WYNIKI BADAŃ GEOFIZYCZNYCH (GEOFIZYKI OTWOROWEJ I MAGNETOTELURYKI)

Marcin ŁOJEK

ZAKRES WYKONANYCH BADAŃ GEOFIZYKI OTWOROWEJ

Opracowanie danych geofizyki otworowej wykonano na podstawie opisu Bielniaka i Fryziaka (2012) oraz zbiorów zdigitalizowanych danych pomiarowych znajdujących się w zasobach Centralnej Bazy Danych Geologicznych (CBDG). W otworze Czerwony Potok PIG 1 pomiary geofizyki otworowej wykonano w 3 etapach pomiarowych (tab. 9). Pomiary geofizyki otworowej zostały wykonane aparaturą geofizyczną CAG-2-ZG z krokiem próbkowania 0,1 m przez przedsiębiorstwo Geofizyka Kraków Sp. z o.o., Grupa 1A/Z. Średnica nominalna otworu odcinka pomiarowego wynosiła 132 mm. Wysokość stołu wynosiła 0,8 m. Płuczka wykorzystywana w trakcie wiercenia była bentonitowo-polimerowa o gęstości 1,2 g/cm³, jej oporność elektryczna wynosiła 3,2 Ωm w temperaturze 10°C. Etap I wykonano dnia 14.12.2011 r. obejmował odcinek 0–200 m, czyli cały odsłonięty profil granitoidów. Pomiary wykonano po zarurowaniu i zacementowaniu stropowej części otworu do głębokości 4 m z wewnętrzną średnicą rury wynoszącą 168 mm. Etap II wykonano dnia 16.01.2012 r. obejmował odcinek 6–200 m pomiar temperatur termometrem elektrycznym w warunkach ustalonej równowagi termicznej. Etap III wykonano dnia 22.02.2012 r. obejmował odcinek 6–104 m (brak możliwości zejścia sondy do spągu otworu) pomiar temperatur termometrem elektrycznym w warunkach równowagi termicznej.

Marcin ŁOJEK

OCENA JAKOŚCI DANYCH GEOFIZYKI OTWOROWEJ

Pomiary na etapie I zostały wykonane skalibrowaną aparaturą pomiarową, dzięki czemu mogą być wykorzystane do analiz jakościowych i ilościowych. Jakość techniczna pomiarów była zadowalająca, jedynie pomiary w odcinkach silnego skawernowania na głębokości 4–13 m i 81– 108 m (fig. 11), mają obniżoną wiarygodność, co do otrzymanych wartości. Podobnie pomiary na odcinku głębokości 0–4 m mają wartości odbiegające od pozostałych na skutek wykonania badań w zarurowanym i zacementowanym odcinku. Pomiar wykonano w otworze wypełnionym płuczką niezmineralizowaną, co ze względu na rodzaj płuczki pozwala łatwo zaobserwować wpływ strefy filtracji na pomiar POst–3. Ze względu na brak pomiaru temperatury w ustalonej równowadze cieplnej nie było możliwe podanie parametrów geotermicznych otworu na tym etapie badań.

Marcin ŁOJEK

INTERPRETACJA PROFILOWAŃ GEOFIZYKI OTWOROWEJ

Szczegółowa analiza wykonanych pomiarów radiometrycznych, elektrometrycznych i akustycznych umożliwia określenie składu litologicznego przewierconych w otworze utworów skalnych, są to skały granitowe, miejscami przeobrażone. W interwale 84–106 m występuje zmiana litologii powstała na skutek silnego zaangażowania tektonicznego tej strefy, występowania strefy melanżu tektonicznego i kataklazytu poddanego metasomatozie. Objawia

Tabela 9

Wykaz badań geofizyki otworowej wykonanych w otworze Czerwony Potok PIG 1

Data wykonania badania	Nazwa wykonanego pomiaru (skrót), typ sondy	Interwał głębokościowy badań [m]	Rzeczywista głębokość badań [m]	
Measurement date	Measurement name (acronym), log type	Depth interval	True measurement depth	
	PG, KRG	4–200	2,06–199,96	
	sPG, UBR–1	4–200	3,56–203,06	
	sPGbezU, UBR–1	4-200	3,56–203,06	
	POTA, UBR–1	4–200	3,56–203,06	
	THOR, UBR–1	4–200	4,06–200,06	
	URAN, UBR–1	4–200	3,56–203,06	
	FCNL, KRG	4–200	4,06–201,96	
	NCNL, KRG	4–200	4,26–202,16	
	NPHI, KRG	4–200	4,16–202,56	
	dRoB, SWDS	4–200	4,06–203,86	
	RHOB, SWDS	4–200	4,06–203,86	
	PGG, SWDS	4–200	brak dostępnych danych	
- - 14.12.2011	PK, DOT–33	25-200	0–200	
	CALX, SKP	4–200	4,1–202,5	
	CALY, SKP	4–200	4,1–202,5	
	BS, SKP	4–200	0–200	
	BVWSWI, SKP	4–200	4,1–202,5	
	PTn, TEG	4–200	4,0–199,9	
	DT, SKANG–CT–140	4–200	35–200	
	T1, SKANG–CT–140	4–200	35–200	
	T2, SKANG-CT-140	4–200	35–200	
	T3, SKANG–CT–140	4–200	35–200	
	T4, SKANG–CT–140	4–200	35–200	
	PS, ABKT	4–200	22–174	
	MRES, ABKT	4–200	4,0–201,8	
	POst-3, ABKT	4–200	15–192	
	EL03, ABKT	4–200	15–182	
-	EL07, ABKT	4–200	15–182	
	EL14, ABKT	4–200	15–182	
	EL28, ABKT	4–200	15-182	
16.01.2012	PT, TEG–36	6–200	6–200	
22.02.2012	PT, TEG–36	5-104	5-104	

List of well logs performed in the Czerwony Potok PIG 1 borehole

PG – profilowanie gamma, sPG – spektrometryczne profilowanie gamma, sPGbezU – profilowanie spektrometryczne naturalnego promieniowania gamma bez uranu, POTA – profilowanie zawartości potasu, THOR – profilowanie zawartości toru, URAN – profilowanie zawartości uranu, FCNL – profilowanie neutron–neutron długie, NCNL – profilowanie neutron–neutron krótkie, NPHI – porowatość neutronowa, dRoB – poprawka gęstości, RHOB – gęstość objętościowa, PGG – profilowanie gamma–gamma, PK – profilowanie krzywizny, CALX – profilowanie średnicy X, CALY – profilowanie średnicy Y, BS – średnica nominalna otworu, BVWSWI – zawartość wody nieredukowalnej, PTn – profilowanie temperatury w stanie nieustalonym, DT – profilowanie akustyczne interwałowe, T1 – profilowanie akustyczne T1, T2 – profilowanie akustyczne T2, T3 – profilowanie akustyczne T3, T4 – profilowanie akustyczne T4, PS – potencjały naturalne, MRES – profilowanie oporności płuczki, POst–3 – profilowanie oporności sterowane wykonane laterologiem trójelektrodowym, EL03, EL14, EL07, EL28 – sondowania oporności gradientowe, PT – profilowanie temperaturowe

PG – gamma ray log, sPG – spectrometric gamma profiling, sPGbezU – spectrometric natural gamma without uranium profiling, POTA – potassium content profiling, THOR – thorium content profiling, URAN – uranium content profiling, FCNL – far thermal neutron detector counts, NCNL – near thermal neutron detector counts, NPHI – neutron porosity, dRoB – density correction, RHOB – density log, PGG – gamma–gamma density log, PK – deviation log, CALX – X caliper, CALY – Y caliper, BS – bit size, BVWSWI – irreducible water content, PTn – temperature log,unstable thermal equilibrium, DT – interval transit time log, T1 – sonic travel time log (T1), T2 – sonic travel time log (T2), T3 – sonic travel time log (T3), T4 – sonic travel time log (T4), PS – spontaneous potential log, MRES – mud resistivity log, POst–3 – 3 electrode guard log (laterolog), EL03, EL14, EL07, EL28 – lateral electrical logs, PT – temperature log

CALY – profilowanie średnicy otworu, BS – średnica świdra (szrafura kratki – strefa wymycia/skawernowania), GR – profilowanie gamma, DT – profilowanie akustyczne interwałowe, NPHI – porowatość neutronowa, RHOB – gęstość objętościowa, LL3 – profilowanie oporności sterowane wykonane laterologiem trójelektrodowym, EL03 – sondowanie oporności gradientowe, EL28 – sondowanie oporności gradientowe (szrafura kratki – strefa spadku oporności na skutek zawodnienia wodą złożową, szrafura kropki – strefa wysokiej oporności), POTA – profilowanie zawartości potasu, THOR – profilowanie zawartości toru, URAN – profilowanie zawartości uranu

Summary of selected standardized well log in the Czerwony Potok PIG 1 borehole

CALY - caliper, BS - bit size (grate pattern - washout/caverning zone), GR - gamma ray log, DT - interval transit time log (sonic), NPHI - neutron porosity, RHOB - density log, LL3 - 3 electrode guard log (laterolog), EL03 - lateral electrical log, EL28 - lateral electrical log (grate pattern - zone of resistance decrease due to formation water, dot pattern - zone of high resistance), POTA - potassium content profiling, THOR - thorium content profiling, URAN - uranium content profiling

się ona na krzywych średnicomierza. Zmiana ta jest ponadto widoczna w postaci zwiększonej porowatości (z 0–2% do 19–24%) i obniżonej gęstości (z 2,45–2,5 g/cm³ do 2,2–2,4 g/cm³). Profilowanie średnicy wykazało średnie zwiększenie średnicy nominalnej (z 132 mm) o 9% do 143,6 mm (fig. 11). W strefie skawernowania otworu zaraz pod butem od 4 do 13 m głębokości średnia średnica wyniosła 173,1 mm z maksymalną wartością 196,7 mm. Po-

Marcin ŁOJEK

szerzenie średnicy otworu częściowo było wywołane występującą do głębokości 4,5 m zwietrzeliną granitoidów, a częściowo metodą prowadzenia wiercenia – gryzerem do głębokości 8 m. W drugiej strefie skawernowania 81– 108 m, średnia średnica wynosi 175,2 mm z maksymalną wartością 208 mm (fig. 11). Analiza krzywych oporności wykazuje zawodnienie strefy o podwyższonej porowatości (fig. 11).

PROFILOWANIE KRZYWIZNY

Pomiary inklinometrem zestawiono w tabeli 10. Obliczenie krzywizny otworu w interwale 0–200 m wykonano przy pomocy systemu interpretacyjnego GEOWIN 1.5 (programem INKLINOMETR 1.2.0.38) metodą promieni krzywizn (Bielniak, Fryziak, 2012). Odchylenie otworu na głębokości 200 m wynosi 2,2 m, azymut odchylenia wynosi 264,73°.

Tabela 10

Głębokość [m] Depth	Kąt [°] Angle	Azymut [°] Azimuth	Głębokość rzeczywista [m] True depth	X (0°) [m] X (0°)	Y (90°) [m] Y (90°)	X (264,73°) [m] X (264.73°)	Y (354,73°) [m] Y (354.73°)
0	0,0	0	0,00	0,00	0,00	0,00	0,00
25	0,2	260	25,00	-0,01	-0,04	0,04	0,00
50	0,2	265	50,00	-0,02	-0,13	0,13	-0,01
75	0,5	260	75,00	-0,04	-0,28	0,28	-0,01
100	0,7	265	100,00	-0,07	-0,54	0,54	-0,02
125	0,8	270	125,00	-0,09	-0,87	0,87	-0,01
150	1,0	260	149,99	-0,12	-1,26	1,26	-0,01
175	1,1	265	174,99	-0,18	-1,71	1,72	-0,02
200	1,1	270	199,98	-0,20	-2,19	2,20	0,00

Wyniki obliczenia krzywizny otworu Czerwony Potok PIG 1 The results of the calculation of the curvature in the Czerwony Potok PIG 1 borehole

Marcin ŁOJEK, Marta WRÓBLEWSKA

PROFILOWANIE TEMPERATURY

Pomiar temperatury w otworze wiertniczym służy zwykle do kontroli warunków otworowych (ruch mediów złożowych, ucieczki płuczki i inne) oraz wprowadzania poprawek na wpływ temperatury pozostałych pomiarów geofizycznych. Profilowanie temperatury w warunkach ustalonej równowagi cieplnej służy między innymi do określenia gradientu geotermicznego. Pomiar temperatury w otworze Czerwony Potok PIG 1 wykonano dwukrotnie w warunkach ustalonych. Pierwszy pomiar został wykonany w dniu 16.01.2012 r. w interwale 0–200 m, ze względu na wpływ warunków otworowych (brak płynu w otworze) w interwale 0–6 m nie wykonano pomiaru, a ze względu na małą głębokość otworu (krótki interwał pomiarowy) wyliczone parametry geotermiczne mogą być obarczone błędem spowodowanym wpływem warunków powierzchniowych. W interwale 50–150 m gradient geotermiczny wyniósł 3,9°C/100 m, a stopień geotermiczny 25,64 m/°C. W interwale 100–200 m gradient geotermiczny wyniósł 3,82°C/100 m, a stopień geotermiczny 26,17m/°C. Średnie wartości gradientu temperatury w Polsce zmieniają się w przedziale od 1,25 do 3,80°C na 100 m (Plewa, 1994), zatem wyniki uzyskane w otworze Czerwony Potok PIG 1 mieszczą się w górnych granicach tego przedziału, wskazując na korzystne warunki geotermiczne (tab. 11). Kolejny pomiar został wykonany w dniu 22.02.2012 r. jedynie w interwale 0–104 m, ze względu na wpływ warunków otworowych (brak płynu w otworze). Temperaturę początkową określono na głębokości 5 m T_P = 6,6°C, a temperaturę końcową na głębokości 104 m T_K = 8,9°C. W interwale 50–100 m gradient geotermiczny wyniósł 2,4°C/100 m, a stopień geotermiczny 41,6 m/°C, temperatura wyniosła między 7,5–8,7°C. W interwale 5 – 104 m gradient geotermiczny wyniósł 2,3°C/100 m, a stopień geotermiczny 43,5m/°C, temperatura wyniosła między 6,6–8,9°C. Tak niski gradient geotermiczny, otrzymany z pomiarów temperatury wykonanych w lutym 2012 r., jest związany prawdopodobnie z cyrkulacją wód podziemnych w pomierzonym przedziale głębokości, w tym w obrębie strefy tektonicznej występującej na głębokości 82,4–106,6 m p.p.t.

Stąd gradient geotermiczny i stopień geotermiczny, otrzymane z pomiarów temperatury wykonanych w styczniu 2012 r., są prawdopodobnie także reprezentatywne dla głębszych partii plutonu karkonoskiego.

Tabela 11

Parametry geotermiczne (stopień) i gradient otrzymane z krzywych pomiarów temperatury wykonanych w otworze Czerwony Potok PIG 1 (styczeń 2012)

Geothermal parameters obtained from temperature logs measured in the Czerwony Potok PIG 1 borehole (January 2012)

Interwał głebokości [m]	Gradient geotermiczny [°C/100 m]	Stopień geotermiczny [m/°C]		
Depth interval	Geothermal gradient	Geothermal degree		
50,0-150,0	3,90	25,64		
100,0–200,0	3,82	26,17		

Adam WÓJCICKI

BADANIA MAGNETOTELLURYCZNE

Po zakończeniu wiercenia i badań geofizycznych bezpośrednio w otworze Czerwony Potok PIG 1, w strefie oddalonej nie więcej niż 300 m od otworu wykonano badania magnetotelluryczne metodą sondowań MT/AMT (4 sondowania) (Wójcicki, 2013; Wójcicki i in., 2013). Sondowania wykonano w pobliżu otworu, a ich lokalizacja wynikła z warunków terenowych i konieczności oddalenia od najpoważniejszego źródła zakłóceń elektromagnetycznych – linii kolejowej zelektryfikowanej w Szklarskiej Porębie.

Najistotniejszy wniosek z badań, dla których osiągnięto głębokość penetracji do 8–10 km (kosztem rozdzielczości), to zaznaczające się na wszystkich krzywych obniżenie oporności na głębokości ok. 1000 metrów p.p.t. (na fig. 12 oznaczenie ~ 10^3 m p.p.t.). Strefę tę można prawdopodobnie powiązać z tzw. Uskokiem Czerwonego Potoku (Żaba, Kuzak, 1988). Ten kompleks o względnie obniżonej oporności (~ 10^3 m p.p.t.) jest związany najprawdopodobniej z występowaniem strefy spękań wypełnionej wodami mineralnymi, chociaż może być związany ze strefami mineralizacji siarczkowej lub granitów drobnoziarnistych.

Druga strefa, płytsza, występuje na głębokości ok. 100 m p.p.t. i odpowiada strefie uskokowej stwierdzonej w otworze Czerwony Potok PIG 1 (Habryn, 2012). Wykonanie sondowań w jednej linii pozwoliło na uzyskanie danych na temat różnicy głębokości występowania stref nieciągłości, co pozwoliło na oszacowanie przybliżonych upadów w każdej ze stref (fig. 12).

Ze względu na skalę (otwór o głęb. 201 m, profile pokazane są na figurze 12 w skali logarytmicznej – do ok. 10 000 m) dokładne powiązanie wyników z badań MT/ AMT i otworu nie było możliwe. Niewątpliwie wyniki magnetotelluryki mają duże znaczenie poznawcze, pomimo dużego stopnia uogólnienia (fig. 12).

Należy dodać, że badania sondażowe wykonane w strefie otworu Czerwony Potok PIG 1 miały za cel także ocenę jednorodności plutonu do głębokości 10 km. Stwierdzono, że jednorodność taka (przynajmniej geofizyczna) nie występuje, poza strefami obniżonej oporności stwierdzonymi na głębokościach ok. 100 m i ok. 1000 m, co w przypadku strefy płytszej koreluje się z wynikami uzyskanymi z otworu Czerwony Potok PIG 1. Wyniki te wskazują na możliwość silnego zróżnicowania termicznego plutonu Karkonoszy, a tym samym na występowanie lokalnych anomalii termicznych na jego całym obszarze.

Fig. 12. Wyniki inwersji 1D dla sondowań MT/AMT wykonanych w rejonie otworu Czerwony Potok PIG 1 Results of MT/AMT soundings carried out near the Czerwony Potok PIG 1 borehole