedimentation (see e.g. Wang et al, 2001;
http://www.china.com.cn/chinese/zhuanti/qyjjfz/1169096.htm). Although the Chinese
government has taken measures to improve water quantity and quality in the inflows to the
reservoir, such as implementing reforms on water prices and land conservation programs, the
problems have not decreased and are even exacerbating. One of the reasons for the
ineffective control of the problems has been the lack of quantitative understanding of the

hydrologic system and of how it 1s affected by human activities in the river basin. Given this
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background, a hydrologic and water quality model for this basin is useful for providing more

reliable information to improve water resource management.

a Xiahui station (outlet)
® Reservoirs
Streams
Subbasins
[ ] Watershed

20000 0 20000 40000 Kilometers
— '

Figure 2.2: Location of the Chaohe Basin in North China. Solid circles represent rescrvoirs,
irregular polygons stand for subbasins in this project, and the triangle is the outlet (Xiahui

station),
2.3.2 Data Compilation

In the following, a short description is given of the data gathered for the Chaohe Basin and its

processing for the application of the model:

(1) A digital elevation map (DEM) at a scale of 1:1,000,000 was obtained from the “China
Data Centre” of the University of Michigan (http://chinadatacenter.org/mewcdc/).

(i1) A soil map at a scale of 1:1,000,000 was provided by the Institute of Soil Science,
Chinese Academy of Sciences, Nanjing (Shi et al, 2004),
(http://issas.ac.cn/english/soil _database.htm). The soil data is aggregated into 35 soil profiles
in the Chaohe Basin. The original soil data only contains the percentages of the texture
components, bulk density and organic carbon content. The soil erodibility factor, USLE K,
was estimated by an equation proposed by Williams (1995), saturated hydraulic conductivity,

SOL_K, and available water storage capacity, SOL_AWC, were initially estimated using
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pedotransfer functions proposed by Schaap ct al.(1996 and 2001) and later calibrated for the

region.

(ii1) A land use map at a scale of 1:1,000,000 was provided by the Institute of Geography
Chinese Academy of Sciences, Beijing. The dominant land uses in the Chaohe Basin are
forest (49.5%), grassland (27.3%), and agricultural land (21.3%). Agricultural land is mainly
distributed on both sides of the main channel and tributaries including the river flood plains.

The main crops planted in this area are corn and wheat.

(iv) Daily precipitation data contains 15 stations over a period of 6 years (1985-1990)
(Hydrologic Yearbook, Ministry of Water Resources, China), and daily maximum and
minimum temperatures for 2 stations (Fengning and Luanping) over a period of 40 years

(1960-2000) (China Meteorological Administration, www.cma.gov.cn).

(v) Six rescrvoirs were built in the Chaohe Basin during the 1970s or earlier. However,
the total catchment area of these reservoirs contributes to only 5% of the watershed area and
the total storage capacity of the reservoirs is 2.4% of the yearly water discharge passing

through the Xiahui station. The properties of those reservoirs are listed in Table 2.1.

(vi) Daily discharge data used is at the basin outlet Xiahui (5340 km?) for 6 years (1985-
1990) (Hydrologic Yearbook, Ministry of Water Resources, China).

Table 2.1: Properties of the reservoirs in the Chaohe Basin

Longitude  Latitude =~ Watershed Area  Storage capacity

Reservoir name County (degree) (degree) (ha) (1 0 m3)
Mujiang Fengning 116.60 41.52 2541 84.2
Shanshengmiao  Fengning 116.77 41.02 3600 10.4
Hongqi Fengning 117.10 40.95 5360 52.4
lingying Fengning 117.10 41.05 3050 144.0
Caoyingzi Luanping 117.18 40.93 2400 127.0
Longtanmiao Luanping 116.80 40.92 10300 286.0

According to the natural river network, the topography of the basin, and the distribution of
rainfall stations, the basin was divided into 53 sub-basins. To get a reasonable resolution of
soil properties and land usc and management practices, these sub-basins were divided into a
total of 262 HRUs (see section 2.2.1 for an explanation of HRUs). The watershed
parameterization and the model input were obtained using the ArcView interface to SWAT
(AVSWAT; Di Luzio ct al.,, 2002), which provides a graphical support for the disaggregation
scheme and allows the construction of the model input from digital maps. The initial values

of distributed parameters (hereafter referred as “initial (paramecter) estimates”) are either
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directly obtained from the database (e.g. parameters concerning the soil property, crop
property, rainfall, etc) or estimated by AVSWAT based on input maps and database (e.g.,

curve number, manning roughness coefficients).

2.4 Application

2.4.1 Choice and Prior Distribution of Parameters

An application of SWAT with initial parameter estimates extremely over-predicted the
observed flow. The reason may be the incorrectness of the initial estimates of soil parameters
and the fact that the initial cstimates of SWAT’s land use parameters can not be directly
applied to the Chaohe Basin. Based on a literature review and preliminary sensitivity
analyses, 10 SWAT aggregate parameters related to river flow were selected for calibration

(Table 2.2).

The prior distribution of the aggregate parameters was assumed to be the combination of
independent marginal distributions for the parameters. For the SWAT aggregate parameters,
uniform priors within reasonable ranges were assumed. These ranges were selected based on
recommendations given in the SWAT user manual (Neitsch et al., 2001). For the parameters
oand 7, characterizing the statistical part of the likelihood functions (2.9) and (2.10), densities
proportional to 1/ and 1/7 were chosen, which is equivalent to assuming that the logarithms
of these parameters are uniformly distributed. The prior for the parameter 4; of the Box-Cox
transformation was chosen to be uniform in the interval |0,1], and A, was kept fixed at a value
of zero. Table 2.2 gives an overview of the parameters used for calibration and their marginal

prior distributions.

In the Chaohe Basin, wet and dry scasons can be clearly distinguished. Hydrology during
the wet scason is driven by highly variable precipitation, whereas during the dry season a
slowly decreasing base flow dominates the hydrograph pattern. This can have consequences
for the model error. For this reason, we inferred different values of the parameters o and 7of
the statistical crror model for dry season (October to May) and for the wet season (July and

August) assuming a linear transition from one value to the other in June and September.
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2.4.2 Approach

As we cannot specify reasonable initial values for all storage volumes considered in the model,
SWAT was operated for a “warm-up period” of 5 years without comparison of model results with
data. We found that such a “warm-up period” was sufficicnt to minimize the effects of the initial
state of SWAT variables on river flow. Furthermore, to test the calibrated model parameters, the
model was calibrated and tested based on the observed discharges at the watcrshed outlet (Xiahui
station, Figure 2.2) using a split sample procedure. The data from the years 1985-1988 with
omission of a single outlier in 1985 was used for calibration, and the data from 1989-1990 was

used to test the model.

To analyse and demonstrate the cffcct of the Box-Cox transformation, of the seasonal
dependence of the paramcters of the error model, and of the autorcgressive error model, we

compare the results of four different calibrations:

1. Application of the independent and normally distributed error model (2.9) with 4, and 4,

set equal to unity. This is used to get a reference to traditional hydrological modelling.

2. Application of the independent error model (2.9) with Box-Cox transformation (4,
estimated and 1, = 0), but without seasonally dependent parameters of the independent

error model.

3. Application of the independent error model (2.9) with Box-Cox transformation (4

estimated and A, = 0) and with seasonally dependent parameters (Ggry, and Gyer).

4, Application of the autoregressive error model (2.10) with Box-Cox transformation (4,

estimated and 1, = 0) and with seasonally dependent parameters ( Gary, Owet, Tary ad Tiger).

For cach of these calibrations, heteroscedasticity and autocorrelation of standardized residuals
(Equation (2.11) for the independent error model) or of standardized observed innovations

(Equation (2.12) for the autoregressive crror model) were checked.

To quantify prediction uncertainty we plot the 95% posterior uncertainty bands together with
the simulation corresponding to the parameters at the maximum posterior density and the
observed data points. In addition, we calculate the standard deviation of the model results

considering all sources of uncertainty (parameter unccrtainty and input, model structurc and
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output uncertainty described by the autoregressive model) and the standard deviation of the
results of the deterministic model due to parameter uncertainty only. Finally, we calculate the

fraction of data points contained in the 95% prediction uncertainty band.

2.5 Results and Discussion

Figures 2.3, 2.4 and 2.5 show regression diagnostics for the simulations during the calibration
period for all four calibrations described in section 2.4.2. Figure 2.3 shows time series of the
standardized residuals (for calibration 1; according to equation 2.9 without transformation),
standardized residuals of transformed model results and data (for calibrations 2 and 3; according
to equation 2.9) and standardized observed innovations of the autoregressive error model (for
calibration 4; according to equation 2.10) at the maxima of the posterior densities during the
calibration period. The standardized rcsiduals corresponding to calibrations 1 and 2 exhibit
strong heteroscedasticity and high autocorrelation. By combining the Box-Cox transformation
with the scasonally dependent standard deviation (ouy, and Guwer), the heteroscedasticity of the
residuals could be considerably decreased in calibration 3. However, all three calibrations show a
strong autocorrelation of residuals, particularly during the dry season. Calibration 4, based on the
autoregressive error model with Box-Cox transformation and seasonally dependent parameters of
the crror model, obviously decreases the degree of thcse problems considerably. This is
quantified in Figurcs 2.4 and 2.5 which show the autocorrelation functions and cumulative
periodograms of residuals or observed innovations for all four calibrations. Figure 2.4 clearly
shows the high autocorrelation of the residuals for the calibrations 1, 2 and 3. This is
contradiction to the independence assumption of thc crror models. On the other hand,
autocorrelation of the observed innovations of the autoregressive error model are very small
(calibration 4). Figure 2.5 demonstrates that the white-noise assumption of the standardized
residuals of the transformed output is clearly violated in calibrations 1, 2 and 3, whereas it can be

accepted for the standardized observed innovations of the autoregressive crror model.

36



Hydrological Modelling of the Chaohe Basin in China

2 0 2 4 8

std. residual

-4

8

I
1/1/1985 1/1/1986 1/1/1987 12/30/1988
Calibration 2

std. residual

| | T
1/1/1985 1/1/1986 1111987 12/31/1987 12/30/1988
_Calibration 3

std. residual

i
1/1/1985 1/1/1986 1/1/1987 12/30/1988
Calibration 4

std. innovation

1/1/1985 1/1/1986 1/1/1987 12/31/1987 12/30/1988
Figure 2.3: Timc series of standardized residuals (calibration 1), standardized residuals of
transformed model results and data (calibrations 2 and 3) and standardized observed innovations
of the continuous-time autoregressive model (calibration 4) at the maxima of the posterior
distributions. The dark shaded areas indicate the wect seasons, light shaded areas indicate

transition periods, and white areas indicate dry seasons.
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1), standardized residuals of transformed model results and data (calibrations 2 and 3) and
standardized obscrved innovations of the continuous-time autoregressive model (calibration 4) at

thc maxima of the posterior distributions.

Figure 2.6 shows histograms approximating the marginals of the posterior parameter
distribution. The decrease in CN2 (negative value of a CN2.mgt; see section 2.2.2) and the
increase in SOL AWC (positive value of a  SOL AWC.sol; see section 2.2.2) reflects the
overestimation of flow in the default simulation. The high increase in CH_K2 (positive value of

a CH K2.rte) indicates that there is a strong interaction between the river channel and
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groundwater. Gy is much larger than oy as a consequence of larger fluctuations of
measurements around simulation results during the wet season. The reason for this difference is
the driving force of hydrologic response: it is driven by highly variable and sometimes intensive
rainfall during the wet season and by groundwater feed during the dry scason. The characteristic
correlation time during the dry scason, 74y, is nearly 10 times longer than during the wet season,
Twet-  This Is caused by the long extension of the dependence of model results on the “initial”
value at the beginning of the dry season. Because of the high temporal dynamics of the input
during the wet season, dependence of errors is much weaker. The marginal distributions of the
parameters arc quitc narrow compared to their prior distributions (see Table 2.2). This shows that
only a small part of the output crrors can be mapped to parameter uncertainty. Our simulation
with this narrow parameter distribution still does not show a serious violation of the statistical
assumptions, as the error model adds sufficient uncertainty to thc model results to “explain” the
deviations from the simulations. This demonstration of the compatibility of the statistical model
with the data is satisfying and gives us confidence into the uncertainty estimates of model
predictions. However, the posterior distribution of the model parameters may be multi-modal and
similarly good predictions may be possible within other local maxima of the posterior. This
makes it difficult to interpret the postcrior marginals as realistic uncertainty estimates of the
parameters (despite the realistic uncertainty estimates of the predictions dominated by the error

model).

In order to compare the traditional hydrological calibration method (calibration 1 with
likelihood function 2.9) with the autoregressive error model approach, optimal SWAT aggregate
parameters for calibration 1 are marked by an asterisk (“*”) in Figure 2.6. In addition, the quality
of discharge calibration is compared for these two approaches in Table 2.3 using different
performance measures. As can be seen from Figure 2.6, therc arc significant differences in
aggregate parameter values between these two approaches. This is caused by different choices of
the likelihood function. Although maximizing the likclihood function of the traditional method is
equivalent to maximizing the Nash-Sutcliffe coefficient, in Table 2.3, the values of the Nash-
Sutcliffe coefficient and of R* are only slightly smaller for the autoregressive error model than the
traditional method. On the other hand, obviously, the log posterior densities for both calibration
and validation pecriod arc smaller for calibration 1 than those of the autoregressive error model.

The comparison of numerical criteria cannot be used to assess these two approaches. The
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essential difference is that the distributional assumptions of the independent error model are

strongly violated. This is not the case for the autoregressive crror model.
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Figure 2.6: Histograms approximating the marginals of the posterior parameter distribution.

Asterisks (“*”) indicatc the optimized aggregatc paramcter values by traditional method

(calibration 1).
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Figure 2.7: 95% prediction uncertainty bands associated with parameter uncertainty (dark shaded
arca), and with parameter uncertainty and continuous-time autoregressive model (light shaded
arca) during the calibration period (top and middle) and validation period (bottom). The dots
corrcspond to the observed discharge at Xiahui station and the line stands for the simulated
discharge at the maximum of the posterior distribution. The light and dark shaded areas on the top
of each plot indicate the transition periods and wet seasons, and the line on the top represents

rainfall series.
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Table 2.3: Performance comparison between traditional method and autoregressive crror model

Nash-Sutcliffe ~ R®  Log posterior density

Traditional Calibration period 0.82 0.80 -4872
method validation period 0.81 0.80 -3507
Autoregressive Calibration period 0.77 0.78 -3078
error model validation period 0.73 0.81 -3217

Figure 2.7 shows the best model prediction (at the maximum of the posterior density) and
95% prediction uncertainty bands associated with parameter uncertainty only (dark shaded arca)
and with total uncertainty (parameter uncertainty and uncertainty described by the continuous-
time autoregressive crror model; light shaded arca) both during the calibration and validation
periods. As can be seen, although the prediction uncertainty from parameter uncertainty (dark
shaded area) is very narrow (it covers 10% of the measured data points during the calibration
period), the 95% uncertainty bands representing total uncertainty brackets most of the
observations (85%). This indicates that our proposed approach can mimic the prediction
uncertainty. Despite the severe violation of statistical assumptions demonstrated in Figures 2.2,
2.3 and 2.4 for the independent error model (simulation 3), the prediction uncertainty estimates
are quite similar to those of the autoregressive error model. This is caused by the dominance of
the error of the additive error model over the error caused by uncertain model parameters. There
is no reason that the independent error model reproduces the standard deviation of the residuals
less adequately than the autoregressive error model. The inadequate description of the correlation
of residuals makes individual realizations of model predictions unrealistic (particularly during the

dry season), but the 95% prediction uncertainty bands are not seriously affected.

Uncertainty of predicted river discharge, quantified by its standard deviation, i1s mainly
dependent on the predicted discharge. This allows us to approximately summarize prediction
uncertainty as a function of predicted discharge. Figure 2.8 shows how the standard deviation of
the predicted discharge increases with the predicted discharge. The figure distinguishes the dry
and wet seasons. Prediction uncertainty is significantly larger during the wet season. As
discussed carlicr, parameter uncertainty contributes only to a small part to total uncertainty. The
approximatc rclationship shown in Figure 2.8 is very precise for the total uncertainty, whereas

there is more scatter around the relationship for the parameter uncertainty only.
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Figure 2.8: Approximate standard deviation of model predictions as a function of predicted
discharge. “Total uncertainty” refers to uncertainty due to parameter uncertainty and the
autoregressive error model. “Parameter uncertainty only” refers to deterministic model results
based on uncertain (postcrior) model parameter without consideration of the autoregressive error

model that accounts for input, model structure and measurement error.

2.6 Summary and Conclusions

While calibrating the hydrologic model for the Chaohe Basin, we encountered thc following

problems:

e The distributed parameters are (obviously) not identifiable from the data of a single

watershed outlet station.

e Multiple local maxima of the posterior make it difficult to find the “true” maximum and

get a reasonable uncertainty estimate of model parameters.
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Measurement errors of input and responsc and model structure deficits lead to crrors
which could not be made homoscedastic by a Box-Cox transformation of data and model

output or by the use of different error variances for the dry and wet scasons.

As input and model structure errors are propagated through a model with memory effect

due to water storage, residuals are substantially correlated cven for the best model fit.

The structure of the residuals was significantly different during the wet (larger variance,
less autocorrelation) and the dry season (smaller variance, long range of higher
autocorrelation). This is caused by the highly variable input during the wet season and by
the sensitivity of the model results to the “initial” condition at the beginning of the dry

season and the storage release parameters of the model.

Theses problems could be overcome by applying the following techniques:

Non-identifiability of distributed parameters was overcome (i) by the usc of aggregate
parameters that use the spatial structure of distributed paramcters based on prior
information and (ii) by applying a Bayesian inference technique that does not rely on
parameter identifiability. Technically, this was implemented with the aid of an interface
program that has a very high flexibility in modifying parameters on SWAT input files
(Reichert, 2006; Yang et al., 2005).

The effect of measurement errors of input and response and errors in model structure were
described by a continuous-time autoregressive error model. This model was applied as

follows:

o It was used to describe an additive error between Box-Cox transformed model

results and data.

o It was used with different error variances during wet and dry seasons. Togcther with
the Box-Cox transformation, this lead to a reasonably good homoscedasticity of the
standardized residuals between the transformed model result and data. (The
combination of these two measures was necessary to achieve approximate

homoscedasticity and normality.)

o The characteristic correlation time was chosen differently for wet and dry seasons.

A significantly longer corrclation time during the dry season than during the wet
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scason lcd to very low autocorrelation in the standardized observed innovations of

the autoregressive error model.

e Numerically, Baycsian inference was done by a Metropolis-Hastings Markov Chain
algorithm that was started at a numcrical approximation to the maximum of the posterior
density calculated by an implementation of the shuffled complex global optimization

algorithm (Gelman ct al., 1995; Duan et al., 1992, 1993, 1994; Reichert, 2005).

e The advantage of the autoregressive error model over the traditional calibration method is

shown by comparing the results of both approaches.

In contrast to a discrete-time autoregressive error model, the continuous-time autoregressive
model seems conceptually more satisfying as a description of the effects of input and model
structural crrors that arc of a continuous nature. The residual diagnostics demonstrated that the
model application is consistent with the underlying statistical assumptions. However, despite the
obvious violation of the statistical assumptions by the independent error model, both error models

led to similar prediction uncertainty estimates.

This study also demonstrates that prediction uncertainty in hydrological modelling can hardly
be described by parameter uncertainty only. Our technique provides a statistical description of
the effect of input, model structure, and output uncertainty on the model results. More research is
needed, however, to separate these error sources and to get a description that better addresses

their cause in addition to their effect,

We hope that the development of this technique and its provision in a generally applicable
system analysis program (Reichert, 2005) will stimulate the application of consistent uncertainty
analyscs in hydrological modeclling. This provision of prediction uncertainty estimates on a
routinely basis could increase the awareness of decision makers about scientific uncertainty and

improve the model-based support of their decisions.
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3 Bayesian Uncertainty Analysis in Distributed Hydrologic
Modelling: A Case Study in the Thur River Basin
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Abstract
Calibration and uncertainty analysis in hydrologic modelling arc affected by measurement errors
in inputs and response and errors in model structure. Recently, extending similar approaches in
discrete-time, a continuous-time autoregressive error model was proposed for statistical inference
and uncertainty analysis in hydrologic modelling. The major advantages over discrete-time
formulation are the use of a continuous-time error model for describing continuous processes, the
possibility of accounting for seasonal variations of parameters in the error model, the casier
treatment of missing data or omitted outliers, and the opportunity for continuous-time predictions.
The model was developed for the Chaohe Basin in China and had some features specific for this
semi-arid climatic region (in particular the seasonal variation of parameters in the error model in
response to seasonal variation in precipitation). This paper tests and extends this approach with
an application to the Thur river basin in Switzerland, which is subject to completely different
climatic conditions. This application corroborates the general applicability of the approach, but
also demonstrates the necessity of accounting for the heavy tails in the distributions of residuals
and innovations. This is done by replacing the normal distribution of the innovations by a
Student t distribution, the degrees of frecdom of which is adapted to best represent the shape of
the empirical distribution of the innovations. We conclude that with this extension the
continuous-time autoregressive crror model is applicable and flexible for hydrologic modelling
under different climatic conditions. The major remaining conceptual disadvantage is that this
class of approaches does not lead to a separate identification of model input and model structural
errors. The major practical disadvantage is the high computational demand characteristic for all
MCMC techniqucs.
Keywords
Uncertainty Analysis; Hydrologic Modeling; MCMC; Continuous-time Autoregressive Error

Model; Bayesian Inference

53



Chapter 3

3.1 Introduction

Due to measurement errors in input and response and errors in model structure, predictions of
hydrologic models are inevitably affected by uncertainty. Hydrologic models play an important
role in supporting environmental decisions, ¢.g. by asscssing water availability, exploring
vulnerability to environmental change, or predicting the effect of management measures in the
watershed. Therefore, to be able to support environmental decisions under consideration of
prediction uncertainty, carcful analysis and quantification of uncertainty are crucial in hydrologic

modclling.

A significant number of techniques have been developed to estimate parameters and assess
prediction uncertainty in hydrologic modelling. These include: first-order approximation
[Carrera and Neuman, 1986; Kool and Parker, 1988; Vrugt and Bouten, 2002], Baycsian
inference based on importance sampling (IS) [e.g., Kuczera and Parent, 1998] or Markov Chain
Monte Carlo (MCMC) [c.g., Vrugt et al., 2003, 2004; Kuczera and Parent, 1998], Generalized
Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 1992], Sequential Uncertainty
Fitting SUFI-2 [Abbaspour et al., 2004, 2007], Parameter Solution (ParaSol) [Van Gricnsven and
Meixner, 2006], and Sources of Uncertainty Global Assessment using Split Samples
(SUNGLASSESS) [Van Griensven and Meixner, 2006]. With respect to mode] results and their
uncertainty bands, many applications of these techniques give similar results [Yang et al., 2007a].
However, there are differences in the statistical foundations of these techniques. Some of these
tcchniques, such as GLUE [e.g. Beven and Binley, 1992] or SUFI-2 [Abbaspour et al., 2004,
2007], apply a philosophy that is not based on a statistical foundation [see e.g. Beven, 2006 for an
cxplanation]. On the other hand, applications of techniques that are based on a statistical
foundation often use statistical assumptions, such as independent errors, which are obviously
violated [e.g., Vrugt et al., 2003]. The violation of thc statistical assumptions, particularly of
homoscedasticity and independence of errors, is clearly and visually demonstrated by Vrugt ct al.
[2005]. Under such strong violations of the statistical assumptions, the derived parameter and
prediction uncertainties are unreliable. As this is not a problem of the statistical inference
procedure but of the formulation of the likelihood function, we think that the key to solving this
problem is to improve the formulation of the likelihood function, rather than the development of

new inference techniques with a poor conceptual foundation. The focus of such an improvement
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must be on the inclusion of input and model structure uncertainty in addition to parameter and

output errors.

Input and model structure uncertainty can be addressed by explicitly including these
uncertainty sources into the formulation of the likelihood function, or by formulating an error
model that jointly accounts for the effects of all uncertainty sources. There has been recent
progressed in this research field. Kavetski et al. [2006] explicitly takes into account input and
output uncertainty in the formulation of the likelihood function. However, this approach does not
consider the errors in model structure. Vrugt et al. [2005] presents a Simultaneous Optimization
and Data Assimilation (SODA) procedure to separate parameter uncertainty from input and
model structural uncertainty. The main characteristic of SODA is to make the deterministic
hydrologic model stochastic and combine paramcter with state estimation. The difficulty of this
approach is that it involves state estimate (which is equivalent to the estimation of many
additional parameters) in addition to parameter estimation. This increases the computational
burden and requires modifications to cxisting simulation programs. A simpler approach to
address input and model structural crrors is by adding a “bias” or “model inadequacy” term to
model output that provides a statistical description of the effect of model deficiencies on model
output. This approach has recently gained attention in the literature [Kennedy and O’Hagan,
2001; Bayarri et al., 2002; Bayarri et al., 2007] in the context of interpolation (emulation) of the
output of complex computer models. This approach 1s a more general formulation of the use of
autoregressive error models to account for the cffect of all crror sources on the output of time-
scries models, which has been applied frequently in hydrological modelling [see e.g. Kuczera,
1983; Bates and Campbell, 2001]. Yang et al. [2007b] further developed this discrete-time
overall additive autoregressive error model into a continuous-time additive autoregressive model
and successfully applied it in the Chaohc Basin in China with the hydrological simulation
program implemented in the Soil and Water Assessment Tool (SWAT) [Arnold ct al., 1998].
This approach is an extension of the approach proposed by Duan et al. [1988] for unequally
spaced data. In contrast to discrete-time autoregressive error models, the continuous-time
autoregressive model seems more satisfying because it can better describe the effects of input and
model structural error that are of a continuous time nature, it makes it casicr to describe seasonal
dependence of error model properties, it eliminates the problems associated with missing data or

omitted outliers, and it offers the opportunity for continuous-time predictions [Yang et al.,
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2007b]. This paper further tests this procedure by applying it to the Thur river basin in
Switzerland. This is important to corroborate the universal applicability of the procedure under
different climatic conditions and to gain experience with typical values of the parameters of the
error model. In addition, we will extend the continuous-time additive autoregressive error model
by relaxing the assumption of normally distributed innovations to t-distributed innovations to
account for the heavy tails of the distributions of innovations observed in the application to the

Thur river basin.

The remainder of this paper is organized as follows. In Section 3.2, the continuous-time
autoregressive error model introduced by Yang et al. [2007b] is described and extended. Section
3.3 will briefly describe the Thur river basin and the distributed hydrologic model implemented in
the Soil and Water Assessment Tool [Arnold et al., 1998]. The results of the analysis are then
discussed and compared to those for the Chaohe Basin [Yang et al., 2007b] in Scction 3.4.

Finally, a summary with conclusions is provided in Section 3.5.

3.2 Bayesian inference for a continuous-time autoregressive error

model

3.2.1 Bayesian Inference

A deterministic hydrologic model can be written in the form of a function
v (@) = (®), 5 (8).... y!" (®)) (3.1)
where y,?/' (0) represents the model output at time # as a function of the model parameters

0=(6,....0, ), and M indexes the model.

According to Bayes’ theorem, the probability density of the posterior parameter distribution,
Fopy 0

‘](Y Ml@ (y obs

y°bs), is derived from the prior density, f@m; (8), the likelihood function of the model,

0), and data, y°, according to

) S
(e 60, @00

f®|v(9

(3.2)
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Numerically, there are two generic Monte Carlo approaches to approximate the posterior
parameter distribution (Eq. 3.2), i.e., Markov Chain Monte Carlo (MCMC) and Importance
Sampling (IS) [Gelman et al., 1995].

In hydrology, the likelihood function is often constructed by assuming the residuals between
the observations, y°, and model results, y*(0), are identically, independently and normally
distributed:

1 1 v, — v @)

fYMlg v =11 EECXP ) o

i=0

(3.3)

However, due to measurement errors in the model inputs and response and crrors in model
structure [Yang et al., 2007b], this assumption is usually not satisfied and residuals are often
heteroscedastic and autocorrelated. Therefore, in order to correctly apply Bayesian inference, the
likelihood function must either address these errors explicitly or contain an autocorrelated

component of residuals to describe their effect on model output.
3.2.2 The additive continuous-time autoregressive ervor model

As an extension of the discrete-time autoregressive error models introduced carlier [e.g. Kuczera,
1983; Bates and Campbell, 2001], an additive continuous-time autoregressive crror model was
introduced by Yang et al. [2007b]. This model can account for heteroscedasticity and
autocorrelation of residuals and it can easily handle missing data or omitted outliers. Briefly, the

likelihood function is constructed as follows:
For an autocorrelated random time series E, representing the effect of input, model structure

and output errors we assume the probability density

fo (o) = L L5
Ty p 2 o
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where o is the asymptotic standard deviation of the errors and 7 the characteristic correlation
time. The assumption here is that the random disturbances, sometimes called innovations

[Chatfield, 2003],

[~
I, =E -E, cxp(- L ‘) (3.5)
i i il T

rather than E , are independent and normally distributed. Keeping the asymptotic standard

5 ?

deviation of the errors E, at o, the innovations must have standard deviations of

o, = 0'\/1 - exp(—— ﬂj (3.6)
14 T

They reach o if the time difference between two observations is large compared to the

characteristic correlation time, 7, and they are significantly smaller if succeeding observations are
within that time or even closer. This error model is the analytical solution of an Ornstein-
Uhlenbeck stochastic process [e.g., Kloeden and Platen, 1992]. The same process was used to
describe continuous, time-dependent model parameters in Tomassini et al. [2007]. Note that the
formulation of the continuous-time error model (3.4) is similar to the approach suggested by
Duan ct al. [1988] for use with unequally spaced data. [However, there is an essential difference
between the two approaches: a decreasing temporal distance of measurement points in our error
model leads not only to an increase of the correlation, but also to a decrease in the standard

deviation of the crror term. This guarantees continuity of the process realizations.

Combining the deterministic hydrologic model (3.1) with the Box-Cox transformation [Box
and Cox, 1964, 1982] and the error model (3.4), the likelihood function of the continuous-time

autoregressive model can be written as:
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1 exp[_ 1le0)-gbr®) }

%
dy

2 o’

Y=V

( g,)- (" ®) :
t—t,
— _ M9 B S .
H | | N [g(y,,._l) g(y,i_l( )) exz{ . j de
i1 | N2 J t. ~-t1. P 2 2 L =1 dy =y,
o l—exp(—Z ’ ’1J o”| 1—exp| -2 =y,
T T
) a7

where the function g represents the Box-Cox transformation with parameters A; and A:

(y+/12)ll -1 1/
—— A, #0 ] (Az+D)"" =4 #0 ds -
e=1 4 M0 g‘<z>={ T Eebea)Tey
CIn(y+4,)  A4,=0 4 Pl 2 (=
In order to test the statistical assumptions of the likelihood function (3.7), a test should be

madc for the empirical distribution of the standardized observed innovations of the transformed

observations g( yl‘:"s) and the transformed model results g(y,)‘_” (B)):

g~ gl )~ (g™ - gl (0)))6Xp(- & _Tt"' J

i (0,y")= (3.9)

The suggested tests [c.g. Kuczera, 1983; Bates and Campbell, 2001; Yang et al., 2007b]
include plots of time series of innovations, of the autocorrelation function of innovations, of the

cumulative periodagram, and of a normal quantile-quantile plot of the innovations.
3.2.3 Error model Extension

To be able to account for heavy tails of the innovations, we extend the assumption of normally
distributed, independent innovations in Eq. (3.4) to independent t-distributions with the same

standard deviations, i.e.
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r v+1 ) vl
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] T

forv>2 (3.10)

where I" denotes the gamma function and v the degrees of freedom of the t-distribution (note that

[S]

the degrees of freedom of the t distribution must be larger than 2 in order to guarantee the

existence of the standard deviation).

Accordingly, the likelthood function is adapted to:

F(v+1j L\t
o)=L 2 1 1{1+[g(y,o)g(y,o (0))]) 9%

r(zj (v =2) o (v-2)o? dv
2

s 1
11

KA r(gj Va(v-2) cr\/l - exp(— 24 _z_t"“ J
[g( y) =g ) ~[etr,)- 20 @) lexp (_ . mrtH H | ‘

(v-2)o’ (1 — exp(— il N
z. .
(3.11)

The statistical tests to be used to assess the hypotheses of the error model are the plot of time

Sympe (Y

=y,

1+

series of innovations, autocorrelation functions of innovations, and t-distribution quantile-

quantile plot of innovations.

As the degrees of freedom (v) approaches infinity, the t distribution will approximate the
normal distribution. Therefore, the additional flexibility of the error model provided by the

degrees of freedom of the ¢ distribution, extends our ability to approximate the observed
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distribution of innovations, while keeping the normal distribution as a limiting case. Lowering
the degrees of freedom (v) of the ¢ distribution leads to heavier tails, as it is often observed in
hydrologic modelling. Increasing the number of degrees of freedom leads us back to the previous

assumption of normally distributed innovations.
3.2.4 Uncertainty analysis procedure

Parameters to be estimated within the Bayesian framework with the autoregressive error model
(Eq. 3.11) include the parameters 6 of the hydrologic model, the parameters A; and A, of the
Box-Cox transformation, the characteristic correlation time z, the standard deviation ¢, and the
degrees of freedom v of the error model. Except v which characterizes the shape of the ¢
distribution of the innovations, all of these parameters should be estimated jointly. This was done
by applying a Markov Chain Monte Carlo (MCMC) technique to approximate the posterior
distribution of these parameters. In order to avoid long burn-in periods (or even lack of
convergence to the distribution) of the Markov chain, the chain was started at a numerical
approximation to the maximum of the posterior distribution calculated with the aid of the shuffled
complex global optimization (SCE-UA) algorithm [Duan ct al., 1992]. Markov chains were run
until 20,000 model runs were reached with fulfillment of the convergence criterion by the

Heidelberger and Welch [Cowles and Carlin, 1996; Best et al., 1995].

The implementation of the modified likelihood function as well as the numerical realization

of Bayesian inference was donc in UNCSIM [Reichert, 2005].

3.3 Study Area and SWAT Model

3.3.1. Description of the study area

The Thur river basin, with a drainage area of 1,700 km?, is situated in north-eastern Switzerland
near the border to Germany (Figure 3.1). Mean elevation of the watershed is about 769 meters
above sea level and mean slope is around 7.5°. The climatc of the watershed is the pre-
alpine/alpine climate, which is characterized by modcrate winters in hilly dissected terrain area,
cold winters in mountainous areas and summer seasons with relatively large annual temperature
variations. Mean monthly temperature ranges from about 10 °C to 25 °C in the summer and from
-15 °C to 7 °C during the winter. The average precipitation is 1,460 mm year' with high

precipitation (about 2,200-2,500 mm year') in the mountain area and about 1,000 mm year' in
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the lower (sub-mountain) part of the watershed, and most of precipitation falls during the summer
months. The mean actual evapotranspiration is about 565 mm year’', and runoff 895 mm ycar’'
The climatc data used in this study arc from scventeen precipitation, eight air temperature, five
solar radiation, five relative humidity, and five wind speed gages (see Figure 3.1) over 20 years
(1980-2000), which were obtained from the Swiss Federal Office of Metcorology and
Climatology (http://www.meteoschweiz.ch/web/en/weather.html).  The daily discharge 1s

available at the basin outlet (Andelfingen station) from 1991- 2000 from the Swiss Federal River

Survey Program (NADUF; hiipiwws nady
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Figure 3.1: The Thur river basin with SWAT-delineated sub-basins, DEM map, river network,

and meteorological stations.

The dominant land use (around 60%) in this arca is agriculture, most of which arc mcadows
for feeding cows, alpinc pasturcs, and arable lands. Close to 30% of the total area is covered by
forcsts, about 3% are orchards. The rest of the area is barren land, surface waters, and urban

arcas. Hogs and caltle are the main livestock raised in the study arca.
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Most of the Thur river basin is underlain by conglomerates, marl incrustations and sandstone
with medium to low storage capacity and rather high permeability. Groundwater is mainly found

in areas with till deposits [Gurtz et al., 1999].
3.3.2 Description of SWAT and iSWAT

Soil and Water Assessment Tool (SWAT) [Arnold et al., 1998; http://www.brec.tamus.cdu/swat]

implements a semi-distributed and semi-physically based watershed model. SWAT describes the
climatic and topographic heterogeneity through subbasins based on a digital elevation map and
climatic stations, while it describes the heterogeneities in land use, soil, and management practice
through HRUs (Hydrologic Response Units) which consist of unique combinations of land use,

soil type, and management practice within the subbasin.

At the HRU level, SWAT accounts for rainfall, interception, evapotranspiration, percolation,
sediment yield, nutrient cycles, crop growth and management practice. Then, runoff, sediment
yield and nutrient loads arc aggregated to the subbasin Ievel by taking the weighted average based
on the areas of the HRUs. Water flow, sediment yield, and nutrient loading obtained at the
subbasin level are then routed through the river system under consideration of in-stream
transformation, deposition and re-mobilization processes. Channel routing is simulated using
cither the variable storage technique [Williams, 1969] or the Muskingum method [Cunge, 1969;
Chow et al., 1988]. More detailed descriptions of the model can be found in Arnold et al. [1998]

and in SWAT manuals (available at http://www.brc.tamus.cdu/swat).

iSWAT is an interface between SWAT and an arbitrary system analysis tool that supports a
simple, file-based interface [Reichert, 2006]. iISWAT was developed to facilitate the application
of systems analysis tecchniques to hydrologic modelling based on using SWAT [Yang ¢t al.,
2006]. In iSWAT, SWAT parameters can be aggregated based on important influential factors,

such as land use, soil texture, soil hydrologic group or subbasin as follows:
X <parnamc><e¢xt> <hydrogrp> <soltext> <landuse> <subbsn> (3.12)

where x represents the type of change to be applied to the paramcter (v: value; a: absolute change;
or 1: relative change), <parmame> is the SWAT paramcter name; <ext> represents the extension
of the SWAT input file which contains thc parameter, <hydrogrp> is the identifier for the
hydrologic group, <soltext> is the soil texture, <landuse> is the landuse, and <subbsn> is the

subbasin number, or the crop index, or the fertilizer index. For example, v._CN2.mgt = 69, will
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cause a global replacement of CN2 wvalue in the management files by 69, and
r_ CN2.mgt 23,25 = 0.3, will cause a replacement of the CN2 value in the management
files associated with subbasins 23 and 25 by a value equal to their current CN2 values multiplied

by 1.3, etc.
3.3.3 Choice of parameters and priors

After setting-up the project, a manual calibration and then an automatic calibration were done on
some parameters of the Thur SWAT project. All the simulations in this paper are based on the
calibrated project for all parametcrs not included in the analysis (i.e. not explicitly mentioned).
To distinguish these simulations from the following new simulations, they are referred to as

“previous simulations” in the following text.

The choice of parameters is based on the LH-OAT (Latin-Hypercube-One-factor-At-a-Time)
method [Van Griensven et al., 2006]. LII-OAT is a global screening sensitivity analysis
technique and its characteristic is that it combincs the Latin Hypercube sampling [McKay et al.,
1979] and OAT (One-factor-At-a-Time) method by taking the Latin-Hypercube samples as initial
points for the OAT method. Based on LH-OAT, 20 aggrcgate SWAT parameters related to river

flow were selected for calibration (Table 3.1).

Together with the parameters A, A2, o and t of the autoregressive error model in Eq. (3.7) or
(3.11), there arc 24 parameters. The prior distributions of all these parameters arc assumed to be
independent. For the 20 aggregate SWAT parameters, uniform priors with reasonable ranges
were assumed (see the last column in Table 3.1). And transformation parameters A; and A, are
assumed to be uniformly distributed. For the parameters ¢ and 1, densities proportional to 1/
and 1/t were chosen. Table 3.1 gives an overview of the parameters used for calibration and their

prior distribution.
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Table 3.1: Selected paramcters for inference and their initial values and prior distributions

Name and meaning of

Initial par. range

Prior dist. of

¥ (¥ :

Aggregate Parameter underlying SWAT parameter S\;f:{,l %‘ﬁgg{i@r ;gg;iig

v TIMP.bsn * Snow pack temperature lag factor 0.307 | U[0.01,1 ]*3

v SFTMP.bsn Snowfall temperature -1 | U[-5,5]

v SMTMP.bsn Snowmell base temperature 2.585 | U[-5,5]

v SMFMX.bsn Melt factor for snow on June 21 4.473 | U[0,10]

v  SMFMN.bsn Melt factor for snow on Dec 21 0.923 | U[0,10]

v. MSK CO1.bsn Muskingum coefficient to control impact of the 0 | U[0,10]

_ B storage time constant for normal flow

v__ MSK CO2.bsn Muskingum coefficient to control impact of the 0.2 | U[0,10]
storage time constant for low flow

v__ MSK X.bsn A weighting factor that controls the relative 0.1 | U[0,0.3]
importance of inflow and outflow in determining
the storage in a reach in Muskingum method

v. CH Kl1.sub Effect hydraulic conductivity in tributary 0.5 | U[0,150]

- channel alluvium (mm/hr)

r CN2.mgt CN2: curve number 47-73 | U[-0.35,0.35]

r CH N2irte Manning roughness for main channel 0.052/0.3 | U[-0.5,0.5]

v__CH K2.rte Effective hydraulic conductivity in main channel 6.325 | U[0,150]
alluvium (mm/hr)

v ALPHA BF.gw | Basc flow alpha factor (1/day) 0.0625 | UJ0,1]

v. GWQMN.gw Threshold depth of water in the shallow aquifer 0 | U[0,5000]
required for return flow to occur (mm H,(O)

v_GW REVAP.gw | Groundwater “revap” coefficient 0.02 | U[0.02,0.2]

v__ GW DELAY.gw | Groundwater delay time (days) 43.338 | UJ0,300]

v__ CANMX hru Maximum canopy storage 5.275 | U[0,10]

v  ESCO.hru Soil evaporation compensation factor 0.154 | U[0,1]

r SOL AWC.sol Soil avail. water capacity (mm H,(/mm soil) 0-0.28 | U[-0.5,0.5]

r SOL K.sol Soil hydraulic conductivity (mmy/hr) 0.01-279.71 | U[-0.8,0.8]

M 4 Transformation factor in Equation (3.7) or (3.11) U[0,1]

12*4 Transformation factor in Equation (3.7) or (3.11) U[0,50]

o Standard deviation in Equation (3.7) or (3.11) InV*3

T Characleristic correlation time of autoregressive process(days) Inv

*1

*2

dimensionless.

v__"in*“v__TIMP bsn” means “replace TIMP with a given value”
r__"in“r__CN2.mgt” means “a relative change (of the default value) of CN2” and henee r - CN2,mgt is

™ U[x,y] represents the uniform distribution over the interval [x.y] for the given aggregate parameter; Inv denotes the
probability distribution with probability density at the value x proportional to 1/x
*1 and Ay are fixed to 0 and excluded in the final MCMC as they are very close to 0.

Except for the analysis with likelihood function (3.11), 2 additional analyses with likelihood

functions (3.3) and (3.7) were also carried out as a comparison to the analysis based on the

likelihood function (3.11). It is worth noting that the likelihood function (3.3) is widely used in

hydrology (and many other fields) and the likelihood function (3.7) was used in Yang et al.
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[2007b]. Hereafter, simulations based on analyses with likelihood functions (3.11), (3.3) and

(3.7) are referred to as simulation 1, simulation 2 and simulation 3, respectively.

Obviously the initial values of storage volumes (e.g. soil water content) will influence the
river flow. As we cannot specify reasonable initial values for all storage volumes considered in
the model, SWAT is operated for a “warm-up period” of 6 years (1985-1990) without comparison
of model results with obscrved data. We found that such a “warm-up period” was sufficient to
minimize the effects of the initial state of SWAT variables on river flow. Furthermore, in order
to verify the calibrated model parameters, the model was calibrated and tested based on the
observed discharges at the basin outlet (Andelfingen station, Figure 3.1) using a split sample
procedure. The data from the years 1991-1995 was used for calibration, and the data from 1996-
2000 was used to test the model.

3.4 Results and Discussion

3.4.1. Results for the Thur river basin

To determine the optimum value of the degrees of freedom, v, of the t-distribution in the
likelihood function given by Eq. (3.11), we compared regression diagnostics for analyses
performed with different values of v. The comparisons were done for simulation results at the
maximum of the posterior density obtained with the aid of the global optimization algorithm
SCE-UA [Duan et al., 1992]. The comparisons showed that the simulation with v= 8 led to the
smallest deviations of the residuals from the theoretical assumptions made by the model. These
results of regression diagnostics with v= 8 are illustrated in Figure 3.2. The top panel in Figure
3.2 shows the time serics of observed (circles) and simulated (line) flows. For this simulation, R?
cquals 0.80 and the Nash-Sutcliffe coefficient equals 0.77. The middle panel in Figure 3.2 shows
the time series of the innovations. There seems to be no serious violation of the assumptions of
independence and of distribution shape. This is further corroborated by the autocorrelation
function (bottom left panel) and the t-distribution quantile-quantile plot (bottom right panel). The
autocorrelations are very small except for the first order coefficient. The quantile-quantile plot in
the bottom right panel demonstrates that the empirical quantiles of the innovations are in good

agreement with the theorctical t-distribution quantiles.
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Figure 3.2: Statistics diagnostics for simulation 1 with likelihood function (3.11) with degrees of

freedom 8. From top to bottom: time scrics of the observed (circles) and simulated (line) flows,

time series of the normalized innovations, and the autocorrelation function and z-distribution

quantile-quantile plot of normalized innovations.

For comparative purposes, Figures 3.3 and 3.4 show the corresponding results and diagnostics

for analyses of simulations 2 and 3, respectively, and Table 3.2 lists the performances of 3

simulations at the maxima of posterior densities. The top panels in Figures 3.2, 3.3 and 3.4 give
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the impression that all three simulations led to similarly good agrecment with data, although
simulation 2 captured several peaks better than simulations 1 and 3 (e.g., flow at 1991-8-22).
This led to the highest R* and the Nash-Sutcliffe coefficient calculated with the simulated flow
and observed flow (Table 3.2). This is becausc the Box-Cox transformation with A= 0 (the
optimized A;’s in simulations 1 and 3 are very close to 0) puts less weight on the good
approximation of high peaks to account for the lower measurement accuracy. However, the
significant heteroscedasticity in the residuals of simulation 2 violates the statistical assumptions
and makes its uncertainty cstimatcs unrcliable (middle panel of Figure 3.3). Therc are also
slightly higher autocorrelation coefficients (bottom left panel of Figure 3.3), and the assumption
of normally distributed residuals is severely violated especially in the tails of the distribution
(bottom right panel of Figure 3.3). Also for simulation 3, the distribution of the innovations is far
from normal (especially in the tails) although better than that of simulation 2 (bottom right panel
of Figure 3.4). In conclusion, simulation 1 is the only one that does not significantly violate its
statistical assumptions. In Table 3.2, simulation 2 obtained the highest values R* and Nash-
Sutcliffe coefficient calculated with the simulated flow and observed flow. This demonstrates
that unweighted least squarcs regression is an efficient technique to find a good fit solution.
However, as mentioned above, this technique cannot be used to get reliable uncertainty estimates

of model paramcters and results.

Table 3.2: Performance of 3 simulations at the maxima of the posterior distribution

Log posterior

Simulation Test data Nash-Sutcliffe  R? density
Simulation 1 Calibration period 0.77  0.80 -6510
with likelthood function (3.11)  validation period 0.79 0.82 -6586
Simulation 2 Calibration period 0.85 0.85 -86135
with likelihood function (3.3)  validation period 0.86 0.86 -8597
Simulation 3 Calibration period 0.77 0.80 -6668
with likelihood function (3.7)  validation period 0.79 0.83 -6742
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Figure 3.3: Statistics diagnostics for simulation 2 with likelihood function (3.3). From top to
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and the autocorrelation function and the normal quantile-quantile plot of normalized residuals.
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For simulation 1, a Markov chain was started from the approximation to the maximum of the
posterior density obtained above to get an approximation to the posterior distribution. The
preliminary Markov chain led to the conclusion that both A; and A, are very closc to 0. To

decrease the complexity of the MCMC process, we fixed A and A, to 0 and excluded them from
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further MCMC processes. After a burn-in period of 40,000 model runs, 20,000 model runs were

used to obtain the posterior parameter distribution and prediction uncertainty.
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Figure 3.6: 95% prediction uncertainty bands associated with parameter uncertainty (dark shaded
area), and with parameter uncertainty and continuous-time autoregressive model (light shaded
area) for simulation 1 for both calibration period (1991-1995) and test period (1996-2000). The
dots correspond to the observed flow series at the basin outlet and the line stands for the

simulated discharge at the maximum of the posterior distribution.
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Figure 3.5 shows the marginal distributions of the posterior parameter distribution. The
increase in CN2 (positive value of r  CN2.mgt) reflects higher surface runoff than in the
previous simulation, while an increase in ESCO (value around 0.32 instead of 0.154) indicates
smaller cvapotranspiration than in the previous simulation. The changes in the temperature
related parameters (TIMP, SFTMP, SMTMP, SMFMX and SMFMN) decmonstrate that
temperature factors have a significant influence on river flow. The marginal posteriors of some
parameters are at the boundary of the prior interval. This can be an indication for very poor
identifiability due to strong correlations in the posterior. The large increase in CH K2 reflects a
stronger interaction between channel and groundwater. The characteristic correlation time is
around 2~3 days. This indicates that there is no long-term corrclation in the residuals. The
parameter values corresponding to the maximum posterior density for simulations 2 and 3 are
also plotted in Figure 3.5 as circles and asterisks, respectively. As we can see, due to different

objective functions, optimum parameter values vary a lot.

Figure 3.6 shows the 95% prediction uncertainty bands associated with parameter uncertainty
(dark shaded area), and with parameter uncertainty and continuous-time autoregressive model
uncertainty (light shaded area) for both calibration period and validation period. As can be scen,
although the prediction uncertainty from parameter uncertainty (dark shaded area) is very narrow
(it only covers 7.2% of the observations), the 95% uncertainty bands from parameter uncertainty
and autoregressive model brackets most of the observations, which indicates that our proposed
approach can mimic the prediction uncertainty (if covers 92.3% of the observations). The dots
correspond to the observed discharge at the basin outlet and the line represents the simulated

discharge at the maximum of the posterior distribution.
3.4.2 Comparison with the results of the Chaohe Basin

Compared to the application of the continuous-time autoregressive model in the Chaohe Basin in

China by Yang et al. [2007b], we can find some differences and similarities:

1) SWAT parameters. In the Chaohe Basin, river discharge is only sensitive to runoff
generation (e.g., CN2, SOL_AWC and ESCO) during the wet season and the snow accumulation
and melting processes are negligible. In the Thur river basin, flow is not only due to runoff
generation (¢.g., CN2, SOL_AWC and ESCO), but snow accumulation and melting processes are
relevant (¢.g., TIMP, SFTMP, SMTMP, SMFMX and SMFMN).
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2) Standard deviation (o) and characteristic correlation time (1) of the error model. In the
Chaohe Basin, these 2 parameters have a strong scasonal dependence, i.e., high ¢ and low t
during the wet season, and low ¢ and very high t during the dry scason. In the Thur river basin t
is relatively small. This can be explained by the climate difference of these 2 basins. In the
temperate contincntal and scmi-arid climate in the Chaohe Basin with over 80% rainfall in July
and August, the flow during the dry weather season is strongly dependent on the water stored
during the wet season. This leads to the very high value of the correlation time during the dry
season. In the pre-alpine/alpine climate in the Thur river basin, river discharge is much more

strongly dependent on rain events distributed throughout the year.

3) Prediction uncertainty. No matter how the continuous-time autoregressive error model is
applied, the characteristic of the prediction is the same: narrow prediction uncertainty band from
parameter uncertainty and substantially wider prediction uncertainty band from the continuous-
time autoregressive error model. This difference between the 2 uncertainty bands indicates a high
fraction of uncertainty due to input and model structure. The uncertainty due to parameters of the

deterministic models may be underestimated by this procedure.

4) Convergence of MCMC. The Markov Chain for the simulation of the Thur river basin
converged slowcr than that of the Chaohe Basin. The reason might be that the number of
parameters in the simulation of the Thur river basin is large and the shape of the posterior is more

complicated than that of the Chaohe Basin (possibly multi-modal with many local maxima).

3.5 Summary and Conclusion

The continuous-time autoregressive error model developed by Yang et al. [2007b] for hydrologic
modelling was tested for a watershed with completely different characteristics than the one in
Yang et al. [2007b]. This application required an extension of the distributional shape of the
innovations from a Normal distribution to a Student t distribution to account for heavier tails of
the innovations. The extended model was successfully applied (empirical results are not in
disagreement with distributional assumptions made by the model) to an implementation of the
hydrologic model of the Soil and Water Assessment Tool (SWAT) [Amold et al., 1998] for the
Thur river basin in Switzerland. The results for the Thur river basin are compared to those for the

Chaohe Basin in China described in the previous paper [Yang ¢t al., 2007b].
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These analyscs lcd to the following conclusions:

1) Our case studies indicatc that the extended continuous-time autoregressive model is
generally applicable as an error model for hydrologic simulations under significantly different
climatic conditions (case studies for semi-arid climate in North China and pre-alpine/alpine
climate in Switzerland). This was confirmed by statistical tests of the distributional assumptions

of the model.

2) 2 case studies indicate that thc parameters of the hydrologic model as well as the
parameters of the error model need careful site-specific priors and calibration. Particularly, the
degrees of freedom of the t distribution proved to be an cffective parameter to adjust the
distributional shape of the innovations (to account for heavy tails), and the standard deviation and
characteristic correlation time of the error model required a seasonal variation for the semi-arid
climate in North China that was not required under the pre-alpinc/alpine climate in Switzerland.
The reason for this is that river discharge during very long dry weather periods is dependent on
precipitation during the rainy season before, whereas the dominant influence on river discharge

during wet periods is rain event over a much shorter preceding period.

While our approach leads to a satisfactory mechanistic and statistical description of runoff, it
does not separate input and model structural uncertainty, The resolution of this should continue

to be a future effort in hydrological systems analysis.
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4 Comparing Uncertainty Analysis Techniques for a SWAT
Application to the Chaohe Basin in China

Jing Yang, K.C. Abbaspour, Peter Reichert, Hong Yang, Jun Xia
(Submitted to Journal of Hydrology)
Abstract

Distributed watershed models are increasingly being used to support decisions about altcrnative
management strategies in the areas of landuse change, climate change, water allocation, and
pollution control. For this reason it is important that these models pass through a careful
calibration and uncertainty analysis. To fulfil this demand, in recent ycars, scientists have come
up with various uncertainty analysis techniques for watershed models. To detcrmine the
differences and similarities of these techniques we compared 5 uncertainty analysis procedures:
Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol),
Sequential Uncertainty Fltting algorithm (SUFI-2), and a continuous-time autoregressive crror
model applied in a Bayesian framework and implemented with Markov Chain Monte Carlo
(MCMC) and Importance Sampling (IS) techniques. For the comparison, we used the program
Soil and Water Assessment Tool (SWAT) and applied it to the Chaohe Basin in China. As the
uncertainty analysis techniques are different in their philosophies and leave the user free to make
subjective choices, a direct comparison between the techniques is difficult. In this study, we
applied each technique according to its typical usc in hydrology and compared the posterior
parameter distributions, performances of their best solutions, prediction uncertainty, conceptual
bases, efficiency, and difficulty of implementation. The comparison results for these categorics
are listed and the advantages and disadvantages are analyzed. The final choice of the uncertainty
analysis technique is left to the reader. From the point of view of the authors, Bayesian-based
approaches are most recommendable because of their conceptual basis, but construction and test
of the likelihood function requires critical attention.

Keywords

Uncertainty analysis; watershed modeling; Bayesian inference, Markov Chain Monte Carlo

(MCMC); Importance Sampling (IS); SUFI-2; GLUE; ParaSol.
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4.1 Introduction

Simulation programs implementing models of watershed hydrology and river water quality are
important tools for watershed management for both operational and research purposes. In recent
years many such simulation programs were developed such as AGNPS (Agricultural None Point
Source) (Young et al., 1989), SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998) and
HSPF (Hydrologic Simulation Program — Fortran) (Bicknell et al., 2000). Areas of application of
watershed models include: integrated watershed management (e.g., Zacharias et al., 2005), peak
flow forecasting (e.g. Jorgeson and Julicn, 2005), test of the effectiveness of measurcs for the
reduction of non-point source pollutants (e.g., Bekele and Nicklow, 2005; Santhi et al., 2001),
soil loss prediction (¢.g. Cochrane and Flanagan 2005), assessment of the effect of landuse
change (e.g. Hundecha and Bardossy, 2004, Claessens et al., 2006; Cotler and Ortega-Larrocea,
2006), analysis of causes of nutrient loss (e.g. Abbaspour ct al., 2007; Adeuya et al., 2005), and
climate change impact assessment (e.g. Claessens et al., 2006; Iluang et al., 2005; Pednekar et
al.2005) among many others. This large number of various, and often very specific, applications
led to the development of a multitude of watershed models starting in the early 1960s (see Todini,

1988 for a historical review).

As distributed watershed models are increasingly bcing used to support decisions about
alternative management strategies, it is important that these models should pass through a careful
calibration and uncertainty analysis. Calibration of watershed models, however, is a challenging
task because conceptual model uncertainty is quite large. Sources of model uncertainty include
input uncertainty, model structural uncertainty, parameter uncertainty, and uncertainty in the
calibration data. Sources of model structural uncertainty include processcs not accounted for in
the model, unknown activities in the watershed, and model inaccuracy due to over-simplification
of the processes that arc considered in the model. Some examples of this type of uncertainty are:
effects of wetlands and rescrvoirs on hydrology and chemical transport; interaction between
surface and groundwater; occurrence of landslides, and large constructions (e.g., roads, dams,
tunnels, bridges) that could produce large amounts of sediment during short time periods
affecting water quantity and quality; unknown wastewater discharges into the streams from
factories and water treatment plants; imprecisely known application of fertilizers and pesticides,

unknown irrigation activities and water diversions, and other activities in the river basin. The
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input uncertainty is often rclated to imprecise or spatially interpolated measurements of model
input or initial conditions, such as clevation data, landuse data, rainfall, temperature and initial
groundwater levels. Other uncertainties in distributed models may also arise due to thc large

number of unknown parameters and the errors in the data used for parameter calibration.

To account for modelling uncertainties, in the last two decades, many uncertainty-analysis-
techniques have been developed and applied to various catchments. However, only rarcly more
than one technique has been applied in the same case study in the literature. The objective of this
paper is to fill this gap. We apply 5 different calibration and uncertainty analysis techniques to
the same catchment to compare their performances. These include Generalized Likelihood
Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Parameter Solution (ParaSol) (Van
Griensven and Meixner, 2006), Sequential Uncertainty Fitting (SUFI-2) (Abbaspour et al., 2004;
2007), Bayesian inference bascd on Markov Chain Monte Carlo (MCMC) (e.g., Kuczera and
Parent, 1998, Vrugt et al., 2003; Yang et al., 2007), and Bayesian inference bascd on Importance
Sampling (IS) (e.g., Kuczera and Parent, 1998). For the comparison, we used the program Soil
and Water Assessment Tool (SWAT) applied to the Chaohe Basin in China. As the uncertainty
analysis techniques are different in their philosophies and formulations, a literal comparison is
impossible. Hence, despite the subjective nature of such an assessment, we formulated a typical
application for cach technique according to its typical use in hydrology and compare their
posterior parameter distribution, performances of their best solutions, prediction uncertainty,

conceptual basis, difficulty and efficiency of implementation.

The remainder of this paper is structured as follows. In scction 4.2, we introduce the
methodology used for the comparison, give a brief overview of the selected techniques, and then
list the criteria for the assessment. In section 4.3, we give an overview of the study site, the
SWAT hydrological modcl, and our model application (priors and selection and aggregation of
parameters). In section 4.4 the results are presented and discussed. Section 4.5 contains the

conclusions.
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4.2

Methodology, Selected Techniques, and Criteria for Comparison

4.2.1 General Methodology

There are various difficultics in comparing uncertainty analysis techniques in hydrological

modelling. The following list addresses the most important concerns and how we handled them.

Most techniques are different in their philosophies and subjective choices have to be made
in their formulation with respect to prior parameter distributions, likelihood functions
and/or goal functions. We addressed this problem by choosing priors and goal functions
for each technique as they would typically be used in hydrological applications. This
leads necessarily to different goal functions for different techniques. When discussing the
results, we will analyze whether a problem is caused by the conceptual formulation of a

particular technique or by the choice of the goal function.

Different underlying concepts and goal functions from different techniques make the
comparison difficult. The values of the goal functions from all techniques will be
calculated for the best solution for each technique to allow for a fair comparison. In
addition we use measures of efficiency and an assessment of the conceptual basis as

criteria for the comparison.

Diffcrent techniques obviously lcad to different results for different criteria. We will
outline the results in all criteria so that the reader can draw his/her own conclusions. Qur
own conclusions depend to some degree on a subjective judgment. As an example, not all

readers may agree with our preference for the conceptual basis of Bayesian inference.

The results of the comparison inherently depend on the application. Wec try to scparate

the results of specific application from generic results in the discussion.

4.2.2 Selected Techniques

4.2.2.1. GLUE

GLUE is an uncertainty analysis technique inspired by Importance Sampling and Regional

Scnsitivity Analysis (GSA; Hornberger and Spear, 1981). In GLUE, parameter uncertainty

accounts for all sources of uncertainty, i.e., input uncertainty, structural uncertainty, parameter

uncertainty and response uncertainty, because “the likelihood measure value is associated with a
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parameter set and reflects all these sources of error and any effects of the covariation of
parameter values on model performance implicitly” (Beven and Freer, 2001). Also, from a
practical point of view, “disaggregation of the error into its source components is difficult,
particularly in cases common to hydrology where the model is nonlinear and different sources of
error may interact to produce the measured deviation” (Gupta & Beven, 2005). In GLUE,
Paramcter uncertainty is described as a set of discrete “behavioral” parameter sets with

corresponding “likelihood weights™.
A GLUE analysis consists of the following three steps:

1) After the definition of the “generalized likelihood measure” L(#), a large number of

parameter sets are randomly sampled from the prior distribution and cach parameter sct is
assessed as either “behavioral” or “non-behavioral” through a comparison of the “likclihood

mcasure” with a given threshold value.

2) Each behavioral parameter is given a “likelihood weight” according to:
L(8)
e (4.1)
PRICH
k=1
where N is the number of behavioral parameter sets.

3) Finally, the prediction uncertainty is described as prediction quantile from the cumulative

distribution realized from the weighted behavioral parameter sets.

In the literature, the most frequently used likelihood measure for GLUE is the Nash-Sutcliffe
coefficient (NS) (e.g. Beven and Frecr, 2001; Freer et al., 1996), which is also used in this paper:

> (@) -, )
NS =1-"" (4.2)

Z (yt,- - ;)2
=1

where 1 is the number of the observed data points, and y, and y:” (0) represents the observation

and model simulation with parameters 0 at time £, respectively, and ; is the average value of the

observations.
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4.2.2.2. ParaSol and modified ParaSol

ParaSol is based on a modification to the global optimization algorithm SCE-UA (Duan et al.,
1992). The idea is to use the simulations performed during optimization to derive prediction
uncertainty because “the simulations gathered by SCE-UA are very valuable as the algorithm
samples over the entire parameter space with a focus on solutions near the optimum/optima”

(Van Griensven and Meixner, 2006). Hence, ParaSol only accounts for parameter uncertainty.
The procedure of ParaSol is as follows:

1) After optimization applying the modified SCE-UA (the randomness of the algorithm SCE-
UA is increased to improve the coverage of the parameter space), the simulations performed are
divided into ‘good’ simulations and ‘not good’ simulations by a threshold value of the goal

function as in GLUE. This leads to ‘good’ paramcter sets and ‘not good’ parameter sets.
2) Prediction uncertainty is constructed by equally weighting all ‘good’ simulations.

The Objective function used in ParaSol is the sum of the squarcs of the residuals (SSQ):
S50 =33 (®)-»,) (4.3)
=1

The relationship between NS and SSQ is

NS =1- . SSO (4.4)

Z(yz; “;)2

where Z( ¥, __;)2 is a fixed value for given observations. To improve the comparability with

4=l

GLUE, all objective function valucs of ParaSol were converted to NS.

As the choice of the threshold of the objective function in ParaSol is based on the y*-statistics
it mainly accounts for parameter uncertainty under the assumption of independent measurements.
For the purpose of comparison with GLUE, as an alternative, we choose the same threshold as

used by GLUE and we call this method “modified ParaSol”.
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4.2.2.3. SUFI-2 procedure

In SUFI-2, the uncertainty of input parameters is described by a multivariate uniform distribution
in a parameter hypercube, while the output uncertainty is quantificd by the 95% prediction
uncertainty band (95PPU) calculated at the 2.5% and 97.5% levels of the cumulative distribution
function of the output variables (Abbaspour ¢t al., 2007). Latin hypercube sampling is used to
draw independent parameter sets (Abbaspour et al., 2007). Similar to GLUE, SUFI-2 rcpresents

uncertainties of all sources through parameter uncertainty in the hydrological model.
The procedure of SUFI-2 is as follows:

1) In the first stcp, the goal function g(®) and meaningful parameter ranges [0.vs min, Oabs max]

are defined.

2) Then a Latin [ypercube sampling is carricd out in the hypercube [0, Omax] (initially sct
t0 [Qabs min Oabs max]), the corresponding goal functions are evaluated, and the sensitivity matrix J

and the parameter covariance matrix C are calculated according to:

- Ag, . C :
.l“ = ==L 1= 13-.-3 ’;n-l = 19"" n’ 4.5
i AHJ. 20/ -
C = S; (JTJ)_I (46)

where s, is the variance of the objective function values resulting from the m model runs.

3) The 95% confidencc interval of a parameter € is computed as follows:

0, imer =) —t, 0005 VCi > Orupper = 0, 1, 0054/C (4.7)

where & is the parameter & for the best solutions (i.e., parameters which produce the optimal
goal function), and v is the degrees of frcedom (m — n).

4) The 95PPU is calculated. And then two indices, i.e., p-factor (the percent of observation
bracketed by 95PPU) and r-factor, are calculated:

1 n
M M
; Z ()’1,.,97.5% V. 25% )

r-factor = —= (4.8)
C)-nb.v
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where yé‘fm% and y,", ., represent the upper part and lower part of the 9SPPU, and o, stands
for the standard deviation of the measured data.

The goodness of calibration and prediction uncertainty is judged on the basis of the closeness
of p-factor to 100% (i.e., all observations bracketed by the prediction uncertainty) and r-factor to
1 (i.e., achievement of rather small uncertainty band). As all uncertainties in the conccptual
model and inputs are reflected in the measurements (e.g., discharge), bracketing most of the
measured data in the prediction 95PPU ensures that all uncertainties are depicted by the
parameter uncertainties. Ilence, if the two factors have satisfactory values, then the parameter
range [Gnin, Ghax] 15 the posterior parameter distribution. Otherwise, [, Onax] 18 updated

according to:

(?i,]owcr - Hj,min Hj,max o H_i Supper
o =0 —max
Jaminnew ~ Y Jower < ) ’ 3
(4.9)
0 _ 0 + max gj.lovvcr - ()j,min 0_1‘,max - Hj,upper
f,max, f, ’
Jsmax,new j,upper 2 2

and another iteration needs to be performed.

SUFI-2 allows several choices of the objective function (for instance NS cocfficicnt). In the
literature, the weighted root mean squarc error (RMSE) (Abbaspour et al., 2004) and the wecighted
sum of squares SSQ (Abbaspour ct al., 2007) were used. In this study we chosc the NS

coefficient for the sake of comparison with other techniques.
4.2.2.4. Bayesian Inference

According to Bayes’ thcorcm, the probability density of thc posterior parameter distribution

f(,)mly (Blyms) is derived from the prior density Jo,,(0) and data y_, as:

_ fYMl(L)(ymcas 0) ' f;:;)pd (9)
J.'fYMl@(ymcas 0')f®pri (Bl)dﬂ'

-fG)MSJY (OIYIIICH,S) (4 10)

0) is the likelihood function of the model, i.e. the probability density for

where [ x © (¥ s

model results for given parameters with the measurements substituted for the model results.
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Posterior prediction uncertainty is usually represented by quantiles of the posterior distribution.
The crucial point in applying this technique is the formulation of the likelihood function. If the
statistical assumptions for formulating the likelihood function are violated, the results of Bayesian
inference are unreliable. Unfortunately, when formulating likelihood functions in hydrological
applications, it is often assumed that the residuals between measurements and simulations are
independently and identically (usually normally) distributed (iid). However this assumption is
often violated. To avoid this problem in our case study, we constructed the likelihood function
by combining a Box-Cox transformation (Box and Cox, 1964; 1982) with a continuous-time

autoregressive crror model (Brockwell and Davis, 1996; Brockwell, 2001) as follows:

1 exp{ 1l - gl (B))]ZJ'

: 1 dg
wM 0 = rpm— |
'/Y ]G(yl ) m u 9 0'2

dy

JESN

] . .
g(v,)- gl ()
t—t_
) e, )-8l (ﬂ))]exp(w *j
11 1 ! exp| - _ 7 |98’
|V O'\/; - cxp(— 2l l"lj 2 o (1 - eXp(A 2 fi Tl JJ & Y=y
T T
) @11

where o is the asymptotic standard deviation of the errors, 7is the characteristic correlation time,

0 is the vector of model parameters, y, and y(@) are the observation and model simulation,

respectively, at time 4, and g(.) represents the Box-Cox transformation (Box and Cox, 1964,

1982):

g = A , o=

A .
) -1 A, %0 g_l(z)_{(ﬂ,,z+l)w'—/12 4 %0  dg
mGad)  A=0 Kp()=Ay A4S0 by

(4.12)

This model extends earlicr works with discrete-time autoregressive error models in hydrological
applications (e.g. Kuczera 1983, Duan et al. 1988, Bates and Campbell, 2001). More details are
given by Yang et al. (2007).
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Two generic Monte Carlo approaches to sample from a posterior distribution are Markov
Chain Monte Carlo and Importance Sampling (Gelman et al. 1995; Kuzera and Parent, 1998).
Both techniques are used as implemented in the systems analysis tool UNCSIM (Reichert 2005;

http://www.uncsim.eawag.ch).

Markov Chain Monte Carlo (MCMC)

MCMC generatcs samples from a random walk which adapts to the posterior distribution
(Kuczera and Parent, 1998). The simplest tcchnique from this class is the Metropolis-Hasting
algorithm (Gelman et al. 1995), which is applied in this study. A sequence (Markov Chain) of

parameter sets representing the posterior distribution is constructed as follows:
1) An initial starting point in the paramcter space is chosen.

2) A candidate for the next point is proposed by adding a random realization from a symmetrical

jump distribution, f to the coordinates of the previous point of the sequence:

Jump 2
Or = 6, +rand(f ) (4.13)

3) The acceptance of the candidate points depends on the ratio r:

ymcas)
ymeas)

. w
o (O,

r=— (4.14)
‘/('Dlmslly (Ok

If r >= 1, then the candidate point is accepted as a new point, else it is accepted with probability

r. If the candidate point is rejected, the previous point is used as the next point of the sequence.

In order to avoid long bum-in periods (or even lack of convergence to the posterior
distribution) the chain is started at a numerical approximation to the maximum of the posterior
distribution calculated with the aid of the shuffled complex global optimization algorithm (Duan

et al., 1992).

Importance Sampling (1S)

Importance Sampling 1s a well established technique for randomly sampling from a probability

distribution (Gelman et al. 1995; Kuzera and Parent, 1998). The idea is to draw randomly from a
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sampling distribution /. and calculate weights for the sampling points to make the weighted
sample a sample from the posterior distribution. The procedure consists of the following steps:
1) Choose a sampling distribution and draw a random sample from this sampling distribution.

2) For each paramcter set, 0;, of the sample, calculate a weight according to

f‘(-)pmtly (01 |y meas ) / .f;‘ﬁll)l[)/(f (01 )

w, = N
Z f(,)l'(ml'y (Olr y meas ) /«f:s'ample (Ok )

k=1

(4.15)

3) Use the weighted sample to derive properties of the posterior distribution, for example, by

calculating the expected value of a function % according to:
k=1

The efficiency of this procedure depends strongly on how close the sampling distribution is to
the posterior distribution, and hence, the choice of the sampling distribution is crucial (Tanner,
1992; Gelman et al.,, 1995). Three practical choices for the sampling distribution are: sampling
from the prior distribution (often uniform sampling over a hypercube referred to in the following
as primitive IS or naive 1S), the approximation with over-dispersed multi-normal distribution
(e.g. Kuczera, 1998), and the method of iteratively adapting the sampling distribution and using
efficient sampling techniques (Rcichert et al.,, 2002). Each of the above methods has some
disadvantages. Primitive IS is very inefficient if the posterior is significantly different from the
prior, particularly for high dimensional parameter spaccs. It is also worth nothing that primitive
IS is a special case of GLUE, in which no generalizations are made to the likelihood function and
all parameter sets are accepted as behavioral (although some will get a very small weight). For
the method with over-dispersed multi-normal distribution, it is difficult to determine a prior for
the dispersion coefficients (Kuczera, 1998). The method of iteratively adapting the sampling
distribution becomes more and more difficult to implement as the dimensionality of the parameter
space increases (Reichert et al., 2002). This is because larger samples are required to get
sufficient information on the shape of the posterior and it becomes more and more difficult to

find a reasonable parameterized sampling distribution to approximate the posterior. In this study,
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only the Primitive IS is implemented, as this also allows us to study the behaviour of GLUE with

different likelihood measures.

4.2.3 Criteria for the Comparison

We use the following five categories to compare the performances of the uncertainty analysis

techniques:

1. Parameter estimates and parameter uncertainty (values, uncertainty ranges, correlation

coefficients).

2. Performance of the simulation at the mode of the posterior distribution was evaluated for all

criteria.
3. The model prediction uncertainty

Three indices are used to compare the derived 95% probability band (95PPU). Those indices
are the width of 95PPU (i.e., r-factor as used in SUFI-2), percentage of the measurements
bracketed by this band (i.e. p-factor in SUFI-2), and the Continuous Rank Probability Score
(CRPS). CRPS is widely used in weather forecast as a measure of the closeness of the
predicted and occurred cumulative distributions and sharpness of the predicted PDF (e.g.,

Hersbach, 2000). For a time series, the CRPS at time ¢ can be defined as:

CRPS, = [ (F.(y)~11(y~y,)) dy (4.17)
where F,(y) stands for the predicted CDF at time #, /] is the Heaviside function (returning
zero for negative and unity for non-negative arguments), and y, is the observed at time 7.

In practice the CRPS is averaged over a time series:

CRPS =" w, -CRPS,
x (4.18)

where w,is the weight for corresponding CRPS, at time ¢ and we take equal weights in our

study.
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4. The conceptual basis of the technique (theoretical basis, testability and fulfillment of
statistical assumptions, capability of exploring the parameter space, coverage of regions with

high goal function values).

5. Difficulty of implementation and efficiency of the technique (programming effort and number

of simulations required to get reasonable results).

4.3 Study Site, SWAT Watershed Simulation Program, and Model
Application

4.3.1. The Chaohe Watershed and Data

The Chaohe watershed is situated in North China with a drainage area of 5,300 km® upstrecam of
the Xiahui station (see Figure 2.1 in Chapter 2). The climate is temperate continental, semi-
humid and semi-arid. From 1980 to 1990 the average daily maximum temperature was 6.2 °C,
the average daily minimum temperature 0.9 °C, and the yearly rainfall varicd between 350 to 690
mm. The elevation varies from 200 m at the basin outlet to 2,400 meters at the highest point in
the catchment. The topography is characterized by high mountain ranges, steep slopes and deep
valleys. The average channel slope is 1.87% which leads to fast water flow in the river. Average
daily flow at the catchment outlet (Xiahui station) is 9.3 m® s and varies irregularly from around
798 m® s during the flood season to lower than 1 m® s in the dry season. The runoff coefficient
(the ratio of runoff to precipitation) at the Xiahui station to the rainfall in this basin decreased
from 0.24 in 1980 to 0.09 in 1990. It is believed that the decline is mainly due to the intensified
human activities, including increasing water use and building of more (small scale) water

retention structures.
4.3.2. The Watershed Simulation Program

The Soil and Water Assessment Tool (SWAT) (Amold et al., 1998) is a continuous-time,
spatially distributed simulator of water, sediment, nutrients and pesticides transport at a
catchment scale. It runs on a daily time step. In SWAT, a watershed is divided into a number of
sub-basins based on a given DEM (Digital Elevation Model) map. Within each sub-basin, soil
and landuse maps are overlaid to create a number of unique hydrologic response units (HRUSs).
SWAT simulates surface and subsurface proccsses, accounting for snow fall and snow melt,

vadosc zone processes (i.e. infiltration, evaporation, plant uptake, lateral flows, and percolation
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into aquifer). Runoff volume is calculated using the Curve Number method (USDA Soil
conservation Service, 1972). Sediment yield from each sub-basin is generated using the Modified
Universal Soil Loss Equation (MUSLE) (Williams, 1995). The model updates the C factor of the
MUSLE on a daily basis using information from the crop growth module. The routing phase
controls the movement of water using the variable storage method or the Muskingum method

(Cunge, 1969; Chow, 1988).
4.3.3. Model Application

Parameterization of spatially-distributed hydrologic models can potentially lead to a large number
of parameters. To effectively limit the number of parameters, we developed an aggregating
scheme based on hydrologic group (A, B, C, or D), soil texture, landuse, sub-basin, and the
spatial distribution of default values. This scheme was implemented in an interface, iISWAT, that
allows systems analysis programs to access SWAT parameters that are distributed over many

input files (Yang et al., 2005; http://www.uncsim.cawag.ch/interfaces/swat). The names of

aggregate parameters specified in the interface iISWAT have the following format:
X__ <parname>.<ext> <hydrogrp> <soltext> <landusc> <subbsn> (4.19)

where x represents the type of change to be applied to the parameter (v: replacement; a: absolute
change; or r: relative change), <parname> is the SWAT parameter name; <ext> represents the
extension of the SWAT input file which contains the parameter; <hydrogrp> is the identifier for
the hydrologic group; <soltext> is the soil texture; <landuse> is the landuse; and <subbsn> is the
subbasin number, the crop index, or the fertilizer index. The interface exchanges parameter

values with the systems analysis tool based on a simple text file-based interface (Reichert, 2006).

Following our previous work (Yang et al., 2007), 10 aggregate SWAT parameters related to
discharge at the watershed outlet were sclected. These parameters, listed in Table 4.1, represent
single global values, global multipliers, or global additive terms to the distributed default values
of the corresponding SWAT paramcters (compare parameter names in Table 4.1 with the
explanations of Expression 19). The likelihood function for the Bayesian approach requires the
additional parameters ¢ and t characterizing the standard deviation and characteristic correlation
time of the continuous-time autoregressive error model (see Eq. 4.11). These parameters were

considercd to be dependent on the seasons, i.€., Ggy and 7y Were used for dry season (October to
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May), and Gwe and 7wt Were used for wet scason (July to August), and we assumed a linear

transition from one value to the other in June and September (Yang ct al. 2007).

The priors of all the parameters above were assumed to be independent of each other. For the
SWAT parameters, uniform priors within reasonable ranges were assumcd for all the techniques.
For the parameters o and 7, densities proportional to 1/0-and 1/7 were chosen, which is equivalent
to assuming that the logarithms of these paramcters are uniformly distributed. Table 4.1 gives an

overview of the parameters used for calibration and their prior distributions.

As we cannot specify reasonable initial values for all storage volumes considered in the
model, SWAT 1s operated for a “warm-up” period of 5 years without comparison of model results
with data. We found that such a “warm-up period” was sufficient to minimize the effects of the
initial state of SWAT variables on river flow, Furthermore, in order to verify the calibrated
model parameters, the model was calibrated and tested based on the observed discharges at the
watershed outlet (Xiahui station) using a split sample procedure. The data from the years 1985-
1988 with omission of a single outlier in 1985 was used for calibration, and the data from 1989-

1990 was used to test the model. This strategy was applied for all the techniques.
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4.4 Results and Discussion

We start with a description of the results for each technique and then compare and discuss the

results according to the categories of criteria given in section 4.2.3.

4.4.1. Results of GLUE implementation with likelihood measure NS
GLUE is convenicent and easy to implement and widely used in hydrology (e.g. Freer et al., 1996;
Cameron et al., 2000a and 2000b; Blazkova et al., 2002). The drawback of this approach is its
prohibitive computational burden imposed by its random sampling strategy (Hossain ct al., 2004).
In this study, the threshold value of GLUE application is chosen to be 0.70, i.e. the
simulations with NS values larger than 0.70 are behavioral otherwise non-behavioral. Four
GLUE simulations were performed with sample sizes of 1000, 5000, 10000, and 20000. For cach
simulation, the dotty plot, cumulative posterior distribution and 95PPU are analyzed. The
comparison shows that there are some differences in the results between 1000, 5000 and 10000
while there is no significant difference between 10000 and 20000. The following analysis of
results and comparison are based on a sample size of 10000. The dotty plot shown in Figure 4.1
demonstrates that for each parameter solutions with similarly good values of the NS coefficient
can be found within the complete prior range. The posteriors of most aggregate parameters
follow closely the uniform prior distribution. Table 4.2 shows the mean, standard deviation and
corrclation matrix of the posterior parameter distribution. The correlations between most
parameters are small except between a  CN2.mgt and a SOL AWC.sol, v._ESCO.hru and
a_ SOL AWC.sol, and r SOL K.sol and r SLSUBBSN.hru, with values of 0.44, 0.56 and 0.67,
respectively.  The third column in Table 4.2 shows the standard deviations of the parameters.
Figure 4.2 shows the 95PPU of the model results for both calibration and validation periods.
Most of the observations are bracketed by the 95PPUs (79% during the calibration period and
69% during the validation period, see p-factor in Table 4.5).
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Figure 4.1: Dotty plot of NS cocfficient against each aggregate SWAT parameter conditioning
with GLUE based on 10,000 samples with threshold 0.70 (red line), above which the parameter

sets are behavioral.
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discharge at the basin outlet, while the solid line represents the best simulation obtained by

GLUE.
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Table 4.2: Mean, standard deviation (SD) and correlation matrix of the posterior distribution

resulting from application of the GLUE technique

parameter mean | stdev

a_ CN2.mgt -20.27 5.56 1

v__EPCO.hru 0.47 0291 -0.02 1

v__ESCO.hru 0.51 0251 0.04 018 1

r__SOL K.sol 0.30 033] -0.04 0.03 -0.10 1

a_ SOL_AWC.sol 0.08 004 044 -009 056 -0.09 1

v__ALPHA BF.gw 0.51 0281 -0.19 003 002 -007 -0.06 1

v_GW DELAY.gw | 14946 | 8196 | 003 0.01 015 0.06 -004 -0.14 1

r_ SLSUBBSN.hru -0.13 0.28 0.09  -0.03 0.24 0.67 0.19 0.07 0.01 1

a_ CH K2.rte 74.99 | 42.42 016 -0.02 -0.12 0.00 -008 -0.01 004 -0.13 |
a_ OV N.hru 010] 0.06f -0.02 003 001 005 -002 -003 003 002 008 1

4.4.2. Results of ParaSol and modified ParaSol implementations with objective function SSQ

Implementation of ParaSol is relatively easy and the computation depends only on the
convergence of the optimization process (SCE-UA algorithm). Once the optimization is done,
ParaSol will determine the behavioral and non-behavioral parameter sets and produce prediction

uncertainty.

The application of ParaSol resulted in 851 behavioral parameter sets out of a total of 7550
samples (the threshold value based on the y -statistics is equivalent to NS 0.819). Figure 4.3
shows the dotty plot of the NS coefficient against each parameter. Clearly, the parameter samples
are very dense around the maximum. This is confirmed by very steep cumulative distribution
functions (not shown) and small standard deviations of the estimated model parameters (third
column in Table 4.3). ParaSol based on the SCE-UA is very efficient in detecting the arca with
high goal-function valucs in the response surface. The threshold line (blue line) in Figure 4.3
scparates the parameters sets into behavioral parameter scts (above the blue line) and non-
behavioral parameter sets (below the bluc line). However, as can be seen, both the number and
area of thc behavioral parameter sets are extremely small, and the corresponding parameter
ranges are very narrow. This also leads to a very narrow 95PPU for model predictions shown in
Figure 4.4 (dark gray arca). ParaSol failed to derive the prediction uncertainty (only 18% of
measurements were bracketed by 95PPU during the calibration period) though the best simulation
matches the obscrvation quite well with NS cquals 0.82 during the calibration period. This is

because ParaSol doesn’t consider the error in the model structure, measured input and measured
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response, which results in underestimation of the prediction uncertainty. The devcloper of
ParaSol solved this problem by reducing the threshold to include the correct number of data
points (technique “SUNGLASSES”). SUNGLASSES is not applied here because it needs to take

into account the observations during the validation period, which will complicate the comparison.
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Figure 4.3: Dotty plot of NS coefficient against aggregate SWAT parameters conditioning with
ParaSol. The blue linc is the threshold determined by ParaSol, and red line is the threshold with
value 0.70 for moditied ParaSol.

As to the modified ParaSol with threshold value 0.70, Figure 4.3 shows the behavioral and

non-behavioral parameter sets separated by threshold line with value 0.70 (red line), and light
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grey area in Figure 4.4 describes the 95PPU. There are 60% of measurements bracketed by
95PPU during calibration period and 52% during validation period (see p-factor in Table 4.5).
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Figure 4.4: 95PPUs derived by ParaSol (dark gray arca) and modified ParaSol (light gray area).
The dots correspond to the observed discharge at the basin outlet, while the solid line represents

the best simulation obtaincd by ParaSol.
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Table 4.3: Mean, standard deviation (SD) and correlation matrix of the posterior distribution

resulting from application of the ParaSol technique

Aggretate

parameters mean | stdev

a_ CN2.mgt -21.08 1.81 1

v__ESCO.hru 065 0071 018 I

v__EPCO.hru 0.22 0.13 ] -0.06 0.04 1

r _SOL K.sol 0.00 038 -0.03 -0.14  0.50 1

a__SOL_AWC.sol 0.08 0.01 042 054 -018 -020 1

v__ ALPHA BF.gw 029| o021] -0.15 -0.08 057 084 -0.14 1

v_GW DELAY.gw | 106.62 | 2491 ] -0.08 -0.02 0.35 036 -027 038 1

r__ SLSUBBSN.hru -0.35 0.24 0.03  -0.07 0.48 096 -0.11 0.85 033 1

a_ CH K2rte 4958 | 2341 -0.07 -0.19 0.54 0.76 -0.36 073 045 0.72 1
a OV N.hru 0.09 0.02] -0.09 -0.11 030 031 -0.18 026 0.6 028 036 1

4.4.3. Result of SUFI-2 implementation with objective function NS

SUFI-2 is also convenient to use. The drawback of this approach is that it is semi-automated and
requires the interaction of the modeler for checking a sct of suggested posterior parameters,
hence, requiring a good knowledge of the parameters and their effects on the output. This may

add an additional crror, i.e., “modeler’s uncertainty” to the list of other uncertainties.

For the SUFI-2 approach, we did 2 iterations with 1500 model runs in each iteration. In the
second iteration, the 95PPU brackets 84% of the observations and r-factor equals 1.03 which is
very close to a suggested value of 1. Posterior distributions in SUFI-2 are always indcpendent
and uniformly distributed, and expressed as narrowed parameter ranges (see the interval
bracketed by parentheses in category 1 in Table 4.5). Figure 4.5 shows the dotty plot conditioned
on SUFI-2, and all these sampled parameter sets are taken as behavioral samples and contributing
to the 95PPU. Obviously there are some parameter sets with low NS values (e.g., -1.5) in Figure
4.5. Figure 4.6 shows 95PPU for model results derived by SUFI-2 for the second iteration. As
can be seen, most of the observations are bracket by the 95PPU (84% during calibration period
and 82% during validation period), indicating SUFI-2 is capable of capturing the observations
during both calibration and validation periods. The 95PPU is quite suitable to bracket the
observations in 1985, 1988 and 1989, while it is somchow slightly overestimated in 1986, 1987
and 1990 cspecially in the recession part. This indicates there is a lot of uncertainty in the

recession calculation of SWAT. However, as SUFI-2 is a sequential procedure, i.e., one more
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iteration can always be made leading to a smaller 95PPU at the expense of more observation

points falling out of the prediction band.

05 00 05 140 -5 10 056 00O 05 10 15 10 05 00 05 10
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Figure 4.5: Dotty plot of NS cocfficient against each aggregate SWAT parameter conditioning
with SUFI-2. The red line represents the NS coefficient 0.70 used in the GLUE application.
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Figure 4.6: 95PPU (shaded area) derived by SUFI-2. The dots correspond to the observed
discharge at the basin outlct, while the solid line represents the best simulation obtained by SUFI-
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4.4.4. Result of MCMC implementation of Bayesian analysis with autoregressive error model

Implementation of Bayesian inference is not so casy especially for complex models because it
requires formulating and testing of a likelihood function that characterizes the stochasticity of the
observations. This usually requires several iterations of the inference procedure for different
likelihood functions as statistical tests of residuals can only be performed after the analysis is

completed. Once the constructed likelihood function is validated (i.e. the statistical assumptions
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for the likelihood function are validated), MCMC must be conducted and the resulting chain must
be analyzed for the burn-in and stationary periods. Only points from the stationary period should

be used for inference.

In this study, the Markov Chain was started at a numerical approximation to the maximum of
the posterior distribution calculated with the aid of the SCE-UA (Duan et al., 1992) to keep the
burn-in period short. The Markov Chain was run until 20,000 simulations were reached after the
convergence of the chain to the stationary distribution monitored by the Heidelberger and Welch
method (Heidelberger and Welch, 1983; Cowles and Carlin, 1996). The “CODA” package (Best

et al., 1995) as implemented in the statistical software package R (http:/www.r-project.org) was

used to perform this test. As shown in Yang et al. (2007), the statistical assumptions of the
likelihood function (Eq 4.11) were not significantly violated, so that we can be confident about

the derived prediction uncertainties.

Figure 4.7 shows histograms which approximate the marginal posterior distributions of
parameters conditioncd with Bayesian MCMC. Except for the parameter a OV _N.hru which
has the approximate uniform distribution of its prior, all other parameters cxhibit diffcrent
posterior distributions than their priors in both parameter range and shape of the distributions.
Table 4.4 lists the means, standard deviations, and correlation matrix of the posterior parameter
distribution. As can be seen from Table 4.4, with the exception of the high correlation between
the parameters r SOL K.sol and r SLSUBBSN.hru, correlations between aggregate
parameters are not very high. The high correlations between the parameters of the autoregressive
error model (Gary, Gwet, Tdry, aNd Tyer) indicate strong interactions among those parameters. Figure
4.8 shows the 95PPU of the model results arising from parameter uncertainty only (dark shaded
area) and from total uncertainty (light shaded area) due to parameters, input, model structure and
output represented by parameter uncertainty and the autoregressive error model. As can be seen,
although the prediction uncertainty bascd on the parameter uncertainty alone in MCMC is quite
narrow, that from parameter uncertainty and uncertainty sources represented by the
autoregressive error model brackets over 80% of the obscrved points for both calibration and
validation periods. This indicates that there is a large uncertainty in input, output and model
structure in addition to parameter uncertainty. As can also be seen, there is a slight
overestimation of prediction uncertainty during the wet season, and this suggests more attention

should be paid to the wet season when constructing the likelihood function.
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Chapter 4

4.4.5. Result of Primitive IS implementation of Bayesian analysis with autoregressive error model

The application with primitive 1S is extremely inefficient. In this study, within 100,000 model
runs only one parameter set got a weight significantly different from zero. This shows that 1S
based on the prior as a sampling distribution is too inefficient to be applied to such hydrological
problems. An iterative narrowing of the sampling distribution that already starts with a good

guess (e.g. close to the maximum of the posterior) would be required to make IS more efficient.
4.4.6. Comparison

Table 4.5 summarizes the results of the comparison in the categories of criteria introduced in
scction 4.2.3. We will exclude primitive IS from further discussion as obviously the numerical
technique of primitive IS from the prior fails to give a reasonable approximation to the posterior

at the sample sizes we can afford.
4.4.6.1 Parameter estimates and parameter uncertainty

Results of the marginal posterior paramcter distributions are shown as dotty plots in Figures 4.1,
4.3, and 4.5 or marginal distributions in Figure 4.7. In addition, posterior means, standard
deviations and correlation matrices of the techniques that provide these estimates are given in
Tables 4.2, 4.3, and 4.4. Finally, best estimates and 95% parameter uncertainty ranges are
summarized in Tablec 4.5 (category 1). In General, diffecrent techniques result in different
posterior parameter distributions, which are represented by different 95% parameter uncertainty

ranges, dotty plots and correlation matrices.

Category 1 in Table 4.5 shows the 95% uncertainty ranges of the marginals of all parameters
resulting from GLUE, ParaSol and MCMC, and the posterior parameter intervals resulting from
SUFI-2. As can be seen, GLUE provided the widest 95% parameter uncertainty ranges, followed
by SUFI-2, MCMC and ParaSol. Most of the uncertainty intervals derived by GLUE contain the
corresponding intervals from SUFI-2, MCMC and ParaSol. However, not all the parameter
intervals derived by SUFI-2 contain the corresponding intervals of MCMC (for example,
a__OV_N.hru). Some uncertainty intervals from SUFI-2 do not even overlap with those from
MCMC (for example, v. GW_DELAY.gw). The marginals of GLUE are wider than those of
SUFI-2; this may be because GLUE considers parameter correlations while SUFI-2 does not.

The posterior shape in SUFI-2 is always a hypercube; therefore wide intervals would lead to too
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many simulations with poor performance (poor values of the goal function). The marginals of
MCMC are even narrower than those of SUFI-2 because the likelihood function (Eq. 4.11)
applied considers input and model structural error separately while GLUE and SUFI-2 map those
errors into parameter unccertainty. Therefore, in MCMC, parameter uncertainty contributcs only
partly to total prediction uncertainty. Different marginals from ParaSol and MCMC illustrate

different response surfaces defined by different objcctive functions.

In principle the global sampling strategy of GLUE allows this technique to identify any shape
of the postcrior distribution including multimodal shapes. Unfortunately, the number of samples
that can be run in practice is too small to realize this conceptual advantage. For example, a
comparison between Figures 4.1 and 4.3 demonstrates that GLUE failed to cover the behavioral
parameter sets of ParaSol (points above the blue line in Figure 4.3). In this sense, GLUE tends to
flatten the true response surface by removing sharp pcaks and valleys). This is also the problem
of primitive IS (special case of GLUE) and SUFI-2. Primitive IS can only find several isolated
points (e.g. its application in this study) because it uses a sampling distribution which is much
wider than the posterior. In addition to the difficulty of locating multiple maxima, the hypercube
shape of the posterior required for SUFI-2 does not allow this technique to describe multi-modal
distributions. Although conceptually Bayesian inference can describe any posterior shape, the
implementation of Markov Chain Monte Carlo will usually have a problem to jump from one
mode to another in the multi-modal response surface. However, at least the global optimization
preceding Markov Chain Montc Carlo helps to find the mode with maximum posterior density.
Based on SCE-UA, ParaSol can also locate the best mode in the multi-modal response surface,
and its capability to explore other modes is obviously questionable. This lcads to the narrow 95%

paramcter uncertainty ranges listed in Table 4.5.

The paramcter correlations in GLUE (Table 4.2) are smaller (the largest equal to 0.67
between r_ SOL_K.sol and r  SLSUBBSN.hru, and most are below 0.2) compared to those of
ParaSol and MCMC (the strongest correlation between parameters of the hydrologic model is
between r__ SLSUBBSN.hru and r  SOL K.sol (0.96 and 0.99) in both techniques). This
indicates that the (behavioral) parameter sets with significant weight are quite uniformly
dispersed over the parameter space. The weaker correlations in GLUE also indicate the
phenomenon that the real response surface is flattened by GLUE. In SUFI-2, parameter

correlations are neglected.
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4.4.6.2 Performance of the simulation at the mode of the posterior distribution

The performances of the simulation at the mode of posterior distribution are listed in category 2
of Table 4.5. 1t is not astonishing that ParaSol (for NS) and MCMC (for log posterior) find the
best fit of their respective goal functions because these techniques are based on global
optimization algorithms (at Icast as a first step for MCMC). Such algorithms arc much more
efficient for finding the maximum of the goal function than random or Latin Hypercube searches.
Despite the fact that NS is not the objective function of MCMC, the values of NS at the maximum
of the posterior are not much smaller than those of the techniques which use NS as their goal

function. The reader can compare other measures of performance in category 2 of Table 4.5.
4.4.6.3 Model prediction uncertainty

Category 3 in Table 4.5 lists the relative coverages of measurements (p-factor), the relative width
(r-factor) and the CRPSs of the 95PPUs for model predictions for all techniques. For the reasons
mentioned in section 4.6.1, ParaSol gave too narrow prediction uncertainty bands which are
hardly distinguishable from its best prediction (i.e. the one with the best value of the goal
function). GLUE and SUFI-2 led to similar p-factors but different r-factors during the
calibration period, and both different p-factors and r-factors in the validation period. The reason
for this may be that the uncertainty width (r-factor) of the 95PPU based on GLUE is determined
not only by the threshold but also its capability of exploring the parameter space (instead of the
multimodal shapes) while that of SUFI-2 is determined by the inclusion of some parameter set
with poor goal function in the posterior hypercube. In MCMC, the p-factors are similar to those
of GLUE and SUFI-2, however, the r-facfor is a bit higher. This may be because of the
overestimation of errors in the input and output and model structure. It is worth nothing that the
coverage (p-factor) of GLUE and modified ParaSol can be increased at the expense of increasing
r-factor by decreasing the threshold. This is not true for MCMC as the coverage does not depend
on arbitrary threshold of the technique.

An examination on the dynamics of these 95PPUs in Figures 4.2, 4.4, 4.6 and 4.8 reveals:
uncertainty analysis techniques based on NS show a better coverage in the recession part of the
hydrographs than other parts (e.g., pcak part), and there is also a clear yearly variation
(overestimated in 1986, 1987 and 1990) for GLUE and SUFI-2, while MCMC has a better

balance between years, but there seems to be a slight overestimation of prediction uncertainty
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during the wet scason. The reason is that in the application to the Chaohe Basin the
autoregressive error model explicitly specifies the seasonally dependent values of the ¢’s and 7’s
which reflect the seasonal impacts of input uncertainty, model structural uncertainty and
measured response uncertainty. In GLUE and SUFI-2 (at least when applied as in this case
study), total uncertainty is expressed as parameter uncertainty, which leads to an equally

weighted impact on wet season and dry season.

The CRPS values demonstrate the problem of this measure of combining quality of fit with
prediction uncertainty into one common index (i.c. CRPS). The underestimation of prediction
uncertainty combined with a good fit leads to the smallest values for ParaSol and MCMC with
parameter uncertainty only whereas the values for the other techniques (with wider uncertainty
bands) are larger and of a similar magnitude (See category 3 in Tablc 4.6). This indicates that a
further decomposition of CRPS that accounts for different contributions to its value may be

necessary in order to make CRPS a useful measurc in the present context (see Hersbach, 2000).
4.4.6.4 Conceptual basis of the technique

The crucial criteria with respect of the conceptual basis of the techniques are summarized in

category 4 of Table 4.5.

The first two criteria describe how different sources of uncertainty are dealt with. In GLUE
and SUFI-2, all sources of uncertainty arc mapped to (an enlarged) parameter uncertainty, which
will result in wider parameter marginals than ParaSol, MCMC and IS. Parasol ignores other
sources of uncertainty except parameter uncertainty. Finally the autoregressive error model maps
the effect of input, output and model structure uncertainty to a continuous-time autoregressive
error model. As this approach uses extra parameters rather than model parameters it does not

enlarge parameter uncertainty.

The conceptual basis of ParaSol, MCMC and IS is probability theory. This has the advantage
that the statistical assumptions must be clearly stated and are testable. The statistical assumptions
underlying ParaSol (independent, normally distributed residuals) are clearly violated whereas
there is no significant violation of the assumptions made by the autoregressive error model (see
Yang et al. 2007). The conceptual bases of GLUE and SUFI-2 are different and their statistical
bases are weak. GLUE and SUFI-2 allow the users to formulate different likelihood measures (or

objective functions) which certainly include the likelihood function used for MCMC (example
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Eq. (4.11)). However, when using gencralized rather than ordinary likelihood functions, GLUE
and SUFI-2 losc thc probabilistic interpretation of the results. In the last step of the GLUE
application, weights are normalized and again interpreted as probabilities. This procedure lacks a
consistent and testable statistical formulation. Also SUFI-2 lacks a rigorous probabilistic
formulation. Parameter uncertainty formulated by a uniform distribution in a hypercube is
propagated through the hydrologic model correctly, but the convergence criteria based on the

values of p-factor and r-factor lack an assumption of the dependence structure of the errors.
4.4.6.5 Difficulty of implementation and efficiency

The final category of comparison criteria (category 5) in Table 4.5 is difficulty of implementation

and efficiency.

Implementation of GLUE is straightforward and very easy. Due to the calculation of
sensitivity measurcs and global optimization, implementation of SUFI-2 and ParaSol is somewhat
more complicated but still quite easy. Due to the most complicated likelihood function and

processing technique, the Bayesian techniques need more effort to be implemented.

Due to an efficient optimization procedure, ParaSol does not require cxtensive computations.
Taking into account a relatively poor coverage of the parameter space, SUFI-2 is also not very
expensive to run. Depending on the required coverage, GLUE can be run with smaller or bigger
sample sizes. The computationally most expensive technique is Bayesian inference. This is

certainly the major disadvantage of this technique,

4.5 Conclusions

After comparing the applications of different uncertainty analysis techniques to a distributed
watershed model (SWAT) for the Chaohe watershed in North China, we come to the following

conclusions:

1) Application of GLUE based on the Nash-Sutcliffe coefficient. This technique led to the widest
marginal paramecter uncertainty intervals of the model parameters (i.e. strong capability of
exploring the parameter space), good prediction uncertainty (in the sense of coverage of
measurements by the uncertainty bands), and problems of locating multimodal shapes of the
posterior due to the inefficiency of global sampling. This technique tends to flatten the response

surface defined by the likelihood measure NS. The wide parameter uncertainty ranges (or strong
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capability of exploring the parameter space) are primarily caused by the use of the Nash-Sutcliffe

coefficient as a generalized likelihood measure.

2) Application of ParaSol based on the Nash-Sutcliffe coefficient. ParaSol was able to find a
good approximation to the global maximum of NS, however, it led to too narrow prediction
uncertainty bands due to a violation of the statistical assumption of independently and normally
distributed errors. Decreasing the threshold value in modified ParaSol increases its prediction

uncertainty but the choice of the threshold value may be hard to justify.

3) Application of SUFI-2 based on the Nash-Sutcliffe coefficient. This technique could be run
with the smallest number of model runs to achieve good prediction uncertainty (reasonable
coverage of data points by the prediction uncertainty bands). This characteristic is very desirable
for thc uncertainty analysis on models which are computationally demanding. However, the
choice of a small sample size obviously decreases exploration of the parameter space and this

technique faces the same problems as GLUE encounters.

4) Application of MCMC based on a continuous-time autoregressive error model. Due to the
global optimization performed before starting the Markov Chain, MCMC achieved a good
approximation to the maximum of the posterior. The statistical assumptions of the error model
are testable and in reasonable agreement with empirical cvidence. The additional parameters of
the error model give the user some freedom in the description of the effect of input and model
structure error (such as scasonal dependence of the magnitude of these effects). The main
disadvantages of this technique are the difficulty of constructing the likelihood function, the large
number of simulations required to get a good approximation to the posterior, and the difficulty of

covering multi-modal distributions caused by the numerical implementation of MCMC.

3) Application of IS based on a continuous-time autoregressive error model. The implementation
of primitive importance sampling is much too inefficient to get a reasonable approximation to the

postcrior.

6) About choosing the objective functions. GLUE and SUFI-2 are very flexible by allowing for
arbitrary likelihood measures / objective functions. On the other hand, GLUE and SUFI-2 lose
their statistical basis when using this additional freedom. The real capability of exploring the
parameter space is also seriously affected by the choice of the objective functions. In ParaSol,

the objective function and the way to split the parameter set are statistically based. However, the
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underlying statistical assumptions are seriously violated. This makes the results unrcliable. The
likelihood function used for MCMC has a testable statistical basis and the test of our result did
not indicate a severc violation of the assumptions. This makes the Bayesian inference which is

based on this likelihood function conceptually the most satisfying technique.

Despitc these big differences in concepts and performance, GLUE, SUFI-2 and MCMC led to
similarly good prediction uncertainty bands. Our preference is for MCMC because Bayesian
inference has a sound theoretical foundation and the statistical assumptions underlying the
likelihood function based on the autoregressive error model is testable and did not indicate
significant violations of the assumptions. However, further efforts are required to improve the
formulation of likelihood functions used in hydrological applications. In particular, it would be
intercsting to formulate a likelihood function that not only describes the effect of input, model
structure and output uncertainty (as our autoregressive error model does), but also resolves the

different sources of uncertainty.
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5 Conclusions and Outlook

In this section, firstly the main results from the previous sections are summarised, followed by

the conclusions. In addition, a brief outlook on further research is provided.

5.1 Summary

In Scction 2 we developed a continuous-time autoregressive error model within the Bayesian
framework. The characteristic of this method is to construct the likelihood function in
combination with the Box-Cox transformation and autoregressive error model in such a way that
thc observed innovations rather than the residuals are independently and normally distributed.
The implementation is demonstrated by its application to the Chaohe Basin in North China. In
the application, the statistical assumptions arc tested and fulfilled. Statistical inference is
numerically implemented by a global maximization of the posterior followed by Markov Chain

Monte Carlo sampling.

In Section 3, the developed continuous-time autoregressive error model is extended by
assuming that the innovations between the simulation and observation are realizations of
independent t-distributions. As the degrees of freedom approaches infinity, the t-distribution
approaches the normal distribution. Therefore, we can take the normal distribution as a special
case of the t-distribution with sufficiently large degrees of freedom. With this additional
parameter (i.e. degrees of freedom), it is possible to adapt the model to best match the shape of
the empirical distribution of the innovations. This implementation is demonstrated by the

application to the Thur river basin in Switzerland.

In Section 4, different UA approaches arc compared. The comparison turns out to be difficult
as these approaches differ in fundamental concepts, parameter prior choices, and goal function
choice. Nevertheless, we conclude with the recommendation of the use of Bayesian inference
with a carefully chosen likelihood function that accounts for all uncertainty sources, whencver it

is possible. However, the computational demand involved may make this choice very difficult to

apply.
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5.2 Conclusions

Based on the work of the previous chapters, this study concludes:

1) The continuous-time autoregressive error model is applicable and efficient for the analysis
of the effect of parameter uncertainty, uncertainties in the input, response and model structure in

hydrologic modcling.

2) The assumption of indcpendent t-distributions for describing the distribution of the
innovations rather than the residuals makes the likelihood function have better statistical basis
because the innovations are much less correlated and the shape of the t-distribution fits empirical
evidence much better (particularly heavy tails). The continuous-time autoregressive error model
can also address the problems of heteroscedasticity of the residuals by a combination of a Box-

Cox transformation with seasonally dependent parameters of the error model.

3) Although different UA techniques are based on different fundamental concepts, prior
parameter choiccs and goal functions, many of them lead to similar prediction uncertaintics.
Therefore, the choice of the UA techniques in hydrologic modelling depends on the preference of

the modeller and the application at hand.

4) Because of the sound statistical basis and the testability of model assumptions, our
preference is on the Bayesian approach with a careful choice of the likelihood function. The
good reproduction of the empirical error distributions by our continuous-time autorcgressive error
model increases our confidence in predicted uncertainty bands. Computational limitations,

however, may make this choice difficult for very time-consuming models.

5) The limitation of this method is that it doesn’t separate input uncertainty from model
structural uncertainty. And compared to other tecchniques, the major disadvantage is the high

computational demand characteristic for all MCMC techniques.

5.3 Outlook

Building on this research and to the author’s knowledge, the following research areas are

potentially interesting and would be worth further research.

1 Further comparison of different UA techniques
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A comparison of techniques based on a case study is obviously case and model dependent. More
studies based on other watersheds and other hydrologic models should be done to investigate the

advantage and disadvantage of different UA techniques.
2 Explicit consideration of input and model structural uncertainty

As mentioned in the conclusion part, the limitation of our approach is that it doesn't separate
input uncertainty from model structural uncertainty. Recently, a method BATEA (BAycsian
Total Error Analysis methodology; Kavetski et al., 2006a & 2006b) has been developed that
considers input uncertainty within a Bayesian framework. BATEA uses additional (latent)
variables to account for time-dependent input errors. Approaches to consider model structural
errors by making the deterministic simulation model stochastic have also recently been published
(Vrugt et al. 2005). A combination of such approaches and an extension to continuous-time

formulation as done in the present study would be an interesting research field for the future.
3 Improvement of the numerical efficiency of Bayesian computation

The most limiting practical problem for applying Bayesian inference with large computational
models is the relatively poor efficiency of the Markov Chain Monte Carlo approach.
Optimization of the efficiency of this approach or development of alternative numecrical
approximations to the posterior would considerably extend the range of applicability of these

techniques.
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Appendix A:
Interfacing SWAT with Systems Analysis Tools:
A Generic Platform

Jing Yang, Karim C. Abbaspour, and Peter Reichert

Abstract: Complex hydrologic watcrshed models need sophisticated techniques for statistical
inference of parameters and uncertainty estimation of predictions. To perform such analyses,
watershed simulation programs must be linked to systems analysis software. It is inefficient to do
this by implementing a large set of systems analytical techniques directly into each simulation
program. The more useful strategy is to implement a flexible interface independent of the
simulation program that allows the user to link the simulation program to external systems
analysis software. In this paper, the requirements for such an interface for distributed
hydrological simulation programs are analyzed, and the implementation of such an interface for
the Soil and Water Assessment Tool (SWAT) is described. The discussion of these requirements
and the concepts of implementation are intended to stimulate similar development for other
simulation programs; the implementation itself, which is freely available, facilitates the
combination of systems analysis techniques with SWAT applications.

Keywords:  Calibration; Interface; Systems Analysis Tools; SWAT; Watershed Models;

Simulation Program

Software Availability

Name of product: ISWAT

Program language: C++

Software requirements:  SWAT 2000/SWAT2005

Hardware requirements: PC with MS Windows or Linux (the interface could be compiled for

other platforms casily)

Contact Address: Jing Yang, Eawag, Ueberlandstr 133, P.O.Box 611, 8600 Ducbendorf,
Switzerland, jing. yang@eawag.ch
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Availability: Source code and binaries for MS Windows and Linux can be freely

downloaded from http://www.uncsim.cawag.ch/interfaces/SWAT

1 Introduction

Calibration of hydrologic models and uncertainty analyses of their predictions is a very active
rescarch field as it challenges current methodological know-how and is of highly practical
relevance (Duan et al. 2002). Nevertheless, implementations of these hydrologic models are
poorly supported by systems analysis programs. Improving this support is very important, as
research requircs the application of different and new techniques (e.g., uncertainty analysis) to a
diversity of hydrologic simulation programs (e.g. Duan et al. 2002; Kavctski et al. 2006; Vrugt et
al. 2006). To improve the support for such analyses, we need a generic interface between
hydrologic simulation program and systems analysis software because this is much more flexible
than implementing systems analysis techniques directly into cach hydrologic simulation program.
Recently, a simple version of such an interface has been proposed (Reichert, 2006). This paper
describes how a interface is implemented for the Soil and Water Asscssment Tool (SWAT;
Arnold 1998). The implementation for SWAT includes 2 parts: onc is to definc a term
“aggregate parameters” (which combines the parameter’s name and its influential factors, and this
will lead to meaningful calibration and reduction of parameter number for calibration), the other
1s fo communicate the “aggrcgate parameter’” between the simulation program (SWAT cxecutable
program) and systems analysis programs. This paper is an updated version of an earlier
conference contribution (Yang et al. 2004). Its intention is to stimulate the discussion on how to
improve the application of systems analytical techniques for hydrologic models among
hydrologists, to demonstratc the usefulness of the concept of flexibly defining “aggregate
parameters” for distributed hydrologic models, and to provide a first introduction of the particular

interface to future users.

This paper is structurcd as follows: In section 2 requirements for a generic interface between
distributed watershed simulation program and systems analysis software are discussed. Section 3
contains a short summary of the features and structure of input and output files of SWAT. The
interface is described in section 4. Section 5 gives a very brief overview of first applications of

the interfacc. Finally, in section 6 conclusions are drawn.
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2 Specific Interface Requirements for Distributed Watershed Models

Due to the high geographic resolution and the large number of processes required for a realistic
description of watershed hydrology and the sparse data that is either local (soil properties,
precipitation, etc) or integrative (e.g., river discharge), distributed hydrologic models are
inevitably over-parameterized. In addition, most of parameters in distributed hydrologic models
should be determined through so-called modc] calibration for some reason (for example, some
parameters represent spatial averages of system properties) and at the same time are influenced
by factors such as landusc type, soil texture, etc. To deal with these problems, it is uscful to
reduce the number of parameters for analysis by aggregating the distributed parameters in
different ways. This will greatly increase the flexibility of the users’ choice. Such aggregations
should include applying relative or absolute changes to default parameter values (to keep the
structure of spatial variation), to apply the same parameter values for the samc soil and land use

types, to regionally differentiate parameter values, etc.

3 The Soil and Water Assessment Tool (SWAT)

SWAT (Arnold et al., 1998) is a watershed simulation program that was originally developed by
a research team in the US Department of Agriculture. SWAT solves water balances in
hydrologic response units (HRUs) which are defined by unique land use - soil type combinations
within sub-basins of the watershed. For each HRU the water balance is calculated considering
precipitation, evapotranspiration, runoff, infiltration, interflow, and percolation into a shallow
aquifer. River flow is routed downstream to the outlet of the watershed. The current version of

SWAT (SWAT 2000) is linked to ArcView GIS (ESRI, http:/www.esri.com) in order to

facilitate handling of input and output. SWAT implements also a water quality submodel
describing transport of sediment, and transport and transformation of nutrients and pesticides.

Running SWAT is based on a three-step procedure:

1. In the first step, an ArcView GIS interface of SWAT (AVSWAT) is used to delincate sub-
basins from digital elevation data, and then generate ITRUs within each sub-basin by overlaying
the soil and land use maps. As a final step, AVSWAT produces a large number of input text
files. The content of these input text files and their corresponding spatial levels are summarized

in Table 1.
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Table 1:  Example of file types, file levels and corresponding parameter information.
File type | Spatial Level | Description
(extension)
bsn Basin level Basin input file, containing parameters used for the whole basin,
such as the snowmelt factor.
ww(q Basin level Watershed water quality input file containing parameters used by
the QUAL2E model applied in the main channels.
crp Basin level Land cover / plant growth database file containing plant growth
parameters for all land covers simulated in the watershed.
pnd Sub-basin Pond and wetland input file containing parameter information used
level to model the water, sediment, and nutrient balance for ponds and
wetlands.
rte Sub-basin Main channel routing input file containing parameters governing
level water and sediment movement in the main channel of the sub-
basin.
sub Sub-basin Sub-basin input file containing information related to features
level within the sub-basin, such as properties of tributary channels.
sSWq Sub-basin Stream water quality input file containing parameters used to
level model pesticide and QUALZ2E nutrient transformations in the main
channel of the sub-basin.
wgn Sub-basin Weather generator input file containing the statistical data needed
level to generate representative daily climate data for the sub-basin.
wus Sub-basin Water use input file containing information for consumptive water
level usc in the sub-basin.
chm HRU level Soil chemical input file containing information about initial
nutrient and pesticide levels of the soil in the HRU.
gw HRU level Groundwater input file, containing information about the shallow
and deep aquifer in the sub-basin.
hru HRU level HRU input file, containing information related to a diversity of
features within the HRU, such as parameters affecting surface and
subsurface water flow.
mgt HRU level Management input file, containing management scenarios
simulated in the HRU.
sol HRU level Soil input file containing parameters about the physical

characteristics of the soil in the HRU.

2. In the sccond step, the FORTRAN program “swat2000” reads these text input files, performs

the simulation, and writes text output files.

3. ArcView-SWAT (AVSWAT) provides limited post processing capabilities and other

programs must be used for output manipulation and display.
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After the initial setup of a SWAT project, the text file-based project can be run and analyzed
independent of the AVSWAT interface. This text filc based project provides the easiest access

for the implementation of an interface with systems analysis programs.

4 Interface Description

4.1 General Concept

The general concept of the interface is based on the suggestion by Reichert (2006). The systems
analysis program first writes parameter names and corresponding values into the file “model.in”,
then executes the simulation program (the part which is enclosed by the dashed box in Figure 1 in
our case), and finally recads model result from the file “model.out” written by the simulation

program (see Figure 1).

To allow for aggrcgate parameters (see below) and to make the interface independent of the
SWAT code (as long as the input-file format is not changed), the interface is implemented as two
executables (i.e., sw_edit and sw_extract as introduced below). The simulation program called

by the system analysis program calls three executables:

1. First, the executable “sw_edit” is called. This executable first reads “aggregate paramcters”
names and values from the file “model.in” and default parameter values from a backup

directory with SWAT input files, and then modifies SWAT input files accordingly.
2. Then “swat2000” is called to perform the simulation and write SWAT output files.

3. Finally, the interface program “sw_extract” is called. This executable extracts the values of
selected output variables from the SWAT output files and writes them to the file

“model.out”.
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<Systems Analysis Program> |4

model.out

Figure 1: Interaction of the systems analysis program with the simulation program (enclosed by
the dashed box) which consists of the interface programs “sw_edit” and “sw_extract”,
and the SWAT simulation engine “swat2000”.

4.2 Aggregate Parameters

As mentioned in section 2, the interface should provide aggregate parameters in addition to the
independent distributed SWAT parameters to the systems analysis procedures. In the interface
ISWAT, parameter aggregation is implemented by encoding this information in a generalized

parameter name. The structure of this name is as follows:
X__<parname>.<ext> <hydrogrp>__<soltext> <landuse>__<subbsn>
where

X Code to indicate the type of change to be applied to the parameter:
Vv means the existing parameter value is be replaced by the given valuc,
a means the given value is added to the default parameter value, and

r  means the default paramcter value is multiplied by (1+the given value);
<parname> SWAT parameter name;
<ext> SWAT file extension code for the file containing the parameter;
<hydregrp> soil hydrological group (‘A’,’B’,’C’ or “D") (optional);

<soltext> soil texture (optional);
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<landuse>  name of the land use category (optional);

<subbsn> number(s) of subbasin, crop index, fertilizer index and rainfall date (optional).
The typical formats are “17, “3-5” or “1,3-5,10-21,22” etc. The meaning depends
on the extension code of the file containing the parameter (see <ext> above):
sub:  subbasin number(s),
crp:  crop index,
frt: fertilizer indcx,

pcp:  date(s) of the rainfall data.

The influential factors <hydrogrp>, <soltext>, <landuse>, and <subbsn> can be omitted, if the
change applied to the (distributed) parameters is global. Any combination of these influential
factors can be used to make distributed parameters dependent on important influential factors.
The parameters can be kept regionally constant, modify a prior spatial pattern, or be changed
globally. This gives the analyst a large freedom in selecting the complexity of distributed
parameters. By using this flexibility, a calibration process can be started with a small number of
aggregate parameters that only modify a given spatial pattern and with more complexity and

regional resolution added as the learning process proceeds.

4.3 Implementation

There arc a large number of SWAT model parameters distributed over a large number of input
files (see section 3 and particularly Table 1). The number of files increases with the watershed
disaggregation into sub-basins, and conscquently the number of HRUs increases. To make the
process of modifying input files efficient, this interface was implemented in C++ in two steps. In
a first step, a library was built of classes corresponding to the input files listed in Table 1. The
common functions for rcading and writing parameter values from and to the text files are declared
in a base class (CBascParaFile) and implemented in the file-type specific classes. The functions
for reading the output files of SWAT are implemented in a separate class (CMethodSet). This
leads to the class hierarchy described in Table 2 and shown in Figure 2. In the second step, an
application program called “sw_edit” is constructed to read the aggregate paramecters and their
values from “modecl.in”, and then parse the generalized parameter name, and change the SWAT
input files by constructing the relevant class object and calling the member function of the object.

Application “sw_extract” is also constructed to extract SWAT output.
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Table 2: Declared and implemented methods of the classes for modifying/cxtracting the SWAT
input/output files
Class Description Declared methods Realized methods
not yet realized
CMethodSet Collection of general - Procedure for different types of
purpose functions, of . .
. . parameter modification some
functions for collecting
general SWAT project statistical functions.
information, and of )
functions for extracting - Procedure for collecting general
information from SWAT SWAT project information such
output. . .
as the number of subbasins.
- Procedures for extracting output
from .rch, bsb, and bsb files.
CBaseParaFile Base class for swat input | - Procedure for - Procedure for retrieving the
files. . .
reading a current file name, gelling or
parameter value. checking the range of a given
- Procedure for parameter.
changing a
parameter value.
(CBasinBSNFile Related to bsn file. - Procedure for reading a parameter
CBasinWWQFile Related to .wwq file. value.
CCropFile Related to crop.dat file. for ol )
CHruCHMFile Related to .chm file. - Procedure for changing a
CHruGWFile Related 1o .gw file. parameter value.
CHruHRUFile Related to .hru filc,
CHruMGTFile Related to .mgt file.
CHruSOLFile Related to .sol file.
CSubPNDFile Related to .pnd file.
CSubRTEFile Related to .rte file.
CSubSUBFile Related to .sub file.
CSubSWQFile Related to .swq file.
CSubWGNFile Related to .wgn file.
CSubWUSFile Related to .wus file,
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CBasinBSNFile

CBasinWWQFil

CMethodSet

CSubRTEFile

CBaseParaFil CSubSUBFile

CllruGWFile

CHruHRUFile

CHruMGTFile

CHruSOLFile

CCropFile

Figure 2: Class hierarchy for modifying or extracting the SWAT input/output files.

5 Applications

So far, the interfacc has been applied with the systems analysis tools SUFI (Abbaspour et al.
2004; 2007) and UNCSIM (Reichert 2005; http://www.uncsim.cawag.ch). These applications are
described in Abbaspour et al. (2007) and Yang et al. (2007a, b, ¢). Without this interface, it

would not have been possible to apply different systems analytical techniques in such a flexible

way to SWAT applications.

6 Conclusions

Calibration of watershed models and uncertainty analysis of their prediction can significantly be
improved by (i) a gencric interface between the simulation program of the watershed model and
systems analysis softwarc, and (ii) a flexible way of aggregating distributed parameters to reflect
important dependencies on soil properties and land use types and region (e.g. to reflect altitude or

other regional influence factors) or by modifying default spatial distributions.

The interface we described to the hydrological simulation program “Soil and Water
Assessment Tool” (SWAT) provides these two features. The generic interface is based on a

simple text-file based data exchange between simulation program and systems analysis software.
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It uses “aggregatc parameters” names to encode dependency information of the distributed
parameters and modifies hundreds of SWAT files accordingly. The flexibility of this parameter
aggregation scheme allows the researcher to start the analysis with a small number of highly
aggregate paramcters that only modify a given spatial pattern and adding more complexity and
regional resolution later on as the analysis proceeds. This is not possible to achieve by the
standard editors (provided by the operating system) or standard features of SWAT. The interface
proved its practical value with scveral studies of SWAT model on calibrations and uncertainty

analysis in different river basins.

We hope that the general concept of this interface will be adopted (and improved) for other
hydrological simulation programs. This would significantly facilitate comparative studies of
systems analytical techniques to different watershed models. In addition, the described iISWAT
interface could stimulate comparative analyses of different systems analytical techniques to
SWAT  applications. The interface can  be  freely downloaded  from

http://www.uncsim.cawag.ch/interfaccs/SWA'T.
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Appendix B: Explanation of some terms

1. Introduction to Autoregressive model and Innovation
A 1*"-order Discrete-time Autoregressive Model (DAR(1)) can be formulated as follows:
yr = 0'y1—~1 +it

where y,, and y.; are the values of the variable y at time 7 and 71, © is the autoregressive
coefficient, and i, is a random perturbation term, also called innovation, as this is the only new

information that enters at time ¢, with respect to what it is already available from previous time.

A 1*-order Continuous-time Autoregressive Model (CAR(1)) can be formulated as follows:

t—t .
Y, =exp(=="—")-y, +i,
i T i1
where 7 is the characteristic corrclation time, and the relationship between 6 and t is
] . .
6 =exp(——). Compared to DAR(1), in CAR(1) the difference between y, and y,  does not
T ! "

necessarily be 1.
2. Normal distribution and t distribution

Statistically, a random variable x of Normal distribution with mean p and variance 6 (N(, 6°))

has the probability density function:

£l o) = J— p(”)‘af‘))

And t distribution with degrecs of freedom v, mean p and variance 6°:

r(ljwtl_) .‘:,t_‘,
2 ! (1+(x A j v>2

fEvmer)= ( j 2ol (v-2)0
2
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