WYNIKI BADAŃ TEKTONICZNYCH, ANALIZA TEMPA DEPOZYCJI I WARUNKÓW POGRZEBANIA

Sylwester SALWA, Jerzy ŻABA

ANALIZA STRUKTURALNA RDZENIA WIERTNICZEGO

WSTĘP

Otwór Bibiela PIG 1 został wykonany na pograniczu dwóch regionów: bloku górnośląskiego i bloku małopolskiego. Oba wymienione regiony znajdują się na przedpolu kratonu wschodnioeuropejskiego i należą do dwóch różnych segmentów skorupy ziemskiej. W efekcie oba posiadają różną budowę geologiczną, a co za tym idzie także różny profil wieku osadów i różną historię tektoniczną, która ujednoliceniu uległa najprawdopodobniej dopiero w dewonie (Brochwicz-Lewiński i in., 1981; Bukowy, 1984; Franke, 1989; Pożaryski, 1990: Pożaryski, Tomczyk, 1993; Żelaźniewicz, Cwojdziński, 1995; Żaba, 1999). W ramach prac badawczych na rdzeniu wiertniczym przeprowadzono szczegółowe profilowanie tektoniczne, połączone z charakterystyką zidentyfikowanych struktur tektonicznych, zgodnie z przyjętą w literaturze metodyką (np. Wilson, 1982; Ramsay, Huber, 1983, 1987; Price, Cosgrove, 1990; Twiss, Moores, 1992). Wybrane próbki skalne przecięto przeważnie w płaszczyźnie poprzecznej do biegu struktur, co pozwoliło scharakteryzować drobne struktury tektoniczne, cechujące się odstępem powierzchni poniżej 1 cm. Zgodnie z przyjętą praktyką tego typu struktury uznano za penetratywne w skali rdzenia wiertniczego (Dadlez, Jaroszewski, 1994; Passchier, Trouv, 2005).

WARSTWOWANIE SEDYMENTACYJNE

Niewielkie skrzywienie osi omawianego otworu pozwala uznać, że pomierzone w trakcie prac na rdzeniu wiertniczym kąty upadu warstw S_0 można uznać za rzeczywiste. W celu określenia, czy warstwy znajdują się w położeniu normalnym, czy odwróconym, wykonano analizę cech wskaźnikowych ich stropu i spągu zgodnie z powszechnie przyjętą metodyką (Pettijohn, 1975; Allen, 1982; Gradziński i in., 1986). Pozwoliło to stwierdzić, że większość warstw w analizowanym otworze występuje w położeniach normalnych.

Kąt upadu warstw osiąga najniższe wartości w skałach zaliczonych do triasu dolnego i środkowego, gdzie sporadycznie przekracza 20°, przeważnie mieszcząc się w przedziale od zera do kilkunastu stopni. Wszystkie warstwy znajdują się w położeniu normalnym. W skałach zaliczonych do ediakaru, ordowiku i dewonu zmienność kąta upadu warstw jest zdecydowanie większa i wprost proporcjonalna do stopnia ich zaangażowania tektonicznego. W strefach najsilniej zaangażowanych tektonicznie kąt ten osiąga przeważnie średnie wartości, mieszczące się w przedziale 30–60°. Upady bardziej strome i odwrócone stwierdzano wyłącznie w dwóch specyficznych przypadkach (np.: fig. 81B, E; 82A; 83B*). Pierwszym z nich są strefy uskoków nasuwczych. W ich skrzydłach nadnasuwczych (górnych) upady często nagle stromieją, zwłaszcza w miejscach, w których warstwy wspinają się na stopnie rampowe, wciąż jednak pozostając w położeniach normalnych, za wyjątkiem skrzydeł brzusznych niewielkich, obalonych fałdków ciągnionych. Podobna sytuacja ma miejsce w obrębie skrzydeł podnasuwczych tego typu uskoków. Efektem procesu nasuwania w ich obrębie jest zestromienie warstw i ich ciągnienie aż do stromych położeń odwróconych (fig. 81B, E).

Drugim przypadkiem występowania położeń odwróconych jest ich obecność w obrębie struktur osuwiskowych o charakterze ześlizgów grawitacyjnych, połączonych z deformacją osuwanych, słabo zdiagnozowanych warstw skalnych (fig. 82A).

^{*}Objaśnienia do figur 81, 82, 83 na stronie 236

For explanations to figs. 81, 82, 83 see page 236

Fig. 81

Fig. 82

Fig. 81. Struktury deformacyjne zapisane w skałach ediakaru

A – deformacje plastyczne powstałe w wyniku oddziaływania wstrząsów sejsmicznych na słabo skonsolidowane osady (sejsmity); S₀ – warstwowanie sedymentacyjne; Sj₁ – sejsmity. Grupa struktur 1; głęb. 1476,6 m; **B** – syndiagenetyczne fałdy F₁ oraz struktury wciskowe W₁ uformowane podczas ześlizgów grawitacyjnych wzdłuż powierzchni uskoków normalno-zrzutowych U₁. Grupa struktur 1; głęb. 1614,6 m; **C** – niskokątowe uskoki nasuwcze U₂ oraz związana z nimi mineralizacja żyłowa. Grupa struktur 2; głęb. 1190,1 m; **D** – dupleksy ekstensyjne (struktury rombkowe) powstałe na zakończeniach dwóch równoległych i stromych uskoków odwróconych U₂. Grupa struktur 2; głęb. 1551,4 m; **E** – zanurzający się fałd F₂ przebudowywany przez lewoskrętne ścinanie transpresyjne U₂. Grupa struktur 2; głęb. 1215,6 m; **F** – strome i skośne względem warstw S₀ uskoki normalno-zrzutowe U₃ dokumentujące fazę ekstensji podeformacyjnej. Grupa struktur 3; głęb. 1187,3 m

Deformation structures recorded in the Ediacaran rocks

A – plastic deformations resulting from the impact of seismic shaking on poorly consolidated sediments (seismites); S_0 – sedimentary layering; S_{j_1} – seismites. Group of structures 1; depth 1476.6 m; **B** – Syndiagenetic folds F_1 and impressed structures W_1 formed during slides along surfaces of dip-slip faulkts U_1 . Group of structures 1; depth 1614.6 m; **C** – Low-angle thrust faults U_2 and associated mineral veins. Group of structures 2; depth 1190.1 m; **D** – extensional duplexes (rhombic structures) forma at the end of two paralel and steep reverse faults U_2 . Group of structures 2; depth 1551.4 m; **E** – a plunging fold F_2 rebuilded by sinistral, transpresional shearing U_2 . Group of structures 2; depth 1215.6 m; **F** – steep and oblique to the strata S_0 , dip slip faults U_3 documenting post-deformational extension. Group of structures 3; depth 1187.3 m

Fig. 82. Struktury deformacyjne zapisane w skałach ordowiku

A – synsedymentacyjne fałdy F_3 w przestrzeni międzyławicowej S_0 . Grupa struktur 4; głęb. 454,6 m; B – redepozycja starszej generacji brekcji osuwiskowej Br_2 do utworów chaotycznych Ch_1 . Grupa struktur 4; głęb. 665,2 m; C – synsejsmiczne uskoki normalno-zrzutowe U_4 oraz wczesnodiagenetyczny zapis wpływu wstrząsów na osady słabo zdiagenezowane i powstanie sejsmitów Sj₂, połączone z upłynnieniem (Up) iłowców występujących bezpośrednio nad nimi. Niebieskie strzałki pokazują kierunek działania ekstensji. Grupa struktur 4; głęb. 343,4 m; D – zapis wyrównywanie powierzchni dna zbiornika powstałej w wyniku wstrząsów sejsmicznych (uskoki U_4) przez brekcję osuwiskową Br_2 . Grupa struktur 4; głęb. 578,2 m; E – zespół przeciwstawnych, normalno-zrzutowych uskoków U_4 powstałych w wyniku wstrząsów sejsmicznych z widoczną rotacją poszczególnych bloczków, wskazującą na znaczny udział ekstensji w tym procesie (niebieskie strzałki). Grupa struktur 4; głęb. 555,9 m; F – superpozycja uskoków normalno-zrzutowych, progowych i stromych odwróconych U_4 jako efektów tego samego procesu. Grupa struktur 4; głęb. 336,7 m

Deformation structures recorded in the Ordovician rocks

A – synsedimentary folds F_3 in the interlayer space S_0 . Group of structures 4; depth 454.6 m; **B** – redeposition of older generation landslide breccia Br_2 into chaotic sediments Ch_1 . Group of structures 4; depth 665.2 m; **C** – synseismic dip-slip faults U_4 and early-diagenetic record of the effect of shaking on weakly diagenetic sediments and the formation of seismic Sj_2 , combined with liquefaction (Up) of claystones occurring immediately above them. Blue arrows show the direction of extensional activity. Group of structures 4; depth 343.4 m; **D** – record of alignment of the surface of the basin floor created by seismic shaking (U_4 faults) by the Br_2 landslide breccia. Group of structures 4; depth 578.2 m; **E** – a set of opposing dip-slip U_4 faults formed by seismic shaking, with visible rotation of individual blocks, indicating significant extensional contribution to the process (blue arrows). Group of structures 4; depth 555.9 m; **F** – superposition of dip-slip, vertical and steep reversed U_4 faults as effects of the same process. Group of structures 4; depth 336.7 m

Fig. 83. Struktury deformacyjne zapisane w skałach ordowiku

A – niskokątowe uskoki nasuwcze U₅ oraz związane z nimi fałdy F₄. Grupa struktur 5; głęb. 611,9 m; B – synkinematyczny względem uskoków nasuwczych U₅ fałd F₄ i orientacja jego zanurzającej się osi (OF₄). Grupa struktur 5; głęb. 641,5 m; C – lewoskrętne, transpresyjne, strome uskoki U₆ oraz współwystępująca z nimi brekcja tektoniczna Br₄ i żyły mineralne V. Nieciągłości te częściowo reaktywują uskoki normalno-zrzutowe U₄. Grupa struktur 6; głęb. 501,8 m; D – szeregi ekstensyjne występujące w związku z obecnością uskoków normalno-zrzutowych U₇ dokumentujące fazę ekstensji podeformacyjnej. Grupa struktur 7; głęb. 306,8 m; E – brekcje tektoniczne Br₅ występujące w strefach uskoków normalno-zrzutowych U₇ dokumentujących fazę ekstensji podeformacyjnej. Grupa struktur 7; głęb. 307,7 m

Deformation structures recorded in the Ordovician rocks

A – low-angle thrust faults U_5 and related folds F_4 . Group of structures 5; depth 611.9 m; **B** – synkinematic with thrust faults U_5 the fold F_4 and the orientation of its plunging axis (OF₄). Group of structures 5; depth 641.5 m; **C** – sinistral, transpressive, steep faults U_6 and the co-occurring Br₄ tectonic breccia and mineral veins V. These discontinuities partially reactivate the U_4 dip-slip faults. Group of structures 6; depth 501.8 m; **D** – extensional arrays occurring due to the presence of dip-slip faults U_7 documenting the post-deformational extensional phase. Group of structures 7; depth 306.8 m; **E** – the tectonic breccia Br₅ occurring in zones of dip-slip faults U_7 documenting the post-deformational extensional phase. Group of structures 7; depth 307.7 m

WYNIKI PROFILOWANIA TEKTONICZNEGO

Stwierdzony w trakcie szczegółowego profilowania tektonicznego bogaty inwentarz struktur tektonicznych i deformacyjnych w ogólności, pozwolił wydzielić grupy struktur i przypisać je do konkretnych etapów deformacyjnych. Opierając się na stwierdzonym następstwie czasowo-przestrzennym pomiędzy poszczególnymi grupami struktur, wyróżniono cztery etapy deformacji zapisane w odpowiednich kompleksach litologiczno-strukturalnych.

Etap deformacji D1

Dokumentują go struktury przypisane do grup 1, 2 i 3, których obecność odnotowano jedynie w skałach ediakaru.

Grupa 1 struktur jest bardzo niejednorodna wewnętrznie, choć za powstanie zaliczonych do niej struktur odpowiada ten sam proces, związany z oddziaływaniem wstrząsów tektonicznych na osady znajdujące się na różnych etapach diagenezy. Do grupy tej zaliczono uskoki normalne i progowe oraz poślizgi po warstwach U₁, fałdy synsedymentacyjne/syndiagenetyczne F₁, struktury wciskowe W₁ oraz brekcje Br₁.

Uskoki U₁ charakteryzują się zróżnicowaną orientacją przestrzenną w obecnym położeniu warstw S₀. Są to zarówno uskoki strome, połogie jak i poziome (fig. 81A, B). Na ich powierzchniach zwrot przemieszczenia jest łatwy do określenia na podstawie widocznych względnych przemieszczeń poszczególnych fragmentów warstw S₀. Dominują przemieszczenia o charakterze zrzutowym, normalnym i odwróconym. Wszystkie wymienione nieciągłości charakteryzują się względnie stałymi relacjami z warstwowaniem sedymentacyjnym S₀, niezależnie od ich dzisiejszego położenia. Relacje te wskazują, że pierwotnie były to uskoki strome i średniokątowe względem warstw i że dominował normalno-zrzutowy charakter przemieszczenia wzdłuż ich powierzchni. Sugeruje to, że uskoki te powstały w warstwach leżących poziomo lub prawie poziomo.

Odrębną kategorią są poślizgi występujące na powierzchniach warstw S_0 i związane z nimi niskokątowe względem warstw S_0 uskoki normalne. Są one wyraźnie skorelowane z występowaniem niżej opisanych fałdów F_1 (fig. 81B).

Fałdy F_1 są strukturami pierwotnymi o charakterze wczesnodiagenetycznym. W aktualnym położeniu ich osie są poziome lub prawie poziome, a powierzchnie osiowe są poziome lub częściej zanurzają się pod niskimi do średnich kątami w kierunku zgodnym z azymutem upadu warstw S_0 . Formy te są najczęściej fałdami symilarnymi, średnio-do wąskopromiennych, co wprost wiąże się z litologią od-kształcanych warstw. Ich amplituda nie przekracza 20 cm, a w przegubach niektórych z fałdów widoczne jest wyraźne tworzenie się struktur diapirowych (fig. 81B). W związku z fałdami widoczne są także strefy stłoczenia słabo zdiage-nezowanych warstw skalnych. Jest ono związane z osuwaniem słabo zdiagenezowanych osadów w trakcie wychylania warstw i najprawdopodobniej poprzedza ono bezpośrednio formowanie brekcji Br_1 w obrębie zniszczonych warstw.

Struktury wciskowe W_1 powstały w wyniku wciskania warstw skalnych w siebie w poprzek pierwotnych uskoków U_1 (fig. 81B). Proces ten zachodził w trakcie ześlizgu grawitacyjnego po powierzchniach wychylonych warstw S_0 i pojawiał się w momencie wyhamowywania osuwanych warstw u ich czoła na skutek wzrostu tarcia u podstawy przemieszczanego kompleksu skalnego.

Brekcje Br₁ zostały stwierdzone w kilku miejscach w analizowanym profilu. Ich cechą charakterystyczną jest brak ostrych granic ze skałami występującymi w ich skrzydłach oraz specyficzna orientacja przestrzenna. Są one zorientowane poziomo lub prawie poziomo oraz występują ponad fałdami F₁. Prawie zawsze przecinają warstwy S₀ ustawione stromo, pionowo lub w położeniach odwróconych. W obrębie opisywanych brekcji nie stwierdzono jakichkolwiek wskaźników kinematycznych umożliwiających określenie zwrotu przemieszczenia, pomimo znacznego stopnia zniszczenia materiału skalnego.

Cechą wspólną, dla wszystkich wymienionych i scharakteryzowanych struktur deformacyjnych, jest brak jakiejkolwiek związanej z nimi genetycznie, synkinematycznej mineralizacji żyłowej.

Do grupy 2 zaliczono struktury wciskowe W_2 , poziome, połogie i strome, komplementarne uskoki U_2 o charakterze nasuwczym do transpresyjnego oraz fałdy F_2 . Wszystkie wymienione struktury są strukturami tektonicznymi w ścisłym tego słowa znaczeniu i towarzyszy im żyłowa mineralizacja węglanowa o zróżnicowanym charakterze i stosunku do deformacji tektonicznych.

Struktury wciskowe W_2 są efektem oddziaływania poziomo i prawie poziomo skierowanej kompresji tektonicznej na wcześniejsze uskoki synsedymentacyjne/syndiagenetyczne U_1 . W efekcie tego procesu warstwy skalne zlokalizowane w skrzydłach uskoków ulegały wciskaniu w powierzchnie uskoków oraz w warstwy występujące w przeciwległym skrzydle. Proces ten prowadził do deformowania powierzchni pierwotnych uskoków U_1 i powstawania struktur typu "zamka błyskawicznego" (Żaba, 1999).

Uskoki U₂ reprezentowane są przez nieciągłości o zróżnicowanej orientacji ale wspólnej genezie. Są to formy o powierzchniach od poziomych i prawie poziomych, przez średniokątowe do stromych. Ich cechą wspólną jest ten sam charakter kinematyczny i zwrot przemieszczenia wzdłuż ich powierzchni (fig. 81C, D, E). Początkowo powstały uskoki nasuwcze ustawione pod średnimi kątami i połogo, a rzadziej także stromo. Ich powierzchnie upadają zarówno konsekwentnie, jak i obsekwentnie względem warstw S₀. Towarzyszące im niewielkie fałdy F₂ (fig. 81E) pozwalające precyzyjnie określić zwrot przemieszczenia jako nasuwczy. Strome i średniokątowe transpresyjne uskoki lewoskrętne uformowały się nieco później. Ich powierzchnie ustawione są skośnie względem warstw S₀, a zwrot przemieszczenia określa przede wszystkim obecność ciągnienie przyuskokowego.

Fałdy F₂ stwierdzano w analizowanym profilu sporadycznie. Wiążą się one genetycznie z uskokami nasuwczymi oraz transpresyjnymi i występują zarówno ponad, jak i pod ich powierzchniami (fig. 81E). Takie usytuowanie pozwala zdefiniować je jako fałdki ciągnione. Osie tych struktur mają orientację poziomą dla uskoków czysto nasuwczych lub zanurzają się pod średnimi kątami, gdy są związane z uskokami transpresyjnymi. Są to formy symilarne, średnio- i wąskopromienne, a sporadycznie także izoklinalne, a ich powierzchnie osiowe upadają stromo konsekwentnie lub skośnie w stosunku do upadu warstw S₀.

Grupę 3 reprezentują jedynie podeformacyjne lub późno syndeformacyjne uskoki normalne U_3 , dupleksy ekstensyjne Du_3 i współwystępujące z nimi struktury rombowe oraz przejawy syntaksjalnej mineralizacji żyłowej węglanami.

Uskoki U_3 są nieciągłościami, których powierzchnie upadają pod średnimi lub stromymi kątami konsekwentnie, obsekwentnie i skośnie względem upadu warstw S₀. Zwrot przemieszczenia wzdłuż ich powierzchni dokumentuje obecność zmineralizowanych struktur rombowych (fig. 81F).

Dupleksy ekstensyjne Du₃ oraz związane z nimi genetycznie struktury rombowe, pojawiają się najczęściej w miejscu zakładki zlokalizowanej na zakończeniach równoległych uskoków normalnych (fig. 81A). W trakcie przemieszczenia zrzutowego przestrzenie pomiędzy spękaniami ulegały otwieraniu i mineralizowaniu przez roztwory krążące w skałach.

Etap deformacji D2

Najpełniejszy zapis znajduje przede wszystkim w skałach ordowiku, ale nie można wykluczyć, że jego końcowe deformacje mogły dotknąć także skał dewonu dolnego. Dokumentują go struktury deformacyjne przypisane do grup 4–7.

Do grupy 4 zaliczono fałdy synsedymentacyjne i syndiagenetyczne F_3 (fig. 82A) utwory chaotyczne Ch_1 , brekcje osuwiskowe Br, (fig. 82A, B) oraz uskoki normalne, progowe i odwrócone U_{4} (fig. 82C–F). Podobnie jak w ediakarze także w ordowiku najstarsze zidentyfikowane struktury deformacyjne tego etapu nie mają jednoznacznie charakteru tektonicznego. Są to przede wszystkim osuwiska o charakterze zarówno osadów chaotycznych Ch₁ jak i brekcji osuwiskowych Br₂ (fig. 82B, D) charakteryzujących się szkieletem zwartym lub rozproszonym i zróżnicowanym składem petrograficznym - w starszych osadach dość monotonnym, a ku górze profilu wyraźnie się różnicującym. Widoczna jest także redepozycja samych brekcji w obrębie osadów młodszych (fig. 82B), co świadczy o wielokrotności procesu uruchamiania i przerabiania osadów w wyniku oddziaływania na nie czynników tektonicznych. Brekcje i utwory chaotyczne najczęściej spoczywają na utworach przeciętych tak licznymi synsedymentacyjnymi i wczesnodiagentycznymi uskokami U₄, że można je uznać za penetratywne w skali rdzenia wiertniczego (fig. 82C-F). Uskoki te najczęściej nie przecinają brekcji osadowych, lecz jedynie przytykają do nich od spągu lub wygasają w ich obrębie, a same brekcje wyrównują morfologię dna zbiornika sedymentacyjnego (fig. 82D). Nawet jeśli nie występują brekcje to osady bezpośrednio przykrywające dno morskie podlegały homogenizacji w wyniku wstrząsów i zatracały wszelkie cechy charakterystyczne dla skał osadowych, jak choćby warstwowanie sedymentacyjne S_0 (fig. 82D). Przykrycie tego typu osadów chaotycznych warstwowanymi osadami pozwala również na precyzyjne datowanie momentu wstrząsu.

Uskoki U_4 w pierwotnym, zapewne poziomym (lub bliskim mu) położeniu warstw S₀ były w większości uskokami normalno-zrzutowymi (fig. 82C–F). Uskoki odwrócone i progowe pojawiały się w górnych zakończeniach tych form, tworząc zespół nieciągłości upodabniających się do wiązki charakterystycznej dla ekstensyjnych zakończeń struktur typu "koński ogon" (fig. 82F) (np. Kim i in., 2004). Przemieszczenia wzdłuż tych uskoków osiągają niewielkie wartości, przy czym większe są one dla uskoków normalno--zrzutowych.

Część z opisywanych uskoków normalno-zrzutowych, z położeń stromych w górnej części ich przebiegu, przechodzi do położeń coraz łagodniejszych ku dołowi, aby w końcu przejść w poziome i niskokątowe odkłucia w płaszczyźnie warstw S_0 , co nadaje im charakter uskoków szuflowych.

Fałdy synsedymentacyjne i syndiagenetyczne F_3 dokumentują przemieszczenia częściowo zdiagenezowanych warstw po zboczu zbiornika sedymentacyjnego. Najczęściej są to fałdy wąskopromienne do izoklinalnych, obalone w kierunku transportu (fig. 82A), który po wygenerowaniu przemieszczenia przez wstrząs, dalej kontrolowany był przez siłę ciążenia i związany z nią transport grawitacyjny.

Drugim typem fałdów synsedymentacyjnych są fałdy występujące w obrębie utworów chaotycznych Ch_1 i niekiedy brekcji Br_2 o rozproszonym szkielecie ziarnowym. W tych wypadkach fałdy F_3 najczęściej nie wykazują wyraźnego uporządkowania, a charakterystyczne są dla nich silne zmiany w geometrii struktur.

Utwory chaotyczne Ch₁ powstały w wyniku transportu grawitacyjnego materiału skalnego, całkowicie upłynnionego ze względu na niski stopień diagenezy (fig. 82B). Tego typu skały powszechniej występują w dolnej części profilu ordowickiego, co wiązać należy z początkowymi etapami wstrząsów tektonicznych oddziałowujących na osady bezpośrednio przykrywające dno morskie.

Brekcje Br_2 mają genezę identyczną z utworami chaotycznymi. Istotną różnicę stanowi fakt, że w ich przypadku nie doszło do upłynnienia, co należy wiązać z wyższym stopniem diagenezy osadów, na które oddziaływały wstrząsy sejsmiczne (fig. 82B).

Do grupy 5 struktur zaliczono przede wszystkim niskokątowe uskoki nasuwcze, komplementarne (czołowe i wsteczne) U₅ (fig. 83A), związane z nimi fałdy nadnasuwcze i fałdy ciągnione pod nasunięciami F_4 (fig. 83A, B), dupleksy kontrakcyjne Du₄, brekcje tektoniczne Br₃ i żyły mineralne synkinematyczne z deformacjami tektonicznymi.

Uskoki U₅ są nieciągłościami niskokątowymi względem warstw S₀. Często występują także poziome, niekiedy po warstwach S₀, odkłucia łączące poszczególne uskoki nasuwcze (fig. 83A, B). Struktury te są zarówno pierwotne, jak i wtórne. W przypadku struktur wtórnych reaktywacji podlegają uskoki U_1 i U_4 . Odmłodzeniu najczęściej towarzyszyła także mineralizacja otwieranych przestrzeni. Na powierzchniach uskoków niskokątowych powszechnie występują rysy upadowe (nasuwcze) lub skośne (transpresyjne). Zwrot przemieszczenia dobrze definiuje zarówno obecność fałdków ciągnionych F_4 , jak i obecność włóknistej mineralizacji synkinematycznej, zlokalizowanej w cieniach ciśnienia. Powszechnym zjawiskiem jest także żyłowa, synkinematyczna, włóknista mineralizacja węglanowa w obrębie zarówno uskoków niskokątowych, jak i odkłuć poziomych, co jest zjawiskiem powszechnie obserwowanym przy tego typu deformacjach (np. Fitches i in., 1986; Jessell i in., 1994). Uskoki U_5 tworzą sieć komplementarnych nasunięć, w której skład wchodzą zarówno nasunięcia czołowe, jak i nasunięcia wsteczne.

Fałdy F_4 są formami ściśle związanymi z uskokami nasuwczymi U_5 , występują zarówno ponad, jak i poniżej ich powierzchni i mają analogiczną orientację przestrzenną oraz charakterystykę zarówno morfologiczną, jak i kinematyczną. W obu wypadkach są to formy wczesnodiagenetyczne, o osiach zanurzających się pod niewielkimi kątami (do 20°), a ich powierzchnie osiowe są wergentne w kierunku zgodnym z kierunkiem przemieszczenia (fig. 83A, B). Najczęściej fałdy te są formami symilarnymi, obalonymi, a rzadziej pochylonymi. W skrzydłach większych form powszechne są fałdy niższego rzędu, o orientacji zgodnej z orientacją form nadrzędnych.

Dupleksy kontrakcyjne Du₄ posiadają orientację przestrzenną analogiczną do fałdów i najczęściej z nimi współwystępują w skrzydłach górnych (nadnasuwczych) nasunięć U₅.

Brekcje Br₃, podobnie jak fałdy F_4 i dupleksy kontrakcyjne Du₄, są ściśle związane z obecnością uskoków nasuwczych U₅.

Do grupy 6 zaliczono lewoskrętne uskoki transpresyjne i przesuwcze do transtensyjnych U₆, z którymi współwystępują brekcje Br₄ (fig. 83C).

Uskoki U_6 są formami o stromo upadających i często niewyrównanych powierzchniach uskokowych, na których widoczne są rysy tektoniczne skośne, wskazujące na transpresję lewoskrętną (fig. 83C) i transtensję lewoskrętną oraz rysy poziome związane z lewoskrętną przesuwczością. Zwrot przemieszczenia dokumentują względne przemieszczenia warstw skalnych oraz obecność włóknistej mineralizacji węglanowej w cieniach ciśnienia na powierzchni luster tektonicznych. Niekiedy obserwuje się także wcinanie spękań typu R i R' w skrzydła uskoków -

Brekcje Br₄ często towarzyszą opisanym powyżej uskokom. Ulokowane są wewnątrz wąskich stref uskokowych, a względne przemieszczenia i rotacja budujących je rozkruszonych fragmentów skał, również potwierdzają określony wcześniej zwrot przemieszczenia (fig. 83C).

Do grupy 7 zaliczono uskoki normalne U_7 (fig. 83D, E), związane z nimi brekcje tektoniczne Br_5 oraz żyły mineralne (fig. 83E).

Uskoki U_7 są formami stromymi, często upadającymi pod kątem niż 70°. Powszechnie przyjmują one postać wąskich stref ścinania kruchego o zwrocie normalno-zrzutowym, dobrze udokumentowanym przez aranżację spękań otwartych i zmineralizowanych syntaksjalnymi żyłami węglanowymi (fig. 83D, E), które niekiedy tworzą szeregi ekstensyjne (fig. 83D).

Z uskokami U_7 związane są także dość szerokie strefy brekcji tektonicznej Br₅, w obrębie której pokruszone fragmenty skały scalone są także minerałami węglanowymi. Ta generacja uskoków dokumentuje etap ekstensji podeformacyjnej.

Po deformacjach tektonicznych etapu D_2 nastąpiła intensywna erozja, która doprowadziła do usunięcia całości skał sylurskich i części skał ordowickich. Depozycja osadów dewońskich zaczęła się powyżej powierzchni erozyjnej, wzdłuż której nie widać jednak jakiejkolwiek niezgodności kątowej.

Etap deformacji D3

Etap ten posiada najpełniejszy zapis w skałach dewonu, ale wyraźnie czytelny jest także w skałach starszych. Dokumentują go struktury należące do grup 8–11.

Do grupy 8 zaliczono skały uskokowe roboczo określone jako kataklazyty Kt (fig. 84A), choć nie można wykluczyć, że w rzeczywistości te skały uskokowe tworzą ciąg wraz z brekcjami Br₆ (hydraulicznymi) i brekcjami Br₇, które nie posiadają określonego zwrotu (fig. 84B). Na taką możliwość wskazuje chociażby nieostry kontakt pomiędzy "kataklazytami", a skałami otaczającymi.

Jako że są to najstarsze struktury tektoniczne zidentyfikowane w skałach dewońskich, można przypuszczać, że tworzyły się one w osadach nie do końca zdiagenezowanych, a więc i zawierających zapewne znaczną ilość wody rezydualnej. Takie warunki znacząco ułatwiają nie tylko niszczenie skały, ale i tworzenie brekcji o charakterze hydraulicznym na wczesnym etapie ich diagenezy. We wszystkich rozpatrywanych przypadkach opisane skały uskokowe związane są ze stromymi uskokami o nieznanym zwrocie przemieszczenia. Problem z określeniem zwrotu przemieszczenia wynika z braku widocznych przemieszczeń względnych pomiędzy składnikami kataklazytów i brekcji oraz stwierdzonym także odmładzaniem tego typu powierzchni przez młodsze uskoki U₈, co zatarło starsze wskaźniki kinematyczne, jeśli występowały. W skrzydłach uskoków brak jest widocznego ciągnienia przyuskokowego.

Do grupy 9 zaliczono uskoki normalne U_8 (fig. 84C) i związane z nimi brekcje Br_8 , a także fałdy synsedymentacyjne F_5 (fig. 84C).

Stwierdzone uskoki normalne U₈występują dość powszechnie, a ich orientacja przestrzenna wskazuje, że tworzą dwa komplementarne zespoły uskokowe ustawione skośnie względem warstwowania sedymentacyjnego i przecinające starsze kataklazyty Kt oraz brekcje Br₆ i Br₇. Ich powierzchnie w aktualnym położeniu warstw upadają łagodnie i stromo w przeciwstawnych kierunkach, a zwrot transportu tektonicznego wzdłuż ich powierzchni dobrze dokumentują przemieszczenia względne fragmentów ławic S₀ (fig. 84C, F) oraz widoczne niekiedy charakterystyczne podgięcia warstw, będące

Fig. 84. Struktury deformacyjne zapisane w skałach dewonu

A – wczesnodiagenetyczne kataklazyty Kt, przecinające je uskoki przesuwcze U₁₀ i związane z nimi brekcje Br₉ oraz superpozycja wymienionych struktur. Grupa struktur 8; głęb. 195,0 m; **B** – wczesnodiagenetyczne brekcje Br₇. Grupa struktur 8; głęb. 279,4 m; **C** – komplementarne uskoki normalno-zrzutowe U₈ oraz synsedymentacyjne fałdy F₅. Grupa struktur 9; głęb. 277,2 m; **D** – uskoki nasuwcze U₉ oraz związane z nimi synkinematyczne fałdy F₆ oraz widoczne w górnej części zdjęcia ścinanie U₉ w płaszczyźnie warstw S₀ połączone z rotacją fragmentów warstw. Grupa struktur 10: głęb. 281,5–282,0 m; **E** – strome uskoki odwrócone U₉. Grupa struktur 10; głęb. 279,0 m; **F** – superpozycja normalno-zrzutowych uskoków U₈ oraz niskokątowych uskoków nasuwczych U₉; głęb. 256,5 m

Deformation structures recorded in the Devonian rocks

A – early-diagenetic cataclasites Kt, intersecting sliding faults U_{10} and associated breccias Br_9 , and superposition of the aforementioned structures. Group of structures 8; depth 195.0 m; **B** – early-diagenetic breccia Br_7 . Group of structures 8; depth 279.4 m; **C** – Complementary dip-slip faults U_8 and synsedimentary folds F_5 . Group of structures 9; depth 277.2 m; **D** – thrust faults U_9 and associated synkinematic folds F_6 , as well as U_9 shear visible in the upper part of the photo in the plane of the S_0 layers, combined with rotation of layer fragments. Group of structures 10; depth 281.5–282.0 m; **E** – steep reversed faults U_9 . Group of structures 10; depth 279.0 m; **F** – superposition of dip-slip faults U_8 and low-angle thrust faults U_9 ; depth 256.5 m

wynikiem ciągnienia przyuskokowego. Wewnątrz większych form uskokowych występuje niekiedy brekcja tektoniczna Br_8 ale nie osiąga ona nigdy większych rozmiarów.

Rotacja powierzchni uskokowych o wartość kąta upadu warstw pozwoliła stwierdzić, że powstały one najprawdopodobniej przed wychyleniem warstw oraz że tworzą one komplementarne zespoły wykazujące bardzo podobne wartości kąta upadu, mieszczące się w zakresie kątów o średnich wartościach.

Z opisanymi uskokami związane są także najprawdopodobniej słabo rozpowszechnione fałdy synsedymentacyjne F_5 . Są to niewielkie, leżące, izoklinalne do wąskopromiennych formy, charakteryzujące się osiami poziomymi, w przybliżeniu równoległymi do biegu warstw S₀ (fig. 84C). Ich powierzchnie osiowe upadają łagodnie w kierunku zgodnym z upadem warstw (w warstwach stromszych) lub łagodnie do niego obsekwentnym (w warstwach upadających pod niewielkim kątem i poziomych). Widoczne przemieszczanie materiału skalnego ze skrzydeł do przegubów fałdów przy braku kliważu, wskazują na ich synsedymantacyjną genezę, choć nie można wykluczyć ich formowania na wczesnym etapie deformacji.

Grupa 10 reprezentowana jest przez uskoki nasuwcze i strome odwrócone U₉ (fig. 84D, E, F), związane z nimi fałdy F₆ (fig. 84D) oraz dupleksy kontrakcyjne Du₅. Wymienione struktury tektoniczne występują powszechnie w analizowanym profilu skał dewońskich.

Uskoki U₉ są nieciągłościami, których powierzchnie upadają pod niewielkimi kątami zarówno konsekwentnie (fig. 84D), jak i obsekwentnie do upadu warstw lub wręcz mają charakter odkłuć po warstwach S₀ (fig. 84F). Podobnie jak w ordowiku, ich powierzchnie najczęściej są zmineralizowane węglanami wykrystalizowanymi synkinematycznie z zachodzącą deformacją nasuwczą. Upad powierzchni uskoków nasuwczych w dwóch przeciwstawnych kierunkach, przy zachowanym charakterze nasuwczym, świadczy o ich komplementarności i powstaniu pod wpływem subhoryzontalnych nacisków tektonicznych przy obecności relatywnie niewielkiego nadkładu.

Etap kontrakcji zakończyło formowanie stromych uskoków odwróconych U₉, z dobrze udokumentowanym zwrotem przemieszczenia poprzez obecność wyraźnego ciągnienia przyuskokowego (fig. 84E). Nie można wykluczyć, że pierwotnie uskoki te upadały pod średnimi lub nawet niskimi kątami, ale w procesie nasuwania zostały biernie wychylone do położeń stromych.

Ponad powierzchniami i poniżej powierzchni uskoków U_9 powszechnie występują fałdy F_6 . Są to niewielkie formy symilarne i rzadziej koncentryczne, o osiach poziomych i prawie poziomych oraz powierzchniach osiowych upadających konsekwentnie do warstw S_0 pod średnimi i stromymi kątami (fig. 84D). Opisywane struktury znajdują się w położeniu bardzo zbliżonym, jeśli nawet nie identycznym, do położenia pierwotnego i wskazują na zwrot przemieszczenia nasuwczy do transpresyjnego.

W wąskich strefach uskokowych stwierdzono także sporadyczne występowanie niewielkich dupleksów kontrakcyjnych Du_2 . Formy te mają orientację przestrzenną zgodną z fałdami F_6 .

Do grupy 11 zaliczono uskoki przesuwcze, lewoskrętne U_{10} z brekcjami Br_9 oraz uskoki przesuwcze i transtensyjne, prawoskrętne U_{11} z brekcjami Br_{10} .

Uskoki lewoskrętne U_{10} i związane z nimi brekcje tektoniczne Br_9 notowane są w części dewońskiej profilu wiercenia dość powszechnie. Niewyrównane powierzchnie uskoków upadają stromo lub pod średnimi kątami (fig. 84A) i charakteryzują się dobrze udokumentowanym zwrotem przemieszczenia dzięki obecności cieni ciśnienia z synkinematyczną mineralizacją węglanową oraz czysto przesuwczymi rysami tektonicznymi. Wraz z nimi występują słabo wykształcone brekcje tektoniczne Br_9 (fig. 84A).

Uskoki U_{11} i współwystępujące z nimi brekcje Br_{10} notowane są w całym paleozoicznym i ediakarskim profilu analizowanego wiercenia. Ich powierzchnie upadają stromo i charakteryzują się niewyrównaną powierzchnią, z dobrze wykształconymi i widocznymi rysami tektonicznymi poziomymi lub skośnymi pod niewielkim kątem. Powierzchnie te często meandrują, zmieniając kąt upadu i tworząc nawet kilkumetrowej szerokości strefy uskokowe. Zwrot przemieszczenia określono jako prawoskrętny w oparciu o obecność spękań R i R' wcinanych w skrzydła uskoku oraz sporadyczną obecność mineralizacji synkinematycznej w cieniach ciśnienia. Towarzyszące im brekcje tektoniczne Br_{10} są słabo zwięzłe i łatwo jest rozdzielać jej fragmenty przy użyciu niewielkiej siły.

Oba opisane zespoły uskokowe zorientowane są skośnie do warstw S_0 ale w kierunkach przeciwnych. Nie można wykluczyć, że pomimo stwierdzonego przecinania uskoków U_{10} przez uskoki U_{11} , pierwotnie były to uskoki komplementarne tworzące wspólną sieć. Występowanie opisanych uskoków, w całym profilu skał paleozoicznych oraz ediakaru, świadczy o ich wgłębnym zasięgu i znaczącej roli w tektonice analizowanego obszaru. Najprawdopodobniej ten zespół uskoków otworzył drogę migracji dla magmy, z której uformowały się pierwotnie lamprofiry.

SKAŁY MAGMOWE

W opisywanym otworze stwierdzono występowanie magmowych skał żyłowych, tworzących niewielkie intruzje przecinające skały ordowiku oraz ścisłe pogranicze między skałami ediakaru i ordowiku. Wyodrębniono je poza grupy struktur ze względu na fakt, że nie zostały one w żaden sposób zdeformowane tektonicznie, co świadczy o ich charakterze posttektoniczny. Ich wiek ogranicza od góry możliwy do przyjęcia wiek intensywnych deformacji tektonicznych zapisanych w skałach ediakaru, ordowiku i dewonu.

Etap deformacji D4

Deformacje związane z tym etapem zapisane są wyłącznie w skałach triasu. Dokumentują go struktury należące do grup struktur 12–15.

Grupa 12 struktur reprezentowana jest przez fałdy synsedymentacyjne F_7 , których obecność stwierdzono w obrębie wapieni gruzłowych triasu. Są to formy leżące, izoklinalne, o poziomych osiach oraz poziomych powierzchniach osiowych i wyraźnym zwiększeniu miąższości w przegubach (fig. 85A). Mogą być one zarówno efektem tektonicznej aktywizacji obszaru, jak i efektem przemieszczeń materiału skalnego po dnie zbiornika w wyniku oddziaływania na nie silnych sztormów. Obecność wczesnodiagenetycznych struktur tektonicznych w profilu skał triasu sugeruje jednak oddziaływanie czynnika tektonicznego.

W analizowanym profilu do grupy 13 zaliczono przede wszystkim litostylolity St₁, komplementarne uskoki normalno-zrzutowe do transtensyjnych U₁₂ (fig. 85A), dupleksy ekstensyjne Du₃ (fig. 85A) oraz brekcje Br₁₁ (fig. 85B).

Litostylolity St_1 zorientowane są równolegle do warstwowania sedymentacyjnego S_0 , co świadczy o ich formowaniu w warstwach leżących poziomo. Ich obecność dokumentuje także rosnącą miąższość nadkładu, sprzyjającą rozwojowi rozpuszczania pod ciśnieniem. Amplituda lineacji stylolitowej rzadko przekracza 1 cm, przeważnie osiągając pojedyncze milimetry, a grubość powłoki stylolitowej rzadko przekracza 1 mm.

Uskoki U_{12} są formami prawie prostopadłymi do kierunku upadu warstw oraz tworzą dwa komplementarne, wczesnodiagenetyczne zespoły. Powierzchnie uskokowe w obu zespołach wykazują upady pod średnimi do stromych kątami i niewyrównany, meandrujący przebieg, dostosowujący się do litologii przecinanych skał (fig. 85A, C). Zarówno widoczne upadowe rysy tektoniczne, jak i wcinane spękania R i R' w skrzydła uskoków oraz przemieszczenia względne warstw skalnych, pozwalają określić zwrot przemieszczania wzdłuż tych nieciągłości, jako normalno-zrzutowy.

Dupleksy ekstensyjne Du₆ są ściśle związane genetycznie z uskokami U₁₂ (fig. 85A). Są to niewielkie formy o osiach poziomych i rozmiarach do pojedynczych centymetrów, a ich orientacja przestrzenna potwierdza zwrot przemieszczenia wzdłuż powierzchni uskoków U₁₂ jako normalno-zrzutowy.

Brekcje Br₁₁ występują lokalnie i nie osiągają znaczniejszych rozmiarów. Pojawiają się w miejscach rozgałęziania uskoków tworzących wąskie strefy wypełnione opisywanymi brekcjami (fig. 85B).

Do grupy 14 zaliczono uskoki przesuwcze, prawoskrętne, a rzadziej także lewoskrętne U_{13} (fig. 85B) i brekcje Br_{12} .

Uskoki U_{13} charakteryzują się stromymi i niewyrównanymi powierzchniami uskokowymi ze słabo widocznymi rysami poziomymi na powierzchniach luster tektonicznych (fig. 85B). Przemieszczenia warstw S₀ oraz obecność nielicznych spękań typu R i R' pozwoliła określić zwrot przemieszczenia tych nieciągłości jako głównie prawoskrętny, a rzadziej także lewoskrętny. Brekcje Br₁₂ są ściśle związane z uskokami U₁₃. Występują stosunkowo rzadko i osiągają niewielkie rozmiary, rzadko przekraczając 1 cm grubości.

Do grupy 15 struktur zaliczono uskoki nasuwcze i transpresyjne, strome uskoki odwrócone U_{14} (fig. 85C) oraz poślizgi po warstwach S_0 ze słabo wykształconymi rysami tektonicznymi. Do grupy tej zakwalifikowano także tektonostylolity St_2 i związaną z nimi genetycznie lineację stylolitową.

Powierzchnie stylolitów tektonicznych St₂ są formami o powierzchniach charakteryzujących się subwertykalną orientacją, a wyznaczana przez nie lineacja jest subpozioma. Amplituda szwów stylolitowych nie przekracza 1 cm, a grubość występującej na ich powierzchniach powłoki stylolitowej sporadycznie przekracza 1 mm.

Uskoki U_{14} to rozbudowana grupa nieciągłości o zróżnicowanej orientacji przestrzennej ale o wspólnym charakterze kinematycznym i genezie. Najstarsze z nich są zapewne poślizgi w płaszczyźnie warstw i ścinanie rozproszone w skałach. W obu wypadkach zwrot jest jasno określony jako nasuwczy i wprost koreluje się z nasuwczymi uskokami niskokątowymi (fig. 85C). Nieco młodsze od nich są lewoskrętne uskoki transpresyjne oraz strome uskoki odwrócone.

Fig. 85. Struktury deformacyjne zapisane w skałach triasu

A – fałdy synsedymentacyjne F_7 oraz uskoki normalno-zrzutowe U_{12} , związane z nimi genetycznie dupleksy ekstensyjne Du_6 . Grupy struktur: 12 i 13; głęb. 103,4 m; B – strome do pionowych uskoki prawoprzesuwcze U_{13} i związane z nimi brekcje tektoniczne Br_{12} . Grupa struktur 14; głęb. 113,6 m; C – lewoskrętny uskok transpresyjny U_{14} . Widoczna superpozycja z uskokiem U_{12} . Grupa struktur 15; głęb. 94,7 m

Deformation structures recorded in the Triassic rocks

A – synsedimentary folds F_7 and dip-slip faults U_{12} and related extensional duplexes Du_6 . Groups of structures: 12 and 13; depth 103.4 m; B – steep to vertical dextral faults U_{13} and associated tectonic breccias Br_{12} . Group of structures 14; depth 113.6 m; C – the sinistral, transpressional fault U_{14} . The superposition with fault U_{12} is visible. Group of structures 15; depth 94.7 m

WNIOSKI

Szczegółowe profilowanie tektoniczne rdzenia wiertniczego pozwoliło zidentyfikować bogaty zespół struktur tektonicznych, dokumentujących złożoną strukturę badanego obszaru, powstałą w wyniku wielofazowej i długotrwałej aktywności tektonicznej.

Każdy z wyróżnionych etapów deformacyjnych zaczyna się fazą ekstensji, z którą, w osadach przede wszystkim ediakaru i ordowiku, wiązała się obecność sejsmitów wyrażonych jako liczne, wczesnodiagenetyczne uskoki normalno-zrzutowe i powiązane z nimi brekcje sedymentacyjne, utwory chaotyczne, fałdy synsedymentacyjne-syndiagenetyczne, a także ześlizgi grawitacyjne i inne struktury deformacyjne. Obecność tego typu struktur, powtarzających się wielokrotnie w analizowanym profilu w różnowiekowych skałach, świadczy dobitnie o wielofazowej aktywności tektonicznej obszaru badań, wpływającej istotnie na warunki sedymentacji w obrębie basenu poprzez tworzenie morfologii jego dna i zmiany jego głębokości.

Najstarszy kompleks strukturalny zidentyfikowano w skałach ediakaru i jest on zapisem progresywnego procesu deformacyjnego etapu D_1 od początkowej ekstensji i powiązanych z nią sejsmitów, poprzez kompresję tektoniczną po lewoskrętną transpresję. Zakończył się on zapewne wyniesieniem serii ediakarskiej i jej intensywnym wietrzeniem połączonym z erozją, o czym może świadczyć czerwone zabarwienie skał występujących w stropowej części tego kompleksu skalnego.

Młodszy kompleks strukturalny związany z etapem deformacji D_2 stwierdzono w skałach ordowickich. Podobnie jak w przypadku ediakaru, także i tutaj mamy do czynienia z pełnym zapisem strukturalnym od ekstensji, przez fazę kompresji, fazę lewoskrętnej transpresji, aż po lewoskrętną czystą przesuwczość. Cały proces zakończyła faza ekstensji podeformacyjnej, z którą związane są uskoki normalno--zrzutowe młodszej generacji.

Struktury zidentyfikowane w skałach dewonu wskazują na deformowanie D_3 tych skał w warunkach słabiej wyrażonego strukturalnie cyklu ponownie zaczynającego się od warunków ogólnej ekstensji, poprzez kompresję i związane z nią niskokątowe uskoki nasuwcze po prawoskrętną, intensywną i kruchą przesuwczość. Ostatnie z wymienionych struktur stwierdzono w całym profilu ediakarsko-paleozoicznej sukcesji skalnej.

Erozyjny kontakt pomiędzy skałami ordowiku i dewonu dolnego, a także brak osadów syluru, pozwalają datować struktury tego piętra na prawdopodobnie najmłodszy sylur/ najstarszy dewon. Ten etap deformacji zakończył się intruzjami skał magmowych, które nie zostały zdeformowane tektoniczne, co pozwala stwierdzić, że zamykają one etap intensywnych deformacji nasuwczo-transpresyjno-przesuwczych. Etapom deformacji D_2 i D_3 towarzyszyły liczne, choć rozmiarowo niewielkie, przejawy kilkuetapowej mineralizacji żyłowej o zróżnicowanych relacjach do procesów tektonicznych.

Etap deformacji D_4 stanowi najwyższe piętro strukturalne zidentyfikowane w analizowanym profilu wiertniczym. Jego zapis został zidentyfikowany w osadach triasu, a zapis strukturalny zaczyna się od ekstensji udokumentowanej obecnością uskoków normalno-zrzutowych. Po nim nastąpiła faza kompresyjna, z którą związane są niewielkie uskoki nasuwcze i strome odwrócone, a cykl deformacji kończy się prawoskrętną przesuwczością.

W kolejnych etapach deformacji formowane były nowe, pierwotne struktury tektoniczne, ale także reaktywacji podlegały struktury już wcześniej powstałe. Dotyczy to zwłaszcza uskoków, które podlegały reaktywacji każdorazowo, jeżeli tylko znalazły się w takim położeniu względem układu naprężeń, które umożliwiało ich ponowne uruchomienie.

Wszystkie stwierdzone w analizowanym profilu wiertniczym struktury tektoniczne związane są zapewne z aktywnością najważniejszej struktury tektonicznej obszaru badań czyli uskokiem Kraków–Lubliniec.

Łukasz SMAJDOR

ANALIZA TEMPA DEPOZYCJI ORAZ WARUNKÓW POGRZEBANIA

METODY BADAŃ

Dla otworu wiertniczego Bibiela PIG 1 przeprowadzono analizę tempa depozycji oraz warunków pogrzebania. Modelowanie przeprowadzono za pomocą oprogramowania PetroMod[™] firmy Schlumberger, używając do tego modułu 1D (jednowymiarowego). Niestety, brak informacji dotyczących termiki (dane R_{o}) nie pozwolił na stworzenie modelu historii termicznej, metodą forward modelling i zastosowania algorytmu Sweeneya i Burnhama (1990). Metoda ta zakłada stan wyjściowy - obecny (present day), dla którego posiadamy pomierzone parametry - temperaturę w otworze oraz dane refleksyjności witrynitu (R_{o}) a następnie za pomocą dobierania parametrów - przeszłych (past) - erozji (dla R_a) oraz strumienia cieplnego (heat flow dla temperatury) - stara się metodą iteracyjną dopasować dane modelowane do danych pomierzonych. Z powodu braku wyżej wymienionych danych skupiono się na analizie tempa depozycji oraz warunków pogrzebania. Analizę przeprowadzono na podstawie następujących danych: stratygrafii, litologii i miąższości jednostek stratygraficznych wydzielonych w profilu. Każdej jednostce stratygraficznej przypisany został wiek na podstawie najnowszej Międzynarodowej Tabeli Stratygraficznej (International Stratigraphic Chart, 2022), opublikowanej przez Międzynarodową Komisję Stratygraficzną (International Commission on Stratigraphy, 2022). Wartości te są zgodne z biblioteką programu PetroMod[™] (Wygrala, 1989). W procedurze analizy tempa depozycji oraz warunków pogrzebania rekonstruowano miąższości zerodowanych fragmentów profili litostratygraficznych. Dotyczyło to przede wszystkim utworów ordowiku oraz utworów z okresu dewon środkowy-perm. Miąższość zerodowanych utworów określono na podstawie analiz przedstawionych w pracach Buła (2000) i Żaba (1999) oraz na podstawie danych z Centralnej Bazy Danych Geologicznych (CBDG) (2022). Aby ustalić warunki graniczne modelu potrzebne były dane o głębokości wody w odpowiednich okresach geologicznych oraz zmianach średniej temperatury powierzchniowej w historii geologicznej basenu. Zostały one ustalane automatycznie z biblioteki programu za Wygrala (1989).

WYNIKI

Analiza Tempa Depozycji

Najstarszymi utworami w profilu otworu Bibiela PIG 1 są klastyczne utwory ediakaru. Ze względu na to, że utwory te nie zostały w całości przewiercone, niemożliwe jest ustalenie w miarę wiarygodnego ich tempa depozycji. Bezpośrednio na nich zalegają utwory ordowiku dolnego o łącznej miąższości 258,75 m. Ich tempo depozycji szacowane jest na ~5 m/mln lat. Powolne tempo depozycji związane jest z rozpoczynającym się etapem subsydencji. Po okresie powolnej subsydencji następuje gwałtowny wzrost jej tempa, osiągając maksimum na przełomie ordowiku i syluru z wartościami ~30 m/mln lat. Nad utworami ordowiku dolnego zalegają utwory ordowiku środkowego oraz górnego o miąższości 161,5 m i szacowanym tempie depozycji ~10 m/mln lat. W sylurze następuje spowolnienie subsydencji, a następnie zmiana reżimu z ekstensyjnego na kompresyjny. Okres dewonu to ponowny wzrost tempa subsydencji tektonicznej (~17 m/mln lat), który kontynuuje się aż do środkowego permu kiedy to ponownie następuje zmiana reżimu tektonicznego z ekstensyjnego na kompresyjny. Utwory kambru, dewonu środkowego oraz dolnego jak również utwory karbonu i permu zostały całkowicie zerodowane tak jak i utwory triasu dolnego. Na utworach triasu środkowego, którego tempo depozycji osiągnęło ~11 m/mln lat, zalegają utwory czwartorzędu. Zmiany tempa depozycji i subsydencji w basenie sedymentacyjnym zostały przedstawione na figurze 86.

Modelowanie warunków pogrzebania

Dla profilu Bibiela PIG 1 wykonano jednowymiarowe modelowania i rekonstrukcję warunków pogrzebania (fig. 87). Miąższości erozyjnie usuniętych utworów kambru, dewonu środkowego, dewonu górnego, karbonu oraz permu oszacowano za Bułą (2000) i Żabą (1999) oraz na podstawie danych z CBDG. Utwory kambru (~600 m), syluru (~600 m), dewonu środkowego oraz górnego (~600 m), karbonu (~400 m), jak również permu (~500 m) zostały całkowicie zdarte a przyjęta, łączna zerodowana ich miąższość to ~2700 m.

Fig. 86. Tempo depozycji osadów

Rate of deposition

Wyniki badań tektonicznych, analiza tempa depozycji i warunków pogrzebania

Model pogrążania osadów dla otworu Bibiela PIG 1 rozpoczyna się w ediakarze. Od początku tego okresu widoczny jest wzrost tempa pogrążania osadów. Najbardziej gwałtowna faza pogrzebania miała miejsce na przełomie ordowiku i syluru, ale uległa zahamowaniu w sylurze środkowym. W tym okresie miąższość pokrywy osadowej wyniosła ~2072 m.

Na przełomie syluru górnego i dewonu obszar zostaje ponownie wyniesiony i usunięte zostają osady syluru (~600 m). Okres dewonu to ponowny wzrost tempa depozycji oraz pogrążania osadów, które trwa aż do dolnego permu, kiedy to następuje zmiana reżimu tektonicznego z ekstensyjnego na kompresyjny i wypiętrzenia osadów. W tym okresie miąższość pokrywy osadowej wyniosła ~3020 m.

Okres triasu to erozja osadów dewonu środkowego i górnego, karbonu oraz permu o łącznej miąższości ~1500 m. Od tego momentu rozpoczyna się też okres tektonicznej staganacji obszaru i brak gwałtownych zdarzeń tektonicznych (fig. 87).