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Summary

Summary

Distributed hydrological modelling is useful to improve our understanding of the mechanics

of natural processes in a watershed and their interaction with human activity. It can support

the estimation of water availability, and the assessment of the impacts of climate and land use

change or other activities within a watershed. This can support decision-making about

measures to improve flood protection, water quality, aquatic ecosystems, and potential for

recreational activities in the watershed. As all hydrologie modelling results are subject to

uncertainty due to measurement errors in input and response and error in model structure, the

reliability of modelling results must be assessed by estimating their uncertainty. In the last

two decades, many uncertainty analysis techniques were developed and applied in the field of

hydrology. Most of the uncertainty analysis (UA) methodologies focus only on parameter

uncertainty and other sources of uncertainties are not or only partially represented, and the

advantage and disadvantage of different UA techniques are not comparatively investigated.

The aim of this study is to develop a UA methodology which describes the effect of both

parameter uncertainty and other sources of uncertainty and combines prior knowledge about

parameter values with empirical evidence from the catchment to reduce prediction

uncertainty. The applicability and effectiveness of this UA technique is tested by applying it

to two case studies with different climatic conditions, and further by a comparison with other

UA methodologies.

The two case study areas are the Chaohe basin and the Thur river basin. The Chaohe

basin, with a drainage area of 5300 km2, lies in the north of China and is a very important

water source to Beijing city's water supply. Its climate is characterized as temperate

continental and semi-arid. The Thur river basin, with a drainage area of 1700 km2, is located

in the north-eastern Switzerland, and has a pre-alpine/alpine climate.

Hydrology of the two watersheds was modelled using the program Soil and Water

Assessment Tool (SWAT; Arnold et al., 1998). SWAT implements a semi-physically based

and distributed hydrological model. This model accounts for the major processes influencing

water transport in the watershed, such as soil water movement, surface water movement,

groundwater movement, évapotranspiration, channel routing, etc. SWAT has been widely

applied in the USA, Europe, Africa and Asia, and there are over 160 peer-reviewed published

articles using this program (Gassman et al., 2005). As the distributed parameters of SWAT
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Summary

are separated in distributed files, an interface which automatically manages the change of

distributed parameter is highly desirable for the uncertainty analysis on SWAT. This

interface, named iSWAT, was first developed to interface SWAT and systems analysis tool

and facilitate our uncertainty analysis (Yang et al., 2005; or Appendix A).

In order to fulfil the aim of this study, the work is divided into three research tasks:

First a UA methodology is developed and applied to the Chaohe basin. This method must

overcome difficulties of calibration of hydrologie models due to measurement errors in input

and response, errors in model structure, and the large number of non-identifiable parameters

of distributed models. The difficulties even increase in arid regions with high seasonal

variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity

and autocorrelation. Extending earlier work in the field, we developed a procedure to

overcome (i) the problem of non-identifiability of distributed parameters by introducing

aggregate parameters and using Bayesian inference, (ii) the problem of hetcroscedasticity of

errors by combining a Box-Cox transformation of results and data with seasonally dependent

error variances, (iii) the problems of autocorrclated errors, missing data and outlier omission

with a continuous-time autoregressive error model, and (iv) the problem of the seasonal

variation of error correlations with seasonally dependent characteristic correlation times. The

posterior distribution of the parameters of the hydrologie model and the error model is

calculated using a Markov Chain Monte Carlo (MCMC) technique. Our methodology was

tested with the calibration of the hydrologie sub-model of the Soil and Water Assessment

Tool (SWAT) in the Chaohe Basin in North China. The result demonstrated the good

performance of this approach to uncertainty analysis, particularly with respect to fulfilment of

statistical assumptions of the error model. A comparison with an independent error model

clearly showed the superiority of our approach.

In the second step, the developed continuous-time autoregressive error model is further

extended and tested with an application of SWAT to the Thur river basin in Switzerland,

which has completely different climatic conditions compared to the Chaohe basin. This

application corroborates the applicability of the approach, but also demonstrates the necessity

of accounting for the heavy tails in the distributions of residuals and innovations. This is done

by replacing the normal distribution of the innovations by a Student t distribution, the degrees

of freedom of which is adapted to best represent the shape of the empirical distribution of the

innovations. We conclude that with this extension the continuous-time autoregressive error

model is applicable and flexible for hydrologie modelling under different climatic conditions.
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The major remaining conceptual disadvantage is that this class of approaches does not lead to

a separate identification of model input and model structural errors. The major practical

disadvantage is the high computational demand characteristic for all MCMC techniques.

In a third step the developed technique is compared with other uncertainty analysis

techniques widely used in hydrology to identify differences and similarities of these

approaches. We compared 5 uncertainty analysis procedures: Generalized Likelihood

Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Sequential Uncertainty Fitting

algorithm (SUFI-2), and Bayesian-based continuous-time autoregressive model based on

Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS). For the comparison we

used the SWAT model of the Chaohe Basin in China. As all of these techniques in fact are

classes of techniques, we had to make choices of priors, likelihood functions and goal

functions. We chose these according to their typical uses in applications of hydrological

models. An analysis of the differences in the results of the selected techniques showed that

many of the differences are consequences of not only the choice of the goal function but also

the techniques. As far as the prediction uncertainty is concerned, except ParaSol and simple

IS, all techniques lead to similar results. However, different techniques result in different

posterior distributions of the parameters, best parameter sets, and performances of their

corresponding simulation results. ParaSol leads to narrow parameter ranges because it only

considers parameter uncertainty and uses an incorrect error model, while simple importance

sampling failed due to its inefficient search strategy. From the point view of the authors, due

to its superior theoretical foundation, Bayesian-based approaches are most rccommendable.

However, construction of the likelihood function and testing of the statistical assumption must

require critical attention. Our continuous-time autoregressive error model contributes to this

effort.

General conclusions:

It can be concluded that the developed continuous-time autoregressive error model is

applicable and efficient for uncertainty analysis in distributed hydrological modelling. It

accounts for the effects of parameter uncertainty, uncertainty in the input and response, and

uncertainty in model structure on model predictions. The examination of the residuals and

innovations between the observation and simulations shows that the assumption of

independent t-distributions (or normal distributions) is adequate to describe the distribution of

the innovations of the autoregressive error model. A comparison with the applications of

other uncertainty analysis techniques in hydrology shows that the primary advantage of our
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approach is not the difference in derived prediction uncertainty, but the testable fulfilment of

the statistical assumptions of the error model. This improves the confidence in the uncertainty

estimates.

The major conceptual disadvantage of the approach is the missing separation of error

sources that contribute to total prediction uncertainty. It is an interesting research field to

search for error models that would add this element. The major practical disadvantage is the

high computational demand characteristic for all Markov Chain Monte Carlo techniques.
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Zusammenfassung

Zusammenfassung

Hydrologische Modellierung mit räumlich verteilten Modellen ist nützlich um unser

Verständnis für die Mechanismen der natürlichen Prozesse in einem Einzugsgebiet und deren

Wechselwirkung mit anthropogenen Einflüssen zu verbessern. Sie kann zur Schätzung der

Wasserverfügbarkeit, der Beurteilung der Konsequenzen von Klima- und

Landnutzungsänderungen, und zu den Effekten anderer Veränderungen im Einzugsgebiet

beitragen. Damit können Entscheidungen über Massnahmen zur Verbesserung des

Hochwasserschutzes, der Wasserqualität, der aquatischen Oekosysteme, und der

Freizeitnutzung in einem Einzugsgebiet unterstützt werden. Da die Resultate aller

hydrologischen Berechnungen aufgrund von Messfehlern in Eingangs- und Ausgangsgrössen,

sowie von Modellstrukturfehlern unsicher sind, muss die Zuverlässigkeit der Modellresultate

durch eine Unsicherheitsschätzung beurteilt werden. In den letzten zwei Jahrzehnten sind

viele Methoden der Unsicherheitsschätzung in der Hydrologie entwickelt worden. Die meisten

dieser Methoden fokussieren auf die Unsicherheit der Modellparameter und deren

Auswirkungen und vernachlässigen andere Quellen der Unsicherheit. Zudem gibt es kaum

vergleichende Studien über Vor- und Nachteile der verschiedenen Methoden.

Das Ziel dieser Untersuchung ist es, eine Methode der Unsicherheitsanalyse von

hydrologischen Modellen zu entwickeln, die sowohl den Effekt von Parameterunsicherheit als

auch den von Unsicherheit anderer Ursache berücksichtigt, zusätzlich Vorwissen über

Parameterwerte mit empirischer Evidenz aus dem Einzugsgebiet kombiniert und dadurch die

Unsicherheit der Prognosen reduziert. Die Anwendbarkeit und Effektivität dieser Methode

wird in zwei Fallstudien und durch Vergleich mit anderen Methoden getestet.

Die beiden Fallstudien betreffen die Einzugsgebiete der Flüsse Chaohe und Thur. Das

Chaohe-Einzugsgebiet liegt in Nordchina und hat eine Fläche von 5300 km2. Es steht unter

dem Einfluss von kontinentalem, semi-aridem Klima und hat eine sehr grosse Bedeutung für

die Trinkwasserversorgung von Peking. Das Thur-Einzugsgebiet liegt in der Nordostschweiz

und hat eine Fläche von 1700 km2. Das Klima ist voralpin/alpin.

Die Hydrologie der beiden Einzugsgebiete wurde mit Hilfe des Programms "Soil and

Water Assessment Tool" (SWAT, Arnold et al., 1998) modelliert. In SWAT ist ein auf

physikalischen Grundlagen basierendes verteiltes hydrologisches Modell implementiert, das

die wichtigsten den Wassertransport beeinflussenden Prozesse, wie Wassertransport im

Boden, Oberflächcnabfluss, Grundwassertransport, Verdunstung, Wassertransport in
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Fliessgewässern, usw. beschreibt. SWAT wurde schon sehr oft auf Einzugsgebiete in den

Vereinigten Staaten, Europa, Afrika und Asien angewandt. Das hat zu mehr als 160

begutachteten wissenschaftlichen Publikationen geführt, die SWAT anwenden (Grassman et

al., 2005).

Um die Ziele dieser Arbeit zu erreichen, wurde sie in drei Forschungsarbeiten unterteilt:

Als erster Schritt wurde eine Methode für die Analyse der Unsicherheit von

hydrologischen Modellen entwickelt und auf das Chaohe-Einzugsgebiet angewandt. Diese

Methode musste mit den Schwierigkeiten der Kalibrierung hydrologischer Modelle durch

Messfehler in Eingangs- und Ausgangsgrößen, durch Fehler in der Modellstruktur und durch

die grosse Zahl nicht-identifizierbarer Parameter umgehen. Diese Schwierigkeiten wurden in

dieser Fallstudie noch durch das aride Klima mit der grossen saisonalen Veränderung des

Niederschlags erhöht, das zu einer Vergrösserung der Veränderungen der Varianz und

Autokorrelation der Residuen führt. Als Erweiterung früher publizierter Methoden wurde ein

Verfahren entwickelt, das (i) die Schwierigkeiten der nicht-Identifizierbarkeit der verteilten

Parameter durch die Einführung aggregierter Parameter und die Verwendung von Bayesscher

Inferenz, (ii) das Problem der Veränderungen der Varianz der Fehler durch die Kombination

einer Box-Cox Transformation mit saisonal variierenden Fehlervarianzen, (iii) die Probleme

der Autokorrelation der Fehler, fehlender Daten und Ausreisserelimination mit einem zeitlich

kontinuierlichen autoregressiven Fchlermodel und (iv) das Problem der saisonal abhängigen

Stärke der Autokorrelation mit saisonal variierenden charakteristischen Korrelationszeiten

überwindet. Die a posteriori Verteilung der Parameter des hydrologischen Modells und des

Fehlermodells wird mit einem Markovketten Monte Carlo Verfahren berechnet. Die Methodik

wurde durch die Kalibration des in SWAT implementierten hydrologischen Modells im

Chaohe-Einzugsgebiet in Nordchina getestet.

Als zweiter Schritt wurde das Fehlermodell erweitert und auf das Thur-Einzugsgebiet in

der Schweiz angewandt. Dieses hat ein Klima, das sehr stark vom Klima im Chaohe-

Einzugsgebiet abweicht. Diese Anwendung bestätigte die Anwendbarkeit der Methodik,

zeigte aber auch die Notwendigkeit auf, die Abweichung der Verteilungsform der Residuen

von einer Normalverteilung zu berücksichtigen. Dies wurde durch die Einführung einer t-

Verteilung implementiert, deren Anzahl Freiheitsgrade ein Anpassen der Form an die

empirische Verteilung der Residuen erlaubt. Damit ergibt jetzt das Verfahren gute Resultate

für Einzugsgebiete mit sehr unterschiedlichen klimatischen Einflüssen. Der hauptsächliche

verbleibende konzeptionelle Nachteil ist, dass diese Klasse von Fehlermodellen nicht zu einer
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separaten Identifikation von Input- und Modellstrukturfehlern führt. Der hauptsächliche

praktische Nachteil ist der hohe Rechenaufwand, der charakteristisch ist für alle

Markovketten-Verfahren.

In einem dritten Schritt wurde das entwickelte Verfahren mit andern in der Hydrologie

häufig verwendeten Unsicherheitsanalyseverfahren verglichen. Dies diente der Identifikation

von Unterschieden und Achnlichkciten der verschiedenen Ansätze. Es wurden die folgenden

Verfahren verglichen: Generalized Likelihood Uncertainty Estimation (GLUE), Parameter

Solution (ParaSol), Sequential Uncertainty Fitting algorithm (SUFI-2), und Bayessche

Inferenz mit dem neuen zeitlich kontinuierlichen autoregressiven Fehlermodel basierend auf

der numerischen Approximation mittels Markovketten Monte Carlo (MCMC) und mittels

Importance Sampling (IS). Für den Vergleich wurde das in SWAT implementierte Modell für

das Chaohe-Einzugsgebiet in China gewählt. Da alle diese Techniken eigentlich Klassen von

Techniken sind, mussten noch a priori Verteilungen und Likelihood-Funktionen oder

Zielfunktionen gewählt werden. Diese wurden gemäss typischen Anwendungen in der

Hydrologie gewählt. Danach wurde analysiert, inwieweit die Unterschiede in den Resultaten

der verschiedenen Verfahren die Konsequenzen der Zielfunktionen oder der Verfahren an sich

sind. Was die Unsicherheit der Modellprognosen betrifft, ergaben alle Verfahren mit

Ausnahme von ParaSol und einfachem IS ähnliche Resultate. Demgegenüber waren die

Resultate für die a posteriori Verteilungen der Parameter verschieden. ParaSol führt wegen

der ausschliesslichen Berücksichtigung der Parameterunsicherheit und wegen eines

unkorrekten Fehlermodells zu sehr kleinen Unsicherheitsbereichen. Primitives Importance

Sampling ausgehend von der a priori Verteilung führt wegen der zu grossen Ineffizienz zu

keinen brauchbaren Resultaten. Aus unserer Sicht sind die Bayesschen Methoden wegen ihrer

besseren theoretischen Begründung am empfehlenswertesten. Bei der Anwendung dieser

Methoden muss aber der Konstruktion der Likelihood Funktion und dem Testen der

statistischen Annahmen entscheidende Beachtung geschenkt werden. Unser neuer Ansatz

trägt zu einer solchen Entwicklung bei.

Allgemeine Schlussfolgerungen

Das in dieser Arbeit entwickelte zeitlich kontinuierliche autoregressive Fehlermodell

scheint sich sehr gut für die Anwendung auf hydrologische Probleme zu eignen. Es

berücksichtigt die Effekte von Parameterunsicherheit, Unsicherheit in Eingangs- und

Ausgangsgrösscn und Unsicherheit in der Modellstruktur auf Modellprognosen. Ein Vergleich

der empirischen und der angenommenen Verteilungen der Inkremente des autoregressiven
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Modells zeigt die Angemessenheit der Annahmen von unabhängigen t-Verteilungen (oder

Normalverteilungcn). Ein Vergleich mit den Resultaten anderer

Unsicherheitsanalysetechniken zeigt, dass der Hauptvorteil unseres Ansatzes die testbare

Erfüllung der statistischen Annahmen des Fehlermodells ist. Das erhöht das Vertrauen in die

Resultate der Unsicherheitsschätzung.

Der grösste verbleibende konzeptionelle Nachteil unsers Verfahrens ist die fehlende

Aufspaltung der Fehlerquellen, die zur Gesamtunsicherheit beitragen. Dies ist ein

interessantes Forschungsgebiet für weitere Untersuchungen. Der grösste verbleibene

praktische Nachteil ist der hohe Rechenaufwand, der für alle Markovketten Monte Carlo

Verfahren typisch ist.
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Introduction

1 Introduction

1.1 Background and Motivation

Distributed hydrological models are widely used in many applications such as estimating

water availability and assessing the impacts of climate change and land use change within the

study watershed. They assist decision-making in water management and contribute in

research to understanding the mechanisms of the natural process and the interaction with

human activities. However, all modelling results are subject to uncertainty due to the

measurement errors in input and response and error in model structure. The assessment of the

reliability of the modelling results is very much dependent on the way the uncertainties are

described.

A. Distributed hydrological modelling

In hydrological models the watershed can be characterized differently depending on the

modelling purpose. Hydrologie models can be classified as lumped or distributed models

based on the description of the processes of the system geometry, model input, governing

laws, initial and boundary conditions, and model output. Different from lumped models,

distributed models take an explicit account of spatial variability of processes, input, boundary

conditions, and output (Singh, 1995). Examples of implementations of such models include

SHE (Abbott et al., 1986a and 1986 b) and SWMM 9 (Metcalf and Eddy, Inc., et al., 1971).

Based on the physical basis of the described processes, the distributed model can be further

classified as conceptual distributed model, physically based distributed model, and semi-

physically based / semi-conceptual distributed model. However, no matter how spatially

explicit and how physically based the distributed model is, some parameters should be

estimated indirectly through calibration. For example, the soil hydraulic conductivity can be

correctly measured for a particular location, but such a measurement is often invalid as a

representative average over the model grid cell, let alone the entire domain (Kavestski et al.,

2002).

Recently, distributed models were coupled with Geographic Information System (GIS) or

Remote sensing (RS) to make use of the topographic data, land use data, remote sensing data,

etc for more precise and reasonable prediction, and integrated with biological and ecological

sub-models to model water related issues. Examples of such models include the Soil and
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Water Assessment Tool (SWAT) (Arnold ct al., 1998), AGNPS (Young et al., 1989), and

HSPF (Bicknell et al., 2000).

On the other hand, users of distributed models face the challenging task of calibration and

uncertainty analysis. The difficulty is due to the interaction of different processes and

parameters, the nonlinear and non-monotone characteristics of relationships parameterized in

the model, and the large number of non-identifiable distributed parameters, while only a

relatively small number of observations arc available.

The program SWAT (Arnold et al., 1998) was chosen in this study. SWAT is a semi-

physical ly based and distributed watershed model. It describes the climatic and topographic

heterogeneity through sub-basins based on DEM and climatic stations. It describes the

heterogeneities in land use, soil, management practices through HRUs (Hydrologie Response

Units), which is the unique combination of land use, soil, and management practises for each

HRU. The SWAT program has been widely applied in the USA, Europe, Africa and Asia,

and there are over 160 peer-reviewed published articles using this program (Gassman ct al.,

2005).

In this paper, the SWAT is applied to the Chaohe basin and the Thur river basin. The

Chaohe basin, in North China, is characterized by a temperate continental and semi-arid

climate, and the Thur river basin, in north-east of Switzerland, is characterized by a pre-

alpine/alpine climate.

B. Uncertainty analysis in hydrological modelling

The uncertainties in hydrologie modelling are normally classified as input uncertainty, model

parameter uncertainty, model structural uncertainty and uncertainty in the measurement of

response which is used for model calibration. Input uncertainty is often related to imprecise

measurement of model input or initial condition and spatial aggregation of model input, such

as DEM data, land use data, rainfall, temperature and initial groundwater level, etc. Model

parameter uncertainty is caused by the indirect/dependent measurement, imprecise

measurement or conceptualization process of the model parameters. Model structural

uncertainty may arise from the simplification of the reality, or in erroneous conceptualization

of the processes. Uncertainty in the measurement response often refers to imprecision of the

measured response (e.g. observed streamflow and groundwater level). In some literatures, the

input uncertainty and uncertainty in the measurement response are called data uncertainty

(Gupta, Beven and Wagcncr, 2005).
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Because of the existence of those uncertainties, it has been accepted by most hydrologists

that the process of calibration cannot lead to a single optimal parameter set but one has to find

a probability distribution of parameters that represents the knowledge of parameter values.

This is called the principle of "equifinality" by Beven (2001), but it fits more generally into

any Bayesian approach of statistical inference (Gclman et al., 1995).

In the last two decades, many uncertainty analysis methodologies have been

developed/introduced and applied in hydrological modelling. These methodologies include

Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992), Parameter

Solution (ParaSol; Van Griensven et al, 2006), Markov Chain Monte Carlo (MCMC) and

Importance Sampling (IS) within the Bayesian Approach, Sequential Uncertainty Fitting

algorithm (SUFI-2; Abbaspour et al., 2006), etc. Most of these methodologies and/or their

applications only focus on parameter uncertainty. To better understand the contribution of

different uncertainty sources to the prediction uncertainty, there is a need to investigate the

uncertainties in other sources in addition to parameter uncertainty. It is also useful to

investigate the strengths and weaknesses of different methodologies so as to provide an

overview on how to select a suitable UA methodology in (distributed) hydrologie modelling.

1.2 Goals and Research Questions

Goals:

The primary goal of this project is to develop a UA methodology that accounts for

different uncertainty sources in hydrologie modelling and the statistical assumptions of which

are testable and not violated. The second goal is to compare this technique with other UA

methodologies by studying their strengths and weaknesses, and providing guidance for UA

methodology selection.

In order to illustrate the usefulness and applicability/flexibility of our methodology, two

study sites with different climatic conditions were selected. One of these sites is the Chaohe

basin in North China, which is characterized by a temperate continental and semi-arid climate,

the other is the Thur river basin, in north-eastern Switzerland, which is characterized by a pre-

alpine/alpine climate. Detailed data records such as rainfall, temperature, DEM, land use and

river discharge are available.

To achieve the above goals, the work is divided into three major research tasks:
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1. Development of the continuous-time autoregressive error model and its application to

the Chaohe basin;

2. Extension of the developed methodology and its application to the Thur river basin;

3. Comparison of our technique with other UA methodologies.

Research Questions:

The research objective is addressed by answering three major questions:

1. How can the uncertainty in model structure and in the measurement of input and

response be described within the Bayesian framework in hydrological modelling?

2. Is the developed methodology applicable for other watersheds as well?

3. What are the advantages and disadvantages of the developed methodology in

comparison with other UA methodologies that are also used in hydrological modelling?

1.3 Contents and Structure of the thesis

This thesis is structured in 4 main sections as described below:

Section 2: Hydrological Modelling of the Chaohe Basin in China: Statistical Model

Formulation and Bayesian Inference. In this section, the importance of uncertainty analysis

is addressed and a brief literature review on uncertainty analysis is given. In addition, the

problems and difficulties in the separation of uncertainty sources are discussed. In the

methodology part, a continuous-time autoregressive error model within the Bayesian

framework is developed. This is the key issue of this paper. The developed methodology is

then applied to a SWAT model for the Chaohe basin, China, which has an obvious seasonal

rainfall/flow variation.

Section 3: Bayesian Uncertainty Analysis in Distributed Hydrologie Modelling: A

Case Study in the Thur River Basin (Switzerland). Following section 2, the statistical

assumption of the continuous-time autoregressive error model is strengthened and further

generalized in this section. The generalized methodology is then applied to the application of

the SWAT model to the Thur river basin, Switzerland, which has different climatic conditions

compared to the Chaohe basin.

Section 4: Comparing different uncertainty analysis techniques in a SWAT

application to the Chaohe Basin in China. This section is concerned about the relative

advantages and disadvantages of different UA methodologies: GLUE, ParaSol, SUFI-2, and
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the continuous-time autoregressive model based on two different numerical implementations.

The different methodologies are introduced and applied to the application of the SWAT model

to the Chaohe basin with the same prior setup. The derived posterior parameter distributions,

the quality of the best fit, prediction uncertainty, the efficiency of the techniques and the

conceptual basis of the techniques are compared.

Section 5: Conclusions and outlook. The results from the above sections are analyzed,

and the effectiveness of the developed methodology is discussed. An outlook is given for

future research on the separation of uncertainty source in hydrologie modelling.

1.4 Reference
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Abstract

Calibration of hydrologie models is very difficult because of measurement errors in input and

response, errors in model structure, and the large number of non-identifiable parameters of

distributed models. The difficulties even increase in arid regions with high seasonal variation

of precipitation, where the modelled residuals often exhibit high hetcroscedasticity and

autocorrelation. On the other hand, support of water management by hydrologie models is

important in arid regions, particularly if there is increasing water demand due to urbanization.

The use and assessment of model results for this purpose requires a careful calibration and

uncertainty analysis. Extending earlier work in this field, we developed a procedure to

overcome (i) the problem of non-identifiability of distributed parameters by introducing

aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of

errors by combining a Box-Cox transformation of results and data with seasonally dependent

error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission

with a continuous-time autoregressive error model, and (iv) the problem of the seasonal

variation of error correlations with seasonally dependent characteristic correlation times. The

technique was tested with the calibration of the hydrologie sub-model of the Soil and Water

Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the

good performance of this approach to uncertainty analysis, particularly with respect to the

fulfilment of statistical assumptions of the error model. A comparison with an independent

error model and with error models that only considered a subset of the suggested techniques

clearly showed the superiority of the approach based on all the features (i) to (iv) mentioned

above.

Keywords; Watershed model calibration; Uncertainty analysis; Bayesian inference;

Continuous-time autoregressive error model; MCMC; SWAT; UNCSIM; Aggregate

parameters.
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2.1 Introduction

With continuous urbanization and economic development, water scarcity and deterioration of

water quality have become increasingly severe in many river basins in the world, especially in

arid regions, such as North China. Tackling these problems with effective water management

strategies is crucial for sustaining the economic development and meeting the water demand

of a growing population. Hydrologie models can assist decision-makers in dealing with these

problems by providing systematic and consistent information on water availability, water

quality, and impacts of human activities, particularly land use change, on the hydrologie

systems. However, the confidence in model predictions relies on their uncertainties. These

are difficult to estimate. As hydrologie models need site-specific calibration, uncertainty

estimation must be based on the results of the calibration and validation processes (Yapo et al,

1996; Duan et al., 2003).

Parameter uncertainty in hydrological modelling has gained a lot of interest over the past

two decades. It has been accepted by most hydrologists that the process of calibration cannot

lead to a single "optimal" parameter set but one has to find a probability distribution of

parameters that represents the knowledge about parameter values. This is called the principle

of "equifinality" by Beven (2001) and Beven and Freer (2001), but it fits more generally into

any Bayesian approach of statistical inference (Gelman et al., 1995). Many techniques have

been proposed to quantify parameter uncertainty of hydrologie models. Early approaches

with quite sophisticated error models were based on first-order approximations of the model

equations for Bayesian inference (e.g. Kuczera 1983). Due to the difficulty of quantifying the

errors of linearization (Vrugt and Bouten, 2002) and the increasing availability of

computational power, these approaches have been replaced by Monte Carlo based numerical

approximations to the posterior that account for model nonlincarity. Monte Carlo approaches

can be divided into global random (mostly uniform) importance sampling approaches

including some generalizations (Beven and Binley 1992; Lamb, 1999; Beven and Freer 2001),

regional or iterative importance sampling and similar approaches (Abbaspour et al., 1997,

2004, 2007), and Markov Chain Monte Carlo techniques (Kuczera and Parent, 1998; Bates

and Campbell, 2001; Vrugt et al., 2003). The techniques based on global scanning of the

parameter space have the conceptual advantage of being, in principle, able to deal with

arbitrary shapes of posterior distributions. In particular, this includes multi-modal

distributions. However, as shown by Kuczera and Parent (1998) and others, they are very

inefficient and can even lead to misleading results unless a very large sample of parameters is
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drawn. This is increasingly difficult if the parameter space has a high dimension. The

efficiency of importance sampling can be improved by iteratively adapting the sampling

distribution and by using efficient sampling techniques (Reichert et al., 2002). Such a

"regionalization" should be based on a global search and not on a small sample from global

scanning, as this can propagate the above-mentioned problem of a misleading parameter

selection due to a too small sample to the local search. Nevertheless, iterative adaptation of

the sampling distribution to approximate the posterior in importance sampling remains

difficult, particularly in high dimensional parameter spaces. For these reasons, the Markov

Chain Monte Carlo approach seems to be the most promising general approach. In order to

avoid problems of finding the maximum of the posterior and long burn-in phases, Markov

Chains should be started in the neighbourhood of the maximum of the posterior probability

density calculated with a global search algorithm (e.g. Duan et al., 1992, 1993, 1994). This is

the numerical approach we follow also in this paper. Still the choice of an adequate error

model to construct the model likelihood function remains a challenge.

Conventional watershed models consist of a deterministic description of rainfall, runoff,

evaporation, storage and transport processes. Due to the representation of internal storage

processes by the model, measurement errors of input and errors in model structure lead to

sequentially dependent errors in model results. These errors, together with the measurement

errors of response, can be accounted for by an overall additive autoregressive error model

(e.g. Kuczera 1983, Bates and Campbell, 2001) or by considering the error sources separately

and propagating them through the model. The methodology of including input uncertainty in

Bayesian inference is well known (Zellner, 1971). However, it has rarely been applied in

hydrological modelling (Kavetski et al, 2003), probably because its application to (rainfall)

time series introduces a large number of additional parameters and interferes with errors in

model structure. Errors in model structure have been addressed by making the deterministic

hydrologie model stochastic and combining parameter estimation with the estimation of

model state variables (e.g. Vrugt et al., 2005). As the first approach involves many additional

parameters to be estimated and the second is hard to implement in an existing large hydrologie

simulation program, we will base our analysis on an overall additive autoregressive error

model that accounts for the joint effect of measurement errors of input and response and errors

in model structure. We extend previous approaches with discrete-time autoregressive error

models by introducing a continuous-time autoregressive error model.
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Since the development of the Stanford Watershed Model (Crawford and Linsley, 1966),

there has been a proliferation of watershed models and corresponding simulation programs.

Currently, such simulation programs are coupled with GIS and are being integrated with

biological and ecological sub-models. Such simulation programs include AGNPS (Young et

al, 1989), SWAT (Arnold ct al., 1998) and HSPF (Bicknell et al, 2000). Coupling with GIS

makes it easier to represent the watersheds in more and more detail. This increases the

number of model parameters, decreases their identifiability, and makes calibration and

uncertainty analysis even more difficult. To limit this increase in model complexity, we

define aggregate global or regional parameters to modify distributed parameters. With this

concept, distributed parameters are changed by additively or multiplicatively modifying their

initial, spatially varying values, or by defining values that depend on potentially important

influence factors, such as soil or land use categories or sub-basin index.

The Chaohe Basin in North China is selected as a case study for model calibration and

uncertainly analysis. The severe water scarcity and growing population makes efficient water

management an important issue in North China. The Chaohe Basin is a large part of the

catchment of the Miyun reservoir, an important drinking water source for the city of Beijing.

Previous hydrological modelling studies in North China had the objectives of simulating river

discharge and water quality and assessing the impact of land use and climate change. Some

commonly used models include the Xinanjiang model (Zhao, 1992; Zhao and Liu, 1995), the

Distributed Time Variant Gain Model (Wang et al., 2002), the TOPKAPI model

(TOPographic Kinematic Approximation and Integration) (Liu, 2004), and also SWAT. The

application of SWAT in China includes the application in the Heihe Basin (Huang and Zhang,

2004; Wang et al., 2003), the Suomo Basin (Chen and Chen, 2004), the Luohe Watershed

(Zhang et al., 2003a, 2003b), the Yuzhou Reservoir Basin (Zhang ct al., 2004) and the Luxi

Watershed (Hu et al., 2003). However, to the authors' knowledge, none of the above

applications includes an uncertainty analysis, and hence, these studies are of limited use for

water management as their reliability cannot be quantified.

The goal of the present study is to calibrate the SWAT program (Arnold et al., 1998) for

the Chaohe Basin in North China and to perform a state of the art uncertainty analysis for this

model application. The calibration of the model duplicates to some degree earlier efforts (see

above). However, it is hoped that the calibration and uncertainty estimation techniques and

tools developed and used for this case study will stimulate similar development in future
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studies. This would improve future support of watershed management by hydrologie models

in general and particularly in North China.

This paper is structured as follows: Section 2.2 outlines the techniques used in this paper.

This section starts with an introduction of the Soil and Water Assessment Tool (SWAT), a

description of the aggregate parameters used for model calibration and a brief description of

the software developed for interfacing SWAT (Yang et al., 2005) with our systems analysis

tool UNCSIM (Reichert, 2005). We then focus on the construction of the likelihood function

for heteroscedastic and autocorrelated errors by a detailed description of the continuous-time

autoregressive error model which we will use for optimal flexibility in representing the

deviation of Box-Cox transformed measurements from (transformed) SWAT output. This

section ends with a brief outline of the (standard) techniques of numerical Bayesian inference

by Markov Chain Monte Carlo as we will use them in our application. Section 2.3 contains a

description of the study site and of data acquisition and compilation. In section 2.4, we

describe our application of the model to the Chaohe Basin, and in section 2.5, we present and

discuss the results. Finally the main results are summarized and conclusions are drawn in

section 2.6.

2.2 Methods

2.2.1 Deterministic Hydrological Model

We use the Soil and Water Assessment Tool (SWAT; Arnold et al., 1998;

http://www.brc.tamus.edu/swat) as the simulation software that implements the deterministic

hydrologie model to describe the hydrologie processes in the catchment. A major reason for

this choice was that, in addition to hydrology, SWAT provides modules for the simulation of

sediment, nutrients and pesticides in the watershed. This gives us the opportunity to extend

the present work to water quality in future studies. SWAT implements a partially physically

based and semi-distributed model that operates on a daily time step. In SWAT, a watershed is

divided into a number of sub-basins based on a given DEM (Digital Elevation Model).

Within each sub-basin, soil and land use maps are overlaid to create a number of hydrologie

response units (HRUs), which are the basic working units. SWAT simulates the land phase of

the hydrologie cycle for each HRU. The land phase controls the amount of water, sediment,

nutrients and pesticides delivered to the main channel in each sub-basin. The resulting loads

arc then routed through the channel network of the watershed to the basin outlet.
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Water storage in each HRU in SWAT is represented by four storage volumes: snow, soil

profile, shallow aquifer and deep aquifer. The water mass balance then considers

precipitation, interception, runoff, infiltration, évapotranspiration, percolation, "revap" (water

flux from the shallow aquifer to the soil by evaporation, diffusion and condensation), lateral

movement and, finally, routing in the rivers. Surface runoff from daily rainfall is calculated

using a modified SCS curve number method (Soil Conservation Service, 1972), which

estimates the amount of runoff based on local land use, hydrologie soil group, and antecedent

soil moisture. SWAT can estimate potential évapotranspiration using Penman-Monteith

(Monteith, 1965; Allen, 1986; Allen et al., 1989), Prcistley-Taylor (Priestley and Taylor,

1972), or Hargrcaves (Hargreaves ct al, 1985) methods based on data availability. The

Hargreaves method is used in this study to estimate potential évapotranspiration. For actual

évapotranspiration, SWAT first evaporates any rainfall intercepted by the plant canopy, and

then calculates transpiration, sublimation and soil evaporation based on potential

évapotranspiration and water availability. SWAT's root zone water processes include

évapotranspiration, percolation into deep soil, and lateral movement, while the shallow runoff,

lateral flow and aquifer contribute to the stream flow. SWAT provides two water routing

methods, the variable storage (Williams, 1969) and Muskingum (Cunge, 1969; Chow et al,

1988) methods. In this study we use the Muskingum routing method.

2.2.2 Aggregate Parameters

Calibration of a distributed hydrologie model using discharge data from a small number of

river sites always leads to non-identifiable parameters due to strong overparameterization.

One way of dealing with overparametcrized models is to combine prior knowledge about

parameter values with data using Bayesian inference. Due to the very large number of model

parameters, this would be computationally very demanding. In order to use the information

about spatial variation or about the dependence on important influence factors, but to keep the

number of parameters small, an alternative approach is used in this study. For distributed

parameters cither a value or a multiplicative or additive modification term to the prior

parameter values can be used instead of using the parameter values in all HRUs. Such a

modification term can be chosen to have a global value, or different values for different

categories of important influence factors such as soil type, land use, etc.

To do this, an interface program iSWAT (Yang et al., 2005; http://www.uncsim.eawag.ch/

interfaces/swat) was implemented that allows its users to encode information into an extended

parameter name on how to apply a parameter value conditionally on important influence
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factors and location and hence aggregate distributed parameters. The name of the SWAT

aggregate parameters uses the following format:

x <parnamc>.<cxt> <hydrogrp> <soltext> <landuse> <subbsn> (2.1)

Where x represents the type of change to be applied to the parameter (v: value; a' absolute

change; r: relative change), <parname> is the SWAT parameter name; <ext> represents the

extension of the SWAT input file which contains the parameter value; <hydrogrp>, <soltext>,

<landuse>, and <subbsn> represent the dependent factors, referring to soil hydrologie group,

the type of soil texture, the land use category, and sub-basin number/crop index/fertilizer

index, respectively. For these factors, single values or groups of values can be specified, or

they can be omitted to indicate that the change is applied independently of the factor. For

example, v CN2.mgt = 75 will cause a global replacement of CN2 values (v^value) in the

management files by 75, and a CN2.mgt AGRR_1,5 = 5 will increase the CN2

values by 5 (a=absolutc change) in subbasin 1 and 5 in which the landuse types arc "AGRR"

independent of hydrologie group and soil texture (corresponding codes omitted in the

extended parameter name).

< Systems analysis program>

'

i i

i

A I

SWAT program

Figure 2.1: A schematic flowchart shows the linkage of the systems analysis program and

SWAT model.

The interface program iSWAT reads the parameter names and values from a file written

by a systems analysis tool and modifies the SWAT input files accordingly. After execution of

SWAT it compiles the results to a format that can easily be interpreted by the systems analysis

tool. This makes it possible to couple SWAT with any systems analysis tool that supports the

simple file-based information exchange format described by Reichert (2006). Figure 2.1

illustrates the interaction between iSWAT, SWAT and the systems analysis tool. More details

are given in Yang et al. (2005).

2.2.3 Likelihood Functions

The deterministic hydraulic simulation model can be written in the form of the function
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yw(e) = (.<(e),7,w(e),...,^(e)) (2.2)

where yf (G) represents the model output at time /, for model parameter values 6 = (#,,...,0n )

(in our case mostly aggregate parameters as described in section 2.2.2), and M indexes the

model.

As mentioned in the introduction, measurement errors of input and response and errors in

model structure lead to deviations of simulation results from measurements. These are

modelled as an additive random process to Box-Cox transformed model results (Box and Cox,

1964; 1982). The parameters of the Box-Cox transformation give us degrees of freedom to

improve the degree of fulfillment of simple distributional assumptions of the errors. After

adding the random error to the transformed results, we need a transformation back to the

original scale for comparison with data. This leads to the following model formulation as

random variables at all observation time points:

YlM(Q) = g,(g(y^(Q))+Et) (2.3)

In this equation, g and g'1 are forward and backward Box-Cox transformations

g(y)

{ InCy-U) 4=0
[ exp(z)-A2 Ä^O dy

(2.4)

X\ and X2 arc Box-Cox transformation parameters (y+ A?) must be larger than zero for all

values of y; X\ = X2 = 1 leads to the identity transformation), E, is the random variable

quantifying the total effects of measurement errors of input and response and errors in model

structure on model results, and YtM is the random variable describing model response at time

The simplest assumption for the error term, Et ,
is that it consists of independent,

normally distributed random variables with mean zero and standard deviation a. In this case,

the probability density of Et is given by

f 2^
11

'

A, (£/,)^-7~-—exP
V2;r ct 2 a2

(2.5)
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However, due to the memory effect of storage processes, even independent input and

model structure errors will lead to correlated response errors. For this reason, we use an

autoregressive model to formulate the error term Et .
In the past, this has usually been done

with discrete-time autoregressive error models (e.g. Kuczera, 1983; Bates and Campbell,

2001). Our approach is similar, but we use a continuous-time autoregressive error model (e.g.

Brockwcll and Davis, 1996; Brockwell, 2001) because this seems to be a more reasonable

representation of continuous-time processes in the catchment and because this significantly

facilitates dealing with missing data and outliers. Because of the adequateness and simplicity

of the mean-reverting Ornstein-Uhlenbeck process, we use it to describe this error term (e.g.

Kloeden and Platen, 1992; the same process was used for describing continuous, time-

dependent model parameters in Tomassini et al. 2007). The conditional probability densities

of the individual errors are then given by

A,te„):
i

2n <y

exp
JA
2 er2

2 A

(2.6)

4K,(é<'K^V27
a 1 -exp 2^

t -t-

rexp

exp
t, -/.

Y^

U

CT 1-exp -2-i
t, ~~t.

J )

where a is the asymptotic standard deviation of the errors and r the characteristic correlation

time. The assumption here is that the random disturbances, sometimes called innovations

(Chatfield, 2003),

A, = E, ~ Eu, CXP
/.-/,.

(2.7)

rather than the individual errors, El ,
are independent and normally distributed. Keeping the

asymptotic standard deviation of the errors Et at er, the innovations must have standard

deviations of

ah =ö- 1-exp
f t -t

^

(2.8)

They reach ct if the time difference between two observations is large compared to the

characteristic correlation time, r, and they are significantly smaller if subsequent observations

are within that time or even closer. Note that the formulation of this likelihood function is

27



Chapter 2

similar to the approach suggested by Duan et al. (1988) for use with unequally spaced data.

However, equation (2.8) formulates the essential difference: when decreasing temporal

distance of measurement points in our error model not only the correlation increases, but also

the standard deviation of the error term decreases. This guarantees its applicability on a

continuous time scale.

Combining the deterministic hydrologie model (2.2) with the Box-Cox transformation

(2.3, 2.4) and the independent error model (2.5), we end up with the following likelihood

function:

>;-ie(y|»)=n
i i

(in a-

exp
ikv, )-#(>>,>))]

2\

a

dg

dv
(2.9)

Note that when keeping the transformation parameters X\ and Ai constant, maximum

likelihood parameter estimation results in minimizing the sum of weighted squares of the

deviations of transformed model results from transformed data. In the special case of the

identity transformation this reduces to the minimization of the sum of squares of model results

from measured data what is equivalent to maximizing the Nash-Sutcliffe coefficient (Nash

and Sutcliffc, 1970).

Similarly, combining the deterministic hydrologie model (2.2) with the Box-Cox

transformation (2.3, 2.4) and the Ornstein-Uhlenbeck continuous-time autoregressive error

model (2.6) leads to the likelihood function

./v>(5ie)=-/^-exP
In <y

iktvf0)-g(<(e))]2
a

<*g

n
i=i

ct (1 - exp

<
t -t ^

exp

dv

'g(ytl)-g(y<u(w)

k,)-^,(»)W--
\

2 A

1 - exp

t -t .

2 -—±_1

\"\

dg

dy

(2.10)

In the following, we will call the likelihood function (2.9) independent error model and we

will use it for comparative purposes only. We call the likelihood function (2.10)

autoregressive error model and will use it for the actual application of the model.
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In order to test the statistical model assumptions of the likelihood function (2.9), we will

check the standardized residuals of transformed data and model results

ri(Qy,^iKhÂl3l (2.11)

for independent normality (with mean zero and standard deviation unity) and for the

likelihood function (10) the standardized observed innovations of the transformed data and

model results

\

g(y? ) - g(y? (0))- (g(y?: ) - g(yl (e))W -

',-',-.

L (ö,yobs) = ,

v (2.12)

a 11-exp
/ /,-/,.

2
'i ii-\

for fulfillment of the same statistical assumption. In these equations, yobs are the observations

corresponding to the model outputs. To check for heteroscedasticity and correlation of

standardized residuals (Equation 2.11) and standardized observed innovations (Equation

2.12), we plotted their time series, autocorrelation functions and cumulative periodograms.

2.2.4 Bayesian Inference and Numerical Implementation

We will derive a posterior probability density function of the parameters, / , (oly "bs

), from

the prior density, fB (0), and data, yobb, according to Bayes' theorem

, ,B -,
/T>(y*|e)-A.W

-1 J/ï.|.<y*|»,)/..<<0<w
(2"13)

where the model likelihood function, /y«ie(y° j0), is either (for comparative purposes)

given by equation (2.9) or by equation (2.10). A numerical sample of the posterior

distribution is derived by applying the Metropolis-Hastings Markov Chain Monte Carlo

algorithm (Gelman et al., 1995). In order to avoid long burn-in periods (or even lack of

convergence to the distribution) the chain is started at a numerical approximation to the

maximum of the posterior density calculated with the aid of the shuffled complex global

optimization algorithm (Duan ct al., 1992, 1993, 1994). Markov Chains were run until 20 000

model runs were reached after the convergence criterion of Heidelberger and Welch was

fulfilled (Cowles and Carlin, 1996; Best et al., 1995). The likelihood function, optimization
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algorithm and Markov Chain algorithm were implemented in an updated version of the

UNCSIM program (Reichert, 2005).

2.3 Study Site and Data Compilation

2.3 1 Site Description

The Chaohe Basin is situated in North China with a drainage area of 5,300 km above the

Xiahui station (see Figure 2.2). The characteristic of the climate is temperate continental and

semi-arid. From 1980 to 1990 the average daily maximum temperature was 6.2°C, the

average daily minimum temperature in this period was 0.9°C, and the yearly rainfall varied

between 350 to 690 mm. The elevation varies from 200 m at the basin outlet to 2,400 m at the

highest point in the catchment. The topography is characterized by high mountain ranges,

steep slopes and deep valleys. Water flows fast in the river and the average channel slope is

1.87%. Average daily flow at the catchment outlet is 9.3 m s"1 and varies irregularly from

around 800 m s" during the flood season to lower than 1 m s" in the dry season at the

Xiahui station. The ratio of runoff at the Xiahui station to the rainfall in this basin decreased

from 0.24 in 1980 to 0.09 in 1990. It is believed that the decline is mainly due to the

intensified human activities, including increasing water use and build up of more water

retention structures.

The Chaohe River is one of two tributaries flowing into the Miyun reservoir, which is an

important drinking water reservoir for Beijing city and provides nearly half of the city's water

supply (Jia and Cheng, 2002). As a major drinking water source of Beijing city, both water

quality and water quantity are important concerns in this river basin. However, due to the

decrease in incoming water and increase in soil loss and pollution from the upper stream, the

water level of the Miyun Reservoir has been declining continuously and the water quality has

been deteriorating. The reservoir is severely affected by dissolved pollutants and pollutants

attached to suspended particles and sedimentation (see e.g. Wang et al, 2001;

http://www.china.com.cn/chinese/zhuanti/qyjjfz/1169096.htm). Although the Chinese

government has taken measures to improve water quantity and quality in the inflows to the

reservoir, such as implementing reforms on water prices and land conservation programs, the

problems have not decreased and are even exacerbating. One of the reasons for the

ineffective control of the problems has been the lack of quantitative understanding of the

hydrologie system and of how it is affected by human activities in the river basin. Given this
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background, a hydrologie and water quality model for this basin is useful for providing more

reliable information to improve water resource management.

Figure 2.2: Location of the Chaohe Basin in North China. Solid circles represent reservoirs,

irregular polygons stand for subbasins in this project, and the triangle is the outlet (Xiahui

station).

2.3.2 Data Compilation

In the following, a short description is given of the data gathered for the Chaohe Basin and its

processing for the application of the model:

(i) A digital elevation map (DEM) at a scale of 1:1,000,000 was obtained from the "China

Data Centre" of the University of Michigan (http://chinadatacenter.org/newcdc/).

(ii) A soil map at a scale of 1:1,000,000 was provided by the Institute of Soil Science,

Chinese Academy of Sciences, Nanjing (Shi et al, 2004),

(http://issas.ac.cn/english/soil_database.htm). The soil data is aggregated into 35 soil profiles

in the Chaohe Basin. The original soil data only contains the percentages of the texture

components, bulk density and organic carbon content. The soil erodibility factor, USLEK,

was estimated by an equation proposed by Williams (1995), saturated hydraulic conductivity,

SOLK, and available water storage capacity, SOLAWC, were initially estimated using
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pedotransfer functions proposed by Schaap ct al.(1996 and 2001) and later calibrated for the

region.

(iii) A land use map at a scale of 1:1,000,000 was provided by the Institute of Geography

Chinese Academy of Sciences, Beijing. The dominant land uses in the Chaohe Basin are

forest (49.5%), grassland (27.3%), and agricultural land (21.3%). Agricultural land is mainly

distributed on both sides of the main channel and tributaries including the river flood plains.

The main crops planted in this area are corn and wheat.

(iv) Daily precipitation data contains 15 stations over a period of 6 years (1985-1990)

(Hydrologie Yearbook, Ministry of Water Resources, China), and daily maximum and

minimum temperatures for 2 stations (Fengning and Luanping) over a period of 40 years

(1960-2000) (China Meteorological Administration, www.cma.gov.cn).

(v) Six reservoirs were built in the Chaohe Basin during the 1970s or earlier. However,

the total catchment area of these reservoirs contributes to only 5% of the watershed area and

the total storage capacity of the reservoirs is 2.4% of the yearly water discharge passing

through the Xiahui station. The properties of those reservoirs are listed in Table 2.1.

(vi) Daily discharge data used is at the basin outlet Xiahui (5340 km2) for 6 years (1985-

1990) (Hydrologie Yearbook, Ministry of Water Resources, China).

Table 2.1 : Properties of the reservoirs in the Chaohe Basin

„ . „ Longitude Latitude Watershed Area Storage capacity
Reservoir name County

., . ,, . ,. . ,°4 X
J

(degree) (degree) (ha) (10 m )

Mujiang Fengning 116.60 41.52 2541 84.2

Shanshengmiao Fengning 116.77 41.02 3600 10.4

Hongqi Fengning 117.10 40.95 5360 52.4

lingying Fengning 117.10 41.05 3050 144.0

Caoyingzi Luanping 117.18 40.93 2400 127.0

Longtanmiao Luanping 116.80 40.92 10300 286.0

According to the natural river network, the topography of the basin, and the distribution of

rainfall stations, the basin was divided into 53 sub-basins. To get a reasonable resolution of

soil properties and land use and management practices, these sub-basins were divided into a

total of 262 HRUs (see section 2.2.1 for an explanation of HRUs). The watershed

parameterization and the model input were obtained using the ArcView interface to SWAT

(AVSWAT; Di Luzio ct al., 2002), which provides a graphical support for the disaggregation

scheme and allows the construction of the model input from digital maps. The initial values

of distributed parameters (hereafter referred as "initial (parameter) estimates") are either
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directly obtained from the database (e.g. parameters concerning the soil property, crop

property, rainfall, etc) or estimated by AVSWAT based on input maps and database (e.g.,

curve number, manning roughness coefficients).

2.4 Application

2.4.1 Choice and Prior Distribution ofParameters

An application of SWAT with initial parameter estimates extremely over-predicted the

observed flow. The reason may be the incorrectness of the initial estimates of soil parameters

and the fact that the initial estimates of SWAT's land use parameters can not be directly

applied to the Chaohe Basin. Based on a literature review and preliminary sensitivity

analyses, 10 SWAT aggregate parameters related to river flow were selected for calibration

(Table 2.2).

The prior distribution of the aggregate parameters was assumed to be the combination of

independent marginal distributions for the parameters. For the SWAT aggregate parameters,

uniform priors within reasonable ranges were assumed. These ranges were selected based on

recommendations given in the SWAT user manual (Neitsch et al., 2001). For the parameters

<rand r, characterizing the statistical part of the likelihood functions (2.9) and (2.10), densities

proportional to 1/erand 1/rwere chosen, which is equivalent to assuming that the logarithms

of these parameters are uniformly distributed. The prior for the parameter A\ of the Box-Cox

transformation was chosen to be uniform in the interval [0,1 J, and Aa was kept fixed at a value

of zero. Table 2.2 gives an overview of the parameters used for calibration and their marginal

prior distributions.

In the Chaohe Basin, wet and dry seasons can be clearly distinguished. Hydrology during

the wet season is driven by highly variable precipitation, whereas during the dry season a

slowly decreasing base flow dominates the hydrograph pattern. This can have consequences

for the model error. For this reason, we inferred different values of the parameters crand rof

the statistical error model for dry season (October to May) and for the wet season (July and

August) assuming a linear transition from one value to the other in June and September.
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2.4.2 Approach

As we cannot specify reasonable initial values for all storage volumes considered in the model,

SWAT was operated for a "warm-up period" of 5 years without comparison of model results with

data. We found that such a "warm-up period" was sufficient to minimize the effects of the initial

state of SWAT variables on river flow. Furthermore, to test the calibrated model parameters, the

model was calibrated and tested based on the observed discharges at the watershed outlet (Xiahui

station, Figure 2.2) using a split sample procedure. The data from the years 1985-1988 with

omission of a single outlier in 1985 was used for calibration, and the data from 1989-1990 was

used to test the model.

To analyse and demonstrate the effect of the Box-Cox transformation, of the seasonal

dependence of the parameters of the error model, and of the autoregressive error model, wc

compare the results of four different calibrations:

1. Application of the independent and normally distributed error model (2.9) with A\ and A2

set equal to unity. This is used to get a reference to traditional hydrological modelling.

2. Application of the independent error model (2.9) with Box-Cox transformation {X\

estimated and A2 = 0), but without seasonally dependent parameters of the independent

error model.

3. Application of the independent error model (2.9) with Box-Cox transformation (X\

estimated and X2 = 0) and with seasonally dependent parameters (crdry, and erWet)-

4. Application of the autoregressive error model (2.10) with Box-Cox transformation (Xi

estimated and X2 = 0) and with seasonally dependent parameters (odry, crwet, rdry and rwet).

For each of these calibrations, heteroscedasticity and autocorrelation of standardized residuals

(Equation (2.11) for the independent error model) or of standardized observed innovations

(Equation (2.12) for the autoregressive error model) were checked.

To quantify prediction uncertainty we plot the 95% posterior uncertainty bands together with

the simulation corresponding to the parameters at the maximum posterior density and the

observed data points. In addition, wc calculate the standard deviation of the model results

considering all sources of uncertainty (parameter uncertainty and input, model structure and
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output uncertainty described by the autoregressive model) and the standard deviation of the

results of the deterministic model due to parameter uncertainty only. Finally, we calculate the

fraction of data points contained in the 95% prediction uncertainty band.

2.5 Results and Discussion

Figures 2.3, 2.4 and 2.5 show regression diagnostics for the simulations during the calibration

period for all four calibrations described in section 2.4.2. Figure 2.3 shows time series of the

standardized residuals (for calibration 1; according to equation 2.9 without transformation),

standardized residuals of transformed model results and data (for calibrations 2 and 3; according

to equation 2.9) and standardized observed innovations of the autoregressive error model (for

calibration 4; according to equation 2.10) at the maxima of the posterior densities during the

calibration period. The standardized residuals corresponding to calibrations 1 and 2 exhibit

strong heteroscedasticity and high autocorrelation. By combining the Box-Cox transformation

with the seasonally dependent standard deviation (ödry, and owet), the heteroscedasticity of the

residuals could be considerably decreased in calibration 3. However, all three calibrations show a

strong autocorrelation of residuals, particularly during the dry season. Calibration 4, based on the

autoregressive error model with Box-Cox transformation and seasonally dependent parameters of

the error model, obviously decreases the degree of these problems considerably. This is

quantified in Figures 2.4 and 2.5 which show the autocorrelation functions and cumulative

pcriodograms of residuals or observed innovations for all four calibrations. Figure 2.4 clearly

shows the high autocorrelation of the residuals for the calibrations 1, 2 and 3. This is in

contradiction to the independence assumption of the error models. On the other hand,

autocorrelation of the observed innovations of the autoregressive error model are very small

(calibration 4). Figure 2.5 demonstrates that the white-noise assumption of the standardized

residuals of the transformed output is clearly violated in calibrations 1, 2 and 3, whereas it can be

accepted for the standardized observed innovations of the autoregressive error model.
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Figure 2 3 Time series of standardized residuals (calibration 1 ), standardized residuals of

transformed model results and data (calibrations 2 and 3) and standardized observed innovations

of the continuous-time autoregressive model (calibration 4) at the maxima of the posterior

distributions The dark shaded areas indicate the wet seasons, light shaded areas indicate

transition periods, and white areas indicate dry seasons
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posterior distributions.
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Figure 2.5: Cumulative periodograms with 95% limit lines for standardized residuals (calibration

1), standardized residuals of transformed model results and data (calibrations 2 and 3) and

standardized observed innovations of the continuous-time autoregressive model (calibration 4) at

the maxima of the posterior distributions.

Figure 2.6 shows histograms approximating the marginals of the posterior parameter

distribution. The decrease in CN2 (negative value of a CN2.mgt; see section 2.2.2) and the

increase in SOLAWC (positive value of a SOLAWC.sol; see section 2.2.2) reflects the

overestimation of flow in the default simulation. The high increase in CHK2 (positive value of

a CH_K2.rte) indicates that there is a strong interaction between the river channel and
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groundwater, aw« is much larger than <Tdry as a consequence of larger fluctuations of

measurements around simulation results during the wet season. The reason for this difference is

the driving force of hydrologie response: it is driven by highly variable and sometimes intensive

rainfall during the wet season and by groundwater feed during the dry season. The characteristic

correlation time during the dry season, rdry, is nearly 10 times longer than during the wet season,

rwet. This is caused by the long extension of the dependence of model results on the "initial"

value at the beginning of the dry season. Because of the high temporal dynamics of the input

during the wet season, dependence of errors is much weaker. The marginal distributions of the

parameters arc quite narrow compared to their prior distributions (see Table 2.2). This shows that

only a small part of the output errors can be mapped to parameter uncertainty. Our simulation

with this narrow parameter distribution still docs not show a serious violation of the statistical

assumptions, as the error model adds sufficient uncertainty to the model results to "explain" the

deviations from the simulations. This demonstration of the compatibility of the statistical model

with the data is satisfying and gives us confidence into the uncertainty estimates of model

predictions. However, the posterior distribution of the model parameters may be multi-modal and

similarly good predictions may be possible within other local maxima of the posterior. This

makes it difficult to interpret the posterior marginals as realistic uncertainty estimates of the

parameters (despite the realistic uncertainty estimates of the predictions dominated by the error

model).

In order to compare the traditional hydrological calibration method (calibration 1 with

likelihood function 2.9) with the autoregressive error model approach, optimal SWAT aggregate

parameters for calibration 1 arc marked by an asterisk ("*") in Figure 2.6. In addition, the quality

of discharge calibration is compared for these two approaches in Table 2.3 using different

performance measures. As can be seen from Figure 2.6, there arc significant differences in

aggregate parameter values between these two approaches. This is caused by different choices of

the likelihood function. Although maximizing the likelihood function of the traditional method is

equivalent to maximizing the Nash-Sulclijfe coefficient, in Table 2.3, the values of the Nash-

Sutclijfe coefficient and of R are only slightly smaller for the autoregressive error model than the

traditional method. On the other hand, obviously, the log posterior densities for both calibration

and validation period arc smaller for calibration 1 than those of the autoregressive error model.

The comparison of numerical criteria cannot be used to assess these two approaches. The
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essential difference is that the distributional assumptions of the independent error model are

strongly violated. This is not the case for the autoregressive error model.
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Figure 2.6: Histograms approximating the marginals of the posterior parameter distribution.

Asterisks ("*") indicate the optimized aggregate parameter values by traditional method

(calibration 1).
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Figure 2.7: 95% prediction uncertainty bands associated with parameter uncertainty (dark shaded

area), and with parameter uncertainty and continuous-time autoregressive model (light shaded

area) during the calibration period (top and middle) and validation period (bottom). The dots

correspond to the observed discharge at Xiahui station and the line stands for the simulated

discharge at the maximum of the posterior distribution. The light and dark shaded areas on the top

of each plot indicate the transition periods and wet seasons, and the line on the top represents

rainfall series.
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Table 2.3: Performance comparison between traditional method and autoregressive error model

Nash-Sutcliffe R2 Log posterior density

Traditional Calibration period 0.82 0.80 -4872

method validation period 0.81 0.80 -3507

Autoregressive Calibration period 0.77 0.78 -3078

error model validation period 0.73 0.81 -3217

Figure 2.7 shows the best model prediction (at the maximum of the posterior density) and

95% prediction uncertainty bands associated with parameter uncertainty only (dark shaded area)

and with total uncertainty (parameter uncertainty and uncertainty described by the continuous-

time autoregressive error model; light shaded area) both during the calibration and validation

periods. As can be seen, although the prediction uncertainty from parameter uncertainty (dark

shaded area) is very narrow (it covers 10% of the measured data points during the calibration

period), the 95%> uncertainty bands representing total uncertainty brackets most of the

observations (85%). This indicates that our proposed approach can mimic the prediction

uncertainty. Despite the severe violation of statistical assumptions demonstrated in Figures 2.2,

2.3 and 2.4 for the independent error model (simulation 3), the prediction uncertainty estimates

are quite similar to those of the autoregressive error model. This is caused by the dominance of

the error of the additive error model over the error caused by uncertain model parameters. There

is no reason that the independent error model reproduces the standard deviation of the residuals

less adequately than the autoregressive error model. The inadequate description of the correlation

of residuals makes individual realizations of model predictions unrealistic (particularly during the

dry season), but the 95% prediction uncertainty bands are not seriously affected.

Uncertainty of predicted river discharge, quantified by its standard deviation, is mainly

dependent on the predicted discharge. This allows us to approximately summarize prediction

uncertainty as a function of predicted discharge. Figure 2.8 shows how the standard deviation of

the predicted discharge increases with the predicted discharge. The figure distinguishes the dry

and wet seasons. Prediction uncertainty is significantly larger during the wet season. As

discussed earlier, parameter uncertainty contributes only to a small part to total uncertainty. The

approximate relationship shown in Figure 2.8 is very precise for the total uncertainty, whereas

there is more scatter around the relationship for the parameter uncertainty only.
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Figure 2.8: Approximate standard deviation of model predictions as a function of predicted

discharge. "Total uncertainty" refers to uncertainty due to parameter uncertainty and the

autoregressive error model. "Parameter uncertainty only" refers to deterministic model results

based on uncertain (posterior) model parameter without consideration of the autoregressive error

model that accounts for input, model structure and measurement error.

2.6 Summary and Conclusions

While calibrating the hydrologie model for the Chaohe Basin, we encountered the following

problems:

• The distributed parameters are (obviously) not identifiable from the data of a single

watershed outlet station.

• Multiple local maxima of the posterior make it difficult to find the "true" maximum and

get a reasonable uncertainty estimate of model parameters.
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• Measurement errors of input and response and model structure deficits lead to errors

which could not be made homoscedastic by a Box-Cox transformation of data and model

output or by the use of different error variances for the dry and wet seasons.

• As input and model structure errors are propagated through a model with memory effect

due to water storage, residuals are substantially correlated even for the best model fit.

• The structure of the residuals was significantly different during the wet (larger variance,

less autocorrelation) and the dry season (smaller variance, long range of higher

autocorrelation). This is caused by the highly variable input during the wet season and by

the sensitivity of the model results to the "initial" condition at the beginning of the dry

season and the storage release parameters of the model.

Theses problems could be overcome by applying the following techniques:

• Non-identifiability of distributed parameters was overcome (i) by the use of aggregate

parameters that use the spatial structure of distributed parameters based on prior

information and (ii) by applying a Bayesian inference technique that docs not rely on

parameter identifiability. Technically, this was implemented with the aid of an interface

program that has a very high flexibility in modifying parameters on SWAT input files

(Reichert, 2006; Yang et al, 2005).

• The effect of measurement errors of input and response and errors in model structure were

described by a continuous-time autoregressive error model. This model was applied as

follows:

o It was used to describe an additive error between Box-Cox transformed model

results and data.

o It was used with different error variances during wet and dry seasons. Together with

the Box-Cox transformation, this lead to a reasonably good homosccdasticity of the

standardized residuals between the transformed model result and data. (The

combination of these two measures was necessary to achieve approximate

homoscedasticity and normality.)

o The characteristic correlation time was chosen differently for wet and dry seasons.

A significantly longer correlation time during the dry season than during the wet
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season led to very low autocorrelation in the standardized observed innovations of

the autoregressive error model.

• Numerically, Bayesian inference was done by a Metropolis-Hastings Markov Chain

algorithm that was started at a numerical approximation to the maximum of the posterior

density calculated by an implementation of the shuffled complex global optimization

algorithm (Gelman ct al., 1995; Duan et al., 1992, 1993, 1994; Reichert, 2005).

• The advantage of the autoregressive error model over the traditional calibration method is

shown by comparing the results of both approaches.

In contrast to a discrete-time autoregressive error model, the continuous-time autoregressive

model seems conceptually more satisfying as a description of the effects of input and model

structural errors that arc of a continuous nature. The residual diagnostics demonstrated that the

model application is consistent with the underlying statistical assumptions. However, despite the

obvious violation of the statistical assumptions by the independent error model, both error models

led to similar prediction uncertainty estimates.

This study also demonstrates that prediction uncertainty in hydrological modelling can hardly

be described by parameter uncertainty only. Our technique provides a statistical description of

the effect of input, model structure, and output uncertainty on the model results. More research is

needed, however, to separate these error sources and to get a description that better addresses

their cause in addition to their effect.

We hope that the development of this technique and its provision in a generally applicable

system analysis program (Reichert, 2005) will stimulate the application of consistent uncertainty

analyses in hydrological modelling. This provision of prediction uncertainty estimates on a

routinely basis could increase the awareness of decision makers about scientific uncertainty and

improve the model-based support of their decisions.

2.7 Acknowledgement

We would like to thank Prof Xia, J., Prof. Jia, S., Dr. Wang, G., and Dr. Dong, W. of Institute of

Geographical Science and Natural Resources Research, CAS, and Dr. Liu, C. of Beijing Normal

University for helping us with data collection, and Mr. Li, X. and Mr. Zhang X. from the Water

Authority of the Fcnning County for guiding our field trip.

46



Hydrological Modelling of the Chaohe Basin in China

2.8 References

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J.,

Srinivasan, R., 2007. Spatially-distributed modelling of hydrology and water quality in the

pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333:413-430.

Abbaspour, K.C., Johnson, A., van Genuchten, M.T., 2004. Estimation of uncertain flow and

transport parameters by a sequential uncertainty fitting procedure: SUFI-2. Vadose Zone

Journal 3(4), 1340-1352.

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J.,

Srinivasan, R., 2007. Spatially-distributed modelling of hydrology and water quality in the

pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333:413-430.

Allen, R.G., 1986. A Penman for all seasons. Journal of Irrigation and Drainage Engineering-

ASCE 112(4), 348-368.

Allen, R.G., Jensen, M.E., Wright, J.L., Burman, R.D., 1989. Operational Estimates of Reference

Evapotranspiration. Agronomy Journal 81(4), 650-662.

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologie modeling

and assessment - Part 1: Model development. Journal of the American Water Resources

Association 34(1), 73-89.

Bates, B.V., Campbell, E.P. 2001. A Markov Chain Monte Carlo scheme for parameter

estimation and inference in conceptual rainfall-runoff modeling. Water Resources Research

37(4), 937-947.

Best, N.G., Cowles, M.K., Vines, S.K., 1995. Convergence Diagnosis and Output Analysis

software for Gibbs Sampler output: Version 0.3. Cambridge: Medical Research Council

Biostatistics Unit.

Beven, K., 2001. I low far can we go in distributed hydrological modelling? Hydrology and Earth

System Sciences 5(1), 1-12.

Beven, K., Binley, A., 1992. The Future of Distributed Models - Model Calibration and

Uncertainty Prediction. Hydrological Processes 6(3), 279-298.

Beven, K., Freer, J., 2001. Equifinality, data assimilation, and uncertainty estimation in

mechanistic modelling of complex environmental systems using the GLUE methodology.

Journal of Hydrology 249(1-4), 11-29.

47



Chapter 2

Bicknell, B.R., Imhoff, J., Kittle, J., Jobes, T., Donigian, A.S., 2000. Hydrological Simulation

Program - Fortran User's Manual, Release 12, U.S EPA.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical

Society Series B, 211-252.

Box, G.E.P., Cox, D.R., 1982. An analysis of transformations revisited, rebutted. Journal of the

American Statistical Association 77(377), 209-210.

Brockwcll, P.J., Davis, R.A., 1996. Introduction to Time Series and Forecasting, Springer, New

York.

Brockwell, P.J., 2001. Continuous-time ARMA processes. In: Shanbhag, D.N. & Rao, C.R.,

(Eds.), Stochastic Processes: Theory and Methods, Vol. 19 of Handbook of Statistics,

Elsevier, Amsterdam, pp. 249-276.

Chatfield, C, 2003. The Analysis of Time Scries: An introduction (Sixth Edition). Chapman &

hall/CRC pub, P40.

Chen, J., Chen X., 2004. Water Balance of the SWAT Model and its Application in the Suomo

Basin. Acta ScientiarumNaturalium-Universitatis Pekinensis 40(2) (in Chinese).

Chow V.T., Maidment, D.R., Mays, L.W., 1988. Applied Hydrology. McGraw-Hill, Inc., New

York, NY.

Cowlcs, M.K., Carlin, B.P., 1996. Markov chain Monte Carlo convergence diagnostics: A

comparative review. Journal of the American Statistical Association, 91(434), 883-904.

Crawford, N.H., Linsley, R.S., 1966. Digital simulation in hydrology: The Stanford Watershed

Model IV. Technical Report No. 39, Department of Civil Engineering, Stanford University,

Palo Alto, California.

Cunge, J.A., 1969. On the subject of a flood propagation method (Muskingum method). J.

Hydraulics Research 7(2), 205-230.

Di Luzio, M., Srinisvasan, R., Arnold, J.G., Neitsch, S.L., 2002. ArcView Interface for

SWAT2000, Blackland Research&Extcnsion Center, Texas Agricultural Experiment Station

and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service.

Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled Complex Evolution Approach for

Effective and Efficient Global Minimization. Journal of Optimization Theory and

Applications 76(3), 501-521.

48



Hydrological Modelling of the Chaohe Basin in China

Duan, Q.Y., Sorooshian, S., Ibbitt, R.P., 1988. A maximum likelihood criterion for use with data

collected at unequal time intervals. Water Resources Research 24(7): 1163-1173.

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1992. Effective and Efficient Global Optimization for

Conceptual Rainfall-Runoff Models. Water Resources Research 28(4), 1015-1031.

Duan, Q.Y., Sorooshian, S., Gupta, V.K., 1994. Optimal Use of the SCE-UA Global

Optimization Method for Calibrating Watershed Models. Journal of Hydrology 158(3-4),

265-284.

Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R., eds., 2003. Calibration of

Watershed Models, American Geophysical Union, Washington, DC, USA.

Gelman, S., Carlin, J.B., Stren, H.S., Rubin, D.B., 1995. Bayesian Data Analysis, Chapman and

Hall, New York, USA.

Hargreaves, G.H., Samani, Z.A., 1985. Reference crop évapotranspiration from temperature.

Applied Engineering in Agriculture 1, 96-99.

Huang, Q., Zhang W., 2004. Improvement and Application of GIS-based distributed SWAT

Hydrological Modeling on High Altitude, Cold, Semi-arid Catchment of Heihe River Basin,

China. Journal of Nanjing Forestry University (Natural Sciences Edition) 28(2), 22-26 (in

Chinese).

Hu, Y., Cheng, S., Jia, H., 2003. Hydrologie Simulation in NPS Models: Case of Application of

SWAT in Luxi Watershed. Research of Environmental Sciences 16(5), 29-32 (in Chinese).

Jia, H., Cheng, S., 2002. Spatial and dynamic simulation for Miyun Reservoir waters in Beijing.

Water Science and Technology 46(11-12), 473-479.

Kavetski, D, Franks, S.W., Kuczera, G., 2003. Confronting Input Uncertainty in Environmental

Modelling. In: Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N. and Turcotte, R.

(Eds.), Calibration of Watershed Models. American Geophysical Union, Washington, DC,

USA, pp 49-68.

Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations.

Springer, Berlin, Germany.

Kuczera, G., 1983. Improved parameter inference in catchment models - 1. Evaluating parameter

uncertainty. Water Resources Research 19(5), 1151-1162.

Kuczera, G., Parent, E. 1998. Monte Carlo assessment of parameter uncertainty in conceptual

catchment models: the Metropolis algorithm. Journal of Hydrology 211(1-4), 69-85.

49



Chapter 2

Lamb, R., 1999. Calibration of a conceptual rainfall-runoff model for flood frequency estimation

by continuous simulation, Water Resources Research 35(10), 3103-3114.

Liu, Z.Y., 2004. Application of GIS-bascd distributed hydrological model to flood forecasting.

Shuili Xuebao 5, 70-75 (in Chinese).

Monteith, J.L., 1965. Evaporation and the environment. In: The state and movement of water I

living organisms, XlXth Symposium. Soc. For Exp. Biol., Swansea, Cambridge University

Press, 205-234.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A

discussion of principles, Journal of Hydrology, 10 (3), 282-290.

Neitsch, S.L., Arnold, J.G, Kiniry, J.R., Williams, J.R., 2001. Soil and Water Assessment Tool

User's Manual, version 2000. Grassland, Soil and Water Research Laboratory, Agricultural

Research Service, Blackland Research Center, Texas Agricultural Experiment Station.

Priestley, C.H.B., Taylor, .R.J., 1972. On the assessment of surface heat flux and evaporation

using large-scale parameters. Mon. Weather. Rev. 100, 81 -92.

Reichert, P., 2005. UNCSIM - A computer programme for statistical inference and sesitivity,

identifiability, and uncertainty analysis, In: Teixeira, J.M.F. and Carvalho-Brito, A.E. (Eds.),

Proceedings of the 2005 European Simulation and Modelling Conference (ESM 2005), Oct.

24-26, Porto, Portugal, EUROSIS-ETI, pp. 51-55.

Reichert, P., 2006. A standard interface between simulation programs and systems analysis

software. Water Science and Technology 53(1), 267-275.

Reichert, P., Schervish, M., Small, M.J., 2002. An efficient sampling technique for Bayesian

inference with computationally demanding models. Technomctrics 44(4), 318-327.

Schaap, M.G., Bouten, W., 1996. Modeling water retention curves of sanely soils using neural

networks. Water Resources Research 32(10), 3033-3040.

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. ROSETTA: a computer program for

estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of

Hydrology 251(3-4), 163-176.

Shi, X.Z., Yu, D.S., Warner, E.D., Pan, X.Z., Petersen, G.W., Gong, Z.G, Weindorf, D.C., 2004.

Soil Database of 1:1,000,000 Digital Soil Survey and Reference System of the Chinese

Genetic Soil Classification System. Soil Survey Horizons 45, 129-136.

50



Hydrological Modelling of the Chaohe Basin in China

Soil Conservation Service, 1972. Section 4: Hydrology. In: National Engineering Handbook.

SCS.

Tomassini, L., Reichert, P., Künsch, H.-R., Buser, C, Borsuk, M.E., 2007. A smoothing

algorithm for estimating stochastic, continuous-time model parameters and an application to a

simple climate model. Submitted.

Vrugt, J. A., Bouten, W., 2002. Validity of first-order approximations to describe parameter

uncertainty in soil hydrologie models. Soil Science Society of America Journal 66(6), 1740-

1751.

Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., Verstraten, J.M., 2005. Improved treatment

of uncertainty in hydrologie modelling: Combining the strengths of global optimization and

data assimilation, Water Resources Research 41, art. no. W01017

Vrugt, J. A., Gupta, H.V., Bouten, W., Sorooshian, S., 2003. A Shuffled Complex Evolution

Metropolis algorithm for optimization and uncertainty assessment of hydrologie model

parameters. Water Resources Research 39(8), art. no.-1201.

Wang, G.S, Xia, J., Tan, G., Lv, A.F., 2002. A Research on Distributed Time Variant Gain

Model: a Case Study on Chaohe River Basin. Progress in Geography 21(6), 573-582 (in

Chinese).

Wang, X., Li, T., Xu, Q., He, W., 2001. Study of the distribution of non-point source pollution in

the watershed of the Miyun Reservoir, Beijing, China. Water Science and Technology, 44(7),

35-40.

Wang, Z.G., Liu, CM, Huang, Y.B., 2003. The Theory of SWAT Model and its Application in

Heihe Basin. Progress in Geography 22(1), 79-86 (in Chinese).

Williams, J.R., 1969, Flood routing with variable travel time or variable storage coefficients.

Transactions of the ASAE 12(1), 100-103.

Williams, J.R., 1995. The EPIC model. In Vijay P. Singh (Eds.), Computer Models of Watershed

Hydrology. Water Resources Publication, US, pp909-1000.

Yang, J., Abbaspour, K.C, Reichert, P., 2005, Interfacing SWAT with Systems Analysis Tools:

A Generic Platform. In: Srinivasan, R., Jacobs, J., Day, D., Abbaspour, K. (Eds.), 2005 3rd

International SWAT Conference Proceedings, July 11-15, Zurich, Switzerland, pp. 169-178.

Yapo, P. O., Gupta, U.V., Sorooshian, S., 1996. Automatic calibration of conceptual rainfall-

runoff models: Sensitivity to calibration data. Journal of Hydrology 181(1-4), 23-48.

51



Chapter 2

Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P., 1989. AGNPS: A nonpoint-source

pollution model for evaluating agricultural watersheds. Journal of Soil and Water

Conservation 44(2), 168-173.

Zellner, A., 1971. An Introduction to Bayesian Inference in Econometrics, John Wiley & Sons,

Inc.

Zhang, X.S., Hao, F.H, Yang, Z.F., Cheng, H.G., Li., D.H., 2003a. Runoff and Sediment Yield

Modeling in Meso-scale Watershed Based on SWAT Model. Research of Soil and Water

Conservation 10(4), 38-42 (in Chinese).

Zhang, X.S., Hao, F.H., Cheng, H.G., Li, D.F., 2003b. Application of SWAT model in the

upstream watershed of the Luohe River. Chinese Geographical Science 13(4), 334-339.

Zhang, L.N, Li, X.B, Wang, Z.H., Li, X., 2004. Study and Application of SWAT model in the

Yuzhou Reservoir Basin. Hydrology 22(3), 4-8 (in Chinese).

Zhao, R.J., 1992. The Xinanjiang Model Applied in China. Journal of Hydrology 35(1-4), 371-

381.

Zhao, R.J., Liu, X.R., 1995. The Xinanjiang Model. In: Singh, V.P. (Eds.), Computer Models of

Watershed Hydrology. Water Resources Publication, US, pp215-232.

52



Bayesian Uncertainty Analysis in Distributed Hydrologie Modelling

3 Bayesian Uncertainty Analysis in Distributed Hydrologie

Modelling: A Case Study in the Thur River Basin

(Switzerland)

Jing Yang, Peter Reichert, Karim C Abbaspour

(Submitted to Water Resources Research)

Abstract

Calibration and uncertainty analysis in hydrologie modelling arc affected by measurement errors

in inputs and response and errors in model structure. Recently, extending similar approaches in

discrete-time, a continuous-time autoregressive error model was proposed for statistical inference

and uncertainty analysis in hydrologie modelling. The major advantages over discrete-time

formulation are the use of a continuous-time error model for describing continuous processes, the

possibility of accounting for seasonal variations of parameters in the error model, the easier

treatment of missing data or omitted outliers, and the opportunity for continuous-time predictions.

The model was developed for the Chaohe Basin in China and had some features specific for this

semi-arid climatic region (in particular the seasonal variation of parameters in the error model in

response to seasonal variation in precipitation). This paper tests and extends this approach with

an application to the Thur river basin in Switzerland, which is subject to completely different

climatic conditions. This application corroborates the general applicability of the approach, but

also demonstrates the necessity of accounting for the heavy tails in the distributions of residuals

and innovations. This is done by replacing the normal distribution of the innovations by a

Student t distribution, the degrees of freedom of which is adapted to best represent the shape of

the empirical distribution of the innovations. We conclude that with this extension the

continuous-time autoregressive error model is applicable and flexible for hydrologie modelling

under different climatic conditions. The major remaining conceptual disadvantage is that this

class of approaches does not lead to a separate identification of model input and model structural

errors. The major practical disadvantage is the high computational demand characteristic for all

MCMC techniques.

Keywords

Uncertainty Analysis; Hydrologie Modeling; MCMC; Continuous-time Autoregressive Error

Model; Bayesian Inference
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3.1 Introduction

Due to measurement errors in input and response and errors in model structure, predictions of

hydrologie models are inevitably affected by uncertainty. Hydrologie models play an important

role in supporting environmental decisions, e.g. by assessing water availability, exploring

vulnerability to environmental change, or predicting the effect of management measures in the

watershed. Therefore, to be able to support environmental decisions under consideration of

prediction uncertainly, careful analysis and quantification of uncertainty are crucial in hydrologie

modelling.

A significant number of techniques have been developed to estimate parameters and assess

prediction uncertainty in hydrologie modelling. These include: first-order approximation

[Carrera and Neuman, 1986; Kool and Parker, 1988; Vrugt and Bouten, 2002], Bayesian

inference based on importance sampling (IS) [e.g., Kuczera and Parent, 1998] or Markov Chain

Monte Carlo (MCMC) [e.g., Vrugt ct al., 2003, 2004; Kuczera and Parent, 1998], Generalized

Likelihood Uncertainty Estimation (GLUE) [Beven and Binley, 1992], Sequential Uncertainty

Fitting SUFI-2 [Abbaspour et al., 2004, 2007], Parameter Solution (ParaSol) [Van Gricnsvcn and

Meixner, 2006], and Sources of Uncertainty Global Assessment using Split Samples

(SUNGLASSESS) [Van Griensven and Meixner, 2006]. With respect to model results and their

uncertainty bands, many applications of these techniques give similar results [Yang et al., 2007a],

However, there are differences in the statistical foundations of these techniques. Some of these

techniques, such as GLUE [e.g. Beven and Binley, 1992] or SUFI-2 [Abbaspour et al., 2004,

2007], apply a philosophy that is not based on a statistical foundation [see e.g. Beven, 2006 for an

explanation]. On the other hand, applications of techniques that are based on a statistical

foundation often use statistical assumptions, such as independent errors, which are obviously

violated [e.g., Vrugt et al, 2003], The violation of the statistical assumptions, particularly of

homoscedasticity and independence of errors, is clearly and visually demonstrated by Vrugt ct al.

[2005]. Under such strong violations of the statistical assumptions, the derived parameter and

prediction uncertainties are unreliable. As this is not a problem of the statistical inference

procedure but of the formulation of the likelihood function, we think that the key to solving this

problem is to improve the formulation of the likelihood function, rather than the development of

new inference techniques with a poor conceptual foundation. The focus of such an improvement
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must be on the inclusion of input and model structure uncertainty in addition to parameter and

output errors.

Input and model structure uncertainty can be addressed by explicitly including these

uncertainty sources into the formulation of the likelihood function, or by formulating an error

model that jointly accounts for the effects of all uncertainty sources. There has been recent

progressed in this research field. Kavetski et al. [2006] explicitly takes into account input and

output uncertainty in the formulation of the likelihood function. However, this approach does not

consider the errors in model structure. Vrugt et al. [2005] presents a Simultaneous Optimization

and Data Assimilation (SODA) procedure to separate parameter uncertainty from input and

model structural uncertainty. The main characteristic of SODA is to make the deterministic

hydrologie model stochastic and combine parameter with state estimation. The difficulty of this

approach is that it involves state estimate (which is equivalent to the estimation of many

additional parameters) in addition to parameter estimation. This increases the computational

burden and requires modifications to existing simulation programs. A simpler approach to

address input and model structural errors is by adding a "bias" or "model inadequacy" term to

model output that provides a statistical description of the effect of model deficiencies on model

output. This approach has recently gained attention in the literature [Kennedy and O'Hagan,

2001; Bayarri et al., 2002; Bayarri et al., 2007] in the context of interpolation (emulation) of the

output of complex computer models. This approach is a more general formulation of the use of

autoregressive error models to account for the effect of all error sources on the output of time-

series models, which has been applied frequently in hydrological modelling [see e.g. Kuczera,

1983; Bates and Campbell, 2001]. Yang et al. [2007b] further developed this discrete-time

overall additive autoregressive error model into a continuous-time additive autoregressive model

and successfully applied it in the Chaohe Basin in China with the hydrological simulation

program implemented in the Soil and Water Assessment Tool (SWAT) [Arnold ct al., 1998],

This approach is an extension of the approach proposed by Duan et al. [1988] for unequally

spaced data. In contrast to discrete-time autoregressive error models, the continuous-time

autoregressive model seems more satisfying because it can better describe the effects of input and

model structural error that are of a continuous time nature, it makes it easier to describe seasonal

dependence of error model properties, it eliminates the problems associated with missing data or

omitted outliers, and it offers the opportunity for continuous-time predictions [Yang et al,
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2007b]. This paper further tests this procedure by applying it to the Thur river basin in

Switzerland. This is important to corroborate the universal applicability of the procedure under

different climatic conditions and to gain experience with typical values of the parameters of the

error model In addition, we will extend the continuous-time additive autoregressive error model

by relaxing the assumption of normally distributed innovations to t-distributed innovations to

account for the heavy tails of the distributions of innovations observed in the application to the

Thur river basin.

The remainder of this paper is organized as follows. In Section 3.2, the continuous-time

autoregressive error model introduced by Yang et al. [2007b] is described and extended. Section

3.3 will briefly describe the Thur river basin and the distributed hydrologie model implemented in

the Soil and Water Assessment Tool [Arnold et al, 1998]. The results of the analysis are then

discussed and compared to those for the Chaohe Basin [Yang et al, 2007b] in Section 3.4.

Finally, a summary with conclusions is provided in Section 3.5.

3.2 Bayesian inference for a continuous-time autoregressive error

model

3.2.1 Bayesian Inference

A deterministic hydrologie model can be written in the form of a function

y^e)^(8),^(e),...,^(e)) (3.1)

where yf* (Q) represents the model output at time u as a function of the model parameters

8 = (#! ,...,#„), and Mindexes the model.

According to Bayes' theorem, the probability density of the posterior parameter distribution,

./0,Y(8yobsj, is derived from the prior density, /0(6), the likelihood function of the model,

,/Y>(yobs|0), and data, yobs, according to

/e|v( " )

R>(y"1eK(e.)d9'
(3'2)
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Numerically, there are two generic Monte Carlo approaches to approximate the posterior

parameter distribution (Eq. 3.2), i.e., Markov Chain Monte Carlo (MCMC) and Importance

Sampling (IS) [Gelman et al, 1995].

In hydrology, the likelihood function is often constructed by assuming the residuals between

the observations, yobs, and model results, yM(8), are identically, independently and normally

distributed:

Wy|e)=n
-Jin ct

exp
k -tfw]

2\

(3.3)

However, due to measurement errors in the model inputs and response and errors in model

structure [Yang et al, 2007b], this assumption is usually not satisfied and residuals are often

heteroscedastic and autocorrelated. Therefore, in order to correctly apply Bayesian inference, the

likelihood function must either address these errors explicitly or contain an autocorrelated

component of residuals to describe their effect on model output.

3.2.2 The additive continuous-time autoregressive error model

As an extension of the discrete-time autoregressive error models introduced earlier [e.g. Kuczera,

1983; Bates and Campbell, 2001], an additive continuous-time autoregressive error model was

introduced by Yang et al. [2007b]. This model can account for heteroscedasticity and

autocorrelation of residuals and it can easily handle missing data or omitted outliers. Briefly, the

likelihood function is constructed as follows:

For an autocorrelated random time series Et representing the effect of input, model structure

and output errors wc assume the probability density

Ze.MJ
1 1

<o '<> '

V27T CT

-exp

( 2 \

1er2

(3.4)

Ak,(f''K'):
er \\ -exp

f t -t \
exp

*,, -*i exp

f t -t
^

2\

V T J

1 -exp

f t -I
^

v ï" J
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where a is the asymptotic standard deviation of the errors and r the characteristic correlation

time. The assumption here is that the random disturbances, sometimes called innovations

[Chatficld, 2003],

I, = E, -E exp

f t -t >

(3.5)

rather than E, ,
are independent and normally distributed. Keeping the asymptotic standard

deviation of the errors Et at <r, the innovations must have standard deviations of

a, =o-l-exp
r

t -t
^

V T J

(3.6)

They reach ct if the time difference between two observations is large compared to the

characteristic correlation time, r, and they are significantly smaller if succeeding observations are

within that time or even closer. This error model is the analytical solution of an Ornstein-

Uhlenbeck stochastic process [e.g., Kloeden and Platen, 1992]. The same process was used to

describe continuous, time-dependent model parameters in Tomassini ct al. [2007]. Note that the

formulation of the continuous-time error model (3.4) is similar to the approach suggested by

Duan ct al [1988] for use with unequally spaced data. However, there is an essential difference

between the two approaches: a decreasing temporal distance of measurement points in our error

model leads not only to an increase of the correlation, but also to a decrease in the standard

deviation of the error term. This guarantees continuity of the process realizations.

Combining the deterministic hydrologie model (3.1) with the Box-Cox transformation [Box

and Cox, 1964, 1982] and the error model (3.4), the likelihood function of the continuous-time

autoregressive model can be written as:
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/v-,.(*)-^«P
l[gCA)-g(<(0))]

2\

V
a

dg

n
1

crJl-exp

exp

V J

ay

g(y,,)-g(y,Mm)
/,-/,-,

2 A

a2 1- exp -2^-^-
n

dg

dy
y=vh

(3.7)

where the function g represents the Box-Cox transformation with parameters h and X2:

'{y + A2f-\
g(y) =

A,
4*0

> g (z)=\(A{z + \)^-A2 4*0 ffe=(y + ^^-.(38)
ln(y + 4> ) 4=0

exp(z) - 4> I, = 0 dy

In order to test the statistical assumptions of the likelihood function (3.7), a test should be

made for the empirical distribution of the standardized observed innovations of the transformed

observations giyf*) and the transformed model results g[y^(Q))'.

g(y? ) - g{y,M (0))- fe(<s ) - g(ytMt (0)W ',-',-.

/,,(e,y^)
r )

(3.9)

al -

exp -2Lz!i±

The suggested tests [e.g. Kuczera, 1983; Bates and Campbell, 2001; Yang et al, 2007b]

include plots of time series of innovations, of the autocorrelation function of innovations, of the

cumulative periodagram, and of a normal quantile-quantile plot of the innovations.

3.2.3 Error model Extension

To be able to account for heavy tails of the innovations, we extend the assumption of normally

distributed, independent innovations in Eq. (3.4) to independent t-distributions with the same

standard deviations, i.e.
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where F denotes the gamma function and v the degrees of freedom of the t-distribution (note that

the degrees of freedom of the t distribution must be larger than 2 in order to guarantee the

existence of the standard deviation).

Accordingly, the likelihood function is adapted to:

V 2. ) 1 1

n

r

^

V2y

V + P

.

2
,

^n{v-l)
1 +

kv,0)-g(K(e))l
(v-l)a2

2\

dg

dv

'i^

v^y

Jn(v - 2)
a 1-exp

f
t -t

^

-2-^-^1
? y

1 +

g(y,, ) - g{y,M(Q)) - [g(yt,_t ) - g{yl (e))]exp
T J

2 V
v+1

(v-2)cr: 1 - exp - 2-——

dg

dy

(3.11)

The statistical tests to be used to assess the hypotheses of the error model are the plot of time

series of innovations, autocorrelation functions of innovations, and t-distribution quantile-

quantile plot of innovations.

As the degrees of freedom (v) approaches infinity, the t distribution will approximate the

normal distribution. Therefore, the additional flexibility of the error model provided by the

degrees of freedom of the / distribution, extends our ability to approximate the observed
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distribution of innovations, while keeping the normal distribution as a limiting case. Lowering

the degrees of freedom (v) of the / distribution leads to heavier tails, as it is often observed in

hydrologie modelling. Increasing the number of degrees of freedom leads us back to the previous

assumption of normally distributed innovations.

3.2.4 Uncertainty analysis procedure

Parameters to be estimated within the Bayesian framework with the autoregressive error model

(Eq. 3.11) include the parameters 8 of the hydrologie model, the parameters Xi and ^2 of the

Box-Cox transformation, the characteristic correlation time r, the standard deviation a, and the

degrees of freedom v of the error model. Except v which characterizes the shape of the /

distribution of the innovations, all of these parameters should be estimated jointly. This was done

by applying a Markov Chain Monte Carlo (MCMC) technique to approximate the posterior

distribution of these parameters. In order to avoid long bum-in periods (or even lack of

convergence to the distribution) of the Markov chain, the chain was started at a numerical

approximation to the maximum of the posterior distribution calculated with the aid of the shuffled

complex global optimization (SCE-UA) algorithm [Duan ct al, 1992]. Markov chains were run

until 20,000 model runs were reached with fulfillment of the convergence criterion by the

Heidelberger and Welch [Cowlcs and Carlin, 1996; Best et al, 1995].

The implementation of the modified likelihood function as well as the numerical realization

of Bayesian inference was done in UNCSIM [Reichert, 2005],

3.3 Study Area and SWAT Model

3.3.1. Description ofthe study area

The Thur river basin, with a drainage area of 1,700 km2, is situated in north-eastern Switzerland

near the border to Germany (Figure 3.1). Mean elevation of the watershed is about 769 meters

above sea level and mean slope is around 7.5°. The climate of the watershed is the pre-

alpine/alpine climate, which is characterized by moderate winters in hilly dissected terrain area,

cold winters in mountainous areas and summer seasons with relatively large annual temperature

variations. Mean monthly temperature ranges from about 10 °C to 25 °C in the summer and from

-15 °C to 7 °C during the winter. The average precipitation is 1,460 mm year"1 with high

precipitation (about 2,200-2,500 mm year"1) in the mountain area and about 1,000 mm year" in

61



Chapter 3

the lower (sub-mountain) part of the watershed, and most of precipitation falls during the summer

months. The mean actual évapotranspiration is about 565 mm year"1, and runoff 895 mm year '.

The climate data used in this study arc from seventeen precipitation, eight air temperature, five

solar radiation, five relative humidity, and five wind speed gages (see Figure 3.1) over 20 years

(1980-2000). which were obtained from the Swiss Federal Office of Meteorology and

Climatology (http://www.meteoschweiz.ch/web/en/weather.html). The daily discharge is

available at the basin outlet (Andelfingen station) from 1991- 2000 from the Swiss Federal River

Survey Program (NADUF; hj^:.//www_.n^iuf ch).

Figure 3.1: The Thur river basin with SWAT-delinealed sub-basins, DEM map, river network,

and meteorological stations.

The dominant land use (around 60%) in this area is agriculture, most of which are meadows

for feeding cows, alpine pastures, and arable lands. Close to 30% of the total area is covered by

forests, about 3% are orchards. The rest of the area is barren land, surface waters, and urban

areas. Hogs and cattle are the main livestock raised in the study area.
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Most of the Thur river basin is underlain by conglomerates, marl incrustations and sandstone

with medium to low storage capacity and rather high permeability. Groundwater is mainly found

in areas with till deposits [Gurtz et al, 1999].

3.3.2 Description ofSWATand iSWA T

Soil and Water Assessment Tool (SWAT) [Arnold et al, 1998; http://www.brc.tamus.edu/swat1

implements a semi-distributed and semi-physically based watershed model. SWAT describes the

climatic and topographic heterogeneity through subbasins based on a digital elevation map and

climatic stations, while it describes the heterogeneities in land use, soil, and management practice

through HRUs (Hydrologie Response Units) which consist of unique combinations of land use,

soil type, and management practice within the subbasin.

At the HRU level, SWAT accounts for rainfall, interception, évapotranspiration, percolation,

sediment yield, nutrient cycles, crop growth and management practice. Then, runoff, sediment

yield and nutrient loads are aggregated to the subbasin level by taking the weighted average based

on the areas of the HRUs. Water flow, sediment yield, and nutrient loading obtained at the

subbasin level are then routed through the river system under consideration of in-stream

transformation, deposition and re-mobilization processes. Channel routing is simulated using

cither the variable storage technique [Williams, 1969] or the Muskingum method [Cunge, 1969;

Chow et al, 1988]. More detailed descriptions of the model can be found in Arnold et al. [1998]

and in SWAT manuals (available at http://www.brc.tamus.edu/swat).

iSWAT is an interface between SWAT and an arbitrary system analysis tool that supports a

simple, file-based interface [Reichert, 2006]. iSWAT was developed to facilitate the application

of systems analysis techniques to hydrologie modelling based on using SWAT [Yang et al,

2006], In iSWAT, SWAT parameters can be aggregated based on important influential factors,

such as land use, soil texture, soil hydrologie group or subbasin as follows:

x_<parname>.<cxt> <hydrogrp> <soltext> <landuse> <subbsn> (3.12)

where x represents the type of change to be applied to the parameter (v: value; a: absolute change;

or r: relative change), <parname> is the SWAT parameter name; <ext> represents the extension

of the SWAT input file which contains the parameter, <hydrogrp> is the identifier for the

hydrologie group, <soltext> is the soil texture, <landuse> is the landuse, and <subbsn> is the

subbasin number, or the crop index, or the fertilizer index. For example, v _CN2.mgt = 69, will
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cause a global replacement of CN2 value in the management files by 69, and

r CN2.mgt_ 23,25 = 0.3, will cause a replacement of the CN2 value in the management

files associated with subbasins 23 and 25 by a value equal to their current CN2 values multiplied

by 1.3, etc.

3.3.3 Choice ofparameters andpriors

After setting-up the project, a manual calibration and then an automatic calibration were done on

some parameters of the Thur SWAT project. All the simulations in this paper are based on the

calibrated project for all parameters not included in the analysis (i.e. not explicitly mentioned).

To distinguish these simulations from the following new simulations, they are referred to as

"previous simulations" in the following text.

The choice of parameters is based on the LH-OAT (Latin-Hypercubc-One-factor-At-a-Time)

method [Van Griensven et al, 2006]. LII-OAT is a global screening sensitivity analysis

technique and its characteristic is that it combines the Latin Hypercube sampling [McKay et al,

1979] and OAT (One-factor-At-a-Time) method by taking the Latin-Hypercube samples as initial

points for the OAT method. Based on LH-OAT, 20 aggregate SWAT parameters related to river

flow were selected for calibration (Table 3.1).

Together with the parameters %\, X2, a and x of the autoregressive error model in Eq. (3.7) or

(3.11), there arc 24 parameters. The prior distributions of all these parameters arc assumed to be

independent. For the 20 aggregate SWAT parameters, uniform priors with reasonable ranges

were assumed (see the last column in Table 3.1). And transformation parameters h and X2 are

assumed to be uniformly distributed. For the parameters a and x, densities proportional to 1/a

and l/x were chosen. Table 3.1 gives an overview of the parameters used for calibration and their

prior distribution.
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Table 3.1: Selected parameters for inference and their initial values and prior distributions

Aggregate Parameter
Name and meaning of

underlying SWAT parameter

Initial par. range

of underlying
SWAT parameter

Prior dist. of

aggregate

parameter

v TIMP.bsn*1 Snow pack temperature lag factor 0.307 uro.oi,ir
v SFTMP.bsn Snowfall temperature -1 UT-5,51

v SMTMP.bsn Snowmelt base temperature 2.585 U[-5,5]
v SMFMX.bsn Melt factor for snow on June 21 4.473 uro, io]
v SMFMN.bsn Melt factor for snow on Dec 21 0.923 U[0,10]

v_MSK_C01.bsn Muskingum coefficient to control impact of the

storage time constant for normal flow

0 U[0,10]

v_MSK_C02.bsn Muskingum coefficient to control impact of the

storage time constant for low flow

0.2 U[0,10]

v_MSK_X.bsn A weighting factor that controls the relative

importance of inflow and outflow in determining
the storage in a reach in Muskingum method

0.1 U[0,0.3]

v_CH_Kl.sub Effect hydraulic conductivity in tributary
channel alluvium (mm/hr)

0.5 U [0,150]

r CN2.mgf2 CN2: curve number 47-73 U[-0.35,0.351
r CH N2.rte Manning roughness for main channel 0.052/0.3 U[-0.5,0.5]

v_CH_K2.rte Effective hydraulic conductivity in main channel

alluvium (mm/hr)
6.325 U[0,150]

v ALPHA BF.gw Base flow alpha factor (1/day) 0.0625 U[0,11

v_GWQMN.gw Threshold depth of water in the shallow aquifer

required for return flow to occur (mm H20)
0 U[0,5000]

v GW REVAP.gw Groundwater "revap" coefficient 0.02 U[0.02,0.2]
v GW DELAY.gw Groundwater delay time (days) 43.338 uro,3ooi
v CANMX.hru Maximum canopy storage 5.275 uro,io]
v ESCO.hru Soil evaporation compensation factor 0.154 U[0,1]
r SOL AWC.sol Soil avail, water capacity (mm H20/mm soil) 0-0.28 U[-0.5,0.5]
r SOL K.sol Soil hydraulic conductivity (mm/hr) 0.01-279.71 Ur-O.8,0.8]
xr Transformation factor in Equation (3.7) or (3.11) uro, ii
x2*4 Transformation factor in Equation (3.7) or (3.11) U[0,50]
a Standard deviation in Equation (3.7) or (3.11) Inv4
X Characteristic correlation time of autoregressive process(days) Inv

*'

"v__" in "v TIMP.bsn" means "replace TIMP with a given value"
"

"r " in "r__CN2.mgt" means "a relative change (ofthe default value) of CN2" and hence r CN2.mgt is

dimensionless.

U[x,y] represents the unifonn distribution over the interval [x,y] for the given aggregate parameter; Tnv denotes the

probability distribution with probability density at the value x proportional to 1 Ix
*4

Xi and X2 are fixed to 0 and excluded in the final MCMC as they arc very close to 0.

Except for the analysis with likelihood function (3.11), 2 additional analyses with likelihood

functions (3.3) and (3.7) were also carried out as a comparison to the analysis based on the

likelihood function (3.11). It is worth noting that the likelihood function (3.3) is widely used in

hydrology (and many other fields) and the likelihood function (3.7) was used in Yang et al.
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[2007b], Hereafter, simulations based on analyses with likelihood functions (3.11), (3.3) and

(3.7) arc referred to as simulation 1, simulation 2 and simulation 3, respectively.

Obviously the initial values of storage volumes (e.g. soil water content) will influence the

river flow. As we cannot specify reasonable initial values for all storage volumes considered in

the model, SWAT is operated for a "warm-up period" of 6 years (1985-1990) without comparison

of model results with observed data. We found that such a "warm-up period" was sufficient to

minimize the effects of the initial state of SWAT variables on river flow. Furthermore, in order

to verify the calibrated model parameters, the model was calibrated and tested based on the

observed discharges at the basin outlet (Andelfingen station, Figure 3.1) using a split sample

procedure. The data from the years 1991-1995 was used for calibration, and the data from 1996-

2000 was used to test the model.

3.4 Results and Discussion

3.4.1. Resultsfor the Thur river basin

To determine the optimum value of the degrees of freedom, v, of the t-distribution in the

likelihood function given by Eq. (3.11), we compared regression diagnostics for analyses

performed with different values of v. The comparisons were done for simulation results at the

maximum of the posterior density obtained with the aid of the global optimization algorithm

SCE-UA [Duan et al, 1992]. The comparisons showed that the simulation with v= 8 led to the

smallest deviations of the residuals from the theoretical assumptions made by the model. These

results of regression diagnostics with v= 8 arc illustrated in Figure 3.2. The top panel in Figure

3.2 shows the time series of observed (circles) and simulated (line) flows. For this simulation, R2

equals 0.80 and the Nash-Sutcliffe coefficient equals 0.77. The middle panel in Figure 3.2 shows

the time series of the innovations. There seems to be no serious violation of the assumptions of

independence and of distribution shape. This is further corroborated by the autocorrelation

function (bottom left panel) and the t-distribution quantile-quantile plot (bottom right panel). The

autocorrelations are very small except for the first order coefficient. The quantile-quantile plot in

the bottom right panel demonstrates that the empirical quantités of the innovations are in good

agreement with the theoretical t-distribution quantiles.
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Figure 3.2: Statistics diagnostics for simulation 1 with likelihood function (3.11) with degrees of

freedom 8. From top to bottom: time scries of the observed (circles) and simulated (line) flows,

time series of the normalized innovations, and the autocorrelation function and /-distribution

quantile-quantile plot of normalized innovations.

For comparative purposes, Figures 3.3 and 3.4 show the corresponding results and diagnostics

for analyses of simulations 2 and 3, respectively, and Table 3.2 lists the performances of 3

simulations at the maxima of posterior densities. The top panels in Figures 3.2, 3.3 and 3.4 give
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the impression that all three simulations led to similarly good agreement with data, although

simulation 2 captured several peaks better than simulations 1 and 3 (e.g., flow at 1991-8-22).

This led to the highest R2 and the Nash-Sutcliffe coefficient calculated with the simulated flow

and observed flow (Table 3.2). This is because the Box-Cox transformation with X\= 0 (the

optimized X\'s in simulations 1 and 3 are very close to 0) puts less weight on the good

approximation of high peaks to account for the lower measurement accuracy. However, the

significant heteroscedasticity in the residuals of simulation 2 violates the statistical assumptions

and makes its uncertainty estimates unreliable (middle panel of Figure 3.3). There are also

slightly higher autocorrelation coefficients (bottom left panel of Figure 3.3), and the assumption

of normally distributed residuals is severely violated especially in the tails of the distribution

(bottom right panel of Figure 3.3). Also for simulation 3, the distribution of the innovations is far

from normal (especially in the tails) although better than that of simulation 2 (bottom right panel

of Figure 3.4). In conclusion, simulation 1 is the only one that does not significantly violate its

statistical assumptions. In Table 3.2, simulation 2 obtained the highest values R and Nash-

Sutcliffe coefficient calculated with the simulated flow and observed flow. This demonstrates

that unweighted least squares regression is an efficient technique to find a good fit solution.

However, as mentioned above, this technique cannot be used to get reliable uncertainty estimates

of model parameters and results.

Table 3.2: Performance of 3 simulations at the maxima of the posterior distribution

Simulation Test data Nash-Sutcliffe R2
Log posterior

density

Simulation 1 Calibration period 0.77 0.80 -6510

with likelihood function (3.11) validation period 0.79 0.82 -6586

Simulation 2 Calibration period 0.85 0.85 -8615

with likelihood function (3.3) validation period 0.86 0.86 -8597

Simulation 3 Calibration period 0.77 0.80 -6668

with likelihood function (3.7) validation period 0.79 0.83 -6742
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Figure 3.3: Statistics diagnostics for simulation 2 with likelihood function (3.3). From top to

bottom: time series of the observed and simulated flows, time series of the normalized residuals,

and the autocorrelation function and the normal quantile-quantile plot of normalized residuals.
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Figure 3.4: Statistics diagnostics for simulation 3 with likelihood function (3.7). From top to

bottom: time series of observed and simulated flows, time series of innovations, and

autocorrelation function and normal quantile-quantile plot of innovations.

For simulation 1, a Markov chain was started from the approximation to the maximum of the

posterior density obtained above to get an approximation to the posterior distribution. The

preliminary Markov chain led to the conclusion that both X\ and X2 are very close to 0. To

decrease the complexity of the MCMC process, we fixed X\ and X2 to 0 and excluded them from
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further MCMC processes. After a burn-in period of 40,000 model runs, 20,000 model runs were

used to obtain the posterior parameter distribution and prediction uncertainty.

v TIMP.bsn v SFTMP.bsn v SMTMP.bsn

-i 1 r

0.6 0.7 0.8 0.9

v SMFMN.bsn

1—i—i—i—i—r

3.5 4.5 5.5 6.5

v_CH Kl.sub

1 1 1 1 r

1.0 1.5 2.0 2.5 3.0

v_ALPHA_BF.gw

1 1 ; ^t

0.96 0.97 0.98 0.99

v CANMX.hru

t i 1 r

4.5 5.0 5.5 6 0

-T—i—i—i—i—r^T

0.31 0.33 0.35 0.37

1 1 1 I I

0.2 0.0 0.2 0.4

V MSK COLbsn

a- -

CM -

* OL,
.

0.05 0.15 0.25 0.35

r _CN2.mgt
o

_

o

CSJ

* (

|—3ji1 i i i i

0.16 0.20 0.24

v_GWQMN.gw

ë 1 1 1 r
°

200 400 600 800

v ESCO.hru

A- '

i r i i

0.2 0.3 0.4 0.5 0.6

T

- r-i

io r^\
o r1 \-
o 1 1 1 1 1

2.0 2.2 2.4 2.6 2.8

° -1 1 1 r

2.2 2.4 2.6 2.8 3.0

v MSK C02.bsn

0.14 0.18 0.22

r CH N2.rte

~i—I—i—i—i—i—r

-0.45 -0.30 -0.15

v_GW_REVAP.gw

cp
_ rO,

CO
"

o -*
Lrr

_
—U——I

0.05 0.07 0.09

r SOL AWC.sol

-i 1—1 r

0.00 0.05 0.10 0.15

v_SMFMX.bsn

:= A
o -

r i i i i i

4.0 4.4 4.8 5.2

v MSK X.bsn

"T~ -, f

0.10 0.12 0.14 0.16

v CH K2.rte

i 1 1 r

40 60 80 100 120

v__GW_DELAY.gw

20 30 40 50 60

r SOL K.sol

t i i i r

-0.40 -0.30 -0.20

Figure 3.5: Histograms approximating the marginals of the posterior parameter distribution for

simulation 1 and optimized parameters for simulation 2 (circles) and simulation 3 (asterisks).
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Figure 3.6: 95% prediction uncertainty bands associated with parameter uncertainty (dark shaded

area), and with parameter uncertainty and continuous-time autoregressive model (light shaded

area) for simulation l for both calibration period (1991-1995) and test period (1996-2000). The

dots correspond to the observed flow series at the basin outlet and the line stands for the

simulated discharge at the maximum of the posterior distribution.

72



Bayesian Uncertainty Analysis in Distributed Hydrologie Modelling

Figure 3.5 shows the marginal distributions of the posterior parameter distribution. The

increase in CN2 (positive value of r CN2.mgt) reflects higher surface runoff than in the

previous simulation, while an increase in ESCO (value around 0.32 instead of 0.154) indicates

smaller évapotranspiration than in the previous simulation. The changes in the temperature

related parameters (TIMP, SFTMP, SMTMP, SMFMX and SMFMN) demonstrate that

temperature factors have a significant influence on river flow. The marginal posteriors of some

parameters are at the boundary of the prior interval This can be an indication for very poor

identifiability due to strong correlations in the posterior. The large increase in CHK2 reflects a

stronger interaction between channel and groundwater. The characteristic correlation time is

around 2~3 days. This indicates that there is no long-term correlation in the residuals. The

parameter values corresponding to the maximum posterior density for simulations 2 and 3 are

also plotted in Figure 3.5 as circles and asterisks, respectively. As we can see, due to different

objective functions, optimum parameter values vary a lot.

Figure 3.6 shows the 95% prediction uncertainty bands associated with parameter uncertainty

(dark shaded area), and with parameter uncertainty and continuous-time autoregressive model

uncertainty (light shaded area) for both calibration period and validation period. As can be seen,

although the prediction uncertainty from parameter uncertainty (dark shaded area) is very narrow

(it only covers 7.2% of the observations), the 95% uncertainty bands from parameter uncertainty

and autoregressive model brackets most of the observations, which indicates that our proposed

approach can mimic the prediction uncertainty (if covers 91.3% of the observations). The dots

correspond to the observed discharge at the basin outlet and the line represents the simulated

discharge at the maximum of the posterior distribution.

3.4.2 Comparison with the results ofthe Chaohe Basin

Compared to the application of the continuous-time autoregressive model in the Chaohe Basin in

China by Yang et al. [2007b], wc can find some differences and similarities:

1) SWAT parameters. In the Chaohe Basin, river discharge is only sensitive to runoff

generation (e.g., CN2, SOLAWC and ESCO) during the wet season and the snow accumulation

and melting processes are negligible. In the Thur river basin, flow is not only due to runoff

generation (e.g., CN2, SOLAWC and ESCO), but snow accumulation and melting processes are

relevant (e.g., TIMP, SFTMP, SMTMP, SMFMX and SMFMN).
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2) Standard deviation (a) and characteristic correlation time (x) of the error model In the

Chaohe Basin, these 2 parameters have a strong seasonal dependence, i.e., high a and low t

during the wet season, and low o~ and very high x during the dry season. In the Thur river basin x

is relatively small. This can be explained by the climate difference of these 2 basins. In the

temperate continental and scmi-arid climate in the Chaohe Basin with over 80%) rainfall in July

and August, the flow during the dry weather season is strongly dependent on the water stored

during the wet season. This leads to the very high value of the correlation time during the dry

season. In the pre-alpine/alpine climate in the Thur river basin, river discharge is much more

strongly dependent on rain events distributed throughout the year.

3) Prediction uncertainty. No matter how the continuous-time autoregressive error model is

applied, the characteristic of the prediction is the same: narrow prediction uncertainty band from

parameter uncertainty and substantially wider prediction uncertainty band from the continuous-

time autoregressive error model. This difference between the 2 uncertainty bands indicates a high

fraction of uncertainty due to input and model structure. The uncertainty due to parameters of the

deterministic models may be underestimated by this procedure.

4) Convergence of MCMC. The Markov Chain for the simulation of the Thur river basin

converged slower than that of the Chaohe Basin. The reason might be that the number of

parameters in the simulation of the Thur river basin is large and the shape of the posterior is more

complicated than that of the Chaohe Basin (possibly multi-modal with many local maxima).

3.5 Summary and Conclusion

The continuous-time autoregressive error model developed by Yang et al. [2007b] for hydrologie

modelling was tested for a watershed with completely different characteristics than the one in

Yang et al. [2007b]. This application required an extension of the distributional shape of the

innovations from a Normal distribution to a Student t distribution to account for heavier tails of

the innovations. The extended model was successfully applied (empirical results are not in

disagreement with distributional assumptions made by the model) to an implementation of the

hydrologie model of the Soil and Water Assessment Tool (SWAT) [Arnold et al, 1998] for the

Thur river basin in Switzerland. The results for the Thur river basin are compared to those for the

Chaohe Basin in China described in the previous paper [Yang et al, 2007b].
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These analyses led to the following conclusions:

1) Our case studies indicate that the extended continuous-time autoregressive model is

generally applicable as an error model for hydrologie simulations under significantly different

climatic conditions (case studies for semi-arid climate in North China and pre-alpine/alpine

climate in Switzerland). This was confirmed by statistical tests of the distributional assumptions

of the model.

2) 2 case studies indicate that the parameters of the hydrologie model as well as the

parameters of the error model need careful site-specific priors and calibration. Particularly, the

degrees of freedom of the t distribution proved to be an effective parameter to adjust the

distributional shape of the innovations (to account for heavy tails), and the standard deviation and

characteristic correlation time of the error model required a seasonal variation for the semi-arid

climate in North China that was not required under the pre-alpine/alpine climate in Switzerland.

The reason for this is that river discharge during very long dry weather periods is dependent on

precipitation during the rainy season before, whereas the dominant influence on river discharge

during wet periods is rain event over a much shorter preceding period.

While our approach leads to a satisfactory mechanistic and statistical description of runoff, it

does not separate input and model structural uncertainty. The resolution of this should continue

to be a future effort in hydrological systems analysis.
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4 Comparing Uncertainty Analysis Techniques for a SWAT

Application to the Chaohe Basin in China

Jing Yang, K.C. Abbaspour, Peter Reichert, Hong Yang, Jun Xia

(Submitted to Journal of Hydrology)

Abstract

Distributed watershed models are increasingly being used to support decisions about alternative

management strategies in the areas of landuse change, climate change, water allocation, and

pollution control. For this reason it is important that these models pass through a careful

calibration and uncertainty analysis. To fulfil this demand, in recent years, scientists have come

up with various uncertainty analysis techniques for watershed models. To determine the

differences and similarities of these techniques we compared 5 uncertainty analysis procedures:

Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol),

Sequential Uncertainty Fitting algorithm (SUFI-2), and a continuous-time autoregressive error

model applied in a Bayesian framework and implemented with Markov Chain Monte Carlo

(MCMC) and Importance Sampling (IS) techniques. For the comparison, we used the program

Soil and Water Assessment Tool (SWAT) and applied it to the Chaohe Basin in China. As the

uncertainty analysis techniques are different in their philosophies and leave the user free to make

subjective choices, a direct comparison between the techniques is difficult. In this study, we

applied each technique according to its typical use in hydrology and compared the posterior

parameter distributions, performances of their best solutions, prediction uncertainty, conceptual

bases, efficiency, and difficulty of implementation. The comparison results for these categories

are listed and the advantages and disadvantages are analyzed. The final choice of the uncertainty

analysis technique is left to the reader. From the point of view of the authors, Bayesian-based

approaches are most recommendable because of their conceptual basis, but construction and test

of the likelihood function requires critical attention.

Keywords

Uncertainty analysis; watershed modeling; Bayesian inference, Markov Chain Monte Carlo

(MCMC); Importance Sampling (IS); SUFI-2; GLUE; ParaSol.
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4.1 Introduction

Simulation programs implementing models of watershed hydrology and river water quality are

important tools for watershed management for both operational and research purposes. In recent

years many such simulation programs were developed such as AGNPS (Agricultural None Point

Source) (Young et al, 1989), SWAT (Soil and Water Assessment Tool) (Arnold et al, 1998) and

HSPF (Hydrologie Simulation Program - Fortran) (Bicknell et al, 2000). Areas of application of

watershed models include: integrated watershed management (e.g., Zacharias et al, 2005), peak

flow forecasting (e.g. Jorgeson and Julien, 2005), test of the effectiveness of measures for the

reduction of non-point source pollutants (e.g., Bekele and Nicklow, 2005; Santhi et al, 2001),

soil loss prediction (e.g. Cochrane and Flanagan 2005), assessment of the effect of landuse

change (e.g. Hundecha and Bardossy, 2004, Claessens et al, 2006; Cotler and Ortega-Larrocea,

2006), analysis of causes of nutrient loss (e.g. Abbaspour ct al, 2007; Adeuya et al, 2005), and

climate change impact assessment (e.g. Claessens et al, 2006; Huang et al, 2005; Pednekar et

al.2005) among many others. This large number of various, and often very specific, applications

led to the development of a multitude of watershed models starting in the early 1960s (sec Todini,

1988 for a historical review).

As distributed watershed models arc increasingly being used to support decisions about

alternative management strategies, it is important that these models should pass through a careful

calibration and uncertainty analysis. Calibration of watershed models, however, is a challenging

task because conceptual model uncertainty is quite large. Sources of model uncertainty include

input uncertainty, model structural uncertainty, parameter uncertainty, and uncertainty in the

calibration data. Sources of model structural uncertainty include processes not accounted for in

the model, unknown activities in the watershed, and model inaccuracy due to over-simplification

of the processes that arc considered in the model Some examples of this type of uncertainty are:

effects of wetlands and reservoirs on hydrology and chemical transport; interaction between

surface and groundwater; occurrence of landslides, and large constructions (e.g., roads, dams,

tunnels, bridges) that could produce large amounts of sediment during short time periods

affecting water quantity and quality; unknown wastewater discharges into the streams from

factories and water treatment plants; imprecisely known application of fertilizers and pesticides,

unknown irrigation activities and water diversions, and other activities in the river basin. The
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input uncertainty is often related to imprecise or spatially interpolated measurements of model

input or initial conditions, such as elevation data, landuse data, rainfall, temperature and initial

groundwater levels. Other uncertainties in distributed models may also arise due to the large

number of unknown parameters and the errors in the data used for parameter calibration.

To account for modelling uncertainties, in the last two decades, many uncertainty-analysis-

techniques have been developed and applied to various catchments. However, only rarely more

than one technique has been applied in the same case study in the literature. The objective of this

paper is to fill this gap. We apply 5 different calibration and uncertainty analysis techniques to

the same catchment to compare their performances. These include Generalized Likelihood

Uncertainty Estimation (GLUE) (Beven and Binley, 1992), Parameter Solution (ParaSol) (Van

Griensven and Meixner, 2006), Sequential Uncertainty Fitting (SUFI-2) (Abbaspour et al, 2004;

2007), Bayesian inference based on Markov Chain Monte Carlo (MCMC) (e.g., Kuczera and

Parent, 1998; Vrugt et al, 2003; Yang et al, 2007), and Bayesian inference based on Importance

Sampling (IS) (e.g., Kuczera and Parent, 1998). For the comparison, wc used the program Soil

and Water Assessment Tool (SWAT) applied to the Chaohe Basin in China. As the uncertainly

analysis techniques are different in their philosophies and formulations, a literal comparison is

impossible. Hence, despite the subjective nature of such an assessment, we formulated a typical

application for each technique according to its typical use in hydrology and compare their

posterior parameter distribution, performances of their best solutions, prediction uncertainty,

conceptual basis, difficulty and efficiency of implementation.

The remainder of this paper is structured as follows. In section 4.2, we introduce the

methodology used for the comparison, give a brief overview of the selected techniques, and then

list the criteria for the assessment. In section 4.3, we give an overview of the study site, the

SWAT hydrological model, and our model application (priors and selection and aggregation of

parameters). In section 4.4 the results are presented and discussed. Section 4.5 contains the

conclusions.
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4.2 Methodology, Selected Techniques, and Criteria for Comparison

4.2.1 General Methodology

There are various difficulties in comparing uncertainty analysis techniques in hydrological

modelling. The following list addresses the most important concerns and how we handled them.

• Most techniques are different in their philosophies and subjective choices have to be made

in their formulation with respect to prior parameter distributions, likelihood functions

and/or goal functions. We addressed this problem by choosing priors and goal functions

for each technique as they would typically be used in hydrological applications. This

leads necessarily to different goal functions for different techniques. When discussing the

results, we will analyze whether a problem is caused by the conceptual formulation of a

particular technique or by the choice of the goal function.

• Different underlying concepts and goal functions from different techniques make the

comparison difficult. The values of the goal functions from all techniques will be

calculated for the best solution for each technique to allow for a fair comparison. In

addition we use measures of efficiency and an assessment of the conceptual basis as

criteria for the comparison.

• Different techniques obviously lead to different results for different criteria. We will

outline the results in all criteria so that the reader can draw his/her own conclusions. Our

own conclusions depend to some degree on a subjective judgment. As an example, not all

readers may agree with our preference for the conceptual basis of Bayesian inference.

• The results of the comparison inherently depend on the application. Wc try to separate

the results of specific application from generic results in the discussion.

4.2.2 Selected Techniques

4.2.2.1. GLUE

GLUE is an uncertainty analysis technique inspired by Importance Sampling and Regional

Sensitivity Analysis (GSA; Hornberger and Spear, 1981). In GLUE, parameter uncertainty

accounts for all sources of uncertainty, i.e., input uncertainty, stmetural uncertainty, parameter

uncertainty and response uncertainty, because "the likelihood measure value is associated with a
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parameter set and reflects all these sources of error and any effects of the covariation of

parameter values on model performance implicitly" (Beven and Freer, 2001). Also, from a

practical point of view, "disaggregation of the error into its source components is difficult,

particularly in cases common to hydrology where the model is nonlinear and different sources of

error may interact to produce the measured deviation" (Gupta & Beven, 2005). In GLUE,

Parameter uncertainty is described as a set of discrete "behavioral" parameter sets with

corresponding "likelihood weights".

A GLUE analysis consists of the following three steps:

1) After the definition of the "generalized likelihood measure" L{6), a large number of

parameter sets are randomly sampled from the prior distribution and each parameter set is

assessed as either "behavioral" or "non-behavioral" through a comparison of the "likelihood

measure" with a given threshold value.

2) Each behavioral parameter is given a "likelihood weight" according to:

».--?&- (4.1)

k=\

where N is the number of behavioral parameter sets.

3) Finally, the prediction uncertainty is described as prediction quantile from the cumulative

distribution realized from the weighted behavioral parameter sets.

In the literature, the most frequently used likelihood measure for GLUE is the Nash-Sutcliffe

coefficient (NS) (e.g. Beven and Freer, 2001; Freer et al, 1996), which is also used in this paper:

NS = ]-^ —— (4.2)

£(*. -~y)2
t,=\

where n is the number of the observed data points, and yt and y^(0) represents the observation

and model simulation with parameters 0 at time /„ respectively, and y is the average value of the

observations.
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4.2.2.2. ParaSol and modified ParaSol

ParaSol is based on a modification to the global optimization algorithm SCE-UA (Duan et al,

1992). The idea is to use the simulations performed during optimization to derive prediction

uncertainty because "the simulations gathered by SCE-UA are very valuable as the algorithm

samples over the entire parameter space with a focus on solutions near the optimum/optima"

(Van Griensven and Meixner, 2006). Hence, ParaSol only accounts for parameter uncertainty.

The procedure of ParaSol is as follows:

1) After optimization applying the modified SCE-UA (the randomness of the algorithm SCE-

UA is increased to improve the coverage of the parameter space), the simulations performed are

divided into 'good' simulations and 'not good' simulations by a threshold value of the goal

function as in GLUE. This leads to 'good' parameter sets and 'not good' parameter sets.

2) Prediction uncertainty is constructed by equally weighting all 'good' simulations.

The Objective function used in ParaSol is the sum of the squares of the residuals (SSQ):

The relationship between NS and SSQ is

NS = \~ -
l

SSQ (4.4)

/, i

n

where ^(yr ~y)2 is a fixed value for given observations. To improve the comparability with

GLUE, all objective function values of ParaSol were converted to NS.

As the choice of the threshold of the objective function in ParaSol is based on the ^-statistics

it mainly accounts for parameter uncertainty under the assumption of independent measurements.

For the purpose of comparison with GLUE, as an alternative, we choose the same threshold as

used by GLUE and we call this method "modified ParaSol".
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4.2.2.3. SUF1-2 procedure

In SUFI-2, the uncertainty of input parameters is described by a multivariate uniform distribution

in a parameter hypercube, while the output uncertainty is quantified by the 95%> prediction

uncertainty band (95PPU) calculated at the 2.5% and 97.5% levels of the cumulative distribution

function of the output variables (Abbaspour et al, 2007). Latin hypercube sampling is used to

draw independent parameter sets (Abbaspour et al, 2007). Similar to GLUE, SUFI-2 represents

uncertainties of all sources through parameter uncertainty in the hydrological model.

The procedure of SUFI-2 is as follows:

1) In the first step, the goal function g(&) and meaningful parameter ranges [9abs mm. 9abs max]

are defined.

2) Then a Latin Hypercube sampling is carried out in the hypercube [8,lim, 8max] (initially set

to [6abs mm, 8abs max]), the corresponding goal functions are evaluated, and the sensitivity matrix J

and the parameter covariance matrix C are calculated according to:

J,=TT ''=1>-, C, j-\,...,n, (4.5)
A9}

C = sl(fiY (4.6)

where s2 is the variance of the objective function values resulting from the m model runs.

3) The 95%> confidence interval of a parameter 6} is computed as follows:

"hitwe, =9/ _*xoo25-\/C// , 9hupper =9j+tvüü2^JCr/ (4.7)

where 9* is the parameter 9,- for the best solutions (i.e., parameters which produce the optimal

goal function), and v is the degrees of freedom (m - n).

4) The 95PPU is calculated. And then two indices, i.e., p-factor (the percent of observation

bracketed by 95PPU) and r-factor, are calculated:

-Y(vM -vM )

r-factor-—L——-— (4,8)
°ohs
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where y >975%
and ytas% represent the upper part and lower part of the 95PPU, and aûhs stands

for the standard deviation of the measured data.

The goodness of calibration and prediction uncertainty is judged on the basis of the closeness

ofp-factor to 100%> (i.e., all observations bracketed by the prediction uncertainty) and r-factor to

1 (i.e., achievement of rather small uncertainty band). As all uncertainties in the conceptual

model and inputs are reflected in the measurements (e.g., discharge), bracketing most of the

measured data in the prediction 95PPU ensures that all uncertainties are depicted by the

parameter uncertainties. Hence, if the two factors have satisfactory values, then the parameter

range [8mm, #niax] is the posterior parameter distribution. Otherwise, [9mm, 9mAX] is updated

according to:

y.min.new /,/owcr
WIclA

f q _n ß _a \
/,lower y,min y.max "/.upper

(4.9)

^,rn«,ncw=^,Upper+maX
fa __a q _a \

j .lower /,min ;,max y,upper

and another iteration needs to be performed.

SUFI-2 allows several choices of the objective function (for instance NS coefficient). In the

literature, the weighted root mean square error (RMSE) (Abbaspour et al, 2004) and the weighted

sum of squares SSQ (Abbaspour ct al, 2007) were used. In this study we chose the NS

coefficient for the sake of comparison with other techniques.

4.2.2.4. Bayesian Inference

According to Bayes' theorem, the probability density of the posterior parameter distribution

Am,|Y(e|ymcJ is derived from the prior density /9p (0) and data yrocas as:

, ftA ,
/Y>(y,Je)-./oPf,(e)

V|Y(e|ym.)^K^(ymJei)/^(e,)de(
(4,o)

where /YMi0(ymcas|Ö) is the likelihood function of the model, i.e. the probability density for

model results for given parameters with the measurements substituted for the model results.
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Posterior prediction uncertainty is usually represented by quantités of the posterior distribution.

The crucial point in applying this technique is the formulation of the likelihood function. If the

statistical assumptions for formulating the likelihood function are violated, the results of Bayesian

inference are unreliable. Unfortunately, when formulating likelihood functions in hydrological

applications, it is often assumed that the residuals between measurements and simulations are

independently and identically (usually normally) distributed (iid). However this assumption is

often violated. To avoid this problem in our case study, we constructed the likelihood function

by combining a Box-Cox fransformation (Box and Cox, 1964; 1982) with a continuous-time

autoregressive error model (Brockwell and Davis, 1996; Brockwell, 2001) as follows:

/Vi« (y|e)
2k a

exp
boo-*(<<•))]

2 \

dg

n
i

4ln
a\\ -exp

f t -t
N

-2-' '"i

exp

v j

dy

g{yt)~g{y^m)
2 \

1 - exp 2
*' *'-'

//

dg

dy
y^v,,

(4.11)

where cris the asymptotic standard deviation of the errors, ris the characteristic correlation time,

6 is the vector of model parameters, yt and yf(B) are the observation and model simulation,

respectively, at time U, and g(.) represents the Box-Cox transformation (Box and Cox, 1964;

1982):

g(y)

^+^'~1
4*0 _,,,

kAz+ry^-A2 a^o
4 ' * (ZH ^_a X]=0

\n(y + A2 ) Ax =0
exp(z)

- A2

dg^
dy

{y + A2)i,-i

(4.12)

This model extends earlier works with discrete-time autoregressive error models in hydrological

applications (e.g. Kuczera 1983, Duan et al. 1988, Bates and Campbell, 2001). More details are

given by Yang et al. (2007).
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Two generic Monte Carlo approaches to sample from a posterior distribution arc Markov

Chain Monte Carlo and Importance Sampling (Gelman et al 1995; Kuzera and Parent, 1998).

Both techniques arc used as implemented in the systems analysis tool UNCSIM (Reichert 2005;

http://www.uncsim.eawag.ch).

Markov Chain Monte Carlo (MCMC)

MCMC generates samples from a random walk which adapts to the posterior distribution

(Kuczera and Parent, 1998). The simplest technique from this class is the Metropolis-Hasting

algorithm (Gelman et al 1995), which is applied in this study. A sequence (Markov Chain) of

parameter sets representing the posterior distribution is constructed as follows:

1 ) An initial starting point in the parameter space is chosen.

2) A candidate for the next point is proposed by adding a random realization from a symmetrical

jump distribution, / ,
to the coordinates of the previous point of the sequence:

9;+^9k+rand(fjump) (4.13)

3) The acceptance of the candidate points depends on the ratio r:

r_/epM|v(°^i|yn^) (4J4)

If r >= 1, then the candidate point is accepted as a new point, else it is accepted with probability

r. If the candidate point is rejected, the previous point is used as the next point of the sequence.

In order to avoid long burn-in periods (or even lack of convergence to the posterior

distribution) the chain is started at a numerical approximation to the maximum of the posterior

disfribution calculated with the aid of the shuffled complex global optimization algorithm (Duan

etal, 1992).

Importance Sampling (IS)

Importance Sampling is a well established technique for randomly sampling from a probability

distribution (Gelman et al. 1995; Kuzera and Parent, 1998). The idea is to draw randomly from a
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sampling distribution fampk and calculate weights for the sampling points to make the weighted

sample a sample from the posterior distribution. The procedure consists of the following steps:

1) Choose a sampling distribution and draw a random sample from this sampling distribution.

2) For each parameter set, 6„ of the sample, calculate a weight according to

^IV (6< |y e.« ) / fsanpk (0, )
Wi=_^U ___ (4.15)

2-1 /Ö,,„J V ("* |y mets
) ' Jiample ("* )

k=l

3) Use the weighted sample to derive properties of the posterior distribution, for example, by

calculating the expected value of a function h according to:

ErI,Jh^/twMA) (4-16)
*=i

The efficiency of this procedure depends strongly on how close the sampling distribution is to

the posterior distribution, and hence, the choice of the sampling distribution is crucial (Tanner,

1992; Gelman et al, 1995). Three practical choices for the sampling distribution are: sampling

from the prior distribution (often uniform sampling over a hypercube referred to in the following

as primitive IS or naive IS), the approximation with over-dispersed multi-normal disfribution

(e.g. Kuczera, 1998), and the method of iteratively adapting the sampling distribution and using

efficient sampling techniques (Reichert et al, 2002). Each of the above methods has some

disadvantages. Primitive IS is very inefficient if the posterior is significantly different from the

prior, particularly for high dimensional parameter spaces. It is also worth nothing that primitive

IS is a special case of GLUE, in which no generalizations are made to the likelihood function and

all parameter sets are accepted as behavioral (although some will get a very small weight). For

the method with over-dispersed multi-normal distribution, it is difficult to determine a prior for

the dispersion coefficients (Kuczera, 1998). The method of iteratively adapting the sampling

distribution becomes more and more difficult to implement as the dimensionality of the parameter

space increases (Reichert et al, 2002). This is because larger samples are required to get

sufficient information on the shape of the posterior and it becomes more and more difficult to

find a reasonable parameterized sampling distribution to approximate the posterior. In this study,
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only the Primitive IS is implemented, as this also allows us to study the behaviour of GLUE with

different likelihood measures.

4.2.3 Criteria for the Comparison

We use the following five categories to compare the performances of the uncertainty analysis

techniques:

1. Parameter estimates and parameter uncertainty (values, uncertainty ranges, correlation

coefficients).

2. Performance of the simulation at the mode of the posterior distribution was evaluated for all

criteria.

3. The model prediction uncertainty

Three indices are used to compare the derived 95% probability band (95PPU). Those indices

are the width of 95PPU (i.e., r-factor as used in SUFI-2), percentage of the measurements

bracketed by this band (i.e. p-factor in SUFI-2), and the Continuous Rank Probability Score

(CRPS). CRPS is widely used in weather forecast as a measure of the closeness of the

predicted and occurred cumulative distributions and sharpness of the predicted PDF (e.g.,

Hersbach, 2000). For a time series, the CRPS at time / can be defined as:

CRPS, = f faM-IHy-ytfdy (4.17)
J-oo

where Ft(y) stands for the predicted CDF at time /, // is the Heaviside function (returning

zero for negative and unity for non-negative arguments), and yt is the observed at time /.

In practice the CRPS is averaged over a time series:

CRPS = YswrCRPS,
(4.18)

where wt is the weight for corresponding CRPSt at time t and we take equal weights in our

study.
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4. The conceptual basis of the technique (theoretical basis, testability and fulfillment of

statistical assumptions, capability of exploring the parameter space, coverage of regions with

high goal function values).

5. Difficulty of implementation and efficiency of the technique (programming effort and number

of simulations required to get reasonable results).

4.3 Study Site, SWAT Watershed Simulation Program, and Model

Application

4.3.1. The Chaohe Watershed and Data

The Chaohe watershed is situated in North China with a drainage area of 5,300 km upstream of

the Xiahui station (see Figure 2.1 in Chapter 2). The climate is temperate continental, semi-

humid and semi-arid. From 1980 to 1990 the average daily maximum temperature was 6.2 °C,

the average daily minimum temperature 0.9 °C, and the yearly rainfall varied between 350 to 690

mm. The elevation varies from 200 m at the basin outlet to 2,400 meters at the highest point in

the catchment. The topography is characterized by high mountain ranges, steep slopes and deep

valleys. The average channel slope is 1.87% which leads to fast water flow in the river. Average

daily flow at the catchment outlet (Xiahui station) is 9.3 m3 s"1 and varies irregularly from around

798 m s" during the flood season to lower than 1 m3 s"1 in the dry season. The runoff coefficient

(the ratio of runoff to precipitation) at the Xiahui station to the rainfall in this basin decreased

from 0.24 in 1980 to 0.09 in 1990. It is believed that the decline is mainly due to the intensified

human activities, including increasing water use and building of more (small scale) water

retention structures.

4.3.2. The Watershed Simulation Program

The Soil and Water Assessment Tool (SWAT) (Arnold et al, 1998) is a continuous-time,

spatially distributed simulator of water, sediment, nutrients and pesticides transport at a

catchment scale. It runs on a daily time step. In SWAT, a watershed is divided into a number of

sub-basins based on a given DEM (Digital Elevation Model) map. Within each sub-basin, soil

and landuse maps are overlaid to create a number of unique hydrologie response units (HRUs).

SWAT simulates surface and subsurface processes, accounting for snow fall and snow melt,

vadosc zone processes (i.e. infiltration, evaporation, plant uptake, lateral flows, and percolation
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into aquifer). Runoff volume is calculated using the Curve Number method (USDA Soil

conservation Service, 1972). Sediment yield from each sub-basin is generated using the Modified

Universal Soil Loss Equation (MUSLE) (Williams, 1995). The model updates the C factor of the

MUSLE on a daily basis using information from the crop growth module. The routing phase

controls the movement of water using the variable storage method or the Muskingum method

(Cunge, 1969; Chow, 1988).

4.3.3. Model Application

Parameterization of spatially-distributed hydrologie models can potentially lead to a large number

of parameters. To effectively limit the number of parameters, we developed an aggregating

scheme based on hydrologie group (A, B, C, or D), soil texture, landuse, sub-basin, and the

spatial distribution of default values. This scheme was implemented in an interface, iSWAT, that

allows systems analysis programs to access SWAT parameters that are distributed over many

input files (Yang et al, 2005; http://www.unesim.eawag.ch/interfaces/swat). The names of

aggregate parameters specified in the interface iSWAT have the following format:

x <parname>.<ext>_<hydrogrp> <soltext> <landuse> <subbsn> (4.19)

where x represents the type of change to be applied to the parameter (v: replacement; a: absolute

change; or r: relative change), <parname> is the SWAT parameter name; <cxt> represents the

extension of the SWAT input file which contains the parameter; <hydrogrp> is the identifier for

the hydrologie group; <soltext> is the soil texture; <landuse> is the landuse; and <subbsn> is the

subbasin number, the crop index, or the fertilizer index. The interface exchanges parameter

values with the systems analysis tool based on a simple text file-based interface (Reichert, 2006).

Following our previous work (Yang et al, 2007), 10 aggregate SWAT parameters related to

discharge at the watershed outlet were selected. These parameters, listed in Table 4.1, represent

single global values, global multipliers, or global additive terms to the distributed default values

of the corresponding SWAT parameters (compare parameter names in Table 4.1 with the

explanations of Expression 19). The likelihood function for the Bayesian approach requires the

additional parameters o~ and x characterizing the standard deviation and characteristic correlation

time of the continuous-time autoregressive error model (see Eq. 4.11). These parameters were

considered to be dependent on the seasons, i.e., a<ky and Tdry were used for dry season (October to
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May), and crwet and rwet were used for wet season (July to August), and we assumed a linear

transition from one value to the other in June and September (Yang ct al 2007).

The priors of all the parameters above were assumed to be independent of each other. For the

SWAT parameters, uniform priors within reasonable ranges were assumed for all the techniques.

For the parameters «rand r, densities proportional to l/crand 1/rwere chosen, which is equivalent

to assuming that the logarithms of these parameters are uniformly distributed. Table 4.1 gives an

overview of the parameters used for calibration and their prior distributions.

As we cannot specify reasonable initial values for all storage volumes considered in the

model, SWAT is operated for a "warm-up" period of 5 years without comparison of model results

with data. We found that such a "warm-up period" was sufficient to minimize the effects of the

initial state of SWAT variables on river flow. Furthermore, in order to verify the calibrated

model parameters, the model was calibrated and tested based on the observed discharges at the

watershed outlet (Xiahui station) using a split sample procedure. The data from the years 1985-

1988 with omission of a single outlier in 1985 was used for calibration, and the data from 1989-

1990 was used to test the model This strategy was applied for all the techniques.
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4.4 Results and Discussion

We start with a description of the results for each technique and then compare and discuss the

results according to the categories of criteria given in section 4.2.3.

4.4.1. Results ofGLUE implementation with likelihood measure NS

GLUE is convenient and easy to implement and widely used in hydrology (e.g. Freer et al, 1996;

Cameron et al, 2000a and 2000b; Blazkova et al, 2002). The drawback of this approach is its

prohibitive computational burden imposed by its random sampling strategy (Ilossain et al, 2004).

In this study, the threshold value of GLUE application is chosen to be 0.70, i.e. the

simulations with NS values larger than 0.70 are behavioral otherwise non-behavioral. Four

GLUE simulations were performed with sample sizes of 1000, 5000, 10000, and 20000. For each

simulation, the dotty plot, cumulative posterior distribution and 95PPU are analyzed. The

comparison shows that there are some differences in the results between 1000, 5000 and 10000

while there is no significant difference between 10000 and 20000. The following analysis of

results and comparison are based on a sample size of 10000. The dotty plot shown in Figure 4.1

demonstrates that for each parameter solutions with similarly good values of the NS coefficient

can be found within the complete prior range. The posteriors of most aggregate parameters

follow closely the uniform prior distribution. Table 4.2 shows the mean, standard deviation and

correlation matrix of the posterior parameter distribution. The correlations between most

parameters are small except between a CN2.mgt and a_SOL_AWC.sol, v ESCO.hru and

a_SOL_AWC.sol, and r_SOL K.sol and rSLSUBBSN.hru, with values of 0.44, 0.56 and 0.67,

respectively. The third column in Table 4.2 shows the standard deviations of the parameters.

Figure 4.2 shows the 95PPU of the model results for both calibration and validation periods.

Most of the observations are bracketed by the 95PPUs (79% during the calibration period and

69% during the validation period, seepfactor in Table 4.5).
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Figure 4.1: Dotty plot of NS coefficient against each aggregate SWAT parameter conditioning

with GLUE based on 10,000 samples with threshold 0.70 (red line), above which the parameter

sets are behavioral
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Figure 4.2: 95PPU (shaded area) derived by GLUE. The dots correspond to the observed

discharge at the basin outlet, while the solid line represents the best simulation obtained by

GLUE.
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Table 4.2: Mean, standard deviation (SD) and correlation matrix of the posterior disfribution

resulting from application of the GLUE technique

parameter mean stdev

a CN2.mgt -20.27 5.56 1

v EPCO.hru 0.47 0.29 -0.02 1

v ESCO.hru 0.51 0.25 0.04 0.18 1

r SOL K.S01 0.30 0.33 -0.04 0.03 -0.10 1

a SOL AWC.sol 0.08 0.04 0.44 -0.09 0.56 -0.09 1

v_ALPHA_BF.gw 0.51 0.28 -0.19 0.03 0.02 -0.07 -0.06 1

v__GW_DELAY.gw 149.46 81.96 0.03 0.01 0.15 0.06 -0.04 -0.14 1

r SLSUBBSN.hru -0.13 0.28 0.09 -0.03 0.24 0.67 0.19 0.07 0.01 1

a CII K2.rte 74.99 42.42 0.16 -0.02 -0.12 0.00 -0.08 -0.01 0.04 -0.13 1

a OV N.hru 0.10 0.06 -0.02 0.03 0.01 0.05 -0.02 -0.03 0.03 0.02 0.08 1

4.4.2. Results ofParaSol and modified ParaSol implementations with objectivefunction SSQ

Implementation of ParaSol is relatively easy and the computation depends only on the

convergence of the optimization process (SCE-UA algorithm). Once the optimization is done,

ParaSol will determine the behavioral and non-behavioral parameter sets and produce prediction

uncertainty.

The application of ParaSol resulted in 851 behavioral parameter sets out of a total of 7550

samples (the threshold value based on the ^-statistics is equivalent to NS 0.819). Figure 4.3

shows the dotty plot of the NS coefficient against each parameter. Clearly, the parameter samples

are very dense around the maximum. This is confirmed by very steep cumulative distribution

functions (not shown) and small standard deviations of the estimated model parameters (third

column in Table 4.3). ParaSol based on the SCE-UA is very efficient in detecting the area with

high goal-function values in the response surface. The threshold line (blue line) in Figure 4.3

separates the parameters sets into behavioral parameter sets (above the blue line) and non-

behavioral parameter sets (below the blue line). However, as can be seen, both the number and

area of the behavioral parameter sets arc extremely small, and the corresponding parameter

ranges are very narrow. This also leads to a very narrow 95PPU for model predictions shown in

Figure 4.4 (dark gray area). ParaSol failed to derive the prediction uncertainty (only 18% of

measurements were bracketed by 95PPU during the calibration period) though the best simulation

matches the observation quite well with NS equals 0.82 during the calibration period. This is

because ParaSol doesn't consider the error in the model structure, measured input and measured
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response, which results in underestimation of the prediction uncertainty. The developer of

ParaSol solved this problem by reducing the threshold to include the correct number of data

points (technique "SUNGLASSES"). SUNGLASSES is not applied here because it needs to take

into account the observations during the validation period, which will complicate the comparison.
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Figure 4.3: Dotty plot of NS coefficient against aggregate SWAT parameters conditioning with

ParaSol. The blue line is the threshold determined by ParaSol, and red line is the threshold with

value 0.70 for modified ParaSol.

As to the modified ParaSol with threshold value 0.70, Figure 4.3 shows the behavioral and

non-behavioral parameter sets separated by threshold line with value 0.70 (red line), and light
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grey area in Figure 4.4 describes the 95PPU. There are 60% of measurements bracketed by

95PPU during calibration period and 52% during validation period (seep-factor in Table 4.5).
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Figure 4.4: 95PPUs derived by ParaSol (dark gray area) and modified ParaSol (light gray area).

The dots correspond to the observed discharge at the basin outlet, while the solid line represents

the best simulation obtained by ParaSol
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Table 4.3: Mean, standard deviation (SD) and correlation matrix of the posterior distribution

resulting from application of the ParaSol technique

Aggretate

parameters mean stdev

a_CN2.mgt -21.08 1.81 1

v ESCO.hru 0.65 0.07 0.18 1

v EPCO.hru 0.22 0.13 -0.06 0.04 1

r SOL K.sol 0.00 0.38 -0.03 -0.14 0.50 1

a SOL AWC.sol 0.08 0.01 0.42 0.54 -0.18 -0.20 1

v_ALPHA_BF.gw 0.29 0.21 -0.15 -0.08 0.57 0.84 -0.14 1

v_GW_DELAY.gw 106.62 24.91 -0.08 -0.02 0.35 0.36 -0.27 0.38 1

r SLSUBBSN.hru -0.35 0.24 0.03 -0.07 0.48 0.96 -0.11 0.85 0.33 1

a CH K2.rte 49.58 23.41 -0.07 -0.19 0.54 0.76 -0.36 0.73 0.45 0.72 1

a OV N.hru 0.09 0.02 -0.09 -0.11 0.30 0.31 -0.18 0.26 0.16 0.28 0.36 1

4.4.3. Result ofSUFI-2 implementation with objectivefunction NS

SUFI-2 is also convenient to use. The drawback of this approach is that it is semi-automated and

requires the interaction of the modeler for checking a set of suggested posterior parameters,

hence, requiring a good knowledge of the parameters and their effects on the output. This may

add an additional error, i.e., "modeler's uncertainty" to the list of other uncertainties.

For the SUFI-2 approach, we did 2 iterations with 1500 model runs in each iteration. In the

second iteration, the 95PPU brackets 84% of the observations and r-factor equals 1.03 which is

very close to a suggested value of I. Posterior distributions in SUFI-2 are always independent

and uniformly distributed, and expressed as narrowed parameter ranges (see the interval

bracketed by parentheses in category 1 in Table 4.5). Figure 4.5 shows the dotty plot conditioned

on SUFI-2, and all these sampled parameter sets are taken as behavioral samples and contributing

to the 95PPU. Obviously there are some parameter sets with low NS values (e.g., -1.5) in Figure

4.5. Figure 4.6 shows 95PPU for model results derived by SUFI-2 for the second iteration. As

can be seen, most of the observations arc bracket by the 95PPU (84% during calibration period

and 82% during validation period), indicating SUFI-2 is capable of capturing the observations

during both calibration and validation periods. The 95PPU is quite suitable to bracket the

observations in 1985, 1988 and 1989, while it is somehow slightly overestimated in 1986, 1987

and 1990 especially in the recession part. This indicates there is a lot of uncertainty in the

recession calculation of SWAT. However, as SUFI-2 is a sequential procedure, i.e., one more
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iteration can always be made leading to a smaller 95PPU at the expense of more observation

points falling out of the prediction band.
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Figure 4.5: Dotty plot of NS coefficient against each aggregate SWAT parameter conditioning

with SUFI-2. The red line represents the NS coefficient 0.70 used in the GLUE application.
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4.4.4. Result ofMCMC implementation ofBayesian analysis with autoregressive error model

Implementation of Bayesian inference is not so easy especially for complex models because it

requires formulating and testing of a likelihood function that characterizes the stochastieity of the

observations. This usually requires several iterations of the inference procedure for different

likelihood functions as statistical tests of residuals can only be performed after the analysis is

completed. Once the constructed likelihood function is validated (i.e. the statistical assumptions
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for the likelihood function are validated), MCMC must be conducted and the resulting chain must

be analyzed for the burn-in and stationary periods. Only points from the stationary period should

be used for inference.

In this study, the Markov Chain was started at a numerical approximation to the maximum of

the posterior distribution calculated with the aid of the SCE-UA (Duan et al, 1992) to keep the

burn-in period short. The Markov Chain was run until 20,000 simulations were reached after the

convergence of the chain to the stationary distribution monitored by the Heidelberger and Welch

method (Heidelberger and Welch, 1983; Cowles and Carlin, 1996). The "CODA" package (Best

et al, 1995) as implemented in the statistical software package R (http://www.r-project.org) was

used to perform this test. As shown in Yang et al. (2007), the statistical assumptions of the

likelihood function (Eq 4.11) were not significantly violated, so that we can be confident about

the derived prediction uncertainties.

Figure 4.7 shows histograms which approximate the marginal posterior distributions of

parameters conditioned with Bayesian MCMC. Except for the parameter a OVN.hru which

has the approximate uniform distribution of its prior, all other parameters exhibit different

posterior distributions than their priors in both parameter range and shape of the distributions.

Table 4.4 lists the means, standard deviations, and correlation matrix of the posterior parameter

distribution. As can be seen from Table 4.4, with the exception of the high correlation between

the parameters r SOLK.sol and r SLSUBBSN.hru, correlations between aggregate

parameters are not very high. The high correlations between the parameters of the autoregressive

error model (o"dry, awet, Tdry, and Twel) indicate strong interactions among those parameters. Figure

4.8 shows the 95PPU of the model results arising from parameter uncertainty only (dark shaded

area) and from total uncertainty (light shaded area) due to parameters, input, model structure and

output represented by parameter uncertainty and the autoregressive error model. As can be seen,

although the prediction uncertainty based on the parameter uncertainty alone in MCMC is quite

narrow, that from parameter uncertainty and uncertainty sources represented by the

autoregressive error model brackets over 80%> of the observed points for both calibration and

validation periods. This indicates that there is a large uncertainty in input, output and model

structure in addition to parameter uncertainty. As can also be seen, there is a slight

overestimation of prediction uncertainty during the wet season, and this suggests more attention

should be paid to the wet season when constructing the likelihood function.
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Chapter 4

4.4.5. Result ofPrimitive IS implementation ofBayesian analysis with autoregressive error model

The application with primitive IS is extremely inefficient. In this study, within 100,000 model

runs only one parameter set got a weight significantly different from zero. This shows that IS

based on the prior as a sampling distribution is too inefficient to be applied to such hydrological

problems. An iterative narrowing of the sampling distribution that already starts with a good

guess (e.g. close to the maximum of the posterior) would be required to make IS more efficient.

4.4.6. Comparison

Table 4.5 summarizes the results of the comparison in the categories of criteria introduced in

section 4.2.3. We will exclude primitive IS from further discussion as obviously the numerical

technique of primitive IS from the prior fails to give a reasonable approximation to the posterior

at the sample sizes we can afford.

4.4.6.1 Parameter estimates andparameter uncertainty

Results of the marginal posterior parameter distributions are shown as dotty plots in Figures 4.1,

4.3, and 4.5 or marginal distributions in Figure 4.7. In addition, posterior means, standard

deviations and correlation matrices of the techniques that provide these estimates are given in

Tables 4.2, 4.3, and 4.4. Finally, best estimates and 95% parameter uncertainty ranges are

summarized in Table 4.5 (category 1). In General, different techniques result in different

posterior parameter distributions, which are represented by different 95% parameter uncertainty

ranges, dotty plots and correlation matrices.

Category 1 in Table 4.5 shows the 95% uncertainty ranges of the marginals of all parameters

resulting from GLUE, ParaSol and MCMC, and the posterior parameter intervals resulting from

SUFI-2. As can be seen, GLUE provided the widest 95% parameter uncertainty ranges, followed

by SUFI-2, MCMC and ParaSol. Most of the uncertainty intervals derived by GLUE contain the

corresponding intervals from SUFI-2, MCMC and ParaSol. However, not all the parameter

intervals derived by SUFI-2 contain the corresponding intervals of MCMC (for example,

a OVN.hru). Some uncertainty intervals from SUFI-2 do not even overlap with those from

MCMC (for example, v GWJDELAY.gw). The marginals of GLUE are wider than those of

SUFI-2; this may be because GLUE considers parameter correlations while SUFI-2 does not.

The posterior shape in SUFI-2 is always a hypercube; therefore wide intervals would lead to too
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many simulations with poor performance (poor values of the goal function). The marginals of

MCMC are even narrower than those of SUFI-2 because the likelihood function (Eq. 4.11)

applied considers input and model structural error separately while GLUE and SUFI-2 map those

errors into parameter uncertainty. Therefore, in MCMC, parameter uncertainty contributes only

partly to total prediction uncertainty. Different marginals from ParaSol and MCMC illustrate

different response surfaces defined by different objective functions.

In principle the global sampling strategy of GLUE allows this technique to identify any shape

of the posterior distribution including multimodal shapes. Unfortunately, the number of samples

that can be run in practice is too small to realize this conceptual advantage. For example, a

comparison between Figures 4.1 and 4.3 demonstrates that GLUE failed to cover the behavioral

parameter sets of ParaSol (points above the blue line in Figure 4.3). In this sense, GLUE tends to

flatten the true response surface by removing sharp peaks and valleys). This is also the problem

of primitive IS (special case of GLUE) and SUFI-2. Primitive IS can only find several isolated

points (e.g. its application in this study) because it uses a sampling distribution which is much

wider than the posterior. In addition to the difficulty of locating multiple maxima, the hypercube

shape of the posterior required for SUFI-2 does not allow this technique to describe multi-modal

distributions. Although conceptually Bayesian inference can describe any posterior shape, the

implementation of Markov Chain Monte Carlo will usually have a problem to jump from one

mode to another in the multi-modal response surface. However, at least the global optimization

preceding Markov Chain Monte Carlo helps to find the mode with maximum posterior density.

Based on SCE-UA, ParaSol can also locate the best mode in the multi-modal response surface,

and its capability to explore other modes is obviously questionable. This leads to the narrow 95%

parameter uncertainty ranges listed in Table 4.5.

The parameter correlations in GLUE (Table 4.2) are smaller (the largest equal to 0.67

between r SOLK.sol and r_ SLSUBBSN.hru, and most are below 0.2) compared to those of

ParaSol and MCMC (the strongest correlation between parameters of the hydrologie model is

between r_SLSUBBSN.hru and r_SOL_K.sol (0.96 and 0.99) in both techniques). This

indicates that the (behavioral) parameter sets with significant weight are quite uniformly

dispersed over the parameter space. The weaker correlations in GLUE also indicate the

phenomenon that the real response surface is flattened by GLUE. In SUFI-2, parameter

correlations are neglected.
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4.4.6.2 Performance ofthe simulation at the mode ofthe posterior distribution

The performances of the simulation at the mode of posterior distribution are listed in category 2

of Table 4.5. It is not astonishing that ParaSol (for NS) and MCMC (for log posterior) find the

best fit of their respective goal functions because these techniques are based on global

optimization algorithms (at least as a first step for MCMC). Such algorithms arc much more

efficient for finding the maximum of the goal function than random or Latin Hypercube searches.

Despite the fact that NS is not the objective function of MCMC, the values ofNS at the maximum

of the posterior are not much smaller than those of the techniques which use NS as their goal

function. The reader can compare other measures of performance in category 2 of Table 4.5.

4.4.6.3 Modelprediction uncertainty

Category 3 in Table 4.5 lists the relative coverages of measurements {p-factor), the relative width

{r-factor) and the CRPSs of the 95PPUs for model predictions for all techniques. For the reasons

mentioned in section 4.6.1, ParaSol gave too narrow prediction uncertainty bands which are

hardly distinguishable from its best prediction (i.e. the one with the best value of the goal

function). GLUE and SUFI-2 led to similar p-factors but different r-faclors during the

calibration period, and both different p-factors and r-fàctors in the validation period. The reason

for this may be that the uncertainty width {r-factor) of the 95PPU based on GLUE is determined

not only by the threshold but also its capability of exploring the parameter space (instead of the

multimodal shapes) while that of SUFI-2 is determined by the inclusion of some parameter set

with poor goal function in the posterior hypercube. In MCMC, the p-factors are similar to those

of GLUE and SUFI-2, however, the r-factor is a bit higher. This may be because of the

overestimation of errors in the input and output and model structure. It is worth nothing that the

coverage {p-factor) of GLUE and modified ParaSol can be increased at the expense of increasing

r-factor by decreasing the threshold. This is not true for MCMC as the coverage does not depend

on arbitrary threshold of the technique.

An examination on the dynamics of these 95PPUs in Figures 4.2, 4.4, 4.6 and 4.8 reveals:

uncertainty analysis techniques based on NS show a better coverage in the recession part of the

hydrographs than other parts (e.g., peak part), and there is also a clear yearly variation

(overestimated in 1986, 1987 and 1990) for GLUE and SUFI-2, while MCMC has a better

balance between years, but there seems to be a slight overestimation of prediction uncertainty
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during the wet season. The reason is that in the application to the Chaohe Basin the

autoregressive error model explicitly specifies the seasonally dependent values of the o's and t's

which reflect the seasonal impacts of input uncertainty, model structural uncertainty and

measured response uncertainty. In GLUE and SUFI-2 (at least when applied as in this case

study), total uncertainty is expressed as parameter uncertainty, which leads to an equally

weighted impact on wet season and dry season.

The CRPS values demonstrate the problem of this measure of combining quality of fit with

prediction uncertainty into one common index (i.e. CRPS). The underestimation of prediction

uncertainty combined with a good fit leads to the smallest values for ParaSol and MCMC with

parameter uncertainty only whereas the values for the other techniques (with wider uncertainty

bands) arc larger and of a similar magnitude (See category 3 in Table 4.6). This indicates that a

further decomposition of CRPS that accounts for different contributions to its value may be

necessary in order to make CRPS a useful measure in the present context (see Hersbach, 2000).

4.4.6.4 Conceptual basis ofthe technique

The crucial criteria with respect of the conceptual basis of the techniques are summarized in

category 4 of Table 4.5.

The first two criteria describe how different sources of uncertainty are dealt with. In GLUE

and SUFI-2, all sources of uncertainty arc mapped to (an enlarged) parameter uncertainty, which

will result in wider parameter marginals than ParaSol, MCMC and IS. Parasol ignores other

sources of uncertainty except parameter uncertainty. Finally the autoregressive error model maps

the effect of input, output and model structure uncertainty to a continuous-time autoregressive

error model. As this approach uses extra parameters rather than model parameters it does not

enlarge parameter uncertainty.

The conceptual basis of ParaSol, MCMC and IS is probability theory. This has the advantage

that the statistical assumptions must be clearly stated and are testable. The statistical assumptions

underlying ParaSol (independent, normally distributed residuals) are clearly violated whereas

there is no significant violation of the assumptions made by the autoregressive error model (see

Yang et al. 2007). The conceptual bases of GLUE and SUFI-2 are different and their statistical

bases are weak. GLUE and SUFI-2 allow the users to formulate different likelihood measures (or

objective functions) which certainly include the likelihood function used for MCMC (example
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Eq. (4.11)). However, when using generalized rather than ordinary likelihood functions, GLUE

and SUFI-2 lose the probabilistic interpretation of the results. In the last step of the GLUE

application, weights are normalized and again interpreted as probabilities. This procedure lacks a

consistent and testable statistical formulation. Also SUFI-2 lacks a rigorous probabilistic

formulation. Parameter uncertainty formulated by a uniform distribution in a hypercube is

propagated through the hydrologie model correctly, but the convergence criteria based on the

values ofp-factor and r-factor lack an assumption of the dependence structure of the errors.

4.4.6.5 Difficulty ofimplementation and efficiency

The final category of comparison criteria (category 5) in Table 4.5 is difficulty of implementation

and efficiency.

Implementation of GLUE is straightforward and very easy. Due to the calculation of

sensitivity measures and global optimization, implementation of SUFI-2 and ParaSol is somewhat

more complicated but still quite easy. Due to the most complicated likelihood function and

processing technique, the Bayesian techniques need more effort to be implemented.

Due to an efficient optimization procedure, ParaSol does not require extensive computations.

Taking into account a relatively poor coverage of the parameter space, SUFI-2 is also not very

expensive to run. Depending on the required coverage, GLUE can be run with smaller or bigger

sample sizes. The computationally most expensive technique is Bayesian inference. This is

certainly the major disadvantage of this technique.

4.5 Conclusions

After comparing the applications of different uncertainty analysis techniques to a distributed

watershed model (SWAT) for the Chaohe watershed in North China, we come to the following

conclusions:

1) Application ofGLUE based on the Nash-Sutcliffe coefficient. This technique led to the widest

marginal parameter uncertainty intervals of the model parameters (i.e. strong capability of

exploring the parameter space), good prediction uncertainty (in the sense of coverage of

measurements by the uncertainty bands), and problems of locating multimodal shapes of the

posterior due to the inefficiency of global sampling. This technique tends to flatten the response

surface defined by the likelihood measure NS. The wide parameter uncertainty ranges (or strong
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capability of exploring the parameter space) are primarily caused by the use of the Nash-Sutcliffe

coefficient as a generalized likelihood measure.

2) Application of ParaSol based on the Nash-Sutcliffe coefficient. ParaSol was able to find a

good approximation to the global maximum of NS, however, it led to too narrow prediction

uncertainty bands due to a violation offne statistical assumption of independently and normally

distributed errors. Decreasing the threshold value in modified ParaSol increases its prediction

uncertainty but the choice of the threshold value may be hard to justify.

3) Application of SUFI-2 based on the Nash-Sutcliffe coefficient. This technique could be run

with the smallest number of model mns to achieve good prediction uncertainty (reasonable

coverage of data points by the prediction uncertainty bands). This characteristic is very desirable

for the uncertainty analysis on models which are computationally demanding. However, the

choice of a small sample size obviously decreases exploration of the parameter space and this

technique faces the same problems as GLUE encounters.

4) Application ofMCMC based on a continuous-time autoregressive error model. Due to the

global optimization performed before starting the Markov Chain, MCMC achieved a good

approximation to the maximum of the posterior. The statistical assumptions of the error model

are testable and in reasonable agreement with empirical evidence. The additional parameters of

the error model give the user some freedom in the description of the effect of input and model

structure error (such as seasonal dependence of the magnitude of these effects). The main

disadvantages of this technique are the difficulty of constructing the likelihood function, the large

number of simulations required to get a good approximation to the posterior, and the difficulty of

covering multi-modal distributions caused by the numerical implementation of MCMC.

5) Application ofIS based on a continuous-time autoregressive error model. The implementation

of primitive importance sampling is much too inefficient to get a reasonable approximation to the

posterior.

6) About choosing the objective functions. GLUE and SUFI-2 are very flexible by allowing for

arbitrary likelihood measures / objective functions. On the other hand, GLUE and SUFI-2 lose

their statistical basis when using this additional freedom. The real capability of exploring the

parameter space is also seriously affected by the choice of the objective functions. In ParaSol,

the objective function and the way to split the parameter set are statistically based. However, the
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underlying statistical assumptions are seriously violated. This makes the results unreliable. The

likelihood function used for MCMC has a testable statistical basis and the test of our result did

not indicate a severe violation of the assumptions. This makes the Bayesian inference which is

based on this likelihood function conceptually the most satisfying technique.

Despite these big differences in concepts and performance, GLUE, SUFI-2 and MCMC led to

similarly good prediction uncertainty bands. Our preference is for MCMC because Bayesian

inference has a sound theoretical foundation and the statistical assumptions underlying the

likelihood function based on the autoregressive error model is testable and did not indicate

significant violations of the assumptions. However, further efforts are required to improve the

formulation of likelihood functions used in hydrological applications. In particular, it would be

interesting to formulate a likelihood function that not only describes the effect of input, model

structure and output uncertainty (as our autoregressive error model does), but also resolves the

different sources of uncertainty.
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5 Conclusions and Outlook

In this section, firstly the main results from the previous sections arc summarised, followed by

the conclusions. In addition, a brief outlook on further research is provided.

5.1 Summary

In Section 2 we developed a continuous-time autoregressive error model within the Bayesian

framework. The characteristic of this method is to construct the likelihood function in

combination with the Box-Cox transformation and autoregressive error model in such a way that

the observed innovations rather than the residuals are independently and normally distributed.

The implementation is demonstrated by its application to the Chaohe Basin in North China. In

the application, the statistical assumptions arc tested and fulfilled. Statistical inference is

numerically implemented by a global maximization of the posterior followed by Markov Chain

Monte Carlo sampling.

In Section 3, the developed continuous-time autoregressive error model is extended by

assuming that the innovations between the simulation and observation are realizations of

independent t-distributions. As the degrees of freedom approaches infinity, the t-distribution

approaches the normal distribution. Therefore, we can take the normal distribution as a special

case of the t-distribution with sufficiently large degrees of freedom. With this additional

parameter (i.e. degrees of freedom), it is possible to adapt the model to best match the shape of

the empirical distribution of the innovations. This implementation is demonstrated by the

application to the Thur river basin in Switzerland.

In Section 4, different UA approaches arc compared. The comparison turns out to be difficult

as these approaches differ in fundamental concepts, parameter prior choices, and goal function

choice. Nevertheless, wc conclude with the recommendation of the use of Bayesian inference

with a carefully chosen likelihood function that accounts for all uncertainty sources, whenever it

is possible. However, the computational demand involved may make this choice very difficult to

apply.
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5.2 Conclusions

Based on the work of the previous chapters, this study concludes:

1) The continuous-time autoregressive error model is applicable and efficient for the analysis

of the effect of parameter uncertainty, uncertainties in the input, response and model structure in

hydrologie modeling.

2) The assumption of independent t-distributions for describing the distribution of the

innovations rather than the residuals makes the likelihood function have better statistical basis

because the innovations are much less correlated and the shape of the t-distribution fits empirical

evidence much better (particularly heavy tails). The continuous-time autoregressive error model

can also address the problems of hetcroscedasticity of the residuals by a combination of a Box-

Cox transformation with seasonally dependent parameters of the error model.

3) Although different UA techniques are based on different fundamental concepts, prior

parameter choices and goal functions, many of them lead to similar prediction uncertainties.

Therefore, the choice of the UA techniques in hydrologie modelling depends on the preference of

the modeller and the application at hand.

4) Because of the sound statistical basis and the testability of model assumptions, our

preference is on the Bayesian approach with a careful choice of the likelihood function. The

good reproduction of the empirical error distributions by our continuous-time autoregressive error

model increases our confidence in predicted uncertainty bands. Computational limitations,

however, may make this choice difficult for very time-consuming models.

5) The limitation of this method is that it doesn't separate input uncertainty from model

structural uncertainty. And compared to other techniques, the major disadvantage is the high

computational demand characteristic for all MCMC techniques.

5.3 Outlook

Building on this research and to the author's knowledge, the following research areas are

potentially interesting and would be worth further research.

1 Further comparison of different UA techniques
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A comparison of techniques based on a case study is obviously case and model dependent. More

studies based on other watersheds and other hydrologie models should be done to investigate the

advantage and disadvantage of different UA techniques.

2 Explicit consideration of input and model structural uncertainty

As mentioned in the conclusion part, the limitation of our approach is that it doesn't separate

input uncertainty from model structural uncertainty. Recently, a method BATEA (BAycsian

Total Error Analysis methodology; Kavetski et al., 2006a & 2006b) has been developed that

considers input uncertainty within a Bayesian framework. BATEA uses additional (latent)

variables to account for time-dependent input errors. Approaches to consider model structural

errors by making the deterministic simulation model stochastic have also recently been published

(Vrugt ct al. 2005). A combination of such approaches and an extension to continuous-time

formulation as done in the present study would be an interesting research field for the future.

3 Improvement of the numerical efficiency of Bayesian computation

The most limiting practical problem for applying Bayesian inference with large computational

models is the relatively poor efficiency of the Markov Chain Monte Carlo approach.

Optimization of the efficiency of this approach or development of alternative numerical

approximations to the posterior would considerably extend the range of applicability of these

techniques.
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Appendix A:

Interfacing SWAT with Systems Analysis Tools:

A Generic Platform

Jing Yang, Karim C. Abbaspour, and Peter Reichert

Abstract: Complex hydrologie watershed models need sophisticated techniques for statistical

inference of parameters and uncertainty estimation of predictions. To perform such analyses,

watershed simulation programs must be linked to systems analysis software. It is inefficient to do

this by implementing a large set of systems analytical techniques directly into each simulation

program. The more useful strategy is to implement a flexible interface independent of the

simulation program that allows the user to link the simulation program to external systems

analysis software. In this paper, the requirements for such an interface for distributed

hydrological simulation programs arc analyzed, and the implementation of such an interface for

the Soil and Water Assessment Tool (SWAT) is described. The discussion of these requirements

and the concepts of implementation are intended to stimulate similar development for other

simulation programs; the implementation itself, which is freely available, facilitates the

combination of systems analysis techniques with SWAT applications.

Keywords: Calibration; Interface; Systems Analysis Tools; SWAT; Watershed Models;

Simulation Program

Software Availability

Name of product: iSWAT

Program language: C++

Software requirements: SWAT 2000/SWAT2005

Hardware requirements: PC with MS Windows or Linux (the interface could be compiled for

other platforms easily)

Contact Address: Jing Yang, Eawag, Ueberlandstr 133, P.O.Box 611, 8600 Ducbendorf,

Switzerland, jing,yang@eawag.ch
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Availability: Source code and binaries for MS Windows and Linux can be freely

downloaded from http://www.uncsini.cawag.ch/intcrfaces/SWAT

1 Introduction

Calibration of hydrologie models and uncertainty analyses of their predictions is a very active

research field as it challenges current methodological know-how and is of highly practical

relevance (Duan et al. 2002). Nevertheless, implementations of these hydrologie models are

poorly supported by systems analysis programs. Improving this support is very important, as

research requires the application of different and new techniques (e.g., uncertainty analysis) to a

diversity of hydrologie simulation programs (e.g. Duan et al. 2002; Kavetski et al. 2006; Vrugt et

al. 2006). To improve the support for such analyses, we need a generic interface between

hydrologie simulation program and systems analysis software because this is much more flexible

than implementing systems analysis techniques directly into each hydrologie simulation program.

Recently, a simple version of such an interface has been proposed (Reichert, 2006). This paper

describes how a interface is implemented for the Soil and Water Assessment Tool (SWAT;

Arnold 1998). The implementation for SWAT includes 2 parts: one is to define a term

"aggregate parameters" (which combines the parameter's name and its influential factors, and this

will lead to meaningful calibration and reduction of parameter number for calibration), the other

is to communicate the "aggregate parameter" between the simulation program (SWAT executable

program) and systems analysis programs. This paper is an updated version of an earlier

conference contribution (Yang et al. 2004). Its intention is to stimulate the discussion on how to

improve the application of systems analytical techniques for hydrologie models among

hydrologists, to demonstrate the usefulness of the concept of flexibly defining "aggregate

parameters" for distributed hydrologie models, and to provide a first introduction of the particular

interface to future users.

This paper is structured as follows: In section 2 requirements for a generic interface between

distributed watershed simulation program and systems analysis software are discussed. Section 3

contains a short summary of the features and structure of input and output files of SWAT. The

interface is described in section 4. Section 5 gives a very brief overview of first applications of

the interface. Finally, in section 6 conclusions are drawn.
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2 Specific Interface Requirements for Distributed Watershed Models

Due to the high geographic resolution and the large number of processes required for a realistic

description of watershed hydrology and the sparse data that is either local (soil properties,

precipitation, etc) or integrative (e.g., river discharge), distributed hydrologie models are

inevitably over-parameterized. In addition, most of parameters in distributed hydrologie models

should be determined through so-called model calibration for some reason (for example, some

parameters represent spatial averages of system properties) and at the same time are influenced

by factors such as landuse type, soil texture, etc. To deal with these problems, it is useful to

reduce the number of parameters for analysis by aggregating the distributed parameters in

different ways. This will greatly increase the flexibility of the users' choice. Such aggregations

should include applying relative or absolute changes to default parameter values (to keep the

structure of spatial variation), to apply the same parameter values for the same soil and land use

types, to regionally differentiate parameter values, etc.

3 The Soil and Water Assessment Tool (SWAT)

SWAT (Arnold et al., 1998) is a watershed simulation program that was originally developed by

a research team in the US Department of Agriculture. SWAT solves water balances in

hydrologie response units (HRUs) which are defined by unique land use - soil type combinations

within sub-basins of the watershed. For each HRU the water balance is calculated considering

precipitation, évapotranspiration, runoff, infiltration, interflow, and percolation into a shallow

aquifer. River flow is routed downstream to the outlet of the watershed. The current version of

SWAT (SWAT 2000) is linked to ArcView GIS (ESRI, http://www.esri.com) in order to

facilitate handling of input and output. SWAT implements also a water quality submodel

describing transport of sediment, and transport and transformation of nutrients and pesticides.

Running SWAT is based on a three-step procedure:

1. In the first step, an ArcView GIS interface of SWAT (AVSWAT) is used to delineate sub¬

basins from digital elevation data, and then generate HRUs within each sub-basin by overlaying

the soil and land use maps. As a final step, AVSWAT produces a large number of input text

files. The content of these input text files and their corresponding spatial levels are summarized

in Table 1.
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Table 1 : Example of file types, file levels and corresponding parameter information.

File type

(extension)
Spatial Level Description

bsn Basin level Basin input file, containing parameters used for the whole basin,
such as the snowmelt factor.

wwq Basin level Watershed water quality input file containing parameters used by
the QUAL2E model applied in the main channels.

crp Basin level Land cover / plant growth database file containing plant growth

parameters for all land covers simulated in the watershed.

pnd Sub-basin

level

Pond and wetland input file containing parameter information used

to model the water, sediment, and nutrient balance for ponds and

wetlands.

rte Sub-basin

level

Main channel routing input file containing parameters governing
water and sediment movement in the main channel of the sub¬

basin.

sub Sub-basin

level

Sub-basin input file containing information related to features

within the sub-basin, such as properties of tributary channels.

swq Sub-basin

level

Stream water quality input file containing parameters used to

model pesticide and QUAL2E nutrient transformations in the main

channel of the sub-basin.

wgn Sub-basin

level

Weather generator input file containing the statistical data needed

to generate representative daily climate data for the sub-basin.

wus Sub-basin

level

Water use input file containing information for consumptive water

use in the sub-basin.

chm HRU level Soil chemical input file containing information about initial

nutrient and pesticide levels of the soil in the HRU.

gw HRU level Groundwater input file, containing information about the shallow

and deep aquifer in the sub-basin.

hru HRU level HRU input file, containing information related to a diversity of

features within the HRU, such as parameters affecting surface and

subsurface water flow.

mgt 11RU level Management input file, containing management scenarios

simulated in the HRU.

sol HRU level Soil input file containing parameters about the physical
characteristics of the soil in the HRU.

2. In the second step, the FORTRAN program "swat2000" reads these text input files, performs

the simulation, and writes text output files.

3. ArcView-SWAT (AVSWAT) provides limited post processing capabilities and other

programs must be used for output manipulation and display.
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After the initial setup of a SWAT project, the text file-based project can be run and analyzed

independent of the AVSWAT interface. This text file based project provides the easiest access

for the implementation of an interface with systems analysis programs.

4 Interface Description

4.1 General Concept

The general concept of the interface is based on the suggestion by Reichert (2006). The systems

analysis program first writes parameter names and corresponding values into the file "model.in",

then executes the simulation program (the part which is enclosed by the dashed box in Figure 1 in

our case), and finally reads model result from the file "model.out" written by the simulation

program (see Figure 1).

To allow for aggregate parameters (see below) and to make the interface independent of the

SWAT code (as long as the input-file format is not changed), the interface is implemented as two

exécutables (i.e., swedit and swextract as introduced below). The simulation program called

by the system analysis program calls three exécutables:

1. First, the executable "swedit" is called. This executable first reads "aggregate parameters"

names and values from the file "model.in" and default parameter values from a backup

directory with SWAT input files, and then modifies SWAT input files accordingly.

2. Then "swat2000" is called to perform the simulation and write SWAT output files.

3. Finally, the interface program "swextract" is called. This executable extracts the values of

selected output variables from the SWAT output files and writes them to the file

"model.out".
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swat2000

CTmodcl.out ")-

Figure 1: Interaction of the systems analysis program with the simulation program (enclosed by

the dashed box) which consists of the interface programs "swedit" and "swextracf',

and the SWAT simulation engine "swat2000".

4.2 Aggregate Parameters

As mentioned in section 2, the interface should provide aggregate parameters in addition to the

independent distributed SWAT parameters to the systems analysis procedures. In the interface

iSWAT, parameter aggregation is implemented by encoding this information in a generalized

parameter name. The structure of this name is as follows:

x <parname>.<ext> <hydrogrp> <soltext> <Ianduse> <subbsn>

where

x Code to indicate the type of change to be applied to the parameter:

v means the existing parameter value is be replaced by the given value,

a means the given value is added to the default parameter value, and

r means the default parameter value is multiplied by (1+the given value);

<parname> SWAT parameter name;

<cxt> SWAT file extension code for the file containing the parameter;

<hydrogrp> soil hydrological group ('A'/B'/C or 'D') (optional);

<soltext> soil texture (optional);
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<landuse> name of the land use category (optional);

<subbsn> number(s) of subbasin, crop index, fertilizer index and rainfall date (optional).

The typical formats are "1", "3-5" or "1,3-5,10-21,22" etc. The meaning depends

on the extension code of the file containing the parameter (sec <cxt> above):

sub: subbasin number(s),

crp: crop index,

fft: fertilizer index,

pep: datc(s) of the rainfall data.

The influential factors <hydrogrp>, <soltext>, <landuse>, and <subbsn> can be omitted, if the

change applied to the (distributed) parameters is global. Any combination of these influential

factors can be used to make distributed parameters dependent on important influential factors.

The parameters can be kept regionally constant, modify a prior spatial pattern, or be changed

globally. This gives the analyst a large freedom in selecting the complexity of distributed

parameters. By using this flexibility, a calibration process can be started with a small number of

aggregate parameters that only modify a given spatial pattern and with more complexity and

regional resolution added as the learning process proceeds.

4.3 Implementation

There are a large number of SWAT model parameters distributed over a large number of input

files (see section 3 and particularly Table 1). The number of files increases with the watershed

disaggregation into sub-basins, and consequently the number of HRUs increases. To make the

process of modifying input files efficient, this interface was implemented in C++ in two steps. In

a first step, a library was built of classes corresponding to the input files listed in Table 1. The

common functions for reading and writing parameter values from and to the text files are declared

in a base class (CBascParaFile) and implemented in the file-type specific classes. The functions

for reading the output files of SWAT are implemented in a separate class (CMethodSet). This

leads to the class hierarchy described in Table 2 and shown in Figure 2. In the second step, an

application program called "swedit" is constructed to read the aggregate parameters and their

values from "model.in", and then parse the generalized parameter name, and change the SWAT

input files by constructing the relevant class object and calling the member function of the object.

Application "swextracf
'

is also constructed to extract SWAT output.
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Table 2: Declared and implemented methods of the classes for modifying/extracting the SWAT

input/output files

Class Description Declared methods

not yet realized

Realized methods

CMethodSet Collection of general

purpose functions, of

functions for collecting

general SWAT project
information, and of

functions for extracting
information from SWAT

output.

- Procedure for different types of

parameter modification some

statistical functions.

- Procedure for collecting general

SWAT project information such

as the number of subbasins.

- Procedures for extracting output

from ,rch, bsb, and bsb files.

CBaseParaFile Base class for swat input
files.

- Procedure for

reading a

parameter value.

- Procedure for

changing a

parameter value.

- Procedure for retrieving the

current file name, getting or

checking the range of a given

parameter.

CBasinBSNFile

CBasinWWQFile

CCropFile

CHruCHMFile

CHruGWFilc

CHruHRUFilc

CHruMGTFile

CHruSOLFile

CSubPNDFile

CSubRTEFilc

CSubSUBFile

CSubSWQFile

CSubWGNFile

CSubWUSFilc

Related to .bsn file.

Related to .wwq file.

Related to crop.dat file.

Related to .chm file.

Related to .gw file.

Related to .hru file.

Related to .mgt file.

Related to .sol file.

Related to .pnd file.

Related to .rte file.

Related to .sub file.

Related to .swq file.

Related to .wgn file.

Related to .wus file.

- Procedure for reading a parameter

value.

- Procedure for changing a

parameter value.
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CBasinBSNFile

CBasinWWQFil
CMethodSet

CSubRTEFilc

CBaseParaFil CSubSUBFile

CIIruGWFile

CHruHRUFile

CHruMGTFile

CHruSOLFile

CCropFile

Figure 2: Class hierarchy for modifying or extracting the SWAT input/output files.

5 Applications

So far, the interface has been applied with the systems analysis tools SUFI (Abbaspour et al.

2004; 2007) and UNCSIM (Reichert 2005; http://www.unesim.eawag.ch). These applications are

described in Abbaspour et al. (2007) and Yang et al. (2007a, b, c). Without this interface, it

would not have been possible to apply different systems analytical techniques in such a flexible

way to SWAT applications.

6 Conclusions

Calibration of watershed models and uncertainty analysis of their prediction can significantly be

improved by (i) a generic interface between the simulation program of the watershed model and

systems analysis software, and (ii) a flexible way of aggregating distributed parameters to reflect

important dependencies on soil properties and land use types and region (e.g. to reflect altitude or

other regional influence factors) or by modifying default spatial distributions.

The interface we described to the hydrological simulation program "Soil and Water

Assessment Tool" (SWAT) provides these two features. The generic interface is based on a

simple text-file based data exchange between simulation program and systems analysis software.
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It uses "aggregate parameters" names to encode dependency information of the distributed

parameters and modifies hundreds of SWAT files accordingly. The flexibility of this parameter

aggregation scheme allows the researcher to start the analysis with a small number of highly

aggregate parameters that only modify a given spatial pattern and adding more complexity and

regional resolution later on as the analysis proceeds. This is not possible to achieve by the

standard editors (provided by the operating system) or standard features of SWAT. The interface

proved its practical value with several studies of SWAT model on calibrations and uncertainty

analysis in different river basins.

We hope that the general concept of this interface will be adopted (and improved) for other

hydrological simulation programs. This would significantly facilitate comparative studies of

systems analytical techniques to different watershed models. In addition, the described iSWAT

interface could stimulate comparative analyses of different systems analytical techniques to

SWAT applications. The interface can be freely downloaded from

http://www.uncsim.eawag.ch/intcrfaccs/SWAT.
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Appendix B: Explanation of some terms

1. Introduction to Autoregressive model and Innovation

A lst-order Discrete-time Autoregressive Model (DAR(l)) can be formulated as follows:

y, = o-yt-i+i,

where yt, and yt.j are the values of the variable y at time t and t-1, 9 is the autoregressive

coefficient, and /', is a random perturbation term, also called innovation, as this is the only new

information that enters at time /, with respect to what it is already available from previous time.

A lst-order Continuous-time Autoregressive Model (CAR(l)) can be formulated as follows:

y,, =exP(-
'

'-')-v, +/,

where x is the characteristic correlation time, and the relationship between 9 and x is

<9 = exp(—). Compared to DAR(l), in CAR(l) the difference between y and y, does not

necessarily be 1.

2. Normal distribution and t distribution

Statistically, a random variable x of Normal distribution with mean u and variance o2 (N(u, a2))

has the probability density function:

f{x\ju,a2) =

1 1

In a

exp

f Hx-tf^

And t distribution with degrees of freedom v, mean p and variance g2

r

f{x\v,p;,a2)

+n

v] <jx(v-2) a {v-l)a2
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