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Abstract

This work presents a new method to simulate mantle convection in a spherical
shell with fully spatially varying viscosities. The formulation of the governing equations
is based on the finite-volume (FV) method. This has the advantage that fully irregular
grids in three and two dimensions can be used and efficiently parallelized for up to 396
CPUs. While being capable of using common regular grids like the projected icosahedra
and the cubed sphere grid, an irregular grid with varying lateral resolution, the spiral
grid, was investigated. Basically, after a Voronoi tessellation that forms the necessary
cells for the FV formulation, any set of nodal positions can be used as a base for the
discretization. The model is based on the Cartesian reference frame and utilizes co-
located variables. To ensure a divergence free velocity field and mass conservation, a
pressure correction method called SIMPLE was applied. The discretization method is
second-order accurate in space and time and time discretization is treated fully impli-
citly. This implies that steady-state solutions can be computed with large time-steps
while strongly time-dependent convection is solved using small time-steps. The Krylov-
subspace solver BiCGS with a Jacobi preconditioner is employed to solve the resulting
system of equations. The discretization of the stress tensor can handle viscosity varia-
tions of up to 8 orders of magnitude from cell-to-cell and up to 45 orders of magnitude
system wide. The model was validated by a comparison to analytical solutions and pub-
lished results. A comparison with a commercial product also yielded satisfying results.
A convergence test with successively refined grids proved the convergence towards a
fixed solution.

As an application to purely internally heated mantle convection in a spherical
shell, a parameter study of 88 cases is carried out to derive scaling laws for heat trans-
port, stagnant-lid thickness and structural complexity. The aspect ratio is fixed to 0.55,
similar to the value for the Earth. The applied rheology law is based on a linearized
Arrhenius law, commonly known as the Frank-Kamenetskii approximation. Three con-
vection regimes that were explored with bottom-heated convection in previous studies
are also identified using purely internally heated convection. In addition, a low-degree
regime is identified. This new regime exhibits long wavelength flow in the same para-
metric range as the sluggish regime. Furthermore, the surface is completely mobile and
the transition to the stagnant-lid regime is found to be rather abrupt. To distinguish
between the regimes, present and newly developed indicators are applied and vali-
dated and the transition from the mobile to the stagnant-lid regime is followed for the
first time using purely internally heated convection in a spherical shell. Structural scal-
ing laws yielding the dominant wavelength of convection based on the internal Ray-
leigh number are derived for the stagnant-lid regime that. Furthermore, a method ca-
pable of reconstructing the heat-flow and temperature depth-profile for this type of
convection is developed.
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1 Introduction

Today’s image of the interior dynamics of planets consists of convecting cur-
rents in their silicate mantles. The subject of the presented thesis is a better under-
standing of the convecting currents, i.e., the mantle convection, and the associated heat
and mass transport. This phenomenon is caused by the ability to remove the internal
heat efficiently by convection, which transports hot silicate material to cooler regions
and vice-versa. Not only is mantle convection responsible for the thermal structure of
the mantle and the thermal evolution of a planet but also for topographic features like
tectonic structures and volcanoes visible on planetary surfaces. An understanding of
the mantle dynamics requires among others knowledge of the inner structure and
composition of the planets, for instance the ratio between the core and planetary ra-
dius. Figure 1.1 shows a sketch of the inner structure of the present Earth.

Continental

Figure 1.1: Model of the inner structure of the Earth, after Colin Rose © Dorling Kindersley
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The thermal and chemical evolution of terrestrial planets is studied by many re-
search areas such as geophysics, geology, mineralogy as well as chemistry and biology.
In contrast to the Earth our understanding of other terrestrial bodies comes mostly
from remote sensing and in some cases also from in situ measurements, surface sam-
ples and meteorites. Especially the surface samples from the Moon and meteorites from
Mars are of immense value as they provide a wealth of information about their compo-
sition and processes on these planets like core- and crustal formation. The latter can be
used to constrain models on the interior structure (e.g., Sohl and Spohn, 1997) and the
thermal evolution (e.g., Schubert and Spohn, 1990, Breuer et al, 1993, Spohn et al,
1997, Hauck and Phillips, 2002). The thermal evolution of a planet’s interior depends
mostly on the dynamics of the planetary mantle through which heat is mainly trans-
ported by thermal convection. The principal mechanisms of thermal convection in the
mantle have been studied since the beginning of the twentieth century (Bénard, 1900,
Rayleigh, 1916, Babcock, 1930).

Convection in a silicate mantle is fundamentally different to convecting currents
in the Earth’s atmosphere or ocean. The silicate material of the mantle has an extremely
high viscosity such that the mechanical inertia forces do not play a role anymore. A
consequence of this is the immediate absence of any large-scale geological processes
once the driving forces would disappear. Another distinctive behavior of mantle con-
vection is the central influence of the complex rheology?, the flow properties of matter.
Mantle material cannot be characterized by a single value of viscosity at a fixed tem-
perature; instead the viscosity changes due to a number of different factors. The viscos-
ity of the mantle material varies between several orders of magnitude and depends on
temperature, pressure, stress and water content (Weertman, 1970, Karato and Wu,
1993). Many studies show that the rheology has a great influence on the temporal and
spatial evolution of mantle convection (e.g., Christensen, 1983, Christensen, 1984a,
Christensen and Harder, 1991, Giannandrea and Christensen, 1993, Zebib, 1993,
Hansen and Yuen, 1993, Ratcliff et al, 1995, Weinstein, 1995, Zhu and Feng, 2005,
Roberts and Zhong, 2006). The rheology for instance determines among others the
different regimes of convection, i.e., plate tectonics or stagnant-lid convection.

The analysis of rheology laws is therefore unarguably of great importance and,
indeed, revealed over thirty years ago that the viscosity of the silicate material in plane-
tary mantles is mainly temperature-dependent (Tozer, 1972). Although the exact de-
pendence on the various different influences such as e.g. pressure and composition is
not well known, it is indisputable that the temperature dependence is most dominant.

The mantle of a planet is heated by various sources and mechanisms. Heat is
provided by the decay of radiogenic nuclides, energy released due to the growth of an

1 A more detailed introduction to rheology can be found at
http://www.aip.org/tip/INPHFA/vol-10/1iss-2/p29.html (11.02.2009)
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inner core, but also by primary energy due to accretion and core formation. Tempera-
ture variations in the interior then cause density variations that further cause gravita-
tional instabilities; thermal convection can occur as colder and denser material des-
cends into the lower mantle and hotter and lighter material rises towards the surface.
This material circulation transports heat more efficiently than by pure conduction. The
interior is cooled by that process while heat sources, the decay of radioactive elements
and heat from the core, tend to warm it (e.g., Schubert and Spohn, 1981, Peltier and
Jarvis, 1982, Vacquier, 1998). The convective heat transport is responsible for surface
stresses that can cause tectonic features like faults and compressions observed on ter-
restrial bodies today. An understanding of the thermal convection and evolution is
therefore critical for interpreting these surface features in terms of interior processes
including the dynamics of the mantle.

1.1  Fluid Dynamical Simulation of Mantle Convection

Studies on mantle dynamics are often done numerically where the convecting
system is described using principle laws of hydro and fluid dynamics. The application
of linear stability analysis (Chandrasekhar, 1961, Zebib et al., 1980, Zebib et al., 1983)
revealed that in fact the interior of the Earth is convecting. The system of partial diffe-
rential equations, which describe mantle convection, consists of three conservative
equations, namely the conservation of energy, mass and momentum (Schubert, 1992).
The numerical study of mantle convection is difficult because realistic parameters often
lead to a high non-linearity that would further require computer resources that are
beyond our current capability. Nevertheless, many effects of mantle convection can be
explained through numerical analysis by the extraction of simple processes, leading to
simplified equations through approximations and geometries. Only special cases of
extremely simplified conservation equations can be described analytically, which leads
to an increased interest in this topic by scientists in the field of non-linear dynamics to
describe basic phenomena of turbulence (e.g., Hansen and Yuen, 1990, Grossmann and
Lohse, 2000, Ahlers and Xu, 2001, Breuer et al, 2004). In addition, laboratory experi-
ments reach their limitations quickly due to extreme material properties. In spite of
this, they are helpful to verify the models generated with computers (e.g., Nataf and
Richter, 1982, Davaille and Jaupart, 1993, Futterer et al.,, 2008). The main difficulty in
reproducing realistic mantle flow in laboratory experiments is the complexity of the
rheology that includes the effects such as pressure, stress and temperature dependen-
cies, but also the effects of radiogenic heat sources are easier to include in a computer
simulation than a laboratory experiment. Since simulations can reproduce more realis-
tic effects, they are the main tool in understanding current mantle dynamics. Due to the
ever increasing computational power in recent years, the door remains open for more
complex scenarios and realistic parameters. Despite the possibility of more realistic
setups, we are far from simulating all the effects of a planetary mantle. This is due not
only to deficient computing power, but also to a gap in our understanding of fundamen-
tal parameters. While it is important to understand the fundamentals of the non-linear
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dynamics behind the conservation equations that can lead to a completely different
outcome with an extremely small change in the initial conditions, another field is cur-
rently establishing itself to simulate atoms with the help of quantum physics and su-
percomputers. Through this, they aim to understand the behavior of simple elements
under extreme conditions that occur in the interior of planets (e.g., Belashchenko et al,
2008). With simulations of this kind, rheology laws can be refined and greatly im-
proved in accuracy.

A further important parameter apart from the rheology is the geometry. The de-
velopment of three-dimensional simulations in a spherical shell completes the un-
known influence of the spherical geometry on the fluid flow. The extreme increase of
computing power required by the third dimension and the global representation lead
first to the exploration of symmetrical states of a steady-state flow with an isoviscous
fluid (Schubert and Zebib, 1980, Baumgardner, 1985). A unique property of isoviscous
flow in a spherical shell is the shape of the up- and downwellings. The upwelling is
shaped like a mushroom and is called a plume, while the downwelling forms sheet-like
structures on the sides. Compared to flow structures in the Cartesian box, steady-state
spherical geometry convection exhibits three classes of patterns. Machetel et al. (1986)
distinguished rolls, bimodal and polygonal patterns. First physical and geophysical in-
terpretation was done by Bercovici et al. (1989). The results led to the understanding
that steady-state isoviscous flow does not maximize the heat-flow as it tends to be larg-
er preceding a steady-state mode.

The mantle has a more complex rheology than assumed in earliest convection
models in the 1980’s. Numerical studies of mantle convection show that the properties
of heat transport are dramatically influenced by a temperature-dependent viscosity
(e.g., Christensen, 1983, Christensen, 1984a, Christensen and Harder, 1991, Tackley,
1993, Tackley, 1996a, Solomatov and Moresi, 1997). Another achievement was the first
self-consistent generation of plate-tectonics driven by the mantle flow beneath (e.g.,
Trompert and Hansen, 1998a, Tackley, 1998, Stein et al,, 2004).

The lateral variation of viscosity also poses an additional difficulty regarding the
numerical implication. Lateral variations are mainly due to the temperature dependen-
cy but also through the effects of a non-Newtonian rheology. The mathematical model
behind the simulation is specialized to solve this kind of problem but still quickly
reaches limitations. These limitations can be encountered by a refined geometry for the
discretization, yielding finer discrete points to evaluate the system of equations. Anoth-
er way of avoiding false results or breakdowns is to investigate numerical issues based
on the limitations of a finite binary number representation on a computer. Many prob-
lems can be encountered by recognizing not only the existence of a finite discretization
but also a finite accuracy of a number represented by a computer.
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The inclusion of lateral variable viscosity variations also poses also a limitation
to the discretization method. Usually spectral approaches are ideally suited to solve a
convection simulation in a spherical environment with constant or depth dependent
viscosities because there is no coupling of modes through the viscous term (e.g.,
Glatzmaier, 1988, Glatzmaier, 1993, Tackley et al, 1993, Harder, 1998, Buske, 2006).
This approach limits the viscosity variation in radial direction, but also alternative me-
thods like finite differences, finite elements or finite volumes have difficulties encoun-
tering spherical coordinates. These usually pose a singularity at the poles; also grid
spacing becomes difficult close to the poles (Ratcliff et al, 1996b, Iwase, 1996). Even
with different grid setups the problem remains that the representation of a number
within a computer is not following the non-Euclidian spacing of spherical coordinates,
so numerical differences will always yield to different numerical errors at the poles,
posing the question of triggered effects even when using almost equally spaced grids
based on triangulated icosahedra, which was one of the first works dealing with this
problem (Baumgardner, 1985). Although other works followed (e.g., Bunge et al., 1996,
Yoshida et al.,, 1999, Reese et al.,, 19993, Reese et al., 2005), the restriction on the lateral
variations were large and the overall viscosity contrast was relatively small and re-
stricted to steady-state solutions (Tabata and Suzuki, 2001).

A first systematic analysis of weak temperature-dependent viscosity fluids in a
spherical shell with a Cartesian discretization was done by Ratcliff et al. (1996Db,
1996a). The mobility towards the surface decreased with an increased temperature-
dependent viscosity contrast, as expected from two-dimensional Cartesian models. A
fundamental outcome of this work is the rapid change of flow structure and heat-flow
properties with even small viscosity variations.

Local methods in Cartesian geometry for spherical environments are therefore
the preferred choice when compared to spectral approaches (e.g., Zhong, 2001,
Yoshida, 2004, McNamara and Zhong, 2005b, Choblet, 2005, Yoshida and Kageyama,
2006, Roberts and Zhong, 2006, Stemmer et al., 2006). Another advantage of discrete
methods is the possibility of dividing the grid to efficiently distribute the problem
among several computers. This combination of resources is important to counter local
effects on the global scale of spherical shells. With the utilization of supercomputers,
first close-to-realistic parameters can be studied.

1.2 Parameterized Convection Models

The calculation of the thermal evolution with 2-D or 3-D convection models is
not only time consuming, it also requires appropriate initial conditions. Although there
is ongoing research about reversing the effects of thermal convection to constrain poss-
ible initial setups (Ismail-Zadeh et al, 2007), the conditions after the accretion phase of
a planet are beyond our knowledge and first estimates exceed the capabilities of cur-
rent day supercomputers. To be able to estimate the heat transport mechanisms under
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these extreme conditions, it is of fundamental importance to obtain scaling laws. These
laws stem from the behavior of a convecting fluid under conditions that we are able to
study (empirical approach). After applying a well defined parametric range to the mod-
el, it is possible to find not only suitable laws that are able to describe the result, but
also to extrapolate the effects to arbitrary ranges. Another advantage of these scaling
laws is the immediate answer to a problem in contrast to a relative expensive and time
consuming setup of numerical simulations.

This way it is possible to obtain heat transfer laws as a function of known quan-
tities. The improved understanding of heat transport mechanisms in the planetary
mantle leads to repeated changes in the preferred scaling law used to model the ther-
mal evolution of planets. The earliest thermal evolution models for terrestrial planets
used a simple parameterized law which described thermal convection for a constant
viscosity fluid (Sharpe and Peltier, 1979, Schubert, 1979, Turcotte, 1979, Davies, 1980,
Schubert et al, 1980, McKenzie and Richter, 1981). Other attempts include the effects
of a growing lithosphere in parameterized models based on constant-viscosity scaling
laws (e.g., Schubert et al.,, 1990). To characterize the stagnant, non-convecting lithos-
phere with isoviscous parameterization models, an isotherm describes the transition
from viscous deformation to rigid response to loads applied over geologic timescales
(e.g., Schubert, 1992). Such a model represents the heat transport in a planet with a
single plate on top of a convecting mantle, but assumes that the lid coincides with the
rheological lithosphere; the region of the planet’s crust and mantle over which the flow
properties of rock are insufficient to relieve stress. The weaker upper part of the man-
tle is assumed to be constantly recycled.

Improved scaling laws have been derived from convection models with strongly
temperature-dependent viscosities with experimental and numerical studies (e.g.,
Richter, 1978, Richter et al, 1982, Morris and Canright, 1984, Christensen, 1984a,
Giannandrea and Christensen, 1993, Davaille and Jaupart, 1993, Moresi and Solomatov,
1995, Solomatov, 1995, Honda, 1996, Grasset and Parmentier, 1998, Reese et al,
19993, Reese et al.,, 2005) . From these studies, a new convection regime could be iden-
tified using simulations with strongly temperature-dependent viscosity, i.e. the stag-
nant-lid regime. This regime predominantly cools the outer layers through stagnant-lid
growth while the deep interior is cooled rather inefficiently. The earlier studies have
mostly considered heating from below or were done in two-dimensional boxed models
(e.g., Grasset and Parmentier, 1998, Sotin and Labrosse, 1999). The only studies for
three-dimensional spherical shells were done for instance by Reese et al. (19993,
2005), which cover only a narrow parameter range within the stagnant-lid regime and
do not study the transition between the regimes or structural aspects. Since radiogenic
heat sources are incorporated in the mantles of terrestrial planets, it is also necessary
to study thermal convection for volumetrically heated fluid. Volumetric heating also
approximates secular cooling as demonstrated by Davaille and Jaupart (1993).
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1.3 Outline of this Thesis

This thesis presents an insight into the development and application of a simu-
lation that approximates the governing equations for the viscous flow of mantle mate-
rials to finite locations in time and space. While chapter two focuses on the mathemati-
cal background, it also presents the rheology laws required to constrain the fluid flow.
The generic conservation equations are presented in a non-dimensional fashion with a
section describing the appropriate factors to reconstruct physical values.

The numerical techniques to discretize the equations in space and time are ap-
proached in chapter three. A new method based on the finite-volume method will be
presented along with a new gridding technique. The discretization method is applicable
on all Voronoi grids and is able to handle fully spatially varying viscosities with high
orders of magnitude. Special attention is drawn to the discretization of the viscous ele-
ment as it plays a vital role in properly describing mantle convection. The common ap-
plicability of this method is made visible by the application to various grid types, as
well as to two-dimensional grids.

Chapter four concentrates on the introduction of diagnostic values to validate
the model. The validation is based on analytical solutions as well as extensive compari-
sons with published results in this field. This is done by reproducing certain scenarios
of isoviscous as well as temperature-dependent viscosity flow. Besides the comparison
to published results and an analytic solution, another comparison was made by recon-
structing the problem in two dimensions with commercial software, namely COMSOL.

A first application to derive scaling laws is presented in chapter five with a focus
on purely internally heated convection. The derived scaling laws consist not only of
heat-flow properties of convection in spherical shells, but also on structural develop-
ments that describe the complexity and time-dependency. In addition to the tempera-
ture dependence of viscosity, the influence of pressure dependency is studied as well.
This is done by a parameter study of 88 cases with varied parameters such as the Ray-
leigh number and the above mentioned influences of temperature and pressure on vis-
cosity. Several convection regimes have been identified and among these the stagnant-
lid regime is of particular interest for terrestrial planets, i.e., the heat transport in that
regime, the thickness of the lid and the mode of convection. Chapter 6 concludes this
thesis.
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2 Mathematical Formulations

The physical laws for mantle convection originate from the field of fluid dynam-
ics. On geological timescales rigid rocks can properly be described as a fluid. The prin-
ciple laws of conserving energy, momentum and mass are expressed with differential
equations whose solutions require the definition of pressure, temperature and velocity.
These elementary properties describe the dynamics of the entire system and depend on
the strength of buoyancy forces, rheological parameters, internal heat sources and
boundary conditions. The governing equations are described in a continuum and follow
the thermo-dynamic rules (Schroeder, 2000) with approximations further explained in
section 2.3.

2.1 The Rayleigh-Bénard Setup

Rayleigh-Bénard convection is the instability of a fluid layer which is restricted
between two thermally conducting boundary layers, and is originally heated from be-
low to produce a fixed temperature variation. Since liquids or rocks typically have posi-
tive thermal expansion coefficients, the hot liquid at the bottom expands and produces
an unstable density gradient in the fluid layer. If the density gradient is sufficiently
strong, the hot fluid will rise, causing a convective flow which results in enhanced
transport of heat between the two boundaries (Bénard, 1900, Rayleigh, 1916). An ex-
tension to the original Rayleigh-Bénard configuration is a volumetric heat source or
even the complete removal of the lower boundary heat source.

The state of the fluid is described for a discrete space 7 and time t by a velocity
field v = v(#,t), a scalar temperature field T = T(7,t) and a scalar pressure field
p = p(#,t). The density of the fluid is coupled with temperature through the thermo-
dynamic equation of state, as explained in section 2.3. For a two-dimensional (2D) ver-
sion the velocity vector contains two elements whereas in three dimensions (3D) three
elements are required, totaling 5 (4 in 2D) unknowns per discrete point in space and
time. The following section presents the mathematical background to derive these
quantities through differential conservation equations.

2.2 The Conservation Equations

The basic set of equations that describe the fluid-mechanical properties are
based on the continuity equation that, in form of a differential equation, describes the
conservative transport of some quantity ¢:

d¢

StV f=s, 2.1)
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where f is a function describing the flux of ¢p and s represents arbitrary sources or
sinks to ¢.

The convection of physical quantities like energy, momentum and mass are de-
scribed through some form of this equation. The continuity equation has two different
representations; one is the differential form as presented above, and another is the
integral from. The two forms are linked together through the divergence theorem (or
Gauss’ theorem).

The rigid silicate rock within the mantle is subject to high mechanical stresses
that lead to lattice defects within the crystalline structure. These dislocations and crys-
talline pollutions lead to deformations and finally to creeping motions, describable as a
highly viscous fluid in a continuum. It is thus possible to describe the fluid using the
Navier-Stokes equations. The following equations result from the conservation condi-
tions for mass, momentum and energy (Schubert et al, 2001, chap. 6):

dp

- V- H =0 .
Tl (p ) (2.2)
pDB=-Vp+V-T+f (2.3)
aT
pCP(DT_pTDp>=_-§-+v-(,wT)+Q (2.4)
P

Where p describes the density, ¥ is the velocity vector, t time, p hydrostatic pressure , T
. . 1, N )
the deviatoric stress tensor, € = E(Vv + {V©}7) the strain rate tensor ( T stands for

vector transpose), a the thermal expansivity, Q the volumetric heat production rate, cp
the specific heat capacity at constant pressure and 4 the proportionality factor for the
ratio between the heat-flow ¢ and the temperature gradient VT = ¢G/—A. The energy
equation (2.4) already includes the entropy relation from the second law of thermody-
namics that describes the relation between entropy and temperature. The introduced
material derivate D combines the derivation in time and space and is defined as

]
D=—+7%-V 2.5
Fria (2:5)

For an isotropic medium with the influence of a shear viscosity 7, the following relation

can be established:

T = 2n€

(2.6)

The volumetric viscosity that represents the resistance of the body to volumetric
changes is already neglected in equation (2.6).

10
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2.3  Approximations for Mantle Convection

In order to describe geophysical fluid flow, equation (2.2)-(2.4) can be consider-
ably simplified. Certain terms are not required because they do not influence the dy-
namics of the fluid at all and others are well described by a linear approximation. A
main indicator for the terms that can be neglected is the Mach number (Ferziger and
Peri¢, 1999). Other simplifications arise from the nature of the problem, e.g. the Bous-
sinesq approximation, or the treatment of physical properties as constant, e.g. neglect-
ing compressibility.

The Boussinesq approximation (e.g., Spiegel and Veronis, 1960, Tritton, 1988,
Furbish, 1997) reduces density variations to the body forces in the momentum equa-
tion; in all other respects density is treated as a constant. The so-called standard Bous-
sinesq approximation limits density variations to thermal expansion alone and only in
gravitational direction. An extended version includes viscous heating, latent heat
sources and an adiabatic temperature increase per depth that becomes of particular
interest if phase changes are included in the model (e.g., Normand et al., 1977). The
pressure dependence of density is neglected in both versions of the approximation and
the equation of state for the standard version becomes:

p=—apy(T —Tp) (2.7)

Further simplifications of the conservation equations stem from the assumption
of an incompressible fluid and the negligence of inertia forces (e.g., Turcotte and
Schubert, 1982). This is possible because the inertia forces are negligible small com-
pared to the viscous friction forces. In fluid dynamics, this is also called low-Mach num-
ber flow or Stokes-flow (Ferziger and Peri¢, 1999), whereas the Mach number is < 1
and the Prandtl number Pr = (cpu)/k is assumed infinite. Nevertheless, the strong
viscosity variations in a planetary mantle do not entitle to neglect shear-stress influ-
ences in the momentum equation as it is otherwise common practice for isoviscous
simulations:

V- [n(Vo + {Vv3}D)] » n V?¥ (2.8)

With these approximations, the conservation equations for a convecting plane-
tary mantle reduce to

V-5=0 (2.9)
~Vp + V- [n (V0 + {Vi}")] = poa(T — Ty)g = 0 (2.10)
pocp DT = kV?T + poH (2.11)

The pressurep = p — p,g is the portion without the hydrostatic component. The
gravitational field that yields the acceleration vector g within a planet stems mainly
from below the mantle and can be safely approximated with the radial unity vector as

11



12 Chapter 2: Mathematical Formulations

g = —ge,. The internal heating rate H is treated as a constant and represents
radiogenic heat sources.

2.4 The Dimensionless Equations

In the reduced set of conservation equations (2.9-2.11) the only remaining vary-
ing material properties are the density p and dynamic viscosity 7. The remaining prop-
erties that influence the strength of the density variation can be combined into the di-
mensionless Rayleigh number Ra. With the introduction of the Rayleigh number the
equations can be non-dimensionalized with reference values that simplify the equa-
tions and concentrate the physical constants into a ‘driving’ factor. This number is a
ratio of convection supporting to convection hindering physical properties. For bottom
heated convection with an inner/outer temperature difference AT = T; — T, and a shell
thickness of d it is defined as

agATd3
q=P0?97° 7 (2.12)
Knref
A similar expression exists for the case of internally heated convection with a

volumetric heating rate H, defined as energy per time and volume:

2 5
piagHd
Ray = ——— 2.13
H = ey (2.13)
The conservation equations change with these constants and the previous ap-

proximations to

V.5 =0 (2.14)
_ T
v+ [ (T o)+ rars =0 as
aT’ Ray
=7 ITI — IZTI - 2.16
ETRA VAT +— (2.16)

where all parameters with an apostrophe are non-dimensionalized scaled parameters
with the following relationships to physical properties (Christensen, 1984a) and ac-
cording to figure 2.1:

Space: X=d-x' (2.17)
Time: t=4/-t (2.18)
Velocity: p="K/ 0 (2.19)
Pressure: p= nrefk/dz -p' (2.20)
Temperature: T =AT -T' + Toyrface (2.21)
Internal Heating rate: H = AAT/dZ -H' (2.22)
Viscosity: N="Tres N (2.23)

12
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Temperature Max: 1.00

Figure 2.1. Important geometrical and boundary properties for the simulation setup. For convenience a con-
ductive non-dimensionalized temperature gradient is shown in a 2D slice.

The thermal diffusivity is defined as k = 1/¢,p,. The two definitions of the Ray-
leigh number rely on a reference viscosity of arbitrary value, which is further discussed
in the next section. The scaling parameters for temperature lead to variations between
zero and one for bottom-heated convection. Note that starting from chapter 3, the " is
neglected and all properties are non-dimensionalized for convenience. To avoid com-
plications in back-scaling, the thickness of the spherical shell is always one, leading to
the only geometry parameter, the ratio of the inner to the outer radius:

Ti
n=—

- (2.24)

2.5 Rheology

Even below the melting temperature it is possible that rigid crystalline rocks in
the mantle start to flow because they are exposed to high mechanical stresses and start
to deform. The lattice defects of the crystalline structure of silicates start to move
through the material; this is called creeping motion. In general there are two creeping
mechanisms, diffusion creep and dislocation creep. The effectiveness of these mechan-

13



14 Chapter 2: Mathematical Formulations

isms depends on pressure and temperature as well as on the composition of the rock
itself. An active diffusion creep mechanism deforms the crystal by wandering gaps on
neighboring lattice elements that, in a countermovement, is filled by an atom of another
neighboring element. The probability of creating gaps depends on the stresses that act
on the crystal structure. If these stresses are not equal on all sides, the concentration of
gaps starts to vary, which is compensated with lattice diffusion. This diffusion creep is
thermally activated and can be described by an Arrhenius term with a diffusion coeffi-
cient D:

= (_ E+pV” pV*) (2.25)

D = Dy exp RT
In the above equation, E* acts as the activation energy per Mol, which contains the re-
quired energy to create gaps as well as the necessary potential barrier between a gap
and the occupied lattice element. The activation volume per Mol VV* considers an in-
creased energy barrier to neighbor elements due to pressure. The exponential form
follows directly from the Boltzmann distribution that determines the fraction of atoms
with a distinct energy at temperature T. D, contains the jump frequency and R is the
gas constant.

Dislocation creep is in some cases more efficient than diffusion creep if instead
of point-defects dislocation defects (line defects) start to move through the crystal. Dis-
locations can glide under the influence of shear stresses through various lattice levels
that require only minimal energy to reorder the atoms within a crystal. This is possible
with lattice defects that diffuse to the dislocation - a controlling process for the rate of
the dislocation creep. It is described with the above Arrhenius law (Karato, 1981,
Karato and Wu, 1993). The deformability of the material and therefore its viscosity
depends on the diffusion coefficient D. Experiments and theory yield a common rela-
tion between stresses and rate of deformation, for which both creeping mechanisms
are valid (Karato and Wu, 1993, Schubert et al., 2001):

1 T\t rb\™ E* +pV*
e=ge=aly) () (=) (2.26)
Here, A represents a normalization factor, 7;; the square root of the second invariant of
the stress tensor, u is the shear modulus, d is the grain size and b the absolute value of
the Burges vector that describes the relative atom motion for a defect through the crys-
tal. The non-dimensional values of i and 1 determine the active creeping mechanism.
Typical values are#i = 1 with m = 2.5 for diffusion creep and#i = 3 with m = 0 for
dislocation creep. In case of active diffusion creep the viscosity is therefore indepen-
dent of stress.

For this study, only diffusion creep (Newtonian viscosity) is considered which
can be expressed in a normalized form as

14
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e (EHLG EAIGo)
using the following normalizations (Roberts and Zhong, 2006):
E' = REZT (2.28)
V' = %R;V* (2.29)
Ts = TsuAr{I:ace (2:30)

The reference temperature T,..; determines the reference viscosity for the Rayleigh
number 7. = 1(Ty¢f)- The pressure-dependent term is approximated by a depth de-
pendent term following the normalized radius. Because the viscosity can also be depth
dependent, a term for the reference depth is for simplicity fixed to the inner radius
(ryef = 17). The reference temperature therefore determines about which values the

Rayleigh number, i.e. the driving term varies.
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3 Numerical and Technical Realization

Over the last three decades, local discretization methods like finite-element
(FE), finite-volume (FV) and finite-difference (FD) methods have firmly established
themselves as the approach for computational fluid-flow problems in geophysics, espe-
cially with regard to thermal convection problems involving spatially varying viscosi-
ties in two (e.g., Parmentier, 1978, Christensen, 1984a, Hansen and Yuen, 1993,
Solomatov and Moresi, 2000a) and three dimensions (e.g, Ogawa et al, 1991,
Christensen and Harder, 1991, Ogawa, 1995, Trompert and Hansen, 1998a, Tackley,
1998, Stein et al., 2004) as well as in spherical shells (e.g., Tabata and Suzuki, 2000,
Zhong et al, 2000b, Yoshida and Kageyama, 2004, McNamara and Zhong, 2005a,
Choblet, 2005, Stemmer et al, 2006). The advantages of irregular grids like arbitrary
refinements and resolution choices were left outside because of more complicated dis-
cretization techniques and computational requirements. Nevertheless, these advantag-
es become especially interesting in cases with complex geometries like spheres in three
dimensions (3D) or disks in two dimensions (2D), which occur regularly in geophysics.
This section demonstrates a technique to utilize the FV method on irregular grids in 3D
with a focus on the spatial derivate of the stress tensor, required for the implementa-
tion of dynamic viscosities, which is of primary interest in the field of mantle convec-
tion modeling (e.g., Stemmer et al., 2006).

Another focus lies on a new technique to generate a spherical grid with unique
properties, the spiral grid. Because no grid is orthogonal all over the spherical surface
and at the same time free of coordinate singularities and grid convergence, the spheri-
cal surface is usually split up into sub-regions. To distribute points uniformly on a
sphere, most grids are based on triangulated platonic solids, which radially project
from the center. Complex grids based on subdivisions of platonic solids like the icosa-
hedra grid (Baumgardner, 1985), the rhomboid grid (Zhong et al., 2000b), the Yin-Yang
grid (Kageyama and Sato, 2004, Yoshida and Kageyama, 2004), the cubed-sphere grid
(Choblet, 2005) and the smoothed cubed-sphere grid (Stemmer et al., 2006) prevail for
modeling mantle convection in a spherical shell. These grids have axisymmetric align-
ments that simplify the discretization schemes in the form of algebraic descriptions and
make possible the use of multigrid methods, but also cause some restrictions. Firstly,
the user can only choose between fixed resolution step sizes that increase the total
number of grid points in preset steps. For example, increasing the resolution by the
next possible step in an icosahedral refinement results in about eight times more grid
points (Baumgardner, 1985). Secondly the volume and neighbor distance of a cell de-
pends on its radius, i.e. on the inner surface of the spherical shell the grid points are
arranged more densely than on the outer surface.

17



18 Chapter 3: Numerical and Technical Realization

The approach presented in this chapter is based on the proposed dual-grid ap-
proach in (Ferziger and Peri¢, 1999, chap. 8). It utilizes a Voronoi grid as cellular dis-
crete basis for the domain and its dual, the Delaunay triangulation to setup shape func-
tions for an arbitrary linear interpolation mechanism (Agouzal et al., 1995, Baranger et
al., 1996). The triangulation in combination with a Voronoi discretization is able to ful-
fill all requirements for irregular grids in a FV scheme. In recent years, computational
and storage improvements have opened the door to embrace the use of complex grids
with their advantages and increased computational requirements.

3.1 Voronoi-Based Grids on the Sphere

The term Voronoi-grid refers to grids that have so-called Voronoi properties,
named after the Russian scientist Georgy Voronoy. In general, a grid for computational
aspects refers to discrete positions in space where the variables of interest are solved
for; the space between those locations is approximated by a certain order that reflects
the mathematical description on how to calculate these points. The grid can either be
fixed in space (“Eularian”) or moving along the velocity field (“Lagrangian”). Both defi-
nitions have their advantages and disadvantages (e.g., Ferziger and Peri¢, 1999, chap.
1) that are not further discussed here. It is always possible to construct the Voronoi
diagram of a certain set of points / locations to divide the domain of interest into cell-
like structures, sometimes called Thiessen-polygons. The in this way generated Voronoi
cells have the unique property that any location within a certain cell is closest to its
generator point, which is the grid point (see 3.1.1.3).

3.1.1 The Spiral Grid

The spiral grid can avoid these disadvantages using an almost uniform distribu-
tion of grid points from the Archimedean spiral equation, which is modified to create a
spherical shell. These Cartesian functions lead to extremely dense points at the poles in
comparison to the equator of the sphere when advancing them over an angular varia-
ble. Obtaining an equidistant distribution over a constant arc length requires the inver-
sion of elliptic integrals. The distribution of the spherical spiral over increasing radii
results in a shell-based point cloud with an average distance between neighbors of a
desired resolution.

18



3.1 Voronoi-Based Grids on the Sphere 19

Figure 3.1. The spherical spiral with a constant angular increase (left) and its equidistant version (right) from
a preset point distance.

An advantage of this method is that the user may freely select a resolution or
amount of grid points. In comparison to projected grids, this method results in less grid
points at equal outer shell resolution and therefore lower computational costs, as ex-
plained in section 2. After assembling the Voronoi diagram of all points (further ex-
plained in 3.1.1.3), convex natural-neighbor polyhedra occur around each point. These
cells offer certain beneficial properties, for instance, the almost constant volume of the
grid cells compared to the increase in volume of cells with increasing radius within a
projected grid.

The geometrical properties of a Voronoi grid favor a finite-volume discretization
of the required equations and in combination with the spiral grid provide among the
previously discussed properties a single array alignment for one shell along the spiral
path. This housekeeping method makes it easy to identify adjacent cells. Varying depth-
dependent resolutions gives the user the choice to refine certain areas of interest, as
well as the chance to have a very small inner radius to outer radius ratio while main-
taining a laterally balanced resolution for optimal parallelization as explained in sec-
tion (3.6).

3.1.1.1 Generator Point Equations

Layers of spirals with a constantly or variably increasing radius form a three-
dimensional spherical shell from a desired inner to outer radius. These spirals are dis-
cretized to point shells, which act as generator points for the Voronoi diagram (VD). An
equidistant discretization along the Archimedean spiral guarantees a nearly uniform
distribution. The VD provides cells as arbitrary convex polyhedra that through its
unique properties suit a finite-volume (FV) method.
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20 Chapter 3: Numerical and Technical Realization

The basic equation for the two-dimensional Archimedean spiral in polar coordi-
nates is given by

r=fl@)=a-¢ (3.1

where r is the radius and a the increment multiplier of the angle ¢. For a two-
dimensional Cartesian representation, the two parametric equations for each coordi-
nate evolving over an angular variable, &, are given by

x=f(@ =a-sina

y=f(@ =da&-cosd (3-2)

Finally, the spiral mapped over a sphere in three-dimensional Cartesian coordinates,
evolving from zero to &,,,,, which is from the north pole to the south pole, is provided

by

x=f(5z)=r-cos(07)-cos(—%+ ~d -n)

amax

y=f(&):r-sin(d)-cos(—g+~& -n) (3.3)

amax

sz(d)z—r-sin<—z+ ~& -n)

2 amax

where 2 &,,,,/ 7 determines the amount of complete revolutions of the spiral on the
sphere with a radius of r.

The intention behind this discretization method is to distribute points along the
spiral path with a constant user-chosen distance, which results in a uniform cell resolu-
tion on the spherical shell. The equation for the arc length from (3.1) and (3.2) is

s = %d ((p 1+ ¢? +log [(pwll + (pz]) (3.4)

which cannot be solved for ¢ analytically. The general equation for the arc length in
three-dimensional Cartesian coordinates is given as:

s = f\/axaz +0,d% + 0,a%da (3.5)

The following equation evolves by using (3.3) with (3.5):

V1904 &,Znax] (3.6)

s=rE[~ ,—

2
amax T

This equation includes the second incomplete elliptic integral E[& , ], which is defined
as
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a
f 1—1msin20 df, 3.7)
0

where m is the elliptic modulus. By increasing & with a constant value, the points be-
come very dense around the poles and sparse on the equator, as illustrated in figure 3.1
left. To have a constant predefined distance along the spiral path, an inversion of the
arc distance equation (3.6) for & is necessary. This inversion computes the location of
the points for an equidistant distribution.

By applying equation (3.6) to find the angular values of & for the original three-
dimensional Cartesian equation (3.3) of the spiral, an equidistant distribution of points
along the spiral path appears on the sphere as shown in figure 3.1 right. A numerical
method proposed by Carlson (2002) reduces the computational costs to inverse the
second incomplete elliptic integral used in (3.6).

Since &,,,, determines the revolutions of the spiral from the top to the bottom,
it must be chosen properly to guarantee an equidistant distribution that fits the re-
quested resolution. With a defined resolution R and layer radius r, &, is given by

- _ 37T2Tl
Amax = 2R (3'8)

3.1.1.2 Radial Extension

To create the generator points necessary for triangulation or Voronoi tessella-
tion, the method described in the previous section is repeated for several radii between
a user-chosen inner and outer radius. This results in the layering of concentric spiral
spheres. The equation to return the number of layers i; required for a certain global
resolution is

3(7‘0 B ri)

i =—g—+2 (3.9

The number of generator points that result between two given radii and a reso-
lution R is given by

6w rl .
N¢otal = Z R [ +2mi (3.10)

The spherical shell consists of two additional boundary shells within the inner
and outside the outer radius. To produce smooth inner and outer walls these points are
exactly above (below) the last outer (inner) shell points. Those two boundary layers
produce open polyhedra on the outside and core-connecting polyhedra on the inside.
The boundary walls can be turned into spherical triangles for increased precision on
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22 Chapter 3: Numerical and Technical Realization

low-resolution grids to improve accuracy and therefore will remain as the only cells
with partial curved elements.

By “overturning” the spiral equations on every second layer, where & evolves
from &,y to 28,4y, the standard deviation of the neighbor point distances can be re-
duced. The spiral would evolve from the south-pole to the north-pole in the opposite
revolution. Starting & in equation (3.3) at R/2 instead of zero, leads further to a reduc-
tion of the cell volume fluctuations at the poles (see statistics section 3.1.1.5, closeup of
figure 3.4).

3.1.1.3 Cell Properties

The point distribution from these equations now allows a triangulation and Vo-
ronoi tessellation. After applying fast Voronoi algorithms like after (Barber et al.,, 1996),
cells as in figure 3.2 emerge with typical Voronoi properties such as:

- every wall distinguishes two generator points as natural neighbors
- every wall lies perpendicular to a line between two natural neighbors
- every wall is placed exactly between two natural neighbors

- every cell is convex

- the cell is the region in which its generator point is closest

Figure 3.2. Left: a cut through the positive Cartesian domain of the spiral grid with an inner radius of one, an
outer radius of two and a resolution of 0.1, excluding the boundary shells; the complete grid consists of 62,529
cells. Right: a spherical Voronoi Diagram for one shell of spiral generator points.
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The process to calculate the spiral generator points takes approx. 0.05 % of the time to
compute the whole grid; the major time takes the Voronoi tessellation.

To obtain some important properties such as the center of mass, volume and the
surface of the cell walls, which appear in the discretization of differential equations and
definition of the operators, some care was taken to optimize the surface and volume
integrals to receive accurate and quick results.

The tetrahedron is the simplest object that can occupy space in three dimen-
sions. Any simplex with n+1 coordinates within n dimensions is capable of this. The
special properties of these simplexes remain within arbitrary dimensions: their center
of mass is situated within the arithmetic mean of all coordinates and their n-
dimensional volume can be computed by

x cee x
1 11 Ln 1

V =—det

— (3.11)

Xn+1,1 " Xn+in 1

The n+1 coordinates for an n-dimensional tetrahedron lie in the vertical direc-
tion of the matrix of equation (3.11). The algorithm to compute the centroid of a convex
polyhedron uses these properties. It consists of the following steps:

e computing the arithmetic mean of all vertices, which results in a point guaran-
teed to be within the polyhedron

e projecting rays from this preliminary center to the faces of the polyhedron, re-
sulting in possible deconstruction into tetrahedra

e computing the center of mass (COM) and volume of each tetrahedron
e weighting all COM by their volume to obtain the true COM of the polyhedron

e adding all tetrahedral volumes to obtain the polyhedron volume
The areas of the cell walls were computed using a method described by Sunday

(2002), with an advancement over the textbook equation for the area of an n-vertex
two-dimensional polygon, which normally uses 2n+1 multiplications and 2n-1 addi-
tions. Sunday (2002) improves the equation so that it takes n+1 multiplications and 2n-
1 additions. A similar equation is derived for a three-dimensional planar polygon
where, given the unit normal, the textbook equation cost of 6n+4 multiplications and
4n+1 additions is reduced to n+2 multiplications and 2n-1 additions.

3.1.1.4 Centroidal Shift

A centroidal Voronoi diagram (CVD) is a specific Voronoi diagram (VD), where
the associated generator points coincide with their centroids. The centroid is the center
of mass of the corresponding Voronoi cell. Such tessellations are useful in data com-
pression, optimal quadrature rules, optimal representation and quantization, finite
difference schemes, optimal distribution of resources, cellular biology and the territori-
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al behavior of animals, among other contexts (e.g., Du et al, 1999, Du and Gunzburger,
2002, Alliez et al., 2005). Ju et al. (2002) describes in detail some of these applications
and algorithms.

A common way to define finite difference schemes on irregular meshes for the
approximate solution of partial differential equations is based on Voronoi tessellation
and its dual grid, the Delaunay triangulation. In many cases, using centroidal Voronoi
tessellations guarantee a second-order truncation error for the different equations
compared to a first-order truncation error for other Voronoi tessellations. Similar re-
sults are known for co-volume methods based on the dual Voronoi-Delaunay tessella-
tions. Lloyd's method provides one of two basic algorithms to iterate towards a CVD
(MacQueen, 1967, Lloyd, 1982). For an initial set of n points the procedure is as fol-
lows:

1.  Determine the VD corresponding to the n generator points.

2.  Determine the centroids with respect to a given density function of the n Voro-
noi cells.

Set the n generator points to their corresponding n centroids.

4.  Repeat steps one to three until satisfactory convergence is achieved.

Gridtype Minima Mean Maxima o Skew
Distance PDF VD 0.0733 0.0999 0.1435 0.01476 0.104
Distance PDF CVD 0.0716 0.0977 0.1383 0.01148 0.779
Neighbor PDF VD 10 14.513 20 0.93145 0.381
Neighbor PDF  CVD 9 14.126 19 0.85666 0.156
Volume PDF VD 5.0747e-4  5.6241e-4 6.140e-4 6.70e-6 0.111
Volume PDF CVD 44102e-4 5.6271e-4 6.581e-4 1.89e-5 -0.436

Table 3.1. Statistical values of the spiral grid with an inner radius of one, an outer radius of two and a resolu-
tion of 0.1 according to the probability density functions (PDF) of Figure 3.6. The complete grid consists of
62,529 cells. Distance describes the Euclidian distance between neighbors, Neighbor refers to the amount of
neighbors per cell and volume specifies the cell volume.

This method involves finding the centroids of the polyhedron. The centroid be-
comes the point where the partial differential equations are calculated. Note that the
generator point from the spiral is not necessarily the centroid of the Voronoi cell. The
spiral spherical shell shows an advantage over other distribution methods because the
centroid is already close to the generator point, which results in lesser iterations with
the Lloyd method.

3.1.1.5 Statistical Analysis

Statistical analyses of the original spiral grid and shifted spiral grid with the
centroidal Voronoi diagram (CVD) are applied to highlight the advantages of this grid
structure. An inner radius of one and outer radius of two were taken to analyze the grid
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at a resolution of 0.1. Note that the stop criterion for the Lloyd iterations is a mean dis-
tance from the generator points to the true centroid of 5-10-6, which results in approx-
imately twelve iterations (as explained in the previous section).

The centroidal shift demonstrates several advantages and disadvantages in the
spiral spherical shell. The shift reduces the amount of Voronoi vertices and faces by
about three percent, and yields a better standard deviation of the neighbor distances
proven by figure 3.4 and table 3.1. Figure 3.3 illustrates the volume fluctuations within
the cells along the spiral path before and after the centroidal shift and shows the effect
of the increased standard deviation of the volumes after the shift. The peaks from the
original distribution at the poles vanish.
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Figure 3.3 Cell volumes along the spiral path from the original VD distribution (left) and from the CVD shifted
distribution (right). The straight line marks the transition to the next shell at the pole.
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Figure 3.4. Statistical analysis of the original spiral grid (VD, red) and the centroidal Voronoi diagram (CVD,
blue) generated by shifting of the original grid points. a) PDF of the natural-neighbor distances. b) PDF of the
number of faces per cell. c) PDF of the cell volume.

In figure 3.4a probability density functions (PDF) are plotted for the distances of
adjacent cells, cell volumes and number of cell faces for the VD and CVD. With respect
to the distance histogram, the peak in the original distribution is caused by the exact
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3.1 Voronoi-Based Grids on the Sphere 27

calculated distance along the spiral path. At least two neighbors of every cell have the
pre-set resolution as distance to each other since there is one predecessor and one suc-
cessor on the spiral path. This applies for all cells except the first and the last in one
spiral. Note that the peak is slightly off the desired resolution since it is calculated along
a curved spiral path, which results in a slightly smaller spatial distance. The CVD ver-
sion shows a reduced standard deviation but a slight left shift and higher skew. The
projected first and last boundary shell causes an irregularity in the distribution and
first appears as the mentioned shift during the Lloyd iterations. These shells are pro-
jected to create a smooth boundary. Purely projected grids would have a much less
pronounced peak because the distances of adjacent cells generally increase with in-
creasing radius.

The face count PDF presented in figure 3.4b displays a major advantage of a
CVD. The centroidal shift yields a reduction of Voronoi-faces and therefore vertices. The
face count is equal to the amount of neighbors per cell and therefore matrix entries, so
it reduces necessary calculations within the numerical discretization as well as re-
sources and housekeeping information.

The peak for the volume histogram in figure 3.4c is less pronounced for the CVD
compared to the VD, but the absolute volume differences are relatively small because
the CVD grid is shifted to get centroidal characteristics. This is the only disadvantage of
a CVD; the centroidal shift does not tend to equalize cells to their volume. Generator
points can be positioned so that the resulting VD would be a CVD but with cells of dif-
ferent volume.

3.1.2 Projected Grids

Another grid type that obeys the Voronoi properties naturally are radially pro-
jected grids. These grids have the same amount of grid points in each shell, leading to
spatially dense structures at the inner radius and coarse and distorted cells at the outer
radius. They usually originate from triangulated platonic solids such as the cube
(Choblet, 2005, Stemmer et al., 2006) or the icosahedron (Baumgardner, 1985) as illu-
strated in figure 3.5.
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28 Chapter 3: Numerical and Technical Realization

Figure 3.5. A projected icosahedra grid, originating from simple triangular subdivisions (five iterations),
projected radially to produce shells with an equal amount of generator points for the final Voronoi tessella-
tion.

A major advantage of these setups is the algebraically describable geometry that
allows the discretization scheme to incorporate the geometry and therefore saves
memory. Nevertheless the numerical operations involved to solve the governing equa-
tions are increased in this setup. Another advantage lies in the previously described
radial resolution difference that is advantageous for bottom heated convection because
the temperature and therefore the vigor of convection are highest close to the inner
boundary. The fact that all points of a single shell lie on a sphere makes it possible to
use spherical coordinates to discretize the equations in space, which is not necessarily
advantageous.

A further possibility is a mid-way of projected grids that do not incorporate the
algebraic descriptiveness into the discretization but store the weights into a sparse
matrix. Recent development in this field marks the Yin-Yang grid (Kageyama and Sato,
2004) or a projected spiral grid.

3.2 Discretization

Most of the published models for mantle convection that include locally varying
viscosities implement the necessary spatial derivative of the stress tensor with finite-
elements (Zhong et al, 2000b) or utilize grid-regularities (e.g., Yoshida and Ogawa,
2004, Yoshida and Kageyama, 2004, Choblet, 2005). Staggered approaches where ve-
locity and scalar fields do not coincide at the same locations were preferred because of
their straightforward implementation and elimination of numerical oscillations (e.g.,
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3.2 Discretization 29

Peric¢ et al., 1988). Advantages of the FVM are the direct connection to the underlying
physical problem and the conservative nature of its scheme that enables a direct im-
plementation of boundary conditions similar to the finite-difference method. A disad-
vantage arises in irregular grids. The effort to discretize the desired equations with the
FV method increases once the walls between the computational cells become tilted and
spatial derivates besides the normal direction are required. Ferziger and Peri¢ (1999)
describe in chapter 8 an effective approach to acquire a correct solution for tilted walls.
The only remaining problem within an irregular grid was the implementation of a spa-
tial derivative of the relatively complex stress tensor that is required for locally varying
viscosities in geophysical flow problems.

3.2.1 Numerical Basis

The domain of interest in FV and FE methods is defined as control volumes,
which are integrated over the governing partial differential equations of interest. Mov-
ing further to fluid mechanics, the basis of the FVM is therefore the integral form of the
conservation equations. The solution domain is divided into a finite number of control
volumes (CVs), and the conservation equations are applied to each CV. At the centroid
of each CV lies a computational node at which the variables are evaluated. Interpolation
is used to express variable values at the CV surface in terms of the nodal (CV-center)
values. Surface and volume integrals are approximated using suitable quadrature for-
mulae. As a result, one obtains an algebraic equation for each CV, in which a possible
varying number of neighbor nodal values appears (Fletcher, 1991).

Figure 3.6. The Voronoi diagram in red and the according Delaunay triangulation in blue for a random set of
generator points.

The FVM can accommodate any type of grid, so it is suitable for regular and ir-
regular grids. Most regular grids are Voronoi grids by nature, which means that within
a CV every point is closer to its associated nodal location than to any other. This nodal
position serves as generator point for a Voronoi region and results in a CV, as demon-
strated in figure 3.6. The resulting cell structure offers interesting properties: the face
dividing two neighboring CVs lies always midway and perpendicular between them,
which is one requirement for the FV method. The amount of faces is the direct count of
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30 Chapter 3: Numerical and Technical Realization

neighbors for a specific CV and is always minimal (Okabe et al, 2000). This neighbor
count is directly associated with the matrix column count per row.

Exploiting the detail that a face lies midway between two neighboring nodes re-
duces the difficulties of interpolating scalar values to the face centers, which is essential
for the FV method. To determine the face value ¢y between the nodes N1 and N2 of a

scalar ¢, a central difference scheme (CDS) results in

1
o5 = §(¢N1 + ¢n2) (3.12)

The CDS results in second-order accuracy as long as the interpolated point coin-
cides with the center of the face. On condition that the mid-point stays within the face,
the FVM has at least first-order accuracy (Ferziger and Peri¢, 1999) chapter 4. A com-
plete FVM discretization with CDS interpolation for the Nabla operator, where P speci-
fies a discrete node index, N the neighbor index and PN face quantities for the face be-
tween P and N like area Apy and normal vector 7 results in

1 1 .
V¢P=V_ V(l)pde:V_PL ¢f'nd5

PJyp

1 -
= V_P; br Apn - Tpw (3.13)

1 1 N
= V_ZE((PP + ¢n) Apy - Tipy
P

If ¢ is a vector, equation (3.13) reduces to the divergence operator div(¢), for a scalar
field the result is the gradient operator grad(¢).

3.2.2 Barycentric Interpolation

A more complex interpolation scenario arises for irregular grids. Faces often
undergo a perpendicular shift that moves the face center away from the interpolated
midpoint. To hold on to the second-order accuracy, the necessity for a more complex
interpolation arises. An obvious choice is linear interpolation from a triangulated do-
main. Since the Delaunay triangulation is the dual of the Voronoi diagram (Okabe et al.,
2000), this can be utilized straightforward. The barycentric coordinates (Shepard,
1968) offer a simple way to interpolate at any point within a triangulated domain. As
they are coordinates, they provide position information relative to a simplex (D-
dimensional tetrahedral region). As a side effect, these coordinates in a normalized
homogeneous form (their sum equals one) provide weight information for the specified
location, as figure 3.7 illustrates. In contrast to the natural neighbor interpolation in-
troduced by Sambridge et al. (1995) and Braun and Sambridge (1995), this method
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requires always a minimal amount (D+ 1) of nodal values and does not require recur-
sive formulas to obtain the weights.

P=(0,33 0,33, 033

A~ 05 C 05 B

Figure 3.7 The barycentric coordinates for a point P within the triangle ABC.

Correct interpolation to the center of the face PN is now possible and by the use
of barycentric interpolation remains of second-order accuracy (Ferziger and Peric,
1999, chapter 8.6.) equation (3.12) changes with the help of barycentric weights A to

D+1

¢/c = Z Ad by (3.14)
d=1

where A denotes the barycentric coordinates for a D-dimensional space, including the
nodal indices A of the according Delaunay simplex edge and the weight (or normalized
coordinate) Aw. Figure 3.8 illustrates all variables for the two-dimensional case within a
single cell.

Figure 3.8: A node P surrounded by its neighbors N, with the associated Voronoi diagram in red and the De-
launay triangulation in blue. The difference between the true face center with its barycentric coordinates A
and the central difference scheme (mid-point) is highlighted as well as important components for the FVM
such as area A, distance d and normal vector 7.
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32 Chapter 3: Numerical and Technical Realization

3.2.3 Deviatoric Stress Tensor

To enable the simulation to handle spatially varying viscosities, the spatial de-
rivative of the stress tensor as part of the Navier-Stokes momentum equation is re-
quired. The definition of the deviatoric stress tensor of a velocity ¥ and dynamic viscos-

ityn is

6vi aU]
g=nl—+=—=]=nv+ (V)T
Tjj ”(axj o, n(vo + (Vv)") (3.15)
and results therefore in a rank 2 symmetric tensor of DxD dimensions. It can be ex-
pressed as components of gradients of velocity components as shown in equation
(3.16) for the two-dimensional case, where the diagonal parts represent the normal
stresses and the off-diagonal parts shear stresses:

2(Vi,)y (vﬁy)X + (Vii)y
T =1 . . R (3.16)
Y (Vi)y + (Vi) z(wy)y
The spatial derivative of this tensor results in a vector and according to the FV
scheme is
1 1 5
Vitr=—| V-tdVp=—| t-ndS (3.17)
Ve Jy, Ve Js

For constantn,V -7 reduces to V27. The literature describes several ways to approx-
imate the normal component to implement the Laplacian operator V2. An overview is
provided by Fletcher (1991) and Ferziger (1999). Usually finite difference schemes
express derivatives in the normal direction at the faces. The FV implementation of equ-
ation 3.17 requires the gradients of the velocity components at the faces. Stemmer et al.
(2006) recently formulated an elegant solution for the regular cubed sphere grid for
collocated variable arrangement, utilizing midpoint interpolation of neighboring nodes
in several directions. This technique is useful for the cubical grid-setup but fails on ir-
regular grids.
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Figure 3.9: An extension to figure 3.8 with the barycentric coordinates of the constructed Cartesian cross
around the face center and the two interpolation points along the normal path of a pre-defined size d;.

Including the neighbors of the node’s neighbors would resolve this issue and
guarantees second-order accuracy, but also increases the size of the stencil that directly
affects the size of the solution matrix and would therefore render this approach im-
practical. Another choice is a change to the finite-difference approach on the faces. With
the help of shape functions from the barycentric coordinates (3.2.2), a Cartesian cross
can be constructed from the center of a face. This enables an FD formulation at the fac-
es as presented in figure 3.9. The FV integral for an arbitrary v; would evolve with the
interpolation sources fi+/- as in equation 3.12 for the Cartesian interpolation cross and
fc for the center as

N 6vi aU] 5
f T-ndSzf nl=—+=—|ndS

fi+ fi fi+ _  fi- (3.18)
L

Capy —vi' +w v
i i j J -
= § § d nfCAPN'nPN
S

where dg specifies the size of the interpolation cross. This distance can be either fixed
for the whole grid or varying for every face, depending on resolution differences. It is

difficult to analytically determine the optimal value for dg, but numerical tests have
shown that for a certain face area Apy in a D-dimensional space d, = °"\/Apy leads to

a minimum of foreign neighbors (not depending on either one of the original nodes that
the face divides) on strongly irregular grids.

A different problem arises with the required viscosity at the cell face (/). As-
suming the viscosity is correct at the face center, the method guarantees a second-

33



34 Chapter 3: Numerical and Technical Realization

order truncation error by using second-order interpolants. This might not hold if the
viscosity needs to be interpolated. For example, in regular grids it can be shown that
the harmonic interpolant of viscosity between adjacent cells preserves continuity of the
normal stress component resolved onto the face from cell-to-cell, which is closer to the
physical truth of the situation. However, this does not necessarily hold true for continu-
ity of shear stress, and suggests another viscosity interpolant might be used. An imple-
mentation of a dual stencil composed of shear and normal components of stress and
their associated continuity could ensure a proper viscosity interpolant at the faces.

3.2.4 Laplacian Operator
The energy conservation as well as the momentum conservation equation for

constant viscosities are expressed using the Laplacian operator V2. The FV discretiza-
tion results in

24 - L[ veg gy = L 7
V2¢ V2 dV V$ i dS , (3.19)
4 74 |4 S

which requires the gradient in normal direction at the cell face. The fact that only the
normal direction of the gradient is required can be exploited and replaced by a CDS
formulation:

f Vo i dS = MAPN (3.20)
s = dpn

This approximation for the face stays second-order accurate even in irregular
grids since the derivative between P and N does not change within all simplexes that
have both, P and N, as connectors. However, a face center can move out of those sim-
plexes on strongly deformed cells. In this case, it is useful to introduce barycentric
weights of the normal direction from the face center fn+/-, as illustrated in figure 3.8 as
well. equation (3.20) changes to

fm+ _ pfn—

f Vo 7 dS = Zw,qm (3.21)
s = ds

and guarantees second-order accuracy for all Voronoi cells.

3.2.5 Computational Aspects

In order to utilize the presented spatial discretization scheme, a pre-calculated
Voronoi diagram and Delaunay triangulation for the same discrete set of points should
exist with the following information:

e Nodal positions.
e Cell volumes.
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e List of faces with their two neighbor indices (the node indices they divide), area
and center.
e List of simplex indices.

The interpolation information does not change during the simulation and
should be precalculated to ensure computational efficiency. One set of interpolation
information consists of a simplex index that in turn holds the D+1 nodal indices 2} and
weight information Ai,. Each face usually has 2D + 3 or 2D + 1 interpolation points
consisting of the center, the Cartesian cross and two more depending on the use of the
fn+/- weights as described earlier.

To find a certain point within a Delaunay triangulation, it is possible to calculate
the barycentric coordinates of a desired point relative to every simplex with equation
(3.14) until each single coordinate lies between zero and one, as described in Section
3.2.2. The time complexity of this procedure is of order O(n2). This can be reduced to
O(n log n); it is possible to index the simplex indices within a search tree. These indices
correspond to node indices, which can be found in the face neighbor information as
well. Since only locations close to a certain face are looked up, the simplexes containing
the neighbor nodes of a face can be checked first. For extremely deformed cells, the
fallback to a check-for every-simplex should exist as well.

3.2.6 Storage Requirements

Including the fn+/- weights, interpolation information for one face in D dimen-
sions requires

(1 + D)3 + 2D)(W + I) (3.22)

bytes if a weight is stored with W bytes and an index with I bytes. On an average irregu-
lar grid in three dimensions, one node has approximately 14 neighbors, resulting in 7R
faces, where R denotes the total node count. Assuming further double floating-point
precision for the weights (W = 8) and standard 32-bit integer for indices (I = 4), the
total memory requirement for the interpolation information is 3024R bytes. To reduce
this enormous extra memory requirement one can exploit the fact that a weight is al-
ways only in the range between 0 and 1. Utilizing fast integer arithmetic can turn a 16-
bit integer into a floating point consisting of 216 steps between 0 and 1, introducing a
global error of (D + 1)/2 and a reduction to W = 2, resulting in 1512R bytes. A re-
duction to I = 3 is only theoretically possible because it leads, if even possible, practi-
cally to misaligned memory that dramatically reduces performance.

3.2.7 Time

As space is discretized by a fixed grid, time must be discretized as well. As the
energy equation is the only equation containing a time derivative, temperature is the
only variable that is time-dependent by definition. The governing equations of unstea-
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dy flow are furthermore parabolic in time; therefore a time-stepping method is re-
quired to advance the solution in time. In contrast to spatial discretization, the tempor-
al discretization is flexible and can adapt with a varying time step At to the situation.
Time is advanced over the time-step At as t"*1 = t™ + At. This can be summarized to
the following ordinary differential equation for an unknown scalar ¢:

9
";Et) = f(t, o) (3.23)

After integrating over one time-step this leads to

tn+1 a¢ tn+1
] —dt = ¢p™M1 — " = j f(t,¢(0))dt (3.24)
tn at tn
Applying this scheme to the energy equation (2.16) results in
tn+1
T+l —Tn = V2T — B VT + Qdt (3.25)
tn

This integral may be solved in many ways and many first-order approximations
include the explicit forward Euler method, the implicit (or backward) Euler method or
the popular Crank-Nicolson (or trapezoid) method (Crank and Nicolson, 1947):

P =" + f(tn, ¢™) At
¢n+1 = (I)TL + f(tn+1: ¢n+1) At (326)

1
= ¢+ = [F (b $™) + f (b, 9™ 1 At

These different methods have different advantages and disadvantages. While
both, the forward and backward Euler method are only of first-order, the trapezoid
method is second-order accurate and a mixture of implicit and explicit treatment. Ex-
plicit methods have the advantage that they are easy to implement and to parallelize
but have at the same time a restriction to the time-step size (conditionally stable) and
require the following stability criterion to hold:

IVSLACL (3.27)

a9

For the application of convection-diffusion dominated problems, this criterion

for the explicit forward method is restricted by a diffusive and advective area of influ-
ence from a nodal point of view. Applied to the non-dimensional form of equation
(3.24), these two criteria ¢; and ¢, can be written as:
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At < 1
GG =—|c1 <z
! Axrznin ! 2
ﬁ (3.28)
| Vpax | AL
CZ = —2 CZ < 2 C1
Axmin

These are known as Courant criteria and can be used to calculate the adaptive time-
step for explicit methods. Although the trapezoid rule is unconditionally stable, large
time-steps can result in oscillatory solutions and even produce instability. To guarantee
stability for the trapezoid method, the time-step taken should not be larger than twice
the At for purely explicit methods (Ferziger and Peri¢, 1999, chap. 6.3).

Implicit methods have the advantage of being unconditionally stable but require
the rather complex solution of a system of equations. Despite of their stable nature, it is
crucial to take care of eventual time-dependent, turbulent solutions as implicit methods
tend to smooth or flatten these systems into steady-state solutions. To ensure the cap-
turing of these events, it is useful to restrict the time-step with ¢, = 1, which implies
that the transport of mass is restricted to pass only one grid-cell for the highest velocity
in the next time step. The diffusive criterion c; on the other hand does not require re-
striction as its accuracy is only limited by the first-order error.

In this work, a fully implicit second-order method, also called an implicit three-
level scheme, is the method of choice. The time derivate at time ¢,,,; can be approx-
imated by differentiating a parabola through the solutions at three time levels:

<a¢) 3 ¢TL+1 —4 (pn + ¢n—1 329
0t ) a1 2 At (3:29)
This leads to the following method:
n+1 4 n 1 n-—1 2 n+1
U =" — T+ f (b, 9T At (3.30)

This scheme is fully implicit since f is evaluated only at the new time level. It has the
advantage that it is easy to implement (compared to the Crank Nicolson method) but
requires more memory for the storage of ¢™ 1. To adapt this scheme to flexible time
steps, the following discretization after Harder and Hansen (2005) is employed:
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d
(_¢> ~ ¢n+1 _ :8 ¢n +vy ¢n—1
0t /n+1
With a = A7 + (At + Aty) ™t
B = — Aty + Aty/At; Aty (3.31)

vy = Aty /Aty (At; + Atyp)
At = 1l _yn
Atg =t — "1
For the initial time step this scheme is reduced to the backward Euler scheme by
settinga = At;1,B = —a, y = 0.

3.3 Pressure Correction

The conservation equations for mantle convection (2.14-2.16) do not include an
equation for the pressure, which is required in the momentum equation. The continuity
equation states that the velocity field should be divergence free to conserve mass and
no other variable than velocity is present because of the incompressible treatment. The
only coupling of the continuity equation with the momentum equation is therefore the
pressure. An alternative approach is to solve for velocity and pressure together, but
this would lead to a large matrix and make the solution impractical for larger grids. To
encounter this problem, a segregated approach divides the solution for one time-step
into three groups; the three components of the velocity field, the pressure and the tem-
perature are solved for individually and consequently checked for convergence.

The equation for pressure must be set up such that a divergence free velocity
field is ensured while providing a solution to the momentum equation. A method pro-
posed by Caretto et al. (1972) and Patankar (1980) called SIMPLE was adopted to solve
this coupling. It uses a process to correct the pressure with a portion of the Laplacian of
the divergence field that originates from the velocities calculated by the momentum
equation. The absence of inertia forces makes this coupling very weak (velocity correc-
tion is not possible) and requires an under-relaxation scheme, which is similar to in-
troduce artificial compressibility to increase the coupling. Here, the proposed & under-
relaxation method after Ferziger and Peri¢ (1999, section 5.4.3) was applied, but many
other methods like artificial incompressibility are possible. These work basically alike
and yield similar convergence rates if properly employed. The pressure is split into a
correction term &p and the pressure field of the previous nth inner iteration p™, where
only a portion (1 — &) of dp is added:

p"tl=p"+ (1 -d&)dp (3.32)
R 1
-V-v=V- <—_ V6p> (3.33)
_AP,mm

The mean central weight (averaged from the x, y and z component) from the
momentum equation Ap ., acts as a pre-factor for the Poisson equation (3.13) that
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solves for the correction term from the divergence of the velocity field (V - ¥) originat-
ing from the momentum equation. It is important to note that /Tp‘mm must not contain
the factor ¢ in contrast to the weights used to solve for the velocity field within the
momentum equation. The corrected pressure is applied to the momentum equation
and solved consequently in turn until §p is sufficiently small or the difference of the
norm of the divergence reaches a certain limit.

The iterative process for one time-step can be summarized as follows:

1. Solve energy equation; take velocities from previous time-step as a first
guess for the first loop.

2. Solve for the velocity using the momentum equation for the present tem-
perature and viscosity field while taking the previous pressure field or
some initial value field. This results in a divergent velocity field in the first
loop.

3. Solve the Poisson equation (3.33) to acquire the correction term for the
pressure field and apply the correction (3.32).

Repeat from step two until ||5p|| is sufficiently small (inner loop).

5. Repeat from step one until temperature residuum to previous iteration is

sufficiently small (outer loop)

The under-relaxation factor ¢ controls within the iterations the significance of
either the continuity equation or the momentum equation, i.e. what should be empha-
sized, a divergence free velocity field or a velocity field that is close to the solution of
the momentum equation. A factor close to one leads to less outer iterations while the
amount of inner iterations increase and vice-versa. The final result is for any choice of &
similar as long as 0 < & < 1. The preferred value of ¢ is around 0.8, as predicted by
Ferziger and Peri¢ (1999, section 7.5.2).

3.4 Initial Conditions

At the beginning of the simulation (¢ = 0) all variables involved within the par-
tial differential equations must be defined. The velocities are set to zero as well as the
pressure, as the pressure correction quickly establishes a hydrostatic equilibrium. De-
pending on the type of evolution the temperature field can either be set to a cold start
(T = 0) or a hot start (T = 1). In most cases we are interested in the (quasi-) steady
state and the temperature field is set to its conductive profile, which stems from an
analytic solution of the heat equation and is only radially dependent (1D). The tempera-
ture profile for bottom heated convection as function of radius with . = r;/r, as the
radius ratio is defined as

I 1
T = 1-—n ((1 —r)r 1) (3:34)
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For purely internally heated convection with an insulating lower boundary con-
dition this equation changes to

T(r) = % (—r2 + 7 (_72 + %) + r02> (3.35)

The above equations are designed for dimension-less variables of r and T.

It is possible to impose a certain lateral pattern of the initial temperature profile
to force the convection to establish a certain symmetry. This is often helpful in steady-
state convection models to compare certain symmetries under limited conditions, and
in particular benchmarking the simulation with other published results. To establish
these symmetries, a spherical harmonic perturbation is added to the initial tempera-
ture profile

TO,@,r) =T()+ Y6, @)sin(ar —1,), (3.36)

where ( is the amplitude of the perturbation.

The sin term leads to largest distortions at mid-radius. The amplitude ¢ does not
equal the variations at mid-depth and must be adapted to the mode. Compositional
modes are possible, as the cubical symmetry requires a combination of ¥;* + Y. A te-
trahedral symmetry consists of Y.

3.5 Boundary Conditions

To construct boundary conditions for a spherical shell that is enclosed between
the inner radius r; and the outer radius 7, two ghost shells are created that lie below r;
and above 1, so that the Voronoi cells naturally create faces exactly at those radii and
therefore guarantee correct volumes. It should be emphasized that these additional
cells do not lie at the boundary of the system. Rather, they are constructed such that a
face is created at the boundary that coincides with the radii. For a system comprised of
n shells, the boundary shells 1, and 7, ; are located at

The1 =T + 20, — 1) (3.37)
ro =1y —2(ry — 1) '
Temperature

The non-dimensional form of the energy equation requires a fixed zero-
temperature at the top boundary to cool the interior. Therefore the top boundary con-
dition for temperature is of Dirichlet type. In case of bottom heated convection, the
bottom boundary condition is similar and given by

T|r=ri =T =1 T|r=ro =To=0 (3.38)
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In case of purely internally heated convection, the inner boundary requires
thermal insulation, which is accomplished by prescribing a Neumann boundary condi-
tion of zero heat-flux:

oT

. 0 (3.39)

The numerical implementation for a scalar Dirichlet boundary condition with
the defined ghost cells must be chosen such that the interpolated value at the boundary
face equals the desired temperature:

T, =2-T,

T, =-T,

Tn+1 n

(3.40)

For the Neumann boundary condition the energy exchange with the inner boundary
shell is simply ignored by setting the corresponding matrix element to zero.

Velocity

The boundary conditions for the velocity field determine the interface proper-
ties between the core and the convecting mantle as well as the surface and the convect-
ing mantle. While the outer core is mostly considered as liquid, a free-slip (stress-free)
boundary condition is employed to describe this interface correctly. For the outer
boundary this scenario is different. If one wants to simulate the complete mantle up to
the surface, mostly done for plate-tectonic related research, a free-slip boundary is ap-
propriate while on the other hand, a thin immobile crust is mostly present that can be
seen as sitting on top of the mantle and does not interact with the interior anyway,
making a rigid outer boundary condition appropriate.

To describe these two conditions, the velocity vector is decomposed into a lat-
eral part projected onto the boundary and a radial part

-

v, =(V-6)é,

5 . 3.41
Vigt =V — Uy ( )
where €, is the unity vector in the radial direction.
The impermeability condition is met by presuming
Uyly=ryr, = 0, (3.42)
while the no-slip condition additionally requires
Viatlr=ryry = 0, (3.43)

In case of a stress-free boundary condition, all non-diagonal terms of the stress tensor
must vanish (Il is the identity tensor):
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Vige * [=p1 + 1 (V0 + (VD)) |r=p,r, = 0 (3.44)

The implementation of these boundary conditions on the boundary shells is
straight forward. The radial component is generally inverted while for the no-slip con-
dition together with an inverted lateral component results in ¥ = 0 at the interface:

ﬁr:o = _ﬁr,rzl - 1})latt,rzl
S o R (3.45)
Vr=n+1 = “Vrr=n — Viatr=n
For the stress-free (free-slip) condition, the above equation changes to
- _ - rO -
Vr=0 = " VUrr=1 + r_vlat,r=1
1
- - 7"Tl‘l']. - (346)
Vpzn+1 = ~Vpp=pn + T Viat,r=n

n

While the lateral part stays unchanged (stress-free), the radial part is eliminated to
remove unphysical material flux within the energy equation originating from remaining
divergence close to the boundary.

Pressure

The pressure gradient within the momentum equation has no boundary condi-
tion because otherwise the problem would be over-determined. Because pressure is a
primitive variable and is used to ensure minimal divergence, it is necessary to ensure a
continuous pressure field. A simple extrapolation method ensures this condition, re-
quiring three interior pressure values that lie below / above the boundary shells for
second-order accuracy.

1
Pr=0 = E (5 Pr=1 —4Pr=2 + Dr=3)
(3.47)

1
Pr=n+1 = E (5 Pr=n — 4 Pr=n-1 + pr:n—z)

The above equation is applied to grids with constant shell spacing Ar. For grids
with varying shell spacing, a similar scheme as described in the time-discretization
section (3.2.7) can be employed. For irregular grids, the pressure values required must
be interpolated with barycentric weights. It is useful to create a cache at the beginning
of the simulation for these weights since finding the simplex corresponding to an arbi-
trary position and the evaluation of the weights are time-consuming operations.

A final boundary condition is required for the pressure correction (section 3.3).
The Laplacian of the correction term §p requires Neumann boundary conditions to be
employed. Therefore the boundary condition for equation (3.33) is
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d ép

ar =TT,

=0 (3.48)

3.6 Parallelization — Domain Decomposition

To run a simulation with high resolution, the code must work with more than
one CPU in parallel. Typically, a domain decomposition of the grid is applied, which
results in an optimal breakdown of the grid into p equal volumes where each of the
domains is assumed to a single processor. An efficient domain decomposition minimiz-
es the area between these sections, leading to a minimized overhead of data exchange
between the processors.

Halo-cells, sometimes called ghost-cells, arise in domain decomposition as addi-
tional cells in each domain, which form an overlapping zone where data is exchanged.
These cells border each domain and are on the same position as their active cells on the
neighboring domain. The ratio between halo-cells and grid cells is a first measure of
efficiency for parallelization. This ratio is vital to determine the amount of data ex-
changed between the domains.

wv0ODOO

Figure 3.10. Voronoi diagrams of certain Thomson configurations; namely for p=10, 12, 16, 32, 64, 128 and
256 electrons. Green areas mark hexagons, red pentagons and yellow tetragons.

One approach to laterally decompose a sphere is to distribute p points on the
surface of a unit-sphere, assume all with equivalent potential energy and minimize the
global potential field energy. Figure 3.10 displays some configurations, where the
patches on the surface would mark the region of one domain. This approach is known
as the Thomsom Problem? (Thomson, 1904). After this step, its closest “Thomson”
point derives the domain affiliation for every cell. The resulting decomposition as
shown in figure 3.11 leads to equal domain volumes, which is important to balance the
computational efforts for each CPU. Some p reproduce platonic solids; p = 4 creates a
tetrahedron, p = 6 a cube and p = 12 a dodecahedron. However, all p>1 show a certain
symmetry (Wales and Ulker, 2006).

2 For an interactive demonstration please see
http://physics.syr.edu/thomson/thomsonapplet.htm(11.02.2009)
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Figure 3.11 shows the resulting halo-cells after a domain decomposition of the spiral grid with a radius ratio
of 0.55 and 16 shells. Left: Domain decomposition for six CPUs (equal to the cube); Right: 32 CPUs.

The correct calculation of the Thomson locations on the unit sphere requires it-
self supercomputers for larger (p > 16) quantities, so publicly available pre-computed
positions from the Cambridge University serve as input for up to p = 400 for the clos-
est-distance association. With an additional choice of one radial slice of the spherical
shell, the limit on usable CPU cores doubles to p = 800.

The performance of this decomposition method was tested on two supercom-
puting centers and two local shared memory machines. To evaluate the performance,
the same initial setup was taken and run on several node counts. The ratio of the execu-
tion time determines the speedup. This speedup shows for some architecture an almost
ideal linear correlation for up to 256 tested CPUs, suggesting an efficient minimization
of ghost-points. Figure 3.12 shows the speedup factor that determines the acceleration
of the code for the same problem size on various CPU counts. The IBM JUMP cluster
consists of 41 nodes, each containing 32 p690 CPUs. The CLX system at the CINECA
supercomputing center in Bologna, Italy, consists of 1024 Intel XEON CPUs with 3GHz.
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Figure 3.12 shows a performance test with an applied Thomson domain decomposition for various supercom-
puter clusters and local shared memory machines. A generally better scaling can be observed with recent AMD
clusters (Opteron K10) compared to current Intel technology (Xeon 5355).

3.7 Wavelength Analysis

The power-spectra or wavelength analysis provides a powerful tool to quantify
structural complexities within a convecting system. For a three-dimensional spherical
shell, the lateral variations of a certain scalar field are decomposed into a series of wa-
velengths and their powers, much like a Fourier transformation of a function in two
dimensions. While in 2D this decomposition consists of a certain frequency and its as-
sociated power (or amplitude), on the surface of a sphere one more structural indicator
exists, i.e. the degree £ (= 0), the order m (|m| < [l) and their associated power. Figure
3.13 illustrates the first three degrees and orders of the spherical harmonic function
Y™ (6, @). In signal processing literature, the total power of a function or scalar field is
defined as the integral of the function squared divided by the area it spans (Buttkus,
2000). To calculate the spherical harmonic functions, the common orthonormalization
was used to create the angular power spectrum S;(£) = A,. This quantity specifies the

power of a certain signal, combining all possible orders of degree #.

45



46 Chapter 3: Numerical and Technical Realization

1=0, m=0 =2, m=1 1=1, m=1

™

_? - S e (‘

1=1, m=0 1=3, m=1 1=2, m=2
1 ‘ 1 N 1
- -— « »

! \./ -

Latitude

o
o

Latitude
o

1=2, m=0 1=3, m=2 1=3, m=3
; - 4 / \ y
[o)
kel
El
-— Q5 @
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Longitude Longitude Longitude
9 9 Re(Y"(0.0)) 9
05 025 0 0.25 05

Figure 3.13 shows the equal-area map projection of the first three degrees and orders, which is equivalent to
the normalized real part of the spherical harmonic function.

The spherical shell consists of radial layers that were individually analyzed for
modes up to a degree and order of 30. The zero-mode was eliminated before the analy-
sis by subtracting the mean value of the field. Radially summing these power spectra

provides a one-dimensional spectrum of modes that reflects the structural complexity
of the whole shell:

A= Z A (3.49)
T

The power spectrum of the temperature field is of prime interest because it is
directly associated with the amount of uprising mantle plumes; a dominant degree-one
for example refers to one upwelling and one downwelling, yielding major implications
on the appearance of topography and the geoid. The depth of the maximum power
yields implications for the location of the thermal boundary layer, as they exhibit the
largest lateral temperature variations.

To obtain a single parameter to describe the structural complexity of the con-
vecting system other than the dominant mode, which is the mode with the maximum
power, a weighted mode is computed to account for multiple occurrences of strong
modes. This method is similar to the robust-localization method (Kertz, 1973, Buttkus,
2000). A spectrum is not necessarily centered on the dominant mode, as figure 3.14
demonstrates. A weighting function that weights the power of a mode with its own de-
gree yields a center-of-mode, similar to the definition of a one-dimensional center-of-
mass, or weighted average:
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Figure 3.14 shows the result of a spectrum analysis of case 3 (see Appendix A), where the left side shows nor-
malized temperature field projections of the top, middle and bottom shell and the resulting spectral map. The
boundary layer, which is in this case right above the middle shell, has the largest temperature variations,
which is why it appears brighter. As there are different sized shapes in the projection, there are different mod-
es that have high powers. The sum over the radius leads to the bottom plot that shows the summed power of
each mode within the convecting system.
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4 Validation

The output data of the simulation is stored at pre-defined times, usually time-
step intervals, that include the variables of interest at all nodal locations. These data-
sets can be utilized to study, visualize and validate the precision of the numerical me-
thod or grid. Global diagnostic values, as further specified in section 4.1 help to quantify
certain aspects of the data-set. With these globally averaged values, together with local
minima / maxima, it is possible to compare individual parameter sets with published
results as presented in section 4.3. In addition, the heat conduction equation is used as
a locally verifiable, analytically known solution in section 4.2.

4.1 Diagnostic Values

Local quantities

The velocities of up- and downwellings vary strongly for different Rayleigh
numbers and rheologies and especially for temperature- and pressure-dependent vis-
cosities. To measure those quantities in a uniform way, the radial min/max velocities at

: 1 : .
mid-depthn,, = r; + 3 (r, — ;) are determined according to

v; = Sgn(ﬁr : ér) Iﬁrl (4.1)

Ur mid,max = max(vy)|,= Tm
_ , (4.2)
Uy midmin = mln(vr)lr: Tm

Additionally the local min/max temperatures at mid-depth are quantified for compari-
son with published results:

Tmid,max = maX(T)|r= Tm
. (4.3)
Tmid,min = mln(T)|r= Tm

Temporal fluctuations of these local quantities are neglected for simplicity and only the
last snapshot is evaluated.

Global quantities

Many global quantities originate from a reduced one-dimensional depth profile
for which the quantity of interest is laterally averaged and therefore only a function of
radius (-);4: (). An important global quantity is the internal temperature, which is de-
fined as the laterally averaged temperature in the convecting interior. Its importance is
evident from the definition of the internal Rayleigh number which is based on the vis-
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cosity at the internal temperature and plays a vital role in many scaling laws. It is best
described by the laterally averaged temperature at the depth of the maximal radial ve-
locity v,

Ty = (That ()

r' = {r €[l (10 Diee (") = max({|9: )i (1)}

Another important parameter to quantify thermal-convection models is the Nusselt

(4.4)

number Nu. It represents the ratio of total heat-flux to the purely conductive heat-flux
and therefore quantifies the strength of convection (e.g., Turcotte and Schubert, 1982).
A Nusselt number of one specifies no active convection; heat is transported entirely by
conduction. If the Rayleigh number exceeds a critical value, convection sets in and the
Nusselt number increases, thus implying a strong relation between these two parame-
ters as both determine the strength of convection.

The heat-flux is observed in radial direction by using the depth profile of tem-
perature and is composed of a convecting part

Geonv(T) = (ﬁr T)lat(r) (4.5)

and a conductive part, that can be defined for bottom-heated convection with the geo-
metry parameter r,. = 1;/7, as

K 0T hae

. or ' (4.6)

Gecona(m) = —
together with the internally generated heat-flux for mixed-mode heating scenarios

qu (1) = (Q)1acT (4.7)

the Nusselt number is defined as

Aconv (T) + Acond (T‘) + qu (T)
Geona () + qu(r)

Nu(r) = (4.8)
For mixed-mode heating or purely bottom heating scenarios, the conductive
heat-flux is radially independent and can be expressed as

cond = T + qu (4.9)

This equation changes the Nusselt number definition to Nu(r) = qtotai(r)/9cona and
further simplifies at the inner and outer boundaries of the convecting system because
only conductive heat-flux is present there due to the impermeable wall boundary con-
dition. For the non-dimensionalized case these upper and lower Nusselt numbers can
be expressed as
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For purely internally heated convection, the internal temperature T; as defined
in equation 4.4 is directly related with the heat-flux and Nusselt number because the
temperature scale is different for this type of convection, as later explained in section
5.1. In this case, T; is best defined as the maximum horizontally averaged temperature
within the convecting system as no hot inner boundary exists. The maximum non-
dimensional temperature T, in such systems is reached only in a non-convecting scena-
rio and is defined as

1 32 2rd
=g < 2 o

Nuy = -5 (4.12)

Other global quantities of interest are the volume averaged temperature (T) and
the root-mean-square velocity v,,,s, which is given by

| =

1 Z
Vpms = (V,f f f w2 + v? + v2)dx dy dz) (4.13)
x Jy Jz

The implementation of this equation in a discretized finite-volume scheme with
n cells and their volume V can be expressed as

1

n 2
1
Vrms = (—n v Z Vi(vL-Z,u + viz_v + viz,w)> (4.14)
i=1"1 i=1

4.2 Comparison with Analytical Solutions

To test the applicability of the spiral grid and the numerical approach presented
in section 3 for fluid dynamic calculations, a simple heat diffusion scenario in the
spherical shell with fixed boundary conditions at the inner and outer radius is set up.
This enables a comparison of the numerical solution based on the spiral grid with the
analytical solution of the boundary value problem of the Laplace-equation.
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The following Laplace equation illustrates the problem and is applied to the
spiral discretization and compared to analytic results, where 1) represents a scalar val-
ue within a discretized spherical shell.

V2 =0 (4.15)

The boundary conditions for this problem were prescribed on both boundaries,
with a value of one at the inner and a value of zero at the outer radius. This setup is
equivalent to a time-independent solution of heat transfer through a spherical shell,
heated from below without internal heat sources or sinks.

The analytical solution to (4.15) for any discrete i within a spherical shell is
given by

ro(rzp - ri)(lpo - l/’z)
rtp(ro L))

P =1 + (4.16)
where 1), and ), represent the outer / inner boundary value of ¥, r, and r; the outer /
inner radius of the spherical shell and ry, the radius of . With respect to heat diffusion,
equations (4.15) and (4.16) describe a conductive temperature profile in a spherical
shell.

. CPU
Resolu- \ qes  Crid- IS —s| c HS - time Iterations
tion type - .
in sec.
0.04 106677 VD 1.072E-3  1.513E-3 1.0745E-2 3.9 25
0.03 266725 VD 7.995E-4 1.112E-3 8.7012E-3 135 34
0.02 815302 VD 6.270E-4 8.539E-4 6.2967E-3 57.3 47
0.04 106677 CVD 7.502E-4  1.042E-3 1.0284E-2 3.8 25
0.03 266725 CVD 5.296E-4  7.356E-4 7.3207E-3 13.1 33
0.02 815302 CVD 4412E-4 6.019E-4 5.9523E-3 57.0 45

Table 4.1 Comparison of the numerical and analytical solution of a boundary value problem describing a
conductive temperature profile. Resolution denotes the grid spacing of the spiral grid with the respective
number of nodes of the Voronoi diagram (VD) and the centroidal Voronoi Diagram (CVD). The mean absolute
deviation, the standard deviationo, the max absolute error are given each with the required computing time
in seconds and the number of iterations, where S stands for the analytical and s for the numerical solution.

To solve equation (4.15) on various grids, an implicit method using the freely
available PETSc solver (Balay et al, 2004) was used on a single 64 bit Opteron with
2.2GHz. The solver uses a block-Jacobian pre-conditioner with a Krylov-subspace
CGstab method. Table 4.1 summarizes results for three grid resolutions for the Voronoi
diagram (VD) and the centroidal Voronoi Diagram (CVD). The results show an excellent
agreement with even low resolution grids and an expected first-order reduction of the
error (resulting from a one-dimensional problem) to the grid resolution. The CVD ver-
sion shows generally lower errors and confirms the advantage compared to the VD
version. The inclusion of PETSc as a third-party black box solver was discarded in later
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studies in exchange for an independent implementation of a matrix class and BiCGS
solver, mainly for speed reasons regarding parallel performance.

4.3 Comparison to Published Results

Mantle convection is modeled by thermal convection of a Boussinesq fluid at in-
finite Prandtl-number heated from the bottom of the spherical shell. The ratio of the
inner to the outer radius of the spherical shell is 0.55, similar to the Earth’s mantle.
Boundary conditions are given by impermeable and free-slip conditions for the veloci-
ties and fixed temperatures T=1 at the inner and T=0 at the outer radius. The non-
dimensional forms of the equations of mass, energy and momentum conservation re-
sult from scaling the equations with intrinsic parameters like the thickness of the
spherical shell d, the thermal diffusion time and the temperature difference AT between
the boundaries. The conservation equations are therefore equivalent to those of chap-
ter 2.

To solve the conservation equations (2.14-2.16), a second-order finite volume
discretization scheme as described in chapter 3 with a co-located velocity / pressure
alignment was applied. A Jacobi pre-conditioner with a Krylov-subspace BiCGstab me-
thod (Saad, 1996, Meister, 2005) was implemented to solve the pressure correction
equation for the SIMPLE algorithm as well as for the energy and momentum equation.

The BiCGStab method is based on the non-symmetric Lanczos algorithm
(Lanczos, 1950, Lanczos, 1952). Special attention is required for a possible break-down
of this algorithm, whereas the Lanczos recursion terminates without reaching a solu-
tion for the system of equations. This property brought the BiCGStab method into dis-
credit but recent research (e.g., Sleijpen et al, 1994, Sleijpen and van der Vorst, 1995,
Wang and Sheu, 1997, Fish et al,, 1999) sows that this can almost always be circum-
vented.

Thermal convection in a spherical shell at infinite Prandtl-number has two sta-
ble solutions with polyhedral symmetry when the Rayleigh number is low (e.g., Busse,
1975, Schubert et al, 2001). These steady-state flow patterns with tetrahedral and cu-
bic symmetry have been used to compare different published spherical models with
various discretization schemes and numerical methods (Stemmer et al., 2006). To in-
itiate these steady state patterns, the initial conductive temperature field is perturbed

with a normalized spherical harmonic mode (section 3.4). The mode Y32 yields a tetra-

hedral flow pattern and Y4° + Y44 results in a cubically symmetric flow in a certain range

of Rayleigh numbers. The tetrahedral symmetry has four upwellings and the cubic
symmetry has six upwellings as the steady-state for a Rayleigh number of 7000 is dis-
played in figure 4.1.
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Figure 4.1: The iso-surface of temperature with T=0.5 of a tetrahedral (left) and cubical (right) steady-state.
The Rayleigh number is 7000 and the convection is isoviscous.

tetrahedral (1,m)=(3,2) cubic (Lm)=(4,0)+(4,4)

Model Method Nodes Nuro Nur Vims Nuro Nur; Vrms
Be89 SP 2400 3.4657 3.5293 - - - -
Zh00 FE 165888 3.5190 3.4270 - - - -
Iw96 FV 532480 3.4500 - 32.417 - - -
TS00 FE 324532 3.6565 - 32.936 - - -
Ha98 SP 552960 3.4955 - 32.637 3.6086 - 31.076
Ra96 FV 200000 3.4423 - 32.190 3.5806 - 30.870
YKO04 FD 2122416 3.4430 - 32.048 3.5554 - 30.518
St06 FV 663552 3.4864 3.4864 32.589 3.5982 3.5984 31.023
This FV 133084 3.5142 3.5184 32.783 3.6137 3.6180 31.168

Table 4.2 Comparison of bottom and top Nusselt numbers, NuTO and NuT1, and volume-averaged rms-
velocities, vrms, of tetrahedral and cubic steady-state flow patterns of thermal convection in a spherical shell.
‘Be89’ indicates results by (Bercovici et al, 1989), 'Zh00' by (Zhong et al, 2000b), 'Iw96" by (Iwase, 1996),
'TS00" by (Tabata and Suzuki, 2000), 'Ha98" by (Harder, 1998), 'Ra96’ by (Ratcliff et al, 1996b), 'YKO4' by
(Yoshida and Kageyama, 2004) and ‘St06’ by (Stemmer et al, 2006). The respective discretization method is
given where 'SP" indicates spectral, 'FE’ finite elements, 'FD’ finite differences and 'FV' finite volumes. Nodes
denote the total number of nodes.

To test for steady-state solutions, the diagnostic values (Nusselt number, root-
mean-square velocity) are evaluated and the steady state is assumed to be reached if
these values change less than 10-¢ in one time-step. Table 4.2 illustrates the resulting
diagnostic parameters of steady-state convection in a spherical shell for a Rayleigh-
number of Ra=7000 in comparison to other published models for isoviscous convection.
The results agree well to within a few percent. The remaining differences are caused by
the different numerical grids, grid resolutions and discretization methods applied. A
convergence test with equal input parameters for tetrahedral flow with a projected
icosahedra grid (see section 3.1.2) results in the bottom Nusselt numbers (3.3105,
3.4514, 3.4848, 3.4897) for an increasing radial/lateral grid resolution of (8/642,
16/2562,32/10242,48/10242) nodes.
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In order to verify the accuracy of the presented numerical technique for fully
spatially variable viscosity, several results from published mantle convection models
were reproduced. According to linear stability analysis (e.g., Busse, 1975), two stable
solutions for thermal convection in the three-dimensional spherical shell with an inner
to outer radius ratio of 0.55 exist if the system is purely bottom heated. The applied
rheology law for the viscosity variations with temperature is the widely used Frank-
Kamenetskii approximation that limits the viscosity contrast to a fixed value Any
(Frank-Kamenetskii, 1969, Reese et al., 1999a):

1 = exp(InAny(Trep — T)) (4.17)

Because the definition of the Rayleigh number includes the viscosity, a reference
temperature T;..s is introduced at which the viscosity for the Rayleigh number is eva-
luated. In all benchmark studies with varying viscosities this reference temperature is
0.5. Usually this temperature is denoted as a subscript to the Rayleigh number:
Ragy s = -+-. This temperature can be arbitrarily chosen and does not alter the results if
the Rayleigh number is re-evaluated with the applied rheology law (in this case equa-
tion 4.17).

Tetrahedral symmetry AnT =1 AnT =10 AnT =20
Mod- Me-
;)1 thg d Nodes Nuro Vrms Nuro Vims Nuro Vims

Ha98 SP 552960 | 3.4955 32.6375 | - - - -

Ra% FV 200000 | 3.4423 32.19 3.2337 26.80 3.1615 25.69
YKO04 FD 2122416 | 3.4430 32.0481 | - - 3.133 26.1064
St06  FV 663552 | 3.4864 32.5894 | 3.2398 27.2591 | 3.1447 25.7300
This FV 327744 | 3.4848 32.6535 | 3.2346 27.2513 | 3.1444 25.7139

Cubic symmetry AnT =1 AnT =20 AnT =30

Ha%98 SP 552960 | 3.6086 31.0765 | - - - -

Ra% FV 200000 | 3.5806 30.87 3.3663 25.17 3.3285 24.57
YKO04 FD 2122416 | 3.5554 30.5197 | 3.3280 25.3856 | - -

St06  FV 663552 | 3.5982 31.0226 | 3.3423 249819 | 3.2864 24.1959
This FV 327744 | 3.5953 31.0704 | 3.3631 25.1521 | 3.2747 24.1568

Table 4.3 Comparison of the bottom Nusselt number and the rms-velocity for the tetrahedral and cubic
steady-state convection with a viscosity contrast of AnT=1, AnT=20 and AnT=30. The Rayleigh number is
7000 for T=0.5. The abbreviation ‘Be89’ stands for the results from (Bercovici et al, 1989), ‘Ha98’ from
(Harder, 1998), ‘Ra96’ from (Ratcliff et al, 1996a), ‘St06’ from (Stemmer et al, 2006) and ‘YKO4’
from(Yoshida and Kageyama, 2004). The respective discretization method is listed as well, where ‘SP’ denotes
spectral, ‘FE’ finite elements, ‘FD’ finite differences and ‘FV’ finite volumes.

Table 4.3 shows a detailed comparison to other published models of convection
with temperature-dependent viscosity contrasts of Any = 10, Anr = 20 and A = 30,
respectively, as an extension to the results published by Stemmer et al. (2006). In con-

trast to table 4.2, the grid was a projected icosahedra grid (see section 3.1.2) with 32
shells. The results agree within one percent to the results by Stemmer et al. (2006).
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RaO.S |C ArlT t Niter tCPU Nut Nub <T> 7-i,min Ti,max <V> Vri,min Vri,max

, 0688 2110 ... 7873 7890 01826 00304 08804 15464 -265.58 9798
[0.31] [35000] °°°° [7.850] [7.770] [0.1728] [0.0228] [0.9454] [154.8] [-2615] [982.6]

7524 7514 02493 00306 07970 16364 -396.70 764.33
(7.371) (7.372) (0.1941) (0.0271) (0.8973) (153.13) (-275.65) (949.34)

1e5 Cubic

1e5 Rand 1 0.748 1660 36.35

7000 Tetra 100 2046 113 o0 2900 2920 02595 00318 09105 2313  -1045 166.59
[2.0] [30000] °°° [2.935] [2.929] [0.2653] [0.0332] [0.9255] [23.11] [10.74] [171.3]
7000 Tetra 1e3 1001 201 o 2526 2532 03027 00662 09292 2236  -640 21503
[15] [31000] °°° [2.546] [2.535] [0.3124] [0.0695] [0.9452] [22.90] [-6.97] [226.7]

Table 4.4 shows a comparison of global and local quantities as well as compute time measurements for some
selected cases. The sole influence on the initial condition (1.C.) in the first two cases demonstrates the volatile
nature of these values. All computations took place on an 8 CPU shared memory machine (Opteron 875 w/
2.2GHz), while tcru shows the compute time in hours until an adequate steady state was reached. This final
time is shown as non-dimensional diffusion time t, combined with nier time steps. The grid consisted in all
computations of a projected icosahedron with 32 radial levels and 10.242 lateral nodes. Other values consist
of volume averaged temperature <T> and velocity <V>, as well as their interior (mid-shell) minima and max-
ima. The velocity minima and maxima are taken only from the radial component. Values in square brackets
are from Zhong et al, 2008 and round brackets from Stemmer et al,, 2006.

A major advantage of the time discretization scheme used (section 3.2.7) is the
robustness of the fully implicit treatment: instead of using the Courant-criterion which
restricts the time step to the maximum velocity within the system, an approach utiliz-
ing the maximum difference of the velocity compared to the previous inner iteration
leads to equally good results. Due to this restriction less turbulent convection models
require less time steps and therefore computational time. Table 4.4 shows a more de-
tailed comparison of local values such as radial min / max velocities and temperatures
at mid-depth as discussed in the previous section. Furthermore, the computational ef-
fort for this kind of problems is also indicated. The table shows also the volatile nature
of these control values as two different initial conditions are compared to each other
(first two cases in table 4.4). An extension to this table can be found in Appendix B.
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Residual ISO T: -0.059, 0.137

Temperature top
000 004

Figure 4.2 a) illustrates the flow pattern for a stimulated tetrahedral pattern with a Rayleigh number of 7000
at a reference temperature of 0.5. The overall viscosity contrast due to temperature is 20.

Figure 4.2a and b show detailed flow patterns and temperature distributions of
the tetrahedral and cubical steady state patterns with low temperature-dependent vis-
cosity (AnT=20). Once AnT reaches a certain limit, the convective regime changes to
stagnant-lid convection. This transition is smooth and occurs between contrasts of
AnT=10%and 5 105, as is further examined for three-dimensional spherical geometry by
Stemmer et al. (2006) for bottom heated convection and in chapter 5 for purely inter-
nally heated convection. The method introduced here shows the same behavior for this
viscosity contrast and also develops a stagnant-lid, as illustrated in figure 4.2 c. Figure
4.3 displays the typical plume-thinning phenomena caused by temperature-dependent
viscosity (Hansen and Yuen, 1993, Ratcliff et al, 1996b). If the viscosity contrast based
on temperature is increased for a tetrahedral or cubical mode with moderate Rayleigh
numbers, the plume-tail gets thinner and faster.
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Residual ISO T: -0.060, 0.134
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Figure 4.2 b) as a) but with a stimulated cubical pattern.

A final comparison to the commercial product COMSOL Multiphysics© 3.5 con-
cludes this section. The COMSOL suite (Courbebaisse, 2008) solves the equations for
mantle convection with spatially varying viscosity using a finite element approach. Be-
cause this product has a broad range of applications, the solver is not optimized for this
kind of problems. This is the reason why only two-dimensional (2D) cases could be
compared. Two simple test cases were constructed in 2D, one bottom-heated isovisc-
ous model with Ra = 10° and a second model with an intermediate viscosity contrast
of Any = 100. The grid constructed for this problem is setup by 325 constantly angular
divided nodes projected on 32 linearly distributed radial shells (radius ratio 0.55),
while in COMSOL the mesh generated for the finite-element discretization is completely
unstructured. The top boundary condition for the momentum equation was changed to
a no-slip condition to suppress unrealistic zero-mode velocity patterns from appearing
in COMSOL. The initial condition for the conductive temperature profile was slightly
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Temperature X-slice
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Figure 4.2 c) as a) but with a viscosity contrast of 10°. A stagnant-lid formed and the convecting layer exhibits
high degrees, independent of the initial perturbation.

perturbed with a wavelength of 1/4t to force four upwellings. The results are shown in
table 4.5, together with the steady-state pattern of temperature and velocity in figure
4.4. Global and local values of both cases agree well within two percent.
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60 Chapter 4: Validation
Setup Simulation Resolution  Nu,, Nu, (T) Vyms Vpax
Ra = 10° COMSOL 3.5 23.500 5.71 5,65 0.535 9241 255.02
Isoviscous This 10.400 5.63 569 0531 105.3 256.21
Ra; = 10° COMSOL 3.5 28.400 2.69 2.68 0.581 24.23 73.93
Any =100 | This 10.400 2.65 2.68 0.565 28.68 73.05

Table 4.5 shows a comparison of two cases of purely bottom heated convection in a 2D spherical shell with the
commercial product COMSOL 3.5. The top boundary condition for the momentum equation was, in contrast to
the previous benchmarks, no-slip. For the weakly temperature-dependent viscosity case, the reference tem-
perature for the Rayleigh number was 1 instead of the previously used 0.5.

Temp. difference

004 000 004 007

Velocity-difference mid-shell

2000 1500

000

15,00

Velocity difference

=

Figure 4.3. The difference between a weakly temperature-dependent case (Anr = 20) with Raos=7000 and the
isoviscous case. Because the upper two slice views are not color-centered around zero, they contain an extra
red contour line that indicates zero difference.
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Figure 4.4. The temperature and velocity field of the cases summarized in table 4.5, while the upper four im-
ages show the case with temperature-dependent viscosity and the lower four images the isoviscous case. The
respective upper two pictures are directly processed with COMSOL 3.5 and the lower cases are the result of the

presented simulation method with similar color scale.
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5 Influence of Variable Viscosity on Purely Internally
Heated Convection

This chapter concludes this thesis with a systematic study of the influence of
temperature- and pressure-dependent viscosity on thermal convection in a spherical
shell. A total of 88 simulations for volumetrically heated convection were analyzed to
study for instance the different convection regimes, the behavior of the transition to the
stagnant-lid regime and key variables of stagnant-lid convection itself like lid thickness,
boundary layer thickness and structural complexity. The runs are divided into purely
temperature-dependent viscosity cases (TC) and temperature and depth dependent
viscosity cases (TPC). Roughly 2/3rd of all runs are TC, while the residues include a con-
stant pressure-dependent viscosity contrast of 100. Viscosity contrasts reach values of
up to 109 and the internal Rayleigh number values of around 108, which leads to up-
dated scaling laws for this kind of convection and a newly introduced spectral scaling
that might help to constrain interior parameters of convection. The input and output
parameters are summarized in appendix A and C. The following list summarizes all
symbols used in this chapter:

H Volumetric heat production rate a Fitting parameter, prefactor

M Mobility criterion after Tackley B Fitting parameter, exponent

M, Average temporal deviation of v, | ¥ Rheological gradient

M; Mobility criterion based on boun- 8o Depth of the center of the thermal boundary layer
dary layer thickness (TBL)

S Mobility criterion after Solomatov Sy Depth of the bottom of the TBL

T Temperature, non-dimensionalized 6 Depth / thickness of the stagnant-lid

T; Interior temperature 6yn  Thickness of the TBL, §; — 6,

T, Rescaled isoviscous temperature +n  Reduced thickness of the TBL, centered around &,

Tc Maximal conductive temperature 4 Fitting parameter

T;, Temperature below the stagnant-lid | n Non-dimensional viscosity

T Surface Temperature n; Non-dimensional viscosity of the convecting interior

a Fitting parameter, prefactor 6 Frank-Kamenetskii-parameter

a,,  Rheology constant v Viscosity in Pa s

d Depth Us Surface viscosity in Pa s

g Gravity p Density

k Conductivity W Weighted mode

m Slope for wavelength scaling Wmin Minimal mode / degree

q Heat-flow wstep Increase of degree for time-dependent convection

qa Convective heat-flow € Fitting parameter

q. Conductive heat-flow AT, Temperature difference from §; to &,

ar Convective heat-flow fraction Anp  Viscosity contrast due to pressure

T Inner radius Nu  Nusselt number

7, Outer radius Ra; Rescaled isoviscous Rayleigh number Ra

1 Radius ratio Ray o Surface Ra for internally heated convection

t Time Ray ; Internal Ra number based on the viscosity of T;

Uyms Volume averaged root-mean-square | Ras_g Ra of the transition between steady-state and time-
velocity dependent convection

Viop  Surface velocity Ras Boundary layer Ra
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64 Chapter 5: Influence of Variable Viscosity on Purely Internally Heated Convection

5.1 Model Setup

We consider thermal convection of an internally heated Boussinesq fluid at infi-
nite Prandtl number. The Boussinesq approximation is sufficiently accurate for mantle
convection (Spiegel and Veronis, 1960) and due to relatively slow velocities (up to me-
ters per year) all inertia forces can be neglected with an infinite Prandtl number, as
further explained in section 2.3. The inner and outer boundaries of the spherical shell

. . . . i
are impermeable and shear-stress free. The inner to outer radius ratio T—‘ =1 = 0.55,

o

similar to Earth-like studies of mantle convection. The temperature at the top is fixed
(cooled from above) and, in contrast to benchmarks and the setup explained in section
2.2, the inner boundary is insulated.

The equations are in a non-dimensional form so that the thickness d = r, — r; of

. . . . d? .
the spherical shell acts as a length scale, the thermal diffusion time t = —as time scale

where Kk = e 1S the thermal diffusivity, k the thermal conductivity and cp the specific
P

heat capacity at constant pressure. The temperature scale for this kind of convection is
based on the internal heating rate H instead of a fixed AT. The non-dimensional tem-
perature T’, with Ty as surface temperature, is given as (Grasset and Parmentier, 1998):

Hd?
="

T+ T (5.1)

For convenience, the apostrophe is neglected in the following sections and all tempera-
tures are non-dimensional.

The bottom-isolation is expressed with a Neumann boundary condition for
temperature (equation 3.39 in chapter 3.5) and the maximal possible temperature is
limited by T, as explained in chapter 4.1. The energy equation (2.16) changes with the
temperature scale of equation 5.1 to:

oT’
—=VT' -3 - VT +1 (5.2)
Jat

All available energy of the system comes from a homogeneous heat source, simi-
lar to radiogenic heating. Thus, the strength of convection can be expressed by the in-
ternally heated Rayleigh number, following the definition of Reese et al. (1999a),

_ plgatid® (5.3)
kkvg

where the volumetric heat production rate H, the density p, the acceleration of gravity
g, the thermal diffusivity «, the coefficient of thermal expansion o, the surface viscosity
vs (the reference temperature equals the surface temperature) and the thermal con-
ductivity k are assumed to be constant.
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5.1 Model Setup 65

A different expression exists for the effective Rayleigh number that is best de-
scribed with the viscosity at the convecting interior n; = min ({();4:) - Note thatn is
always the non-dimensionalized viscosity and related to the dynamic viscosity (Pa s)
with n = v/vg, therefore the internal viscosity is defined as v; = 1; vs and the effective
Rayleigh number is:

_ p*gaHd®
Rani == e,
L

Because the interior temperature T; (see section 4.1 for definition) is not known a-

= Ray on; (5.4)

priori, this Rayleigh number is an output parameter, while Ray, ¢ is suitable as an input
parameter for the simulation as a constant. For isoviscous convection the Rayleigh
number is therefore constant in space.

While this work focuses on the influence of temperature on viscosity, selected
tests were made that study the influence of pressure dependence as well. For simplicity
and comparability, Newtonian viscosity is assumed, linearized with the Frank-
Kamenetskii approximation (Frank-Kamenetskii, 1969):

n = exp(—y T’ + In(Anp) (1, — 1)) (5.5)

The y parameter is assumed constant and represents the rheological gradient
y = —0dInn/0T. It is related to the original Arrhenius relation (Karato and Wu, 1993)
withy = E/(R T?). A pressure-dependent viscosity is approximated with a linear depth
dependent gradient and is determined by the parameter Anp that describes the maxim-
al viscosity contrast due to depth, similar to the viscosity definition in section 2.5.

The viscosity contrast in a convecting system is mainly described by the rheo-
logical constanty and the resulting temperature difference in the system. Because of
purely internally heated convection, this difference is not known a-priori and therefore
the viscosity contrast itself is an output parameter, in contrast to bottom heated con-
vection. Here the temperature difference and y are input parameters and therefore
An = exp(y). In the present simulations, An = exp(y T;) is valid for TC only. For TPC,
the definition of T; is not sufficient because the effect of pressure dependency does not
reveal the depth of the lowest average viscosity. Therefore, the lowest observed radial-
ly averaged viscosity (An = min({n),,;)"!) is taken for those cases. The viscosity con-
trast due to pressure Anp is therefore approximated as a depth dependent viscosity
(Bunge et al, 1996). In contrast to temperature-dependent viscosity, depth dependent
viscosity weakens the overall viscosity contrast because viscosity increases with depth
but decreases with temperature.

The projected icosahedra grid with 32 constantly spaced shells, each containing
10,242 nodes (see figure 3.5 in section 3.1.2), acts as a discrete basis for all simulations.
This grid type was the preferred choice for this kind of simulations because higher lat-
eral resolution is usually required at the hotter interior.
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66 Chapter 5: Influence of Variable Viscosity on Purely Internally Heated Convection

5.2 Regime Classification

The convection pattern and its temporal evolution changes with increasing Ray-
leigh number or viscosity contrast. Two different regime categories are distinguished.
One classifies the temporal evolution and differentiates between steady-state convec-
tion and time-dependent / turbulent convection and is called temporal regimes. The
central parameter of influence is the Rayleigh number. Another regime category distin-
guishes the spatial properties of the flow such as structure and surface mobility. The
latter is influenced mainly by viscosity contrast and the applied rheology and is called
rheological regimes.

5.2.1 Rheological Regimes

Classification Criteria

The rheology law significantly influences the convection pattern and heat trans-
port. Especially the viscosity contrast due to temperature Ay has a great impact on the
convection. Depending on the viscosity contrast, the surface mobility changes and is
denominated into three different regimes (e.g., Hansen and Yuen, 1993, Solomatov,
1995, Ratcliff et al., 1996a, Trompert and Hansen, 1998a, Tackley, 2000a):

1. The mobile regime is typical for isoviscous convection and convection with
extremely low viscosity contrasts where the surface is fully mobilized. In
case the upper and lower boundaries are free-slip, the velocity is almost
equal on the inner and outer boundary. A moderate velocity decrease on the
surface is expected due to the geometry of the spherical shell: the inner area
is smaller than the outer area.

a. The sluggish regime, sometimes called transitional regime, is typi-
cal for convection with moderate viscosity contrasts for dominantly
bottom heated or boxed simulations. The surface is almost stagnant
due to high viscosities from the cold material close to the surface.
The velocity at the surface is significantly smaller than at the inner
boundary.

b. The low-degree regime occurs especially with dominant internally
heated convection in spherical shells. In different circumstances this
regime extends or replaces the sluggish regime. With moderate vis-
cosity contrasts, instead of a reduced surface velocity, the pattern of
convection changes to long wavelengths with a fully mobilized sur-
face.

3. The stagnant-lid regime occurs with strong temperature-dependent vis-
cosity as the surface completely stagnates and does not participate in con-
vection anymore. The heat transport within this lid is only by conduction.

66



5.2 Regime Classification 67

Different criteria are needed to distinguish these regimes. Typical approaches
involve the averaged surface velocity v, (e.g, Hansen and Yuen, 1993, Davaille and
Jaupart, 1993, Solomatov, 1995, Trompert and Hansen, 1998b, Tackley, 2000b). How-
ever, no definite value of v;,, can be determined to classify a boundary to the stagnant-
lid as shown in figure 5.1, which illustrates the variations of the volume-averaged ve-
locity vy, together with vy,y,.

Although the boundary layer thickness §,, (as explained in the next section)
does not correlate with T; and therefore the Nusselt number Nu in the stagnant-lid re-
gime, a well defined correlation exist naturally from the definition of the Nusselt num-
ber and heat flux for the mobile regime in the form of §,,, = Nu~! (Solomatov, 1993;
section 5.3). This different correlations of the boundary layer thickness in relation to
the Nusselt number gave rise to an alternative mobility criterion in the form of
M; = 8, Nu, as it defines a well working boundary for the stagnant-lid regime with
M; < 0.6. The advantage of this criterion is the absence of any velocity component,
which makes it suitable for using it with scaling laws. Figure 5.2 demonstrates three
different criteria derived from Solomatov and Moresi (1997) and Tackley (2000b) as
well as the just presented M, for all cases.
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Figure 5.1. The rms velocity as crosses and the surface velocity as diamonds to the respective viscosity contrast
of each temperature-dependent case on the left and temperature- and pressure-dependent on the right. The
dashed line represents the suggested boundary between the stagnant-lid and mobile regime.
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Figure 5.2. Different mobility criterions; Left shows the proposed criterion by Tackley (2000b) with M =
Viop/Vrms; the middle picture shows the criterion by Solomatov and Moresi (1997) with S = ((Srzh vmp)/}cd;
the right picture shows the criterion used in this work with M; = &,, Nu. All three pictures show all 88 cases
with crosses as purely temperature-dependent viscosity cases (TC) and diamonds with temperature- and
pressure-dependent viscosity cases (TPC). The dashed vertical lines in the right picture show the boundary
between the stagnant-lid regime (right-hand side for increased viscosity contrast) and non-stagnant-lid,
dashed for TPC and dotted for TC.

The Mobile Regime

This regime is characterized by a fully mobilized surface and, to distinguish it
from the low-degree regime, with a minimal dominant degree of three. It thus includes
isoviscous convection and convection with low viscosity contrasts up to 10. The ab-
sence of degree-one convection in isoviscous cases is due to the chosen radius ratio
since an increasing radius ratio leads to higher minimal degrees for convection (Jarvis,
1993, Jarvis, 1994, Jarvis et al., 1995, Travnikov et al., 2000). An increase in the surface
Rayleigh number does generally increase the mode, although no tendency could be
observed for increased internal Rayleigh numbers with increasing y, as visible in figure
5.3. The velocity increases and the flow patterns become turbulent while maintaining a
relatively low dominant mode.
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Figure 5.3. The upper two figures show the position of the different regimes in the Ray ; and An parameter
space. M stands for mobile regime, L for low-degree regime, S for stagnant-lid regime and U for sluggish re-
gime.The lower figure shows all TC in the An and dominant mode parameter space, with y as labels for each
case and connected cases with similar Ray o.

The Low-Degree Regime

In either TC or TPC scenarios, starting from isoviscous convection, an increase
in the viscosity contrast leads to a drop in the dominant mode for Ray o < 1e5 and in-
creases rather abruptly while passing the stagnant-lid boundary. A significant differ-
ence to other publications in this parametrical range is the absence of the sluggish re-
gime for TC and a narrow range of the sluggish regime for TPC. This regime should oc-
cur after Christensen (1984b) for a viscosity contrast between 1le2 and 1e4. It is further
confirmed from other studies in 2D and 3D boxed simulations with internal heating and
/ or bottom heating (e.g., Carey and Mollendorf, 1980, Ogawa et al, 1990, Hansen and
Yuen, 1993, Hirayama and Takaki, 1993). This study is the first to simulate mantle con-
vection with purely internal heating in the assumed parametrical range of the sluggish
regime in a spherical shell. Instead of weakly moving upper material, complete low-
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70 Chapter 5: Influence of Variable Viscosity on Purely Internally Heated Convection

degree (less than degree three as dominant mode) convection could be observed. In the
Ray ; and An parameter space, this region has the shape of a trapezoid and therefore
depends on both parameters, as illustrated in figure 5.3 with a degree-marker over the
observed parameter space.

Tackley (1993) observed long wavelengths caused by bottom heated convection
in a 3D box and ascribed it to the influence of the boundary condition. He argued that
with the more realistic free-slip boundary condition the flow would choose a preferably
long wavelength in this scenario. The transition of the boundary condition from free-
slip in the mobile / low-degree regime to the no-slip boundary condition of the stag-
nant-lid regime for the convecting interior is most probably the cause for the nonexis-
tent low-degree cases in the stagnant-lid regime and is responsible for the minimal
mode studied in section 5.7.

The Stagnant-Lid Regime

The transition into the stagnant-lid regime from the low-degree regime is rather
sharp: the surface velocity drops and the ratio of lateral to radial viscosity contrast de-
creases suddenly, along with an increase in the dominant mode as shown in figure 5.4.
The stagnant-lid regime is observed for a viscosity contrast larger than 1.3e4 within the
convecting system for purely temperature-dependent viscosity cases. The relative error
on this value is less than 5% because the transition is valid for all considered parameter

values.
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Figure 5.4. The left figure shows the relation between the lateral and radial viscosity contrast (commonly just
referred to as viscosity contrast) for all purely temperature-dependent viscosity cases (TC). The numbers
along the line show the dominant mode. On the right figure the logarithm of the average surface velocity is
plotted against the viscosity contrast with numbers along the line that mark the y value of the simulation. The
lines connect a series of simulations for a specific Ray o and a varied y. The figure illustrates the behavior of
the lateral viscosity contrast and the average surface velocity at the transition into the stagnant-lid regime,
which is marked with a vertical dashed line for all simulated cases with purely temperature-dependent viscos-
ity. The average lateral viscosity contrast of the stagnant-lid cases is 30 (dotted horizontal line, left figure).
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5.2.2 Temporal Regimes

To achieve convection for a given viscosity contrast, the Rayleigh number must
be larger than a critical value. For Rayleigh numbers just above the critical value, con-
vection sets in and reaches a steady-state in which the convection pattern stays statio-
nary. With increasing Rayleigh number a turbulent time-dependent convection sets in
where all measurable output parameter fluctuate over time (e.g., Krishnamurti, 1970,
Busse, 1978, Hansen and Ebel, 1984, Hansen and Ebel, 1988, Hansen and Yuen, 1990,
Hansen et al.,, 1990, Travis et al, 1990, Hansen et al., 1992a, Hansen et al, 1992b,
Bottaro et al., 1992, Hansen and Yuen, 1993, Tang and Tsang, 1997, Craik, 2000). If the
output parameters are independent of the initial condition and fluctuate around their
temporally averaged value, it is called the quasi-steady-state.

In contrast to the spatial regimes (rheology dependent, e.g., mobile and stag-
nant-lid regime), the time-dependent regimes depend mostly on the internal Rayleigh
number as it determines the vigor of convection. Between the steady-state (not time-
dependent) and the turbulent time-dependent regime, a cyclic regime with periodically
reoccurring patterns exists.

In a narrow range of Ray ;, the pattern of convection undergoes a cyclic beha-
vior (e.g., Zhong et al., 2007). This behavior was visible in only 2 cases and show typical
effects of mode-alteration at fixed intervals. Figure 5.6 displays the temporal spectral
progression of the temperature and velocity field of one case, cycling between degree-
one and two. Because of the limited amount of cases no definite boundaries for the cyc-
lic regime could be established and all observed cycles do not have a period short
enough to be considered in planetary evolution models.
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Figure 5.5. The cyclic behavior of the case Ray o = 1e3 and y = 30 between a dominant degree one and two.
The color scale indicates the mode at a certain radius and time for temperature (top) and velocity (bottom).

To classify the time dependence of convection, a criterion is required that is
sensible to temporal fluctuations of control variables, i.e. the maximal velocity v, ;.
The quasi-steady state part of a simulation was used to calculate the mean maximal
velocity ¥4, and finally the M, indicator that determines the standard deviation ¢ of

(vmax

Vmax Telative to U4, My = 0 )- This is equivalent to the average percental fluctua-

Umax

tion of v,,,4,. Convection with a value of My smaller than 1.5% is considered as steady
state convection and a value greater than 1.5% is given for time-dependent convection.
This value is chosen to avoid numerical errors. A sharp boundary for the transition to
time-dependent convection could only be identified for stagnant-lid cases and is ~2e6
for TC and ~6e5 for TPC, similar to observations by Hansen et al. (1990) and as illu-
strated in figure 5.7. The boundary for non stagnant-lid cases is rather wide and be-
tween 1e5 and 2e6 for all cases.
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Figure 5.6. The M, indicator for the time dependence of convection, illustrated as rounded integers over all TC
on the left and TPC on the right, where connected lines illustrate constant Ray o, the horizontal dashed line
the boundary to the stagnant-lid regime and the vertical line the boundary to time-dependent convection in
the stagnant regime.

5.2.3 Influence of Pressure Dependence

For the pressure-dependent cases, a narrow sluggish regime can be observed
and the low-degree (below degree three) range is rather narrow compared to the pure-
ly temperature-dependent cases as shown in figure 5.3, right. The pressure dependence
reduces the effective viscosity at the bottom which also leads to a reduction of the local
Rayleigh number at greater depths. In contrast to bottom heated convection the bottom
free-slip boundary therefore changes towards a no-slip boundary that can also be in-
terpreted as reducing the size of the effective convecting part. This on the other hand
hinders low degrees from developing. The transition into the stagnant-lid starts at a
viscosity contrast of about 1e3. Interesting to note, in contrast to bottom-heated con-
vection where the viscosity contrast required to enter the stagnant-lid regime is higher
for pressure dependence in comparison to purely temperature-dependent viscosity, it
is reduced for purely internally heated convection. There are also hints that the transi-
tion into the stagnant-lid regime is not purely viscosity contrast dependent. One case
shows a transition to degree one without a lid while maintaining high viscosity con-
trasts as figure 5.7 (cyan dotted line) displays.
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Figure 5.7. The left upper figure shows the relation between the lateral and radial viscosity contrast for cases
with an additional pressure dependence of Anp = 100 (TPC). The numbers along the line show the dominant
mode. On the right upper figure the logarithm of the average surface velocity is plotted against the viscosity
contrast with numbers along the line that mark the y value of the simulation. The lines connect a series of
simulations for a specific Ray o and a variedy. The vertical dashed line indicates the beginning of a transi-
tional zone while the transition to the stagnant-lid regime might not only be dependent on the viscosity con-
trast. The average lateral viscosity contrast of the stagnant-lid cases is 130 (dotted horizontal line, left figure).
The dotted cyan line marks the evolution of the simulation with Ray o = 1e3 and y=100, also displayed at the
two lower pictures as iso-surface; the two snapshots are taken att = 0.35(left) and t = 0.6 (right). The re-
gime changed from a dominant degree 22 with a thin lid (5%) to a degree one with no lid.

Cyclic behavior between different regimes could not be observed, but as periods

are preferably long, this lag of observation could be due to insufficient runtime of the
simulations.

5.2.4 Lateral Viscosity Contrast

The lateral to radial viscosity ratio differs between the purely temperature-
dependent cases and the pressure-dependent cases (figure 5.4 and 5.7). For non-
stagnant-lid cases with purely temperature-dependent viscosity, this ratio is approx-
imately direct proportional for asymptotically large Ray ¢ (An;q~An). Instead, a dis-
proportionate increase of An;,.~3An? occurs for pressure-dependent cases (figure 5.7).
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For all stagnant-lid cases An;,; stays approximately constant. For TC this value
is at around 30 and for pressure (A, = 100) and temperature dependency it raises to
130. This increase is therefore only dependent of the pressure dependence of the vis-
cosity Anp. This assumption has been verified with three extra stagnant-lid cases with
Anp = 1e5 (cases 86-88 in appendix A and C) that led to an average An;,; = 3e3. With
a linear fit the following relationship can be established:

Anyqr =~ exp(2.95 4+ 0.43 InAnp) (5.6)

5.3 Boundary Layer Definition

The thermal boundary layer (TBL) of a convecting system is the region where a
transition between convective and conductive heat-flow can be observed. In purely
internally heated cases with an insulated bottom boundary, only one TBL exists. Note
that figure 5.8 and 5.9 in combination with the symbol index at the beginning of this
chapter are important to understand the following sections.

To establish scaling laws for the TBL thickness 6,5, a definition for the lower
boundary of the TBL, §;,, must be established. Two common methods of determining
the depth of the lower boundary are found in literature. Deschamps and Sotin (2000)
and Davaille and Jaupart (1993) used the method of the tangent through the inflexion
point of the heat-flow. The depth at which this tangent crosses zero is used as the lower
boundary layer &, since only convective heat-flow is considered from this point on.
This depth corresponds to the depth at which T(6,) = T;. An alternative way as used in
Grasset and Parmentier (1998) is to take the point where the advective heat-flow
equals the conductive heat-flow, §,. Assuming &, defined as §, would usually underes-
timate the boundary layer thickness and does not represent the rheological tempera-
ture scale AT, as illustrated in figure 5.8 and further discussed in the next section. The
depth where the advective heat-flow equals the conductive heat-flow corresponds
more to a depth of the center of the boundary layer. The layer thicknesses obtained
with the first method correspond with an error of less than 2% to the values obtained
by Parmentier et al. (1994). These studies used isoviscous 3D boxed simulations of
internally heated convection and confirm again that convection beneath the stagnant-
lid can be treated as isoviscous even though small lateral and radial viscosity contrasts
exist (e.g., Grasset and Parmentier, 1998, Solomatov and Moresi, 2000b, Reese et al.,
2005). The stagnant-lid depth §; that reaches zero in case of an absent stagnant-lid acts
as upper bound for the boundary layer so that §,, = 6;, — §;. The lid thickness §; and its
determination are further discussed in the following section. The reduced boundary
layer thickness &, plays an important role in the scaling laws and is centered around
8o: 6y, = 2(6p — &p). This is similar to the intersection of the tangent through the in-
flexion point of the conductive heat-flow fraction with one, minus the root of this tan-
gent.
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Figure 5.8. Typical temperature and heat-flow profiles, (Ray o = 1,y = 60, case 3 in appendix). The dashed
line shows the theoretical conductive heat-flow while the dotted black line shows the advective heat-flow. The
straight black and red lines are the observed heat-flow / temperature profiles. The upper two horizontal lines
mark two different lid measures: V 2% marks the boundary where the horizontally averaged velocity reached
more than 2% of max(|¥|) and can therefore be seen as the boundary of a non eroded lid. The “V curve”
marks the depth at which the tangent through the inflexion point of the velocity profile crosses zero, also
marking the stagnant-lid depth as explained in the next section. The three dotted lines below represent the
boundary layer based on the tangent through the inflexion point of the conductive heat-flow fraction, whereas
the orange dotted line represents the “Equal Heat-flow”, where the conductive heat-flow equals the convective
heat-flow. The bottom dotted line marks the depth at which the tangent reaches zero and acts as lower ther-
mal boundary layer that coincides with the depth of T;.
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Figure 5.9. Parameters describing the boundary layer and how they are observed. It shows the ratio of theo-
retical conductive heat-flow to actual heat-flow. The inflexion point is determined by the steepest ascend,
whereas the root of the tangent through the inflexion point marks the lower bound of the thermal boundary
layer that coincides with the depth at which T reaches T;. The upper bound has two possible definitions; either
with the lid thickness observed through the velocity profile (black dotted line, §,;,) where a,, is approximately
constant and the temperature of this depth can safely assumed to be equal to the theoretical conductive tem-
perature at this depth, or the intersection of the tangent at one that, combined with the lower boundary,
centers around 8, and is called the reduced boundary layer thickness &, As the right figure of an isoviscous
case shows, this value never reaches zero. This method is further explained in section 5.6.3.
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5.4 Lid Definition and the Rheological Constant

The radially averaged temperature profile of temperature-dependent viscosity
convection starts at a certain viscosity contrast to approach the theoretical conductive
temperature profile in the upper regions, i.e. convective motion ceases down to a cer-
tain depth that depends on the rheological gradient and the Rayleigh number. A stag-
nant-lid forms on top of a convecting layer. Within this lid, heat is only transported by
conduction.

The boundary or thickness of this lid §; is not clearly defined. Some refer to a
non-eroded stagnant-lid (Deschamps and Sotin, 2000), where advective forces are low
enough to be guaranteed to leave the material within this region. This would have a
physical equivalent definition of a threshold within the radially averaged velocity pro-
file (not restricted to radial or lateral movement). The thickness of the lid is in this case
equal to the depth where the velocity profile reaches the value of the expected error in
the velocity, dependent on a percentage of the root-mean-square v, velocity. Even
though this is the most plausible definition of a stagnant-lid as it really defines a ‘stag-
nant’ lid, it is also very weak because the velocity profile has a rather smooth logarith-
mic transition towards zero, so small variations in the threshold value have great im-
pacts on the thickness of the lid. Two different values of this threshold percentage are
tested (one and five percent cut-off) and illustrated together with other depth-averaged
scalars in combination with the tangential-method (explained hereafter) in figure 5.10.
The average and almost constant difference in determining the lid thickness with a one
percent and a five percent cut-off is around 5% of the shell thickness, while the one-
percent cut-off always produces thinner lids.
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Figure 5.10. The lid thickness on the left side and the resulting a,,values for all temperature-dependent cases
with different measurement methods. The red vertical dashed lines mark a series of simulations with a similar
Ra, and increasing y. The yellow background marks cases with M; < 0.6, classifying them as stagnant-lid
cases.
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Figure 5.11. The method of the tangent through the inflexion point to determine the lid thickness, in this ex-
ample with the velocity profile, marked as ‘Velocity’ in figure 5.9 and ‘V curve’ in figure 5.7.

A more promising and widely used definition is the root of the tangent through
the inflexion point of the velocity profile e.g., Deschamps and Sotin (2000), as illu-
strated in figure 5.11. This method works well in most cases, but is not a consistent
instrument of determining the lid thickness as it fails to work for weakly convecting
systems that are not time-dependent as shown in figure 5.12. The velocity profiles of
these weakly convecting systems include a second inflexion point close to the bottom
that is in some cases larger than the upper and gives therefore false results. Another
disadvantage of this method is the virtual presence of a lid on some degree-one cases.
The same method over various other depth-averaged profiles has been tried and illu-
strated in figure 5.10, such as lateral viscosity contrast, spectral power and heat-flow.
None of these methods led to a clear definition of the lid thickness.
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Depth
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Figure 5.12. The velocity profiles of purely temperature-dependent cases with increasing y marked on the
profiles and a constant Ray o of 3 on the left side and 100 on the right. The steady-state cases withy = 40,50
on the left figure and y = 20, 30,40 on the right figure have a slope in the lower part steeper than in the
upper, causing false results in determining the inflexion point.
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Davaille and Jaupart (1993), Grasset and Parmentier (1998) and Reese et al
(19993, 2005) found that at least for purely internally heated convection a fixed de-
pendence of the rheological gradient to the temperature drop within the boundary
layer exists (see section 5.6.2):

Qyp = ATrh Y (57)
AT,y =T; =T,

In this equation T, = T(6;) is defined as the temperature at the base of the
stagnant-lid and T; = T(§,) the temperature of the well mixed interior. The tempera-
ture at the base of the stagnant-lid is therefore bound to the lid thickness §;. Assuming
that a,., should be as constant as possible, the different methods of determining the lid
thickness could be benchmarked to check which method leads to the least standard
deviation of a,.,. The various results for different methods are illustrated in figure 5.10
(right). The least standard deviation gave indeed the widely used method with the tan-
gent through the inflexion point of the velocity profile. The results for a,; are summa-
rized in table 5.1.

a,.,/o (number of cases) Steady convection Time-dependent convection
TC 3.14 / 0.33 (5) 2.88/0.04 (24)
TPC 6.46 / 2.44 (3) 3.71/0.16 (17)

Table 5.1. The results for a,, with a lid defined as the root of the tangent through the inflexion point of the
velocity profile, separated for different regimes.

5.5 Scaling Laws for the Boundary Layer
Boundary Layer Thickness Scaling with Nu and n;

Although the center of the reduced boundary layer §, is not useful to directly
specify neither the upper (lid-depth) nor the lower boundary of the TBL (depth of T;), it
shows a strong correlation with the Nusselt number. This correlation is omnipresent
for all cases in this study as figure 5.13 demonstrates and similar to the observation
made by Solomatov (1995), which led to a scaling relation of §,~Nu~1. A direct fit with
a standard deviation of 4.3e-3 for all cases, including TPC, leads to the following equa-
tion:

8o = 0.53(Nu — 0.37)"1 (5.8)
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Figure 5.13. The depth of the center of the reduced thermal boundary layer &, plotted are all 88 cases, whe-
reas the crosses represent pure temperature-dependent viscosity cases and diamonds pressure and tempera-
ture-dependent cases. The dotted line on the left picture shows the fitting formula as described in the text and
the resulting fit on the right.

It is possible to define an alternative upper boundary, not coinciding with the lid
thickness, in a way that this new TBL centers around §,. A reduced boundary layer
thickness can be defined as 6,;, = 26y — 6. It is reduced in a way that it is always thin-
ner than &, and never reaches the surface, not even in isoviscous cases as further
demonstrated in figure 5.14 as an extension to figure 5.9. This definition has the advan-
tage of a correlation with the internal Rayleigh number Ray ;, but only after the transi-
tion into strongly time-dependent convection that occurs at Ray ; = 3e6. Although it is
not possible to constrain the lid thickness with that relation, it does benefit from the §,
correlation and constrains the lower boundary of the TBL (§,) very accurately. A best
fit for values of &, beyond that limit revealed

1 -
755 = Rajs 59)

To constrain the lid thickness §; from these relations, it must be possible to ob-
tain the full boundary layer thickness with a similar relation. Solomatov (1995) con-
strains &, from an exponentially decaying stress from the lid towards the surface that
therefore strongly depends on the viscosity contrast:

8o _ o

yT;  logm;
This definition considers §, as the lid thickness. A fit of the models presented here

(5.10)

leads to slightly different fitting parameters that are mainly due to a different geome-
try:
8rn = 4 8o (y Ty) ™08 ~ 640> (5.11)

As figure 5.15 demonstrates the good scaling results for the above equation, the
advantage of the introduction of ; in the previous equation makes it compatible with
pressure-dependent cases as well. For the mobile regime, §,,~2 §, = Nu™! as pre-
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81

dicted by Solomatov (1995), which is illustrated in figure 5.16 and validates the mea-

surement criteria of the parameters. This is also the base for the mobility criterion M;

used in section 5.2.
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Figure 5.14. The parameters describing the boundary layer. It shows the ratio of theoretical conductive heat-
flow to actual heat-flow. The inflexion point is determined by the steepest ascend, whereas the root of the
tangent through the inflexion point marks the lower bound of the thermal boundary layer that coincides with
the depth at which T reaches T;. The upper bound has two possible definitions; either with the lid thickness
observed through the velocity profile (black dotted line, 6,,) where a,y is approximately constant and the
temperature of this depth can safely assumed to be equal to the theoretical conductive temperature at this
depth, or the intersection of the tangent at one that, combined with the lower boundary, centers around &,
and is called the reduced boundary layer thickness &;,. As the right column of isoviscous cases show, this value

never reaches zero.
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Figure 5.15. The fit for the boundary layer thickness from §, and the interior viscosity n;. Crosses represent
stagnant-lid cases from TC and diamonds TPC.
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Figure 5.16. The boundary layer thickness of all TC, where crosses represent cases without a stagnant-lid and
diamonds the stagnant-lid cases. The dashed line follows &,,, = Nu™?.

Boundary Layer Thickness Scaling with Rags

Another way of deriving §, includes the Rayleigh number of the boundary
layer (Rag), defined as (Deschamps and Sotin, 2000)

Ras = Ray; 63, (5.12)

Linear stability analysis performed on isoviscous convection with free-slip boundaries
predicts an Ras independent of Ray ;. As figure 5.17 shows, the thermal boundary layer
Rayleigh number is almost constant for purely temperature and strongly time-
dependent convection. This is in contrast to Deschamps and Sotin (2000), who found a
weak dependence on the internal Rayleigh number. A dependence on Ray ; could only
be observed for time-dependent TPC and in the opposite direction. The differences for
the results of the current work to the results by Deschamps and Sotin (2000) are most
likely due to the mode of heating and spherical geometry.
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Figure 5.17. The relation of Rag to Ray ;, left forTC and right for TPC. The horizontal line marks the average
value to calculate §, the vertical line the boundary to strongly temperature-dependent cases.

To constrain the value of Rag, only cases with Ray ; > 1e7 were considered to
ensure a strong time-dependent regime. For purely temperature-dependent viscosity
cases, the mean value of Rag = 1193 with a standard deviation of 0 = 55. This value in
combination with equation (5.12) leads to a standard deviation of the boundary thick-
ness of less than 57e-4 as illustrated in figure 5.18. Note that this value is close to the
value predicted by Deschamps and Sotin (2000) for Ra; = 1e7, who used the same me-
thod for determining the boundary thickness. However, Ras in the present work does
not significantly increase or decrease from this point any further as in their studies.
Constraining the boundary layer thickness with a constant Ras presents alternative
fitting law to the previous method that directly fits a curve to the lid thickness. Instead,
the following scaling for temperature-dependent cases has been derived:

1

Ras \5 _ 5.13
Srn = <RaH,i> = 4.12 Ra%? (5.13)

While the two methods to constrain §,, are similar in quality for the time-
dependent regime, the previous method leads better results for the steady state regime.
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Figure 5.18. The scaling relation for the boundary layer thickness &, according to a constant Rag . The purely
temperature cases on the left are evaluated with Ras = 1193 and the weakly pressure-dependent cases on
the right with Ras = 1070. The vertical line marks the boundary to the time-dependent regime, with such
cases situated on the left hand side.
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For the cases with a weak pressure dependence the value of Rag could not be
adequately determined. As shown in figure 5.17 (right), the transition into strongly
time-dependent convection is less pronounced and shows two different slopes before
and after Ra;~1e7. This is equivalent to the much higher standard deviation observed
from the previous direct fit with equation (5.11). Because the exponent from that fit is
close to 1/6t instead of 1/5%, it is possible that different bottom boundary effects from
the pressure dependence reduce the depth of the active convecting layer and therefore
change the Rayleigh number definition. The more important slope after Ray; = 1e7
could not be determined because of insufficient cases in that range. Instead, a first-
order assumption constrains Rag to a constant value of ~1070, which is also close to
the value observed by Deschamps and Sotin (2000). The resulting &, fit is shown in
figure 5.18. The possibility of a dependency of Ray ; on Ras cannot be excluded.

Stagnant-Lid Thickness Scaling

Both previous definitions of the boundary layer thickness share the lower
boundary layer 8, thus the following relation for the lid thickness can be established:

1
8y = 8o + 580 = S (5.14)

Although three different fitting formulas are needed for this relation, equation
5.14 predicts the lid thickness for stagnant-lid cases within a mean error of 0.8% for
TC. For TPC the standard deviation is higher and the mean error reaches 3% as illu-
strated in figure 5.19.
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Figure 5.19. The resulting fit of the lid thickness from the boundary layer thickness scaling, crosses represent
TC and diamonds TPC.

5.6 Scaling Laws for the Internal Temperature and Nusselt Number

The internal temperature is defined as the horizontally averaged temperature in
the convecting interior. For purely internally heated convection, this temperature has a
direct correlation with the Nusselt number and is defined as the maximum horizontally
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averaged temperature within the convecting system. This temperature is a direct
measure of the heat-flow (Reese et al., 1999a) and is equal to defining the Nusselt num-
ber as the ratio of the theoretical maximal conductive temperature T, to the actual max-
imal temperature T; of the horizontally averaged depth profile.

3r2 218
2 _2b 2b
pHT; (1 2T rf’) T (5.15)
N = =
" 6k(T; — Ts) T, — Ts

The importance of this temperature becomes evident from the definition of the internal
Rayleigh number that is defined based on the viscosity of the internal temperature and
plays an important role in many scaling laws.

One can find two different methods in the literature to determine the internal
temperature for stagnant-lid convection. One described by Moresi and Solomatov
(1995) and Solomatov (1995) follows a three-parameter fit. It is argued that this kind
of fit fails for the stagnant-lid regime (e.g., Grasset and Parmentier, 1998, Reese et al,,
19993, Reese et al., 1999b, Reese et al., 2005), which could not be agreed upon in this
study with a complete independent inversion of all three parameters that was absent in
the mentioned previous studies. This method will be further studied in the next section
as “Method A”.

Another approach by Davaille and Jaupart (1993) and Grasset and Parmentier
(1998) divides the whole mantle into two parts: the stagnant-lid and the convecting
mantle below - with the assumption that beneath the stagnant-lid scaling laws similar
to isoviscous convection can be applied. This method is further discussed in section
“Method B”.

A third new approach is based on the complete reconstruction of the radial
heat-flow profile. This method has the advantage of treating the system as one and does
not require a definition for the lid thickness. This method will be discussed in section
“Method C” and is first presented in this thesis.

5.6.1 Method A: Classic Power-Law Scaling

Boundary layer theory predicts a relation of the Nusselt number and the Ray-
leigh number for internally heated isoviscous convection in the form of Nu~ Ra'/* (e.g.,
Schubert and Zebib, 1980, Schubert et al., 2001). Parmentier et al. (1994) corrected the
exponent for time-dependent three-dimensional convection to ~0.23. A smaller value
of the exponent relative to the theoretical value of the boundary layer theory was ob-
served for time-dependent bottom heated convection by Hansen et al. (1990, 1992b).
Solomatov (1993, 1995) extended this theory to temperature-dependent viscosity. The
Frank-Kamenetskii parameter 8 = y T; = logn; was introduced to describe the Nu-Ra
relationship with three free parameters in the form of
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86 Chapter 5: Influence of Variable Viscosity on Purely Internally Heated Convection

Nu=a6*® Rafl’i (5.16)

Although Grasset and Parmentier (1998) and others argued that this relation-
ship cannot be used for stagnant-lid convection, it is shown in the present study that a
full inversion of all three parameters led to satisfying results, as the standard deviation
in table 5.2 and figure 5.20 demonstrates. The high standard deviation for steady state
convection is expected since in a full three-dimensional spherical shell environment an
additional influence of the resulting or triggered mode through initial conditions can-
not be neglected. This means that more than one possible steady state configuration of
the same setup is possible depending on the initial conditions which has a direct influ-
ence on the Nusselt number as well. This is also equivalent with observations made in
two-dimensional boxed models that show large variations in the lid thickness for
steady state convection with Newtonian viscosity (e.g., Moresi and Solomatov, 1995,
Solomatov and Moresi, 1997). In time-dependent convection the thickness becomes
fairly uniform in all cases because the locations of the plumes are not fixed but vary
randomly (e.g., Solomatov and Moresi, 2000b). Figure 5.20 demonstrates this behavior
for all stagnant-lid cases and shows a drop of the mean variation in lid thickness
around the transition to time-dependent convection.
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Figure 5.20. The mean variation of the non-dimensional lid thickness (for an overall shell thickness of one).
The upper five surface Rayleigh numbers describe TPC, the lower five TC cases. The transition into time-
dependent convection around 10° is clearly visible, as well as generally reducing thickness variations for time-
dependent TPC.

Steady convection Time-dependent convection
TC 0.68/-0.4/0.12 / 7.6e-3 (5) 0.72 /-0.74 / 0.175 / 1.7e-3 (24)
TPC 0.8 /-0.945 / 0.252 / 2e-4 (3) 2.08/-0.73/0.12 / 3.1e-3 (17)

Table 5.2. The results for the Nu = a(yT,-)“Ragjifit, separated for the different regimes. The values are indi-
cated by the following order: a /a / B/ o (no. of cases)

The results for a direct fit of all three parameters are summarized in table 5.2.
Although the parameters are not consistent with the theoretical values of % (Schubert
etal, 2001) for f and @ = —(1 + ), which is why this method is discarded by others,
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they still produce agreeable results if they are inverted independently without assum-
ing one parameter as fixed from theory. The reasons for the discrepancies to the theo-
retical values are mainly the mixed boundary conditions: while free-slip is imposed at
the bottom, the formation of a stagnant-lid implies a more rigid boundary condition on
the top of the convecting layer.

To derive the internal temperature from the two input variables Ra, and y, the
scaling law 5.16 is decomposed. Equation 5.16 can be rewritten with eq. 5.15 and 5.5 in
the non-dimensionalized form (Ts = 0!) for purely TC to

T,
C _ a
7 = a(y T)" (Ragexp(y T))P (5.17)
L
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Figure 5.21. The result of the fitting equation 5.17 for TC cases, while steady state cases are on the left and
time-dependent cases on the right.

For TPC this scaling turns out to be unclear because a decomposition of n; lags
the unknown depth, i.e. equation 5.5 cannot be used to resolve 7;:

T,
% = a(ln ni_l)a (Rao r}i_l)ﬁ (5.18)
L

However, neglecting the depth dependence for the fit yields equally good results as
assuming a fixed depth like Christensen (1984a). This has the consequence that the
parameters again in table 5.2 vary from other results, whereas no theoretical base ex-
ists so far for depth dependent viscosity.

5.6.2 Method B: Scaling with the Rheological Constant

As assumed by Solomatov (1993, 1995) and later proofed by laboratory expe-
riments for internally heated convection by Davaille and Jaupart (1993) and further
confirmed by Grasset and Parmentier (1998) and Reese et al. (1999a, 2005) through
numerical simulations, the temperature drop within the thermal boundary layer below
a stagnant-lid can be described solely by the rheological gradient y in a way that
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ATy =T; =Ty = ampy ™! (5.19)

where a,, is the rheological constant, T; the temperature of the convecting interior and
T, the temperature at the bottom of the lid §; . After Grasset and Parmentier (1998), the
convective system consists of two parts; the convecting interior including the boundary
layer and a stiff upper part (the stagnant-lid) that is mainly controlled by conductive
heat transport. Further it is assumed that the interior part can be treated like isovisc-
ous convection with the well known scaling law in the form of

Nu = a RaP (5.20)

Scaling relationships can be derived from the knowledge that the temperature
in the stagnant-lid part follows the conductive profile. In Section 5.5, the lid thickness
has been determined with the assumption that the rheological constant is as constant
as possible, which is important for the depth separating these two systems. Due to the
low lateral and radial viscosity variations below the stagnant-lid (section 5.2, figure 5.4
/ 5.7 left), it is possible to rescale the interior convection and treat it with two parame-
ters, which results in a re-defined Rayleigh number based on the interior viscosity n;
and the effective non-dimensionalized thickness of 1 — §;, where §; is the lid thickness:

Ra, = Rag (1 —6,)° n;’? (5.21)

According to the isoviscous Rayleigh number definition, the temperature must
be re-scaled (temperature is scaled with the thickness of the convecting layer) to an
“isoviscous” temperature according to

=T
C(1-46)?
The direct relation of the Nusselt number to the internal temperature T; (equation

T, (5.22)

5.15) for purely internally heated convection allows modifying the equation (5.21) to

T, = aRaf (5.23)

The resulting fit is summarized in table 5.3 and illustrated in figure 5.22 for different
regime types. It is worth noting that the mobile regime of TC results in fitting constants
very close (less than 3e-3 difference in ) to those observed by Parmentier et al.
(1994), who studied isoviscous three-dimensional (boxed) internally heated convec-
tion. Another well corresponding match could be identified from Grasset and Parmen-
tier’s (1998) study, as shown in table 5.3. [t is interesting to note that both studies used
a no-slip top boundary condition from isoviscous models to obtain these values, whe-
reas the present study rescales the convection beneath the stagnant-lid with the me-
thod described in section 5.4 to determine §;. This confirms the assumption that con-
vection beneath the stagnant-lid can be treated as isoviscous (Davaille and Jaupart,
1993, Solomatov and Moresi, 1996, Grasset and Parmentier, 1998) and further that the
boundary to the stagnant-lid is close to a no-slip boundary condition.
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Steady state convection Time-dependent convection
TC 5.04 /-0.3 / 1.84e-2 (5) 2.34/-0.231 /1.6e-3 (24)
Grasset 98 2.38 /-0.227 /
Parmentier 94 ?/-0.2338/ 1.9e-3 (4)
TPC 5.18 /-0.31 / 5e-2 (3) 1.02 /-0.178 / 3e-3 (17)

Table 5.3. The results for the T; = aRa1 fit, separated for different regimes. The order of the indicated values
is a /B /o (number of cases). Grasset 98 refers to the values obtained by Grasset and Parmentier (1998),
originating from a 2D (aspect ratio 2:1) boxed model and to Parmentier et al. (1994), who performed simula-
tions within a 3D box (aspect ratio 4:4:1).
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Figure 5.22. The correlation of the interior quasi isoviscous Rayleigh number to its interior temperature
equivalent for stagnant-lid cases. The left and right top picture shows the rescaled values with lines that con-
nect cases for a certain surface Rayleigh number. The values on the marks represent the according y value.
Clearly visible is the distinction between steady-state cases with lower Ra, and time-dependent cases in the
upper two figures. The bottom picture shows the correlation function from the fit for all time-dependent cases
whereas crosses represent TC and diamonds TPC.

The non-dimensionalized (scaled with pHd?/k) temperature at the base of the
lid can be found from the conductive temperature profile in the lid for internally heated
convection and spherical geometry:

T(r) = % ( —r2 4+ 7} (_72 + %) + roz) (5.24)

This equation leads also to the maximal conductive temperature T, = T(1},) in the
spherical shell, which is important for the Nusselt number (see section 4.1). Inverting
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90 Chapter 5: Influence of Variable Viscosity on Purely Internally Heated Convection

equation (5.24) yields the radius based on the conductive profile, and can be simplified
for a radius ratio of 0.55 returning the non-dimensionalized depth between zero and
one:

20
am =3

Wl

4(—5)%(1777 —16207T) + (1 - iv3) <266200 + 18@\/(—7 +20T) (2257333 + 6480T(—397 + 135T))) (5.25)

1

2 3
36 53 (266200 + 18\/%\/(—7 +20T)(2257333 + 6480T(—397 + 135T)))

In combination with §, = d(T,) and equations (5.19, 5.20, 5.21), it is possible to derive
the interior temperature with

_arhy_1
(1 —d(T; — arpy™1)?
Besides using the parameters resulting from an observed a,, from section 5.4 and the

=a (Ray (1 — d(T; — a,py 1) exp(y T))? (5.26)

values from table 5.2 and 5.3, it is possible to invert all three free parameters from this
equation directly. While it would not put a meaningful constraint on a,, because of its
weak dependence on a and 8 (Grasset and Parmentier, 1998, Solomatov and Moresi,
2000a, Reese et al., 2005), it does strengthen the fitting procedure with the rather large
amount of data points of this study. To provide a better understanding of the depen-
dence of all three parameters, the a parameter was varied over a reasonable range
while the remaining two parameters were fitted. The result is shown in 5.23 and it is
interesting to see that indeed for a wide range the error does not change significantly.
While a is in the range between ~1 and ~4.5, the resulting error has a negligible differ-
ence. This puts a,, in a valid range between 0.5 and 7, and 8 in a range between -0.21
to -0.26, which is approximately in between the two theoretical values for internally
heated convection with free-slip (-0.25) and no-slip (-0.2) boundaries (Schubert et al.,
1990). This is evident from the definition of a,, itself; a lower value yields a more
eroded stagnant-lid that gives the convection below an interface definition towards a
no-slip upper boundary while higher values provide a more free-slip boundary through
the shear effects of an increased radial viscosity contrast. Therefore it is possible to
choose the erosion level with the choice of a,;, and a further lookup of best-fits of a
and 8. However, the lowest error was found for the time-dependent regime
ata = 3.57,a,, = 5.64, [ = —0.22, which is marked by the vertical dashed line in fig-
ure 5.23 and figure 5.24.
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Figure 5.23. The best fit of equation 5.26 for all time-dependent TC with a fixed a on the left and the resulting
standard deviation for the result on the right. The dashed vertical line marks the position of the lowest error
with according horizontal lines on the left picture for the remaining two parameters.
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Figure 5.24. Similar to figure 5.23 but with overplotted fits for time-dependent TPC (grey and light red) and
the resulting error.

The same method applied to time-dependent TPC leads to a significant higher
error and suggests that a decomposition of stagnant-lid and a convecting interior is
insufficient in case of additional influence of pressure-dependent viscosity. This is
mainly due to the missing influence of pressure dependence in the interior viscosity
term that yields from an unknown depth of 5;. Opposite to the results of TC, this depth
does not coincide with the depth of T;. Additional scaling laws for the depth of 5; are
required to properly constrain the heat-flow with this mechanism. Figure 5.24 shows
the applied method for TPC and demonstrates that the relation between a and a,,
stays approximately the same while § shows a generally lower value. This supports the
boundary layer theory (Fowler, 1993, Dumoulin et al, 1999) since the influence of
pressure at greater depths results in a weak secondary boundary layer that can be seen
as turning the bottom free-slip condition slowly into a no-slip condition for increased
pressure dependence, thus reducing f.
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5.6.3 Method C: Heat-flow Profile Inversion

The heat transport mechanisms of a Rayleigh-Bénard setup consist of conduc-
tive heat transport on an atomic level and transport through convective heat transport.
While looking at the heat-flow profile together with the velocity profile, it is clear that
the observed heat-flow q is a composition of an convective part q, and a conductive
part q., as illustrated in figures 5.8 and 5.9. To derive the heat flux profile g, the heat
equation itself is reduced to one dimension by

aT
= —kVT = —k— (5.27)
1 ar

If the heat transport is dominated by advection, the radial temperature derivate
is close to zero, while conductively transported heat follows the theoretically known
profile. This profile is coupled to the conductive temperature and yields indirectly the
advective heat-flow profile:

da =49 —4qc (5.28)

While the theoretical conductive temperature or heat-flow profile is not depth
dependent for bottom heated convection, it is a more complex function in a 3D spheri-
cal environment for purely internally heated convection, where the heat flux at the bot-
tom equals zero and is constantly increasing towards the surface. For better compari-
son between the heating modes, it is also possible to calculate the profile of the conduc-
tive heat-flow fraction gy (figure 5.9 / 5.14):

g =~ (5.29)

It therefore describes the percentage of conductive heat flux acting at a certain
depth and is useful to define boundary layer properties as well as shown in figure 5.9.
This fraction consists of only one transition between convective and conductive heat-
flow for internally heated convection and can reach negative values as well, which are
due to effects of the Boussinesq approximation (e.g., Hansen et al., 1992a, 1993). Ignor-
ing these effects has no influence on the internal temperature and assuming zero where
the profile reaches negativity is more realistic as long as the Boussinesq approximation
is able to describe the convection appropriately.

Knowing the progression of this transition, i.e. the position (or depth) and slope,
allows a reconstruction of the radial heat-flow profile that in consequence leads to a
reconstruction of the temperature profile. In turn, several key-variables of convection
can be reconstructed from those profiles: the lid thickness, internal temperature, boun-
dary layer thickness and depth. To reconstruct this transition, several basic step func-
tions (sometimes called soft-step functions) such as the error function, Gompertz func-
tion, logistic function, incomplete and regularized gamma functions were equipped
with up to four free parameters and fitted against a gy profile of a stagnant-lid case.
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Most of these step functions failed to reconstruct the transition appropriately except
for one version of the regularized gamma function that is defined as

r(@x) 5.30
F'(a) ’ ( )

where y(x, a) is the lower incomplete gamma function defined as

P(a,x) =

X

y(a,x) = f t¢letdt (5.31)
0

and I'(a) represents the gamma function with

M(a) = f Cpam1omt gy (5.32)
0

The lower incomplete gamma function is related to the error function as

11
erfz=m"2y (E' 22) (5.33)

The regularized gamma function has two possible configurations to create a
one-dimensional step; either for a fixed a or a fixed x. Not only yielded the version for a
fixed x a reasonable result, it is possible to describe the jump with only two free para-
meters with a remarkably high accuracy. To reconstruct the heat-flow profile, the fol-
lowing equation was used:

q(d) = q.(d) (1 =P ({d5, 1% (5.34)

In this direct fit to a given heat-flow fraction profile, € and ¢ are constant for a
certain case and d is the non-dimensionalized depth. The power of four was in the orig-
inal fit a free parameter as well but turned out to be a constant very close to four in all
cases that might describe geometrical influences such as the radius ratio. The influence
of the remaining two free parameters on the regularized gamma function is displayed
in figure 5.25.

Although this method works for almost all cases (extremely weak convective
systems fail because the advective heat transport is at no depth the dominant mechan-
ism), the reconstruction is useless until it is possible to bind the two parameters to
meaningful physical parameters that describe the convection. A fit for { and € based on
the surface Rayleigh number Ray o and the rheological gradient y could be established
for the stagnant-lid regime (indirect fit).
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Figure 5.25. Influencing factors used in the fitting formula as free parameters of the regularized incomplete
gamma function P (x,a) (called IGAMMA in the plot) as they are used to reconstruct the heat-flow profile.

No unification of the mobile and stagnant-lid regime could be accomplished
with the indirect fit, so a common three-parameter fit for the TC in stagnant-lid regime
based on the surface Rayleigh number Ray ( and the rheological gradient y yields the

following indirect fitting equations:

€ = 0.0864y + 0.277 InRa, — 2.54 (5.35)

1
{=433€Ra,®+48

The error for this fit is almost equal to method B (if the internal temperature is

(5.36)

calculated from the reconstructed heat-flow profile) for TC but works generally better
for TPC with these parameters:

€ = 0.0811y + 0.287 InRa, — 3.17 (5.37)
{ =3.43 € Ray®'* + 4.72 (5.38)

Because € is included in the fitting equation for {, the resulting error of the € fit
is included in the ¢ fit as well. Alternative better fitting formulas may therefore exist
with possibly less free parameters. The results of this fit are illustrated in figure 5.26,
while figure 5.28 shows an application of selected cases to this kind of reconstruction.
The final results to compute the internal temperature with this method is demonstrat-
ed in figure 5.27 for the direct and indirect fitting method.
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Figure 5.27. The result of the reconstruction quality for the internal temperature with the direct fit on the top
and the indirect fit on the bottom, whereas TC are on the left side and TPC on the right.
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Figure 5.28. Selected results of a reconstruction of the heat-flow- and temperature profile based on the regu-
larized incomplete gamma function. The dark yellow line shows the result of a direct two-parameter fit and
the blue lines show the indirect fit using Ray o and y to reconstruct the mentioned two free parameters. The
upper two cases are in the stagnant-lid regime and are numbered 3 and 11 in the appendix. The lower two
cases are low-degree cases 32 and 41. Even though the indirect fit fails completely here, the direct method still
produces correct results.

5.7 Spectral Analysis

Internally heated convection of a Boussinesq fluid with infinite Prandtl number,
in combination with strongly temperature-dependent viscosity creates short wave-
length structures below the stagnant-lid and therefore shows effects similar to bottom
heated convection (e.g., Tackley, 1996b, Ratcliff et al, 1997, Trompert and Hansen,
1998a). The present parameter study reveals a strong correlation of the internal Ray-
leigh number to the dominant mode that also exists with pressure-dependent viscosity,
although with a different correlation.

According to the method described in section 3.7, the temperature and velocity
field of all cases are spectrally analyzed. Their dominant mode reveals a strong correla-
tion to the internal Rayleigh number in the stagnant-lid regime. This correlation was
expected in literature to exist for bottom and internally heated convection (e.g., Ratcliff
etal, 19964, Reese et al., 2005, Stemmer et al, 2006, Zhong et al., 2008), as convection
turns into smaller scales below the stagnant-lid. This behavior is studied in detail in the
present parameter study.
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A strong correlation between the internal Rayleigh number and the dominant
mode has been identified but could be significantly improved by utilizing the weighted
mode w. Although the fitting parameters do not notably change in contrast to the do-
minant mode, the error is significantly reduced. For the steady state cases, a minimal
possible mode w,;,;;, can be identified that stays constant until the transition to the
time-dependent regime occurs. This minimal mode has a relatively large error because
multiple possible degrees may exist for the same Ray ; in the steady-state part (e.g,
Ratcliff et al., 1995, Ratcliff et al., 1996b, Ratcliff et al., 1997, Zhong et al,, 2008). An er-
ror of plus-minus two degrees is expected for the fitting formula to account for the sta-
bility uncertainty and additional temporal mode-cycling possibilities. Note that the mi-
nimal mode further depends on the assumed radius ratio.

The transition into the time-dependent regime is accompanied by a step to-
wards higher modes and further increases linearly as displayed in figure 5.29. The fol-
lowing fitting formula can describe the transition into the time-dependent regime with
a step function, which is chosen to be the regularized gamma function P as described in
section 5.6.3.:

w = P(Ras_r,Ray;)m (ln(RaH,i) —In(Rag_7) + wi:lep) + Wnin (5.39)

In the above equation Rag_r is the internal Rayleigh number at which the tran-
sition to the time-dependent regime occurs, m is the slope in the time-dependent part
and wg;ep is the observed rapid increase at Ray; = Rag_r. The results for the stagnant-
lid regime are shown in figure 5.29. A similar behavior for the mobile regime could not
be observed, as demonstrated in figure 5.31. The fitting parameters are summarized in
table 5.4. Only a too limited amount of data exist for the steady-state pressure-
dependent cases, which results in a high uncertainty in the step size wg, and transi-
tional Rayleigh number Rags_r. However, all cases in that range fit well with the para-
meters for TC. As a reasonable first-order approximation, it is assumed that the fitting
parameters for TPC are similar to those parameters from the TC fit. A lower slope m for
TPC yields generally lower modes in the time-dependent regime, as predicted by Bunge
et al. (1996), but no influence on the minimal observable mode below the stagnant-lid
Wmin €an be identified.
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Figure 5.29. The correlation of the internal Rayleigh number to the weighted degree and the associated fitting
lines, crosses represent TC and diamonds TPC stagnant-lid cases.

As a consequence of the mode increase after the transition to the time-
dependent regime, the observed temporal standard deviation of the velocity must show
a significant increase for w > wpin + Wstep, as demonstrated in figure 5.30. The stan-
dard deviation of the temporal volume-averaged velocity is an indicator for the time-
dependency of a convective system, so a higher value means more turbulent convection
(down- and upwellings do not stay spatially fixed, e.g.,, Hansen et al. (1992b)). This
leads to the conclusion that beyond w = 10, convection is time-dependent in the stag-

nant-lid regime.

RaS—T wstep m Winin Xz
TC 2.07e6 5 5.12 5.5 0.055
TPC 2.07e6 5 2.23 5.5 0.047

Table 5.4. The result of a complete inversion of stagnant-lid cases for equation 5.39. Grayed values indicate
copies from TC due to insufficient data.
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6 Conclusions

This work introduces a new method to simulate mantle convection in a spheri-
cal shell with fully spatially varying viscosities. The intention of this numerical model is
to run simulations with closer-to-reality parameters and therefore to study the thermal
evolution of planetary mantles in great detail. The formulation of the governing equa-
tions are based on the finite-volume method with the advantage of utilizing fully irregu-
lar grids in three and two dimensions, efficiently parallelized for up to 396 CPUs. While
being capable of using common grids such as projected icosahedra and the cubed
sphere grid, an irregular grid which has the advantage of laterally varying resolutions,
the spiral grid, was investigated. In essence any set of nodal positions can, after a Voro-
noi tessellation that forms the necessary cells for the FV formulation, be used as a basis
for the discretization. The model is based on the Cartesian reference frame and utilizes
a co-located variable arrangement that holds all unknowns at the defined nodal posi-
tions. To ensure a divergence free velocity field, the SIMPLE method (see section 3.3)
was employed to ensure mass continuity with a correction of pressure. The discretiza-
tion method is of second-order and time integration is treated fully implicitly. A fully
implicit treatment has the advantage of solving steady-state solutions with large time-
steps while also solving strongly time-dependent problems with small time-steps. The
discretization of the stress tensor is capable of handling viscosity variations of up to 8
orders of magnitude from cell-to-cell and up to 45 orders of magnitude system wide.
The model was validated by a comparison with analytically known solutions as well as
published results. A comparison with a commercial product also yielded satisfying re-
sults. Variables of primary interest for the benchmarks were global quantities, i.e. the
Nusselt number, the volume averaged temperature and velocity as well as local quanti-
ties such as maxima / minima of mid-shell temperature and velocity. A convergence
test with successively refined grids proved the convergence of global quantities to-
wards an extrapolated solution. Quantitative measures of three-dimensional spherical
mantle convection are sporadic but the simulations presented here only vary a few
percent with published results and contribute to further benchmarks.

As an application to mantle convection, the model was applied to a parameter
study of 88 cases to obtain scaling laws for purely internally heated convection in a
spherical shell. The aspect ratio was fixed to 0.55, similar to the value of the Earth. The
rheology law is based on a linearized Arrhenius law, commonly known as the Frank-
Kamenetskii approximation. Three regimes of convection that were explored with bot-
tom-heated convection in previous studies could also be identified with purely inter-
nally heated convection. A fourth regime, the low-degree-regime that occurs instead of
the sluggish regime could also be identified. This new regime results in long wave-
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lengths (below degree three) in the same parametric range as the sluggish regime for
bottom heated convection. The surface is completely mobile and the transition to the
stagnant-lid regime is rather abrupt. Present and newly developed indicators for the
different regimes were validated to distinguish between them as this is the first para-
metric study that follows the transition of the regimes with purely internally heated
convection in a spherical shell.

Numerical simulations in three-dimensions using Cartesian box geometries with
large aspect ratios (e.g., Tackley, 1996b, Ratcliff et al, 1997, Trompert and Hansen,
1996) and spherical shell geometries (e.g., Ratcliff et al, 1996b, Ratcliff et al, 1996a)
show the formation of a highly viscous layer close to the surface with stress-free boun-
dary conditions when the viscosity contrast due to temperature reaches a value be-
tween 10* — 10°. This layering mechanism was observed and studied in section 5.2. In
contrast to the numerous small scale plumes surrounded by sheet-like downwellings
observed with bottom heated convection (e.g., Ratcliff et al,, 1996a, 1996b), purely in-
ternally heated convection forms opposite structures: plume like downwellings below
the stagnant-lid, similar to raindrops forming on a condensed plate combined with
sheet like upwellings (e.g., Parmentier et al.,, 1994, Reese et al., 2005).

The thermal boundary layer was analyzed with established and new methods to
obtain scaling laws for the heat-flow and the thickness of the stagnant-lid that occurs as
the viscosity contrast becomes higher than five orders of magnitude. The viscosity of
the cold upper material becomes large and the material becomes stiff and immobile. A
‘stagnant-lid’ forms where heat is only transported by conduction. This stagnant-lid is
especially interesting for planetary evolutions as its thickness can reveal properties of
the planetary crust and the overall heat budget. The boundary layer that is below this
lid or directly below the surface for mobile regimes reveals the temperature of the con-
vecting interior and the strength of convection, usually expressed as the Nusselt num-
ber. Scaling laws help to quickly calculate these quantities to avoid time consuming
computations of three-dimensional simulations.

With the number of cases in the stagnant-lid regime, it was possible to obtain a
B

Hi
(Solomatov, 1995). In previous studies the exponent § was fixed to 1/3rdobtained from

full inversion of the classical three-parameter fit in the form of Nu = a 6% Ra

boundary layer theory of isoviscous, bottom heated free-slip convection. Grasset and
Parmentier (1998) and Reese (2005) argued that the three parameter fit does not hold
for strongly temperature-dependent viscosity in purely internally heated convection
models. However, they could not perform a full inversion because of an insufficient
number of cases. In the present study, a full inversion yielded satisfying results but
with f close to 1/5%. This offset from the theoretical value of 1/4t for steady-state,
free-slip and purely internally heated convection is reasonable considering that the
boundary conditions for the velocity strongly influence this value: although free-slip

102



103

boundary conditions are assumed at the surface and bottom, the flow below the stag-
nant-lid ‘experiences’ a mixed boundary condition between free-slip and no-slip. Fur-
thermore, the free-slip condition at the lower boundary is altered in the presence of
pressure dependence because the viscosity increases with depth. In a first approxima-
tion the viscosity increase changes the free-slip condition at the bottom towards a no-
slip boundary condition. As the consequence of the changing boundary conditions for
the mantle flow, a value of § from theory for either free-slip or no-slip is not necessarily
valid in this scaling law.

An alternative way to parameterize the heat transport of a mantle flow with
temperature-dependent viscosity was first suggested by Solomatov (1993, 1995), later
confirmed by Davaille and Jaupart (1993) with laboratory experiments for internally
heated convection and by Grasset and Parmentier (1998) and Reese et al. (19993,
2005) through numerical simulations. The authors argue that the temperature drop
within the thermal boundary layer below the stagnant-lid can be described by the rheo-
logical gradient y in the way that AT,;, = T; — T, = a,,¥ " where a,,, is the rheological
constant, T; the temperature of the convecting interior and T, the temperature at the
bottom of the lid ;. The whole system is divided into two layers: a purely conducting
layer, i.e. the stagnant-lid, and an almost isoviscous convecting layer below. In the
present study, both regimes, i.e. the steady-state and time-dependent temporal re-
gimes, have been examined for the convecting interior. . As only the isovisous mantle is
considered, the scaling law is reduced to Nu = a Ra® and yielded expected results with
B close to 1/3d for steady-state cases and close to 1/5t for time-dependent cases. Al-
though Grasset and Parmentier (1998) and Parmentier et. al. (1994) used isoviscous
convection models to constrain the a and 8 parameter for this fit, the rescaling method
with a measured lid thickness used in this study resulted in similar parameters (section
5.6.2). Since both of the compared studies use a top-no-slip model and result in similar
parameters, the convection beneath the stagnant-lid is presumably isoviscous convec-
tion with a no-slip top boundary condition. Furthermore, the difference between their
2D and 3D boxed simulations and the present 3D spherical study suggests that for time-
dependent isoviscous convection the geometry plays a minor role. This is different for
the rheology constant a,, that determines in combination with the rheological gradient
y the temperature drop across the thermal boundary layer: a difference of 23% was
observed to the results of Grasset and Parmentier (1998) (a,; = 2.23 compared to 2.88
in this study), causing an error in lid-thickness determination and internal temperature
of about 10%.

However, in a complete inversion of the rather complex equations (see section
5.6.2) all three free parameters, namely the rheological constant a,, the factor a and
the exponent § have been determined. This inversion reveals not only one solution but
a larger parameter space for all three variables. With other words, for a specific rheo-
logical constant a,, the other two free parameters can be chosen with almost no differ-
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ence in the resulting error. A relation between the paramters has been recognized
already in earlier studies (Grasset and Parmentier, 1998, Solomatov and Moresi, 20003,
Reese et al, 2005) but these authors finally assume a value of beta derived from
theoretical and isoviscous studies and then determine a and arh. A variation in the
parameters may be relevant assuming different levels of erosion of the stagnant-lid, i.e.,
the larger a,, the thinner is the lid and vice versa. This delamination mechanism could
be useful in combination with the initiation of continental rifting based on a thinning
lithosphere (Spohn and Schubert, 1982).

Apart from updated scaling laws, a new method was developed to reconstruct
the complete heat-flow profile, and therefore temperature, as a radial function with
parameterized incomplete gamma functions. The heat-flow profile can be expressed as
a fraction between the conductive and the convective heat flux. Within the convecting
interior, this fraction is almost zero because convection is the dominant heat transport
mechanism, while close to the surface this value becomes one as conduction is the main
heat transport mechanism. This depth profile shows a relatively sharp transition from
zero to one for purely internally heated convection where the convective heat-flow is
changed into conductive. This transition zone is equivalent to the thermal boundary
layer. With the known theoretical heat-flow profile of pure conduction, it is possible to
reconstruct the complete temperature profile by knowing the exact properties of this
transition. It is further possible to obtain important parameters like the temperature of
the convecting interior and the lid thickness. Several step functions were tested and the
incomplete gamma function yielded an excellent fit for this transition zone with only
two parameters, capable of retrieving the heat-flow profile for all regimes. Unfortunate-
ly these two parameters have no physical meaning, so an attempt was made to con-
strain scaling laws from the Rayleigh number and the rheological gradient y. A success-
ful three parameter fit could be established for the stagnant-lid regime, yielding excel-
lent results for the interior temperature, making this new method the preferred choice
for scaling analysis of the temperature / heat-flow profile. The obtained parameters are
only valid for internally heated convection; however, further studies could reveal an
application to several other heating modes as well.

Apart from the scaling laws for the internal temperature, heat-flow and the
stagnant-lid thickness also the pattern of mantle convection has been parameterized.
The convection pattern or the degree of the convection structure is a helpful parameter
to constrain convection models of the terrestrial planets as the degree of convection
structure is one important observable. This can be obtained by seismic tomography
models and also indirectly from the structures at the planet’s surface. Interestingly, for
Earth, Mars and the Moon a low-degree convection pattern is suggested. For the Earth
this has been found by seismic tomography models (Masters et al., 1996, Grand et al,,
1997). Moreover, the formation of supercontinents on the Earth hints at the fact that an
even lower degree flow structure than observed today may have once existed in the
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past (e.g., Gurnis, 1988, Zhong et al., 2007). For both Mars and the Moon even a degree-
one mantle flow structure (consisting of one upwelling and one downwelling) may
have existed on these bodies resulting in the observed hemispherical crustal dichotomy
and the Tharsis rise on Mars (e.g., Wise et al., 1979, Harder and Christensen, 1996) and
the hemispherical distribution of Mare basalts on the Moon (Zhong et al.,, 2000a). De-
gree-one convection is an interesting field of study as it has the longest possible wave-
length of the flow and implies many geological consequences.

Within the stagnant-lid regime for terrestrial planets, a relation between the in-
ternal Rayleigh number and a structural indicator, the weighted mode, was identified.
The weighted or dominant mode increases linearly with the internal Rayleigh number.
The weighted mode is an indicator close to the dominant degree on which one is able to
determine e.g. the average area that a plume covers on the surface. The correlation was
identified for the time-dependent stagnant-lid regime; whereas for steady-state degree
five seems to be the lowest possible mode beneath the stagnant-lid (Figure 5.29 in sec-
tion 3.7.1 illustrates the presence of that lower limit for stagnant-lid convection). The
limit is not affected by the presence of pressure dependence. Note that, however, this
lower limit is bound to the employed radius ratio of 0.55 and is likely to be lower with a
smaller core and can easily be influenced by different rheology laws (see below).

It is interesting to note that, in comparison to isoviscous convection, the same
internal Rayleigh number produces in the presence of a stagnant-lid flow structures
with lower wavelengths. This is valid for all heating modes (e.g., Reese et al, 2005,
Stemmer et al., 2006, Zhong et al., 2008). These convection patterns with high-degree
modes are apparently inconsistent with planetary observations. The dynamical effects
of a stratified viscosity profile on the pattern of mantle convection without lateral vis-
cosity variations have been studied by the two-dimensional (2-D) or 3-D Cartesian (e.g.,
Hansen et al., 1993, Tackley, 1996b) and by the spherical shell models (e.g., Zhang and
Yuen, 1996, Bunge and Richards, 1996, Bunge et al, 1997, Zhong et al.,, 2000b). Bunge
et al. (1996, 1997) and Harder (2000) have shown that a modest increase in the mantle
viscosity with depth has a remarkable effect on the convection pattern, resulting in a
long-wavelength structure up to degree-one flow. However, another important factor
for the mantle viscosity, i.e., the strong dependence on temperature, was absent in their
models. In contrast to the observations by Bunge et al. (1996, 1997) and Harder
(2000), the influence of pressure dependence in this parameter study did not lead to
longer wavelengths flow patterns (see section 5.7) and the range of degree-one occur-
rences seems to be unchanged. On the other hand, the behavior in the time-dependent
stagnant-lid regime with additional pressure dependency does indeed lead to lower
modes than its counterpart with only temperature-dependent viscosity for the same
internal Rayleigh number (see previous section). The depth dependence as an addi-
tional factor among more complex scenarios is reported to reduce, although not signifi-
cantly, the mode as well (e.g., Tackley, 1996a, Zhong and Zuber, 2001).
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An essential question is whether observed low degree mantle flow results from
the material properties of the mantle (i.e., phase transitions, chemical heterogeneity,
and rheology) or whether it is caused by the complicated elasto-plastic rheology of the
lithosphere. The presence of rigid plates or continents has been observed to also organ-
ize mantle flow into larger wavelengths (Davies, 1989, Gurnis and Zhong, 1991, Zhong
and Gurnis, 1995). Degree-one convection is possible for planetary bodies with a rela-
tively small core as well, as demonstrated by Zhong et al. (2000a) for the Moon and
Grott et al. (2007) for Enceladus. Other terrestrial bodies with a larger core require
different mechanisms. An increase of the flow wavelength for parameters relevant to
Earth could be identified by incorporating phase changes into the numerical simulation
(Tackley, 1996b). Phase changes in the Martian mantle may produce degree-one flow
as well (Harder and Christensen, 1996, Breuer et al., 1998, Harder, 2000).

Although the identified low-degree regime is rather unrealistic in terms of acti-
vation energy, it is a valid first-order approximation of mantle convection below a vir-
tual thin lid or convection beneath a strong radial viscosity gradient that is necessary to
establish the top free-slip boundary condition. McNamara and Zhong (2005a) focused
on the effects of temperature-dependent rheology and internal heating whether con-
vection develops a degree-one flow pattern. The parametric range of this study was
used to find clues on what mechanisms are required to achieve a low-degree or degree-
one flow structure. As McNamara and Zhong (2005a) reported ranges of activation
parameters that lead to viscosity contrasts of 103 and 104, degree-one flow occurs only
for cases in which internal heating is applied. This can be confirmed for purely internal-
ly heated convection, as figure 5.3 illustrates. The range of effective Rayleigh numbers
to produce a degree-one flow pattern is limited, and completely restricted to the low-
degree regime.
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Figure 6.1. An alternative regime classification in the Ray ; and An parameter space, similar to figure 5.3,
where S stands for stagnant-lid regime, L low-degree regime, U sluggish regime and M for the mobile regime.
The red line marks the boundary where the surface Rayleigh number would exceed the critical Rayleigh num-
ber for isoviscous convection with free-slip boundaries.
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Since the degree-one cases only occur in the low-degree regime, it is obvious
that the boundary conditions, especially on the surface, play an important role in sup-
porting low-degree convection. A free-slip boundary condition on top greatly facilitates
low-degree convection and, as visible in figure 5.3, intermediate viscosity contrasts as
most of them are close to the boundary to the stagnant-lid regime. However, it could
not be excluded that the low-degree regime is restricted to intermediate viscosity con-
trasts (close to the boundary to the stagnant-lid). An alternative boundary to the stag-
nant-lid regime is possible if the surface Rayleigh number exceeds the critical Rayleigh
number (Figure 6.1). Since this parameter space requires high viscosity contrasts and
Rayleigh numbers, this possibility was not yet studied in earlier works. Hence, the ap-
pearance of low-degree convection would not be restricted to a certain viscosity con-
trast, as convection can benefit from the top free-slip boundary condition once the vis-
cosity and the Rayleigh number allow mobility. Surface mobility is also given in the case
of plate tectonics. Thus, the low degree observed for the Earth is likely to be associated
with plate tectonics (e.g., Davies, 1988, Bunge et al, 1998, Lithgow-Bertelloni and
Richards, 1998).

Outlook

The present thesis provides new insights into the fluid-dynamical investigation
of mantle convection and scaling laws. Apart from updated and newly derived scaling
methods, the numerical scheme presented in chapter 3 is capable of handling realistic
viscosity contrasts of up to 45 orders of magnitude. This allows for a study of the influ-
ence of Arrhenius viscosity instead of having to use the linearized Frank-Kamenetskii
approximation. Future parameter studies using realistic activation energies and surface
temperatures in combination with the Arrhenius viscosity law and realistic Rayleigh
numbers would greatly improve our understanding of mantle convection in general
and the accuracy of the previously applied Frank-Kamenetskii approximation in partic-
ular.

Concerning the parameter study presented in chapter 5, further parametrical
exploration is necessary to constrain scaling laws for different modes of heating. While
the present study focuses on the effects of purely internally heated convection, it is also
important to look at mixed modes of heating, i.e., bottom heating in combination with
internal heating should be investigated. In particular, scaling laws to constrain heat-
flow and stagnant-lid properties should be derived. The new technique to reconstruct
the entire heat-flow profile presented in section 5.6.3 is likely to be applicable in a
more general way to different modes of heating and may be very useful concerning
theoretical studies of fluid flow.
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