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Geodätisches Institut der Universität Stuttgart

2006





Abstract

The launch of the champ mission in 2000 has renewed interest in the recovery of the geopotential
field from satellite observations which has been a challenging research issue for decades. It was the
first dedicated gravity field mission which was followed by the grace spacecrafts.
In the grace mission, the high-low (hl-) and the low-low satellite-to-satellitetracking (ll-sst)
observations are combined and the resultant observables are expressed in terms of the gravity gra-
dient at the barycenter of two satellites. Each observation at its respective evaluation point can be
written in terms of the spherical harmonic coefficients. Consequently, the observations are a sequence
of discrete time series which are mathematically related to the unknown coefficients via the corre-
sponding position of the satellites at the evaluation epoch. In this approach, which is called time-wise
approach, the determination of unknown coefficients becomes possible after plugging the observations
into the mathematical model. Fulfilling the sampling theorem, however, leads to a huge linear system
of equations with a large number of unknowns.
As an alternative, one can employ the semi-analytical approach which is derived from the time-
wise approach by imposing some approximations. Observations are still considered as discrete time
series on an ideal geometry with a constant radius and/or constant inclination. The coefficients are
reordered and then computed via the lumped coefficients or using 2d fft.
Another alternative is the space-wise approach in which the observations are mapped on a specific
grid on the mean orbital sphere. In this approach, the observation values are predicted on the grid
points and the coefficients are derived by implementation of the global spherical harmonic analysis
on the gridded observations. Compared to the time-wise approach, the linear system of equations are
split into smaller systems which can be solved very easily in ordinary pcs.
In this thesis, the ll-sst problem is formulated both in the semi-analytical as well as the space-wise
approach. The space-wise approach is then numerically implemented.
Despite the spirit of modern geodesy to avoid reduction, the reduction of observations is required
both in the semi-analytical and the space-wise approaches. Different formulations are used for down-
or up-ward continuation of observations on the reference geometry. Optimality of the basis functions
and their respective parameters is carefully treated by means of the Genetic Algorithms (ga).
Optimizing the approximation methods is carefully investigated using the genetic algorithms. The
idea of one-leave-out method or the so-called residual bootstrap approach is successfully used in the
definition of the object functions. Compared to the classical error criterion, the modified object
function results in a better solution.
In order to reduce the linearization and the reduction error, the residual gravity field is recovered.
In this study, an adaptive reference orbit is used. Furthermore, the determination of the best fitting
reference orbit is expressed as a least squares and an optimization problem.
Indeed, mathematical formulation of the gradiometry approach of the cubic order in terms of Taylor
series is derived. The contribution of each individual term to the formulation is analyzed and the
formulation is simplified accordingly.
The relative velocity vector is combined with the high-accuracy ranging observations both in the
acceleration difference and the gradiometry approaches. Since it is not directly observed it should
numerically be derived from gps observations by means of numerical differentiation. In this regard,
a few differentiation algorithms are studied for deriving the relative intersatellite velocity vector.
Furthermore, the recovery of the residual field and computing the relative velocity using the reference
field are alternatively utilized to bypass the numerical differentiation. Compared to the numerical
differentiation, the alternative methods yield more accurate solution.
The ranging system observations are more accurate than the gps measurements. Some condition
equations are derived for adjusting the low-accuracy observations using the ll-sst measurements.
It only improves the cross-track and radial components of the relative position vector whereas the
along-track component of the relative velocity benefits from imposing the constraints.
Finally, the previously derived formulation is used for recovery of the residual field. Two different
iterative approaches are employed for determination of the residual gravity field using the grace
non-invariant observable. To sum up, the gradiometry approach using a satellite pair is successfully
implemented for the recovery of the residual gravity field in the space-wise approach.
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Zusammenfassung

Der Start der Kleinsatellitenmission champ im Juli 2000 hat das Interesse an der Bestimmung des
Gravitationsfeldes der Erde aus Satellitenbeobachtungen , was bereits seit Jahrzehnten eine Heraus-
forderung für die Wissenschaft darstellt, neu belebt. Diese Pionier-Satellitenmission zur Bestimmung
des Schwerefeldes fand ihre Nachfolge in der grace Mission. Die grace Mission kombiniert die
hl- and ll-sst Beobachtungen, um daraus den Schweregradient im Schwerpunkt der Doppelsatel-
litenkonfiguration abzuleiten. Jede dieser Schweregeradient-Beobachtungen kann als Kugelfunktion-
sreihe im zugehörigen Auswertepunkt dargestellt werden. Folglich kann die beobachtete Zeitreihe der
Schweregradienten mithilfe der zum Beobachtungszeitpunkt bekannten Position des Auswertepunktes
mit den unbekannten Koeffizienten der Kugelfunktionsreihe in Verbindung gebracht werden. Diese
Vorgehensweise wird gewöhnlich time-wise approach genannt und ermöglicht die Bestimmung der
Kugelfunktionskoeffizienten durch Zusammenführung aller Beobachtungen in ein gemeinsames math-
ematisches Modell. Dies führt bei Erfülltsein des Abttasttheorems zu einem riesigen System linearer
Gleichungen mit einer sehr großen Anzahl von Unbekannten.
Alternativ kann auch der sogenannte semi-analytic approach angewandt werden, der unter Hinzu-
nahme von Nebenbedingungen vom time-wise approach abgeleitet ist. In dieser Vorgehensweise wer-
den die Beobachtungen weiterhin als Zeitreihe aufgefaßt, den Orten der Beobachtungen wird aber
eine ideale Geometrie mit konstantem Bahnradius und/oder konstanter Bahnneigung unterstellt. Die
unbekannten Kugelfunktionskoeffizienten können dann durch 2d fft aus den sogenannten lumped-
coefficients berechnet werden.
Eine weitere Lösunsmöglichkeit ist der sogenannte space-wise approach, bei dem die Beobachtun-
gen auf ein reguläres Gitter einer den mittleren Orbit repräsentierenden Kugel projiziert werden.
Mittels globaler Kugelfunktionsanalyse können die unbekannten Kugelfunktionskoeffizienten aus den
Gitterwerten abgeleitet werden. Im Vergleich zum time-wise approach zerfällt dabei das riesige Gle-
ichungssystem in mehrere kleinere Systeme, die leicht auf einem Standard-PC gelöst werden können.
In der vorgelegten Dissertation wird das ll-sst Problem sowohl im semi-analytic als auch im space-
wise approach formuliert. Der space-wise approach wird dann numerisch implementiert. Entgegen
der Tendenz der modernen Geodäsie, Reduktionen zu vermeiden, müssen sowohl im semi-analytic als
auch im space-wise approach Reduktionen durchgeführt werden. Für diese notwendigen harmonis-
chen Fortsetzungen der Beobachtungen auf eine Referenzfläche werden verschieden Formulierungen
untersucht. Die sorgfältige Anwendung sogenannter Genetischer Algorithmen (ga) ermöglichte eine
optimale Wahl der Basisfunktionen und der Parameter für diese harmonischen Fortsetzungen.
Unter Zuhilfenahme Genetischer Algorithmen werden die Approximationsverfahren sorgfältig opti-
miert. Für die Definition der Zielfunktion werden sowohl die one-leave-out Technik als auch die so-
genannte residual-bootstrap Methode erfolgreich eingesetzt. Im Vergleich zum klassischen Fehlerkri-
terium führen die modifizierte Zielfunktion zu einer besseren Lösung.
Zur Reduktion des Linearisierungs- und Forsetzungsfehlers wird in der Dissertation statt des tatsächli-
chen Gravitationsfeldes nur das Residualfeld gegenüber eines Referenzfeldes betrachtet. Das Ref-
erenzfeld und der darauf basierende Referenzorbit werden adaptiv bestimmt. Die Bestimmung des
bestangepassten Referenzorbits wird als Quadratmittel- und als Optimierungsproblem ausgedrückt.
Eine mathematische Formulierung des Gravitationsgradienten bis einschließlich Glieder dritter Ord-
nung wird abgeleitet. Der Beitrag jedes einzelnen Terms in diese Formulierung wird analysiert und
als Resultat dieser Analyse wird die Schweregeradientenformulierung dementsprechend vereinfacht.
Sowohl in der Beschleunigungsdifferenzen- als auch in der Gradiometriemethode wird der Geschwindig-
keitsvektor mit Abstandsmessungen kombiniert. Da der Geschwindigkeitsvektor nicht direkt gemessen
werden kann, muss er durch numerische Differentation aus den gps Positionen gewonnen werden. Zu
diesem Zweck werden verschiedene Differentationalgorithmen studiert und der geeignetste ausgewählt.
Um die numerische Differentation zu umgehen, wird alternativ ein Referenzfeld eingeführt und
bezüglich dieses Feldes die Relativgeschwindigkeiten bestimmt, um daraus schliesslich das Residu-
alfeld zu berechnen. Im Vergleich zur numerischen Differentation erzielt diese indirekte Methode
genauere Ergebnisse.
Die gemessenen Abstandsänderungen sind genauer als die gps Messungen. Zum Angleich der weniger
genauen gps Beobachtungen an die genaueren sst Beobachtungen werden Bedingungsgleichungen
abgeleitet. Es zeigt sich allerdings, dass damit nur die cross-track und die radiale Komponente des
Geschwindigkeitsvektors verbessert werden.
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Schließlich werden alle vorher abgeleiteten Zwischenergebnisse zur Bestimmung des Residualfeldes
zusammengeführt. Es werden zwei verschiedene iterative Verfahren zur Bestimmung des Residu-
alfeldes aus nicht-invarianten grace Beobachtungen benutzt.
Zusammenfassend kann gesagt werden, daß in der Dissertation Schweregradieometrie mithilfe eines
Satellitenpaares für die Bestimmung des Residualfeldes im space-wise approach erfolgreich eingesetzt
wurde.
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Chapter 1

Introduction

The determination of the gravity field of the earth is one of the main goals of geodesy. The determina-
tion of the Earth flattening by means of artificial satellites, in this concern, was the first considerable
achievement. It was then followed by determination of higher degree spherical harmonics coefficients.
Until the introduction of satellite altimetry, the earth’s gravity field models were derived only from
ground based satellite tracking and surface gravimetry data (Lerch and Wagner, 1981). The finer
details were provided by terrestrial gravimetry data whereas the longer wavelength features were
supplied by the satellite tracking measurements. On the other hand, from the satellite tracking
measurements only, the low-degree coefficients of the gravity field up to degree and order 20 plus
some additional zonal harmonics could be recovered (ESA, 1987). Indeed, the ground based stations
were not distributed uniformly around the globe. Therefore, the error spectrum of the resultant
gravity models were inhomogeneous. Nonuniform distribution of the tracking stations and the lack of
global coverage were the shortcomings of the ground based tracking method for the determination of
a high accuracy and resolution gravity model. These limitations showed that additional measurement
techniques for the recovery of the global geopotential field had to be employed.
On May 14, 1973, the first altimeter was flown on Skylab. Altimetry observations were useful for
improving the gravity field knowledge of the ocean areas. Nevertheless, combining the observations
with satellite tracking measurements and surface gravimetry data were inadequate for recovery of
the gravity field with the required resolution and accuracy. Collecting more data on the continental
areas was necessary for recovery of the field to the accuracy levels that were desired. Gathering more
information on the continental regions were in particular interest since the knowledge of the gravity
field on the continental part was rather poor.
Intensive studies on suitable space techniques for determination of the gravity field have been started
since 1970. Two adequate methods have been recognized for being implemented on the gravity field
dedicated missions:

• satellite to satellite tracking (sst)

• satellite gravity gradiometry (sgg)

sst was initially used for mapping the near side of the moon by considering the moon as a satellite
of the Earth (Muller and Sjogren, 1968). It was then employed for mapping the Earth’s gravity field.
It was started by different satellites in the hl-mode. However, the results were not promising due to
the high altitude of the lower satellite.
The ll-mode, a configuration with two orbiters flying nearly in an identical orbit at the lowest possible
altitude, was in particular interest to groups engaged in sst. gravsat and grm were two American
missions where designed to map the Earth’s gravity field (White, 1987). Neither gravsat nor grm
missions was realized because of technical difficulties and budget constraints. games mission, an
American-French mission in the ll-mode, was the next experiment which never materialized.
The launch of the champ mission in 2000 has renewed interest in the recovery of the geopotential field
from satellite observations. It was the first spacecraft in a series of gravity field dedicated missions,
to be followed by the grace mission. Providing global and high-resolution estimates of the earth’s
gravity field and its temporal variations with unprecedented accuracy is the primary science objective
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Chapter 1. Introduction 2

of the grace mission. Observing inter-satellite range and range rate by the k-band Ranging System
(kbr) with the highest possible accuracy (1 µm/s) is the superiority of the grace over the champ
mission.
In the grace mission, the hl- and ll-sst observations are combined. The resultant observables can
be mathematically expressed as the gravitational acceleration differences between the satellite pairs
or alternatively as the gravity gradient at the barycenter of two satellites. In the first approach, the
mathematical model is a two-point first order spatial derivative of the gravity field whereas the latter
case is a one-point second-order derivative of the field.
Despite the conceptual differences between the two formulations, each observation at its respective
evaluation point can be written in terms of the spherical harmonic coefficients. Consequently, the
observations are a time series which is mathematically related to the unknown coefficients via the
corresponding position of the satellites at the evaluation epoch. In this approach or the so-called
time-wise approach, the determination of unknown coefficients becomes possible after plugging the
observations into the mathematical model. Furthermore, the stochastic characteristics of the obser-
vations and its propagation into the recovered field can be easily studied. Fulfilling the sampling
theorem, however, leads to a huge linear system of equations with an enormous number of unknowns
and observations.
As an alternative, one can employ the semi-analytical approach which is derived from the time-wise
approach by imposing some constraints. Observations are still considered as discrete time series on an
ideal geometry with constant radius and/or constant inclination. The coefficients are then computed
using the lumped coefficients or 2d fft.
Another alternative is the space-wise approach in which the observations are mapped on a specific
grid on the mean orbital sphere. In this approach, the observation values are predicted on the grid
points and the coefficients are derived by implementation of the global spherical harmonic analysis
on the gridded values. Compared to the time-wise approach, the linear system of equations is split
into smaller systems which can be solved very easily in ordinary pcs.
Having access to high-performance computers with parallel processors makes the implementation
of the time-wise approach possible even up to very high-degree and order. Nevertheless, the semi-
analytical and the space-wise approaches are two viable alternatives which results in the same results
even with very cheap hardware and less computational skills.
Compared to the time-wise approach, data reduction is the only additional computational step in the
semi-analytical and the space-wise approach. We expect an identical solution if this additional step
is carefully treated.
The goal of this study is to demonstrate the formulation of the ll-sst problem in the space-wise
approach. For completeness, the problem is also formulated in the semi-analytical approach. Indeed,
the main concern is to reduce the observations via an optimal procedure.
The dissertation starts by formulation of the ll-sst problem in the brute-force approach in which each
observation of the acceleration difference or the gradiometry type is expressed as a linear observation
equation. Solving a huge linear system of equations with full normal matrix of size (N +1)2×(N +1)2

is a formidable obstacle on the recovery process. From memory point of view, solution of such a huge
linear system is infeasible for approximately N > 100 in normal pcs.
Employing supercomputers with a large number of processors is the hardware solution of the problem.
On the other hand, one can tackle the problem by imposing some constraints and exploiting the unseen
properties of the surface spherical harmonic basis functions. This alternative approach, calledsemi-
analytical approach, is comprehensively studied in Chapter 2.
Chapter 2 will then continue with the space-wise approach, in which is essential to reduce observations
on a specific grid defined on a sphere. The mean orbital sphere (mos) is used as the surface where
the observations are reduced.
Compared to the time-wise approach, mapping onto a specified geometry is an additional computa-
tional step which should carefully be treated. Therefore, we will closely investigate the observation
reduction in Chapter 3.
In order to reduce the truncation and the reduction error, the true observations are replaced by resid-
ual gravity observations. The corresponding reference observations are derived by introduction of the
respective reference orbit. For minimizing the deviation of the true and the reference orbit, implemen-
tation of an adaptive reference orbit as well as the best fitting reference orbit in a least squares sense
are investigated in Chapter 4. Furthermore, the problem is formulated as an optimization problem
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using genetic algorithms.
Different methods for the global spherical harmonic analysis are studied in Chapter 5. They are
numerically compared and the most accurate scheme is introduced. It is shown that one can expect
perfect recovery if the Gauss grid is employed.
Chapter 6 is devoted to the mathematical formulation of the gradiometry using a satellite pair. The
gradiometry observation equation of the first- and cubic-order are formulated. Contribution of each
individual component is studied and the formulations are simplified according the insignificance of
the minor terms.
Eventually, the simplified gradiometry observation equation of cubic order is employed in Chapter 7
for recovery of the residual field. Due to its non-invariance the grace observable has to be analyzed
iteratively. Two iterative approaches are implemented and the achieved results are compared. Finally,
this study is finished with conclusions and recommendations which are summarized in Chapter 8. The
achievements of this study are summarized and the topics for the future studies are listed.





Chapter 2

Space-wise versus Time-wise
Approach

With the introduction of new satellite techniques, such as Satellite-to-Satellite tracking (sst) and
Satellite Gravity Gradiometry (sgg), a whole new world of investigation has opened up. Besides
the existing questions in theory, a number of questions have arisen in numerical computation due to
high resolution space missions. Therefore, treatment of the emerging linear system of equations with
millions of observations and 104– 105 of unknown gravity field parameters is a highly demanding task.
Recovery of the gravity field can be formulated using the more-or-less developed space-wise and time-
wise approaches. The space-wise method circumvents the problem, whereas the clever scheme called
semi-analytical approach should be employed to alleviate the problem in time-wise approach.
In this chapter, the principles of both the time-wise and the space-wise as well as the brute-force and
semi-analytical approaches are discussed and pros and cons of each of these strategies will be given.

2.1 Time-wise approach

In time-wise approach, observations are considered as a time-series along the orbit of the Low-Earth
Orbiter (leo). Each individual observation results in a linear equation. Consequently, the geopo-
tential recovery based on direct solution called brute-force technique could be a real demanding task
particularly for the high resolution geopotential models.
Orthogonality potential of the utilized basis functions, spherical harmonics can be easily exploited to
circumvent the numerical problem. To this end, besides the representation of the geopotential in terms
of the orbital elements, a few approximations should be imposed on the sequence of the observations.
This method which is called semi-analytical approach, leads to block-diagonal systems whose solutions
are comparatively simple compared to that of a brute-force method. However, observables being
observed or projected on an ideal geometric configuration (circle, sphere or torus), constant height or
inclination, repeat orbit, evenly-spaced data span are examples of the required conditions (Sneeuw,
2000).
Moreover, as will be seen in the following section, representation in terms of the Kepler elements is
the best for the ll-sst observable.

2.1.1 Brute-force approach

The time-wise approach for spherical harmonic analysis of ll-sst data was introduced by Kaula
(1983) and independently by Wagner (1983). It has been used by many others either for hl-sst or
sgg afterwards (e.g. Rummel et al., 1993).
From the solution of the Laplace equation in the outer-space (outside the attracting masses), the
gravitational potential of the Earth can be expressed as an infinite series of spherical harmonics

5
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(Hofmann-Wellenhof and Moritz, 2005):

V (r) =
GM

r

∞∑
n=0

(
RE

r

)n n∑
m=0

[
C̄nmȲ c

nm + S̄nmȲ s
nm

]
(2.1)

with r = (r, θ, λ) the spherical coordinates of an evaluation point in the outer-space (r > RE), GM
the gravitational constant times the Earth’s mass, RE the mean radius of the Earth, (C̄nm, S̄nm) the
infinite set of coefficients of the fully normalized surface spherical harmonics Ȳ c

nm, Ȳ s
nm. In practice,

the series expansion has to be truncated at a maximum degree N , i.e., the upper limit ∞ of the index
n is replaced by a finite number N . Moreover, the introduction of a known set of the reference field
respective coefficients (C̄(0)

nm, S̄
(0)
nm) results in a corresponding expression of the incremental potential :

δV (r) =
GM

r

N∑
n=0

(
RE

r

)n n∑
m=0

[
δC̄nmȲ c

nm + δS̄nmȲ s
nm

]
(2.2)

where, δC̄nm = C̄nm − C̄
(0)
nm and δS̄nm = S̄nm − S̄

(0)
nm are the unknowns that should be estimated as

the solution of the Earth’s gravity recovery problem.
In general, every observation is assumed as a functional of the incremental potential

lp = LδV (P ). (2.3)

Therefore, observations for the time-wise approach form a time series of the functionals given along
the orbit. Depending on the space sensor, the functional could be scalar, vectorial or tensorial.
For instance, the hl-sst observations are formulated as the vectorial functional whereas the ll-sst
appears as a scalar one. In sgg case, the problem formulation demands tensorial tools.
Assuming a known disturbing potential for the high-satellite leads to the following functional in
hl-sst configuration:

LHL = − 1
r

ex′
∂

∂θ
− 1

r sin θ
ey′

∂

∂λ
+ ez′

∂

∂r
. (2.4)

where, the set of (ex′ , ey′ , ez′) unit vectors define the local north-oriented reference frame (lnrf) at
the evaluation point (Keller and Sharifi, 2005). This local system whose origin is a terrestrial or space
point is oriented with the z′-axis radially outwards, the x′-axis directed northward and the y′-axis
directed westward. Freeden et al. (1999) showed that the problem of developing the geopotential in the
outer-space from the given hl-sst information is overdetermined. Therefore, for ease of computation
the vectorial and tensorial representation is recast into scalar representation without loss of generality.
For instance, the vectorial problem can be decomposed into two scalar components, namely radial
and tangential. The radial component, which has already been widely used (e.g. Schreiner, 1994;
Freeden, 1999; Hesse and Gutting, 2003), can be simply derived by mapping the observation vector
between the Low-Earth-Orbiting and the high-altitude satellites along the radial direction:

LHL
radial =

∂

∂r
. (2.5)

Consequently, the hl-sst observation is expressed in δC̄nm and δS̄nm as:

lHL =
GM

r

N∑
n=0

(
RE

r

)n n∑
m=0

hradial
n (r)

[
δC̄nmȲ c

nm + δS̄nmȲ s
nm

]
. (2.6)

in which, for a circular orbit hradial
n = −n+1

r can be considered as the spectral transfer coefficients
which give the spectral link between observables and unknowns (Sneeuw, 2003). As we will see
later, they play the key role in the semi-analytical as well as the space-wise approaches. Using the
geopotential representation in terms of geocentric coordinates is convenient for brute-force modelling
of some space-born data but not for most of them. For instance, the representation is well-suited for
the radial component of the hl-sst while it would be rather complicated for the tangential component.
For the ll-sst as well as the sgg observations, direct modelling gets even more complicated.
In order to compare formulation complexity of different observables in terms of (r, θ, λ) with those
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in the semi-analytical approach, we formulate the tangential and the ll-sst observations in both
approaches. For compactness, we express partial derivatives in the following symbolic manner, see
Rummel et al. (1993):

δV (a) =
GM

r

N∑
n=0

h(a)
n

(
RE

r

)n n∑
m=0

[
δC̄(a)

nmȲ c(a)

nm + δS̄(a)
nmȲ s(a)

nm

]
. (2.7)

where, the a is a symbol notation for expressing one of the partial derivatives which runs over r, θ
and λ. Analogously, the symbol ab is used for the second derivatives:

δV (ab) =
GM

r

N∑
n=0

h(ab)
n

(
RE

r

)n n∑
m=0

[
δC̄(ab)

nm Ȳ c(ab)

nm + δS̄(ab)
nm Ȳ s(ab)

nm

]
. (2.8)

where, ab again a symbol running over rr, rθ, rλ, θθ, θλ and λλ. Table (2.1) shows a complete list
of the transfer coefficients and the respective representation of the basis functions for the first and
the second partial derivatives. Noting that Ȳ c′

nm = dY c
nm

dθ and Ȳ c′′
nm = d2Y c

nm

dθ2 .

Table 2.1: Potential derivatives
ab h

(ab)
n δC̄

(ab)
nm Ȳ c(ab)

nm δS̄
(ab)
nm Ȳ s(ab)

nm

r −n+1
r δC̄nmȲ c

nm δS̄nmȲ s
nm

θ 1 δC̄nmȲ c′
nm δS̄nmȲ s′

nm

λ 1 mδS̄nmȲ c
nm −mδC̄nmȲ s

nm

rr (n+1)(n+2)
r2 δC̄nmȲ c

nm δS̄nmȲ s
nm

rθ −n+1
r δC̄nmȲ c′

nm δS̄nmȲ s′
nm

rλ −n+1
r mδS̄nmȲ c

nm −mδC̄nmȲ s
nm

θθ 1 δC̄nmȲ c′′
nm δS̄nmȲ s′′

nm

θλ 1 −mδC̄nmȲ s′
nm mδS̄nmȲ c′

nm

λλ 1 −m2δC̄nmȲ c
nm −m2δS̄nmȲ s

nm

As the first example, consider the tangential component of the hl-mode:

LHL
tangential = −1

r
ex′

∂

∂θ
− 1

r sin θ
ey′

∂

∂λ
, LHL

θ ex′ + LHL
λ ey′ . (2.9)

with LHL
tangential a vectorial and LHL

θ , LHL
λ scalar functionals. Substituting the corresponding expres-

sions into Eq. (2.9) results in:

LHL
tangential = −1

r
δV (θ) ex′ − 1

r sin θ
δV (λ) ey′ . (2.10)

It can easily be realized that mapping the tangential component onto the incremental potential cannot
be performed using transfer function.
As mentioned earlier, the hl-sst problem is an overdetermined one and can be split into two scalar
determined formulations. Consequently, the radial component as the invariant operator can be uti-
lized for the incremental potential formulation. The case of ll-sst is a scalar determined problem
whose functional is typically non-invariant. For instance, in the gravitational acceleration difference
approach, it reads (Keller and Sharifi, 2005):

LLLδV =

�
α2δV

(r) +
β2

r
δV (θ) +

γ2

r sin θ
δV (λ)

�

2

−
�
α1δV

(r) +
β1

r
δV (θ) +

γ1

r sin θ
δV (λ)

�

1

(2.11)

with ei = (αi, βi, γi) the line of sight (los) unit vector at the respective lnrf defined at the location



Chapter 2. Space-wise versus Time-wise Approach 8

of the front satellite 2, and the rear satellite 1. Substituting δvr, δvθ and δvλ from Table (2.1) results
in a complicated formulation. Like the tangential component of the hl-sst, the observable cannot
be mapped onto δV just by use of the transfer coefficient.
A viable alternative to the acceleration difference formulation is the gradiometry approach whose
linear representation is (Keller and Sharifi, 2005):

LSGV = [eB ⊗ eB]T
h�

δV (r)ez′ + δV (θ)ex′ + δV (λ)ey′
�
⊗
�
δV (r)ez′ + δV (θ)ex′ + δV (λ)ey′

�i
. (2.12)

where, eB is the los unit vector at the barycenter of two leo satellites. Similar to the acceleration
difference approach, the observable is non-invariant and cannot be mapped just by use of the transfer
coefficients. Nevertheless, the gradiometry formulation converts a two-point first-order problem to a
one-point second-order one. Moreover, the new observable reflects the gravity field curvature along
the los at the evaluation point. However, as it will be seen in chapter (6), the linear approximation
is inaccurate and should be modified in order to achieve a reasonable accuracy.
Therefore, representation of the non-invariant functions like the tangential component in lnrf is
cumbersome. However, as will be seen later in this section, the geopotential representation of non-
invariant functional in the orbital elements is more convenient. This representation which leads to
the semi-analytical approach will be discussed in the following section.
Nevertheless, representation of the gravitational potential in the spherical coordinates and the as-
sumption of the observations as being a time series both in the hl- and ll-sst leads to a linear
system of equations (e.g. Reubelt et al., 2003; Keller and Sharifi, 2005). The system can then be
solved either by direct or iterative methods.

2.1.2 Semi-analytical approach

Expressing the geopotential as a function of the orbital elements a, e, i, Ω, ω,M (Kepler elements)
alleviates the gradiometry formulation. Therefore, Eq. (2.1) may be transformed to a series expansion
in the orbital parameters (Kaula, 1966):

δV =
∞∑

n=0

n∑
m=0

δVnm (2.13)

δVnm =
GM

rn+1
Rn

n∑
p=0

F̄nmp(i)
∞∑

q=−∞
Gnpq(e)Snmpq(ω, M, Ω,Θ) (2.14)

with F̄nmp(i) normalized inclination function, Gnpq(e) eccentricity function and

Snmpq = αnm cos ψnmpq + βnm sin ψnmpq. (2.15)

Where,

αnm =
{

δC̄nm, n−m even
−δS̄nm, n−m odd βnm =

{
δS̄nm, n−m even
δC̄nm, n−m odd (2.16)

and
ψnmpq = (n− 2p)ω + (n− 2p + q)M + m(Ω−Θ), Θ = GAST (2.17)

More details on the F̄nmp(i) and Gnpq(e) can be found in Kaula (1966). By introducing a nominal
circular orbit (e = 0) with a constant inclination (i = I) and constant radius (r = a) the eccentricity
function will drop out1:

δV =
GM

R

N∑
n=0

(
R

r

)n+1 n∑
m=0

n∑
p=0

F̄nmp(I)
[
ᾱnm cos ψnmp + β̄nm sin ψnmp

]
, (2.18)

1Since the radial partial derivative will be involved in the problem formulation, we still retain the radius as a
parameter in formulation.
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where, ψnmp (Eq. 2.17), can be simplified as:

ψnmp = (n− 2p)ωo + mωe (2.19)

with ωo = ω + M and ωe = Ω − Θ where superscript o and subscript e are referring to orbit and
the Earth, respectively (Schrama, 1989). The relationship between the geocentric polar coordinates
(r, θ, λ) and the orbital elements appearing in Eq. (2.18), is depicted in Fig. (2.1).

ww
Ee

ll

W
w

O

sf p/2-q=

I

rr

Z

Y

X

Figure 2.1: Geocentric coordinate system and the orbital elements

Representation of the gravitational potential in terms of the orbital elements by means of group
theory, which has already been introduced in (Sneeuw, 1992), is more fundamental and instructive
for satellite purposes. One can simply derive the same expression from Eq. (2.18) by introducing
a new index k instead of p, with k = n − 2p. It is clear that n and k always have the same parity.
Furthermore, the index k has a step-size 2 within the bounds of ±n (Koop, 1993). Therefore:

δV =
N∑

n=0

n∑
m=0

n∑

k=−n[2]

[Anmk(r, I) cos ψkm + Bnmk(r, I) sin ψkm] (2.20)

where,
Anmk
Bnmk

}
= Hnmk(r, I)

{
αnm
βnm

,

Hnmk(r, I) = un(r) F̄ k
nm(I),

un =
GM

r

(
RE

r

)n

and
ψkm = kωo + mωe

To avoid confusion with the F̄nmp-notation, we have introduced a term F̄ k
nm where,

F̄ k
nm = F̄nm, n−k

2
= F̄nmp. (2.21)

Normalized inclination functions F̄ k
nm, can be computed in several ways. We will use the recurrence

techniques given in Sneeuw (1991a) for computing the function and its partial derivatives. The
recursive method, which is based on Emeljanov and Kanter (1989), has been explained in Appendix
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A in more detail.
The new index k is more convenient from the computational point of view. To make it clear, let us
reorder the summation sequences from n,m, k into m, k, n. Consequently, Eq. (2.20) is recast into:

δV (r, ωe, ω
o, I) =

N∑
m=0

N∑

k=−N

n2∑

n=n1[2]

[Anmk(r, I) cos ψkm + Bnmk(r, I) sin ψkm] (2.22)

where,

n1 =





| k | | k |≥ m

m | k |< m k −m even

m + 1 | k |< m k −m odd

n2 =





N N − k even

N − 1 N − k odd

Carrying out the inner loop summation over n results in a double summation formula with the new
coefficients Ãmk and B̃mk which are called lumped coefficients:

δV (r, ωe, ω
o, I) =

N∑
m=0

N∑

k=−N

[
Ãmk(r, I) cos ψkm + B̃mk(r, I) sin ψkm

]
. (2.23)

with Ãmk(r, I) =
∑

n Anmk and B̃mk(r, I) =
∑

n Bnmk. Eq. (2.23) is a Fourier series. One can
derive the lumped coefficients by straightforward Fourier transform of Eq. (2.23) and then consider
the achieved coefficients as the pseudo-observations. Of course it should be noted here that for full
recovery of the geopotential coefficients, certain conditions should be satisfied (Rummel et al., 1993).
Since the observables are functionals of the geopotential rather than on the potential itself, let us
derive the first and the second partial derivatives of the geopotential as the constituents of satellites’
observations. For convenience, we rewrite Eqs. (2.7) and (2.8) with respect to the orbital elements
using Eq. (2.20):

δV (a) =
N∑

n=0

n∑
m=0

n2∑

k=−n1[2]

[
A

(a)
nmk(r, I) cos ψkm + B

(a)
nmk(r, I) sin ψkm

]
, (2.24)

and analogously,

δV (ab) =
N∑

n=0

n∑
m=0

n2∑

k=−n1[2]

[
A

(ab)
nmk(r, I) cos ψkm + B

(ab)
nmk(r, I) sin ψkm

]
. (2.25)

with the symbolic notations a and b ∈ {r, ωe, ω
o, I}. All the first and second partial derivatives are

listed in Table (2.2).
In order to express the sst or sgg observables in terms of the new set of partial derivatives, we define
cartesian orbital coordinate system (X ′, X ′, Z ′) as follows:

• X ′-axis directed towards the ascending node,

• Y ′-axis orthogonal to X ′ in the orbital plane,

• Z ′-axis completes the set to a right-handed coordinate system.

The coordinate transformation between the orbital and geocentric coordinate systems is expressed
as:

r = R3(ωe)R1(I) r′. (2.26)

Similar to geocentric polar coordinates r, θ and λ, the respective curvilinear coordinates r, ωo, θ′,
which is called orbital polar coordinate system, are defined. See Fig. (2.2). The relation between
cartesian and curvilinear representation is:

X ′ = r cos θ′ cos ωo

Y ′ = r cos θ′ sin ωo

Z ′ = r sin θ′
(2.27)
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Table 2.2: Potential derivatives with respect to the orbital elements

a or ab H
(a)
nmk or H

(ab)
nmk A

(a)
nmk or A

(ab)
nmk B

(a)
nmk or B

(ab)
nmk

r −n+1
r Hnmk H

(r)
nmkαnm H

(r)
nmkβnm

ωe mHnmk H
(ωe)
nmkβnm −H

(ωe)
nmkαnm

ωo kHnmk H
(ωo)
nmkβnm −H

(ωo)
nmkαnm

I H ′
nmk H

(I)
nmkαnm H

(I)
nmkβnm

rr (n+1)(n+2)
r2 Hnmk H

(rr)
nmkαnm H

(rr)
nmkβnm

rωe −mn+1
r Hnmk H

(rωe)
nmk βnm −H

(rωe)
nmk αnm

rωo −k n+1
r Hnmk H

(rωo)
nmk βnm −H

(rωo)
nmk αnm

rI −n+1
r H ′

nmk H
(rI)
nmkαnm H

(rI)
nmkβnm

ωeωe −m2Hnmk H
(ωeωe)
nmk αnm H

(ωeωe)
nmk βnm

ωeω
o −mkHnmk H

(ωeωo)
nmk αnm H

(ωeωo)
nmk βnm

ωoωo −k2Hnmk H
(ωoωo)
nmk αnm H

(ωoωo)
nmk βnm

ωoI kH ′
nmk H

(ωoI)
nmk βnm −H

(ωoI)
nmk αnm

II H ′′
nmk H

(II)
nmkαnm H

(II)
nmkβnm

Furthermore, we define the local orbital coordinate Frame (lorf) x, y, z, which is a well-suited frame
for the ll-sst and sgg observation representation. This local system whose origin is a point on a
satellite’s orbit is oriented with the z-axis radially outwards, the x-axis directed along track and the
y-axis cross track such that it is a right-handed system. One can simply prove that:

∇δV =




δV (x)

δV (y)

δV (z)


 =




1
r cos θ′ δV

(ωo)

1
r δV (θ′)

δV (r)


 . (2.28)

Analogously, the definition of the gravity gradient tensor δG = ∇⊗∇T δV can be used to derive the
second partial derivatives:

G =

0
BBBB@

1
r
δV (r) − tan θ′

r2 δV (θ′) + 1
r2 cos2 θ′ δV

(ωoωo) symmetric

1
r2 cos θ′ δV

(ωoθ′) + sin θ′
r2 cos2 θ′ δV

(ωo) 1
r
δV (r) + 1

r2 δV (θ′θ′)

− 1
r2 cos θ′ δV

(ωo) + 1
r cos θ′ δV

(rωo) − 1
r2 δV (θ′) + 1

r
δV (rθ′) V (rr)

1
CCCCA

. (2.29)

For the point on the nominal orbit θ′ = 0, the partial derivatives, the second order in particular, take
much simpler forms. For instance:

G =




1
r δV (r) + 1

r2 δV (ωoωo) symmetric
1
r2 δV (ωoθ′) 1

r δV (r) + 1
r2 δV (θ′θ′)

− 1
r2 δV (ωo) + 1

r δV (rωo) − 1
r2 δV (θ′) + 1

r δV (rθ′) δV (rr)


 . (2.30)

Now, representation of the ll-sst observation equation in terms of the new partial derivatives will
be more convenient. Since the los unit vector in the local orbital frame is simply a unit vector along
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Figure 2.2: Orbital coordinate system

x-axis e = [1 0 0]T , the gravitational acceleration difference functional Eq. (2.11) is recast into:

LLLδV = δV
(x)
2 − δV

(x)
1 = [

1
r
δV (ωo)]2 − [

1
r
δV (ωo)]1. (2.31)

Similarly, the linear gradiometry equation Eq. (2.12) reads:

LSGδV = δV (xx) =
1

r
δV (r) +

1

r2
δV (ωoωo). (2.32)

Substituting the corresponding quantities from Table (2.2) into Eqs. (2.31) and (2.32) respectively
results in:

LLLδV =
N∑

m=0

N∑

k=−N

k

n2∑

n=n1[2]

F̄ k
nm(I)

�
αnm

�
un(r2)

r2
sin ψ2

km − un(r1)

r1
sin ψ1

km

�
− βnm

�
un(r2)

r2
cos ψ2

km − un(r1)

r1
cos ψ1

km

��
(2.33)

and

LSGδV = −
N∑

m=0

N∑

k=−N

n2∑

n=n1[2]

k2 + n + 1
r2

[Anmk cosψkm + Bnmk sin ψkm] (2.34)

In the new representation, the ll-sst functional either in the gravitational difference or in the gradio-
metric approach is invariant. Consequently, ll-sst observations can be mapped into the geopotential
by use of the transfer coefficients. Depending on the boundary utilized as the ideal geometric config-
uration, there are different possibilities at this step (Sneeuw, 2003).

2.1.3 Representation on a circle: mean circular orbital

To achieve this key element of the semi-analytical approach, the observations should be mapped onto
the mean circular orbit (Sneeuw, 2003). Substituting the radial coordinate with the mean radius of
the nominal orbit ā, Eq. (2.33) is recast into:

LLLδV =
N∑

m=0

N∑

k=−N

k

n2∑

n=n1[2]

F̄ k
nm(I)
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GMRn
E

ān+2

{
αnm

[
sin ψ2

km − sin ψ1
km

] − βnm

[
cosψ2

km − cos ψ1
km

]}
(2.35)

If we reference the leo pair to the orbit longitude of their barycenter, we have:

ψ
(1)
km = ψkm − ∆ψ

2
; ψ

(2)
km = ψkm +

∆ψ

2
, (2.36)

where, ∆ψ = k ∆s
ā with ∆s as arc length of the nominal orbit between the pair. Consequently,

rewriting Eq. (2.33) leads to an analytical model for ll-sst observations similar to the one described
in Wagner (1983):

LLLδV =

NX
m=0

NX

k=−N

2

ā
k sin

∆ψ

2

n2X

n=n1[2]

F̄ k
nm(I)

GM

ā

�
RE

ā

�n

[αnm cos ψkm + βnm sin ψkm] . (2.37)

Similar to Eq. (2.23), by performing the inner summation loop over n, one can derive the correspond-
ing expression in terms of lumped coefficients and the respective transfer function as:

LLLδV =
N∑

m=0

N∑

k=−N

2
ā

k sin
∆ψ

2

[
Ãkm cos ψkm + B̃km sin ψkm

]
. (2.38)

Analogously, the gradiometric equation Eq. (2.34) results in:

LSGδV =
N∑

m=0

N∑

k=−N

ÃSG
km cos ψkm + B̃SG

km sin ψkm (2.39)

where,

ÃSG
nm = −

n2∑

n=n1[2]

k2 + n + 1
ā2

Anmk (2.40)

B̃SG
nm = −

n2∑

n=n1[2]

k2 + n + 1
ā2

Bknm (2.41)

Estimation of the geopotential coefficients

For recovery of the geopotential coefficients C̄nm and S̄nm, a linear system of equations based on the
observation equations should be set up. The representation of the geopotential in terms of the orbital
elements has one more index compared to the geopotential coefficients’ indices. Consequently, one
can use two different combinations to obtain C̄nm, S̄nm

• n– m combination

• k– m combination.

In the n– m combination, summation over k would be the inner summation loop. For instance,
Eq. (2.37) leads to:

LLLδV =
N∑

m=0

n2∑

n=n1[2]

GM

ā

(
RE

ā

)n

αnm

[
N∑

k=−N

2
ā
k sin

∆ψ

2
F̄ k

nm(I) cos ψkm

]
+ βnm

[
N∑

k=−N

2
ā
k sin

∆ψ

2
F̄ k

nm(I) sin ψkm

]
. (2.42)

Similar to the brute-force approach, one can set up the linear system of equations based on Eq. (2.42).
Nevertheless, the corresponding normal matrix would be a full matrix whose inversion is a really high
demanding computation task (Schrama, 1986). The same holds true for the gradiometry approach.
In contrast, the k– m combination overcomes the problem simply by using the orthogonality of the
base functions. To achieve this key point of the k– m combination, the following conditions should
be fulfilled.
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• Data are assumed to be observed regularly along the circular orbit. The objectives can be
achieved during the measurement period. However, the data gaps during the maneuvering and
sensor failures are inevitable. In reality, the deviation of evaluation points from the circular orbit
reaches a few kilometers. The evenly-spaced time series should then be obtained by mapping
the irregularly sampled observations. It is assumed that the orbit repetition period (Tr) is long
enough that the overall data set yields to very homogeneous and regular reduced data set. The
phase ψkm is recast into Eq. (2.43) if the orbital elements are subject to the linear perturbation:

ψkm(t) = ψkm(t0) + ψ̇km(t− t0) (2.43)

For simplicity, it is supposed that both ψkm(t0) and t0 are zero. Therefore,

ψkm = ψ̇kmt = jψ̇km∆t = j∆t(kω̇o + mω̇e). (2.44)

with ∆t = T
Np

the sampling rate and j = 1, · · · , Np where Np is the total number of evaluation
points during the observation period T .

• Again for simplicity, the observations along the orbit are assumed uncorrelated. Hence,

P =
1
σ2

INp×Np
(2.45)

with σ the measurement precision.

• The observation period T , the period of revolution Tr = 2π
ω̇o and the nodal period Td = 2π

ω̇e

satisfy the condition:
T = αTd = βTr (2.46)

The orbit must be periodic in order to obtain a discrete 1d Fourier spectrum (Sneeuw, 2000).
The orbit will be periodic if the basic frequencies ω̇o and ω̇e are commensurable. In other words,
α and β should be the prime integer (i.e., they have no common divisor).

Td

Tr
= − ω̇o

ω̇e
=

β

α
(2.47)

Since the Earth’s rotation rate θ̇ is larger than the nodal line precession Ω̇e and consequently
ω̇ is always negative, the minus sign has been introduced in Eq. (2.47).

• Observations along the nominal orbit are modelled in one dimension while two basic frequencies
are involved in each of the observations. The relationship between the 1d spectrum and 2d one
reads:

ψ̇km = ω̇o

(
k + m

ω̇e

ω̇o

)
=

ω̇o

β
(kβ −mα) = l∆ψ̇ (2.48)

where, l = kβ −mα is an integer called frequency number which in absolute sense reaches at
maximum (α + β)N . ∆ψ̇ = ψ̇1 is the spectral resolution. Therefore, one can define a mapping
from 2d to 1d simply by:

ψ̇l = lψ̇1.

• Shannon’s sampling theorem2 should be fulfilled in order to avoid aliasing namely called alias-
ing of the first kind (Sneeuw, 2000). According to the theorem, the measurement (sampling)
frequency must be at least twice the maximum frequency to be measured. Hence,

Np ≤ 2(α + β)N. (2.49)

2The sampling theorem is due to Claude Shannon who first discovered it in 1949. Whenever Shannon’s sampling
theorem is not fulfilled, aliasing occurs.
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Therefore, the sampling interval ∆t is subject to

∆t =
T

Np
=

T

2(α + β)N
=

Tr

2
(

α
β + 1

)
N

=: ∆tN (2.50)

with ∆tN , the Nyquist sampling interval. For instance, the minimum sampling frequency for
the grace mission will be about 0.05Hz if the maximum resolvable degree is equal to 120.

• Perfect signal restoration is guaranteed by satisfying the Shannon’s sampling theorem. Nev-
ertheless, it is just valid for the recovery of a digital signal (1d) or an image (2d) when the
observables have the same dimension. However, two dimensional geopotential coefficients C̄nm

and S̄nm are recovered just based on 1d observations along the nominal orbit. Therefore, the
problem of frequencies overlapping via mapping procedure is the second problem that should
be treated carefully. The problem which is called aliasing of second type has been carefully
handled in Sneeuw (2000). The second type of aliasing does not occur if the mapping from
(k, m) 7−→ n is injective. It is fulfilled if:

2(N + 1) ≤ α + β. (2.51)

One can compute a rough estimate of β > 1.9N as the necessary condition to prevent aliasing
for Low Earth Orbiters (leo).

An alternative interpretation of the second type of aliasing can be given by taking the corre-
sponding normal matrix of the geopotential coefficients in the time-wise approach in the time
domain. Fulfilling the condition given in Eq. (2.51) leads to a diagonal normal matrix which is
the main advantage of the semi-analytical approach (Koop, 1993).

• For obtaining a diagonal normal matrix with minimum bandwidth, the unknown geopotential
coefficients ordering should follow:

1. grouping C̄nm and S̄nm coefficients as two distinct sub-vectors xC and xS within the vector
of unknowns x,

2. sorting the coefficients within the sub-vectors according to the order (m) into N +1 and N
diminishing groups xCm and xSmcorresponding to C̄nm and S̄nm coefficients respectively,

3. decomposing the respective group for each order into two distinct subgroups corresponding
to the even and odd degrees xCm

e
and xCm

o
.

Entries of the normal matrix of the unknown geopotential coefficients can be calculated by multiplying
two columns of the design matrix to the corresponding observations. Consider for instance, the
observation equations of the gradiometry type. Partial derivatives of the j-th observation with respect
to C̄nm and S̄nm for two different cases (n– m even and n– m odd) respectively read:

∂LSGδVj

∂C̄nm
= un(ā)

∑

k

k2 + n + 1
ā2

F̄ k
nm

{
cos jψ̇km∆tN n−m even

sin jψ̇km∆tN n−m odd
(2.52)

∂LSGδVj

∂S̄nm
= un(ā)

∑

k

k2 + n + 1
ā2

F̄ k
nm

{
sin jψ̇km∆tN n−m even

− cos jψ̇km∆tN n−m odd
(2.53)

Running the index j over 0, · · · , Np − 1 for the Np observations given on the nominal orbit and
multiplying the two different columns corresponding to (n1,m1) and (n2,m2) pairs results in:

N(x1, x2) =
1
σ2

Np−1∑

j=0





∂LSGδVj

∂x1

∂LSGδVj

∂x2 x1 = C̄n1m1 x2 = C̄n2m2

∂LSGδVj

∂x1

∂LSGδVj

∂x2
x1 = C̄n1m1 x2 = S̄n2m2

∂LSGδVj

∂x1

∂LSGδVj

∂x2
x1 = S̄n1m1 x2 = C̄n2m2

∂LSGδVj

∂x1

∂LSGδVj

∂x2
x1 = S̄n1m1 x2 = S̄n2m2

(2.54)
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where, N(x1, x2) is the entry of the normal matrix N which corresponds to the unknown pair
(x1, x2). Simply by reordering the summation sequence from j, k1, k2 into k1, k2, j and consider-
ing the orthogonality properties of trigonometric series, the summations given in Eq. (2.54) for the
cases (x1, x2) = (C̄n1m1 , S̄n2m2) and (x1, x2) = (S̄n1m1 , C̄n2m2) for every value of n1,m1, n2 and m2

will be equal to zero. Therefore, the first benefit of considering the aforementioned ordering of the
unknown coefficients emerges:

N =
(

NC̄C̄ 0

0 NS̄S̄

)
. (2.55)

with NC̄C̄ and NS̄S̄ corresponding to the inner product of C̄nms and S̄nms respectively. According
to the rule of trigonometric function product, among the elements of NC̄C̄ and NS̄S̄ , the elements
with different frequencies will be equal to zero. Hence,

NC̄C̄ = NS̄S̄ = 0 if | ψ̇k1m1 | 6= | ψ̇k2m2 | . (2.56)

Eq. (2.56) implies that the sub-matrices NC̄C̄ and NS̄S̄ themselves will be two block-diagonal matrices
if the coefficients are sorted according to order m. Therefore,

NC̄C̄ =




N0
C̄C̄

0

. . .
0 NN

C̄C̄


 (2.57)

NS̄S̄ =




N1
S̄S̄

0

. . .
0 NN

S̄S̄


 (2.58)

As already mentioned, fulfilling the injectivity condition Eq. (2.51), prevents the aliasing of second
kind. Therefore, | ψ̇k1m1 |= | ψ̇k2m2 | only occurs if, (k1,m1) = (k2,m2) = (k,m). Consequently,
for m 6= 0, we have:

Nm
C̄C̄(n1, n2) = Nm

S̄S̄(n1, n2) =

Np

2σ2
un1(ā)un2(ā)

k=min(n1,n2)∑

k=−min(n1,n2)[2]

k2 + n1 + 1
ā2

k2 + n2 + 1
ā2

F̄ k
n1mF̄ k

n2m. (2.59)

Which is valid both for n − m even and odd. In case of m = 0, replacing k1 = −k2 = k and
k1 = k2 = k leads to the identical values for | ψ̇k0 |. Hence:

N0
C̄C̄(n1, n2) =

Np

σ2
un1(ā)un2(ā)

k=min(n1,n2)∑

k=−min(n1,n2)[2]

k2 + n1 + 1
ā2

k2 + n2 + 1
ā2

[
F̄ k

n10 F̄ k
n20 + F̄−k

n10
F̄ k

n20

]
. (2.60)

Moreover, F̄ k
nm are nonzero if n and k have the same parity. Due to condition k1 = k2 = k, only those

entries of Nm
C̄C̄

and Nm
S̄S̄

are nonzero which correspond to n1 and n2 with the same parity. Therefore,
partitioning the C̄nm and S̄nm coefficients into two distinct sets corresponding with n even and odd,
forms both Nm

C̄C̄
and Nm

S̄S̄
as two diagonal matrices:

Nm
C̄C̄ =

(
Nm

C̄eC̄e 0

0 Nm
C̄oC̄o

)
(2.61)

and

Nm
S̄S̄ =

(
Nm

S̄eS̄e 0

0 Nm
S̄oS̄o

)
(2.62)
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Nm
C̄eC̄e and Nm

S̄eS̄e as well as Nm
C̄oC̄o and Nm

S̄oS̄o are identical. Among them either N0
C̄eC̄e or N0

C̄oC̄o

at most has a size of (N
2 + 1)× (N

2 + 1). The size of the others are diminishing by increasing degree
n.
Eventually, inversion of a huge normal matrix of size (N + 1)2 × (N + 1)2 is replaced by 2N times
inversion of matrices with comparatively smaller sizes (Koop, 1993). Consequently, the replacement
alleviates the solution considerably and reduces computation time enormously.
This approach is usually called time-wise approach in time domain whereas as an alternative, the
problem can also be solved in frequency domain using the lumped coefficients concept (Sneeuw, 2003).

Timewise approach in the frequency domain

For the problem formulation in frequency domain, the observations given along the nominal orbit
can be assumed as values of a one-dimensional discretized function. For instance, Eq. (2.39) is recast
into:

LSGδV =
N(α+β)∑

l=−N(α+β)

ASG
l cos l∆ψ̇ + BSG

l sin l∆ψ̇ (2.63)

with ASG
l = ÃSG

km and BSG
l = B̃SG

km . Eq. (2.63) is the finite Fourier series of the 2N(α + β) sample
points measured at:

0,
π

N(α + β)
,

2π

N(α + β)
, · · · ,

[2N(α + β)− 1]π
N(α + β)

,

or more succinctly:

ωo
p =

pπ

N(α + β)
p = 0, 1, 2, · · · , 2N(α + β)

along the mean circle (r = ā). Performing a 1d fft of the observations over the repeat period leads
to the Fourier coefficients ASG

l and BSG
l as the quasi-observations of the unknown coefficients. Using

l = kβ −mα, one can recover two dimensional lumped coefficients ÃSG
km and B̃SG

km simply by picking
up the Fourier coefficient corresponding to each pair of (k,m). Performing block-wise least squares
adjustment on the two dimensional lumped coefficients results in the geopotential coefficients δC̄nm

and δS̄nm (Sneeuw, 2003).

2.2 Space-wise approach: representation on a Sphere

In this section, the recovery of the geopotential spherical harmonic coefficients from a set of nearly
evenly-spaced observations on the mean orbital sphere is described. In reality, the measurements are
observed in a layer of radial distance varying few kilometers around the mean sphere. Therefore, they
should be reduced on the mean sphere and interpolated onto the equiangular grid, since the reduced
quantities are non-uniformly distributed horizontally.
Mapping the irregular measurements onto a nearly equiangular grid is the crucial point to the space-
wise approach. The reduced observations are always contaminated with gridding error. However, the
high cpu time and memory demanding brute-force approach can be replaced with the semi-analytical
or space-wise approach if the data are mapped on an ideal geometry. Consequently, implementation
of an intelligent method for data reduction would be the key point to the space-wise approach which
will be addressed in chapter 3.
In contrast to the time-wise approach, the data utilized for the space-wise approach should be point-
wise evaluation functional on the incremental potential δV . The acceleration difference between the
low orbiters is a non-localized functional on the geopotential while the gradiometric measurements
are local by their very nature. Hence, in this section we merely concentrate on the gradiometric
representation of the ll-sst observations.
Furthermore, the space-wise approach is merely applicable to invariant functionals. It is the single
biggest obstacle to the space-wise approach and would be the main disadvantage of the space-wise
approach in comparison with the time-wise approach. Even in case we avail ourselves to invariant
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functionals, we can employ Banach’s fixed-point theorem and recover the geopotential using even the
non-invariant functionals using an iterative algorithm.

2.2.1 Mathematical formulation

Consider a function f(r, θ, λ) which is an invariant functional L on the incremental potential:

f(r, θ, λ) = L δv =
N∑

n=0

n∑
m=0

hn(r)un(r)
[
δC̄nmȲ c

nm + δS̄nmȲ s
nm

]
. (2.64)

Observations on the mean orbital sphere (r = r̄) or reduced onto the sphere read:

f(θ, λ) =
N∑

n=0

n∑
m=0

hn(r̄)un(r̄)
[
δC̄nmȲ c

nm + δS̄nmȲ s
nm

]
. (2.65)

Swapping the n- and m-summations and introducing a new set of coefficients Af
m(θ) and Bf

m(θ) called
latitude lumped coefficients leads to (Sneeuw, 1994):

f(θ, λ) = Af
0 (θ) +

N∑
m=1

Af
m(θ) cos mλ +

N∑
m=1

Bf
m(θ) sin mλ (2.66)

where, (
Af

m(θ)
Bf

m(θ)

)
=

N∑
n=m

hn(r̄)un(r̄)
(

δC̄nm

δS̄nm

)
P̄nm(cos θ), (2.67)

Eq. (2.66) can be interpreted as the finite Fourier series of the 2N sample points measured at:

λp =
pπ

N
, p = 0, 1, 2, · · · , 2N − 1

along the parallels (θ = const). Noting that the number of longitudinal data points is assumed equal
to the total number of latitude lumped coefficients (= N +1+N −1 = 2N). The finite Fourier series
for function f(θ, λp) sampled at λp is:

f(θ, λ) =
af
0 (θ)
2

+
N−1∑
m=1

[
af

m(θ) cos mλ + bf
m(θ) sin mλ

]
+

af
N (θ)
2

cosNλ, (2.68)

where,

af
m(θ) =

1
N

2N−1∑
p=0

f(θ, λp) cos mλp m = 0, 1, · · · , N (2.69)

bf
m(θ) =

1
N

2N−1∑
p=0

f(θ, λp) sin mλp m = 1, 2, · · · , N − 1 (2.70)

The Fourier coefficients af
m(θ) and bf

m(θ) are the quasi-observations of the linear system of equations
represented by Eq. (2.67).

Af
0 (θ) =

af
0 (θ)
2

, and Af
N (θ) =

af
N (θ)
2

Af
m(θ) = af

m, and Bf
m(θ) = bf

m, m = 1, 2, · · · , N − 1

Noting that the coefficients Bf
0 (θ) = Bf

N (θ) = 0.
To recover the coefficients C̄nm and S̄nm, the corresponding linear system of equations is inverted
by a block-wise least squares adjustment (Sneeuw, 2003). This mapping can be written in matrix
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notation as:
a
b

}
= PΓ

{ c
s (2.71)

where,

a =




Af
m(θ0)

...

Af
m(θNθ−1)


 b =




Bf
m(θ0)

...

Bf
m(θNθ−1)


 (2.72)

P =




P̄mm(cos θ0) P̄m+1m(cos θ0) · · · P̄Nm(cos θ0)

P̄mm(cos θ1) P̄m+1m(cos θ1) · · · P̄Nm(cos θ1)

...
... · · · ...

P̄mm(cos θNθ−1) P̄m+1m(cos θNθ−1) · · · P̄Nm(cos θNθ−1)




(2.73)

and matrix of the transfer coefficients, Γ:

Γ =




hm(r̄)um(r̄) 0 · · · 0

0 hm+1(r̄)um+1(r̄) · · · 0
0 0 0
...

...
. . .

...

0 0 · · · hN (r̄)uN (r̄)




, (2.74)

finally,

c =




C̄mm

...

C̄Nm


 s =




S̄mm

...

S̄Nm


 (2.75)

Moreover, Nθ is the number of latitudinal grid points which is defined based on the selected grid on
the mean sphere. However, the number of observations Af

m(θ) or Bf
m(θ) at least should be equal to

the number of the unknowns C̄nm S̄nm at most (min(Nθ) = N + 1). Different types of gridding will
be discussed in chapter 5 in more detail.
In general, the number of linear equations of type (2.71) is larger than or equal to the number of
coefficients. Therefore, the solution is obtained by the method of least squares,

ĉ =
(
ΓT PT PΓ

)−1

ΓT PT a (2.76)

ŝ =
(
ΓT PT PΓ

)−1

ΓT PT b (2.77)

As it will be seen in chapter 5, the estimated coefficients are erroneous due to non-orthogonality of
discretized Legendre function (Sneeuw, 1994). The solution can be improved either by modification of
the estimator or by considering the Gauss grid rather than the equiangular one. It will be explained
in more detail in chapter 5.

Case Study: LL-SST problem

A succinct expression of Eq. (2.12) is:

δV (xx) = eT
BGeB (2.78)

where, G is the Hotine-Marussi tensor and contains the second partial derivatives of the geopotential.
The los unit vector eB, can be expressed in terms of the unit vector’s azimuth α, as shown in
Fig. (2.3), in the local north-oriented reference frame
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Figure 2.3: Definition of intersatellite azimuth

eB ≈
(

sin α± cos α
δr
ρ

)
(2.79)

with δr as the difference between the radii of the satellites at the evaluation point. The second
component of the vector eB with plus sign is corresponding to ascending arcs whereas the minus sign
is used for the descending arcs.
The azimuth of the intersatellite vector, i.e., the angle, is counted clockwise from North, between
the direction of intersatellite vector and the local meridian passing through the barycenter (Vermeer,
1990). In an inertial frame it reads,

sin α =
cos I

sin θ
. (2.80)

The alternative is to choose the nominal azimuth of the satellite equal to the Earth-fixed azimuth
αE , which is obtained from α by adding a sidewind correction (Vermeer, 1990).

αE = arcsin
(

cos I

sin θ

)
− arctan

(√
sin2 θ − cos2 I

n
Θ̇
− cos I

)
(2.81)

For a mission with a polar inclination Eq. (2.81) is recast into:

tan αE = − sin θ
n
Θ̇

(2.82)

which is the formalism utilized in Rummel et al. (1993). In the literature (Albertella et al. (1995)),
an apparently different expression can be found for the computation of azimuth αE ,

sin αE =
n
Θ̇

cos I
sin θ − sin θ√(

n
Θ̇

)2

+ sin2 θ − 2 n
Θ̇

cos I

(2.83)
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Despite of their appearance, identical results are obtained by both formulations. Again for polar
orbit for instance, the same relationship can be derived by simplifying Eq. (2.83).
The radial component of the unit vector is significantly smaller than the others. Since one satellite
is chasing the other nearly in the same orbit and the differences in the radii of the two satellites are
relatively small compared to the intersatellite distance. Therefore, Eq. (2.78) is recast into Eq. (2.84)
by neglecting the radial component of the unit vector,

δV (xx) = cos2 αG22 ± sin 2αG23 + sin2 αG33. (2.84)

All evaluation points are located in the outer space where the Laplace equation (∇2δV = 0) is valid.
Thus

δV (xx) = cos2 α (−G11 −G33) ± sin 2αG23 + sin2 αG33. (2.85)

Consequently, Eq. (2.85) is recast into

δV (xx) = − cos2 αG11 ± sin 2αG23 − cos 2αG33. (2.86)

Based on the reduced observations onto the mean orbital sphere, a linear system of equations can
be set up using Eq. (2.86). The system can be solved by either using direct inversion or iterative
methods. A brute force approach can also be used for the achieved linear system corresponding to
the reduced observations. Compared to the time-wise approach, the reduced observations’ respective
linear system consists of less equations but with a normal matrix of the same size. It can be an
advantage for vectorized programming algorithm.
In order to recover the geopotential coefficients using the space-wise approach, the functional should
be isotropic. As seen in Eq. (2.84), the observation equation of the grace mission is non-isotropic and
even different for the ascending and descending tracks. Therefore, the mathematical model cannot
be implemented directly and should be modified. As will be discussed in chapter 6, the contribution
of G23 into Eq. (2.86) is negligible, except in the polar regions. Neglecting the second term on the
right-hand-side of Eq. (2.86) and dividing both sides of the equation by − cos2 α, leads to

−δV (xx)

cos2 α
= G11 +

cos 2α

cos2 α
G33. (2.87)

The left-hand-side of the equation is considered as quasi-observation. The right-hand-side of Eq.
(2.87) contains respectively invariant (homogenous and isotropic) and non-invariant (inhomogeneous
and non-isotropic) components, where the invariant component is the dominant, see chapter 7. Keller
(1994) proposed an iterative solution based on the Banach fixed point theorem for recovery of the
geopotential using the non-invariant functional.

Iterative recovery scheme based on Banach’s fixed point theorem

The basic data processing scheme, corresponding to this iterative formulation, consists of the following
steps:

1. Splitting the observable into invariant and non-invariant components Eq. (2.87),

2. Computing the non-invariant constituent based on a priori information, i.e. available Earth’s
gravity field models

−δV (xx)

cos2 α
− cos 2α

cos2 α
G0

33 = G11, (2.88)

3. Setting up the linear system of equations (Eq. 2.71) of the invariant component

un =
GM

r

(
RE

r

)n

(2.89)

hn =
(n + 1)(n + 2)

r2
, (2.90)
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4. Estimating the geopotential coefficients based on the global harmonic analysis of the invariant
component on the mean sphere Eqs. (2.76) and (2.77),

5. And iterating steps 2-5 based on the estimated solution to mitigate the non-invariant part
initialization error.

Convergence of the scheme for cross-track in-line observable of step mission investigated in Keller
(1994). As it will be seen in Chapter 7, this leads to a convergent iterative scheme for the grace
observable.

2.2.2 Observation distribution

From a mathematical point of view, the observation density and the ground-track coverage are the
key issues for all prediction methods. Moreover, data reduction quality, to a great extent depends on
the roughness of the topography beneath the evaluation point. In satellite geodesy, the distribution
pattern of observations is a complicated function of the satellite inclination and periodicity of the
orbit, whereas the data density is a function of sampling rate and mission duration. Extending the
duration of observations beyond the orbit repetition period of repeating orbit improves merely the
observation density along the orbit arcs while for the non-repeat orbit, it improves both the pattern
and the density. For instance, the equatorial and polar ground track of the grace mission for a
one- and a four-month spans of the observations are depicted in Figs. (2.4) and (2.5). Compared
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Figure 2.4: Typical ground-track patterns of a one-month orbit with 10 Hz sampling (dots: observa-
tion points and circles: grid points)

to Fig. (2.4), four months of the observations generate a relatively high density data distribution.
However, the along-track patterns are still clearly visible in later case, see Fig. (2.5). It should also
be noted that data distribution for the polar and near-polar orbits around the poles is relatively
dense and randomly scattered, whereas that for the equatorial regions is more directional along the
ascending and descending arcs.
Fig. (2.6) shows data point distribution within 1.5◦× 1.5◦ block size for the four-month observations
sampled at 10 Hz. As seen in Fig. (2.6), the cell with the minimum number contains 15 points and it
reaches 55 points at most.

2.3 Space-wise versus time-wise — A comparison

The time-wise and the space-wise approaches were discussed in the first two sections of this chapter.
The first and second partial derivatives of the geopotential in general and some combinations in
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Figure 2.5: Typical ground-track patterns of a four-month orbit with 10Hz sampling (dots: observa-
tion points and circles: grid points)
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Figure 2.6: A four-month span of the grace real data distribution

particular were described. Moreover, the time-wise approach was split into brute-force and semi-
analytical approaches. In this section, different methods are compared and a trade-off between pros
and cons of each of these techniques is addressed.
The time-wise in time domain solution as well as the two-stage modelling leading to the lumped
coefficients are the intermediate alternatives. Smaller linear systems of equations (at most (N +1)/2)
and faster computation because of fft implementation are the main advantages of the alternative
techniques. Having a repeat orbit with a completed period and the continuous stream of data at the
specified sampling rate (∆tN ) given along the nominal orbit, are the prerequisites for the time-wise
approach both in time and in frequency domains. An iterative solution is required to mitigate the
approximation error.
Alternatively, the space-wise approach, mapping the orbital observations on the mean orbital sphere,
and recovering the coefficients using the global spherical harmonic analysis, can be considered. The
method can be implemented directly for the isotropic function while the non-isotropic observations
must be treated using an iterative solution. Moreover, the data should be mapped onto a specific
grid (the Gauss grid, see chapter 5) in order to minimize the consequence of non-orthogonality of the
Legendre functions. However, the orbit could be either a repeat or a non-repeat one and data gaps
have no effect on the quality of the estimated coefficients as long as the sphere is covered sufficiently



Chapter 2. Space-wise versus Time-wise Approach 24

dense. Due to the presence of interpolation error, an iterative solution is inevitable both for isotropic
and non-isotropic functions.
The time-wise and space-wise approaches from theoretical and practical point of view are comple-
mentary. The former is closely related to satellite geodesy whereas the latter is rooted in geodetic
boundary value problems.



Chapter 3

Observation Reduction

In general, it is essentially impossible to collect data in an evenly-spaced spatial grid. Except for
the brute-force method, a representation of the originally irregularly-spaced data points on a regular
grid is required. Gridding is thus one of the first and most crucial steps in the semi-analytical and
the space-wise approaches which were introduced to alleviate numerical difficulties of the brute-force
technique.
The problem of data reduction is a special case of approximation, in which a set of scattered obser-
vations are used to generate an evenly-spaced data grid in the observational space or in a specific
subspace of the original space. Consequently, the gridding error is a function of the approximation
method, basis functions, data distribution and density, and the grid spacing.
In this chapter, the observation reduction using polynomials, harmonic polynomials, radial basis func-
tions and rational functions, as the potential gridding techniques, are described and their performance
compared on two different sets of the simulated data: one for an invariant and one for non-invariant
function, respectively. Moreover, the approximation methods are optimized using numerical opti-
mization techniques.

3.1 Approximation methods

In general, suppose a set of no distinct irregularly-distributed sampling points 1 xo, o = 1, · · · , no, and
the sampled values so = f(xo)+εo, where f is the underlying function (isotropic or non-isotropic) and
εo the sampling error. The task is to find the function’s value on a finite and discrete set of nearly
regularly-spaced grid nodes xg by approximating the function with a reasonable and computable
function f̃ .

3.1.1 Polynomial approximation

To build up the approximating function f̃ , different basis functions can be employed. Among them,
the polynomial basis as the simplest ones are expressed as:

Π3 =
{
1, x, y, z, x2, xy, xz, y2, yz, z2, x3, · · ·} . (3.1)

According to Weierstrass approximation theorem,

If f(x) is a continuous real-valued function on [x1, x2], and if any ε > 0 is given, then
there exists a polynomial f̃ on [x1, x2] such that:

| f(x)− f̃(x) |< ε

for all x ∈ [x1, x2]. In other words, any continuous function on a closed and bounded
interval, can be uniformly approximated on that interval by polynomials to any degree of

1In general, we assume 3D sampling points whose coordinates are given either in the Cartesian (x, y, z) or in the
spherical coordinates (r, θ, λ).

25
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accuracy (Jeffreys and Jeffreys, 1988).

The corresponding approximating polynomial function is,

f̃(x, y, z) =
d∑

i=0

d−i∑

j=0

d−i−j∑

k=0

aijkxiyjzk. (3.2)

with d, the maximum degree of the approximating polynomial function. aijks are the unknown
coefficients which are estimated by setting up a linear system of equations based on the discrete
observed values of the function on the evaluation points. The system will be under-determined if the
total number of unknown coefficients is less than the number of data points:

df(d) = no − u(d) = no −
(

d3 + 6d2 + 11d

6
+ 1

)
≥ 0. (3.3)

The higher the polynomial degree, the lower the degree of freedom becomes. Fig. (3.1) shows how
the degree of freedom rapidly decreases by increasing the maximum degree of the basis functions.
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Figure 3.1: Maximum polynomial degree versus degree of freedom

From the classical point of view, the best approximating polynomial will be the best approximation
if

‖f(x)− f̃(x)‖
reaches the minimum for the choice. In practice, the underlying function is known just at the data
points. The criteria will then be modified to select the optimal approximating function as:

‖v‖ = ‖f(xo)− f̃(xo)‖ =
no∑

o=1

[so − f̃(xo)]2,

with v as the vector of residuals2. Increasing the maximum degree of the approximating function in
one hand, decreases the norm of the residuals at the data points and in the other hand, an generates
artificial oscillation within the data points. Therefore, the cubic polynomial function is usually the
high-degree polynomial function which is used for approximation.
Furthermore, the approximating function of the low-degree polynomial represents the low frequency
signals. Moreover, the instability of normal matrix is the numerical problem which appears when
the data points are widely spread on the domain. Implementation of the patch-wise polynomials

2A more realistic criteria can be set up using some check-points which can be selected from the data points. They
are not involved in the coefficients’ estimation process and are used just for checking the quality of fitting.
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prevents the instability problem and represents the high-frequency feature of the underlying function
to a great extent.
To provide coordinates of the evaluation points for the patch-wise approximation, a local coordinate
system is used. For instance, for the space-wise approach, the lnrf defined at the patch mid-
point may be the more convenient local frame since the coefficients indicate the partial derivatives
of the observable along the coordinate lines, the parallels and the meridians. It is more practical
to transform the coordinate differences, i.e. the data points minus the respective patch mid-point
coordinates, rather than the coordinates themselves.
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√
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Analogously, for the time-wise in the frequency domain and torus approach, lorf will be the more
convenient local frame due to the aforementioned reason. The transformation equations (x, y, z) =
J(ωo, ωe, I)(∆X, ∆Y, ∆Z) are given by:

 x
y
z

!
=

0
@

− cos ωe sin ωo − sin ωe cos ωo cos I − sin ωe sin ωo + cos ωe cos ωo cos I cos ωo sin I

sin ωe sin I − cos ωe sin I cos I

cos ωe cos ωo − sin ωe sin ωo cos I sin ωe cos ωo + cos ωe sin ωo cos I sin ωo sin I

1
A
0
@

∆X

∆Y

∆Z

1
A , (3.5)

where, ωe and ωo refer to the mid-point of the corresponding patch. By assuming a known inclination
I and using Eqs. (3.6) and (3.7), one can derive the transformation matrix entries (e.g. Karrer, 2000):

sin ωo =
Z

r sin I
(3.6)

and
tan ωe =

cosωo − Y sin ωo cos I

Y cosωo −X sin ωo cos I
(3.7)

Although the patch-wise polynomial approximation represents more features and leads to a stable
normal matrix, the achieved results are not convincing.
In the polynomial modelling, just the geometrical properties of the function were considered. Incor-
porating the underlying function’s physical process may improve the estimation accuracy.

3.1.2 Harmonic and biharmonic polynomials

As mentioned in Chapter 2, every observation can be written as a functional on the gravity field.
Some of these functionals are harmonics while the others are not. For instance, r2Trr is harmonic in
the outer space whereas Tθθ is a typical non-invariant one. It is strongly recommended to incorporate
any additional available information on the underlying function in the interpolation and approxi-
mation process. For example, implementation of the harmonicity condition results in the Harmonic
approximating polynomials f̃H(x),

∇2f̃H(x) = 0 (3.8)

similarly, for the biharmonic polynomials,

∇2
(
∇2f̃B(x)

)
= ∇4f̃B(x) = 0. (3.9)
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For example, a biharmonic function of three variables for instance, reads (Hardy, 1983):

∂4f̃B

∂x4
+

∂4f̃B

∂y4
+

∂4f̃

∂z4
+ 2

∂4f̃B

∂x2∂y2
+ 2

∂4f̃B

∂y2∂z2
+ 2

∂4f̃B

∂y2∂z2
= 0 (3.10)

Implementation of the constraints Eqs. (3.8) and (3.9) in general case Eq. (3.2), is rather compli-
cated. Hence, we apply the constraints for special cases. Nevertheless, implementation of the Laplace
equation Eq. (3.2) results in a polynomial of degree (d − 2) whose coefficients should be equal to
zeros. Therefore, the number of equations of the type functional constraint is equal to the number of
a (d− 2) order polynomial function,

sH =
(d− 2)3 + 6(d− 2)2 + 11(d− 2)

6
+ 1, (3.11)

and the corresponding degree of freedom is:

dfH = no − u + sH = no − (d + 1)2. (3.12)

For instance, the cubic polynomial approximating function will be harmonic if the following linear
conditions are fulfilled:

a200 + a020 + a002 = 0
3a300 + a120 + a102 = 0
a210 + 3a030 + a012 = 0 (3.13)
a201 + a021 + 3a003 = 0

The additional equations increase the linear system’s degree of freedom. Moreover, the underlying
function physical characteristic is also considered. We can then expect to obtain a higher accuracy
for the grid values.
The polynomial functions, up to the third degree, are biharmonic. Use of the higher degree biharmonic
polynomials leads to some additional constraints which may increase the gridding accuracy. Similar
to the harmonic polynomial, it can be easily proved that the number of functional constraints is

sB =
(d− 4)3 + 6(d− 4)2 + 11(d− 4)

6
+ 1, (3.14)

and the corresponding degree of freedom is

dfB = no − u + sB = no − 2(d2 + 1). (3.15)

For instance, the fourth order polynomial yields to the following constraint

3 (a400 + a040 + a004) + (a220 + a202 + a002) = 0. (3.16)

The biharmonic polynomial approximation analogous with the harmonic approximation increases
the number of equations. However, the number of equations is comparatively less than that of the
harmonic approximation. Nevertheless, in both cases, the number of unknowns is a quadratic function
of d, while it is a cubic function in the case of ordinary polynomial approximation. Fig. (3.2) shows
a maximum polynomial degree versus degree of freedom, both for the harmonic and the biharmonic
polynomials. Compared to the polynomial approximation, fitting the high-degree harmonic and
biharmonic polynomials can be performed using much less data points.
The additional linear functional constraints can be combined with the observation equations and
solved in an augmented linear system (e.g. Wells, 1994),

x̂ = N−1
[
I + AT

c

(
AcN−1Ac

)−1
AcN−1

]
u, (3.17)

where, N and u are the normal equation matrix and the known vector of the polynomial approxima-
tion respectively. Ac is the first order design matrix of the constraint equations.
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Figure 3.2: Maximum harmonic and biharmonic polynomial degree versus df

In order to compare the proposed gridding methods with the other techniques, numerical analysis
based on the same data sets, have been performed. The achieved results are presented in section
3.4.4.

3.1.3 Rational approximation

Mathematically, tendency of the polynomials to oscillate is the main disadvantage of polynomial
approximation. For the high-degree polynomials, the oscillation exceeds the average bounds of ap-
proximation error (Tao and Hu, 2001). The rational approximation (ra) scheme is the alternative
which is significantly smoother and can spread the approximation error more evenly between data
points. Moreover, the polynomial approximation results in an unacceptable solution in the presence
of finite discontinuities (outside of the approximation domain), while the ra solution is not far out
(Burden and Faires, 1997; Tao and Hu, 2001).

Definition: Let f be the previously defined function. Let dp and dq be non-negative integers. Then,
the class R(dp, dq) of (ordinary) rational functions is the class of functions r(x) which can be
represented in the following form:

r(x) =
p(x)
q(x)

(3.18)

where,

p(x) =
dP∑

i=0

dP−i∑

j=0

dP−i−j∑

k=0

aijkxiyjzk

q(x) =
dq∑

i=0

dq−i∑

j=0

dq−i−j∑

k=0

bijkxiyjzk

where, aijk and bijk are real numbers and q(x) 6= 0. The rational approximation problem
consists of finding an element r ∈ R(dp, dq) satisfying:

r(xo) = so o = 1, 2, · · · , no ≥ u(dp) + u(dq), (3.19)

where, u(d) is the number of unknown coefficients of a d-order polynomials. In general, existence
of a solution is not guaranteed. Nevertheless, it is not hard to prove that at least one nontrivial
solution always exists for the following combined equations which is equivalent to the rational
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approximation problem (Wuytack, 1974): 3

so q(xo) − p(xo) = 0. (3.20)

The linear system of Eq. (3.20) is a system of no linear homogeneous equations in the u(dp) +
u(dq) unknowns aijk and bijk.

Although Eq. (3.20) is linear, the initial values of the coefficients are required to set up the linear
system of equations. Therefore, the model should be solved iteratively (Tao and Hu, 2001).
Alternatively, the model can be reduced into a parametric model without loss of generality. Assuming
b000 6= 0 and dividing both the numerator and the denominator by this coefficient, leads to:

so = p′(xo)− so q′(xo), (3.21)

where,

p′(x) =
dp∑

i=0

dp−i∑

j=0

dp−i−j∑

k=0

aijk

b000
xiyjzk

and

q′(x) =
dq∑

i=0

dq−i∑

j=0

dq−i−j∑

k=0
i∧j∧k 6=0

bijk

b000
xiyjzk

Equations (3.21) can be assumed as a linear system of observation equations which can be solved
directly. Herein, we implement the modified equation of the rational approximation.
Despite of the noteworthy advantages of the rational model, the instability of the first design matrix
of the normal equations and a relatively large number of the unknown coefficients are the main
disadvantages of the formulation. In order to stabilize the normal matrix inversion, regularization of
the respective normal matrix is required. However, it is interesting to note that the formulation is
fortunately insensitive to the regularization parameter and can be easily treated.
As it will be seen in section (3.4.4), the rational gridding method yields promising results. However,
because of the large number of unknowns, more data points are required even for a low-degree rational
model.

3.1.4 Radial basis functions

For one-dimensional data, the polynomial and rational approximations result in non-singular linear
systems if the data points are distinct. However, existence of the solution is not guaranteed in general
for higher dimensions. For instance in 3D, it yields a singular normal matrix if the data points are
along an arbitrary line. This problem is common to all approximation methods with basis functions
independent of the data points.
The problem can be bypassed by following a theoretically different approach. Instead of using linear
combinations of the polynomial basis functions, which are independent of the data points, a linear
combination of translates of a radially symmetric (about its center) single base function is employed.
The technique which is called radial basis functions (rbf) method, was originated by one of the great-
est geodesists Richard L. Hardy. Hardy (1971), as the pioneer of the rbf technique, applied a special
class of rbf called multiquadrics (mq) on geodetic data. Ability to handle arbitrarily distributed data
and be easily generalized from one to multi-dimensional spaces, as well as the adjustable roughness
capability, have made the method be of particular interest to many research and engineering fields of
application. Numerical solution of partial differential equations; artificial neural networks (e.g. Dud-
nik and Bidyuk, 2003), medical imaging (e.g. Carr et al., 1997), surface and volume visualization(e.g.
Levoy, 1988; Nielson et al., 1991), quantum hydrodynamics (e.g. Trahan and Wyatt, 2003) are some
examples of where the rbf method has recently been employed.

3Wuytack (1974) showed the existence of a solution for the case of interpolation. However, if the solution exists for
interpolation, its existence is fully guaranteed for approximation.
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Multiquadric method’s definition: For the already given set of no distinct data (source) points
xo, the mq interpolant is given by:

f̃MQ(x) =
no∑

k=1

αk ϕk(x,xk, c2) =
no∑

k=1

αk

√
c2 + ‖x− xk‖2, (3.22)

with ‖·‖ as the Euclidian norm. The expansion coefficients αk are the unknown coefficients as-
sociated with no nodal points, and c2 is the shape parameter of the radial basis ϕk which defines
the basis functions sharpness (Hardy, 1990). Assume c2 is known, the unknown coefficients are
then the solution of the following symmetric linear system:

Ano×no
αno×1 = lno×1, (3.23)

where, the entries of A are given by aij = ϕj(xi, c
2).

Originally, Hardy (1971) proposed the method for topographic map generation using irregularly-
sampled height data. Later, he utilized the method for approximating the Earth’s gravity field both
for the exterior and interior of the Earth (e.g. Hardy and Göpfert, 1975; Hardy and Nelson, 1986a,b).
Moreover, he applied the method for solving purely geometrical problems (Hardy, 1972, 1977), see
Hardy (1990, and references therein) for more details. Furthermore, the mq method was used by other
researchers and scientists in other scientific disciplines. Hardy also introduced Inverse Multiquadric

(imq) method with radial function of the type ϕk =
(
c2 + ‖xk − x‖2)

−1
2 .

In parallel, new methods similar to mq method, developed independently in most cases, started
emerging. It was followed by the thin-plate-spline (tps) method with the basis functions of the type
ϕ = ‖x − xk‖2 log‖x − xk‖ and ϕ = ‖x − xk‖3 (Duchon, 1976). Schagen (1979, 1980) introduced
yet another radial function namely called the Sum of Gaussians (sog) ϕ = e−‖x−xk‖/2σ2

k .
Franke (1979) carried out one of the most important studies on a vast number of interpolation methods
including mq. Therein, he compared about 30 different methods’ performances on 6 different test
functions sampled on 3 different sampling rates. The mq method provided the best approximation
in 13 of the 18 and was followed by tps as the best approximating method in the others. Although
the numerical study indicated the superiority of the mq technique over tps and sog, it was suffering
from lack of theoretical foundation.
Eventually, mathematical foundations of the mq as well as the imq were provided by Micchelli (1986).
In addition, he also presented sufficient conditions to guarantee non-singularity of other types of radial
interpolating functions. Furthermore, his results were completely compatible with the already given
conditions for tps by (Duchon, 1976).
Micchelli’s results had a great impact on the generalization of the mq technique into a new class of
interpolating functions which has been known as the radial basis functions (rbf). Using translates
of a single homogenous and isotropic base function ϕ(ρ) that depends only on the Euclidian distance
from its center (ρk = ‖x−xk‖), is the rationale behind this general method. According to Micchelli’s
results, the method is applicable to multidimensional interpolation with a fully guaranteed nonsingular
normal matrix.

RBF method’s definition: Assume a set of no distinct data points xk ∈ Rn and their respective
observed scalar values f(xk). The rbf interpolant is defined as:

f̃RBF(x) =
no∑

k=1

αkϕk(ρ) (3.24)

where, ϕk(ρ) is the interpolant kernel function. The expansion coefficients αk are determined
using the liner system of equations of Eq. (3.23) type, with the normal matrix entries of the
type ai,j = ϕi(ρj) = ‖xj − xi‖.
In contrast to Eq. (3.24) which is a pure radial sum namely called basic rbf, the augmented
rbf can be defined as:

f̃aug(x) =
no∑

k=1

αkϕk(ρ) +
um∑

i=1

βipi(x), (3.25)
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with pi(x) ∈ Πn
m (n-dimensional polynomial basis of degree m). The basic rbf is purely

deformable and thus limited and there are no global influences. The additional polynomial
function absorbs the contribution of the long wavelengths if there are any. Besides the radial
component coefficients um polynomial coefficients should also be estimated. Consequently, the
linear system of interpolation conditions is an underdetermined one with no equations and
no + um unknowns. Therefore, um additional equations are required to set up a determined
linear system. The um additional conditions required to obtain a unique solution are typically
chosen as (Hickernell and Hon, 1998):

no∑

k=1

αk pi(xk) = 0, (3.26)

or in matrix form,
PT α = 0. (3.27)

Combination of the interpolation conditions and the additional equations is recast into the
following linear system of equations (Ling, 2003),

(
A P

PT 0

) (
α

β

)
=

(
l
0

)
, (3.28)

where, A is the first design matrix of the interpolation condition f̃(xi) = si. It is interesting
to note that the maximum degree of the polynomial component m depends on the polynomial
precision ν, required by the user. Hickernell and Hon (1998) for instance, showed that a
polynomial function of degree m = (ν+1)(ν+2)

2 is required to obtain the polynomial precision ν
for modelling 2d surface wind data.

Some common examples of the rbf kernels that lead to a uniquely solvable method, are given in Table
(3.1). As seen in Fig. (3.3), various rbfs were compared with identical shape parameter (c = 0.1).
The inverse multiquadric rbf is more localized as compared to the others. As the figure implies, both
the inverse multiquadric and the Gaussian rbfs are monotonically decreasing with distance increase,
whereas the multiquadric rbf is increasing monotonically with increasing distance from the source
center (source point).

Table 3.1: Some of the more commonly employed rbf kernels
Type of Kernel ϕ(ρ)

Hardy’s Multiquadric (mq)
√

ρ2 + c2 Infinitely smooth rbf

Inverse Multiquadric (imq) 1√
ρ2+c2

Infinitely smooth rbf

Inverse Quadratic (iq) 1
ρ2+c2 Infinitely smooth rbf

Thin-Plate Spline (tps) ρ2 log(ρ) piecewise smooth rbf

Gaussian e−c2ρ2
Infinitely smooth rbf

Linear ρ piecewise smooth rbf

Cubic ρ3 piecewise smooth rbf

Furthermore, since the underlying function is usually a functional of the incremental potential, the
infinitely smoothed rbfs either in basic or augmented forms yield nearly identical results. Therefore,
we retain the basic inverse multiquadric rbf.
As it will be seen in 3.4.4, for the test functions, the inverse multiquadric rbf obtains a comparatively
higher gridding accuracy. Consequently, we retain the inverse multiquadric rbf and no comparison
will be performed on the observation gridding.

MQ and IMQ in the spherical coordinates: Representation of the mq or imq interpolant in
terms of the spherical coordinates (r, θ, λ) is a specific representation which is more convenient
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Figure 3.3: Comparison of infinitely smoothed rbfs

for the gravity field applications. The mq kernel for instance, in three variables (x, y, z) is:

ϕk =
√

ρ2(x,xk) + c2 =
√

(x− xk)2 + (y − yk)2 + (z − zk)2 + c2 (3.29)

ρ2 in terms of spherical coordinates reads,

ρ2(r, rk, ψk) =
√

r2 + r2
k − 2rrk cos ψk (3.30)

where,
cos ψk = cos θ cos θk + sin θ sin θk cos(λ− λk). (3.31)

Using Eq. (3.30), transformation of the coordinates from the spherical into Cartesian is by-
passed. Moreover, if the grid points as well as the source points are assumed on the sphere with
radius r̄, then,

ϕ(r̄, ψk) = 2r̄

√
sin2 ψk

2
+ c′2. (3.32)

One can simply scale the observations and represent the mq interpolation conditions as:

s′i =
no∑

k=1

αk

√
sin2 ψi,k

2
+ c′2, (3.33)

with s′i = si

2r̄ , ψi,k the spherical distance between i and k, and c′2 = c
2r̄ . Similarly, the mq or

imq interpolant can be expressed just as a function of the spherical distance ψ.

RBFs kernel with adaptive shape parameter: Usually, a single parameter c2 is used as the
shape parameter of the kernels. For instance, Shul’min and Mitel’man (1974) proposed the
following formula for the single shape parameter computation,

c2 =
1

no(no − 1)

no∑

i=1

no∑

j=1

ρ2
ij , (3.34)

which is just the mean quadratic distance between the data points and independent from the
underlying function. Therefore, we cannot expect to obtain a reasonable accuracy for all types
of functions.
Ruprecht and Müller (1995) proposed using individual values c2

k for each data point pk, com-
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puted from the distances to the nearest neighbor. For instance, for mq kernel,

ϕ(ρk, ck) =
√

ρ2
k + c2

k; ck = min{ρi,k} i = 1, 2, · · ·no (3.35)

The modification generates more flexible interpolation kernels by taking the local distribution
of the data point. However, even with this modified flexible kernel, the underlying function has
no contribution to the interpolation process.

Having discussed the virtues of radial basis functions, they are by no means infallible. In the case of
infinitely smoothed rbfs as imq, selection of an appropriate shape parameter is paramount to good
results. In order to optimize the shape parameter by considering the observed values besides their
relative distributions, we will consider the problem as a constrained optimization problem.

3.2 Optimal approximation

We discussed different algorithms for gridding the scattered data on a regular grid. As already
mentioned, the gridding accuracy of the localized rbfs depends on the selection of shape parameter.
In other words, the method should be optimized in order to obtain a reasonable solution. A similar
problem is also hidden in the polynomial-based approximations. For instance, there is no clear clue
for selection of the polynomial appropriate order. Selection of an optimal set of polynomial basis is
yet another question. Therefore, the polynomial-based approximations should also be optimized by
selecting the appropriate basis and the optimal order. Unlike the interpolation, a posteriori estimate
of the error statistics is the byproduct of the approximation process. However, they are useless since
they indicate the model misfit just at the observation points.
To bring it to the point, consider one of the most frequently used test function (Franke, 1979):

f(x, y) = 0.75 exp
[
− (9x−2)2+(9y−2)2

4

]
+ 0.75 exp

[
− (9x+1)2

49 + (9y+1
10

]

+0.50 exp
[
− (9x−7)2+(9y−3)2

4

]
− 0.20 exp

[
(9x− 4)2 − (9y − 7)2

]
.

(3.36)

Assume the function is sampled with spacing (∆x, ∆y) = (0.1, 0.1). The problem is to find the
function at an arbitrary point, for instance P (0.65, 0.65). Depending on the shape parameter, a
different value is obtained. The function and interpolation errors at point P are shown in Fig. (3.4).
As it can be seen in the figure, even with a really high density data, the interpolation error changes
significantly with the shape parameter variation. This simple example also shows the existence of local
minima for the shape parameter. Therefore, as mentioned earlier, an optimal choice of the parameter
c2 is required for obtaining reasonable interpolation accuracy by means of rbfs. Moreover, we
should bear in mind that the error could be a non-monotonic function. In general, the interpolation
or approximation problem can be formulated as a constrained optimization problem with an object
function g and the linear observation equations as the subject functions:

{
Ax1 = l

g(x1,x2) Ã min
(3.37)

where, x1 and x2 are the unknown basis functions coefficients and the additional model parameters
like c2, respectively.
In the approximation problem, norm of the error function e(x) = f̃(x) − f(x) is usually considered
as the object function g. Since f(x) is unknown, the error function can only be discretely estimated
at the observation points.
The estimation will be realistic if the function is evaluated at some check points, i.e. the observation
points which are not involved in the unknown estimation process. However, in most cases of the
Earth’s gravity field determination it is almost impossible to split the data points into two parts
because of the low number of observation points. For such cases, the method called one-leave-out
method can be implemented.
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Figure 3.4: Franke test function and interpolation error versus the shape parameter

3.2.1 One-leave–out method

Consider the given data set with no observations. Instead of excluding a group of observations as
the check points, a single observation is removed from the observation vector. In other words, the
interpolant is constructed just based on no−1 source points. Let us assume f̃ [k] as the approximating
function which has been set up based on the data points, except kth point. The error function can
be evaluated at point xk based on f̃ [k]. Performing the evaluation for each of no data points, yields
a no × 1 vector whose entries are a rough estimate of the error function at the observation points,

ẽ =




ẽ[1]

...
ẽ[k]

...
ẽ[no]




=




f̃ [1] − s1
...

f̃ [k] − sk
...

f̃ [no] − sno




(3.38)

Consequently, the first formulation of the optimization problem can be introduced as:
{

Ax1 = l

‖ẽ‖ Ã min
(3.39)

Rippa (1999) tested the object functions defined by the L1 and the L2 norms of ẽ and found that
there is a very slight advantage in using the object function defined by the L1 norm. Then,

{ Ax1 = l
∑no

k=1 | ẽ[k] |Ã min
(3.40)

Clearly, there is no dependency between the observation and the respective estimated error at the
point. Hence, we virtually generate an independent criterion which is the main advantage of the
proposed method.

In gridding problems, we are interested in evaluating the underlying function accurately at the grid
points rather than at the data points. Accordingly, the object function can be modified to involve
the interpolation error at the grid points as well:

{
Ax1 = l
∑no

k=1 | ẽ[k] | + ∑no

k=1

∑nI

j=1 | ẽ[k]
j |Ã min

(3.41)
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The term ẽ
[k]
j is the approximation error at the grid point j ∈ {1, 2, · · · , nI}, which is estimated

in the absence of the kth observation. However, ẽ
[k]
j is inestimable since the underlying function is

unknown at the grid point. From a statistical point of view, the mean value is the best estimation of
a repeatedly measured quantity:

ẽ
[k]
j = f̃

[k]
j − 1

no

no∑

i=1

f̃
[i]
j (3.42)

Hence, Eq. (3.42) gives a reasonable estimate of the error value at the grid point j.
Although the aforementioned method of object function, to a certain extent, presents the reality, it is
a cumbersome procedure particularly for rbf interpolation. For instance, no normal matrices of size
(no − 1) × (no − 1) should be inverted for an individual value of the shape parameter. To alleviate
this heavy computation, we utilize two different schemes for rbf interpolation and the approximation
techniques, respectively.

3.2.2 RBFs interpolation

Rippa (1999) proposed an innovative single-step computation scheme for the rbfs interpolation meth-
ods. It is called single-step scheme since the unknown coefficients is computed only once. The
computational scheme corresponding to this one-stage estimation consists of the following steps:

1. Compute the radial basis coefficients αk based on the full set of observation,

α = A−1l (3.43)

2. Set up a new system of equations defined as:

γ[k] = A−1i[k] (3.44)

where, i[k] is the kth column of the no × no identity matrix and γ[k] is the kth column of A−1

which is determined simply by Eq. (3.44).

3. Calculate the error vector entries e[k] using

e[k] =
α(k)

γ[k](k)
(3.45)

which is the ratio of the kth elements of the two vectors.

4. Evaluate the vector α[k] defined as:

α[k] = α− e[k]γ[k] (3.46)

The no × 1 vector α[k] is the expansion coefficient in which the kth observation contribution is
removed.

5. Calculate the interpolation point values using

f̃
[k]
j = AIα

[k]; for j = 1, 2, · · · nI (3.47)

where, AI is the design matrix corresponding to the interpolation points.

6. Iterate steps 2− 5 for k = 1, 2, · · · , no

7. Compute the interpolation error at the interpolation point using Eq. (3.42).

8. Evaluate the object function Eq. (3.41)

From a computational point of view, this algorithm is very efficient since the normal matrix is inverted
just once and the residual quantities are somehow the by-products of the original linear system of
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equations. Obviously, steps 4 and 5 will then be ignored if the basic object function rather than the
modified one is used.
We have developed a realistic object function which can be utilized for optimization of the shape
parameter. As it will be will seen in section (3.3.1), optimization of single variable function is the
easiest case of optimization. This, also can be another hidden advantage of rbfs.

3.2.3 Optimal polynomial approximation

In general, assume f̃PB as the polynomial-based approximating function either harmonic, biharmonic
or rational. For simplicity, we also assume that the equations of the type functional constraints have
been inserted into the observation equations. Hence, the problem is how to perform the one-leave-out
technique without repeating the estimation process. In other words, the problem is how to eliminate
the contribution of a single observation from the estimated unknown vector.
Based on the detailed formulation given in Appendix B, the following computational scheme is pro-
posed for a single-stage estimation procedure:

1. Estimate the unknown coefficients based on all no observations,

ξ̂ = N−1u. (3.48)

2. Compute the kth element’s contribution to N and u:

Nk = AT
k Ak (3.49)

uk = AT
k sk, (3.50)

where, Ak is the kth row of the design matrix A.

3. Calculate the kth observation contribution to the estimated unknown vector,

∆̂ξ =
(
Ino×no + N−1Nk

)
N−1

(
uk −N ξ̂

)
. (3.51)

4. Evaluate the unknown vector in the absence of the kth observation,

ξ̂
[k]

= ξ̂ − ∆̂ξ. (3.52)

5. Calculate the approximation error at the observation point, Pk

êk = Akξ̂
[k]

. (3.53)

6. Evaluate the approximating function f̃ at the grid points,

f̃
[k]
j = f̃(ξ̂

[k]
,xj); for j = 1, 2, · · · , nI (3.54)

7. Iterate steps 2− 6 for k = 1, 2, · · · , no.

8. Calculate the approximation error at the grid point using Eq. (3.42).

9. Evaluate the object function Eq. (3.41).

As seen, the design matrix and the known vector of the normal equations are computed once and the
rest of computation is performed based on the already derived quantities (A, ξ̂ and · · · ).
If the basic form of the object function Eq. (3.40) is used, the single-step estimation algorithm can
be modified accordingly (ignoring steps 6 and 8).
Although optimization of the rbfs interpolation and the approximation problems are based on the
minimization of an identical object function, they are conceptually different. In rbf interpolation
a definite number of translates of a single-base function is used and the object function should be
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minimized by an appropriate choice of the shape parameter. Therefore, the optimization problem is a
single variable optimization which can easily be treated by either local or global numerical optimiza-
tion methods, while the optimal approximation should be obtained by selecting the most suitable
polynomial basis. Because of this basic difference, a particular optimization scheme is required. This
will be discussed in section (3.3.2).
Nevertheless, considering the minimization of the object function (Eq. 3.41) rather than the norm of
residuals for a definit set of basis functions leads to an optimization problem which cannot be solved
by the classical least squares approach. Thus, problem should be solved by either local or global
numerical multi-variable optimization techniques.

3.3 Numerical optimization

As discussed in the previous section, the error function e(x), in its basic or modified form should
be minimized by an appropriate selection of one or more independent variables. In other words, we
want to find the value of those variables where the error function takes up a minimum value. We can
then evaluate the underlying function at any interesting point based on the corresponding value of
the variable(s).
A minimum (being the lowest point) can be either the lowest in a finite neighborhood (local minimum)
or truly the minimum value of the function (global minimum). The search methods are divided into
the local and global minimization techniques correspondingly. We have to use the global method for
minimization of the function since the truly minimum of the error function is of particular interest.
However, finding a global minimum compared to the local one is, in general, a very difficult task.
Nevertheless, the local minimum can also yield the global minimum either if the minimum is unique
or if the neighborhood is correctly defined to include the global minimum. In the latter, enough
knowledge of the physical process about the object function should be available which is not the case
for the error function. Consequently, by implementing the local techniques for minimization, the
error function is assumed unimodal.
Simplicity of the local methods as well as the published literature on the topic (Hickernell and Hon,
1998; Rippa, 1999; Trahan and Wyatt, 2003) are reasons to begin with the local method although
the correctness of the underlying assumption is not fully guaranteed.

3.3.1 Golden section search technique (local search method)

Nearly all classical optimization methods can be utilized for local minimization. In general, the
methods using the derivatives are somewhat more powerful than those using only the function (Press
et al., 1988). Since there is no additional information on the function derivatives, we retain the
algorithms using the function only; and since the problem is just a one-dimensional minimization
problem, the golden section search method as the simplest technique is implemented.
The golden section search is a technique for finding the extremum (minimum or maximum) of a
mathematical function, by successively narrowing the brackets by upper bounds and lower bounds.
The idea is the same as the bisection method for solving nonlinear equations except it needs three
points rather than two. Suppose we have three points a, b and c with a < b < c. If f(a) > f(b)
and f(b) < f(c), the interval (a, c) is sure to contain a minimum of f(x), and we say that the points
(a, b, c) bracket the minimum. Figure 3.5 illustrates the technique for finding a minimum. The value
of f(x) has been evaluated at the three points: a, b, and c. Since f(b) is smaller than either f(a) or
f(c), it is clear that a minimum lies inside the interval from a to c.
The next step in the minimization process is to evaluate the function at a new value of d, namely
d either between a and b or b and c. It is most efficient to choose d somewhere inside the largest
interval, i.e. between a and b, then we evaluate f(d). If f(b) > f(d), then the new bracketing triple of
points is (a, d, b); otherwise the new bracketing triple is (d, b, c). In all cases, the middle point of the
new triple is the abscissa whose ordinate is the best minimum we have achieved so far; see Fig. (3.6).
The process of narrowing the bracket is continued until the two outer points of the bracket triple get
close enough to each other. In other words, the distance between those two points becomes negligible.
By introducing new points and comparing the function values, we can systematically reduce the size
of the interval bracketing the minimum which is supposed to be within the neighborhood ]a, b[. The
question is, how to choose the value of d?
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The selection scheme is based on the idea of golden ratio which was first studied by ancient math-
ematicians due to its frequent appearance in geometry. Two quantities are said to be in the golden
ratio, if the whole is to the larger as the larger is to the smaller, i.e. if:

c− a

b− a
=

b− a

c− b
. (3.55)

Equivalently, they are in the golden ratio if the ratio of the larger one to the smaller one equals the
ratio of the smaller one to their difference:

b− a

c− b
=

c− b

(b− a)− (c− b)
. (3.56)

After multiplying the first equation by b−a
c−b or the second equation by (b−a)−(c−b)

c−b , both of these
equations are seen to be equivalent to:

(
b− a

c− b

)2

− b− a

c− b
= 1. (3.57)
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and hence b−a
c−b , which is typically symbolized by τ , is called the golden ratio:

τ
.=

b− a

c− b
=
√

5− 1
2

= 0.61803.

or equivalently,
b− a

c− a
=

τ

1 + τ
= 0.38197.

The relationship can be used similarly, the new point d should be selected such that, d should be the
same fraction of the way from b to c as was b from a to c, i.e.,

d− b

c− b
=

b− a

c− a
= 0.38197. (3.58)

Conclusively, at each iteration, the distance of a new point measuring from the central point of the
triplet is a fraction 0.38197 to the larger of the two intervals.
If we start out with a bracketing triplet whose segments are not in the golden ratios, the procedure
of choosing successive points at the golden mean point of the larger segment will quickly converge us
to the proper, self-replicating ratios. The golden section search guarantees that each new function
evaluation will (after self-replicating ratios have been achieved) bracket the minimum to an interval
just 0.61803 times the size of the preceding interval (Press et al., 1988).
Besides the unimodal assumption, the method will work if we are able to bracket the minimum in
the first place. Therefore, the initial bracketing is the essential part of the minimization method.
From the theoretical point of view, there is no general rule for performing the initial bracketing
perfectly. Nevertheless, we can start bracketing the minimum with an initial interval and proceed to
find a reasonable triplet points. For instance, if two initial distinct points a and b define the downhill
direction of the object function (f(b) < f(a) for a < b), the interval is expanded by a dilatation factor
(i.e., golden ratio ). In other words, the first two initial points are the left and the middle points of
the bracketing triplet and the process should be continued to find a high third point (Press et al.,
1988).
To show the method’s performance, Franke’s test function i.e., Fig. (3.4) should be recalled. To show
superiority of the modified object function (Eq. 3.41) over the basic one (Eq. 3.40), both functions
were implemented and the achieved results depicted in Fig. (3.7). It can be seen in Fig. (3.7), the
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Figure 3.7: The basic and modified object function of Franke’s test function

modified object function generally leads to a better solution. However, comparison of Figs. (3.4) and
(3.7) indicates some similarities between the basic object function and the original error function.
Nevertheless, we utilize the modified object function since it yields a comparatively better solution.
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In order to calculate an initial value, we use Eq. (3.34). For the given data set, the shape parameter
c2 = 0.4033 is obtained which is obviously not the optimal solution. By feeding for instance c2

and 0.1 c2 and correspondingly 0.0063 and 0.0087 as the object function’s values into the bracketing
routine, we obtain a = −0.54701, b = 0.040333 and c = 0.40333 as the initial bracketing triplet of
points. Initialization of the golden section search method with the first minimum bracketing points
leads to an optimal solution. Implementation of the modified object function leads to c2 = 0.3549
as the optimal shape parameter, whereas the parameter is about 0.1369 for the basic object function.
One can see the achieved results validating simply by considering Fig. (3.7).
Luckily, the object function of the preceding example was a unimodal function and consequently could
be resolved by the golden section search method. The method or any other similar techniques work
as long as the unimodality condition is fulfilled. However, in reality, there is no way to guarantee
unimodality of the object function. Therefore, we cannot expect to obtain a truly minimum solution
by implementation of the local algorithms.
To clarify the matter, consider a set of the along-track observations Txx, in a polar orbit which are
horizontally distributed around the grid point (0, 0, 0) as shown in Fig. (3.8). As it is seen, the
data points are nearly distributed uniformly. Similar to the previous example, the object function
is computed for a wide range of the shape parameter. As seen, the shape function has two minima
16700 and 146814.562. The shape parameter obtained by Eq. (3.34) is 8626.744 where it is closer
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Figure 3.8: Exitance of the local and global minimum

to the local minimum rather than the global one. Therefore, the object function is not a unimodal
one. Consequently, the local minimum search method might be trapped in the local minimum which
unfortunately has a higher chance due to closeness of the rough estimate to the local one.
This example aimed to clarify how the optimization process could be violated due to lack of infor-
mation on the initial guess of the shape parameter. Therefore, we have to employ a global search
method which can easily bridge the local minima if there is any. Herein, we implement the Genetic
algorithms which will be discussed in detail in the following section.

3.3.2 Genetic algorithms (global optimization method)

As already stated, the local optimization methods are based on the concept of stepping downhill
from an arbitrary initial point. They just differ in deciding how to proceed but do not improve the
algorithm’s ability to find the global minimum instead of the local one.
Besides the genetic algorithm pioneered by Holland (1975), simulated annealing (Kirkpatrick et al.,
1983), particle swarm optimization (Parsopoulos and Vrahatis, 2002), ant colony optimization (Dorigo
and Gambardella, 1997), and evolutionary algorithms (Schwefel, 1993) are some outstanding methods
which have been used for seeking the global minimum. These methods create new points in the feasi-
ble solution space by applying operators to the current solution and statistically moving toward more
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optimal solution in the feasible search space. The methods are intelligent surveying the large search
space for just a finite search. Since the methods do not require the underlying function’s derivatives,
they can thus be implemented on the non-continuous object function and discrete variables.
To find the global minimum rather than the local one, two techniques must be used to make the
optimization method efficient: exploration to investigate new and unknown areas in the search space;
and exploitation to make use of knowledge found at already visited points to help find better points.
The first specification helps the algorithm jump out of a local minimum, whereas the second leads
to an efficient search. These two requirements are contradictory which can be perfectly fulfilled
simultaneously. For instance, the simulated annealing method only deals with a single candidate
at each time and so does not build up an overall picture of the search space. Consequently, no
information is saved from the already visited points to guide the selection of new points (Whitely,
1993).
Genetic algorithms (gas) are adaptive search algorithms which are based on the genetic process of
biological organism and the evolutionary ideas of natural selection. As such, they represent an intel-
ligent exploitation of random search used to optimize an underlying function. Although randomized,
gas by no means are random, instead they exploit the previously visited points information to direct
the search into regions with possibly better solution within the search space. In other words, gas seek
the optimum solution as natural populations evolve over many generations according to the principle
of natural selection and survival of the fittest, first clearly stated by by Charles Darwin in The Origin
of species.
The method was developed by Holland (1975) in the 1960s and 1970s and finally popularized by one
of his students, David E. Goldberg. Holland’s original idea was summarized in his book (Goldberg,
1989). Jong (1975) was the first to demonstrate the usefulness of the gas for function optimization
and did the first concentrated research on the selection of gas parameters. Since then, many more
researchers have carried out researches and hence lots of books and articles have been published. The
followings are the main reasons why gas are of particular interest to engineers and scientists (Haupt
and Haupt, 2004):

• Optimize with continuous or discrete variables,

• Do not require derivatives information,

• Enable simultaneous search from a wide sampling of the feasible solutions,

• Deal with a large number of variables,

• Are well suited for parallel computers,

• Optimize variables with extremely complex object functions and can easily jump out of a local
minimum,

• Provide a list of optimum solutions instead of a single solution,

• Provide possibility to carry out the optimization with the encoded variables, and

• Provide ability to work with simulated data, real observations, or analytical functions.

Despite of these inevitable advantages of gas over the traditional ones it may not be the best method
for every problem. For instance, for the unimodal functions of a few variables, the traditional methods
outperform the gas. Moreover, in real time applications, ant colony optimization algorithms have
an advantage over the gas since the ant colony algorithm can be run continuously and adapted to
changes in real time.
What follows is a summary of issues involved in the gas field. Herein, we will just present a general
overview on the basic principles of the method. Good introduction to the topic, of various sizes,
include books (e.g. Jong, 1975; Goldberg, 1989; Michalewicz, 1996; Haupt and Haupt, 2004), reports
(e.g. Whitely, 1993), and introductory papers such as (e.g. Beasley et al., 1993; Busetti).
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Genetic algorithms overview

gas are based on the genetic processes of biological organisms. Over many generations, natural pop-
ulations evolve according to the principles of natural selection and survival of fitness. By mimicking
this process, gas can evolve solutions to real world problem if they are suitably encoded.
In nature, since the resources are limited, the individuals in a population are in inevitable competition
for food, water and shelter and even to attract a mate. The fittest individuals which are most
successful in surviving and attracting a mate will have more offsprings compared the poorly performed
individuals. Therefore, the genes from the individuals with higher fitness will spread to an increasing
number of individuals in each successive generation. This evolutionary process may combine good
characteristics from different ancestors and generate superfit offspring with high compatibility even
higher than that of the parents.
As mentioned earlier, a suitable representation of the problem is the primary step of the gas imple-
mentation. It begins with the definition of the object function or namely the fitness function as a
function (s), of the optimization variables. The variables (known as genes) are joined together to
form a string of values, often called chromosome. For instance, the shape parameter is the only gene
of the fitness function of the mq interpolation, while the number of genes in case of the polynomial
fitting equals the number of the polynomial basis um. Consequently, mq chromosomes consist of a
single gene, whereas those in the polynomial approximation have been made of um genes. Usually
a genotype is referred to the set of variables represented by a particular chromosome. The genotype
contains the information required to construct an organism which is referred to as phenotype. For in-
stance, in mq interpolation, the optimal shape parameter is the genotype, while the optimum solution
is the phenotype.
Natural behavior is directly followed in gas. They work with a population of individuals where each
individual represents a possible solution to the underlying problem. A fitness score is assigned to
each individual according to its fitness. The highly fit individuals are given opportunity to reproduce,
by cross breeding with other individuals in the population. Consequently, a set of new individuals
as offspring are produced. Also, the lesser fit individuals of the population have smaller chance to
reproduce, and more likely die out.
The selected highly fit individuals are reproduced as the new generation of possible solutions which
contain a higher proportion of the characteristics by the good members of the previous generation. In
this way, good characteristics of the individuals are mixed, exchanged and gradually spread through-
out the individuals from generation to generation. The consequence of the more fit individuals’ mating
is exploring the most promising area of the search space of the underlying problem. The evolutionary
process leads to an optimal solution to the problem if the ga has been coded appropriately.
An optimization problem using gas can be coded as either a binary or a continuous problem. The
same rules are used for genetic recombination and natural selection in both representations. The
only difference is the genes’ representation. In the binary genetic algorithms (bgas), the genes are
represented as encoded binary strings and computation will be performed using the binary strings.
The continuous genetic algorithms (cgas) use the genes as they are. Depending on the application,
one may suit better than the other. For instance, the optimum shape parameter calculation problem
can be solved either by the bgas or cgas while for the optimum basis optimum basis functions
selection, bgas are the only applicable algorithms. Therefore, we are mainly focused on the bgas
and give a short description on the differences to clarify the cgas. Much of the information given
here is from Haupt and Haupt (2004).

The binary genetic algorithms

As in every optimization method, the gas start with definition of the genes or chromosomes, fitness
function and the fitness 4. Assume we wish to optimize a function of k variables g(x1, x2, ·, xk).
Considering each of these variables as a gene, results in the chromosome as a k variable row vector:

Chromosome = [ x1 x2 · · · xk ] . (3.59)

4The term fitness, which is used in the gas literature, is referred to the output of the object function. The fitness
as well as the fitness function are equivalent to the term cost and cost or object function. Although the term cost is
specifically used for the maximization problem, one can easily adopt it for minimization problem. Herein, we will use
fitness instead of cost.
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Table 3.2: Sample examples of the 2d chromosomes in the binary and continuous form

Binary Decimal

1111100001110000101110110101 (0.9705, 0.1829)

0101100011010111111011100001 (0.3470, 0.9825)

1010010000110011010110000110 (0.6414, 0.8364)

0010101101001111001110011010 (0.1691, 0.8063)

and correspondingly
Fitness function = g (Chromosome) . (3.60)

Suppose further that each variable xi can take a value from a domain Di = [xlb
i xhb

i ] ∈ R. We wish
to optimize the function g with some required precision; d decimal digits.
In order to solve the problem using binary representation, the continuous variables should be converted
into binary and vice versa. Quantization samples a continuous range of values and categorizes the
sample into non-overlapping subranges. It is clear that to achieve the requested precision, in each
domain Di should be cut into (xhb

i − xlb
i ) ·10d equal size ranges. Thus, the smallest integer mi which

reads (Michalewicz, 1996):
(xhb

i − xlb
i ) · 10d ≤ 2mi − 1

is the length of the binary string which clearly satisfies the precision requirement. Equivalently,

mi = ceil

[
log

(
10d∆i + 1

)

log 2

]
, (3.61)

with ∆i = xhb
i − xlb

i and ceil as the function which rounds the value to the next highest integer.
Therefore, each chromosome has a binary string of length nchr =

∑k
i=1 mi.

For decoding a binary string into the corresponding decimal number, the following formula can be
used

xi = xlb
i + decimal{(gene)i} · ∆i

2mi − 1
(3.62)

To clarify the process, consider the Frnake test function given in Eq. (3.36). It is a two variable x, y
where x, y ∈ [0, 1]. Let us assume that the required precision is four decimal places for each variable.
The domain of both variables has a length 1. Therefore, the domain should be divided into at least
10000 equal size ranges. This means that each of these variables can be represented with the required
accuracy with a gene of length 14,

213 < 10000 ≤ 214.

Consequently, the total length of a chromosome (solution vector) is then 2 × 14 = 28 bits; the first
14 bits for x and the remaining 14 for y. Table (3.2) shows some randomly generated examples of
chromosomes in the binary as well as in the continuous forms. It is also interesting to note here that
the gas work with the binary encoding while the fitness function often requires continuous form of
the individuals.
Besides the fitness and fitness function definitions, the gas’ parameters also should be defined. De-
pending on the structure of the algorithm, different parameters are considered, size of the initial
population, selection and mutation rate and convergence criteria to name a few. The performance
of the gas is closely dependent on the setting of these parameters. Jong (1975) was the first who
thoroughly studied the influence of the parameter selection on the gas’ performance. We will describe
each of these parameters as we proceed.
The initial population is the initial step of the gas. The population consists of npop randomly
generated individuals represented by npop chromosomes of size nchr each. In other words, the initial
population is a matrix of size Npop ×Nchr whose entries are either 0 or 1. For instance, a randomly
generated initial population for Franke’s test function given in Eq. (3.36) and their respective fitness
are tabulated in Table 3.3. The initial population was considered of size 16 with the individuals of
size 28, 14 for each.
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Table 3.3: The initial individuals and their respective fitness

chromosome x y Fitness

1111011010011011101110110011 0.96332 0.93286 0.00019

1000100010010111100101010110 0.53354 0.89593 −0.03358

1000111011011010010110101011 0.55802 0.5886 0.05821

0000100101100010110011111111 0.03662 0.70311 0.00682

0010001100110101110011011111 0.13752 0.45114 0.27686

1100010111010010100110000101 0.77275 0.64878 0.06857

1110100000001100010101000110 0.90649 0.08240 0.19991

0111011001100101000111110110 0.46249 0.28066 0.40617

0000100010100111100001011110 0.03375 0.88079 0.00031

1101111101111010010100100111 0.87298 0.58054 0.12388

1101110100010101110111111010 0.86364 0.46841 0.30795

0001110011001110001001101010 0.11249 0.53775 0.10111

1001011001111000110001111010 0.58780 0.19496 0.36932

0011100001010100101010111001 0 .22005 0 .16755 1 .04000

0001001001001101111001011000 0.07147 0.47415 0.17522

1000001100111010101111101110 0.51260 0.68644 −0.05619

As seen in Table (3.3), the most fitted chromosome with the fitness of about 1.04000 is on the top.
Accidentally, the chromosome is very close to the global maximum of the test function, see Fig. (3.9).
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Figure 3.9: The initial individuals overlayed on Franke’s test function

It should be noted here that the initial population should be large enough to prevent premature
convergence of the gas. On the other hand, the bigger the number the slower the process converges.
However, the more the optimization parameters the larger the required population. Jong (1975)
empirically showed that for most optimization problems, the initial population of size 50− 100 could
lead to the optimum solution. Furthermore, Schaffer et al. (1989) showed a good performance with
the initial population sizes in the range 20−30 by implementing of the gas on ten different functions.
Survival of the fittest or selection of the best individuals is the next step in the gas to form the mating
pool. It can also be interpreted as selecting the best for continuation of the process and discarding
the individuals with lower fitness to make room for the new offspring.
The manner in which individuals are selected for the mating pool is determined by the reproduction
operator (Telfar, 1994). There are different methods for implementing this operator,but for correct
convergence it must be performed carefully. Otherwise, the process will converge slowly or lead to a
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Table 3.4: Roulette wheel selection

chromosome qi ri selected chromosome

1 0.05252 0.95013 15

2 0.10326 0.23114 5

3 0.15883 0.60684 11

4 0.21169 0.48598 9

5 0.27874 0.89130 15

6 0.33485 0.76210 13

7 0.39785 0.45647 8

8 0.47169 0.01850 1

9 0.52421 0.82141 14

10 0.58322 0.44470 8

11 0.65190 0.61543 11

12 0.70972 0.79194 14

13 0.78162 0.92181 15

14 0.88873 0.73821 13

15 0.95044 0.17627 4

16 1 0.40571 8

premature solution. Roulette wheel and tournament selection are the most frequently used techniques
for most gas. We have numerically implemented these standard methods. The basic principles of
the methods are:

Roulette wheel The selection of the individuals for the mating pool is based on the cumulative
probability qi which is defined based on the relative fitness. Since in general the fitness function
values could be either negative or positive, an arbitrary constant value C can be added to the
original fitness values to obtain positive fitness values. Consider fi as the modified fitness of
the ith individual. Then,

qi =
1∑npop

j=1 fj

i∑

k=1

fk. (3.63)

The cumulative probabilities qi are used in selecting the chromosome. A vector of random
numbers ri of size npop between 0 and 1 is generated. The first chromosomes with cumulative
probabilities greater than the random numbers are selected for the mating pool. This type of
selection is equivalent to the spinning of the roulette wheel npop times and each time select a
single chromosome for the mating pool (Michalewicz, 1996).

Let us consider the initial population and their corresponding fitness values. We can simply
derive positive fitness by adding on a unit to all values. The modified fitness values as well as
the cumulative probabilities for the population are given in Table (3.4).

As seen in the Table, chromosomes with higher fitness have been selected even twice throughout
the selection procedure. It means that they have a higher chance to mate and survive.

In this method that the individuals are weighed based on their fitness, is usually called fitness-
based roulette wheel. Weighting is also possible using the rank of the individual within the
population. This alternative method is namely called rank-based roulette wheel (Haupt and
Haupt, 2004).

Tournament selection From the initial generation, groups of individuals of size nT are selected
randomly and the fittest individual in the tournament is placed in the mating pool. All selected
individuals are returned to the population and another tournament is carried out. The process
is repeated until the mating tool is full. It can be shown that a binary tournament which leads
to nearly the same results is achieved by ranking procedure (Haupt and Haupt, 2004).

Let us consider the previous example. Performing a tournament selection with nT = 3 for
instance results in a mating pool with individuals listed in Table (3.5). Similar to the roulette
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Table 3.5: Tournament selection
Tournament Group Fittest

1 (15, 2, 5) 5

2 (8, 4, 6) 8

3 (16, 12, 13) 13

4 (13, 15, 5) 13

5 (4, 1, 10) 10

6 (16, 2, 14) 14

7 (10, 3, 1) 10

8 (6, 7, 16) 7

9 (14, 3, 8) 14

10 (16, 15, 9) 15

11 (6, 14, 15) 14

12 (2, 10, 11) 11

13 (13, 15, 1) 13

14 (16, 3, 10) 10

15 (2, 12, 10) 10

16 (12, 11, 1) 11

wheel method, the individuals with higher fitness have been selected more than once by tour-
nament selection method. For instance, chromosome 14 has emerged three times whereas the
weak chromosomes like 1 or 4 or 9 have died out.

All selection methods including the aforementioned methods have advantages and disadvantages and
any individual method can be made to produce similar results to other ones. However, as long as the
selection method is implemented carefully, any of the above methods will give reasonable results.

Mating

Now, the mating pool of size npop is obtained by implementation of the selection techniques. Mating
is the creation of one or more offsprings from the parents appeared in the mating pool. Throughout
this step namely called crossover, genetic information from two parents is combined to produce
an offspring with characteristic from both. Parents are usually two individuals which are chosen at
random from the mating pool. Like in the selection process, there are different methods for performing
the crossover. Among them, single-point or simple crossover is the standard example of a crossover
technique. In this simple reproduction method, each parent has its chromosome cut randomly at a
fixed position and the tail chromosome segments are swapped to generate two new offsprings, see
Fig. (3.10). First, the binary code to the left of the crossover point of the parents goes to the left of
that crossover point to the offsprings. Second, parent 1 and 2 pass their binary code to the right of the
crossover point to offsprings 2 and 1 respectively. To remain true to the evolutionary analogy, there
should exist a possibility for any given generation to compete with the future generations. Therefore,
the crossover probability pc, usually is a number between 0.6 and 1.0 (Beasley et al., 1993).
Consider the earlier example. Assuming pc = 0.6 leads to recombination of genetic information of
approximately 10 chromosomes out of 16. We can select the candidate for crossover randomly. For
instance, the individuals 12, 7, 11, 9, 8, 6, 13, 4, 5, 16 were selected randomly as parents which were
equivalent to the individuals 11, 10, 14, 14, 7, 14, 13, 13, 10, 11 in the original population. A random
pairing of the potential parents yields (14, 7), (13, 11), (11, 13), (14, 14), and (10, 10). Since only the
pairs with distinct individuals can generate new offspring, we perform crossover operator only on
the first two pairs. To find the crossover points, we generate 2 random numbers between 1 and the
Nchr = 28 each of those corresponding to crossover point in each of 2 parents. Table (3.6) shows
randomly selected pairs and their respective randomly chosen crossover points. Therefore, from the
mating pool the 8th, 11th, 12th, and 13th individuals will be replaced with the generated offspring.
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Figure 3.10: Single-point crossover

Table 3.6: Pairing and mating process of simple crossover

Pairs Crossover point offspring

0011100001010100101010110110
(14, 7) 24

1110100000001100010101001001

1001011000010101110111111010
(13, 11) 8

1101110101111000110001111010

Simple crossover is usually quite effective, however in some cases more sophisticated algorithms have
outperformed the single-point crossover. A discussion of other alternatives of the crossover operator
is given by Reeves (1993).
The simplest alternative is obtained by a direct expansion of the single-point crossover. The method
which is called multi-point crossover can be developed by partitioning the parents’ chromosomes into
k segments rather than 2. Eshelman et al. (1989) investigation showed that multi-point crossover
tends to help for a better exchange of the genetic information compared to the single-point crossover.
The generalized or uniform crossover proposed by Syswerdar (1989) as the generalized form of the
multi-point method, string-of-change operator proposed independently by Booker (1987) and Fairley
(1991) and threshold crossover suggested by Sirag and Weisser (1987) are the alternatives which could
also be utilized for mating. Some are generally applicable while the others are not appropriate for
certain problems.

Mutation

In order to maintain diversification in the population, mutation is the secondary reproductive operator
which is applied after crossover. It provides a small amount of random search in the gas and keeps
them from being converging prematurely. Simple mutation as the simplest form of mutation alters
a gene in the list of offspring with some small probability pm. In the BGAs, single point mutation
amounts to flipping a randomly selected gene’s value from 0 to 1 and vice versa. Figure (3.11)
schematically shows a possible outcome of applying single point mutation to a binary individual.
Mühlenbein (1992) and Bäck (1993) concluded, independently of each other, that the optimal muta-
tion rate in the case of uni-modal problem is inversely proportional to the length of chromosomes for a
fixed mutation rate throughout the run. Furthermore, Bäck (1993) showed that mutation probability
other than pm = 1

nchr
for the multi-modal functions is more adequate.

Permutation mutation includes a set of alternative mutation operators. It includes:

• Position-based operator: removes gene at location i from present position and reinserts at
location j,

• swap mutation: swaps two randomly selected genes at locations i and j, and
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Figure 3.11: Single point mutation

• Scramble mutation: randomly rearranges the genes between two arbitrary loci on the chromo-
some.

The extended mutation operators are depicted in Fig. (3.12).

Figure 3.12: Permutation mutation; from top to bottom: the position-base, swap and scramble
mutation (from Hondroudakis et al. (1996))

The mutation operator plays the secondary role in the new generation of reproduction. However, it
would be very useful for exploring new and unknown areas. It is also interesting to note that the
fittest individual is considered as elite solution will not be mutated due to elitism (Haupt and Haupt,
2004).
Let us consider the previous example. As seen in Table (3.6), four individuals (8, 11, 12 and 13) were
replaced by the generated offspring. As shown in Table (3.3), the individual number 14 emerged
twice in the mating pool can be considered. Therefore, either the 6th or 9th individual can be kept
constant and the others amount to the mutation operator. Considering nchr = 28 and population size
npop = 16 results in just one mutated individual. The 7th bit of the 8th individual is the randomly
selected candidate for mutation. The population after mutation or the so called second generation
with their respective locations and fitness are tabulated in Table (3.7).
As it is inferred from Table (3.7), the process moves toward the maximum. For instance, there was no
negative fitness whereas before we had two individuals with negative fitness. Although the maximum
was the same, the average fitness increased from 0.1903 to 0.3926. The process tendency to climb up
the hill is shown in Fig. (3.13).
Most of the initial individuals with lower fitness have died out and new individuals with better fitness
have appeared.
A path through the components of the gas is depicted in Fig. (3.14) which is similar to the flow chart
given by Haupt and Haupt (2004).
In order to improve the solution, the process described is iterated. For instance, after 100 iterations,
the global maximum of the function (fmax = 1.0414) has been found at location (0.21242, 0.17091).
The process could also be stopped earlier since the fittest solution of the first iteration has not been
too far from the final solution. For instance, the same setting of the ga leads to fmax = 1.0394 after
merely 50 iterations. The difference is about 0.2% which seems negligible.
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Table 3.7: The second generation and the corresponding fitness

chromosome x y fitness

0010001100110101110011011111 0.1375 0.4511 0.2769

0111011001100101000111110110 0.4625 0.2807 0.4062

1001011001111000110001111010 0.5878 0.1950 0.3693

1001011001111000110001111010 0.5878 0.1950 0.3693

1101111101111010010100100111 0.8730 0.5805 0.1239

0011100001010100101010111001 0.2200 0.1676 1.0400

1101111101111010010100100111 0.8730 0.5805 0.1239

0011101001010100101010110110 0.2279 0.1674 1.0368

0011100001010100101010111001 0.2200 0.1676 1.0400

0001001001001101111001011000 0.0715 0.4742 0.1752

1110100000001100010101001001 0.9065 0.0826 0.2000

1001011000010101110111111010 0.5863 0.4684 0.2015

1101110101111000110001111010 0.8652 0.1950 0.3635

1101111101111010010100100111 0.8730 0.5805 0.1239

1101111101111010010100100111 0.8730 0.5805 0.1239

1101110100010101110111111010 0.8636 0.4684 0.3079
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Figure 3.13: The initial and second generations overlayed on the test function ( ◦: initial population
∗: second generation )
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Figure 3.14: The Binary Genetic Algorithms (bgas) flow chart

Figure (3.15) shows the successive improvements of the fitness function. As seen, there is nearly no
improvement as the iterations higher than 50. Consequently, instead of iterating the process up to a
maximum iteration, it can be run until it has improved.
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Figure 3.15: The test function fitness throughout 100 generations

It is interesting to note that there have been debates for decades as whether both crossover and
mutation are necessary for reproduction. In general, it is good to have both crossover and mutation
since they both have separate roles. In other words, there is cooperation and competition between
them (Eiben and Smith, 2003). Crossover is explorative which makes a big jump to an area somewhere
in between the location of two parents in the search space. In contrast, mutation is exploitive which
creates random small diversions around the location of the parents. Furthermore, only crossover can
combine information from two parents while mutation can introduce new alleles5.
We have managed to describe the basic rules of the bgas and clarify them with implementation of the

5An alternative form of a gene that is located at a specific position on a specific chromosome.
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rules on the Franke’s test function. We intentionally selected the function rather simple to illustrate
the concept more easily. Implementation of the algorithm on a rather difficult problem, the rbf
interpolation and polynomial-based approximation, will be presented in section (3.4.4).

The continuous genetic algorithms

The binary representation seems very simple, but it is not the only way to represent every problem.
Without doubt the binary gas are the well-suited codings for the naturally quantized variables.
For instance, the polynomial basis functions selection by very nature is binary and we employ the
representation in section (3.4.3). However, problems with continuous variables can be treated directly
without quantization of the variable which leads to quantization error. Although the error can be
minimized by utilizing longer chromosomes, it considerably slows down the algorithm. So, it is more
logical to represent the variables with floating-point numbers. Although the binary representation is
more relevant, the following advantages of the continuous genetic algorithms (cgas) or also called
real-valued gas are inevitable (Haupt and Haupt, 2004)

• machine precision instead of the limited precision of the binary representation,

• less memory storage compared to the binary coding,

• faster iteration due to excluding the decoding prior to the scoring the fitness.

The basic structure of the cgas is similar to that of the bgas, except the decoding step which has
been left out in the continuous representation, see Fig. (3.16).
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Figure 3.16: The Continuous Genetic Algorithms (cgas) flow chart

Despite the similarities, there are some differences in the implementation of the predefined operators.
In this section, we briefly describe how the continuous version of the operators can be derived from
the already mentioned operators.

Genes and chromosomes: We no longer need to consider how many bits are necessary to ac-
curately present a value. Instead, each variable is represented as a single real-valued gene.
Correspondingly, each chromosome is an array of floating-point numbers of size equal to the
number of genes (variables).
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Initial population: The initial population consists of npop random individuals with uniform distri-
bution of size k rather than nchr. If the generated individuals are normalized, the unnormalized
values are given by:

xi = xlb
i + ∆i x̃i, (3.64)

where, x̃i is the ith normalized chromosome.

Selection and pairing: Since the algorithms implemented in the binary mode are performed based
on the individuals’ numbers and their respective fitness, they can directly be utilized in the
continuous representation.

Mating: Besides the n-point and uniform crossover operators implemented in the binary represen-
tation, the arithmetic recombination is the alternative reproduction scheme in the continuous
coding. It is defined as:

O = κ P1 + (1− κ)P2, (3.65)

where, κ is a uniform random number in [0, 1] and i, j ∈ {1, 2, · · · , npop}. The parameter κ can
be constant, variable or selected randomly for each generation. Furthermore, the arithmetic
crossover will be namely called

• single arithmetic if the operator is applied just on a randomly chosen gene. For instance,
running the operator on two individuals P1 and P2 at a randomly selected locus (m ≤ k)
yields the following offspring

O1 = [P1,1, P1,2 · · ·P1,m−1, κP1,m + (1− κ)P2,m, P1,m+1, · · · , P1,k] , (3.66)

and reverse for the other child,

O2 = [P2,1, P2,2 · · ·P2,m−1, κP2,m + (1− κ)P1,m, P2,m+1, · · · , P2,k] . (3.67)

• simple arithmetic if all genes after the locus m are combined

O1 = [P1,1, P1,2 · · ·P1,m−1, κP1,m + (1− κ)P2,m, · · · , κP1,k + (1− κ)P2,k] , (3.68)

and accordingly,

O2 = [Pj,1, P2,2 · · ·P2,m−1, κP2,m + (1− κ)P1,m, · · · , κP2,k + (1− κ)P1,k, ] . (3.69)

• whole arithmetic or flat crossover if the command is performed on the whole genes. This
operator, which is the most commonly used arithmetic operator, is defined as

O1 = κP1 + (1− κ)P2 (3.70)

and the reverse for the other offspring,

O2 = (1− κ)P1 + κP2 (3.71)

The flat crossover, pioneered by Radcliffe (1990), is a special case of a general form of crossover
operators, namely called blend crossover. The method was proposed by Eshelman and Schaffer
(1993) as an extended version of the flat crossover operator. In other words, the flat crossover
just generates offspring on the search space within the parents, whereas the blend operator
extends the segment on both sides determined by a user specified parameter α. Hence, the
arithmetic recombination operator is redefined as:

O1 = γP1 + (1− γ)P2, (3.72)

and the reverse for the other
O2 = (1− γ)P1 + γP2. (3.73)

where, γ = (1+2α)κ−α. The new formulation which is denoted by blx-α allows the offspring
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Table 3.8: The initial population in the continuous representation

# chromosome x y fitness

1 0.70150 0.01955 0.28289

2 0.05836 0.40792 0.29729

3 0.30008 0.61401 0.03444

4 0.04759 0.26234 0.62397

5 0.90832 0.84139 0.00199

6 0.28705 0.29142 0 .78417

7 0.86285 0.22317 0.40117

8 0.38970 0.22593 0.64104

9 0.44265 0.28323 0.43710

10 0.41871 0.82921 −0.15218

11 0.97891 0.55251 0.08628

12 0.60167 0.50736 0.16688

13 0.19724 0.60303 0.04959

14 0.57567 0.66155 0.01201

15 0.96686 0.58662 0.06825

16 0.67585 0.92239 0.00000

to sweep a wider segment than the segment defined by the parents. One can easily show that

P1 − α(P2 − P1) ≤ O1,2 ≤ P2 + α(P2 − P1). (3.74)

As Eq. (3.74) indicates, α plays an important role in the exploration of new areas in the search
space. For instance, setting α = 0.0 leads to exploitation of the area within the location of
parents, while α = 0.5 results in the exploration of the exterior space about half of the inner-
space around each parent besides the exploitation on the interior space. Exploration of the
outer-space may only be possible via mutation if the arithmetic crossover is implemented.

Mutation As already mentioned, the function of mutation is to keep diversity of a population and
promote searching in the search space. Uniform mutation is the most commonly used mutation
operator in the continuous representation. Implementation of this operator on the mating pool
is equivalent to adding a vector of uniformly generated random numbers to a randomly selected
individual with a mutation probability pm. Adding normally distributed random numbers is
the alternative mutation operator which is called Gaussian mutation.

Let us consider the previous example with the same setting of the ga parameters. The initial
population consists of 16 real-valued chromosomes of size 2. The population with the respective
fitness is given in Table (3.8). Compared to the binary representation, the initial population is
relatively far from the fittest. Nevertheless, the population is distributed almost uniformly on the
search area. To build up the mating pool, one of the implemented selection algorithms for the binary
coding can be used. The Tournament selection, for instance, was applied and the selected individuals
were listed in Table (3.9). We assume crossover probability pc = 0.6 and carry out the flat crossover.
Randomly selected parents are 16, 7, 4, 1, 8, 13, 3, 5, 11 and 15 which are equivalent to the individuals
2, 4, 6, 7, 8 and 12 in the original population. The selected parents randomly paring yields the following
three pairs (2, 6), (4, 8), (7, 12). The generated offspring are





O1 = κ1x2 + (1− κ1)x6
O2 = (1− κ1)x2 + κ1x6

O3 = κ2x4 + (1− κ2)x8
O4 = (1− κ2)x4 + κ2x8

O5 = κ3x7 + (1− κ3)x12
O6 = (1− κ3)x7 + κ3x12

(3.75)
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Table 3.9: Tournament selection in the continuous coding

Tournament Group Fittest

1 (9, 3, 6) 6

2 (11, 16, 9) 9

3 (12, 4, 13) 4

4 (10, 4, 8) 8

5 (14, 8, 1) 8

6 (1, 9, 4) 4

7 (14, 16, 12) 12

8 (16, 15, 2) 2

9 (5, 7, 6) 6

10 (14, 12, 2) 2

11 (7, 2, 4) 4

12 (12, 1, 13) 1

13 (13, 7, 11) 7

14 (16, 2, 10) 2

15 (15, 3, 8) 8

16 (12, 10, 15) 12

κ1,2,3 = 0.23, 0.58, 0.85 are three random numbers which have drawn randomly in [0, 1]. The achieved
offspring are tabulated in Table (3.10). As inferred from the Table, performing the crossover generated

Table 3.10: The generated offspring using the flat crossover

Parent 1 Parent 2 Offspring fitness

(0.23445, 0.31821) 0.7600

(0.058365, 0.40792) (0.28705, 0.29142)
(0.11096, 0.38113) 0.4472

(0.19128, 0.24705) 0.9550
(0.047597, 0.26234) (0.3897, 0.22593)

(0.24602, 0.24123) 0.9596

(0.82367, 0.2658) 0.4933
(0.86285, 0.22317) (0.60167, 0.50736)

(0.64085, 0.46473) 0.2677

super fit individuals whose fitness are considerably higher than their parents.
The first iteration will end up with performing the mutation process. Let us replace one of the
individuals with a randomly generated chromosome. For instance, individual number 2 is mutated and
replaced by (0.3706, 0.5079). Consequently, the second generation will consist of 10 old individuals, 6
offspring and 1 mutated chromosome. The new population with respective fitness values are tabulated
in Table (3.11). The individuals’ fitness improved significantly. For instance, there are no negative
values and also the mean fitness has been increased from 0.2334 to 0.5228 which indicates a meaningful
improvement. Iterating the process, 100 times for instance, will hopefully yield the sought-after fittest
chromosome. The continuous algorithm found (0.2103, 0.1712) with the respective fitness 1.0414 as the
fittest individual. Compared to the binary representation, the location is slightly different, however
the fitness is the same. The emerging differences might be due to the presence of the quantization
error.
Of course, there are many more sophisticated selection methods, crossover and mutation operators.
Detailed discussion of all methods are far beyond the scope of this dissertation. The interested reader
can refer to (e.g. Holland, 1975; Schwefel, 1993; Michalewicz, 1996; Eiben and Smith, 2003; Haupt
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Table 3.11: The second generation

# chromosome x y fitness

1 0.11096 0.38113 0.44723

2 0.37066 0.50787 0.12398

3 0.04759 0.26234 0.62397

4 0.24602 0.24123 0 .95965

5 0.38970 0.22593 0.64104

6 0.19128 0.24705 0.95500

7 0.60167 0.50736 0.16688

8 0.23445 0.31821 0.76005

9 0.28705 0.29142 0.78417

10 0.05836 0.40792 0.29729

11 0.04759 0.26234 0.62397

12 0.70150 0.01955 0.28289

13 0.82367 0.26580 0.49330

14 0.05836 0.40792 0.29729

15 0.38970 0.22593 0.64104

16 0.64085 0.46473 0.26775

and Haupt, 2004).

Why do they work?

It is claimed that via the operations of reproduction, crossover and mutation over successive genera-
tions, the gas will converge towards the global optimum. One question may occur to anyone’s mind.
Why do these simple operators set up a fast, useful and robust technique for global optimization?
As stated earlier, implementation of the operators on the best partial solutions combines the genetic
information of previous generations in a randomized manner and generates new solutions. Explicitly,
the mating pool is formed by selecting the individuals based on their fitness. Implicitly, the selected
individuals in common, contain good information which can be recognized by comparing the structure
of the selected chromosomes. These similarities could then be exploited to construct new solutions
that will hopefully also share these good characteristics.
A schema describes a subset of string with similarities at certain loci. A schema is built by introducing
a wild card symbol (?) into the alphabet of genes. Schemata are basically pattern matching devices,
matching particular strings from binary alphabet in every position, i.e., 1s match 1s, 0s match 0s and
?s match either. For instance, let us consider the strings and schemata of the length 9. The schema

00 ? 111 ? 01 (3.76)

matches four strings:

000111001
000111101
001111001 (3.77)
001111101

The schema theorem proposed by Holland (1975) will be formulated on the basis of two properties
which are used to distinguish between different schemata. The properties are

Schemata order (o(S)): The number of 0 and 1 positions, i.e., fixed positions, presented in the
schema,

Schemata length (δ(S)): The distance between the most left and the most right fixed string posi-
tion.
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In the above schema, the order and defining length are 7 and 8 respectively.
A schema’s fitness (fS) is another useful property which is used to illustrate the gas performance.
Fitness of a schema in each generation is defined as the average fitness of all strings in the population
matched by the schema. In the mating pool, the number of strings matching the schema will be
increased if the ratio of the schema’s fitness to the average fitness of the population is larger than
one. Otherwise, it will die out. In other words, an above average schema receives an increasing
number of strings in the mating pool generation, a below average schema receives decreasing number
of strings, and an average schema stays on the same level (Michalewicz, 1996).
Furthermore, implementation of the crossover operator may destroy a schema. The shorter the length
the higher the survivability is. In other words, a schema with above-average fitness and short defining
length is the most probable one to be seen still in the offspring. Conclusively, the defining length of
a schema plays the main role in the probability of its destruction and survival (Michalewicz, 1996).
Mutation is the next operator which could destruct a schema. As discussed earlier, the mutation
operator randomly changes a single position within a chromosomes with probability pm. For a schema
to survive, all the fixed positions of a schema must remain unchanged. It is clear that the lower the
order the higher the survivability probability becomes. In other words, number of the lower order
above-average schemata with short defining lengths will be increased in next generations. Summing
up the achieved results leads to a theorem which has been introduced by Holland (1975).

Schema Theorem: Short, low-order, above-average schemata receive exponentially increasing trials
in subsequent generations of a genetic algorithm.

Building Blocks Hypothesis proposed by Goldberg (1989) is an intermediate result of the theorem
which tries to explain information exchange during crossover:

Building blocks hypothesis: The gas seek near-optimal performance through the juxtaposition of
short, low-order, high-performance schemata, called the building blocks.

Using either the theorem or the hypothesis, one can interpret the gas work by discovering, emphasiz-
ing and recombination of good building blocks of solution in highly parallel fashion. In other words,
the gas differ from random search methods since the algorithms are based on a systematic procedure
rather than on a simple stochastic sampling.

3.4 Application of the genetic algorithms in approximation

Although the basic principles of the gas are very simple, various setups of the method are used in
a large number of scientific and engineering problems. Optimization, automatic programming, ma-
chine learning, economic models, immune system models, ecological phenomena behavior modelling,
population genetics models, interaction between evolution and learning, and social system modelling
are some typical examples of the gas applications (Mitchell, 1998).
The gas have been widely used in numerical optimization (e.g. Moerder and Pamadi, 1994; Char-
bonneau, 2002; Vincent, 2003). Herein, we have implemented the gas for optimization of the ap-
proximation function either in the selection of the basis functions or an appropriate shape parameter.
Although all the problems can be coded by binary representation, it is the well-suited coding for basis
functions selection whereas for the optimal shape parameter estimation, the continuous representation
is superior.

3.4.1 Optimum shape parameter estimation

The accuracy of the rbf interpolation methods depends extremely upon the value chosen for the
shape parameter c2. In general, the nature of the scene distortions and the number and distribution
of control points are the key factors for the shape parameter selection (Fogel and Tinney, 1996). In
other words, it is problem-dependent. The value of c2 determines whether the interpolating surfaces
will be degenerated conics (c2 = 0) or hyperboloids (Hardy, 1990).
There are numerous published methods for generating an appropriate value for c2. Besides Eq. (3.34)
which has also been cited in Hardy (1990), Hardy (1977) recommended the following equation for c2:

c2 = 0.665 d2 (3.78)
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where, d is the grid spacing of the data points. In reality, data points usually have irregular dis-
tribution. Obviously, the formula should be reinterpreted. For the scattered data set, d has been
interpreted as the mean distance to its nearest neighbor. Consequently, different schemes have been
introduced for computation of the mean distance. Considering the bounding circle of diameter D of
the data points has been introduced by Franke (1979). If the circle is divided into n equal circular
areas, they have the identical radius D

2
√

n
. It can be used as an approximation for the mean distance

between two neighboring points:

c2 =
(

0.815
D

2
√

n

)2

(3.79)

However, Franke (1979) has also proposed a modified version of Eq. (3.79) in which the constant
parameter has been replaced by a weight parameter W

c2 =
(

W
D

2
√

n

)2

, (3.80)

where, W = NPPR
10 with nppr defined as Number of Points Per Region. This general form has been

reduced to its special form by replacing nppr= 25 in the scattered data interpolation literature (e.g.
Wolfberg, 1990; Fogel and Tinney, 1996)

c2 =
(

1.25
D√
n

)2

. (3.81)

Foley (1987), as an alternative, utilized a similar value for the shape parameter c2 based on the area
of the bounding rectangle to the data

c2 =
(

4.0
A√
n

)2

, (3.82)

where, A is the area of the bounding rectangle ((xmax − xmin) · (ymax − ymin)).

As seen in the previous formulae, the shape parameter c2 is computed merely based on the horizontal
distribution of the data points. Carlson and Foley (1991) presented an algorithm for determining the
shape parameter in the three-dimensional case. For a 3d data set, they showed that c2 was a strong
function of the third components zi. Moreover, they observed that the shape parameter was essentially
independent of both the number and the horizontal locations (xi, yi) which was contradictory to most
previous researches. The basic shape parameter computation scheme, corresponding to Carlson and
Foley’s method, consists of the following steps:

• Scale the data points to the unit cube by setting

x̄i =
xi − xmin

xmax − xmin
, ȳi =

yi − ymin

ymax − ymin
, z̄i =

zi − zmin

zmax − zmin
(3.83)

• Compute the least squares bivariate quadratic polynomial fit to the data (x̄i, ȳi, z̄i)

q(x̄i, ȳi) =: a0 + a1x̄ + a2ȳ + a3x̄
2 + a4x̄ȳ + a5ȳ

2 = z̄i (3.84)

• Compute the average residual

s2 =
1
n

no∑

i=1

[z̄i − q(x̄i, ȳi)] (3.85)

• Define the shape parameter as:

c2 =
1

(1 + 120s2)2
(3.86)
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• Form the interpolating function

G(x̄, ȳ) =
no∑

i=1

αi

√
(x̄− x̄i)2 + (ȳ − ȳi)2 + c2 (3.87)

where,

x̄ =
x− xmin

xmax − xmin
ȳ =

y − ymin

ymax − ymin
(3.88)

Carlson and Foley numerical analysis showed a dramatic improvement. Nevertheless, the shape
parameter is estimated empirically.
Kansa (1990a,b) proposed a variable shape parameter c2

i for each observation point and correspond-
ingly the mq interpolating function of the form:

ϕ(ρi) =
√

ρ2
i + c2

i . (3.89)

where, c2
i has the empirical form

c2
i = c2

min

(
c2
max

c2
min

) i−1
no−1

, (3.90)

where, c2
min and c2

max are two input parameters. Although very accurate results were obtained, the
question on the determination of c2

min and c2
max for different problem was not answered. Moreover,

the underlying function was not involved in the computation of the shape parameters.
As already discussed, a similar approach with the shape parameters given in Eq. (3.35) has been
implemented by Ruprecht and Müller (1995) for image warping.
Obviously, it is impossible to develop a general formula for the shape parameter computation. As
discussed, both the underlying function and the data points distribution should be considered to
obtain an optimal or a near-optimal shape parameter. Kansa and Carlson (1992) formulated the
problem differently. Besides the observation points (no points), they assumed the function to be
known at ne additional points. These additional points were considered as the evaluation points.
Consequently, a misfit function is defined as:

Z =
ne∑

j=1

‖fe
j − f̂(xj)‖2, (3.91)

where, fe
j is the value of the underlying function at the jth evaluation point. f̂(xj) is the computed

value using mq or imq interpolation function at the evaluation point xj . The goal is to find the
set of no shape parameters, c2

j , which minimizes the misfit function. In other words, the following
non-linear system of normal equations yields an optimal solution:

∂Z

∂c
= 0. (3.92)

Although Kansa’s formulation was a great step ahead, it could not be implemented easily since

• besides the data points, ne additional evaluation points were required to define the misfit
function,

• the shape parameter is the solution of the non-linear system.

As mentioned earlier, Rippa (1999) introduced the idea of using the one-leave-out method to define
the misfit function which resolved the first problem of Kansa’s method. He also utilized a two-step
numerical procedure to overcome the second problem. In section (3.1.4) we introduced an alternative
formulation to Rippa’s method which yields a lower interpolation error. Both Rippa and we have
utilized a constant shape parameter rather than the variable one. Although we have numerically
investigated the implementation of variable shape functions, we have retained the constant shape
parameter because of its negligible difference.
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As discussed in section (3.3.1), implementation of the gradient-based local optimization problem for
selection of the rbf interpolation’s shape parameter may lead to an inappropriate solution due to
presence of local optimum or unsuccessful minimum bracketing. The gas algorithms are the suitable
optimization methods because they are global optimum seeker and are never trapped in local minima
because of the high capability in the exploration of new areas.
Mathematical formulation of the problem is the same as that stated in section (3.3.1). Despite Rippa’s
method, we don’t need any apriori information of the shape parameter for successfully bracketing
the minimum. Moreover, since by nature the gas are parallelized, they sweep the search space very
effectively.
The problem is a non-linear one-dimensional optimization problem of the type constraint. Since the
gas solve the problem numerically, one never senses whether the object function is linear or non-
linear. In other words, for each individual the corresponding coefficients are computed by setting up
a linear system of equations at the observation points. The algorithm proceeds to reach an optimal
shape parameter value based on the given data set. Eventually, the interpolant function coefficients
αi are estimated using the estimated optimal shape parameter. As will be seen in section (3.4.4),
implementation of the algorithm improves the interpolation accuracy dramatically.

3.4.2 Optimum augmented RBFs

As seen in section (3.1.4), a polynomial function can be added to the rbf interpolating function
to remove the long wavelength signals. The question is: what would be the optimum degree of
the augmented polynomial? Hickernell and Hon (1998) presented an empirical relationship for two-
dimensional wind data. They showed that a polynomial function of degree m = (ν+1)(ν+2)

2 is required
to obtain polynomial precision ν for modelling 2d surface wind data. So far, no general formulation
has been addressed for the augmented rbfs.
In order to define an optimal polynomial augmented function, the gas are the most appropriate tool.
In other words, a binary string can be used for including or excluding a particular base function. For
ease of operation, let us consider a two-dimensional problem with an augmented polynomial of degree
3. The set of basis functions is

Π2
3 =

{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
. (3.93)

Each base function can be considered as a gene of length 1. Correspondingly, a binary chromosome of
length 10 can be used to represent the genes together. Among the basis functions, only the members
whose genes are equal to 1 are included. Figure (3.17), shows an arbitrary chromosome and its
respective approximating function. In this simple example just 6 basis functions out of 10 will be
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Figure 3.17: An example of genotype and the corresponding phenotype

considered. The aim is to find the optimum combination of basis functions which results in the
optimum solution. The solution will be optimal if it yields the maximum fitness. The fitness function
can be simply defined as either Eq. (3.40) or Eq. (3.41).
It is also interesting to note that the optimization of augmented polynomial function and the shape
parameter can be formulated in a single optimization problem using binary genetic algorithms. In
other words, one can combine the shape parameter gene with an appropriate length with the poly-
nomial basis functions’ genes and try to find the fittest individual via the bgas. In general, consider
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Eq. (3.94) with the object function given in Eq. (3.41)
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As already mentioned, the number of the additional unknowns βi is um. If a binary string of length
ng is required for representation of the shape parameter with enough accuracy, the individuals will
be chromosomes with ng + um bits, see Fig. (3.18). Hence, by implementation of the gas, one can
look for an optimum solution in a no + um dimensional search space. It should be noted here that

1 0 0 1 . . . 0 1 0 1 1 0 0 . . . 0 1 1

Shape Parameter

Basis functions

Figure 3.18: An example of combined chromosome

the shape parameter’s gene should be decoded for the fitness function evaluation. Furthermore, the
basis functions should be selected according to the bit values corresponding to the basis functions.
In other words, the numbers βi and correspondingly the number of functional constraint equations
(Eq. 3.27) equal the number 1 within the basis function gene.
Compared to the empirical formula given in Hickernell and Hon (1998), our formulation has the
following advantages:

• It can be implemented even in higher dimensions.

• The shape parameter and the polynomial function are optimized simultaneously.

• It is possible to select the basis functions based on the underlying function behavior.

As discussed earlier, every observation of the gravity field can be reduced into a functional on the
incremental potential by removing the respective low-frequency signals of the observations. There-
fore, we utilize basic rbfs interpolation in which the shape parameter will be the only optimization
parameter. As illustrated in the previous section, the problem can be solved either in binary or
continuous method.

3.4.3 Optimization of the approximating function

Selecting the suitable interpolating/approximating polynomial function is the main problem which
occurs in the function implementation. Zhong (1997) implemented the idea for the interpolation of
gps geoid heights and showed how mismodelling affected the estimated results in the polynomial
surface fitting. He utilized the F-test to determine polynomial basis function significance. Like every
statistical hypothesis testing, the algorithm works if some prerequisites are fulfilled. For instance,
removing the outliers is one of those primary requests which has been mentioned in Zhong (1997).
However, in most surface fitting problems, the possible blunder cannot be detected using the classical
outlier detection methods. Consequently, the correctness of the derived results by this statistical
method is not guaranteed.
Herein, we have developed an algorithm for selection of the optimal polynomial basis functions using
the gas. The idea is implemented both for polynomial and rational interpolation/approximation.

Best fitting basis functions selection

In order to obtain an unbiased minimum variance approximation, the mathematical model should
contain just few but significant basis functions (Zhong, 1997). As demonstrated in section (3.4.2), the
bgas are powerful schemes for telling the significant and insignificant basis apart. The same scheme
can be utilized for polynomial approximation. The setup of the genetic coding is the same except the
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shape parameter gene which is missing in the polynomial approximation. Therefore, chromosomes
are binary string of length u(d) (the unknown coefficients of a polynomial of degree d).
The fitness function can also be defined based on either the observation points (Eq. 3.40) or using both
the observation and the evaluation points (Eq. 3.41). The aim is to find the fittes chromosomes or the
optimal combination of the polynomial basis functions which leads to minimum variance solution.
To clarify the idea, let us consider the following bivariate function:

f(x, y) = 1 + 2x + 3y + 4x2 + 5xy + 6y2 + 7x2y (3.95)

The discrete values of the function have been given on an evenly-spaced grid (10 × 10) points. The
problem is to define

• optimum degree of the approximating function, and

• optimal selection of the polynomial basis functions.

For simplicity, the fitness function is assumed equivalent to that of the method of least squares
(Euclidian norm of the residuals at the observation points). Having 100 two-dimensional observation
points enables us to utilize a polynomial of degree 12 at most. We have started the approximation
with a polynomial of degree 12 and gradually decreased the polynomial degree to 3. The degree of the
polynomial approximation decreased since the value of the high-degree (higher than 3) basis functions
corresponding genes were zero. Consequently, we set up the ga representation for a cubic polynomial
approximating function. For instance, the initial value was depicted in Fig. (3.19). Evolution of the
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Figure 3.19: The initial population of f(x, y)

initial population via reproduction operator reached the fittest individual. As shown in Fig. (3.20),
the basis functions of the original function and the recovered one are identical. To recover the
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Figure 3.20: The fittest individual

corresponding coefficients, one can use either the continuous gas or even the ordinary least squares.
The latter scheme was selected since the problem was linear and could be solved straightforwardly
using the method of least squares.
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It is interesting to note that estimating the unknown coefficients based on the fitness function equiv-
alent to Eq. (3.40) or Eq. (3.41) is nearly impossible using the classical least squares. In this case,
the problem can be easily treated by using the cgas. Although the problem will be solved via an
evolutionary process instead of a single step solution, it undoubtedly results in a better solution
because of setting up the fitness function based on the estimated residuals at the evaluation points
rather than the observation ones.

Optimal rational approximation and simultaneous coefficient estimation (Nonlinear Ad-
justment)

The appropriate rational function can also be selected using the bgas. However, we can also use the
cgas to alleviate the rational coefficient estimation which is a non-linear estimation problem in its
original form (3.18). Simultaneous solution of both the basis function selection and the coefficients
estimation is possible if both the bgas and cgas are nested. Obviously, running the ga process for
each individual throughout the whole generation is rather time consuming. As an alternative, the
following multi-stage solution is recommended:

• expressing the interpolating function in the form of the parametric observation equation (3.21)
instead of the combined model (3.18),

• running the bgas to select the optimal set of basis function using either Eq. (3.40) or Eq. (3.41),

• rewriting the mathematical model in its original form Eq. (3.18) and running the CGAs to
estimate the coefficients of the non-linear model.

An obvious advantage of the multi-step solution is the comparatively less computation time com-
pared to the simultaneous solution. Furthermore, the coefficients are estimated using the complete
mathematical model without any simplification.
As already stated, the rational approximation in its original form results in a non-linear adjustment.
Using the gas either in binary or in continuous representation, one can solve a non-linear problem
without linearization. Moreover, there is no need to use any initial value for the unknown coefficients
since the problem is solved numerically. The idea can be generalized for also solving other non-linear
models. In other words, the gas is a potentially powerful scheme to numerically estimate the solution
of non-linear models.

3.4.4 Comparison of the gridding methods

In order to compare the performance of the already discussed gridding algorithms, the harmonic fH

and non-harmonic fN test functions were used,

fH = r2δV (rr), (3.96)

fN =
1
r

δV (r) +
1
r2

δV (θθ). (3.97)

The functions were computed based on the incremental potential field (δV = Vegm96 − Veigen2). The
coefficients up to 120 from both fields were used to compute the test functions along the grace
integrated orbit with 0.2Hz sampling frequency. The simulated observations were split into 120×240
blocks, the size of 1.5◦× 1.5◦. The number of data points within the cells were in the range of 7− 40
points, see Fig. (3.21). Moreover, the functions were calculated on the cell mid-points on the mean
orbital sphere in order to analyse the gridding error of the various methods. The functions on the
sphere are shown Figs. (3.22) and (3.23). The observations were reduced on the mean sphere using
the inverse multiquadric rbf, nearest neighbor, it harmonic polynomials and rational algorithms;
and the achieved results for the harmonic and the non-harmonic functions are depicted in Figs. (3.24)
and (3.25) respectively.
In both cases, the imq method with the optimal shape parameter leads to pronouncedly better gridded
observations. The nearest neighbor followed the imq rbf again for both functions. The error of the
nearest neighbor was nearly twice that of the imq; and the harmonic and rational approximations
were the worst respectively. Of course, one could expect a higher griding errors for the two latter cases
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Figure 3.21: Distribution of a one-month span of the grace mission simulated observations
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Figure 3.22: Harmonic test function (fH)
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Figure 3.23: Non-harmonic test function (fN)
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Figure 3.24: Interpolation error of the harmonic test function (fH)
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Figure 3.25: Interpolation error of the non-harmonic test function (fN)
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because of low number of data points and consequently the low-degree approximating polynomials
within the cells. The weakness has been highlighted in the mountainous areas since the underlying
functions are relatively rougher in the regions. Furthermore, the rational approximation was even
worse than the harmonic polynomial since the number of the unknown coefficients is twice those of the
harmonic polynomial approximation. The results will improve if the number of the data points within
the cells are increased and the polynomial basis either in the harmonic polynomial or in the rational
approximation is optimized using the genetic algorithms. Specifically, the results were tabulated in
Tables (3.12) and (3.13) in terms of the basic statistics.

Table 3.12: Interpolation error statistics of the harmonic test function

Method min [mE] max mean std.

Inv. multiquadric -20.84 40.75 0.01 1.38
Nearest neighbor -84.58 93.59 0.03 5.89
Harmonic polynomial -154.27 176.82 0.3399 13.06
Rational -397.13 433.72 -0.04 32.00

Table 3.13: Interpolation error statistics of the non-harmonic test function

Method min [mE] max mean std.

Inv. multiquadric -29.05 12.36 -0.00 0.82
Nearest neighbor -46.15 44.27 -0.02 3.12
Harmonic polynomial -114.07 128.39 -0.30 9.78
Rational -119.79 159.12 -0.02 5.05

As mentioned earlier, imq yields the best standard deviations of 1.38mE and 0.82mE for harmonic
and non-harmonic functions respectively., while the rational approximation statistics were 32 mE and
5mE.
As seen in Table (3.12), the harmonic polynomial gave a better solution compared to the rational
approximation. However, its performance was inferior to that of imq and even nearest neighbor.
Low-performance was expected since we had just a few observation points within each block. For
instance, on average there were 18 observations per cell. Consequently, the total number of the
coefficients reached 18 at most which was equivalent to selecting linear or quadratic polynomials.
Taking the local structure of the underlying functions into consideration could convince us that the
linear or quadratic rational approximations is inadequate for modelling the local rough structure.

3.5 Summary

In this chapter, different interpolation/approximation methods were used for reduction of observations
on a reference surface. Besides the mathematical formulation of the algorithms, an optimization
scheme was developed for selecting the optimal interpolation or approximation function.
The optimal rbf interpolator outperformed the other methods. As discussed, one-leave-out method
as a particular type of bootstrap technique was employed based on the observation and interpolation
points. Consequently, the shape parameter was determined in a way that the best values in the sense
of least squares were estimated at the interpolation points.
Besides the optimal selection of the shape parameter of the rbf interpolators, the bgas was introduced
for deriving an optimal augmented rbf interpolant.



Chapter 4

The Best Fitting Reference Orbit

In general, every observed quantity in the gravity field of the Earth can be written as a functional
on the field. For the determination of the field based on the terrestrial data, the respective operator
is applied on the normal field and the derived values as the normal field contribution are subtracted
from the observations. Although the same scheme can be employed for some extraterrestrial data, it
is inconvenient for some others. For instance, satellite gradiometry using satellite pairs is the most
ideally suited candidate for doing the job by a formation flying mission. However, the inter-satellite
relative velocity vector is a numerically derived constituent of the observable which may spoil the
highly accurate observed quantities and break down this brilliant idea. On the other hand, the quan-
tity cannot be written as a functional of the gravity field. Therefore, the corresponding reference
quantity should be directly derived using the so called reference orbit determination. The reference
orbit employment cancels the problematic term and facilitates the whole process tremendously. Fur-
thermore, in order to minimize the linearization error of the gradiometric observation equation, we
have to replace the observed quantities correspondingly with the incremental ones.
Since the reference field is just an approximation of the real field, the reference orbit deviates from
the real orbit. Approximate gravitational and incomplete non-gravitational forces modelling have
also played a secondary role. This deviation monotonously increases as a function of time even with
the same initial values for both orbits. Consequently, the respective reference quantities are by a
few order of magnitude off, which renders the introduction of the reference orbit completely obsolete.
The deviations will decrease if the dynamic reference orbit is replaced by the reduced dynamic orbit.
In this chapter, first we address different methods of the numerical orbit integration. Second, adaptive
solution, least squares approach and the Genetic approach are introduced to obtain reduced dynamic
orbit.

4.1 Numerical orbit integration

The basic task in the orbit determination process is to derive the state vector (position, velocity and
acceleration) of a satellite from observations or a priori information. In other words, the process
requires a propagator to obtain the satellite state vector at some time before or after a given state
by solving the equations of motion:

r̈ = − µ

‖r‖3 r + P, (4.1)

where, r and r̈ are the position and acceleration vectors in the inertial frame respectively. µ is the
geocentric gravitational constant, and P is the perturbation forces per unit mass (Kaula, 1966).
The perturbed satellite motion integration can be worked out either analytically or numerically. To
integrate the equations analytically which is called general perturbations (gp), the perturbation forces
are approximated by an expression, which can be analytically integrated. In contrast, to solve the
equations numerically, a full force model is considered at a particular position and they are then used
as initial conditions for a step-wise integration (Seeber, 2003). This method is usually defined special
perturbations (sp) (Vallado, 1997).
Compared to sp integrators, gp propagators are faster since they use an analytical solution. On the

67
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other hand, analytical solutions are less accurate than is possible with numerical integrators because
of approximating the perturbation forces. Moreover, perturbations caused by non-gravitational forces
are discontinuous and thus difficult to model with an analytical expressions (Seeber, 2003). Today,
the accuracy requirements for tracking space objects have increased to the point where analytical
integrators are no longer adequate. Therefore, the numerical integration is always implemented for
orbit determination and spacecraft tracking.
There are numerous methods for performing numerical integration, and many are employed in orbit
determination. Depending on the utilized algorithms, they fall into various categories. Integrating
to the next point depends on the number of points used; they are called either single-step or multi-
step integrators. Integrators may have either fixed or variable step size. Moreover, whether the
multi-step integration is carried out from epoch or the step-by-step, it is divided into summed and
non-summed groups. Finally, the double-integration methods derive the position vector directly from
the acceleration vector, whereas the single-integration integrators find velocity-given acceleration,
and position-given velocity (Berry, 2004).
Furthermore, orbit determination is known as Cowell’s formulation if the computation is performed
by numerically solving the equation of motion (Eq. 4.1). An alternative formulation is Encke’s
formulation which involves only integrating the perturbation forces and adding the achieved results
to the known solution of the unperturbed motion (two-body problem). Herein, we have considered
the Cowell type integration though the algorithms can be implemented on Encke’s formulation as
well.
In the following sections, we present some of the most commonly used integration methods of type
single- and multi-step integration. Refer to Berry (2004) for the discussion and more details on each
individual scheme.

4.1.1 Single-step integrators

Integrators that use the state at the current point ξn to integrate forward to the next point ξn+1

are called single-step integrators, because they use information from a single point. Examples of
single-step integrators include Euler’s method and Runge-Kutta’s. Being used as the low-accuracy
integration methods, the single-step methods will also be used to produce the initial backpoints of
the multi-step integrators. Moreover, they have a simpler form, so some basic concepts of numerical
integration can be easily illustrated using single-step methods. Hence, we begin with fairly simple
methods.

Euler’s method

Euler’s method is the simplest single-step integrator which is seldom used in practice. However, the
simplicity of its derivation is an advantage which makes the demonstration of the more advanced
techniques possible in the easiest way. The aim of the method is to obtain an approximating solution
ξ(t) to a problem of the form (Burden and Faires, 1997)

dξ

dt
= f(t, ξ), a ≤ t ≤ b (4.2)

subject to the initial condition:
ξ(a) = ξ0.

The solution ξ(t) is discrete rather than a continuous one. It is just an approximation to ξ(t) at
some discrete points called mesh points. The mesh points {t0, t1, · · · , tN} are defined by dividing the
interval into N equal subintervals of length h = b−a

N called step size,

ti = a + ih, i = 1, 2, · · · , N. (4.3)

Therefore, the object can be reworded to obtain an approximation to the problem at the mesh
points. We use Taylor’s expansion to compute ξ(ti+1) using the function value and its derivative at
the preceding mesh point (linear approximation):

ξ(ti+1) ≈ ξ(ti) +
dξ

dt
(ti+1 − ti), (4.4)
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since ξ(t) satisfies the differential equation (4.2) and h = ti+1 − ti,

ξi+1 ≈ ξi + h f(ti, ξi). (4.5)

This algorithm is known as Euler’s method for solving initial value problems. The formulation is
modified to start with the initial condition since the value of the function is given only at t0

ξi ≈ ξ0 + h

i−1∑

j=0

f(tj , ξj). (4.6)

The truncation error of the method is of the order of h2 since just the linear representation of Taylor’s
expansion of the function is used for approximation. This error is usually called local error, because
it is the error at one step (Berry, 2004). Therefore, the method is locally correct to first order since
the local error is of the second-order. Inaccurate approximation of the function leads to incorrect
initial conditions and consequently to a wrong value at the next step. This build-up of the local
error is accumulative and usually called global error. It is one order lower than the local error, so the
method is globally correct to zeroth order. Therefore, the solution is getting worse and worse as the
evaluation point moves outwards from the initial point.

Since Euler’s method is derived by using the linear approximation of Taylor’s expansion, adding
higher terms of the expansion is our first attempt to improve the method’s accuracy. For instance,
including the quadratic term of the expansion result in:

ξi ≈ ξ0 + h

i−1∑

j=0

f(tj , ξj) +
h2

2

i−1∑

j=0

ḟ(tj , ξj), (4.7)

where, ḟ = df
dt is derived by differentiation. In general,

ξi ≈ ξ0 +
n∑

k=1

hk

k!

i−1∑

j=0

f (k)(tj , ξj), (4.8)

where, fk is the kth derivative and is derived by successive differentiations.

Implementation of Eq. (4.8) or known as the Taylor’s method of order n, dramatically reduces the
local error. The higher the order the higher order the local error becomes. Nevertheless, the method
has the disadvantage of requiring the computation and evaluation of the derivatives of f . For most
practical applications, it is a complicated and time-consuming procedure, so the Taylor methods as
the generalized form of Euler’s algorithm are not used.

Runge-Kutta methods

As discussed previously, the main disadvantage of the Taylor methods was the need to compute and
evaluate the derivatives of f(t, ξ(t)). Runge-Kutta methods are a family of single-step integrators
which have the high-order local truncation error without requesting the derivatives. They have the
general form of:

ξi+1 = ξi + h χ (4.9)

where, χ is a linear function of slope estimates over the subinterval ti+1 − ti

χ =
m∑

j=1

αj kj , (4.10)

kj are the slope estimates which are found by evaluation of f(t, ξ) at some particular points in the
interval, m denotes the order of the integrator and αi s are weighting constants.

A specific Runge-Kutta method known as the midpoint method is simply derived from Euler’s method
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by evaluation of f(t, , ξ) at the interval midpoint rather than the most left point

ξi+1 = ξi + h f(ti +
h

2
, ξi +

h

2
f(ti, ξi)). (4.11)

Implementation of the midpoint method is equivalent to the Euler method of step size h
2 , so the

local truncation error may decrease to a certain extent. The midpoint method is an example of a
first-order Runge-Kutta method (α1 = 1, k1 = f(ti + h

2 , ξi + h
2 f(ti, ξi))).

A simple form of a second-order Runge-Kutta method is obtained by modification of the Euler’s
method in the from (Burden and Faires, 1997, pg. 280):

ξi+1 = ξi +
h

2
[f(ti, ξi) + f(ti+1, ξi + hf(ti, ξi))] (4.12)

equivalent to:

α1 = α2 =
1
2
, k1 = f(ti, ξi), k2 = f(ti+1, ξi + hf(ti, ξi))

The other important second-order Runge-Kutta method is Heun’s method in which the slope at the
beginning of the interval is averaged with the slope resulting from an Euler step to give a better
estimate of the solution. It takes the form:

ξi+1 = ξi +
h

4
f(ti, ξi) +

3h

4
f(ti +

2
3
h, ξi +

2
3
hf(ti, ξi)) (4.13)

or
α1 =

1
4
, α2 =

3
4
, k1 = f(ti, ξi), k2 = f(ti +

2
3
h, ξi +

2
3
hf(ti, ξi))

The most commonly used Runge-Kutta method is the fourth order which utilizes the weighted average
of four slope estimates. It is given by the form

ξi+1 = ξi + h

(
1
6
k1 +

1
3
k2 +

1
3
k3 +

1
6
k4

)
(4.14)

where,

k1 = f(ti, ξi), k2 = f(ti +
h

2
, ξi +

h

2
k1), k3 = f(ti +

h

2
, ξi +

h

2
k2), k4 = f(ti+1, ξi + h k3)

The local truncation error of the method is of order four, and consequently leads to a better approxi-
mation. It requires the function f(t, ξ) to be evaluated four times at each step, whereas the modified
Euler’s method as well as Heun’s method require just two evaluations per step. The higher the order
the more the number of evaluations per step is. The relationship between the number of evaluations
per step and the order of the local truncation error has been derived by Butcher (1985). He showed
that the local truncation error of the methods of order less than five is equal to the number of eval-
uations per step, whereas for the higher orders the local truncation error is of less orders. Therefore,
the low-order (< 5) methods with smaller step size are superior to the higher order ones with a larger
step size.
If necessary, the higher-order Runge-Kutta integration methods can also be used. For instance, the
fifth through eighth-order Runge-Kutta methods have been formulated in Fehlberg (1974).
The previous Runge-Kutta methods are the prototypes of the general form given by Eq. (4.9), where
kj s are used to form the increment function χ. In general, the increment function of order m is
defined as (Götzelmann, 2003):

χ =
m∑

j=1

αj f

(
ti + βjh, ξi +

m∑

l=1

γjlkj

)
, (4.15)

where, the coefficients αj , βj and γjl define each method. These coefficients are selected such that
the order of local truncation error is as high as possible (Montenbruck and Gill, 2005). Usually, they
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are determined such that the following condition equations are fulfilled

m∑

j=1

αj = 1, β1 = 1,

k−1∑

l=1

γkl = βk. for 2 ≤ k ≤ m (4.16)

These condition equations generate m + 1 linear equations, while the total number of unknown
coefficients is m(m−1)

2 + 2m − 1 (Schäfer, 2000). To derive all the coefficients some m(m+1)
2 − 2

linear equations in terms of the unknown coefficients are required. To derive the requested number of
equations, usually the local truncation is expressed in terms of step-size h using the Taylor expansion,
where the corresponding coefficients can be written in terms of the unknown coefficients. To guarantee
a certain local truncation error order, the respective Taylor’s coefficients have to vanish (Schäfer,
2000). It yields m(m+1)

2 − 2 condition equations which in the combination with Eqs. (4.16) solve the
unknown coefficients. A detailed example of the coefficients determination for low-order Runge-Kutta
methods has been given in Butcher (1963).
Besides using the Runge-Kutta methods of higher order, one can utilize the variable-step integration
methods to meet some tolerance for the local error. Mathematically, they are formulated as:

ξi+1 = ξi + hiχ(ti, ξi, hi), (4.17)

where, hi is the step size of the ith step. The step size is adjusted so that the estimated error of the
next step will be roughly equal to the tolerance ε.
The local error is estimated by comparing two integrations made of different orders. The Runge-
Kutta-Fehlberg method is one popular single-step method of the variable-step type in which the
fourth- and fifth-order Runge-Kutta formulae are used for the local error computation (Fehlberg,
1974). The basic computation scheme, corresponding to this technique, consists of the following
stages (Burden and Faires, 1997):

1. Problem initialization including introducing an initial step-size h,

2. Computation of ξi+1 using the fourth- and fifth-order Runge-Kutta methods:

ξ
(V )
i+1 = ξi + h

[
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 − 9
50

k5 +
2
55

k6

]
, (4.18)

ξ
(IV )
i+1 = ξi + h

[
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 − 1
5
k5

]
, (4.19)

where,

k1 = f(ti, ξi)

k2 = f(ti +
h

4
, ξi +

1
4
k1)

k3 = f(ti +
3h

8
, ξi +

3
32

k1 +
9
32

k2)

k4 = f(ti +
12h

13
, ξi +

1932
2197

k1 − 7200
2197

k2 +
7296
2197

k3) (4.20)

k5 = f(ti + h, ξi +
439
216

k1 − 8k2 +
3680
513

k3 − 845
4104

k4)

k6 = f(ti +
1
2
h, ξi −

8
27

k1 + 2k2 − 3544
2565

k3 +
1859
4104

k4 − 11
40

k5).

3. Setting of the local error estimate δξ = 1
h

(
ξ

(V )
i+1 − ξ

(IV )
i+1

)
.

4. Comparing ‖δξ‖ and ε. The estimate is acceptable and the step size is used for the next step
if ‖δξ‖ ≤ ε. Otherwise, the step size is updated by:

hi = 0.84
(

ε

‖δξ‖ h

) 1
4

, (4.21)
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and the calculation is repeated using hi.

For the problem with complicated functions f(t, ξ), most of the total run-time of an integration is
spent on the evaluation of the slope estimates. From the computational aspect, an integrator with a
small total evaluation number is preferable, while maintaining a specified accuracy. In the single-step
Runge-Kutta methods, it is impossible to minimize this number; and in order to retain a specified
accuracy, we should either use the small step size low-order methods or the high-order with a larger
step size. In any case, the multiplication of evaluations per step and the number of subintervals ( =
total number of evaluations ) cannot be reduced.
In multi-step methods, the number of evaluations per step is independent of the order. Therefore,
the problem is overwhelmed by implementation of the multi-step integrators.

4.1.2 Multi-step integrator

The previously discussed methods were called single-step methods since the approximation for the
mesh point ti+1 was only based on the previous mesh point and the function evaluations between
the points using the mesh point ti. The evaluations have no direct contribution to the evaluation of
the underlying function in future approximations. In other words, a number of evaluations have been
carried out in each step. They are used just once and are discarded by moving to next step.
Instead of setting up the approximation at ti+1 based on the approximate solution at ti and the
evaluations in between, one can formulate the approximate solution ξi+1 as a function of the previous
solutions at the mesh points t0, t1, t2, · · · , ti. Since the global error is increased with i, it seems
reasonable to develop methods that use this more accurate previous information. Moreover, there is
no need to evaluate the function within the subinterval over which the solution is being approximated.
Of course, for the first few points there is no history available, so the single-step methods inevitably
are used.
Because of using more than one previous mesh points called back-points to approximate the function
at the next step, these methods are called multi-step methods. Depending on the number of back-
points being used for the forward approximation, the multi-step methods of different step/order are
defined. An m-step method for finding the approximation ξi+1 is represented as (Burden and Faires,
1997)

ξi+1 = ξi + h

m∑

k=0

αm−k f(ti+1−k, ξi+1−k) (4.22)

where, αj s are constants. With βm = 0, the new approximation is explicitly derived using previous
mesh points, whereas βm 6= 0 yields an implicit expression for the new approximation. Therefore, the
multi-step methods are divided into explicit and implicit methods. Although the explicit and implicit
methods can be used independently, they are usually used simultaneously. Using the approximate
solutions at the mesh points t0, t1, · · · , ti, one can predict the approximation at the mesh point ti+1.
The predicted value can then be used in an implicit method to derive a refined prediction. Therefore,
the multi-step methods with simultaneous implementation of the explicit and implicit integrators are
known as the predictor-corrector algorithms.
The second term in the right-hand-side of Eq. (4.22) is the increment function of the multi-step
method, equivalent to the χ function in the single-step method. From the theoretical point of view,
it is equivalent to:

χ =
1
h

∫ ti+1

ti

f(t, ξ(t))dt. (4.23)

Since ξ(t) is unknown for t ∈ (ti ti+1], this integral cannot be evaluated. To overcome the problem,
one can replace the unknown function ξ(t) by an interpolating function, e.g., the polynomial increment
function of degree m, pm(t). Hence,

χ̃m =
1
h

∫ ti+1

ti

pm(t)dt, (4.24)

or equivalently:

χ̃m =
∫ 1

0

pm(σ)dσ, (4.25)
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where, σ = t−ti

h (Montenbruck and Gill, 2005). The polynomial function’s coefficients are computed
using the values of f at the back-points. For instance, to derive the three-step integrator consider a
third-order polynomial function p3(σ)

p(σ) = β0 + β1σ + β2σ
2 + β3σ

3. (4.26)

Substituting Eq. (4.26) into Eq. (4.25) leads to the following simple expression for the increment
function

χ̃3 = β0 +
1
2

β1 +
1
3

β2 +
1
4

β3. (4.27)

The unknown coefficients can then be simply computed using the function values at the current and
three previous mesh points fi, fi−1, fi−2 and fi−3,




β0
β1
β2
β3


 =

1
6

( 6 0 0 0
11 −18 9 −2
6 −15 12 −3
1 −3 3 −1

) 


fi
fi−1
fi−2
fi−3


 (4.28)

Replacing the coefficients into Eq. (4.27) yields the cubic increment function,

χ̃3 =
1
24

(55fi − 59fi−1 + 37fi−2 − 9fi−3) . (4.29)

and consequently:

ξ̃
3

i+1 = ξi +
1
24

(55fi − 59fi−1 + 37fi−2 − 9fi−3) . (4.30)

Equation (4.30) is the explicit four-step integrator which is called four-step Adams-Bashforth predic-
tor. Similarly, one can derive lower order Adams-Bashforth predictors using low-order polynomials
and less backpoints.
The idea can be generalized to the m-step Adams-Bashforth predictor formulation. To achieve this
goal, a polynomial approximation pm of order m− 1 that interpolates m points

(ti−m+1, fi+m−1), · · · (ti, fi)

is given by Newton’s formula (Montenbruck and Gill, 2005)

pm(t) = pm(ti + σh) =
m−1∑

j=0

(−1)j

(−σ

j

)
∇jfi (4.31)

where, ∇j stands for the j-order backward differences. Inserting pm into Eq. (4.24) gives the increment
function of the m-step Adams-Bashforth method

χ̃m
AB =

m∑

j=1

αmj fi−m+j , (4.32)

where, αmj s are the unknown coefficients obtained by using a simple relation (Montenbruck and
Gill, 2005):

αmj = (−1)m−j
m−1∑

l=m−j

βl

(
l

m− j

)
. (4.33)

Numerical values of the coefficients βl are obtained from the following simple recurrence formula

βl = 1−
l−1∑

k=0

1
l + 1− k

βk (4.34)

With β0 = 1, one can easily derive the previously derived coefficients for the low-order Adams-
Bashforth methods using Eqs. (4.33) and (4.34).
As stated earlier, the explicit form of the increment function is set up based on the given information
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at the back-points up to ti and the function is utilized for the prediction of the function at ti+1 = ti+h.
In other words, the approximation is obtained throughout an extrapolation process where the solution
cannot be expected to be very good.
The implicit multi-step methods include the value of the function at the evaluation point f(ti+1) into
the approximation process and result in a better approximation. The most commonly used type of
the multi-step implicit method is the Adams-Moulton method which is the implicit version of the
Adams-Bashforth explicit formulation. As with the Adams-Bashforth method, the polynomial pm

passing through
(ti−m+2, fi+m−2), · · · (ti+1, fi+1)

is considered. The implicit increment function, equivalent to Eq. (4.32), is defined: (Montenbruck
and Gill, 2005)

χm
AM =

m∑

j=1

α∗mj fi+1−m+j (4.35)

where the unknown coefficients α∗mj are computed in a two-stage computation. First, the numerical
values of β∗l are computed using a recurrence relation similar to Eq. (4.34)

β∗l = −
l−1∑

k=0

1
l + 1− k

β∗k , (4.36)

where, β∗0 = 0 is used for the initialization. Finally, the coefficients α∗mj are derived using:

α∗mj = (−1)m−j
m−1∑

l=m−j

β∗l

(
l

m− j

)
(4.37)

for j = 1, 2, · · · ,m (Gerigorieff, 1977).
Apparently, Eq. (4.35) and (4.32) are similar; however, they are different from implementation
point of view. The Adams-Moulton formulation is implicitly a function of the unknown quantity
ξi+1. Therefore, the implicit formulation can be used in an iterative solution rather than a single
stage one. Alternatively, the Adams-Bashforth method can be used to predict the function and the
predicted value is improved using the Adams-Moulton algorithm. Consequently, these two algorithms
are complementary and usually known as the predictor-corrector method. The following five-stage
computational algorithm is employed to obtain a reasonable solution:

1. Predict an initial estimate of the solution at ti+1 using the Adams-Bashforth formula (Predic-
tion)

ξP
i+1 = ξi + hχ̃m

AB

2. Evaluate the corresponding function value using the initial estimate (Evaluation)

fP
i+1 = f

(
ti+1, ξP

i+1

)

3. Correct the estimate using the Adams-Moulton corrector (Correction)

ξC
i+1 = ξi + hχ̃m

AM

4. Evaluate the function corrected estimate (Evaluation)

fC
i+1 = f

(
ti+1, ξC

i+1

)

5. Iterate the third and fourth steps until the difference of two subsequent corrected values is
negligible.

The computational algorithm is usually called pe(ce)
n, where n stands for the number of iterations

until the required accuracy is obtained. For most practical applications, n = 1 seems adequate since



Chapter 4. The Best Fitting Reference Orbit 75

each iteration costs another function evaluation.
There are many more numerical methods which have already been applied in scientific and engi-
neering applications. Berry (2004) has done a comprehensive study on different numerical methods
of integration. Detailed discussion of all the numerical methods are far beyond the scope of this
thesis. Interested readers can refer to (e.g. Maury and Segal, 1969; Lundberg, 1981; Berry, 2004;
Montenbruck and Gill, 2005).
In the absence of the non-gravitational forces, the equation of motion (Eq. 4.1) is a second-order, non-
linear, ordinary differential equation where the function P is a smooth, periodic function representing
the forces of gravity acting upon the satellite. As mentioned previously, second-order initial value
problems can be directly solved by Class q integration method (Lundberg, 1981). Alternatively, it may
be reduced from a set of second-order ordinary differential equations to a set of first-order equations,
thus allowing the option of integrating (4.1) with a Class I method. An equivalent representation of
the equation of motion as a first-order initial value problem is

ξ̇(t) =
(

ṙ(t)

r̈(t)

)
=

(
ṙ(t)

∇V (r(t))

)
= f(t, ξ(t)), (4.38)

subject to:

ξ0 = ξ(t0) =
(

r(t0)

ṙ(t0)

)
. (4.39)

Now, the numerical orbit integration task is equivalent to the solution of a first-order vector-valued
(6× 1) initial value problem which can be solved using one of the previously discussed methods. The
selection of a particular numerical method is subject to the accuracy and cost of using the numerical
method, where the cost is usually measured in terms of computer time.
Herein, Satellite Orbit Synthesis Program SOSP2 written by Götzelmann (2003) is used for orbit
integration. A twelve-step predictor-corrector algorithm has been implemented for performing the
task. For initialization of the multi-step algorithm, the Runge-Kutta method of order 16 has been
used.

4.2 The best fitting reference orbit

As discussed in Chapter (2), the original observations are replaced by incremental observations.
Ideally, the reference observations derived from the reference orbit integration should be computed at
the location of the original observations. However, the real and the reference orbits deviate from each
other due to the difference in the Earth’s real and reference gravitational fields. Consequently, the
reference positions are different from the original observation locations. Differences in the locations
of the reference observations introduce an error into the residual observations which is called location
error. In order to minimize the location error, the reference orbit should be as close to the real orbit
as possible.
A fictitious satellite in the reference field imitates the real one if the gravitational fields and the
initial conditions are identical. Finding a reference gravitational potential which exactly represents
the geopotential is the unknown solution. Consequently, it results in an implicit problem which should
be solved iteratively. This idea can independently be used for the determination of the gravity field
which is called variational approach.
An appropriate selection of the initial conditions can reduce the location error. However, using an
identical set of initial conditions may lead to an inappropriate reference orbit when the gravitational
fields are different. In the subsequent sub-sections, we propose three different methods for selecting
the initial conditions such that the total misfit of two orbits is minimized.

4.2.1 The adaptive reference orbit

As stated in the previous section, the orbit determination problem is reduced into an initial value
problem and then solved numerically by considering the initial conditions as well as the governing
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forces: {
ξ̇(t) = f(t, ξ(t))

ξ(t0) = ξ0

(4.40)

Let us assume a given reference gravitational potential. The goal is to generate the corresponding
reference orbit in such a way that the difference between the real and reference orbits or equivalently
the location error is minimized. Furthermore, assume that at time t0 both orbits coincide. Since the
governing gravitational real and reference potentials are different, the two orbits are diverging as a
function of time

∆ξ(t) = ξ(t) − ξref(t), (4.41)

where, ξref refers to the reference state vector. Depending on how good the approximation of the
reference field is, the differences behave differently. However, the differences linearly increase, see
Fig. (4.1). emg96 and eigen2 both up to degree and order 120 were considered as the pseudo-
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Figure 4.1: Coordinate differences (pseudo-real orbit (egm96) minus reference orbit (eigen2))

real and the reference field. Although the differences at the beginning were negligible, they linearly
increase and reach a few hundred meters just in a few days. Therefore, the reference orbit should be
modified such that the differences do not exceed some limits.
Instead of integrating the whole reference orbit using just one set of the initial conditions, one can
split the orbit into smaller time intervals and update the initial conditions at the beginning of each
sub-interval. Depending on the accuracy requirement, the number of sub-intervals is specified. For
instance, instead of integrating a one-month span of the orbit at once, we can split the time span into
30 sub-intervals and perform the integration for each day using the updated initial conditions. This
method yields the so-called adaptive reference orbit whose maximum deviation from the pseudo-real
occurs at the end of each sub-interval. Undoubtedly, the maximum diurnal deviation is significantly
smaller than that for the monthly integration.
In order to compare the idea of the adaptive reference orbit, the previous example was performed
using daily update initial conditions. As seen in Fig. (4.2), the differences decreased dramatically
where the maximum deviations were about a few ten meters.
The simplicity of the implementation is the main advantage of the adaptive method where the dif-
ferences can be bounded without doing any extra computation. The only additional computation is
the single-step integration which should be performed for each sub-interval individually. In contrast,
the adaptive reference orbit has a discontinuity at the beginning of each sub-interval which is created
artificially because of successive updating. However, for the sst of the type ll-sst, the coordinate
differences between the satellite pair rather than the absolute position vectors are used. As a conse-
quence, the reference observations will be affected negligibly if the position vector of both satellites
jumped identically. Figure (4.3) shows the differences in the intersatellite relative position vector
δr. As shown in Fig. (4.3), the coordinate differences deviated from the pseudo-real orbit about a



Chapter 4. The Best Fitting Reference Orbit 77

−50

0

50

∆ 
x 

[m
]

−5

0

5

∆ 
y 

[m
]

0 24 48 72 96 120 140
−40

0

40

time [hour]

∆ 
z 

[m
]

Figure 4.2: Adaptive coordinate differences (pseudo-real orbit (egm96) minus daily adaptive reference
orbit (eigen2))
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few meters in the worst case. Hopefully, the effect of the remaining discrepancies on the reference
observation vector is negligible. For instance, consider the ll-sst observation of the gradiometric
type (Keller and Sharifi, 2005)

LSGδV ≈ %̈

%
+

%̇2

%2
− ‖δṙ‖2

%2
(4.42)

where the intersatellite range, range-rate, and range-acceleration are derived using the intersatellite
relative position, velocity and acceleration vector

% =
√

δrT δr

%̇ =
1
%
δrT δṙ (4.43)

%̈ =
1
%
δrT δr̈ − %̇2

%
+
‖δṙ‖2

%
.

These quantities were computed based on the adaptive reference orbit and the achieved results were
depicted in Fig. (4.4). As shown in the figure, there is just a small jump in the intersatellite range
between two subsequent subintervals and no discontinuities can be seen in the range-rate and range-
acceleration.
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Figure 4.4: The reference intersatellite range, range-rate and range- acceleration derived from the
adaptive reference orbit

Finally, the observation of the gradiometric type, the right-hand-side of Eq. (4.42) was calculated
and the achieved results are shown in Fig. (4.5). Fortunately, the artificial discontinuities completely
disappeared in the gradiometric observation and even in the residual observations.
Alternatively, the discontinuities of the residual observations can also be treated using the cycle slip
repairing methods. For instance, the region where discontinuity occurs, may be modelled by a low-
degree polynomial p(t) (Keller, 2005). The coefficients of the polynomial are then determined using
the neighboring points.
To sum up, the carried out numerical analysis showed that the appeared discontinuities vanished for
the relative observations in the ll-sst mode.

4.2.2 The least squares approach

In the previous approach, we integrated the orbit in smaller subintervals in order to circumvent the
linearly increasing differences. Although the differences were zero at the beginning, they increased
linearly and reached their maxima at the end of each subinterval. It may be better to uniformly
distribute the differences over the interval. In other words, the v-shaped pattern of the differences is
changed in a such way that the deviation of two orbits remains constant as much as possible. To this
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Figure 4.5: The adaptive reference observations

end, the initial conditions corresponding to the reference field rather than the pseudo-real one should
be used. Hence,

ξ̇
ref

(t) = f ref(t, ξref(t)), ξref(t0) = ξref
0 (4.44)

In the current formulation instead of using ξ0 as the initial values, the initial values corresponding to
the reference orbit (ξref

0 ) are used. The question is how we can suitably determine ξref
0 which results

in a uniform deviation.

The idea of the best fitting orbit in the sense of least squares of the deviations has been employed by
Ballani (1988). In this method, we assume the given initial state vector as the approximate value of
the reference initial conditions and try to find the corrections

ξref
0 = ξ0 + δξ. (4.45)

Therefore, the problem is to find an appropriate correction to the initial estimate of the initial state
vector in a way that the deviation of two orbits is minimized. Consequently, it can be interpreted as
an optimization problem as follows

{
ξi + ∆ξi = ξref(ti, ξref

0 ) for i = 0, 1, · · · , N
∑N

j=1‖∆ξj‖ Ã min
(4.46)

The subject functions are N (total number of the integration points) non-linear equations in terms of
ξref

0 or equivalently δξ. Assume the sought-after correction is small enough such that the linearization
of the equations is accurate enough. Then,

ξref(ti, ξref
0 ) = ξref(ti, ξ0) +

∂ξref
i

∂ξref
0

δξ. (4.47)

Inserting the linearized form of the state vector into Eq. (4.46) is recast into:




∆ξi = ∂ξref
i

∂ξref
0

δξ −
(
ξi − ξref(ti, ξ0)

)

∑N
j=1‖∆ξj‖ Ã min

(4.48)

or equivalently, {
d = A δξ − δl

‖d‖ Ã min
(4.49)
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with, the misfit vector d = [di] = [∆ξi]6N×1, the first-order design matrix A =
[

∂ξref
i

∂ξref
0

]
6N×6

and

the observation misclosure vector δl = [δli] = [ξi−ξref
i0 ]. Applying the method of least squares yields

δ̂ξ =
(
AT PA

)−1
AT Pδl. (4.50)

where, P is the weight matrix of the observation equations which can be set to the identity matrix
I6N×6N .
Except the design matrix A, the remaining vectors and matrices can easily be computed. As defined,
the design matrix entries are the partial derivatives of the state vectors with respect to the initial
state vector. The following are two applicable schemes for deriving the partial derivatives:

Numerical differentiation The derivative of the state vector ξref
i with respect to the initial state

elements ξref
k0

is:
∂ξref

i

∂ξref
k0

≈ ξ(ti, ξ0 + dξkek)− ξ(ti, ξ0)
dξk

, (4.51)

where, dξk is an increment of the kth element of the initial state vector and ek is a 6× 1 vector
which is defined as:

ek(j, 1) =
{

1 if j = k

0 if j 6= k

The formulation is valid if the increment is infinitesimal. For instance, 1 m and 1 m/s have
been proposed respectively as the position and velocity increment by Götzelmann (2003). By
running two times, integration and implementation of the formula, entries of the design matrix
are calculated.

Analytical solution The analytical scheme as the alternative to the numerical method has been
introduced by Ballani (1988). The state vector at the mesh point ti is computed using the
differential equation Eq. (4.44). Therefore, it can be used to express the partial derivative of
the state vector at time ti with respect to the initial state vector. Differentiating Eq. (4.44)
with respect to ξref

0 yields:

∂ξ̇
ref

i

∂ξref
0

=
∂

∂ξref
0

f(ti, ξref
i ) =




∂ṙi

∂ξref
0

∂r̈i

∂ξref
0


 . (4.52)

The equation is recast into the following first-order differential equations (Götzelmann, 2003)

ζ̇i = g(ζi) =




∂ṙi

∂ξref
0

Gi
∂ri

∂ξref
0


 , (4.53)

where,

ζi =




∂ri

∂ξref
0

∂ṙi

∂ξref
0




They are usually called variation equations. The determination of ζ can be formulated as an
initial value problem by combining Eq. (4.53) with an appropriate set of initial conditions. One
can simply derive the initial condition at time t = t0 as:

ζ0 = ζ(t0) =




∂r0
∂ξref

0

∂ṙ0
∂ξref

0


 =

(
I3×3 03×3

03×3 I3×3

)
(4.54)

consequently, {
ζ̇i = g(ζi)

ζ(t0) = ζ0

(4.55)
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The problem can be solved numerically using one the previously discussed numerical integration
schemes. The achieved results are the design matrix entries.

As a representative example, consider the previous example (Fig. 4.1). For a full month of observations
the deviations in x, y and z components reached nearly 2 km, 0.1 km and 2 km respectively. The
original sampling rate was 0.2 Hz. For ease of operation, they were down sampled to 0.03 Hz. By
implementation of the method of least squares the deviations of x and z components reduced to
nearly 600m whereas the y component remained unchanged, see Fig. (4.6). It should be noted that
the design matrix of the linearized system were derived using the closed-form formulas of the Kepler
orbit (Goodyear, 1965; Feng, 2001). For convenience, observations were down sampled to 0.0001 Hz
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Figure 4.6: The butterfly pattern of the deviations

in Fig. (4.6).

4.2.3 The genetic approach

As discussed previously, better initial values are estimated by minimization of the real and reference
orbit discrepancies in the least squares approach. Since the optimization is performed based on the
linearized equations, it is required that

• the first guess of the initial values be close enough to the optimal ones, and

• a good approximation of the gravity field be known.

Alternatively, the problem can be solved using the non-linear optimization methods, e.g., the genetic
algorithms. Using the gas, initialization can be easily bypassed. Therefore, the gas can be utilized
as an optimizer to solve the problem in its non-linear form Eq. (4.46).
As an intelligent alternative, the genetic approach can also be used for modelling the reference orbit
deviations. Instead of minimization of the mean of the deviations squared, we will model the discrep-
ancies as a non-linear time-dependent model. In general, the differences are decomposed into three
different components defined as:

∆ξ(t) = pm(t) + q(t) t1(t) + r(t) t2(t) (4.56)

which, p is an m-order polynomial function representing the polynomial trend of the deviations.
To prevent the unfair fluctuation, its degree is selected as low degree as possible. q is a non-linear
function which demonstrates the behavior of the non-periodic amplitude of the periodic fluctuation
of the differences, whereas the remaining periodic differences are formulated as r. t1 and t2 are the
periodic constituents of the differences. For simplicity, the norm of the differences ‖∆ξ‖ rather than
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the individual components of the difference vector may be expressed as a scalar function of type
Eq. (4.56)

‖∆ξ(t)‖ = Pm(t) + Q(t) t1(t) + R(t) t2(t) (4.57)

The dramatic increase of the differences have been expressed by Pm(t) and Q(t). The differences will
be bounded if these components disappear. For clarity, consider the differences shown in Fig. (4.1).
As seen in Fig. (4.7), a fifth order polynomial is a reasonable estimate of the deviations’ trend.
Although the remaining part still tends to grow as a function of time, it is significantly smaller than
the total deviations. The non-linear behavior of the modulation is expected since the error of initial
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Figure 4.7: Removing the polynomial trend

conditions is non-linearly propagated on the state vector at the subsequent mesh-points.
A very simple approach for limiting the differences is to select the initial state vector such that the
polynomial trend disappears. In other words, the differences can be approximately modelled as a
polynomial function. The initial solution vector is nearly optimal if:

Pm(t) = a0. (4.58)

Practically, it is impossible to fulfill the condition. However, it can be minimized by selecting ap-
propriate initial conditions. Hence, the goal is to choose the initial state vector ξ0 such that the
polynomial function will be minimized over the integration period. Hence, it can be formulated as a
multi-objective optimization problem

{
‖∆ξ(t)‖ =

∑m
j=0 aj(ξ0)tj

aj Ã min
(4.59)

Replacing multiple object functions by the sum of weighted cost function is the most straightforward
approach utilized for multi-objective optimization problem (Haupt and Haupt, 2004)

{ ‖∆ξ(t)‖ =
∑m

j=0 aj(ξ0)tj∑m
j=0 pjaj Ã min

(4.60)

whose general representation is the minimum norm solution
{
‖∆ξ(ti, ξ0)‖ =

∑m
j=0 aj(ξ0)t

j
i

‖x‖ = xT Pxx Ã min
(4.61)

where, the diagonal matrix Px is the weight matrix of the solution vector x (ais). This method yields
an optimal solution with optimizing the weighted sum of the object functions. The problem of the
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type minimum norm could be solved analytically if the object function was explicitly written in terms
of the initial solution. Since the relationship between the unknown coefficients and the initial state
vector is unknown, one can alternatively use numerical optimization methods.
The gas, as powerful tools for numerical optimization, can be implemented. The aim is to estimate
the initial state vector such that the object function is minimized. The initial population can be
generated by randomly altering the initial state vector which is selected equivalently to the state
vector of the real orbit at time t0. The problem is then continued till the minimum deviation is
obtained.
For obtaining a better solution, the periodic components should also be considered. As already
stated, the remaining differences are split into two periodic components respectively with non-linear
and periodic amplitude functions. Experimentally, the non-linear amplitude function can be suitably
modelled using a hyperbolic function, whereas the periodic part is simply replaced by a trigonometric
function. Thus, the general formulation is recast into

Q(t)r1(t) = α1 sec h(ωt) sin($1t + ϑ1), R(t)r2(t) = α2 sin($2t + ϑ2) (4.62)

Consider the previous example and remove a polynomial trend of degree 5. The achieved results of
the decomposition is depicted in Fig. (4.8). The periodic differences will be bounded if the range
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Figure 4.8: Decomposition of the periodic part

of Q(t) remains constant. It can be achieved if α1 = 0 is fulfilled. However, it seems to be a very
optimistic assumption. Instead of fulfilling the condition as a functional constraint, we can try to
minimize the coefficient. Consequently, the object function is modified for limiting the non-linear
periodic component besides the polynomial trend

{
‖∆ξ(ti, ξ0)‖ =

∑m
j=0 aj(ξ0)t

j
i + α1(ξ0) sec h(ω(ξ0)ti) sin($1(ξ0)ti + ϑ1(ξ0))

‖xa‖ = xT
a Paxa Ã min

(4.63)

where, xa is the augmented unknown vector which includes both the polynomial and non-linear
periodic functions coefficients (α1). Compared to the previous formulation (Eq. 4.61), the latter
formulation is rather complicated because of the non-linearity of the model. In other words, the
polynomial coefficients can easily be estimated for each individual of the population using the ordinary
method of least squares, whereas in the latter model it is impossible. Therefore, the solution of
the non-linear model requires nested ga implementation which is very highly demanding from the
computational aspect. Therefore, the periodic component with non-linear amplitude can be included
if it is really necessary. Otherwise, we should try to remove a polynomial trend by selecting an
appropriate set of initial conditions.
It should also be noted here that the main difficulty of using the method of weighted sum is determi-
nation of appropriate values for pii. Different weight settings may lead to completely different optimal
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solutions. The Non-Pareto and Pareto-based approaches as well as the Niche induction techniques
and the struggle genetic crowding algorithm are alternative schemes which have been widely used in
the literature (e.g. Fonseca and Flemming, 1995; Deb, 1999; Andersson, 2001).
Compared to the least squares approach, the genetic scheme

• tries to minimize the differences by minimizing the model parameter x,

• is more flexible due to the minimization of multiple object functions rather than the residual
vector,

• has a relatively small linear system of equations as compared to the least squares approach.

• does not require partial derivatives of the differences with respect to the initial state vector.

In contrast, the least squares approach solves the problem analytically. It may then be superior since
it needs less cpu time.

4.3 Summary

Replacing the full observation with its respective residual part is essential for reducing different errors
in the formulation of gradiometry problem in the space-wise approach. The intersatellite rang, rage-
rate and range-acceleration as well as the intersatellite velocity vector are the quantities which are
involved in the gradiometry observations. In order to remove the reference field’s contribution, the
respective quantities should be generated using the reference field.
The observables can be directly calculated if the dynamic orbits of the grace satellites are generated
for observation duration. Due to the mentioned advantages of the numerical integrations, they were
employed in this study. First part of this chapter dedicated to different numerical orbit integration
algorithms. the multi-step predictor-corrector method was selected for generating the grace dynamic
orbit.
In order to minimize the deviation of dynamic and kinematic orbits three different schemes were
developed. Among them the adaptive and least squares approaches were implemented. The least
squares approach changes the v-shaped pattern of the deviations into butterfly one whereas we keep
the deviations in an acceptable limits by updating the initial values in the adaptive method.



Chapter 5

Global Spherical Harmonic
Analysis and Synthesis

The terms analysis and synthesis originate from Greek and mean literally to loosen up and to put
together respectively (Ritchey, 1996). These terms are used within most modern scientific disciplines
to denote similar investigative procedures.
The decomposition of a function on the sphere into a series of global spherical harmonics is known as
global spherical harmonic analysis (hereafter gsha). In other words, throughout the global spherical
analysis a given function is expanded into spherical harmonics and the corresponding coefficients are
estimated. In contrast, the evaluation of the function in the space domain using the coefficients is
called global spherical harmonic synthesis (hereafter gshs).
From theoretical point of view, since the surface spherical harmonics set up a set of 2d orthogonal
basis functions, performing the analysis is relatively straightforward. In practice, only discrete sam-
pling is possible and the integrals should be replaced by summations. The λ-summation retains the
orthogonality while the θ-integration does not. Therefore, in continuous and discrete representation
the solution of the λ- integration and summation are similar, whereas that of the θ is completely
different.
If the data are evenly-spaced, it is of practical benefit to utilize a two-stage computation which is
called two-step analysis. Observations are transformed to the latitude-dependent coefficients using 1d
Fourier transformation in first step. Since the orthogonality is preserved, it leads to unique solution.
The resultant coefficients are then mapped to the spherical harmonic coefficients in second step.
There exists no unique solution for second step since there is no longer orthogonality.
In this chapter, firstly we define the gshs and gsha in the continuous case. Subsequently, the first
step of the gsha in the discrete case is described. Thirdly, least squares, quadrature and 2D Fourier
methods are explained as different schemes for performing the second analysis step. Finally, an
overview of the methods are given in this chapter.

5.1 Theoretical background

In the outer space (outside the attracting masses), the gravitational potential fulfills the Laplace
equation (Hofmann-Wellenhof and Moritz, 2005)

∇2V (r, θ, λ) = r2 ∂2V

∂r2
+ 2r

∂V

∂r
+ ∇2

SV = 0. (5.1)

where, ∇2
S is called surface Laplace or Beltrami operator. In the latter representation, the Laplace

equation is split into radial and surface components. As stated earlier, the surface harmonics are
eigenfunctions of the surface Laplace operator. Therefore, the gravitational potential can be written
as the product of the radial function and the surface harmonics

V (r, θ, λ) = R(r)Ȳnm(θ, λ). (5.2)

85
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Consequently, the single three-variable partial differential equation (pde) can be reduced into the
radial and surface pdes {

r2R′′ + 2rR′ = n(n + 1)R

∇2
S Ȳnm = −n(n + 1)Ȳnm

(5.3)

where, n(n + 1) is the associated eigenvalue of the surface Laplace operator 1.
The first equation is the Cauchy-Euler equation. Since −n(n + 1) < 1, then the solution of the
equation in the outer space is given as

R(r) = r−(n+1). (5.4)

Therefore, the solution of Eq. (5.2) is

V =
1

rn+1
Ȳnm(θ, λ) (5.5)

which is called solid spherical harmonics of degree n. Any linear combination of the solution is a
solution of the equation since the Laplacian is a linear operator

V =
∞∑

n=0

1
rn+1

Ȳnm(θ, λ) (5.6)

The same is true for the surface Laplace operator. Hence, the surface solution can also be expressed
as a linear combination of the individual solutions. Then,

V (r, θ, λ) =
∞∑

n=0

1
rn+1

n∑
m=0

[
C̄nm cos(mλ) + S̄nm sin(mλ)

]
P̄nm(cos θ). (5.7)

The unknown coefficients C̄nm and S̄nm are usually called spherical harmonic coefficients which
introduce physical properties of the underlying function. In practice, the function is assumed to be
bandlimited, so the upper limit (infinity) is replaced by an upper-bound N

V (r, θ, λ) =
N∑

n=0

1
rn+1

n∑
m=0

[
C̄nm cos(mλ) + S̄nm sin(mλ)

]
P̄nm(cos θ). (5.8)

5.1.1 Continuous representation

In the previous section, the expansion of a harmonic function in terms of solid spherical harmonics
( Ȳnm

rn+1 ) is fully described. For simplicity, consider an arbitrary bandlimited function f(θ, λ) which is
known on the sphere. It can be expanded into a series of surface spherical harmonics (Hofmann-
Wellenhof and Moritz, 2005)

f(θ, λ) =
N∑

n=0

n∑
m=0

[
C̄nm cos(mλ) + S̄nm sin(mλ)

]
P̄nm(cos θ). (5.9)

Knowing the coefficients, the function can be evaluated at any arbitrary point in the space domain.
Evaluation of a function by synthesizing the spherical harmonic basis functions with the corresponding
spherical coefficients is called global spherical harmonic synthesis (gshs).
To calculate the expansion coefficients, one can use the orthogonality relations of the spherical har-
monics. Multiplying both sides of Eq. (5.9) by surface spherical harmonics and integrating over the
sphere yields (

C̄nm

S̄nm

)
=

1
4π

∫ ∫

Ω

f(θ, λ) P̄nm(cos θ)
(

cosmλ

sin mλ

)
dΩ. (5.10)

1If L is a linear operator on a function space, then f is an eigenfunction for L and ν is the associated eigenvalue
whenever Lf = νf (Weisstein)
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The main advantage of the normalized surface spherical harmonics implementation is seen in the
simplicity of Eq. (5.10). The computation of the spherical harmonics expansion coefficients of a given
function is usually called Global Spherical Harmonics Analysis (gsha).
Although both the gshs and the gsha formulae are straightforward, they can be made even more
efficient from the computational point of view. As seen in Eqs. (5.9) and (5.10), the computation
along the parallel can be carried out using one-dimensional Fourier Transform. Therefore, splitting
the computation into two one-dimensional summations or integrations makes the whole process more
convenient.
Interchanging the summation is the first step of the two-step computation. One can easily prove that
the following two summations are equivalent (e.g. Rizos, 1979)

N∑
n=0

n∑
m=0

⇔
N∑

m=0

N∑
n=m

(5.11)

Using this swapped summation, the single-step gshs (Eq. 5.9) is split into two-step analysis formu-
lation (Kampes, 1998)

Step I: (
Am(θ)
Bm(θ)

)
=

N∑
n=m

P̄nm

(
C̄nm

S̄nm

)
(5.12)

Step II:

f(θ, λ) =
N∑

m=0

[Am cos mλ + Bm sin mλ] . (5.13)

Equivalently, the single-step gsha (Eq. 5.10) is replaced by the following two-step computation algo-
rithm (Sneeuw, 1994)

Step I: (
Am(θ)
Bm(θ)

)
=

1
(1 + δm0)π

∫ 2π

λ=0

f(θ, λ)
(

cosmλ

sin mλ

)
dλ (5.14)

Step II: (
C̄nm

S̄nm

)
=

1 + δm0

4

∫ π

θ=0

(
Am(θ)
Bm(θ)

)
P̄nm(cos θ) sin θdθ. (5.15)

Equations (5.13) and (5.14) can be interpreted as Fourier transform with latitude-dependent coef-
ficients. Therefore, the computation along each parallel is treated as Fourier transform which can
be performed very efficiently. Moreover, the computation along the meridians can be carried out
independently for each individual order m. It consequently makes parallelization of the computation
possible.
Compared to the single-step formulation, the two-step approach is more efficient. However, it cannot
be implemented in reality since only discrete values of the underlying function are known. Therefore,
the continuous representation should be modified correspondingly.

5.2 Discretized function with an evenly–spaced observations

Consider the function f(θ, λ) is sampled at some discrete points (θi, λj). In general, assume the
observations are evenly distributed along the parallels

λj = j∆λ = j
2π

Nλ
, j = 0, 1, · · · , Nλ − 1.

For the moment, suppose the data spacing along the meridians is also constant. If the poles are also
included, the latitudinal interval ∆θ reads

∆θ =
π

Nθ − 1
.
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If the center points instead of the grid points are used, the observation spacing along the meridians
is

∆θ =
π

Nθ
.

In both cases, i runs from 0 to Nθ − 1 and the total number of observations is Nθ Nλ. To obtain
an equiangular grid (∆θ = ∆λ), the number of longitudinal grid lines should be twice that of the
latitudinal ones. Therefore, for the grid including the poles Nλ = 2(Nθ − 1) and the center point
observations Nλ = 2Nθ. It is assumed that the observations are dense enough to fulfill the sampling
theorem for the recovery of signals up to N .
Representation of the discretized function in terms of the spherical harmonic coefficients is the same
as the continuous representation. For instance, the function f(θ, λ) at the grid point (θi, λj) is
synthesized as

f(θi, λj) =
N∑

n=0

n∑
m=0

[
C̄nm cos mλj + S̄nm sin mλj

]
P̄nm(cos θi) (5.16)

which is the same as Eq. (5.9). Therefore, the two-step discrete synthesis can be performed analo-
gously

Step I: (
Am(θi)
Bm(θi)

)
=

N∑
n=m

P̄nm(cos θi)
(

C̄nm

S̄nm

)
(5.17)

Step II

f(θi, λj) =
N∑

m=0

[Am(θi) cos mλj + Bm(θi) sin mλj ] (5.18)

From the computational aspect, matrix-vector representation as an alternative is very useful for
discrete gshs computation. Consider the matrix P and the vectors a, b, c, s and f which are defined
as follows:

c =




C̄mm
C̄m+1m
...
C̄Nm




N−m+1×1

s =




S̄mm
S̄m+1m
...
S̄Nm




N−m+1×1

P =




Pmm(t0) Pm+1m(t0) · · · PNm(t0)

Pmm(t2) Pm+1m(t2) · · · PNm(t2)

... · · · . . .
...

Pmm(tNθ−1) Pm+1m(tNθ−1) · · · PNm(tNθ−1)




Nθ×N−m+1

am =




Am(θ0)
Am(θ2)
...
Am(θNθ−1)




Nθ×1

bm =




Bm(θ0)
Bm(θ2)
...
Bm(θNθ−1)




Nθ×1

Consequently, the discrete gshs can be represented as two successive linear mappings, each of which
is equivalent to Eq. (5.17) and (5.18)

Step I: (
am

bm

)
= P

(
c
s

)
(5.19)

Step II:
F = AC + BS (5.20)

where,
F = [fij ]Nθ×2N fij = f(θi, λj)
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A = [ a0 a1 · · · aN ] B = [ b0 b1 · · · bN ]

and
C = [cpq]N+1×2N cpq = cos(p− 1)λq−1

S = [spq]N+1×2N spq = sin(p− 1)λq−1

where, p = 1, 2, · · · , N + 1 and q = 1, 2, · · · , 2N . Equations (5.19) and (5.20) are set just based on
the matrix and vector multiplication. The computation can be accelerated by vectorization of the
computation. It yields a relatively fast computation algorithm which is comparable to the Fourier
based method (Sneeuw, 1994).

As seen in Eqs. (5.16),(5.17) and (5.18), both in the one- and the two-step discrete gshs are carried
out independently from the observation grid. However, the continuous gsha has been formulated
based on the orthogonality of the surface harmonics which are defined continuously on the sphere. For
the discrete representation, the underlying functions are sampled at some finite locations. Therefore,
the gsha should be revisited accordingly. In other words, the observation grid should be defined such
that discrete orthogonality relationship can be set up in order to achieve maximum computational
efficiency.

Along the parallels, every surface harmonic is a periodic function of period 2π. In the discrete
representation, Nλ equally spaced points λj = j∆λ define a discrete function of period Nλ = 2N
which can be represented as a vector of length Nλ. Correspondingly, the inner product of the discrete
periodic functions is defined as the inner product of two vectors (Kampes, 1998)

Nλ−1∑

j=0

cos m1λj cosm2λj =

{
0 if m1 6= m2

2N if m1 = m2 = 0 or Nλ

2
N elsewhere

(5.21)

Nλ−1∑

j=0

sin m1λj sin m2λj =

{
0 if m1 6= m2

0 if m1 = m2 = 0 or Nλ

2
N elsewhere

(5.22)

〈sinm1λ, cos m2λ〉 =
Nλ−1∑

j=0

sin m1λj cosm2λj = 0 ∀m1 and m2 (5.23)

Consequently, similarly to the continuous case the latitude dependent Fourier coefficients am(θi) and
bm(θi) can be easily computed as (Sneeuw, 1994)

(
Am(θi)
Bm(θi)

)
=

1
N(1 + δm0 + δmN )

2N−1∑

j=0

f(θi, λj)
(

cos mλj

sin mλj

)
. (5.24)

Equivalently, it can be represented using vector-matrix notation as
(

am

bm

)
=

1
N(1 + δm0 + δmN )

F
(
cT

m

sT
m

)
, (5.25)

where, cm and sm are the mth row of matrices C and S respectively.

However, there is no way to define the latitudinal distribution of data which retains the surface
harmonics orthogonality along the meridians

〈P̄n1m(cos θi), P̄n2m(cos θi)〉 =
{

0 n2 − n1 odd
? elsewhere

(5.26)

Therefore, mapping the latitude dependent coefficients am and bm into C̄nm and S̄nm is not uniquely
defined.

The followings are the relevant computational schemes for performing the second step of the discrete
gsha.
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5.2.1 Least squares method

As shown in Eq. (5.19), mapping c and s into am and bm is of a linear type which has been expressed
by the mapping matrix P. Therefore, the inverse mapping can also be represented as a vector-valued
linear function (

ĉ
ŝ

)
= P−

(
am

bm

)
(5.27)

where, P− stands for some generalized inverse (Sneeuw, 1994). Substituting Eq. (5.19) into Eq. (5.27)
yields (

ĉ
ŝ

)
= P−P

(
c
s

)
. (5.28)

The matrix P−P is usually called resolution in the model space. Alternatively, one can set up an
equivalent criterion called resolution in the observation space

(
âm

b̂m

)
= PP−

(
am

bm

)
. (5.29)

where, the matrix PP− is the resolution in the observation space. In order to obtain an unbiased
estimation, the resolution matrix either in the model or in the observation space should be close to
the identity matrix I (Gubbins, 2004).
The maximum length of a single vector c or s equivalent to the maximum number of the harmonic
coefficients with constant order is equal to max(N−m+1) = N +1. The number of equations should
always be more than or equal to number of the unknowns (Nθ ≥ N +1), which is a constraint on the
number of observation points along the meridians.
Implementation of the criteria in the observation space is equivalent to the solution of the over-
determined linear system of equations in the sense of the method of least squares

(
ĉ
ŝ

)
=

(
PT P

)
︸ ︷︷ ︸

N

−1
PT

(
am

bm

)
. (5.30)

Entries of the design matrix of normal equations (N) are the inner products of Legendre functions in
the discrete case

N(n1, n2) =
Nθ−1∑

i=0

P̄n1m(ti)P̄n2m(ti). (5.31)

Therefore, the entries represent the orthogonality of the functions in the discrete case. Theoretically,
if the orthogonality had been retained the matrix N would have been equal to 2(2− δm0)I. Unfortu-
nately, the matrix is far off from the theoretically expected values. For instance, the normal matrix
of the least squares scheme for Nθ = 120, N = 120 and m = 0 is depicted in Fig. (5.1). It is clearly
visible in the structure of the matrix that

• the diagonal elements are significantly larger than 2(2− δm0).

• the diagonal elements have widely leaked into the neighboring off-diagonal elements.

• the validity of the orthogonality relationship is clearly visible for n2 − n1 = odd.

Nevertheless, the resolution matrix perfectly fulfills the criterion PP− = I, see Fig. (5.2).
In oder to clarify the effect of normal matrix deviation from the theoretically expected structure,
the incremental potential δV = V 120

egm96 − V 120
eigen2 is simulated on a sphere on a regular grid 1.5◦ ×

1.5◦. The recovered spectrum is compared to the original one and the differences are shown in
Fig. (5.3). The differences are about the level of the original signal. They are more pronounced for
the zonal harmonics. The effect of non-orthogonality is large so they cannot be ignored. Obtaining
an inaccurate solution is the main disadvantage of least squares. Nevertheless, it is very flexible for
handling various kinds of observations with an arbitrary distribution. Furthermore, the gsha can
be implemented on observations with an unevenly latitudinal distribution using the least squares
method.
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Figure 5.1: Structure of normal matrix in the least squares approach (Nθ = 120, N = 120, m = 0)
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Figure 5.2: The resolution matrix in the observation space minus identity matrix (Nθ = 120, N = 120,
m = 0)
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Figure 5.3: Original signal and error of the recovered spectrum using least squares scheme

In order to perform the mapping efficiently, different modifications have been introduced. Com-
pared to the least squares method, the followings are well-known alternative methods which yield
comparatively better solutions.

5.2.2 Approximate quadrature/weighted least squares

As seen in Fig. (5.1), both diagonal and off-diagonal elements of the normal matrix N differ from
the identity matrix. By neglecting the non-zero off-diagonal elements, one can improve the normal
equations by down-weighting the observations. In other words, instead of setting up the normal
matrix with unit weight matrix we can assume the data points are independent but have different
weights

Nw = PT WP (5.32)

where, the weight matrix W is defined as

wij = κ
{

wi i = j
0 i 6= j

with κ as variance factor. The coefficients wi can be considered as the additional parameters which
absorb the effect of non-orthogonality of the Legendre functions in the discrete case. Hence, they
should be estimated such that the normal matrix is close to the identity matrix as much as possible.
The problem can be deemed as an optimization problem with a solution space of dimension Nθ. The
goal is then to find the optimum solution which yields Nw = κI. The gas as a powerful multidimen-
sional optimizer can be effectively employed. Nevertheless, it might be rather time consuming due to
high-dimensional search space.
Alternatively, an estimate of the unknowns can be derived analytically by discretization of integral
formulas corresponding to the continuous gsha (Eq. 5.15)

(
C̄nm

S̄nm

)
.=

1 + δm0

4

Nθ−1∑

i=0

(
Am(θi)
Bm(θi)

)
P̄nm(cos θi) sin θi∆θ (5.33)

or in vector-matrix notation, (
ĉ
ŝ

)
=

1 + δm0

4
PT W

(
am

bm

)
. (5.34)

for an evenly distributed data points, it reads (Sneeuw, 1994)

κ = ∆θ =
π

Nθ
; wi = sin θi (5.35)
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whereas assuming a uniformly random distribution of observations leads to (Ellsaesser, 1966)

κ =
2∑Nθ

k=1 sin θk

; wi = sin θi. (5.36)

In both cases, sin θi is defined as the weight of the observations located on the colatitude θi. By
comparing Eqs. (5.30) and (5.34), one can conclude that the normal matrix has been replaced by
(1+δm0)

4 I.
As seen in Fig. (5.4), by introducing the weight matrix the normal matrix was scaled to the identity
matrix. To compare the effect of the data distribution as well as the weighting methods, evenly-
spaced as well as randomly uniform distributed data were employed. Using both weighing methods
gave nearly the same results. However, deviations of the normal matrix corresponding to the randomly
distributed data were significant for both weighting methods. Although the implementation of the
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Figure 5.4: Normal matrix deviation from the identity matrix for evenly spaced and randomly uniform
distributed data (UL: evenly spaced data (∆θ = π

Nθ
) UR: evenly spaced data (∆θ = 2PNθ−1

k=0 sin θk

)

LL: randomly uniform distributed data (∆θ = π
Nθ

) LR: randomly uniform distributed data (∆θ =
2PNθ−1

k=0 sin θk

) )

weight matrix derived from discretization of the continuous formulas has dramatically improved the
normal matrix, it still suffers from non-orthogonality. The gsha of observations of potential type
utilized in previous example was repeated using the weighted least squares method. As shown in
Fig. (5.5), the down-weighting algorithm effectively reduces error of the recovered spectrum. However,

error

−100 −50 0 50 100

signal

−100 −50 0 50 100

0

20

40

60

80

100

120
−6

−4

−2

0

2

4

6

8

x 10
−9

Figure 5.5: Original signal and error of the recovered spectrum using weighted least squares scheme

the recovered signal was erroneous even for the ideal situation (absence of errors). We proceed the
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algorithm modification with Neumann’s methods which are also called exact methods due to their
perfect performance.

5.2.3 Neumann’s methods

In the weighted least squares approach, the integral formulas (Eq. 5.15) was discretized and the second
step of gsha was evaluated in a weighted summation form. Although significant improvement was
achieved it was erroneous. Neumann (1838) showed that an appropriate set of weights can yield
full orthogonality for the discrete case. In other words, Eq. (5.15) can be replaced by a weighted
summation defined as:

(
C̄nm

S̄nm

)
=

1 + δm0

4

Nθ−1∑

i=0

wNeu
i P̄nm(cos θi)

(
am(θi)
bm(θi)

)
(5.37)

where, wNeu
i are the Neumann weights which should fulfill the following relationships for obtaining

perfect orthogonality (Sneeuw, 1994)

Nθ∑

i=1

wNeu
i tni =

∫ 1

−1

tn dt =

{
2

n+1 n even

0 n odd
(5.38)

where, ti = cos θi and n runs over {0, 1, · · · , Nθ − 1}. Validity of the given orthogonality relationship
has been proved in (e.g. Neumann, 1887; Lense, 1954; Sneeuw, 1994).
Equation (5.38) is a determined linear system of equations




1 1 1 · · · 1
t0 t1 t2 · · · tNθ−1

t20 t21 t22 · · · t2Nθ−1

...
...

. . . . . .
...

tNθ−1
0 tNθ−1

1 tNθ−1
2 · · · tNθ−1

Nθ−1







wNeu
0

wNeu
1

wNeu
2

...

wNeu
Nθ




=




2
1

0
2
3

...
2

Nθ−1




(5.39)

Design matrix of the system is called Vandermonde matrix which is nonsingular for Nθ distinct points

∆(t0, t1, · · · , tNθ−1) =
Nθ−1∏

i,j
j>i

(tj − ti). (5.40)

Therefore, the system has a unique solution in the Nθ variables.
It should be noted here that the normal matrix corresponding to the Neumann weight matrix
(PT WNeuP) is replaced by 2(2− δm0)I. Entries of the normal matrix are the products of Legendre
functions which are in most of degree 2N . Therefore, it is possible to expect the substitution of the
integration by summation to be exact if the degree of the approximating polynomial is equal to 2N at
least. Therefore, Nθ = 2N + 1 is the minimum number of latitudinal observation points for uniquely
determining the Neumann weights. There is no restriction on the selection of parallels except they
should be 2N + 1 distinct parallels.
Linear systems with a Vandermonde coefficient matrix are known to be numerically ill-conditioned
even for a relatively small value of Nθ (see Press et al., 1992, sec. 3.5). Consequently, they cannot
be calculated using linear inversion of the system. An alternative scheme for computation of the
Neumann weights has been addressed in Sneeuw (1994).
Moreover, it should be considered that 2N(2N + 1) observations are required for the determination
of (N +1)2 unknown spherical harmonic coefficients. It is nearly four times the number of unknowns.
This is a disadvantage of this method which is usually known as the First Neumann’s Method.
Compared to the weighted least squares method, the first Neumann’s method has some additional
constraint which leads to an exact solution. In both methods, there is no restriction on the latitudinal
distribution of observations. However, the number of observations in the first Neumann’s method is
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nearly two times the number of observations to be used in the weighted least squares scheme.
In the context of numerical integration, the number of data points can be reduced if the points for
evaluation are selected in an optimal, rather than equally spaced, manner. The nodes θ0, θ1, · · · , θNθ−1

in the integration interval [0, π] and weights wNeu
i , are chosen to minimize the expected error obtained

in performing the approximation

∫ π

0

(
Am(θ)
Bm(θ)

)
P̄nm(cos θ) sin θdθ ≈

Nθ−1∑

i=0

wNeu
i P̄nm(cos θi)

(
Am(θi)
Bm(θi)

)
(5.41)

Neumann (1887) showed that if the roots of the Legendre function of degree N +1 are selected as θis,
the number of parallels is reduced from 2N + 1 to N + 1. This intelligent selection of θ-grid which is
called Gauss grid yields an exact orthogonality for the Legendre functions using a minimum number
of discrete points on the sphere.
Besides the computation of the Neumann’s weights, the abscissas ti should also be calculated with
sufficient precision. Different methods have been proposed in the literature for the computation of
the abscissas (e.g. Davis and Rabinowitz, 1984; Press et al., 1992; S. Zhang, 1996).
A comparison between the equally-spaced and the Gauss grids is shown in Fig. (5.6). The difference
between the two grids decreases as the maximum spherical harmonic degree increases.
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Figure 5.6: Maximum absolute deviation of the equally-spaced and the Gauss grid

If the zeros of the Legendre polynomial of degree N + 1 are computed, the Neumann weights can be
computed using either Eq. (5.39) or one of the following formulas (Atkinson, 1993, Pg. 187)

wNeu
i =

−2
(n + 2)P ′L+1(ti)PL+2(ti)

(5.42)

or (Krylov, 1962)

wNeu
i =

2
(1− t2i )(P

′
N+1(ti))2

(5.43)

where, the prime shows the derivative of PN+1 with respect to t. In Sneeuw (1994), the following
formula has been presented as an alternative:

wNeu
i =

2(1− t2i )
[(N + 1)PN (ti)]

2 (5.44)

in which just the function itself rather than the derivative is used.
As soon as the θ-grid and computed the corresponding weights are defined, the second step of gsha
can be performed straightforwardly. This method is usually called the Second Neumann’s Method
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in which both the abscissas and the weights are subject to constraints. As previously mentioned,
reducing the number of observations by a factor of two is the main advantage of using the Gauss grid.
Let us consider the previously utilized potential data set, except that this time the data are given on
the Gauss grid. As shown in Fig. (5.7), a perfect result is obtained by implementation of the second
Neumann’s method. To compare the effect of introducing different weights on discrete orthogonality
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Figure 5.7: Error spectrum of the spherical harmonics recovered using the second Neumann’s method

relationship, the normal matrix is depicted in Fig. (5.8). As expected, the second Neumann’s method
obtained the best results followed by weighted least squares.

50

100

150

200

250

2

4

6

8

x 10
−3

2

4

6

8

x 10
−3

0.5

1

1.5

2
x 10

−14

Figure 5.8: Deviation of the normal matrix from the Identity matrix (UL: Least squares UR: Weighted
least squares (wi = ∆θ

N sin θi) LL: Weighted least squares (wi = 2PNθ−1
k=0 sin θk

sin θi) LR: Second Neu-
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Eventually, in Table (5.1) a comparison of different methods is listed. The number of observations,
θ-grid, weights and the main advantage and disadvantage of the methods are compared.

5.3 Summary

Representation of the geopotential and the geomagnetic fields are two interesting applications of the
spherical harmonics. In this chapter, we reviewed theoretical background of the spherical harmonics.
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Table 5.1: Comparison of the methods applied for discrete gsha

Method Nθ θ-grid wi advantage disadvantage

LS N + 1 arbitrary 1 flexible no orthogonality

WLS N + 1 arbitrary Eq. (5.35) arbitrary grid approximate orthogonality

Neumann I 2N + 1 arbitrary but distinct Eq. (5.39) perfect orthogonality No. of observations!

Neumann II N + 1 Gauss grid Eq. (5.44) perfect orthogonality restricted θ-grid

Furthermore, continuous representation of gsha and gshs were formulated.
For practical applications, discrete representation of the gsha and gshs is needed since observations
are always given in some discrete points. Implementation of the gshs is independent of data type,
however, gsha is completely different form continuous to discrete type. In discrete representation,
lack of orthogonality of the surface spherical harmonics in θ-direction makes the implementation of
the gsha rather complicated.
Least squares, approximate quadrature and the Neumann methods have been introduced for analysis
of discrete data on a sphere. As compared in Table (5.1), the least squares method yields the worst
results since the lack of orthogonality is completely ignored. Introducing the approximate weights in
the weighted least squares approach improves the accuracy of the recovered coefficients to a certain
extent. On the other hand, Neumann’s methods can successfully handel the problem by imposing
constraints on weighting procedure, the number and the location of observations. Eventually, an
exact solution can be obtained using minimum number of observations by implementation of the
second Neumann method.





Chapter 6

Mathematical Formulation of the
LL-SST Problem

Gravity field recovery using space-borne observations has entered a new era by launching the Earth’s
gravity field dedicated missions. The German spacecraft champ as the first satellite of a new gen-
eration has portrayed the gravity field with much more detail and higher precision. It was followed
by the joint German-American low-low sst mission grace which is capable of measuring the gravity
field even with higher resolution and accuracy. Equipping the pair of spacecraft with highly accurate
intersatellite ranging system enables the mission to detect the temporal variation of the field as well.
Having the opportunity of being continuously tracked by the positioning satellites gps enables us
to track leo spacecrafts nearly continuously in the space. From the kinematical point of view, the
spacecrafts can then be considered as the gravity sensors since their motion is mainly governed by the
gravity field. Due to attenuation of the field with altitude this high-low configuration has a limited
resolution. In order to extend the limit, relative motion of the leo satellites should be measured.
This idea has been realized in the grace mission using two coplanar leo satellites whose relative
distance is measured with an ultra-precise microwave system.
Combination of the high-low with low-low sst information observed by the grace satellites provides
us an invaluable source of information. The mission is considered as the differential gravimeter and
the respective mathematical model is addressed in the first section. Alternatively, the mission can
be viewed as a one-axis long arm gradiometer. The second part of this chapter is dedicated to the
formulation of grace as a gradiometer. The potential problems are explained and some solutions
are introduced to tackle the problems.

6.1 Satellite to satellite tracking

In this section, a link between grace observables and the geopotential spherical harmonic coefficients
is established. The grace mission consists of two identical leo satellites which fly on an identical
orbit; one approximately 220±50 km ahead of the other. Accurate geodetic positions of each satellite
in terms of the geocentric position vector (r) are provided by Black-Jack gps receivers mounted on the
satellites. In addition, complete velocity vectors ṙ of the two satellites can also be numerically derived
from gps observations. Thus, complete state vectors consisting of the position and velocity vectors
of the two satellites will be available. Indeed, the intersatellite biased range % and the range-rate %̇
can be measured accurately by means of the k-band ranger.
The position vectors and their time derivatives yield the time series of the intersatellite position and
velocity vector ∆r, ∆ṙ. Furthermore, the intersatellite acceleration along the line of sight (%̈) will be
numerically obtained from the intersatellite range-rate during the data pre-processing phase. The re-
lationship between the range, range-rate and range-acceleration and relative velocity and acceleration
vectors can be derived following (Rummel et al., 1978):

〈∆r
%

,∆r̈〉 = %̈ +
1
%

[‖∆ṙ‖2 − %̇2
]
. (6.1)

99
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or equivalently

∆r̈LOS = %̈ +
‖∆ṙ‖2

%
− %̇2

%
(6.2)

where ∆r̈LOS is the projection of the relative acceleration vector onto the line of sight vector (e). In
general, the observed acceleration vector consists of the gravitational and the nuisance accelerations.
Assume the nuisance component which includes the gravitational components (except the Earth’s
gravitational acceleration) and non-gravitational have been removed. Then, the remaining part,
i.e. the Earth’s gravitational acceleration can be expressed as a linear functional on the geopotential

LLLV = %̈ +
‖∆ṙ‖2

%
− %̇2

%
. (6.3)

where LLLV has been defined in Eq. (2.11). Equation (6.3) links the grace observable to the
geopotential in terms of acceleration differences. With this formulation, one can interpret the grace
mission as a differential gravimeter. It is the simplest form of the formulation which has been widely
studied for three decades (e.g. Wolff, 1969; Rummel et al., 1978; Rummel, 1980; Blaha, 1992; Jekeli,
1999; Garcia, 2002, 2003; Keller and Sharifi, 2005).
Representation of the ll-sst as a linear functional on the gravity field (LLL) connects straightfor-
wardly the grace observable to the spherical harmonics. As mentioned in Chapter 2, it is the
well-suited form for the brute-force approach. However, it will result in a huge linear system of
equations which cannot be handled computationally.

6.2 Satellite gradiometry

In order to alleviate the mentioned computational difficulties the spacewise approach can be employed.
In contrast to the timewise approach, in the spacewise approach the observables are considered
as evaluational functionals which are evaluated at some definite locations. Therefore, it is more
convenient to express observables as functions with explicit connection to the field at the evaluation
point.
Switching from the first partial derivative of the Earth’s gravity field to the second is an alternative
formulation of the ll-sst which suits better to the spacewise approach. In other words, combining
the two sst concepts, as shown in Fig. 6.1, makes the twin satellites to appear as a very accurate one-
component gradiometer. One can show that the accuracy of this virtual one-dimensional gradiometer
is about 10−6 E/

√
Hz, see Rummel (2003) for more details. This unique characteristic of grace is a

motivation to switch from the first derivatives of the gravitational potential to the second derivatives of
the field. In other words, we write the observation equation (Eq. 6.3) as a function of the gravitational
acceleration gradient components instead of the gravitational potential gradient.

SST-LL

GPS-Satellites

S
S
T
-H

L

EarthMass

anomaly

Figure 6.1: Gradiometry with the grace twin satellites (from Rummel et al. (2002))
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To derive the respective mathematical formulas, we expand the gravitational acceleration at the two
satellites’ respective positions around the mid-point using Taylor expansion. Subtracting the resultant
expression yields (Sharifi and Keller, 2005):

∆Γ =
∞∑

j=1

22−2j

(2j − 1)!
(∇2j−1 ⊗ ΓT

B) ·∆r2j−1, (6.4)

where, ⊗ is Kronecker product symbol and ΓB is the gravitational acceleration at the barycenter
of the configuration. The left-hand-side of Eq. (6.4) is a two-point first order quantity, whereas
the right-hand-side is a one-point higher order (at least second order) one. Consequently, inserting
Eq. (6.4) into Eq. (6.3) results in the sought-after formulation.
Obviously, the expansion (Eq. 6.4) contains partial derivatives of the Earth’s gravitational potential
higher than the second order. Including all the partial derivatives makes the mathematical model
rather complicated. In (Sharifi and Keller, 2005) and (Keller and Sharifi, 2005) it has been shown
that even the linear approximation of the expansion can be modified in a way that yields a reasonable
accuracy.
Besides the modified linear formulation the cubic approximation of the problem is also presented.
In order to simplify the formulation, the observable is expressed as a functional on an incremental
potential. More simplifications will be carried out by neglecting subordinate constituents.

6.2.1 Linear approximation

The linear approximation can be derived from Eq. (6.4) by setting max(j) = 1:

∆Γ = (∇⊗ ΓT ) ·∆r = G∆r + ∆lin, (6.5)

with ∆lin the linearization error and G the Earth’s gravitational gradient tensor. Inserting Eq. (6.5)
into Eq. (6.3) and dividing both sides of the equation by % results in Eq. (6.6), which is called linear
gradiometry equation:

eT
BGeB + ∆lin =

%̈

%
+

%̇2

%2
− ‖∆ṙ‖2

%2
. (6.6)

Replacing Eq. (6.6) into Eq. (2.78) yields the observation equation of linear gradiometry

V (xx) + ∆lin =
%̈

%
+

%̇2

%2
− ‖∆ṙ‖2

%2
. (6.7)

Substituting Eq. (2.79) into Eq. (6.7) gives

(
δr

ρ

)2

G11 + 2
δr

ρ
cosα G12 ± 2

δr

ρ
sin α G13+

+cos2 α G22 ± sin 2α G23 + sin2 α G33 + ∆lin =
%̈

%
+

%̇2

%2
− ‖∆ṙ‖2

%2
. (6.8)

Due to relatively long baseline of the grace virtual gradiometer (≈ 220 km) the linearization error
for the full gravity field is significant (Keller and Sharifi, 2005). However, the error can be noticeably
decreased if an incremental potential is used.
In order to show the validity of the idea, we consider egm96 and eigen2 as two representative
examples of the Earth’s gravity field. In order to simulate an aliasing-free observation vector, both
satellites’ orbits were integrated based on the egm96 and eigen2 up to degree and order 120 as the
real and reference orbit respectively. Consequently, the residual observation δl is calculated as

δl = l120 − l120ref =
1
%2

(
%̈% + %̇2 − ‖∆ẋ‖)− 1

%2
ref

(
%̈% + %̇2 − ‖∆ẋ‖)

ref
. (6.9)

On the other hand, the left-hand-side of Eq. (6.8) excluding ∆lin, contains full terms of the linear
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approximation. Let us denote the corresponding quantity for the incremental potential by δV
(xx)
f

δV
(xx)
f =

(
δr

%

)2

T11 + 2
δr

%
cos α T12 ± 2

δr

%
sin α T13 + cos2 α T22 ± sin 2α T23 + sin2 α T33 (6.10)

It has been computed directly using the spherical harmonics coefficient differences δcnm and δsnm,
(

δcnm
δsnm

)
=

( cnmsnm

)
EGM96

− ( cnmsnm

)
EIGEN2

. (6.11)

Eventually, ∆lin = δl − δV
(xx)
f were computed for a one-month span of the orbit and the achieved

results depicted in Fig. (6.2).
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Figure 6.2: One-month span of observations and the respective linearization error with respect to
colatitude (θ)

As seen, despite pronounced fluctuations of the error around its mean value (zero), standard deviation
seems acceptable (≈ 2.5mE). Nevertheless, we should try either to amplify the signal or dampen the
error to strengthen the s/n ratio.
In Eq. (6.10), some terms are dominant and the others can be neglected without significant loss of
accuracy. For instance, one can derive a simplified expression by ignoring all the off-diagonal entries
as well as the first diagonal element

δV (xx) = cos2 αT22 + sin2 αT33. (6.12)

In order to clarify the neglected terms’ contribution, differences between δV
(xx)
f and δV (xx) were

depicted in Fig. (6.3). As we see in Fig. (6.3), the differences are highly pronounced in the polar
regions. Contribution of the off-diagonal elements are significant at the polar region. Consequently,
neglecting those terms degrades the formulations in the high-latitude regions.
To analyse the influence of those neglected terms individually, we start with the first diagonal compo-
nent as the most dominant entry in the Marussi tensor. T11 = δV (rr) and its respective contribution
to δV

(xx)
f were depicted in Fig. (6.4). Despite the significant values of δV (rr), its contribution to

the along-track component is negligible due to the special geometrical configuration of the grace
mission. Moreover, δV (rr) is about 300 times greater than the off-diagonal elements, see Rummel
(2003). Consequently, the other off-diagonal elements can be ignored by replacing δr

ρ = 0. Hence,
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Eq. (6.10) can be recast into

δV
(xx)
± = cos2 α T22 ± sin 2α T23 + sin2 α T33 (6.13)

Subscript ± have been used due to the presence of T23 with two different signs, where the + sign is
valid for ascending tracks and the − sign for descending ones. To justify whether the substitution is
allowed, δV

(xx)
± − δV

(xx)
f was depicted in Fig. (6.5). Comparing Figs. (6.3) and (6.5) shows that the
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Figure 6.5: Deviation of δV
(xx)
± from δV

(xx)
f

significant contribution of the mathematical simplification error (Fig. 6.3) is due neglecting T23. This
figure brings us to the conclusion that it is sufficient to include just T23 with its respective coefficients
if we would like to utilize a fairly complete mathematical model. In other words, the other terms in
δV

(xx)
f (Eq. 6.10) can be ignored.

By adding T23 to the mathematical model, we have to distinguish the ascending and descending arcs.
For instance, they can be represented on two spheres; one for the data on ascending tracks (ascending
observations) and one for the data on descending tracks (descending observations). In this approach,
which is called Rosborough approach, we can use either ascending or descending observations to
perform gsha (e.g. Rosborough, 1986; Sneeuw, 2003).
Alternatively, both ascending and descending observations are usually combined into spatially mean
and variable contributions: δV

(xx)
m and δV

(xx)
v .

δV (xx)
m =

1
2
(δV (xx)

+ + δV
(xx)
− ) = cos2 α T22 + sin2 α T33 (6.14)

δV (xx)
v =

1
2
(δV (xx)

+ − δV
(xx)
− ) = sin 2α T23 (6.15)

We use δV
(xx)
m for the gsha since it contains the dominant part of the signal, while δV

(xx)
v is zero

except at the polar regions, see Figs. (6.6) and (6.7).
By definition, to derive both the mean and variable observations the respective components δV xx

+ and
δV xx
− , should be measured at the same location. Otherwise, they should be mapped to the common

points before inserting into Eqs. (6.14) and (6.15). In reality, one can rarely find the ascending and
descending observations measured in the same location. Therefore, implementation of an appropriate
prediction scheme is inevitable for realization of either the mean or variable observations.
The same approach is valid for mapping the ascending and descending observation on an equiangular
grid on the mean orbital sphere (mos). In other words, each of those data sets should be individually
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projected on the grid and the averaging is carried out based on the predicted ascending and descending
values at the grid points.
From a statistical point of view, δl can be predicted on the grid points with reasonable accuracy if
an adequate number of the ascending and descending observations are well-distributed over the area
surrounding the respective grid points. Moreover, if the number of the ascending observations are
the same as the descending ones, we can expect the predicted values based on a one-step prediction
(using both the ascending and descending observations simultaneously) are close enough to the mean
signal.
To get an idea about the observation distribution, the previously utilized data set is considered. The
number of ascending and descending observations within 1.5◦×1.5◦ blocks on the mean orbital sphere
counted. The achieved results as well as their sum and differences were depicted in Fig. (6.8). Indeed,
the respective basic statistics were tabulated in Table (6.1). As seen both in Fig. (6.8) and Table
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Figure 6.8: Ascending and descending observation distribution of one month of the simulated grace
data

Table 6.1: Ascending and descending observations statistics
quantity statistic

min max mean std.
n+ 2 20 9 3.8
n− 1 20 9 3.8

|n+ − n−| 0 16 3.7 3.1
n+ + n− 7 39 18 5.9

(6.1) ascending and descending observations were distributed uniformly. Indeed, one can expect that
the differences reduce using a longer arc of the orbit.
At this step, let us assume the resulting errors due to the differences in the number of ascending and
descending observations are hopefully negligible.
To sum up, the linearization error is the dominant systematic error. Compared to the linearization
error, neglecting the radial component disturbs the observations negligibly. However, the off-diagonal
element G23 should be considered. Therefore, we utilize the cubic approximation of the gradiometry
equation for the diagonal elements as well as the (2, 3) entry.

6.2.2 Cubic approximation

In order to investigate the higher terms’ contribution, a more complete form of the gradiometry
equation is presented. To obtain a better solution the Cubic term of Taylor expansion (Eq. 6.4) is
included. Consequently, the observable δl is approximated with Marussi-tensor elements and their
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partial derivatives up to the second order

V
(xx)
fc ≈ eT

B ·G · eB +
%2

24
eT
B ⊗ eT

B ⊗ e
T

B · (∇⊗∇⊗G) · eB (6.16)

where the subscript fc stands for the full cubic representation of the gradiometry equation. Ignoring
the respective radial terms and substituting eB from Eq. (2.79) into Eq. (6.16) yields

δV
(xx)
±c = cos2 α T22 ± sin 2α T23 + sin2 α T33

+ %2

24r̄2

(
cos4 α T

(θθ)
22 + sin2 2α

4 T
(θθ)
33 + sin2 2α

4 sin2 θ
T

(λλ)
22 + sin4 α

sin2 θ
T

(λλ)
33

± sin 2α cos2 α
sin θ T

(θλ)
22 ± sin 2α sin2 α

sin θ T
(θλ)
33 ∓ sin 2α cos2 α

2 sin θ tan θ T
(λ)
22

∓ sin 2α sin2 α
2 sin θ tan θ T

(λ)
33 + sin2 2α

sin θ T
(θλ)
23 − sin2 2α

2 sin θ tan θ T
(λ)
23

± sin 2α sin2 α
sin2 θ

T
(λλ)
23 ± sin 2α cos2 α T

(θθ)
23

)
.

(6.17)

Also it should be noted that T
(λ)
22 and T

(λ)
33 have an opposite sign compared to the others. In other

words,− and + correspond to ascending and descending tracks respectively, while for the other terms
of the expansion the reverse is true.
Decomposition of the observable δV

(xx)
±c into the mean and variable components pronouncedly sim-

plifies the equation.

δV
(xx)
mc = cos2 α T22 + sin2 α T33

+ ρ2

24r̄2

(
cos4 α T θθ

22 + sin2 2α
4 T θθ

33 + sin2 2α
4 sin2 θ

Tλλ
22 + sin4 α

sin2 θ
Tλλ

33

+ sin2 2α
sin θ T θλ

23 − sin2 2α
2 sin θ tan θ Tλ

23

)
.

(6.18)

δV
(xx)
vc = sin 2α T23

+ %2

24r̄2

(
sin 2α cos2 α

sin θ T θλ
22 + sin 2α sin2 α

sin θ T θλ
33 − sin 2α cos2 α

2 sin θ tan θ Tλ
22

− sin 2α sin2 α
2 sin θ tan θ Tλ

33 + sin 2α sin2 α
sin2 θ

Tλλ
23 + sin 2α cos2 α T θθ

23

)
.

(6.19)

Similar to the linear approximation, the mean and variable components of the cubic approximation
are two alternative representations of the original observable. The mean observable will be used for
the gsha because of its dominant contribution.
In order to evaluate the included cubic term, we compute the cubic term contribution to δV (xx). It
can be easily computed just by subtracting the right-hand-side of Eq. (6.18) from Eq. (6.14) which
is equal to the second term on the right-hand-side of Eq. (6.18). The achieved results were plotted
in Fig. (6.9).
As seen in Fig. (6.9), the differences are highly pronounced in the mountainous area like the Himalayas.
In other words, some correlation can be easily sensed between the differences and topography which
seems reasonable. Without doubt, implementation of the cubic approximation results in a better
solution. However, direct manipulation of the cubic term seems very complicated. In the subsequent
Chapter, we will propose an alternative scheme for treating the cubic terms which is superior from a
computational point of view.

6.3 Inter-satellite velocity determination

As stated previously, combination of the hl– with ll-sst observables is the unique opportunity
which is realized by launching the grace mission. Different sampling rate and level of accuracy of
two configuration observations implies that data fusion should be performed carefully.
The range-rate observation %̇ is the key observable of the grace mission because of its comparatively
high accuracy. On the other hand, the relative velocity of the grace satellites should be derived
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Figure 6.9: Differences between the linear and cubic approximation of the mean signal

by numerical differentiation which by its very nature amplifies the observation noise. Therefore, one
may spoil the range data if the relative velocity is not appropriately computed.
Reducing the observables by means of a suitable reference orbit and computing the velocity term
using the reference field are two alternatives to numerical differentiation which are addressed in the
following subsections. Two different numerical differentiation algorithm are employed and the results
are compared to that of the alternatives.

6.3.1 Numerical differentiation

The Newton differentiator

The problem of one-dimensional interpolation and integration usually involves the approximation of
a function f(x) by a suitably chosen nth degree polynomial f̃(x) such that fi = f(xi) = f̃(xi) for
i = 0, 1, · · · , n. Although the polynomial is represented in different forms these n+1 distinct function
values define a unique polynomial.
Similarly one can utilize the polynomial function for computation of the function derivatives. How-
ever, there is no need to find the polynomial function f̃(x) if the values of the derivatives at the mesh
points x0, x1, · · · , xn is required. In this particular case and for the evenly spaced data with spacing
h, the k-th derivative of the function f(x) is

f (k)(xi) = h−k
n∑

j=0

aks
ij f(xj) + O(hs) (6.20)

where f (k)(xi) is the k-th derivative of the function at the mesh point xi and the truncation error
O(hs) is assumed to be of degree s. With the current representation, the derivative of the function
is expressed as a linear combination of the function values at the mesh points. Consequently, the
derivative of the function can be simply computed if the coefficients aks

ij are determined. Herein, we
follow Gregory (1957)’s elegant scheme for the determination of the coefficients.
Let assume the function f(x) possesses a continuous k + s derivative for x ∈ [x0, xn] for a specified
order of derivative k and truncation s. The Taylor expansion of the function at the point xj about
the mesh point xi is

f(xj) =
k+s−1∑

t=0

(j − i)t ht

t!
f (t)(xi) +

(j − i)k+shk+s

(k + s)!
f (k+s)(ξij) (6.21)

with ξij ∈ [xi , xj ]. If we expand the function for j = 0, 1, · · · , n and then form a linear combination
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of the expansions we obtain

n∑

j=0

aks
ij f(xj) =

n∑

j=0

aks
ij

k+s−1∑
t=0

(j − i)t ht

t!
f (t)(xi) +

n∑

j=0

aks
ij

(j − i)k+shk+s

(k + s)!
f (k+s)(ξij). (6.22)

and swapping the summations yields,

n∑

j=0

aks
ij f(xj) =

k+s−1∑
t=0

ht

t!

n∑

j=0

aks
ij (j − i)t f (t)(xi) +

hk+s

(k + s)!

n∑

j=0

aks
ij (j − i)k+s f (k+s)(ξij). (6.23)

Dividing both sides of Eq. (6.23) by hk and replacing

bks
ij =

n∑

j=0

aks
ij (j − i)t, t = k + s (6.24)

results in

h−k
n∑

j=0

aks
ij f(xj) =

k+s−1∑
t=0

ht−k

t!
bks
ij f (t)(xi) + Eks

i (6.25)

where

Eks
i =

hs

(k + s)!

n∑

j=0

aks
ij (j − i)k+s f (k+s)(ξij). (6.26)

In order to obtain an equivalent formula given in Eq. (6.20), we determine the unknown coefficients
aks

ij in a way that
bks
ij = k!δtk. (6.27)

As a consequence, Eq. (6.25) can be recast into the following simple form

f (k)(xi) = h−k
n∑

j=0

aks
ij f(xj) − Eks

i . (6.28)

where −Eks
i is equivalent to the truncation error O(hs). Replacing Eq. (6.27) into Eq. (6.24) yields

a linear system of equations
n∑

j=0

aks
ij (j − i)t = k!δtk (6.29)

where t = 0, 1, · · · , k + s− 1. An equivalent representation of the system in matrix notation is
0
BBBBBBBBBBBB@

1 1 1 · · · 1

(−i) (1− i) (2− i) · · · (n− i)

... · · · · · · . . .
...

(−i)k (1− i)k (2− i)k · · · (n− i)k

... · · · · · · · · ·
...

(−i)tm (1− i)tm (2− i)tm · · · (n− i)tm

1
CCCCCCCCCCCCA

0
BBBBBBBBBBB@

aks
i0

aks
i1

aks
i2

aks
i3

...

aks
in

1
CCCCCCCCCCCA

=

0
BBBBBBBBBB@

0

0

...

k!

...

0

1
CCCCCCCCCCA

, (6.30)

where tm = k + s − 1. The system consists of k + s equations in n + 1 unknowns. The system is
overdetermined if the number of equations is greater than that of the unknowns,

n + 1 ≥ k + s.

Using this relationship one can determine the minimum number of mesh points for a given k and s.
In the other hand, for a certain number of mesh points and a specified derivative order k the order
of the truncation error is defined.
The system with unique solution (n + 1 = k + s) is the most commonly used solution. In this
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particular case, the uniqueness of solution is guaranteed because of the non-singular Vandermonde
normal matrix (Gregory, 1957).
The system can be set up for i = 0, 1, · · · , n and the respective coefficients can be derived for each
individual mesh point. As a representative example, the coefficients of the nine-point differentiator
(n = 9) for the first- and second-order differentiation were determined and the achieved coefficients
were given in A18 and A27 respectively.

A18 =

0
BBBBBBBBBBBBBBBBBBBB@
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8 −14 56
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− 35
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. (6.31)

A27 =

0
BBBBBBBBBBBBBBBBBBBB@
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(6.32)

Using the matrices A18 and A27 both the first- and the second-order derivatives of the underlying
function can be determined for all mesh points. However, the error increases by moving toward the
borders point. In other words, the middle mesh point has the lowest differentiation error.
In practice, for evaluation of the derivatives at each mesh point a symmetric window of size n is
considered and the derivatives are only computed for the center points. Equations (6.33) and (6.34) for
instance, represent the respective scalar formulas for the 9-point first- and second-order differentiator.

h f (1)(x4) =
1

280
f(x0)− 4

105
f(x1)+

1
5
f(x2)− 4

5
f(x3) +

4
5
f(x5)− 1

5
f(x6) +

4
105

f(x7)− 1
280

f(x8) (6.33)

h2 f (2)(x4) = − 1
1120

f(x0) +
1
79

f(x1)−
1
10

f(x2) +
4
5
f(x3)− 121

85
f(x4) +

4
5
f(x5)− 1

10
f(x6) +

1
79

f(x7)− 1
1120

f(x8) (6.34)

These formulas can also be derived from the Newton high-resolution interpolation formula by differ-
entiation. So, they can correspondingly be called the Newton differentiators.
Numerical analysis for evaluation of the Newton differentiator’s performance in comparison with other
differentiators will be carried out later in subsection (6.3.3).

Differentiating spline

Let us recall the problem setting used in the Newton differentiation. Discrete values of the unknown
function f(x) are given at some finite mesh points x0 < x1 < x2 < · · · < xn. The is goal is to
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compute the underlying function derivatives exactly at the mesh points.
As expressed previously, the function can be approximated by means of a polynomial function of de-
gree n. Instead of approximating the underlying function globally one can use n piecewise polynomials
of degree m which satisfy the following conditions:

1. for x ∈ [xi , xi+1], S(x) = Si(x),

2. Si(xi) = f(xi) and Si(xi+1) = f(xi+1),

3. derivatives up to order (m− 1) exist and are continuous at the internal mesh points

S
(m−1)
i (xi) = S

(m−1)
i+1 (xi),

The function S(x) is then called a spline of degree m. The Cubic spline (m = 3) is the most popular
form of spline. In this particular case, we have 4n unknown coefficients for n subintervals. According
to the second property of spline, the total number of observation equations is 2n equations. Moreover,
the continuity condition of the derivatives up to order 2 (= 3− 1) at the internal mesh points (n− 1
points) sets up 2(n − 1) equations of the type functional constrained. Therefore, we can set up an
underdetermined linear system with 2n+2(n−1) equations in 4n unknowns. There are various cubic
splines depending on how to fix the two free conditions. The frequently used choices are:

• the natural cubic spline by imposing S
(2)
1 (x0) = S

(2)
n (xn) = 0,

• the clamped cubic spline defined by S
(1)
1 (x0) = f (1)(x0) and S

(1)
n (xn) = f (1)(xn).

Herein, we use the natural cubic spline. The underlying function and its first- and second-order
derivatives are known as soon as the unknown coefficients are determined.
To set up the linear system of equations let us begin with the continuity of the second order derivative.
Since the function itself is cubic, the second-order derivative is a linear function (Moritz, 1978)

S
(2)
i (x) = ai

(
xi+1 − x

h

)
+ ai+1

(
x− xi

h

)
, (6.35)

for i = 0, 1, · · · , n− 1. Then,

S
(2)
i (xi) = ai

S
(2)
i (xi+1) = ai+1

}
⇒ S

(2)
i−1(xi+1) = S

(2)
i (xi) = ai. (6.36)

which implies continuity of the second-order derivative at the junction point of two subsequent subin-
tervals i− 1 and i. Equation (6.35) is recast into the following equation with twice integration

Si(x) = ai
(xi+1 − x)3

6h
+ ai+1

(x− xi)3

6h
+ bi(xi+1 − x) + ci(x− xi), (6.37)

where the additional terms are written in this special form for convenience. Using the function values
at the mesh points generates two observation equations

Si(xi) = ai
h2

6 + bih = fi

Si(xi+1) = ai+1
h2

6 + cih = fi+1

}
⇒

hbi = fi − ai
h2

6

hci = fi+1 − ai+1
h2

6

(6.38)

consequently,

Si(x) = ai
(xi+1 − x)3

6h
+ ai+1

(x− xi)3

6h
+

(
fi − ai

h2

6

)
(xi+1 − x)

h
+

(
fi+1 − ai+1

h2

6

)
(x− xi)

h
. (6.39)

Immediately, its first-order derivatives at the respective mesh points are determined as

S
(1)
i (xi) = −h

3
ai − h

6
ai+1 +

fi+1 − fi

h
S

(1)
i (xi+1) =

h

3
ai+1 +

h

6
ai +

fi+1 − fi

h
(6.40)
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Imposing the continuity condition of the first-order derivatives of two subsequent subintervals i − 1
and i leads to

ai−1 + 4ai + ai+1 =
6
h2

(fi−1 − 2fi + fi+1) . (6.41)

For i = 1, 2, · · · , n− 1 we can set up a linear system with n− 1 equations in n + 1 unknowns. Using
Eq. (6.36), two free unknowns can be fixed by imposing the natural spline condition

S
(2)
0 (x0) = a0 = 0

S
(2)
n−1(xn) = an = 0

}
⇒ a0 = an = 0. (6.42)

Therefore, n− 1 unknowns coefficients (a1, a2, · · · , an−1) remain which can be determined using the
following uniquely solution linear system of equations.




4 1 0 0 · · · 0
1 4 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 4 1
0 · · · 0 1 4







a1a2

...
an−1


 =




f0 − 2f1 + f2
f1 − 2f2 + f3

...
fn−2 − 2fn−1 + fn


 (6.43)

or simply,
Aa = b. (6.44)

The design matrix A is a tridiagonal, symmetric, positive definite and strictly diagonally dominant
matrix. Therefore, the existence of a unique solution is guaranteed (Barannyk, 2005).
When the coefficients have been determined, the analytical form of first- and second-order derivatives
of the underlying function can be approximated by a quadratic and linear function respectively

S
(1)
i (x) =

ai+1

2h
(x− xi)

2 − ai

2h
(xi+1 − x)2 +

1
h

(fi+1 − fi) − h

6
(ai+1 − ai) (6.45)

and
S

(2)
i (x) =

ai+1

h
(x− xi) +

ai

h
(xi+1 − x). (6.46)

These two equations, the so called differentiator spline, are the analytical form of the derivatives.
However, the derivatives are required at the mesh points which can be represented in much simpler
forms

S
(1)
i (xi) = −h

6
(2ai + ai+1) +

1
h

(fi+1 − fi), (6.47)

and the coefficient ai is the second derivative at the mesh point i. However, approximation of the
second order derivatives with a linear function may provide inaccurate estimation. Instead, one can
use double first-order differentiation to improve the second derivatives.
The spline differentiators and the Newton differentiation method are numerically compared in the
subsection (6.3.3) .

6.3.2 Adjusting GPS observation with the range measurements

Besides an independent differentiation scheme, one can utilize the range observations within the
differentiation process to obtain higher accuracy. At each evaluation point, the intersatellite range-
rate (%̇) observed by the range defines the following condition equation

%̂%̇ − ∆̂r
T
∆̂ṙ = 0. (6.48)

Where ∆̂r and ∆̂ṙ are the adjusted relative position and velocity vectors. Due to the ranger highly-
accurate range-rate measurement %̇ can be assumed error-free. The condition equation is a nonlinear
equation which takes the following form by writing the intersatellite range in terms of coordinate
differences √

∆̂r
T
∆̂r %̇ − ∆̂r

T
∆̂ṙ = 0. (6.49)
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For linearization of the equation, an initial value for ∆ṙ is required which can be derived by numerical
differentiation. The correction of the position vector in the sense of least squares is

V̂p =
%%̇−∆rT ∆ṙ

‖∆ṙ‖2 + β%2 − %̇2

(
∆ṙ− %̇

%
∆r

)
(6.50)

and equivalently the velocity vector correction,

V̂v =
%%̇−∆rT ∆ṙ

‖∆ṙ‖2 + β%2 − %̇2
β∆r (6.51)

where β is the ratio of the relative velocity accuracy to that of the position.
A similar condition equation can be developed for the range-acceleration. As we will see, imposing the
range-rate condition equation totally corrects the observations along the orbit and no more constraint
is required. On the other hand, imposing a constraint on the range-acceleration does not improve
the perpendicular components. Therefore, we just set up the condition equation for the range-rate
and ignore any additional condition equations.

6.3.3 Numerical comparison of the numerical differentiators

In this subsection, the previously developed differentiators are implemented on some real grace
observations. Both gps and the ranger data are taken from the mission observations within the days
230− 260 in the year 2003. Some pre-analysis has been carried out on the observation for removing
the blunders and adding the corrections.
In order to find an optimal window for the Newton differentiator, the process using windows with
different lengths were carried out and the achieved results depicted in Fig. (6.10 ).
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Figure 6.10: Comparison of the Newton differentiators

No superiority was observed between the differentiators. Furthermore, comparing the basic statistics
of the output of the differentiations ( Table 6.2 ) showed a slight improvement by increasing window
size. As a middle solution, the 9-point Newton differentiator will be employed for the later com-
putations. In order to cross-validate different numerical differentiators, we use the range-rate and
range-acceleration observations. Different numerical differentiations are applied on the range-rate
observations and the achieved results compared with the range-acceleration (%̈).
As seen in Fig. (6.11), both methods gave nearly the same results. However, the spline method
outperforms the Newton interpolation method in the presence of irregularities. Data gaps for instance
cause serious problem for the Newton differentiator while these can be easily handled in the spline
differentiation.
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Table 6.2: The basic statistics of the Newton differentiators comparison

method min [µGal] max [µGal] mean [µGal] std. [µGal]

7-point −28 26 0.00 6.82

9-point −27 26 0.00 6.68

13-point −25 26 0.00 6.52

17-point −25 27 0.00 6.44
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Figure 6.11: Differences between the numerically derived and given intersatellite range-acceleration
( top: Newton differentiator; bottom: Spline differentiation )
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The expected accuracy of the differentiation methods are about 6 µGal which seems to be a reasonable
accuracy compared to other source of errors. Of course, the accuracy of differentiation is better than
6 µGal since the given range-acceleration is assumed error-free.
For evaluation of the gps observation accuracy, one can compare the quantities from range observa-
tions which can be derived numerically from gps data. The intersatellite range-rate for instance, is
one of those observables which is observed by the ranger and can be numerically derived from gps
measurements.
As depicted in Fig. (6.12), it is obvious that the intersatellite range-rate derived from the high-low
configuration is comparatively inaccurate compared to the directly observed one. The range-rate is
observed by the ranger system with an accuracy of about 1 µm/s whereas that of for the numerically
derived one is 200 µm/s.
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Figure 6.12: Differences of the numerically derived and directly observed intersatellite range-rate
(top: Newton differentiator; bottom: Spline differentiation )

However, %̇2/% and %̇2/%2 are the quantities which are used as the components of the observation
vectors in the acceleration difference and gradiometry approach. As an example, the difference of
the numerically derived and directly observed quantity for the gradiometry approach was drawn in
Fig. (6.13). The differences, in contrast to the range-rate deviations, are significantly lower because
of the long arm-length of the grace gradiometer.
Analogously, one can compare the numerically derived and directly observed %̇2/%. As expressed in
Eq. (6.3), it is directly involved in the acceleration difference observation. Dividing by the intersatellite
range confines the differences of the µGal level, see Fig. (6.14)
There are two possibilities for deriving the second-order derivatives:

• applying second-order differentiator to derive %̈(t) from %(t), or

• performing double first-order differentiation %(t) → %̇(t) → %̈(t)

From a theoretical point of view they are identical if the function is known analytically. In prac-
tice, however the function is only sampled at some discrete points. Moreover, the observations are
contaminated with random errors. Therefore, they may behave differently in practice.
To figure out any possible superiority of the methods, the intersatellite range-accelerations were
computed from gps observations by means of the aforementioned differentiation schemes. Both the
Newton differentiator as well as spline differentiation were employed and residuals of the achieved
results were depicted in Figs. (6.15) and (6.16). Additionally, the basic statistics of the differences
were tabulated in Table (6.3).
As the above figures showed, the double first-order differentiator gave higher accuracy compared to
the second-order differentiation methods. The basic statistics also implied that double first-order
differentiation obviously outperformed the second-order differentiation. It is due to the fact that in
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Table 6.3: Comparison of the numerical differentiation schemes for the acceleration computation

method min [mGal] max [mGal] mean [mGal] std. [mGal]

double first-order Newton −3.92 8.10 0.00 1.10

double first-order spline −4.30 5.53 0.00 1.12

second-order Newton −10.63 12.17 0.00 2.16

second-order spline −18.45 19.20 −0.01 3.57
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Figure 6.15: Differences between the numerically derived and directly observed acceleration ( top:
second-order Newton differentiator; bottom: second-oder spline differentiation )
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Figure 6.16: Differences between the numerically derived and directly observed acceleration ( top:
double first-order Newton differentiator; bottom: double first-oder spline differentiation)
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the double first-order differentiation the observation noise level is decreased twice because of a double
averaging process.
Furthermore, observations with standard deviation of about 80µGal seem satisfactorily accurate. As
Fig. (6.17) shows, both the range-rate and range-acceleration are reasonably smooth functions, so
one can expect such promising results by numerical differentiation.
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Figure 6.17: The numerically derived versus directly observed intersatellite range-rate and range-
acceleration

More interesting results are obtained for the observation of gradiometric type. Despite the accelera-
tion difference approach, %̈/% is used in the gradiometry observation equation (Eq. 6.6 ). Thanks to
the grace for its relatively long intersatellite range which reduces the noise level dramatically by di-
viding the range-acceleration by the intersatellite range. As Fig. (6.18) shows, obtaining gradiometry
observations with standard deviation of about 50 mE is also possible merely with gps observations.
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In order to evaluate the effect of imposing the constraint given in Eq. (6.48) on the gps observations,
the numerically derived range-rate was adjusted by the ranger measurements. The achieved results
were depicted in Fig. (6.19). As shown in Fig. (6.19), implementation of the condition equation
confined the differences to zero.
‖∆ṙ‖2/%2 is the required quantity which should be numerically derived from gps observations. To see
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Figure 6.19: Differences of the numerically derived intersatellite range-rate with and without obser-
vation adjustment

the effect of the constraint, the quantity was computed with and without imposing the constraint on
the observations and the results were plotted in Fig. (6.20). Improvement of ‖∆ṙ‖2/%2 compared to
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Figure 6.20: Differences of the numerically derived intersatellite range-rate with and without obser-
vation adjustment (∆ = ‖∆ṙ‖2/%2 − ‖∆̂ṙ‖2/%̂2)

that for the range-rate is not significant. It is due to the fact that the condition equation is imposed
along the los. Consequently, one can expect the correction mainly along the los (see Fig. 6.19) and
nearly no improvement on the other directions, see Figs. (6.21) and (6.22).
Figure (6.21) shows that adding the condition equation makes some corrections on the cross-track and
the out-of-plane components. The along-track correction is nearly negligible. In contrast, the along-
track velocity (Fig. 6.22) is the main component which benefits from the observations adjustment.

Although significant improvement has not been achieved by employing the condition equation it may
be useful for detection of the outliers.
To set up the observation equations for recovery of the geopotential, ‖∆ṙ‖2 is required. It should
be derived by implementation of the numerical differentiator on ∆r which is derived from gps ob-
servations. It cannot be directly compared since there is no equivalent observable in the ranging
system. Another investigation is performed based on the grace satellites dynamic orbits although
considering the previous evaluations ensures obtaining the quantity with reasonable accuracy from
gps measurements.
For dynamic orbit evaluation only the spline differentiator is implemented since both the Newton and
spline first-order differentiator gave nearly the same results on kinematic orbit.
Our first comparison was done on range-rate and intersatellite velocity vector derived from the kine-
matic and dynamic orbits. As Fig. (6.23) shows, deviations of the kinematic and dynamic rage-rate
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Figure 6.21: Relative position vector correction and its respective decomposition
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and intersatellites velocity are less than 50 µm/s. Similarly, %̇2

% and ‖∆ṙ‖2
% were compared and the

achieved results depicted in Fig. (6.24).
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Figure 6.23: Differences of the range-rate and norm of the relative velocity vector ‖∆ṙ‖, based on
the dynamic orbit of the grace satellites ( top: δ = %̇c − %̇dyn bottom: ∆ = ‖∆ṙ‖c − ‖∆ṙ‖dyn)
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Figure 6.24: Differences of %̇2/% and ‖∆ṙ‖2/%, based on the dynamic orbit of the grace satellites (

top: δ = %̇2
c

% − %̇2
dyn

% bottom: ∆ = ‖∆ṙ‖2c
% − ‖∆ṙ‖2dyn

% )

Compared to Fig. (6.23), differences of ‖∆ṙ‖2
% was comparatively higher than that of %̇2

% . In other
words, the amplification of noise level in the later case is dominantly higher than the other.
The last comparison of this part was done on the acceleration differences between the kinematic and
dynamic orbits. Similar to Fig. (6.24), the differences of %̇2/%2 was much lower than that of ‖∆ṙ‖2/%2.

Comparing Figs. (6.13) and (6.25) shows that the differences of %̇2/%2 for the kinematic orbit is nearly
50 times larger than that of for the dynamic orbit. With a pessimistic estimation we can expect 10mE
accuracy if the same ratio is valid for ‖∆ṙ‖2/%2.
Furthermore, comparing Figs. (6.24) and (6.25) proves the superiority of the satellite gradiometry
using a satellite pair over the acceleration difference which has been previously considered by (e.g.
Heß and Keller, 1999; Keller and Sharifi, 2005; Sharifi and Keller, 2005).
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Figure 6.25: Differences of %̇2/%2 and ‖∆ṙ‖2/%2, based on the dynamic orbit of the grace satellites
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%2 )

6.4 Reference orbit employment

The numerical investigation carried out in the previous subsection showed that it was nearly impos-
sible to obtain ‖∆ṙ‖ with reasonable accuracy even using sophisticated numerical differentiators. In
order to bypass the problem, we are interested to find an alternative which yields better accuracy.
The idea of using an appropriate reference field to generate a reference dynamic orbit and recovery of
the residual gravity field is an alternative which has been proposed by many authors, see e.g. Hajela
(1978), Rummel (1980) and Blaha (1992). In the following paragraphs we illustrate the theory of the
idea and justify the applicability of the method for the grace mission.
As will become apparent, the range-acceleration (%̈) is the dominant constituent of the acceleration
difference as well as the gradiometry approach. The acceleration between two satellites with relative
position vector ∆r is expressed as (Rummel, 1980)1

%̈ = 〈∆r̈ , e〉 + 〈∆ṙ , ė〉. (6.52)

Hajela (1978) showed that the second term on the right-hand-side, the problematic term in our
approach, can be ignored for the hl-sst. However, for the ll-sst it is completely different so that
their absolute values are nearly equal, see Fig. (6.26).
Instead of working with the true field, Rummel (1980) has suggested use of the residual field in ll-sst
mode. By introducing a reference field and considering the equation of motion one can generate the
respective dynamic orbit and derive the dynamic observations correspondingly

%̈d = 〈∆r̈d , ed〉 + 〈∆ṙd , ėd〉. (6.53)

the residual range-acceleration can be derived by subtracting Eq. (6.53) from Eq. (6.52),

δ%̈ = (∆r̈−∆r̈d)T e +
1
%

[(‖∆ṙ‖2 − ‖∆ṙ‖2d
) − (%̇− %̇d)

]
(6.54)

in which we assume e = ed and % = %d to bring the relationship to convenient form. In Rummel
(1980), more approximations have been used to simplify the second term on the right-hand-side of
Eq. (6.54). Therein, the average magnitude of the first and second term has been compared and the
second term has been ignored due to its negligible value.

1Equations (6.52) and (6.2) are identical although they are apparently different. For simplicity, the alternative
representation is introduced in this part.
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Figure 6.26: A comparative example of the first and second term on the right-hand-side of Eq. (6.52)
(top: 〈∆r̈ , e〉 bottom 〈∆ṙ , ė〉)

Herein, we alternatively analyse the observations of gradiometry type defined as

1
%
∆r̈T e =

%̈

%
+

1
%2

(
%̇2 − ‖∆ṙ‖2) . (6.55)

For the true field it can be derived using a combination of the ranger and gps observations whereas
that of for the reference field can be computed by means of dynamic orbit integration. Similar to
the acceleration difference approach the second term on the right-hand-side of Eq. (6.55) cannot be
ignored. As will become apparent, however, the quantity for the residual field is negligible.
For cross validation, the idea was applied on the simulated as well as real observations. The simulated
true and reference observations were obtained by means of numerical integration using the egm96
and eigen2 fields respectively. The gravitational force was considered as the only governing force for
both fields. Different components were compared and the results were depicted in Fig. (6.27).

−10

0

10

1/ρ ∆ΓLOS+1282

tr
ue

 [E
]

|∆ x′|2/ρ2−1282ρ′′ /ρ (ρ′/ρ)2

−10

0

10

re
f

0 10 20 30

0.1

0

0.1

tr
ue

−
re

f

time [day]

Figure 6.27: A one-month span of the true, reference and residual simulated observations

As the Figure shows, the intersatellite range-rate contribution to the gradiometry observation is com-
paratively much smaller than that of ‖∆ṙ‖ and the range-acceleration even for the true observations.
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Nevertheless, the range-acceleration is the dominant component of the residual observations since it
is the clearly pronounced constituent of the residual observations, see Fig. (6.27). In Figs. (6.27)-
(6.29), the first-order time derivative is identified by a prime, and the second-order time derivative
by a double prime.
For better understanding, the observations as well as the respective components for a two-revolution
time span of the satellites are shown in Fig. (6.28). Since the adaptive reference orbit (Subsect. 4.2.1)
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Figure 6.28: A three-hour span of the true, reference and residual simulated observations

has been used for the reference orbit a series of periodic blunders has appeared in the residual
component δ‖∆ṙ‖ (= ‖∆ṙ‖− ‖∆ṙ‖d). They can be removed by smoothing the orbit at the updating
points or by implementation of the least squares technique (Subsect. 4.2.2) for each subinterval.
Similarly, the analysis was carried out using the grace real as well as the computed dynamic ob-
servations for a period of one month (230-260/2003). To derive ‖∆ṙ‖ the spline differentiator was
implemented on the satellites’ kinematic orbit. The true, reference and residual observations were
compared in Fig. (6.29).
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Figure 6.29: A one-month span of the true, reference and residual observations of real type

Compared to the simulated observations, the differences were significantly larger for the real obser-
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vations. However, the patterns of the observations were identical, i.e., the range-acceleration was the
main component of the residual field. In other words, the contribution of the second term on the
right-hand-side of Eq. (6.55) was comparatively smaller than that of the first term.
Besides the numerical investigation performed on the acceleration differences given in Rummel (1980),
our numerical analysis showed that the gradiometry mathematical model can be simplified by replac-
ing the true field with the residual one. In other words, one can utilize the residual gravity field
to bypass the problem of numerical differentiation required for computation of the relative velocity
vector. Consequently, the residual observation equation of the gradiometry type (Eq. 6.9) can be
simplified as

δlSG =
1
%

(%̈ − %̈d) =
δ%̈

%
. (6.56)

The new observation equations are set up only using the range-acceleration. In the following subsec-
tion, an alternative scheme is introduced in which both the range-rate and the range-acceleration are
involved.
Similar analysis can be performed for the acceleration difference approach. The simplified observation
equation is expressed as

δlLL = (%̈ − %̈d) = δ%̈ . (6.57)
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Figure 6.30: A one-month span of real true, reference and residual observations of the acceleration
difference type

6.4.1 Computation of the relative velocity vector using the reference field

In the previous subsection we proposed the idea of replacing the true observation with the range-
acceleration residuals corresponding to the sought-after residual gravity field. Using the aforemen-
tioned algorithm, the numerical differentiation problem can be bridged.
Alternatively, instead of the kinematic orbit we can use the dynamic orbit to derive the relative
velocity vector. In other words, we obtain ∆ṙ by numerical integration based on the reference field
instead of implementing numerical differentiation on the kinematic orbit. The resultant velocity
vector is then used to set up the true observation equations. The gradiometry observation equation
for instance, is recast into the so-called gradiometry quasi observation

lSG
Q =

%̈

%
+

%̇2

%2
− ‖∆ṙ‖2d

%2
− 1

%
∆Γ0

LOS
l . (6.58)

The only difference between the quasi-observation and the respective true observation equation is the
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replacement of the relative velocity vector by its analogue in the dynamic orbit. It should be noted
here that the last term on the right-hand-side of Eq. (6.58) is added to reduce the linearization error
(Sharifi and Keller, 2005).
Analogously, the quasi observations of the acceleration difference can be written as

lLL
Q = %̈ +

%̇2

%
− ‖∆ṙ‖2d

%
. (6.59)

The better the reference field, the smaller discrepancies are achieved. However, instead of solving
the problem once, we can start with an arbitrary Earth’s gravity model and improve the estimate
iteratively. Clearly, this iterative process benefits the sequential approach.
Fig. (6.31), as a representative example for instance, shows the differences ‖∆ṙ‖2

%2 − ‖∆ṙ‖2ref
%2
ref

for a
one-month span of the grace satellites. egm96 up to degree and order 120 and eigen2 up to 30,
90 and 120 were assumed as the pseudo-real model and the reference models respectively. As seen in
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Figure 6.31: Differences between the quasi and the pseudo-real observations

Fig. (6.31) and Table (6.4), the differences are about the observation noise although for n = 30 the
differences have a wider range. The idea has also been tested using real observations. The intersatellite

Table 6.4: The basic statistics of the simulated quasi gradiometry observation differences for different
reference fields

Ref. model min [mE] max [mE] mean [mE] std [mE]

n = 30 -19.81 19.95 -0.08 4.18

n = 90 -9.95 8.98 -0.00 1.12

n = 120 -7.60 9.82 -0.00 1.20

relative velocity vector for a one-month (230− 260/2003) span of the kinematic and dynamic orbit of
the grace satellites were computed. The differences were very small and comparatively negligible,
see Fig. (6.32).
The differences can be neglected though they are relatively larger than that of the simulated obser-
vations. Therefore, instead of directly computing the relative velocity vector it can be modelled by
means of dynamic orbit integration.
As a comparative example, residuals of the quasi observations generated by removing (Eq. 6.56)
and modelling the relative velocity vector by means of the reference field has been compared in
Fig. (6.33). Similarly, one can perform the comparison for the acceleration difference approach. As
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‖∆ṙ‖2

%2

)
d
)

−75 

0   

75  

∆ 
[m

E
]

0 5 10 15 20 25 30

−75 

0   

75  

time [day]

δ 
[m

E
]

σ = 49.24 mE

σ = 6.41 mE

Figure 6.33: Residuals of the gradiometry quasi observations generated by removing and modelling
the relative velocity vector ( top: ∆ := 1

%2

(
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seen, the differences are about few mGal for the observations of the reduced type (Eq. 6.57). They
are significantly smaller for the quasi observations (Eq. 6.59). For a comparative analysis the basic
statistics of the differences are tabulated in Table (6.5).

Table 6.5: The basic statistics of the reduced and quasi observations residuals

observation min max mean std.

Reduced Acc. diff. (Eq. 6.57) −3.98mGal 3.52mGal −0.00mGal 1.078 mGal

Quasi Acc. diff. (Eq. 6.59) −1.49 1.49 0.000 0.137

Reduced Grad. (Eq. 6.56) −147 mE 147 mE 0.27mE 49.24mE

Quasi Grad. (Eq. 6.58) −99 95 0.00 6.41

To sum up, the modelling scheme is superior to the removing approach because:

• the true observations can be directly utilized for the recovery of the gravity field,

• both the range-rate and range-acceleration are used,

• numerical differentiation is no more needed,

• higher accuracy can be obtained without any extra computation, and

• both removing and modelling the velocity term give a better solution for the gradiometry
approach.

6.5 Observation decomposition

As discussed in chapter (5), spherical harmonic analysis in the space-wise approach is only applied to
recover the spherical harmonic coefficients of the invariant functions. For the representation of the
geopotential in spherical coordinates, the evaluation functional of the gravitational potential and its
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radial derivatives are the only isotropic functionals which are defined on the Earth’s gravitational po-
tential. On the other hand, the grace observables both the acceleration differences and gradiometry
type are non-invariant functionals. Therefore, the gsha cannot be applied directly on the grace
observables.

6.5.1 Decomposition of the gradiometry observation with linear approxi-
mation

For simplicity, neglect the arc-dependent constituent (± sin 2αT23) or consider the mean contribution.
Imposing the Laplace equation on Eq. (6.12) results in

δV (xx)
m = − cos2 α (T11 + T33) + sin2 αT33 = − cos2 αT11 − cos 2αT33. (6.60)

Inserting Eq. (6.60) into Eq. (6.7) and dividing both sides of the equation by − cos2 α yields the
corresponding linear invariant and non-invariant components

fin = δV (rr)

fnon =
cos 2α

cos2 α

(
δV (λλ)

r2 sin2 θ
+

δV (r)

r
+

cot θ

r2
δV (θ)

)
(6.61)

where the invariant component is the dominant entry of the Marussi-tensor. As a representative
example, δV (xx) as well as its respective components fin and fnon have been calculated based on the
already utilized incremental potential field (egm96-eigen2). Figures (6.35),(6.36) and (6.37) show
the observation and its decomposition. As seen in Fig. (6.36), the invariant component fin imitates
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Figure 6.35: Original signal

the total signal pattern fairly well. Besides, the non-invariant component is considerably lower than
the invariant one. Therefore, the iterative solution of the gsha of the observations based on the
Banach’s fixed point principle will hopefully converge to the original signal.
A precise formulation will be achieved if the arc-dependent component is included. The invariant
components are identical but the non-invariant function is respectively defined as

f±non =
cos 2α

cos2 α

(
δV (λλ)

r2 sin2 θ
+

δV (r)

r
+

cot θ

r2
δV (θ)

)
± 2 tan α

r2 sin2 α

(
− sin θ δV (λθ) + cos θ δV (λ)

)
. (6.62)

The arc-dependent component can be removed from either the in situ observations or the downward
observations on the sphere. Therefore, two different approaches emerge for removing the non-invariant
part:
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Figure 6.36: Invariant component (fin)
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Figure 6.37: Non-invariant component (fnon)
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• Mapping the observations on the mean orbital sphere and removing the non-invariant compo-
nent from the observation on the mean orbital sphere (approach I ),

• Removing the non-invariant component at the satellite altitude and mapping the invariant part
on the mean orbital sphere(approach II ), see Fig. (6.38).
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Figure 6.38: Flowchart of the decomposition of the original observation into invariant and non-
invariant component

The second approach is superior since the non-invariant component as the nuisance part is removed
before downward continuation. Consequently, one can expect lower reduction or gridding error.
Moreover, one can correctly remove the non-invariant arc-dependent component’s contribution. On
the other hand, downward continuation is carried out once for the first approach whereas that of is
equal to the number of iterations for the second approach.
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6.5.2 Decomposition of the gradiometry observation with cubic approxi-
mation

Decomposition of the gradiometry observations with cubic approximation is similar to the linear
type except the non-invariant component is rather complicated. Inserting the Laplace equation into
Eq. (6.18) leads to the following decomposition

fmc
in = T11 = δV (rr) (6.63)

fmc
non = cos 2α

cos2 α T33 − %2

24r̄2

(
cos2 α T

(θθ)
22 + sin2 α T

(θθ)
33 +

sin2 α
sin2 θ

T
(λλ)
22 + tan2 α sin2 α

sin2 θ
T

(λλ)
33 + 4 sin2 α

sin θ T
(θλ)
23 − 2 sin2 α

sin θ tan θ T
(θ)
23

) (6.64)

Assuming α = kπ k = 0, 1 results in much simpler representations. For instance, Eq. (6.17) is
recast into

δV (xx)
sc = T22 +

%2

24r2
T

(θθ)
22 . (6.65)

The corresponding invariant and non-invariant components read

f sc
in = −δV (rr) − 1

r
δV (r), (6.66)

f sc
non = δV (rr) +

2
r

δV (r) +
1
r2

δV (θθ) +
%2

24r2

(
1
r2

δV (θθθθ) +
1
r

δV (rθθ)

)
(6.67)

Besides the first and second partial derivatives of fully normalized associated Legendre functions
P̄nm, the fourth partial derivative is required for cubic approximation. Computation of the fourth
derivative as well as the first and second ones can be performed by means of recurrence relationships.
Using a set of simulated data, the Earth’s gravity field is recovered using decomposition of the grace
observations in the subsequent chapter.

6.6 Summary

This chapter started with the formulation of the sst problem in the low-low mode. Both linear and
cubic approximation of the gradiometry approach were formulated and compared numerically.
Being the intersatellite relative velocity involved in the gradiometry observations was the motivation
for devoting the second part of the chapter to numerical differentiation. The Newton and the spline
differentiator were used for differentiation. They were compared numerically both for the first and
second order differentiations.
Besides directly deriving the relative velocity vector from gps observations, two different alterna-
tives were proposed for bypassing the numerical differentiation. Using the residual observations and
modelling the relative velocity vector based on the available geopotential models were the alterna-
tives. Numerical analysis showed the later approach could be superior to the others due to its higher
accuracy.
Furthermore, the gradiometry observations were decomposed into the invariant and non-invariant
components for the purpose of gsha. Two different iterative approaches were developed for recovery
of the gravity field using the grace data. The proposed schemes are employed in the subsequent
chapter for recovery of the field using synthetic observation.



Chapter 7

Recovery of the Earth’s Gravity
Field

Recovery of the earth’s gravity field with an unprecedented accuracy is the primary scientific objec-
tive of the grace mission. Although the earth’s gravitational acceleration has the main impact on
the satellites motion the tidal as well as the non-gravitational accelerations perturb the space-borne
observations. In order to portray the earth’s gravity field, the nuisance accelerations’ contribution
should be removed from the observations using either appropriate models or any auxiliary observa-
tions.
Contribution of the tidal accelerations as deterministic components are usually removed from the
satellites’ observables. In contrast, the effect of the non-gravitational acceleration i.e., the atmospheric
drag and solar radiation pressure, are observed by the satellite onboard accelerometers and removed
from the measurements at the preprocessing step.
after removing the nuisance components, different approaches can be employed for the recovery of
the field. In the previous chapter (chapter 6), the grace mission observations were formulated as the
gradiometry observations. As mentioned in chapter 5, spherical harmonic coefficients can be obtained
from the reduced gradiometry observations on the mean orbital sphere by means of global spherical
harmonic analysis.
In this chapter, the numerical results achieved by the implementation of the aforementioned approach
are presented. For cross-validation of the developed algorithm, synthetic data is used.

7.1 Data processing

The earth’s gravity field recovery process using the satellite data consists of few steps. A general
flowchart of theses steps and their interconnection is shown in Fig. (7.1).
In general, the process can be divided into two independent parts:

Derivation of the true observations: The satellites’ kinematic orbits and the ranging informa-
tion are the main observations of the mission. The ranging observations i.e., range-rate and
range-acceleration are two constituents of the observations vector. Besides, they can be used
for detection of the hidden outliers in gps observations by imposing Eq. (6.49) on the observa-
tions at each evaluation point. Furthermore, the satellite onboard accelerometers measure the
non-gravitational accelerations. The star cameras observations are used for transformation of
the accelerometer observations from the satellite body-fixed frame to the inertial frame i. e., the
celestial reference frame (Ditmar et al., 2005).

Computation of the reference observations: Despite the kinematic part, the reference observa-
tions are derived by implementation of the existing models for the gravity field, and the tidal
accelerations. Compared to the kinematic observations the reference observations only contain
the contribution of the gravitational accelerations. Moreover, the reduced dynamic orbit is a
joint product of the dynamic and kinematic observations. Herein, it is considered as an input.

133



Chapter 7. Recovery of the Earth’s Gravity Field 134

Reference
Gravity field

model

Tide

models

Reduced
dynamic

orbits

Kinematic

orbits
Rangers

measurements
Accelerometers

observations
Star cameras
observations

Rotation into
the LORF

Data
preprocessing

Reference
observations

Kinematic
observations

Residual
observations

Approach

1 or 2 ?

Removing the
non-invariant
component

2

Mapping the
invariant

component onto a
regular on the MOS

GSHA

Correction of

the Spherical

harmonic

coefficients

Updating the
Geopotential

model

Conver

gence ?

N
o

Recovered
Gravity Model

Y
e

s

Mapping the residual

observations onto a

regular grid on the

MOS

1

Removing the
non-invariant
component

N
o

Figure 7.1: Flowchart of data processing

As explained in section (6.3), use of the reduced-dynamic relative velocity vector results in
a higher accuracy in comparison with the relative kinematic velocity derived by numerical
differentiation. Therefore, the reduced-dynamic relative velocity vector is used for derivation
of the kinematic observations. Furthermore, the reduced-dynamic orbits will be used as the
blunder detector in the kinematic orbit.

When the kinematic and the reference observations are available, the residual observations are com-
puted

δl =
δ%̈

%
+

%̇2 − %̇2
ref

%2
− 1

%
〈∆a, e〉, (7.1)

where ∆a is the non-gravitational acceleration difference between the grace satellites. Sharifi and
Keller (2005) showed that working with the residual field is more convenient for the gradiometry
approach since the linearization error is small and can be ignored. The residual observations just
contain the residual gravity field contribution. Hence, they form the observation vector which can be
used for the recovery of the residual gravity field.
As stated in section (6.5.1), two approaches can be used for obtaining the invariant component on a
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regular grid on the mean orbital sphere. In the first approach, the residual observations are mapped
on a regular grid on the mean sphere and the non-invariant component is subtracted from the gridded
residual observations. In the second approach, the non-invariant component is removed from the in
situ observations and the remaining part i.e., the invariant component is reduced on the regular grid
on the mean sphere. In both cases, the initial guess of the non-invariant component is assumed zero.

7.2 Numerical results

To validate the proposed iterative recovery algorithm, egm96 and eigen2 were assumed as the
pseudo-real and the reference gravity fields respectively. Using the residual field (Fig. 7.2), various
observables were synthesized on the mean orbital sphere as well as the satellite altitude. For ease of

90 60 30 0 30 60 90 120

30

60

90

120
−8

−6

−4

−2

0

2

4

6

8

x 10
−9

Figure 7.2: Spectrum of the residual field (egm96-eigen2)

operation, the tidal accelerations as well as the non-gravitational ones were neglected.

7.2.1 Simulated along-track gravity gradient on the mean orbital sphere

The along-track gravity gradient component for an inclined orbit (Eq. 6.60) was the first synthesized
observable. The signal and its respective decomposition were depicted in Figs. (6.35), (6.36) and
(6.37).
For initialization of the iterative approach, the non-invariant component was assumed equal to zero.
The process iterated 50 times and the recovered signal spectrum’s residuals were plotted in Fig. (7.3).
From Fig. (7.3), it can be inferred that the iterative solution successfully extracted the non-invariant
part from the total signal. In other words, the non-invariant component was gradually removed from
the total signal, see Fig. (7.4). Consequently, the more iterations the better solution is achieved.
Comparing Figs. (7.4) and (6.37) implies that the non-invariant component has been removed from
the along-track component up to 95 %.
Furthermore, the absolute and relative errors of the estimated signals were calculated and achieved
results were shown Fig. (7.5). They confirmed the previous figure. As seen in Fig. (7.5), the relative
error was less than 10% for n ≤ 100. It reached 15% in its worse case.
In order to analyse convergence of the iterative solution, ε = ‖xn+1−xn‖L2

‖x‖L2
was computed for each

iteration and the results were drawn in Fig. (7.6). As expected, ε dramatically decreased for the first
few iterations and the improvement was not pronounced for the higher iterations.
Representation of the achieved results in terms of error degree variances is another criterion for
judgement. In Fig. (7.7), error degree variances were depicted for the first few iterations. Similar to
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Figure 7.3: The recovered signal spectrum’s residuals after 50 iterations
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Figure 7.4: The non-invariant component’s residuals (absolute values) after 50 iterations
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Fig. (7.6), highly pronounced differences between the error curves, showing significant improvement,
are observed at the first few iterations.
This simple example proves the iterative algorithm of the first type (Approach I) is able to remove
the non-invariant component part successfully. Of course, it is far from reality due to the absence
of the errors which contaminate the observations in practice. The next simulations become more
realistic by involving the potential error sources in the space-wise approach.

7.2.2 Analysis of the simulated residual observations (linear approxima-
tion)

In order to investigate the performance of the first approach for the grace mission observable,
the residual observations δl (7.1) were simulated at the satellite’s orbits. In the linear gradiometry
approach, the observed quantity is written as a linear functional on the gravity field δV (xx) (Eq. 6.60).
Consequently, the previously implemented spherical harmonic analysis procedure can be employed
for the simulated observations as soon as they have been downward continued on the mean orbital
sphere.
The simulated observations at the satellite altitude were reduced onto the Gauss grid defined on the
mean orbital sphere as {

θi = arccos(xi)

λj = − 2π
Nmax

+ π
Nmax

j
(7.2)

where, xi are the zeros of PNmax+1 and Nmax = 120. Before performing the analysis, the reduced
observations were compared with the simulated values at the Gauss grid and the differences were
plotted in Fig. (7.8). The linear approximation is inaccurate at the polar regions. Therefore, the de-
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Figure 7.8: Observations deviations from δV (xx) (filtered)

viations of the residual observation from the along-track component are really meaningful. Therefore,
the residual observations whose deviations were more than 50 mE were replaced by the along-track
component at the respective grid points. The basic statistics of the deviations were tabulated in
Table (7.1).

Table 7.1: Basic statistics of the reduced δl with computed values on the Gauss grid
Observable Statistic

min max mean std.
δl −49.61mE 49.20 mE 0.005mE 3.70mE
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The gsha has been carried out on the gridded observations and the achieved results, after 30 iter-
ations, have been shown in Fig. (7.9). With the achieved results after the first few iterations, one
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Figure 7.9: Error degree variances for the first few iterations of the simulated observations analysis

could expect divergence of the iterative solution. Consequently, it has led us to halt the process just
after a few iterations.
Let us have a deeper look at the signal δV (xx), to find out why the process has converged for the
first case i.e., simulated along-track on the mos, whereas it has diverged for the second one i.e., the
reduced observations. Fig. (7.10) shows four different classifications of δV (xx). As seen, less than 1%
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Figure 7.10: δV (xx) classification

of the data were larger than 50mE. Just around 54% of the data were larger than 5mE. This figure
brings us to the conclusion that the gsha based on such a rather weak signal can be easily violated
by noise as well as disturbing signal.
The followings are the potential error sources:
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1. Aliasing/omission error

2. Utilizing the nominal instead of real orbit (sin α ≈ cos I
sin θ )

3. Interpolation error

4. Linearization error

Among them, the linearization error as well as the interpolation error have been discussed in Chapters
3 and 6 respectively. In the following paragraphs, we briefly explain the two others.

Aliasing error

Real observations contain all frequencies up to N = ∞ while we just consider the signals with
frequencies up to a certain limit (N = Nmax). The presence of the signal parts higher than Nmax

influences the recovery process especially at the high-degree components. To have a rough estimate of
the error, the grace observable V (xx) was simulated using EGM96 up to 120 and 360. The differences
can be interpreted as an approximate estimation of the aliasing error if we consider EGM96 up to
360 as the pseudo-real gravity field model. The achieved results were sketched in Fig. (7.11).
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Figure 7.11: Aliasing error (lN observations of the Eq. (6.6) type generated using egm96 up to degree
and order N)

Compared to the previously investigated error, the aliasing error seems to be out of question at least
as long as the observations are influenced by the linearization error.

The nominal instead of the real orbit

As mentioned earlier, e given in Eq. (2.79) is valid for the nominal orbit with a constant inclination I.
In reality, this assumption is violated to some extent due the presence of the disturbing forces. To be
sure of achieving satisfying accuracy even by using the nominal inclination (89.5◦), the real inclination
deviations from the nominal one were plotted in Fig. (7.12). As seen, the maximum deviation is just
20 arcsec which seems to be negligible.
To sum up, the already mentioned errors were compared and their basic statistics tabulated in Table
(7.2).
Compared to the others, the linearization error is noticeable. Therefore, we should focus on the
linearization error to improve the grided observations.
In order to reduce the linearization error, the higher order terms of Taylor’s expansion of the gradiom-
etry equation (Eq. 6.4) should be considered. As explained in Chapter 6, the cubic approximation is
the alternative, which yields comparatively higher accuracy.
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Figure 7.12: Variation of the orbit inclination around the nominal inclination (89.5 ◦)

Table 7.2: Basic statistics of different type of errors
quantity statistic

min (mE) max (mE) mean (mE) std. (mE)
δl120 (signal) −107.7 105.9 0.00 11.67

δl360 − δl120 (aliasing) −1.75 1.81 0.00 0.15

δl120 − δl120red (reduction) −4.99 4.88 0.00 1.19

∆lin (linearization) −29.89 35.65 0.00 2.39

δV xx − δV xx
f (model) −18.37 18.41 0.00 0.99

δV xx
± − δV xx

f (model) −0.51 0.74 0.00 0.06

reduced observation: δl120red :=
(

%̈
%

)120

EGM96
−

(
ρ̈
ρ

)120

EIGEN2



Chapter 7. Recovery of the Earth’s Gravity Field 142

Table 7.3: The ascending and descending non-invariant functions and their respective mean and
differences basic statistics

quantity min [mE] max [mE] mean [mE] std [mE]

Ascending −106.55 72.17 −0.09 9.89
Descending −107.50 71.41 −0.09 10.03
Mean −107.03 71.79 −0.09 9.92
Differences −15.59 32.40 0.00 1.80

Moreover, the arc-dependent terms of the non-invariant constituent have been assumed to be dropped
out by averaging. To examine the validity of this assumption, the non-invariant function correspond-
ing to the ascending and descending arcs and their respective mean and differences for the Gauss
grid were computed. The achieved results and their basic statistics were shown in Fig. (7.13) and
Table (7.3). Although the differences between the ascending and descending component are small
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Figure 7.13: The ascending and descending non-invariant functions and their respective mean and
differences on the mos

they may influence the solution. For the sake of completeness, we consider the arc-dependent term
as well.

7.2.3 Analysis of the simulated residual observations (cubic approxima-
tion)

Compared to the linear approximation, computation of the cubic approximation of the non-invariant
function requires more information. The intersatellite range for instance, should also be downward
continued on the mean orbital sphere if the first iterative approach is employed. However, the non-
invariant component can be removed at the satellite altitude (approach II ). Hence, the invariant
component is downward continued on the mos.
Furthermore, using the gradiometry equation of the cubic-order reduces the truncation error of the
expansion (Eq. 6.4), see Fig. (7.14). Consequently, the residual invariant function can be replaced
by the invariant function corresponding to the disturbing potential. In other words, we can just
remove an ellipsoidal reference field’s contribution from the invariant function. In comparison with
the residual invariant function, the signal to noise ratio will be amplified.
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Figure 7.14: Truncation error of the cubic approximation of the gradiometry equation corresponding
with the disturbing potential

As shown in Fig. (7.1), the non-invariant component can be removed from the observations at the
satellites altitude. Since the computation is carried out in the satellite orbit the ascending and
descending arcs are distinguished and there is no need to use the mean observations. After remov-
ing the non-invariant component the invariant component (remaining part) is reduced on the mos.
Furthermore, the invariant function can be replaced by the harmonic function

fH
in = r2δV (rr). (7.3)

Therefore, analytical continuation can also be used for downward continuation of the function onto
the mos (Hofmann-Wellenhof and Moritz, 2005).
Dividing both sides on Eq. (6.17) by − cos2 α is recast into

f±c
in = δV (rr) (7.4)

f±c
non = fmc

non ∓ 2 tan α T23

± %2

24r2

(
sin 2α

2 sin θ tan θ
T

(λ)
22 +

sin2 α tan α

sin θ tan θ
T

(λ)
33 − sin 2α

sin θ
T

(θλ)
22 − (7.5)

2 sin2 α tanα

sin θ
T

(θλ)
33 − 2 sin2 α tan α

sin2 θ
T

(λλ)
23 − sin 2α T

(θθ)
23

)

where, fmc
non is the mean non-invariant function of the cubic-order (Eq. 6.64). The additional terms

on the right-hand-side of Eq. (7.5) are the contribution of the arc-dependent components.
In order to evaluate the performance of the cubic approximation in the iterative approach, the already
simulated observations are considered. The non-invariant component and the ellipsoidal reference
field are computed using the eigen2 model. Therefore, the invariant function corresponding to the
disturbing gravity field is reduced on the mos.
The reduced observations were plugged into the gsha processor and the achieved results were plotted
in Fig. (7.15). Errors of the recovered coefficients were depicted in terms of the error degree variances
for the first few iterations. As shown in Fig. (7.15), the medium wavelengths (10−110) were recovered
successfully just by a few iterations. However, the frequencies lower than 10 and higher than 110
were erroneous. In other words, the method could successfully recover the medium wavelengths.
In the time-wise approach, the high-degree coefficients are recovered efficiently by introducing the
regularization parameter (Ditmar et al., 2005). For the recovery of the high-degree coefficients, a
similar modification may be helpful in the space-wise approach. Keeping the low-degree coefficients
constant, the problem of the recovery of the low-degree wavelengths can also be bypassed.
Furthermore, Fig. (7.16) shows the original invariant and non-invariant signals and their respective
residuals after three iterations.
The iterative approach could successfully remove the remaining part of the non-invariant function
and recover the spherical harmonic coefficients. The remaining part of the non-invariant function is
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Figure 7.15: The error degree variances for the first few iteration using the approach II
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less than 10% of the original non-invariant function.

7.3 Summary

We have implemented the proposed recovery schemes for determination of the gravity field using
simulated observations for a configuration of the grace type mission.
For the observation of the gradiometry type between a pair of satellites either the residual observation
or the high-order approximation of the equation has to be used. For the time-wise approach, the
residual observations with linear gradiometry observation equation can successfully be used (Sharifi
and Keller, 2005). However, in the space-wise approach, one has to remove the non-invariant compo-
nent before applying the gsha. Incomplete removal of the non-invariant component and the presence
of the linearization error make the first approach (approach I) inefficient in the space-wise approach.
The second approach (approach II) has alternatively been employed. In contrast to the first approach,
the third order approximation of the gradiometry equation has been used. Consequently, one can
expect smaller truncation error compared to the linear approximation.
Moreover, the non-invariant component has been removed at the satellite altitude. Therefore, the
arc-dependent terms have been correctly subtracted from the observations. Additionally, removing
an ellipsoidal reference field instead of a high-degree field has led us to an amplified invariant signal.
As the numerical comparison showed, the latter approach outperforms the first one in the space-wise
representation.





Chapter 8

Summary, Achievements,
Conclusions and Recommendations

This chapter summarizes the work contained in the dissertation, outlines the major contribution, lists
the main achievements, and addresses a number of topics that deserves additional investigation.

8.1 Summary

This dissertation was started by formulation of the ll-sst problem in the brute-force approach. It
followed by the semi-analytical approach obtained by imposing some constraints on the brute-force
approach. The problem was formulated as 1d fft problem by assuming the orbit of repeat type
with uninterrupted stream of observations and mapping the observations onto the nominal orbit (the
time-wise approach in the frequency domain). Alternatively, recovery of the gravity field using the
ll-sst observations reduced into N + 1 determined linear system of equations with N

2 + 1 unknowns
at most by exploiting the orthogonality of the basis functions (the time-wise in the time domain).
Representation on a torus can be achieved by assuming a constant inclination (I = I0) besides a
constant radius for the nominal orbit. Having a full periodic function in both directions has made
the old difficult problem quite simple.
The semi-analytical approach then proceeded with the space-wise approach by mapping the observa-
tions on the mean orbital sphere. From a numerical point of view, it was the simplest representation
among the others though its formulation became rather complicated due to the special configuration
of the grace mission.
Mapping the observations onto an ideal geometric configuration with constant radius and /or incli-
nation was common both to the semi-analytical and space-wise approach. In order to handle the
greatest single obstacle of the approaches, we did a comprehensive study on scattered data mod-
elling. Optimization of the basis functions in the polynomial as well as the rational approximation
and optimal selection of the shape parameter of the rbf interpolation methods were closely studied
by means of the gas.
In order to minimize the linearization as well as the numerical differentiation error the full gravity
field was superseded by the residual field. In order to minimize the deviation of the reference dynamic
orbit corresponding with the true one, we studied the idea of the best fitting reference orbit.
We then focused on the global spherical harmonic analysis on sphere. Different methods were pre-
sented and their performance compared numerically.
The chapter entitled as mathematical formulation of LL-SST problem was devoted to the formulation
of the ll-sst problem in the space-wise approach. Because of the direct relation of the gradiometry
observations with the gravity field geometry, we developed a mathematical formulation for the field
recovery for the gradiometry type. Besides the linear approximation, the cubic approximation of
the gradiometry equation was formulated and numerically compared to the linear approximation.
Moreover, two different approaches were addressed for obtaining the observation vector without
implementation of the numerical differentiation.

147



Chapter 8. Summary, Achievements, Conclusions and Recommendations 148

Subsequently, we reviewed decomposition of the anisotropic observations into the invariant and non-
invariant components. After observation decomposition, two different iterative algorithms were de-
veloped for the recovery of the residual field Stokes’s coefficients.
Finally, the developed iterative schemes were implemented in chapter 7 and their performance com-
pared from the numerical point of view.
To sum up, the main achievements and the recommendation for the future studies are summarized
in the following sections.

8.2 Achievements

This dissertation made the following contributions:

X In this study, the gas have been applied successfully for the determination of the shape para-
meter of the radial basis functions. It can be generalized to every kind of rbf although herein
it is just applied for the inverse multiquadric interpolation.

X The one-leave out approach or the standard bootstrap method has been utilized for setting up
the object function of the interpolation and approximation optimization problem. In Rippa
(1999), the method has been used for the multiquadric interpolation in the local optimization
sense. The idea is elegantly generalized to the approximation problem.

X The object function of the rbf shape parameter optimization problem as well as the polyno-
mial approximation scheme has been generalized such that the objective function includes the
interpolation points. From the numerical aspect, including the interpolation point prevents the
undesirable oscillations of the high-degree polynomials.

X The optimization problem of the rbf interpolation as well as the polynomial approximation
have been modelled in the global rather than the local sense. Consequently, the global optimum
rather than the local solution is achieved.

X The augmented multiquadric interpolation method can be chosen in an optimal manner by
means of the gas. Both the shape parameter and the additional polynomial components can
be optimized using the binary representation of the gas.

X Similar to the selection of the optimal augmented multiquadric interpolator, the rational inter-
polation/approximation function is optimized using the binary representation of the gas.

X In Keller (1994), the first iterative approach has been introduced based on the Banach fixed-
point theorem. The second approach has alternatively been developed for recovery of the
gravity field using the anisotropic functionals. Compared to the first approach, the second
one is superior since the non-invariant component can be correctly removed by distinguishing
the function on ascending and descending arcs. Furthermore, higher gridding accuracy will be
expected since the non-invariant component as the nuisance part has been removed.

X The intersatellite relative velocity vector is numerically derived from the grace satellite posi-
tions. Compared to the k–band measurements, the gps observations are inaccurate. Moreover,
the numerical differentiation is a unfavorable numerical process since it amplifies the obser-
vation noise. Using the residual gravity observations has been suggested by Rummel (1980).
He showed that the residual observation vector can be set up using just the range-acceleration
differences. Alternatively, replacing the relative velocity vector with the corresponding vector
derived from the reduced dynamic orbit is proposed. It has been numerically shown that the
latter approach outperforms the former one.

X The gradiometry observation equation of the third order has been developed. Compared to
the linear approximation, it yields higher accuracy since the truncation error is significantly
smaller than that of the linearization. Consequently, a reasonable accuracy can be obtained
even by subtracting an ellipsoidal reference field’s contribution which is inaccurate in the linear
approximation.
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8.3 Conclusion and recommendations

• Instead of mapping the observations on the sphere they can be reduced on a torus. Compared to
the sphere, observation equations can be expressed rigorously in the torus frame. Furthermore,
2d fft can be employed since both ωo and ωE complete a full period on torus.

• The same approach can be implemented for the recovery of the gravity field using goce data.
The radial component V (rr) is an invariant functional on the gravity field. Therefore, it can
directly be transferred into the geopotential coefficients by mapping the observations on the
mean orbital sphere and performing the gsha. The other observables (G22, G33 and the off-
diagonal elements) of the goce mission can be solved using the iterative approaches.

• In Montesinos et al. (2005), the gas have been proposed for 3 d inversion of the gravity data.
It is recommended to employ a similar approach for the local gravity field modelling and deter-
mination of the local temporal variations the field.

• The bootstrap method introduced by Efron (1979) can be used for transformation of the sto-
chastic behavior of the observations into the estimated coefficients in the gsha process.

• The Earth’s topography, without exception, can be seen in the estimated residuals of the grid-
ding methods. Moreover, the same pattern can be seen in the observations decomposition.
Therefore, removing the contribution of the topography in space-borne observations generates
a much smoother residual field. Consequently, we can expect to achieve higher accuracy both
in downward continuation as well as in the decomposition. More details on the removing the
effect of the topography potential can be found in (e.g. Wild and Heck, 2004; Heck and Wild,
2005).

• Similar to the time-wise approach, the estimation of the high-degree coefficients requires partic-
ular care in the space-wise approach. The problem is bypassed by introducing a regularization
parameter in the time-wise approach. An investigation should be carried out on the applicability
of an analogous scheme in the space-wise method.

• The method of least squares prediction has proven its flexibility and high-performance in the
Earth’s gravity field determination. The ll-sst problem can also be formulated effectively
in the least squares collocation sense. Both the acceleration difference and the gradiometry
observation are transferred into the gravitational potential on the boundary.

• The analytical continuation can be successfully employed in the second approach for reduc-
ing the invariant component on the specified grid. The continuation is well-defined since the
reduction is carried out in the outer space.

• Spherical harmonic analysis in terms of unevenly spaced observations has been implemented
for geomagnetic data (e.g. Whaler and Gubbins, 1981; Mochizuki et al., 1997). It is a potential
alternative to the gsha using the gridded data. Performing numerical analysis will clarify the
pros and cons of the global harmonic analysis based on the gridded and scattered observations.
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T Bäck. Optimal mutation rates in genetic search. In Proceedings of the 5th International Conference
on Genetic Algorithms, pages 2–8, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-299-2.

D. Beasley, D. R. Bull, and R. R. Martin. An overview of genetic algorithms: Part 1, fundamentals.
University Computing, 15(4):170–181, 1993.

M. W. Berry. A variable-step double-integration multi-step integrator. PhD thesis, Faculty of the
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, April 2004.

G. Blaha. Refinement of the atellite-to-satellite line-of-sight acceleration model in a residual gravity
field. Manuscripta Geodaetica, 17:321–333, 1992.

L. Booker. Improving search in genetic algorithms. In Genetic Algorithms and Simulated Annealing,
pages 61–73. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

R. L. Burden and J. D. Faires. Numerical Analysis. Cole Publ. Co., sixth edition, 1997. ISBN
0-534-95532-0.

F. Busetti. Genetic algorithms overview. URL citeseer.ist.psu.edu/busetti01genetic.html.

J. C. Butcher. Coefficients for the study of runge-kutta integration processes. J. Austral. Math. Soc,
3:185–201, 1963.

J. C. Butcher. The non-existence of ten stage eighth order explicit runge-kutta methods. BIT
Numerical Mathematics, 25(3):521–540, 1985.

R. E. Carlson and T. A. Foley. The parameter r2 in multiquadric interpolation. Compute. Math.
Applic, 21(9):29–42, 1991.

J. C. Carr, W. R. Fright, and R.K. Beatson. Surface interpolation with radial basis functions for
medical imaging. IEEE Transactions on Medical Imaging, 16(1):96–107, 1997.

P. Charbonneau. An introduction to genetic algorithms for numerical optimization. Technical Report
450+IA, NCAR, Boulder, Colorado, March 2002.

151



BIBLIOGRAPHY 152

P. F. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, San Diego, second
edition, 1984.

K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems.
Evolutionary Computation, 7(3):205–230, 1999.

P. Ditmar, V. Kuznetsov, A. A. van Eck van der Sluijs, E. Schrama, and R. Klees. Deos-champ-01c-
70: a model of the earth’s gravity field computed from accelerations of the champ satellite. Journal
of Geodesy, 79(10):??, 2005.

M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.

J. Duchon. Interpolation des fonctions de deux variables suivant le principl de la flexion des plaques
minces. R.A.I.R.O. Analysi numer., 10:5–12, 1976.

O. V. Dudnik and P. I. Bidyuk. Application of radial basis functions in neural networks for prognosis
of economic parameters. Journal of Automation and Information Sciences, 35(4):39–45, 2003.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26,
Jan 1979.

A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural Computing Series.
Springer, 2003. ISBN 3-540-40184-9.

H. W. Ellsaesser. Expansion of hemispheric meteorological data in antisymmetric surface spherical
harmonic (laplace) series. J. Appl. Metheorology, 5:263–276, 1966.

N. V. Emeljanov and A. A. Kanter. A method to compute inclination functions and their derivatives.
Manuscripta Geodaetica, 14:77–83, 1989.

ESA. Study of a satellite-to-satellite tracking gravity mission. Technical report, ESTEC/Contract
No. 6557/85/NLP, 1987.

L. J. Eshelman, R. Caruana, and J. D. Schaffer. Biases in the crossover landscape. In Proceedings
of the 3rd International Conference on Genetic Algorithms table of contents, pages 10–19, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval schemata. In L. Darrell
Whitley, editor, Foundation of Genetic Algorithms, volume 2, pages 187–202, San Mateo, 1993.
Morgan Kaufmann.

A. Fairley. Comparison of methods of choosing the crossover point in the genetic crossover operation.
Technical report, Department of Computer Science, University of Liverpool, 1991.

E. Fehlberg. Classical seventh-, sixth-, and fifth-order runge-kutta-nystrom formulas with stepsize
control for general second-order differential equations. Technical Report NASA-TR-R-432, NASA
Center for AeroSpace Information (CASI), 1974.

Y. Feng. An alternative orbit integration algorithm for gps-based precise leo autonomous navigation.
GPS Solution, 5(2):1–11, 2001.

D. N. Fogel and L. R. Tinney. Image registration using multiquadric functions, the finite element
method, bivariate mapping polynomials and thin plate spline. Technical Report 96-1, National
Center for Geographic Information and Analysis, 1996.

T. A. Foley. Interpolation and approximation of 3-d and 4-d scattered data. Compute. Math. Applic,
13:711–740, 1987.

C. M. Fonseca and P. J. Flemming. An overview of evolutionary algorithms in multiobjective opti-
mization. Evolutionary computation, 3(1):1–16, 1995.



BIBLIOGRAPHY 153

R. Franke. A critical comparison of some methods for interpolation of scattered data. Technical
Report NPS-53-79-003, Naval Postgraduate School, Monterary, California, 1979.

W. Freeden. Multiscale Modelling of Spaceborne Geodata. B. G. Teubner, Leipzig, 1999.

W. Freeden, O. Glockner, and M. Thalhammer. Multiscale gravitational field recovery from gps-
satellite-to-satellite tracking. Studia Geophysica et Geodaetica, 43:229–264, 1999.

R. V. Garcia. Local geoid determination from grace mission. Technical Report 460, Ohio State
University, Columbus, 2002.

R. V. Garcia. Efficient global gravity determination from satellite-to-satellite tracking (sst). Technical
Report 467, Ohio State University, Columbus, 2003.
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Appendix A

Inclination functions

There are several methods for normalized inclination function F̄ k
nm computation (Sneeuw, 1991a).

Direct evaluation The function is computed by use of rigorous formulas. Nevertheless, it leads to
instability due to numerical overflow and /or underflow. Furthermore, the number of repeated
computations is a waste of computer time.

Fourier method It is quite powerful however, computation would be rather slow because of exe-
cuting the whole procedure for evaluation of an individual pair of (n,m).

Recursive approach Different recurrence procedures have been proposed for the evaluation of func-
tion. Among them, Emeljanov and Kanter’s method (Emeljanov and Kanter, 1989)is preferred
because of its stability up to high-degree and higher computational efficiency.

The Emeljanov and Kanter’s Method
Since computation of the F̄ k

nm has been clearly described in (Sneeuw, 1991a), for ease of convenience
we explain it very briefly.

Introduction of intermediary functions: The recursion runs over the auxiliary functions Ek
nm

1 rather than the functions F̄ k
nm themselves. Inclination functions and the intermediary ones

fulfill

F̄ k
nm =

[
sin

I

2

]|k−m|
Ek

nm. (A-1)

Initialization: First we compute the value of the auxiliary function for n = N , maximum degree
and order up to which the inclination functions are required,

E−N
N0 = (−1)C( n+1

2 )
√

2N + 1 RN , (A-2)

with C the Ceil operator which round the operand to the nearest integers greater than or equal
to the operand. RN is computed using the recurrence relation

Rn =
2n− 1

n
cos

I

2
Rn−1, (A-3)

with starting value R0 = 1.

Recursion over m:

E−N
Nm =

(−1)N−m+1

cos I
2

√
(2− δm,0)(N −m + 1)
(2− δm−1,0)(N + m)

E−N
N,m−1 (A-4)

1In Sneeuw (1991a) Ak
nm stands for the intermediary function while we have already reserved it for the lumped

coefficients.
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Recursion over k: Three different recurrence relationships are used for different value of the index
k,

Ek
km = (−1)k−m+1 cos

I

2

√
4k2 − 1
k2 −m2

Ek−1
k−1,m; k > m (A-5)

Ek
mm = cos

I

2
Ek−1

mm

( 2
m+k

m−k+1
2

)m−k even

m−k odd

; −m < k ≤ m (A-6)

Ek
−km =

(−1)k+m−1

cos I
2

√
(k − 1)2 −m2

(2k − 1)(2k − 3)
Ek−1
−k+1,m; k ≤ −m (A-7)

Recursion over n:

Ek
nm = (−1)n−m ank

√
4n2 − 1
n2 −m2

n(n− 1) cos I −mk

2(n− 1)
Ek

n−1,m +

bnk

√
(2n + 1)[(n− 1)2 −m2]

(2n− 3)(n2 −m2)
n[(n− 1)2 − k2]

n− 1
Ek

n−2,m (A-8)

where

ank =

[
4

n2−k2

1

]n−k even

n−k odd

bnk =

[ 1
n2−k2

1
(n−1)2−k2

]n−k even

n−k odd

For initialization of Eq. (A-8), we use Eqs. (A-5), (A-6) and (A-7) on the one hand and set
Ek

k−1,m = Ek
m−1,m = Ek

−k−1,m = 0 on the other hand.

Furthermore, Eq. (A-8) is singular for (n,m, k) = (1, 0, 0). To avoid this singularity Sneeuw
(1991a) recommended to compute the corresponding function directly by use of rigorous formula
(Kaula, 1966)

F̄ 0
10(I) = E0

10(I) = −
√

3
2

cos I. (A-9)

For n ≥ 2 the recurrence relation Eq. (A-8) can be used without any problem.

These recurrence relations can also be used for computation of the first and second partial derivatives
of the Inclination functions. However, herein we will just utilize the along-track component which
contains just the function itself. Therefore, the formulas are not repeated here. The interested reader
can refer to Sneeuw 1991a and the references therein.



Appendix B

A single observation elimination

The linear system of equations based on n and n− 1 observations are

Anξn = ln (B-1)

and
An−1ξn−1 = ln−1 (B-2)

Least squares solution of Eqs. B-1 and B-2 can be written as

AT
nAnξ̂n = AT

n ln → Nnξ̂n = un → ξ̂n = N−1
n un (B-3)

and
AT

n−1An−1ξ̂n−1 = AT
n−1ln−1 → Nn−1ξ̂n−1 = un−1 (B-4)

As seen in Eq. (B-3), the solution is a function of N−1
n and un. Similarly, the same equation can

be written for the later case. Nevertheless, we would like to express ξ̂n−1 as a function of ξ̂n, N−1
n

and the excluded observation’s respective row in the design matrix an, and its value ln. In order to
derive the sought after expression, let us decompose the design matrix and the observation vector as
follows:

An =
[

An−1

an

]
→ Nn−1 = Nn − aT

nan = Nn −N[n]
n (B-5)

similarly

ln =
[

ln−1

ln

]
→ un−1 = un − aT

n ln = un − u[n]
n (B-6)

N[n]
n and u[n]

n are the ln observation’s contribution to the design matrix Nn and the known vector un

of the normal equations, respectively. Substituting Eqs. (B-5) and (B-6) into Eq. (B-4) leads to
(
Nn −N[n]

n

)
ξ̂n−1 = un − u[n]

n (B-7)

or simply

ξ̂n−1 =
(
Nn −N[n]

n

)−1 (
un − u[n]

n

)
(B-8)

Although Eq. (B-8) expresses the solution vector xn−1 in term of ξ̂n, Nn, an and ln, it is not the
ideal solution that we are looking for. Because, (Nn −N[n]

n ) should be inverted n times which seems
to be rather a difficult task for the large number of n. Alternatively, one may utilize Taylor expansion
to avoid n times inversion.

ξ̂n−1
.=

(
N−1

n + N−1
n N[n]

n N−1
n

)(
un − u[n]

n

)
=

(
In×n + N−1

n N[n]
n

)(
ξ̂n −N−1

n u[n]
n

)
(B-9)

In×n is an n× n identity matrix.
Eq. (B-9) seems to be the ideal sought after equation. However, numerical analysis shows that the
contributions of the high-order terms of Taylor expansion to the unknown vector are significant. In
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other words, linear expansion of the normal matrix inversion (Eq. B-8) results in inaccurate solution.
Therefore, the higher order terms of the expansion should be included in order to achieve a reasonably
accurate solution. One should investigate up to which degree of the expansion is required.
As an alternative, we propose to estimate the solution differences instead of the solution vector itself.
Subtraction of Eq. (B-3) from Eq. (B-7) results in

Nn

(
ξ̂n − ξ̂n−1

)
+ N[n]

n ξ̂n−1 = u[n]
n (B-10)

or
Nn

(
ξ̂n − ξ̂n−1

)
−N[n]

n

(
ξ̂n − ξ̂n−1

)
+ N[n]

n ξ̂n−1 = u[n]
n (B-11)

By substituting ∆̂ξ =
(
ξ̂n − ξ̂n−1

)
in Eq. (B-11), the following equation holds

(
Nn −N[n]

n

)
∆̂ξ = u[n]

n −N[n]
n ξ̂n. (B-12)

Finally,

∆̂ξ =
(
Nn −N[n]

n

)−1 (
u[n]

n −N[n]
n ξ̂n

)
. (B-13)

Using Taylor expansion of the normal matrix inversion, Eq. (B-13) is recast into

∆̂ξ
.=

(
In×n + N−1

n N[n]
n

)
N−1

n

(
u[n]

n −N[n]
n ξ̂n

)
. (B-14)

One can simply derive the corresponding expression for x̂n−1 using the following relation.

ξ̂n−1 = ξ̂n − ∆̂ξ =
(
In×n + N−1

n N[n]
n

)(
ξ̂n −N−1

n u[n]
n

)
+ N−1

n N[n]
n N−1

n N[n]
n ξ̂n (B-15)

Compared to Eq. (B-9), one more term has appeared on the right-hand side of Eq. (B-15). It hence
renders ξ̂n−1 estimation with higher accuracy possible.


