WYNIKI BADAŃ GEOFIZYCZNYCH

Andrzej GŁUSZYŃSKI, Sylwia KIJEWSKA

BADANIA SEJSMICZNE W OKOLICY OTWORU WIERTNICZEGO WILGA IG 1

Basen lubelski był jednym z głównych obszarów intensywnych poszukiwań węglowodorów w Polsce. Dlatego w przeciągu ostatnich czterech dekad w pobliżu otworu Wilga IG 1 wykonano kilkanaście profili sejsmiki 2D (Brauer i in., 1976; Górski i in., 1986; Jurek, 1994; Wilk, Zakrzyka, 1999; Wilk, 2010; CBDG, 2018), a w 2012 r. pomierzono także zdjęcie sejsmiczne Potycz-Wilga 3D (Nowak-Koszla, 2016, 2017). Do przedstawienia wgłębnej budowy geologicznej wybrano, wykonany w 1975 r. w bezpośrednim sąsiedztwie otworu Wilga IG 1 przez Przedsiębiorstwo Badań Geofizycznych, regionalny profil sejsmiczny 1-4-75W (Brauer i in., 1976) oraz profil sejsmiczny pochodzący ze zdjęcia Potycz-Wilga 3D, pomierzony przez Geofizykę Toruń w 2016 r. i udostępniony przez zleceniodawcę – firmę Orlen Upstream (fig. 55, 56).

Interpretacja profilu sejsmicznego 1-4-75 wg Żelichowskiego (1979) przedstawia widoczne na nim struktury jako strome dyslokacje, głównie o charakterze uskoków normalnych. W świetle najnowszych interpretacji danych sejsmicznych (Krzywiec i in., 2017a, b), basen lubelski, określany poprzednio jako rów lubelski (Żelichowski, 1972), ma charakter pasma fałdowo-nasuwczego, powstałego w trakcie orogenezy waryscyjskiej (Aleksandrowski, Mazur, 2017). Przejawem kompresyjnych deformacji waryscyjskich jest z pewnością strefa nasunięcia Kocka (fig. 55, 56) (Tomaszczyk, Jarosiński, 2017), która oddziela północno-wschodnią cześć basenu lubelskiego, gdzie platforma wschodnioeuropejska jest podniesiona, od części południowo-zachodniej, gdzie występuje na znacznych głębokościach (Krzywiec i in., 2017a).

Utwory podpermskie (dewon i karbon), nawiercone w otworze Wilga IG 1, znajdują się w południowo-zachodnim, stropowym skrzydle nasunięcia Kocka i zapadają łagodnie w kierunku południowym/południowo-południowo--zachodnim. Nasunięcie Kocka, tak jak w jego północnowschodniej części, jest zakorzenione najprawdopodobniej

Fig. 55. Interpretacja fragmentu profilu sejsmicznego 1-4-75W

Interpretation of part of 2D seismic section 1-4-75W

Fig. 56. Interpretacja profilu sejsmicznego ze zdjęcia sejsmicznego Potycz-Wilga 3D

Interpretowane granice sejsmiczne: K1 – strop piaskowców kredy dolnej, Jo_str – strop wapieni oksfordzkich, J2_sp – spąg jury środkowej / strop utworów piaskowcowych dolnej jury, Tp2 – strop pstrego piaskowca, Ca3 – strop dolomitu płytowego, Na1 – strop najstarszych soli cechsztyńskich, A1d – strop anhydrytu dolnego, Zsp – spąg utworów cechsztynu, CK i CI – strop utworów piaskowcowych karbonu, odpowiadających kompleksom I i K wg Kaczyńskiego (1974), Dfr – strop węglanowych facji franu, D1 – strop erozyjnych ilasto-mułowcowo-piaszczystych utworów dewonu dolnego. Źródło danych sejsmicznych: ORLEN Upstream Sp. z o.o. Interpretacja: Geofizyka Toruń SA. Autor opracowania: E. Nowak-Koszla. Interpretację autorów rozdziału zaznaczono liniami przerywanymi

Interpretation of 2D seismic section extacted from Potycz-Wilga 3D seismic

Interpreted seismic horizons: K1 – top of Lower Cretaceous sandstones, Jo_str – top of Oxfordian carbonates, J2_sp – bottom of Middle Jurassic/top of sandstone deposits of Lower Jurassic, Tp2 – top of Buntsandstein, Ca3 – top of Platy Dolomite, Na1 – top of Werra Salt, A1d – top of Lower Anhydrite, Zsp – bottom of Zechstein, CK i CI – top of Carboniferous sandy deposits, equal to I and K complex acc. to Kaczyński (1984), Dfr – top of Frasnian carbonate facies, D1 – top of clayey-muddy-sandy deposits of Lower Devonian. Source: ORLEN Upstream Sp. z o.o. Interpretation: Geofizyka Toruń SA. Preparation: E. Nowak-Koszla. Dashed lines marks author's of chapter interpretations

w sylurskich osadach ilastych i rozcina utwory dewonu i karbonu, kontynuując się do powierzchni podpermskiej. W pozostałej, lepiej rozpoznanej części basenu lubelskiego, nasunięcie Kocka występuje ponad uskokiem Kocka – starszą od nasunięcia Kocka stromą dyslokacją, rozcinającą utwory starszego paleozoiku i jego podłoża (Głuszyński i in., 2015; Krzywiec i in., 2017a; Tomaszczyk, Jarosiński, 2017). Jakość zapisu sejsmicznego na analizowanych profilach nie pozwala jednak na zinterpretowanie obecności uskoku Kocka, prawdopodobnie występującego poniżej nasunięcia Kocka.

Kompresyjne deformacje waryscyjskie zaznaczają się także w zapisie sejsmicznym ok. 10 km na południowy zachód od otworu Wilga IG 1, ze względu na słabą jakość zapisu, są trudne do szczegółowego rozpoznania (fig. 55). Najprawdopodobniej są one efektem deformacji cienkonaskórkowych – odkłuć zakorzenionych w utworach dewonu środkowego lub dolnego (Antonowicz i in., 2003; Tomaszczyk, 2015). Struktury te są przedłużeniem ciągu antyklin Abramowa–Ciecierzyna–Mełgwi (Tomaszczyk, 2015), przebiegających na kierunku północny zachód – południowy wschód w środkowej części basenu lubelskiego.

Utwory permsko-mezozoicznego piętra strukturalnego zapadają łagodnie ku południowemu zachodowi i charakteryzują się brakiem większych zaburzeń tektonicznych. Nowe dane sejsmiczne 3D pozwoliły natomiast na rozpoznanie uskoków normalnych, rozcinających utwory kredy górnej w pobliżu otworu Wilga IG 1 (fig. 56). Możliwe było również uszczegółowienie budowy cechsztynu i rozpoznanie zasięgu tzw. wałów anhydrytowych, zbudowanych z utworów anhydrytu górnego (A1g). W świetle nowych danych otwór wiertniczy Wilga IG 1 jest zlokalizowany na skłonie takiego wału (fig. 56).

Serdeczne podziękowania składamy firmie Orlen Upstream Sp z o.o. za udostępnienie profilu sejsmicznego ze zdjęcia sejsmicznego Potycz-Wilga 3D.

Teresa ADAMCZAK-BIAŁY

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

CEL BADAŃ

Przedstawiony opis pomiarów w zakresie geofizyki otworowej i ich wyników wykonano na podstawie dokumentacji wynikowej otworu badawczego Wilga IG 1 (Niemczycka, Żelichowski, 1975) oraz zbiorów scyfrowanych danych pomiarowych, znajdujących się w zasobach CBDG (2018). Badania geofizyczne w otworze Wilga IG 1 przeprowadzono w okresie od 17.03.1974 r. do 5.06.1975 r. Wykonawcą był I Zespół Geofizyki Wiertniczej z bazy w Lublinie i III Zespół Geofizyki Wiertniczej z bazy w Poznaniu Przedsiębiorstwa Poszukiwań Geofizycznych. Pomiary akustyczne zrealizowało Przedsiębiorstwo Geofizyki Górnictwa Naftowego z Torunia. Celem badań geofizycznych wykonanych w otworze wiertniczym Wilga IG 1 było:

- określenie litologii i stratygrafii przewierconych utworów,
- wydzielenie poziomów o właściwościach kolektorskich ocena ich parametrów fizycznych i zbiornikowych,
- wykonanie korelacji z pobliskimi otworami,
- wydzielenie warstw węgla kamiennego,
- wytypowanie horyzontów do opróbowania,
- określenie stanu technicznego odwiertu.

ZAKRES WYKONANYCH BADAŃ GEOFIZYCZNYCH

Pomiary geofizyczne zrealizowano w interwale głęb. 28,0–3550,0 m w postaci siedmiu odcinków pomiarowych. Badania przeprowadzono z użyciem aparatury analogowej produkcji radzieckiej typu AKSŁ7. Pomiary radiometryczne wykonano sondami typu: SP-62, DRST, DRST-2, SGO-4, LSE-3 lub LSE-4, nieposiadającymi standaryzacji i kalibracji. Dla pomiarów radiometrycznych wykonywano pomiar kontrolny w interwale kilkudziesięciu metrów, zazwyczaj w najgłębszej części badanego odcinka otworu. Pomiary akustyczne przeprowadzono sondami USBA 21/T lub USBA-21/II.

Podstawowy zestaw pomiarowy:

- profilowanie średnicy otworu PŚr,
- profilowanie krzywizny otworu PK,
- profilowanie gamma PG,

- profilowanie neutron-gamma PNG,
- profilowanie potencjałów naturalnych PS, grad PS,
- profilowanie oporności gradientowe POg (EL),
- profilowanie oporności potencjałowe POp (EN),
- profilowanie akustyczne PA,
- pomiar temperatury termometrem maksymalnym T_{max} .

Zestaw uzupełniający:

- sondowanie oporności SOg (EL02, EL03, EL14, EL26),
- profilowanie neutron termiczne PNNt,
- profilowanie neutron nadtermiczne PNNnt,
- profilowanie gamma-gamma gęstościowe PGG,
- profilowanie oporności sterowane POst,
- mikroprofilowanie oporności sterowane mPOst.

Każdorazowo na całym odsłoniętym odcinku otworu wykonywano pomiary PŚr, POg i PS. W interwale głęb. 28,0–293,0 m ze względu na zły stan techniczny zrealizowano tylko pomiary PO i PS. W otworze Wilga IG 1 wykonano jedynie pomiar temperatury dna odwiertu termometrem maksymalnym. W dokumentacji wynikowej (Niemczycka, Żelichowski, 1975) znajduje się graficzne zestawienie uzyskanych wyników tego badania w wersji papierowej. W celu oceny stanu technicznego wiercenia zrealizowano profilowanie krzywizny oraz średnicy otworu. Stan zacementowania odwiertu badano za pomocą profilowania akustycznego. W tabeli 27 zaprezentowano interwały głębokościowe wykonanych profilowań geofizyki otworowej (wg rzeczywistej dostępności materiałów w formie papierowej w Narodowym Archiwum Geologicznym) wraz z datą ich wykonania oraz głębokością i średnicą otworu podczas realizacji pomiarów. Ograniczony asortyment badań geofizycznych wykonanych w otworze wiertniczym Wilga IG 1 oraz ich jakość zdecydowanie odbiegają od obecnie realizowanych zestawów pomiarów geofizyki wiertniczej i standardu ich jakości.

Tabela 27

	List of w	vell logs from the Wilga IG 1	borehole	
Data badań Date of measurement	Rodzaj pomiaru (skrót) Type of measurement (abbreviated)	Interwał głęb. pomiaru [m] Depth interval	Głębokość otworu podczas wykonywania pomiarów [m] Borehole depth during measurements	Średnica otworu [mm] Caliper
1	2	3	4	5
	PS (SP)	28,75-288,50		
	PO (EL09)	30,00-284,75		
17-18.03.1974	PO (EN10)	25,75-284,25	300,0	438,0
	PAc: A1	41,00-311,00		
	PAc: A2	42,00-302,00		
	PG	0,25-1157,50		
	PNG	3,75-1159,75		
	РК	250,00-1160,00	-	
	PSr	267,50-1154,50		308,0
11-12.04.1974	PS (SP)	303,50-1154,75	1168,0	
	PO (EL09)	282,50-1159,50		
	PO (EN10)	282,75-1159,75	-	
	PA: DT	301,25-1157,75	-	
	PA: T1	301,75-1157,75		
	PSr	276,25-1402,50		
	PS (SP)	302,25-1400,50	-	
	PO (EL09)	287,00-1405,50	-	
	РК	1100,00-1410,00		
	PG	1040,50-1405,50		
	PNG	1040,25-1405,75	-	
	PO (EL02)	1016,25-1407,25		
23-24.04.1974	PO (EL03)	1016,50-1406,75	1419,6	308,0
	PO (EL09)	1015,00-1406,00		
	PO (EL14)	1015,75-1406,50		
	PO (EL26)	1015,50-1405,75		
	PO (EN10)	1050,50-1404,75		
	PO (EL03)	1040,00-1406,00		
	POst	1040,00-1406,00		
	mPOst	1040,00-1406,00		
	PNG	1040,00-1407,00		
0 10 07 1074	PO (EL56)	1100,00-2225,00	1	200.0
8-10.07.1974	POs	1100,00-2130,00] –	308,0
	РК	1350,00-2250,00		

Wykaz badań geofizyki otworowej wykonanych w otworze Wilga IG 1

Tabela 27 cd.

1	2	3	4	5
	PSr	1357,00-2251,50		
	PG	1356,25-2257,50		
	PG	1457,25-1558,25		
	PNG	1356,25–2253,75		
	PNG	2000,25-2257,50		
	PNNnt	1458,50-1560,50		
cd.	PS (SP)	1356,25-2249,75		200.0
8-10.07.1974	PO (EL02)	1356,25-2258,75	_	308,0
	PO (EL03)	1356,50-2258,75		
	PO (EL09)	1356,25-2257,50		
	PO (EL14)	1356,25-2255,50		
	PO (EL26)	1356,25-2255,75		
	PO (EN10)	1356,50-2253,25	-	
	POst (LL3)	1356,25-2257,50		
	PO (EL09)	275,25-1370,25		
	PA: DT	289,25-2263,75	•	
12.07.1974	PAc: T1	42,50-311,00	2274,0	308,0
	PAc: A1	41,00–311,00	-	
	PAc: A2	42,00-302,00	•	
	PAc: T1	88,50-2273,50		
9.09.1974	PAc: A1	87,00–2276,00	2592,3	216,0
	PAc: A2	89,50-2276,00	-	
	РК	2200,00-2625,00		
	PSr	2260,25-2623,50		
	PSr x 3	2262,20-2624,50		
	PG	2200,75-2615,50		
	PG	2260,25-2615,50		
	PNG	2200,25-2616,75		
	PNNnt	2262,25-2615,50		
	PS (SP)	2262,25-2617,50		216,0
	grad PS	2262,50-2619,50		
17-21.09.1974	PO (EL02)	2251,00-2619,75	2625,0	
	PO (EL03)	2250,50-2619,50		
	PO (EL09)	2260,25-2619,50		
	PO (EL14)	2260,25-2619,50		
	PO (EL26)	2251,00-2619,75		
	PO (EN10)	2260,25-2619,50		
	POst (LL3)	2260,25-2620,50		
	mPOst	2262,50-2622,50		
	PA: DT	2242,25-2624,75		
	PA: T1	2243,25-2625,75		
7.11.1974	PA: DT	2265,00-2838,00	-	_
	РК	2550,00-2940,00		
	PSr	2570,25-2941,50		
	PSr	2263,50-2943,00		
22_26 11 1074	PG	2263,50-2315,00	20/3 0	216.0
22-20.11.17/4	PG	2570,25–2937,50	2343,0	210,0
	PG	2570,25-2938,25		
	PGG (GGDN)	2260,25–2937,75		
	PNG	2263,00-2320,00		

Tabela 27 cd.

1	2	3	4	5		
	PNG	2570.25-2939.75				
	PNNt	2229,00-2943,00				
	PNNnt	2263,00-2317,50				
	PNNnt	2570,25-2942,50				
	PS (SP)	2570,25-2939,50				
	grad PS	2263,50-2940,00				
	PO (EL02)	2262,50-2940,00				
cd.	PO (EL02)	2570,25–2939,75	2943,0	216,0		
22-20.11.1974	PO (EL03)	2570,25-2939,75				
	PO (EL09)	2570,25-2939,50				
	PO (EL14)	2570,25-2939,50				
	PO (EL26)	2570,25-2939,75				
	PO (EN10)	2570,25-2939,50				
	POst (LL3)	2570,25-2939,50				
	mPOst	2570,00-2941,00				
	РК	2700,00-3115,00				
	PSr	2263,50-2730,00				
	PSr	2730,25-3101,50				
	PSr	2730,25-3105,75				
	PG	2730,25-3111,50				
	PGG (GGDN)	2730,25-3114,75				
	PNG	2730,25-3114,75				
	PNNt	2730,25-3115,00				
	PNNnt	2730,25-3113,50		216,0		
	PS (SP)	2730,25-3109,50				
	grad PS	2263,50-2730,00				
	grad PS	2730,00-3110,00				
	PO (EL02)	2263,50-2730,00				
	PO (EL02)	2730,00-3110,00				
8-10.03.1975	PO (EN10)	2890,00-3110,00	3115,0			
	PO (EL02)	2885,25-3109,50				
	PO (EL03)	2885,25-3109,75				
	PO (EL09)	2885,25-3108,50				
	PO (EL14)	2885,25-3108,50				
	PO (EL26)	2884,25-3109,75				
	PO (EN10)	2885,25-3108,50				
	POst (LL3)	2730,00-3111,00				
	POst (LL3)	2885,25-3110,50				
	mPOst	2730,00-3111,00				
	PA: DT	2629,25-3111,25				
	PA: T1	2628,25-3110,25				
	PA: T2	2628,75-3110,75				
	PA: A1	2627,50-3110,00				
	PA: A2	2626,50-3111,00				
	PSr	3083,25-3151,75				
2.04.1975	PG	3080,25-3150,75	3154.0	141.0		
,	PNG	3080,25-3152,75		, •		
	POst (LL3)	3094,75-3149,75				

1	2	3	4	5			
1	2	3	4	5			
	РК	3050,00-3550,00					
	PSr	3097,25-3544,50					
	PG	3087,25-3301,50					
	PG	3098,25-3544,75					
	PGG (GGDN)	3093,25-3301,75					
	PNG	3098,25-3544,75					
	PNNt	3090,00-3150,00					
	PNNnt	3090,25-3155,50					
	PS (SP)	3098,25-3548,75					
	grad PS	3097,50-3550,50					
2 5 0 6 10 7 5	PO (EL02)	3091,25-3300,50	2552.0				
3-5.06.1975	PO (EL03)	3093,25-3300,50	3552,0	141,0			
	PO (EL09)	3096,25-3549,50					
	PO (EL14)	3096,25-3299,50					
	PO (EN10)	3096,25-3549,50					
	POst (LL3)	3097,25-3298,50					
	PA: DT	3098,25-3499,50					
	PA: T1	3098,25-3499,50					
	PA: T2	3098,25-3499,75					
	PAc: A1	2008,00-3100,00	1				
	PAc: T1	2008,00-3098,00					
	T _{max}	20,00-3550,00					

Tabela 27 cd.

PK – profilowanie krzywizny otworu; PŚr – profilowanie średnicy; PG – profilowanie naturalnej promieniotwórczości gamma; PGG – profilowanie gamma–gamma gęstościowe; PNG – profilowanie neutron–gamma; PNNt – profilowanie neutron neutron termiczny; PNNt – profilowanie neutron naturalnych potencjałów; PO – profilowanie oporności (EL – gradientowe; EN – potencjałowe); POs – profilowanie oporności symetryczne; POst – sterowane profilowanie oporności; PA – profilowanie akustyczne (DT – czas interwałowy; T1, T2 – czasy dojścia fali P do nadajników 1 i 2; A1, A2 – amplituda); PAc – profilowanie cementomierzem akustycznym; T_{max} – pomiar temperatury termometrem maksymalnym. Pogrubiono czeionkę w przypadku profilowań dostępnych w formie cyfrowej

PK – deviation log; PŚr – caliper; PG – gamma ray log; PGG – density log; PNG – neutron–gamma ray log; PNNt – thermal neutron log; PNNt – epithermal neutron log; PS – spontaneous potential log; PO – conventional electrical log (EL – lateral; EN – normal); POs – symmetrical electrical log; POs – laterolog; PA – sonic log (DT – delta T; T1, T2 – P wave travel time at detector 1 and 2; A1, A2 – amplitude); PAc – cement bond log; T_{max} – temperature measurement by a maximum thermometer. The font has been bolded in the case of digitalized curves

DIGITALIZACJA I NORMALIZACJA PROFILOWAŃ GEOFIZYCZNYCH

Wyniki źródłowych danych pomiarowych zarejestrowano w formie analogowej w podstawowej skali głębokościowej 1:500 oraz 1:200 i 1:50. Część badań, obejmujących głównie pomiary radiometryczne, akustyczne oraz wybrane elektrometryczne, została w późniejszych latach zdigitalizowana. W ramach prac interpretacyjnych, wykonanych w PIG–PIB w latach 90. XX w., związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne, tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowanie neutron-gamma (PNG), unormowano oraz połączono w obrębie profilu całego otworu wiertniczego Wilga IG 1. Zastosowana metodyka normowania, standaryzacji profilowań radiometrycznych została opisana w pracach Szewczyka (1998, 2000). Wyniki zdigitalizowanych danych pomiarowych w formacie LAS (Log ASCII Standard) znajdują się w CBDG, zarówno źródłowe nieprzetworzone dane pomiarowe uzyskane w trakcie badań odcinkowych, jak i dane unormowane, i połączone dla całego profilu badanego otworu (*composite logs*). Numer identyfikacyjny otworu Wilga IG 1 w CBDG to 3433. Graficzne zestawienie scyfrowanych pomiarów geofizycznych zamieszczono na figurze 57. Zaprezentowano na niej również zgeneralizowaną stratygrafię wraz z wynikami unormowanych i połączonych w całym profilu wartości profilowania naturalnego promieniowania gamma, profilowania neutron-gamma oraz wybranych pomiarów elektrometrycznych. Zamieszczono również rezultaty profilowania średnicy otworu ze wskazaniem za pomocą strzałek głębokości łączenia poszczególnych odcinków pomiarowych (fig. 58).

Fig. 57. Schematyczne zestawienie glębokościowe scyfrowanych badań geofizycznych wykonanych w otworze Wilga IG 1

Typy profilowań geofizycznych: CALI – profilowanie średnicy otworu; GR – profilowanie naturalnej promieniotwórczości gamma; NEGR – profilowanie neutron-gamma; GGDN – profilowanie gamma-gamma gęstościowe; NECN – profilowanie neutron nadtermiczne; SP – profilowanie potencjałów naturalnych; EL – gradientowe profilowanie oporności (EL 02; EL 03; EL 09; EL 14; EL 26); EN 10 – potencjałowe profilowanie oporności; TL – czas interwałowy T1; T2 – czas interwałowy T2; DT – profilowanie akustyczne czasu interwałowego

Schematic depth presentation of digitalized well logging measurements performed in the Wilga IG 1 borehole

Well logging types: CALI – caliper; GR – gamma ray log; NEGR – neutron-gamma log; GGDN – density log; NECN – epithermal neutron log; SP – spontaneous potential log; EL – lateral conventional electrical log (EL 02; EL 03; EL 09; EL 14; EL 26); EN 10 – normal conventional electrical log; LL3 – laterolog; T1 – interval time T1; T2 – interval time T2; DT – interval time

 \rightarrow

Fig. 58. Prezentacja profilowania średnicy (CALI_C) (strzałkami zaznaczono miejsca połączeń odcinków pomiarowych), unormowanego profilowania gamma (GR_S), profilowania neutron-gamma (NEGR_C) oraz profilowań oporności o krótkim (EN10_C) i długim (EL09_C) zasięgu radialnym

Display of caliper log (CALI_C) (arrows indicate connection points between individual log runs), normalized natural gamma ray log (GR_S), neutron-gamma ray log (NEGR_C) and conventional gradient resistivity logs shallow (EN10_C) and deep (EL09_C)

OPRACOWANIE WYNIKÓW BADAŃ GEOFIZYKI WIERTNICZEJ

W trakcie wykonywania wiercenia oraz po jego zakończeniu wykonawcy pomiarów geofizycznych z Przedsiębiorstwa Poszukiwań Geofizycznych przeprowadzili prace interpretacyjne uzyskanych wyników badań. Interpretacja jakościowa i ilościowa danych geofizycznych pozwoliła zrealizować cele postawione przed badaniami geofizycznymi w otworze Wilga IG 1 i umożliwiła tym samym dokładniejsze poznanie przewierconych utworów. Rezultaty tych interpretacji są dostępne w dokumentacji wynikowej otworu (Niemczycka, Żelichowski, 1975). Prace interpretacyjne profilowań geofizyki wiertniczej wykonano również w latach 2009–2010 w PIG–PIB na potrzeby tematu "Rozpoznanie formacji i struktur do bezpiecznego geologicznego składowania CO2 wraz z ich programem monitorowania". Ich celem była ocena zdolności formacji wodonośnych triasu i jury do zatłaczania CO₂. W celu zrealizowania tego zadania wydzielono formacje wodonośne oraz formacje, które stanowią dla nich uszczelnienie i określono ich właściwości petrofizyczne (Wójcicki i in., 2013).

Na figurze 59 przedstawiono rezultaty ilościowej interpretacji profilowań geofizyki wiertniczej z otworu wiertniczego Wilga IG 1 w interwale głęb. 1100,0-3000,0 m. Zaprezentowano obliczony profil porowatości całkowitej, porowatości efektywnej, średniej porowatości warstwowej oraz profil zailenia. Ważną informacją wykorzystaną podczas kalibracji danych karotażowych oraz podczas oceny poprawności uzyskiwanych wyników interpretacji profilowań geofizyki wiertniczej stanowiły wyniki analiz laboratoryjnych rdzeni wiertniczych. Dla otworu Wilga IG 1 były to rezultaty pomiaru porowatości efektywnej i przepuszczalności (Sobień, ten tom). Badania geofizyczne przeprowadzone w otworze umożliwiły wydzielenie warstw wodonośnych i poziomów izolacyjnych (nieprzepuszczalnych). Do stwierdzenia warstwy o charakterze izolatora zastosowano łącznie kryterium litologiczne i petrofizyczne. Wysokimi wartościami porowatości wyróżnia się zbudowany z wapieni i margli kompleks jury górnej z głęb. 1090,0-

1470,0 m (fig. 59). Obliczone dla niego porowatości całkowite osiągają wartości do 39%, a porowatości efektywne do 33%. Utwory te charakteryzują się jednocześnie przepuszczalnością rzędu 0,01 mD. Brak w nich warstw wodonośnych. W obrębie jury środkowej (głęb. 1470,0–1520,5 m) warstwa wodonośna zaznacza się na głęb. 1516,0-1520,0 m. Określone dla niej wartości przepuszczalności są rzędu tysięcy mD. W piaskowcowo-ilastym kompleksie jury dolnej (głęb. 1520,5-1591,0 m) brak miąższych warstw wodonośnych. Obecne w nim piaskowce charakteryzują się porowatościami całkowitymi od kilku do 20% i efektywnymi ok. 18%. Obliczone dla nich przepuszczalności wynoszą od kilku do 150 mD. Trias w otworze Wilga IG 1 (głęb. 1591,0-?2034,5 m) jest zbudowany głównie z iłowców, mułowców, piaskowców i wapieni. W jego obrębie obserwuje się obecność warstw wodonośnych. Ich miąższość jest jednak stosunkowo niewielka (tylko jedna osiąga kilkadziesiąt metrów), a obliczone dla nich przepuszczalności wynoszą od kilku do kilkuset mD. Porowatości całkowite obliczone dla poziomów wodonośnych mieszczą się w przedziale 7–28%, a efektywne – w zakresie 6–26%. W kompleksie tym są obecne cienkie warstwy izolacyjne, z których najbardziej miąższa osiąga 45 m. W utworach permu wyróżnia się warstwa anhydrytu o miąższości 55 m o właściwościach izolacyjnych i kilkunastometrowe poziomy wodonośne piaskowców. Porowatości całkowite określone dla warstw wodonośnych wynoszą od 10 do ok. 28,5%, a efektywne są z przedziału 9-25%. W karbonie są obecne kilkui kilkudziesięciometrowej miąższości warstwy uszczelniające. Zaznacza się również obecność warstw wodonośnych, ale o stosunkowo niewielkiej grubości. Najbardziej miąższa z nich (72 m) charakteryzuje się porowatościami całkowitymi rzędu kilkunastu procent (1–20%).

Zaprezentowane w niniejszej publikacji wyniki prac interpretacyjnych uzyskano z wykorzystaniem oprogramowania interpretacyjnego sytemu GEOFLOG oraz programu ProGeo.

----->

Fig. 59. Wyniki interpretacji parametrów petrofizycznych utworów karbonu, permu, triasu i jury w otworze Wilga IG 1

The results of log interpretation of petrophysical parameters of Carboniferous, Permian, Triassic and Jurassic deposits in the Wilga IG 1 borehole

		Zestawienie porowatości Porosity comparison	Zailenie Shaliness	Klasyfikacja profilu Profile classification			
ć [m]	afia ohy	ŚRED. POR. WARSTWOWA Average layer porosity	ZAILENIE Shaliness	WARSTWA WODONOŚNA Aquifer			
bokoś Depth	ratygra ratigra	Porowatość całkowita 1%]	Zailenie [%]	WARSTWA IZOLACYJNA Confined bed			
Głęl	Sti	Total porosity 50	Shaliness 100	lsolator	100		
1		Porowatość efektywna [%] <i>Effective porosity</i>	3	Przepuszczalność [mD] Permeability	10000		
		Średnia porowatość warstwowa [%] Average layer porosity					
			2				
- 1200 -							
	≤r		2				
- 1300 -	assic SÓRN UPPEI						
	Inr / A						
- 1400 -	IUR/		*				
			and the second se				
1500 -	IA ŜRO ER MIC						
	TOWE						
- 1600 -							
- 1700 -							
1700							
- 1800 -	AS sic						
	TRI/ Trias						
- 1900 -							
2000 -							
				THE OTHER DESIGNATION OF THE OWNER WATER OF THE OWNER OWN			
- 2100 -	M Me		1				
- 2200 -	PER Permi	2					
LLOO		3	No.				
- 2300 -							
- 2400 -							
- 2500 -							
	ls Is		1				
- 2600 -	(BON niferou						
2700 -	KAF Carbo						
2,00							
- 2800 -							
- 2900 -							

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

POMIARY SEJSMOMETRYCZNE

Sprawozdanie z pomiarów sejsmometrycznych w otworze Wilga IG 1 obejmuje profilowanie średnich prędkości i pionowe profilowanie sejsmiczne. Sprawozdanie zostało opracowane w październiku 1975 r. przez Wydział Sejsmometrii Wiertniczej Przedsiębiorstwa Geofizyki Górnictwa Naftowego Kraków (Kądzioła, Madej, 1975). Pomiary wykonała w czerwcu 1975 r. Grupa Sejsmometrii Wiertniczej 1D/KW. Maksymalna głębokość pomiaru wynosiła 3530,0 m, co pozwala na charakterystykę całego profilu otworu wykonanego do głęb. 3552,0 m. Stratygrafia poziomu, w którym kończy się pomiar, obejmuje część dewonu dolnego. Poziom odniesienia pomiarów wynosi 76,0 m n.p.m., natomiast wysokość wylotu otworu 96,0 m n.p.m. Litologię warstw przypowierzchniowych w interwale głęb. 0-16,0 m stanowią piaski sypkie, a na głęb. 16,0-40,0 m - piaski zailone. Prędkość poniżej strefy małych prędkości (VSMP) została określona wartością 1600 m/s. Prace pomiarowe w otworze wykonano aparatura SS-24-61M oraz sonda pięciogeofonową produkcji PGGN-Kraków, przyjmując interwał pomiaru 20 m. W celu doboru optymalnych warunków strzelania wykonano mikroprofilowanie i dynamikę. Prace strzelnicze wykonano z jednego punktu strzałowego (PS), usytuowanego w odległości 150 m od wylotu otworu głębokiego (D) w azymucie 255° (A), przy niwelacji 0 (N) i poziomie odniesienia 20 m. Średni ładunek MW wynosił 2,5 kg. Rejestracji dokonano na taśmach magnetycznych oraz na bloku oscylograficznym. Rejestracje z bloku oscylograficznego wykorzystano do opracowania średnich predkości.

Jakość materiału w całym interwale pomiarowym 50,0–3530,0 m określono jako dobrą. Obliczenia do wyznaczenia średnich prędkości wykonano z użyciem maszyny EMR-6135. Istotny etap interpretacji materiałów stanowi redukcja pomiarów.

Głębokość zredukowaną wyznaczono wg wzoru:

$$h_r = h - h_{odn}$$

gdzie:

h – głębokość zanurzenia geofonu;

 h_{odn} – głębokość poziomu odniesienia

(z uwzględnieniem niwelacji i głębokości wzbudzania).

Redukcję czasów wykonano metodą, która zakłada jednorodność ośrodka od punktu wybuchu do głębokości zanurzenia geofonu wg wzoru:

$$t_r = \frac{h_r}{\sqrt{h_r^2 + d^2}} \cdot t_p$$

gdzie:

 t_p – czas poprawiony;

d – odległość PS od głębokiego otworu

Poprawki czasowe liczono wg wzoru:

$$d_t = \frac{h - h_{odn}}{V_o}$$

gdzie:

h – głębokość strzelania poszczególnego pomiaru;

Vo – prędkość fali w utworach przypowierzchniowych.

Prędkość średnią liczono wg wzoru:

$$V_{sr} = \frac{h_r}{t_r}$$

Charakter zmian prędkości w funkcji głębokości zilustrowano w tabeli 28 i na figurach 60–61. Wartości *h*, t_r i V_s umieszczono w tabeli 28. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 60A) i hodografu pionowego (fig. 60B). Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać stały systematyczny wzrost prędkości wraz z głębokością.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich wartości średnich, zastosowano wygładzanie wartości pomiarów geofizycznych. Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem jej wykorzystania jest stały odstęp miedzy punktami pomiarowymi. Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich, z zadaniem obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono, wyrównując zmierzone czasy, zredukowane do pionu, za pomocą splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, tj. co 20 m. Następnie czasy te wygładzono przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtry 0,25 i 0,50. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych, wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych. Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych operacji powoduje zaokraglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory, obejmujące przetworzone czasy pomiarów po ich zredukowaniu do

Tabela 28

Zestawienie wartości głębokości (h), średniego czasu zredukowanego (t_r) i prędkości średnich (V_s)

Depth (*h*), reduced time (t_r) and average velocity (V_s) values

h [m]	t _r	V_s		h [m]	t _r	V_s
1	[³]	3		1	[3] 2	3
30	0.018000	1667		010	0.388000	2345
50	0,018000	1612		020	0,388000	2343
30	0,031000	1629		950	0,390000	2346
/0	0,043000	1628		930	0,400000	2373
90	0,054000	1667		970	0,406000	2389
110	0,066000	1667		990	0,411000	2409
130	0,080000	1625		1010	0,416000	2428
150	0,090000	1667		1030	0,420000	2452
170	0,101000	1683		1050	0,425000	2471
190	0,112000	1696		1070	0,433000	2471
210	0,122000	1721		1090	0,439000	2483
230	0,130000	1769		1110	0,444000	2500
250	0,139000	1799	-	1130	0,453000	2494
270	0,146000	1849		1150	0,458000	2511
290	0,157000	1847		1170	0,464000	2522
310	0,165000	1879		1190	0,469000	2537
330	0,177000	1864		1210	0,474000	2553
350	0,186000	1882		1230	0,476000	2584
370	0,193000	1917		1250	0,480000	2604
390	0,202000	1931		1270	0,485000	2619
410	0,210000	1952		1290	0,489000	2638
430	0,218000	1972		1310	0,494000	2652
450	0,225000	2000		1330	0,500000	2660
470	0,232000	2026		1350	0,504000	2679
490	0,239000	2050		1370	0,509000	2692
510	0,246000	2073		1390	0,513000	2710
530	0,256000	2070]	1410	0,517000	2727
550	0,263000	2091]	1430	0,521000	2745
570	0,272000	2096	1	1450	0,525000	2762
590	0,280000	2107	1	1470	0,529000	2779
610	0,286000	2133	1	1490	0,533000	2795
630	0,294000	2143	1	1510	0,539000	2801
650	0,302000	2152	1	1530	0,549000	2787
670	0,307000	2182	1	1550	0,554000	2798
690	0,315000	2190		1570	0,560000	2804
710	0,321000	2212		1590	0,568000	2799
730	0,330000	2212		1610	0,576000	2795
750	0,336000	2232		1630	0,583000	2796
770	0,342000	2251		1650	0,589000	2801
790	0,350000	2257	1	1670	0,595000	2807
810	0,356000	2275		1690	0,601000	2812
830	0,364000	2280	1	1710	0,608000	2813
850	0,371000	2291		1730	0,619000	2795
870	0.376000	2314	1	1750	0.625000	2800
890	0,382000	2330		1770	0,630000	2810
			J	L	- ,	

Γ

Tabela 28 cd.

٦

1	2	3
1790	0,639000	2801
1810	0,644000	2811
1830	0,651000	2811
1850	0,655000	2824
1870	0,661000	2829
1890	0,667000	2834
1910	0,671000	2846
1930	0,677000	2851
1950	0,684000	2851
1970	0,690000	2855
1990	0,696000	2859
2010	0,701000	2867
2030	0,707000	2871
2050	0,712000	2879
2070	0,718000	2883
2090	0,724000	2887
2110	0,728000	2898
2130	0,735000	2898
2150	0,738000	2913
2170	0,742000	2925
2190	0,746000	2936
2210	0,751000	2943
2230	0,757000	2946
2250	0,760000	2961
2270	0,764000	2971
2290	0,769000	2978
2310	0,775000	2981
2330	0,783000	2976
2350	0,787000	2986
2370	0,791000	2996
2390	0,794000	3010
2410	0,799000	3016
2430	0,806000	3015
2450	0,811000	3021
2470	0,816000	3027
2490	0,821000	3033
2510	0,826000	3039
2530	0,829000	3052
2550	0,834000	3058
2570	0,841000	3056
2590	0,846000	3061
2610	0,851000	3067
2630	0,857000	3069
2650	0,861000	3078

1	2	3
2670	0,866000	3083
2690	0,872000	3085
2710	0,877000	3090
2730	0,881000	3099
2750	0,884000	3111
2770	0,890000	3112
2790	0,896000	3114
2810	0,900000	3122
2830	0,906000	3124
2850	0,909000	3135
2870	0,915000	3137
2890	0,918000	3148
2910	0,925000	3146
2930	0,927000	3161
2950	0,930000	3172
2970	0,934000	3180
2990	0,939000	3184
3010	0,944000	3189
3030	0,951000	3186
3050	0,956000	3190
3070	0,959000	3201
3090	0,965000	3202
3110	0,969000	3209
3130	0,974000	3214
3150	0,978000	3221
3170	0,984000	3222
3190	0,991000	3219
3210	0,994000	3229
3230	1,000000	3230
3250	1,004000	3237
3270	1,008000	3244
3290	1,013000	3248
3310	1,018000	3251
3330	1,022000	3258
3350	1,028000	3259
3370	1,033000	3262
3390	1,039000	3263
3410	1,044000	3266
3430	1,049000	3270
3450	1,055000	3270
3470	1,060000	3274
3490	1,066000	3274
3510	1,070000	3280

poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz, odpowiadające im, wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonym w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do CBDG PIG–PIB (baza otworowa Lasy).

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n + 1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych. Przy tym sposobie obliczeń są wyraźne tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości V_w (prędkości wygładzone), Vi (prędkości interwałowe) i Vk (prędkości kompleksowe), obliczonych z czasów wygładzonych, zawarto w tabeli 29. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 61. Zestawienie wykresów prędkości z profilem geologicznym otworu umożliwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze. Korelacja wymaga uwzględnienia podanych wcześniej różnic w poziomach odniesienia, tj.: wylotu głębokiego otworu (96,0 m n.p.m.) i załączonych wyników pomiarów prędkości sprowadzonych do 76,0 m n.p.m. Wykresy prędkości wygładzonych, interwałowych i kompleksowych odwzorowują złożony profil otworu Wilga IG 1. Prędkość, jako pochodna czasu, jest zależna od zmian w profilu geologicznym przewierconych warstw. Liczba możliwych do rozróżnienia warstw zależy od kontrastu właściwości sprężystych między utworami nadległymi i podścielającymi oraz stosunku miąższości danej warstwy do interwału jaki określa prędkość. Obserwowane kontrasty prędkości są efektem zmian w wykształceniu litologicznym poszczególnych wydzieleń litologiczno-stratygraficznych. W rezultacie daje to możliwość określenia granic między nimi. Na krzywych można wyznaczyć szereg kompleksów o dosyć jednolitej i zbliżonej charakterystyce prędkościowej, które znajdują też odzwierciedlenie w pomiarze pionowego profilowania sejsmicznego (PPS), wykonanego w tym otworze do głęb. 3530,0 m.

Od początku profilu do głęb. ok. 1500 m występuje gwałtowny wzrost prędkości kompleksowych od wartości 1760 do 3840 m/s. Po lokalnym obniżeniu do ok. 3000 m/s, w interwale utworów jury dolnej oraz triasu górnego i środkowego, prędkość kompleksowa do końca głębokości pomiarowej utrzymuje zbliżoną wartość, oscylującą wokół 4100 m/s. Przebieg krzywych prędkościowych decyduje o wydzieleniu poszczególnych kompleksów prędkościowych.

Najwyższy odcinek profilu o prędkości kompleksowej 1760 m/s dotyczy utworów kenozoiku. Kontrast prędkości

Fig. 60. Wykres prędkości średnich (A) i hodograf pionowy (B) (poziom odniesienia 76,0 m n.p.m.)

 t_r – średni czas zredukowany, V_{sr} – prędkość średnia, h– głębokość D₁ – dewon dolny, D₃ – dewon górny, C – karbon, P – perm, T₁ – trias dolny, T₂ – trias środkowy, T₃ – trias górny, J₁ – jura dolna, J₂ – jura środkowa, J₃ – jura górna, K₁ – kreda dolna, K₂ – kreda górna, CZ – kenozoik

Average seismic velocity (A) and travel-time curve (B) (reference level 76.0 m a.s.l.)

 t_r – average reduced time, V_{sr} – average velocity, h – depth D₁ – Lower Devonian, D₃ – Upper Devonian, C – Carboniferous, P – Permian, T₁ – Lower Triassic, T₂ – Middle Triassic, T₃ – Upper Triassic, J₁ – Lower Jurassic, J₂ – Middle Jurassic, J₃ – Upper Jurassic, K₁ – Lower Cretaceous, K₂ – Upper Cretaceous, CZ – Cenozoic

550 m/s wydziela następną część profilu, reprezentowaną przez niższy kenozoik i utwory najwyższego piętra kredy – mastrychtu górnego. Charakteryzują się one prędkością kompleksową o wartości ok. 2310 m/s. Kreda, wykształco- na ogólnie w postaci utworów wapienno-marglistych, na krzywych prędkości odznacza się dużymi zmianami rejestrowanych wartości, co należy tłumaczyć zmianami zachodzącymi w składzie litologicznym między poszczególnymi wydzieleniami, w zależności od procentowego udziału danej skały. Niższy odcinek kredy górnej, o prędkości kompleksowej 2830 m/s, wydzielony następnym kontrastem prędkości o dużej wartości 520 m/s i podkreślony też na wykresie prędkości interwałowych, obejmuje utwory mastrychtu dolnego, kampanu, santonu oraz koniaku. Kolejny skok prędkości o bardzo wysokiej wartości ok. 770 m/s

Tabela 29

Zestawienie głębokości (*h*) i uśrednionych wartości prędkości interwałowej (V_i), prędkości kompleksowej (V_k), prędkości wygładzonej (V_w) obliczonych z czasu wygładzonego

Depth (h), averaged interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values calculated from smoothed time

<i>h</i> [m]	<i>V_i</i> [m/s]	V_k [m/s]	<i>V</i> _w [m/s]		<i>h</i> [m]	<i>V_i</i> [m/s]	V_k [m/s]	<i>V</i> _w [m/s]
1	2	3	4	1	1	2	3	4
20,0	2096	1763	1905	1	860,0	3118	2831	3148
40,0	2096	1763	1661	1	880,0	3118	2831	3227
60,0	2096	1763	1673	1	900,0	3118	2831	3313
80,0	2096	1763	1692	1	920,0	3503	2831	3402
100,0	2096	1763	1720	1	940,0	3503	3595	3487
120,0	1839	1763	1758	1	960,0	3503	3595	3556
140,0	1839	1763	1806	1	980,0	3503	3595	3597
160,0	1839	1763	1865	1	1000,0	3503	3595	3601
180,0	1839	1763	1931	1	1020,0	3492	3595	3570
200,0	1839	2310	1997	1	1040,0	3492	3595	3515
220,0	2120	2310	2059	1	1060,0	3492	3595	3459
240,0	2120	2310	2110	1	1080,0	3492	3595	3421
260,0	2120	2310	2149	1	1100,0	3492	3595	3422
280,0	2120	2310	2179	1	1120,0	3669	3595	3471
300,0	2120	2310	2206	1	1140,0	3669	3595	3574
320,0	2310	2310	2238	1	1160,0	3669	3595	3724
340,0	2310	2310	2279]	1180,0	3669	3595	3907
360,0	2310	2310	2331	1	1200,0	3669	3595	4094
380,0	2310	2310	2392]	1220,0	4349	3595	4254
400,0	2310	2310	2454	1	1240,0	4349	3595	4362
420,0	2554	2831	2510	1	1260,0	4349	3595	4414
440,0	2554	2831	2553	1	1280,0	4349	3595	4423
460,0	2554	2831	2579	1	1300,0	4349	3595	4415
480,0	2554	2831	2589	1	1320,0	4436	3834	4412
500,0	2554	2831	2589]	1340,0	4436	3834	4425
520,0	2608	2831	2587]	1360,0	4436	3834	4448
540,0	2608	2831	2592]	1380,0	4436	3834	4460
560,0	2608	2831	2607		1400,0	4436	3834	4432
580,0	2608	2831	2635		1420,0	4021	3834	4339
600,0	2608	2831	2673		1440,0	4021	3834	4176
620,0	2771	2831	2716		1460,0	4021	3834	3960
640,0	2771	2831	2758		1480,0	4021	3834	3722
660,0	2771	2831	2794		1500,0	4021	3834	3494
680,0	2771	2831	2824		1520,0	3122	3009	3301
700,0	2771	2831	2847		1540,0	3122	3009	3151
720,0	2899	2831	2866		1560,0	3122	3009	3045
740,0	2899	2831	2885		1580,0	3122	3009	2977
760,0	2899	2831	2907		1600,0	3122	3009	2937
780,0	2899	2831	2935		1620,0	2898	3009	2916
800,0	2899	2831	2972		1640,0	2898	3009	2902
820,0	3118	2831	3020		1660,0	2898	3009	2891
840,0	3118	2831	3078		1680,0	2898	3009	2883

Tabela 29 cd.

		,		-			*	
1	2	3	4		1	2	3	4
1700,0	2898	3009	2882		2620,0	3977	3957	3917
1720,0	2977	3009	2896		2640,0	3977	3957	3950
1740,0	2977	3009	2931]	2660,0	3977	3957	3994
1760,0	2977	3009	2991		2680,0	3977	3957	4043
1780,0	2977	3009	3073	1	2700,0	3977	3957	4087
1800,0	2977	3009	3171		2720,0	4149	4100	4120
1820,0	2977	3009	3271]	2740,0	4149	4100	4142
1840,0	2977	3834	3362		2760,0	4149	4100	4158
1860,0	2977	3834	3431		2780,0	4149	4100	4177
1880,0	2977	3834	3473		2800,0	4149	4100	4207
1900,0	3376	3834	3489		2820,0	4370	4100	4257
1920,0	3492	3834	3489]	2840,0	4370	4100	4327
1940,0	3492	3834	3485		2860,0	4370	4100	4410
1960,0	3492	3834	3486]	2880,0	4370	4100	4491
1980,0	3492	3834	3501		2900,0	4370	4100	4552
2000,0	3492	3834	3531		2920,0	4475	4100	4571
2020,0	3691	3834	3577		2940,0	4475	4100	4540
2040,0	3691	3834	3641		2960,0	4475	4100	4464
2060,0	3691	3834	3722		2980,0	4475	4100	4365
2080,0	3691	3834	3819		3000,0	4475	4100	4267
2100,0	3691	3834	3930		3020,0	4138	4100	4190
2120,0	4174	3874	4047		3040,0	4138	4100	4140
2140,0	4174	4210	4157]	3060,0	4138	4100	4111
2160,0	4174	4210	4243]	3080,0	4138	4100	4095
2180,0	4174	4210	4292]	3100,0	4138	4100	4081
2200,0	4174	4210	4299		3120,0	4058	4100	4066
2220,0	4165	4210	4265		3140,0	4058	4100	4053
2240,0	4165	4210	4204		3160,0	4058	4100	4047
2260,0	4165	4210	4132		3180,0	4058	4100	4056
2280,0	4165	4210	4067		3200,0	4058	4100	4080
2300,0	4165	3957	4022		3220,0	4120	4100	4109
2320,0	4008	3957	4000		3240,0	4120	4100	4134
2340,0	4008	3957	4000		3260,0	4120	3781	4140
2360,0	4008	3957	4009		3280,0	4120	3781	4120
2380,0	4008	3957	4018		3300,0	4120	3781	4076
2400,0	4008	3957	4020		3320,0	3918	3781	4014
2420,0	4013	3957	4017		3340,0	3918	3781	3945
2440,0	4013	3957	4014		3360,0	3918	3781	3881
2460,0	4013	3957	4011		3380,0	3918	3781	3830
2480,0	4013	3957	4008		3400,0	3918	3781	3793
2500,0	4013	3957	4000		3420,0	3762	3781	3771
2520,0	3942	3957	3980		3440,0	3762	3781	3760
2540,0	3942	3957	3953		3460,0	3762	3781	3757
2560,0	3942	3957	3925		3480,0	3762	3781	3757
2580,0	3942	3957	3906		3500,0	3762	3781	3757
2600,0	3942	3957	3902					

dotyczy piaszczysto-marglistych warstw turonu i cenomanu. Ta anomalia wyznacza niżej leżący dwudzielny interwał pomiaru o prędkościach kompleksowych, tj.: pierwszy ok. 3600 m/s i po ponownym kontraście prędkości 240 m/s oraz drugi o wartości ok. 3840 m/s. Na podstawie danych otworowych, górny odcinek, obok utworów turonu i cenomanu, obejmuje piaszczyste i mułowcowe osady kredy dolnej oraz margliste i wapienne osady jury górnej z przedziału kimeryd-oksford górny. W dole górnego oksfordu następuje wyraźny wzrost prędkości kompleksowej do wymienionej wyżej wartości 3840 m/s, która utrzymuje się w interwale wyznaczonym przez utwory oksfordu środkowego i dolnego oraz jury środkowej. Dwudzielność przedziału głębokościowego, korelującego się z utworami oksfordu, podkreśla jeszcze wyraźniej krzywa prędkości interwałowych, na której wartości w dolnym odcinku dochodzą do 4436 m/s, co poświadcza zmianę charakteru osadów. Raptowny spadek wartości prędkości kompleksowej i interwałowej o 830 m/s zaznacza się na głębokości utożsamianej z granicą jury środkowej i dolnej. Towarzyszy temu zmia-

Fig. 61. Wykresy prędkości wygładzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) (poziom odniesienia 76,0 m n.p.m.)

Objaśnienia symboli jak na figurze 60

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_k) (reference level 76.0 m a.s.l.)

Explanations of symbols as in Figure 60

na gradientu na krzywej prędkości wygładzonej. W konsekwencji wyznaczono odcinek o prędkości kompleksowej ok. 3010 m/s, który, oprócz jury dolnej, obejmuje ilasto--piaszczyste osady triasu górnego i węglanowe osady triasu środkowego. Ponowny znaczny wzrost prędkości o 825 m/s do wartości ok. 3835 m/s wydziela piaszczysto-mułowcowe warstwy triasu dolnego i cechsztyńską stropową serię terygeniczna (Pzt) cyklotemu (PZ4). Zmiana gradientu na krzywej prędkości wygładzonej obrazuje ten wzrostowy trend. Krzywa prędkości interwałowych, wskazując wartości pośrednie, przedstawia na wykresie tego parametru bardziej łagodne i stopniowe przejście utworów triasowych do cechsztyńskich. Kompleks cechsztyński, zdominowany przez utwory solne i anhydryty, wyróżnia się w stosunku do pozostałych utworów największą prędkością kompleksową, wynoszącą ok. 4210 m/s.

Następna zmiana zaznacza się w spągu permu – wydziela ona dość monotonny i ciągły kompleks prędkościowy utworów karbonu. W tych mułowcowo-piaszczystych utworach o dużej miąższości zanotowano dwie prędkości kompleksowe o małej różnicy z trendem wzrastającym wraz z głębokością. Wartości te, wynoszące w części górnej ok. 3960 m/s, a w dolnej ok. 4100 m/s, stanowia odbicie zmienności litologicznej utworów w obrębie profilu karbonu. W wyższej części profilu wkładki piaskowców są małej miąższości, w niższej natomiast jest obserwowany zwiększony ich udział. Należy zwrócić uwagę na duże zróżnicowanie zarejestrowanych wartości na krzywej prędkości interwałowych w dolnej części kompleksu karbońskiego. Największe różnice zanotowane na tym wykresie i zobrazowane dwukrotną zmianą gradientu w dolnym odcinku krzywej prędkości wygładzonych mają związek, jak wynika z danych otworowych, z obecnością piaskowców formacji Deblina.

Prędkość kompleksowa 4100 m/s cechuje również górną cześć dewonu dolnego. Ogólnie w obrębie piaskowcowomułowcowego dewonu dolnego w obrazie prędkości kompleksowych wydzielają się dwa podkompleksy, tj.: wyżej wymieniony i niższy, o prędkości mniejszej, wynoszącej ok. 3780 m/s. Zróżnicowanie litologiczne utworów dewońskich odwzorowuje krzywa prędkości interwałowych, wydzielając poszczególne warstwy, w tym granicę kontaktu dewonu górnego i dolnego. Podsumowując powyższą analizę wyników pomiarów prędkości sejsmicznych w otworze Wilga IG 1, zmienność średnich wartości prędkości kompleksowych dla poszczególnych wydzieleń stratygraficznych przedstawia się następująco:

- kenozoik: 1760 m/s;
- kreda: 2310–2830–3600 m/s;
- jura górna: 3600-3840 m/s;
- jura środkowa: 3840 m/s;
- jura dolna, środkowa i górna: 3010 m/s;
- trias dolny, cechsztyńska stropowa seria terygeniczna: 3835 m/s;
- cechsztyn: 4210 m/s;
- karbon: 3960-4100 m/s;
- dewon dolny: 4100 m/s;
- dewon dolny: 4100–3780 m/s.

Otrzymane wyniki stanowią istotny wkład do uaktualnienia modelu prędkości, niezbędnego do prawidłowego głębokościowego opracowania materiałów sejsmicznych z rejonu otworu Wilga IG 1. Uwzględnienie w rozkładach prędkości wyników z pomiarów w tym otworze, sięgających 3530,0 m, ułatwi korelację i przyporządkowanie poziomów refleksyjnych na przekrojach do poszczególnych wydzieleń permo-mezozoiku, karbonu i dewonu.

Dodatkowych, istotnych informacji dotyczących istnienia granic refleksyjnych dostarczają wyniki wykonanego w otworze Wilga IG 1 pomiaru pionowego profilowania sejsmicznego (PPS). Taśmy magnetyczne z pomiaru PPS opracowano na centrali cyfrowej MS-421. Opracowanie to składa się z dwóch części. Pierwsza zawiera obróbkę wstępną, polegającą na konwersji analogowo-cyfrowej przy parametrach 0,0. Wykonano tu dwie taśmy zbiorcze, taśmę zbiorczą rejestracji i taśmę zbiorczą momentów wybuchu T_B. Druga część obejmuje obróbkę właściwą w systemie SYSIS. Jest to następujący cykl prac:

- sejsmogram zbiorczy w zapisie "prostym";
- wprowadzenie poprawki T_B na momenty wybuchu;
- uporządkowanie rejestracji (usunięcie zbędnych rekordów, względnie tras);
- wykonanie centrowania zapisu (F. CENTRAGE);
- wykonanie normalizacji zapisu (F. NORMALIS);
- zastosowanie dwukrotnie filtru wycinającego 50Hz (F. FILTRE);
- wyrównanie dynamiki (F. EGADYN).

W wyniku powyższych operacji otrzymano właściwie opracowany sejsmogram zbiorczy. W celu dokładniejszej korelacji fal odbitych jedno- i wielokrotnie wykonano sumowanie kierunkowe na podstawie hodografu pionowego z głebokiego odwiertu. Sumowanie wykonano na bazie czterech kanałów z zastosowaniem filtracji kierunkowej (wielokanałowej). Sumowanie wykonano w kierunkach "+" i "–" oraz nałożenia tych kierunków. Zastosowany zestaw funkcji do filtracji kierunkowej obejmuje: LIRE FMC, EXE FMC, ECRI FMC. Wyniki analiz PPS wykonanych w otworze przedstawiono w dokumentacji otworowej na sekcji czasowej sumowanej kierunkowo oraz na sekcji zbiorczej. Wyznaczone na sekcji zbiorczej fale odbite znajdują potwierdzenie w danych z sekcji kierunkowego sumowania. Dla każdej fali odbitej na profilu stratygraficznym określono przedziały głębokościowe, z którymi wiązane jest powstawanie refleksów. Długość poszczególnych przedziałów przyjęto umownie jako 50-75-metrowe odcinki, odpowiadające różnicy czasów między dwoma sąsiednimi fazami na sekcji czasowej. Jakość materiałów oceniono jako dobrą, także dla przedziału głębokościowego większego niż 2000,0 m, a więc dla jednostek stratygraficznych starszych od triasu. W szczególności dobrze scharakteryzowano granice odbijające w utworach karbonu i dewonu, co stanowi ważny materiał uzupełniający do danych otrzymanych w wyniku interpretacji pomiaru prędkości średnich.

Na podstawie uzyskanego obrazu falowego stwierdzono, że w całym kompleksie osadowym istnieje bardzo dużo granic odbijających (fig. 62 z zaznaczonymi głównymi granicami odbijającymi). Przedział użytecznego zapisu wynosi 2,1 s. Dobra jakość materiałów pozwala na stosunkowo dokładne określenie głębokości granic odbijających i powiązanie ich z profilem stratygraficznym. Wydzielono tu szereg grup fal odbitych. Otrzymane wyniki zaprezentowano w tabeli 30.

W wyniku przeprowadzonych badań wyinterpretowano wiele realnych granic odbijających. W przedziale czasowym 0,90-1,45 s, związanym z kompleksem permsko--mezozoicznym, występuje grupa granic odbijających wyróżniających się intensywnością zapisu. Jak wynika z danych zawartych w tabeli 30, fale odbite, rejestrujące się przy powierzchni na czasie 0,900-0,930 s, odpowiadają utworom jury górnej, oraz rejestrujące się na czasie 1,060-1,130 s, pochodzą od spągu jury dolnej i stropu triasu górnego. Dynamiką zapisu wyróżnia się 2-3-fazowy refleks dowiązany do przystropowej części jury. Poniżej wymienionego refleksu obserwujemy strefę impulsów zakończoną dość wyraźnym refleksem, który można wiązać ze spągową partią jury lub podścielającymi ją utworami triasu. Odbicia od utworów kredy są mało intensywne. Pojedynczy refleks na czasie 1,350 s przypisano utworom dolnego triasu.

W analizowanym otworze utwory paleozoiczne rozpoczynają się refleksem, stosunkowo dobrze korelującym się na sekcji PPS, związanym z przystropową częścią cechsztynu. Zaznacza się on w postaci 4 faz o wyróżniającej się dynamice, zależnie od zmian miąższości i wykształcenia litologicznego poszczególnych cyklotemów. Grupa fal, rejestrująca się w przedziale czasowym 1,480–1,550 s, wiąże się z granicą odbijającą perm-karbon. W przystropowej części karbonu, bezpośrednio pod permem, zaznacza się refleks, nakładający się na ostatnie fazy impulsu od cechsztynu. Następna grupa refleksów w przedziale od 1,670-1,890 s pochodzi od poszczególnych warstw odbijających w kompleksie karbońskim, zwłaszcza w jego części spągowej. Najbardziej wyróżnia się, dobrze korelujący się na sekcji PPS, refleks powstający w przedziale występowania miąższych serii piaskowców formacji Dęblina, w niższym baszkirze. W pozostałym przedziale baszkiru i moskowu również istnieją refleksy rzeczywiste o wyróżniającej się dynamice, jak np. odbicie zarejestrowane z przedziału głęb. 2650,0-2700,0 m. W utworach serpuchowu i wizenu nie udało się wydzielić silnych fal odbitych. Ostatnia grupa fal, występująca w przedziale 1,940–2,070 s, wiąże się z granicą karbon-dewon i z utworami dewonu, w tym najwyraźniejsza występuje w dewonie górnym (franie). W obrębie dewonu dolnego wyznaczona granica charakteryzuje się słabszą dynamiką.

W całym przedziale czasowym rejestrują się również fale wielokrotne. Powstawanie ich można wiązać z granicą odbijającą ziemia–powietrze i granicą odbijającą w obrębie utworów dewonu dolnego na głęb. ok. 3200,0 m. Przykładem tego może być też fala wielokrotna od utworów jury górnej (na czasie ok. 1 s). Należy podkreślić, że wszystkie odbicia rejestrujące się powyżej czasu użytecznego zapisu, który nie przekracza 2,1 s, uznano za odbicia wielokrotne.

Podsumowując, można stwierdzić, że w profilu otworu Wilga IG 1 istnieją bardzo dobre warunki powstawania fal zarówno jednokrotnie odbitych, zwłaszcza na granicach jura–trias, perm–karbon, karbon–dewon, jak i fal wielokrotnych. Powyższe wyniki potwierdzają dane uzyskane na podstawie interpretacji pomiarów prędkości średnich. Na sekcji PPS wyznaczono refleksy, które korelują się z granicami wydzielonymi na krzywych prędkościowych, co szczególnie dobrze ilustruje wykres prędkości interwałowych. Są to granice wewnątrz jury górnej, w strefie kontaktu jury dolnej i triasu górnego, w triasie dolnym i cechsztynie oraz szereg odbić w karbonie i dewonie. Wyniki pionowych profilowań sejsmicznych w otworze Wilga IG 1 charakteryzują obraz falowy w północno--zachodniej części basenu lubelskiego. Analiza w zakresie głębokości i dowiązania stratygraficznego poszczególnych refleksów wyznacza położenie granic odbijających, możliwych do śledzenia powierzchniowymi sejsmicznymi badaniami refleksyjnymi, w tym szczególnie utworów kompleksu paleozoicznego. Na podstawie przedstawionych wyników pomiarów sejsmometrycznych w omawianym otworze

Fig. 62. Pionowe profilowanie sejsmiczne (PPS) (poziom odniesienia 76,0 m n.p.m.) Objaśnienia symboli stratygraficznych jak na figurze 60

Vertical Seismic Profiling (VSP) (reference level 76.0 m a.s.l.)

Explanations of stratigraphic symbols as in Figure 60

Tabela 30

Pionowe profilowanie sejsmiczne (PPS)

Vertical Seismic Profiling (VSP)

Przybliżona głębokość położenia granic odbijających [m] Approximate depth of seismic reflection boundaries	Czas przyjścia fali na powierzchnię [s] Time of arrival of the wave to the surface	Czas na jakim występuje refleks na profilu sejsmicznym [s] Time of reflection on the seismic line	Stratygrafia Stratigraphy	Współczynnik odbicia Reflection coefficient
1190,0	0,900			0,271
1250,0	0,930	0,930	jura gorna	
1530,0	1,060	1,075	jura dolna – ozoćá przysnagowa	-0,218
1570,0	1,090	1,100	jura doma – część przyspągowa	
1630,0	1,130	1,130	trias górny – część przystropowa	
1970,0	1,350	1,320	trias dolny	0,104
2190,0	1,450			-0,079
2270,0	1,480		perm – cechsztyn	
2310,0	1,510	1,540	1 1 1	-0,165
2370,0	1,550	1,545	karbon – moskow	0,211
2650,0	1,670	1,665		
2710,0	1,690			0,085
2750,0	1,720		karbon – baszkir	
2870,0	1,800			
2950,0	1,830	1,815		0,146
3010,0	1,870		karbon – serpuchow	-0,229
3070,0	1,890		karbon – wizen	0,107
3090,0	1,940	1,930	granica dewon-karbon	-0,080
3230,0	1,980	1,955	d	0,091
3370,0	2,070	2,050	aewon doiny	

można w obrębie utworów paleozoicznych wyznaczyć trzy charakterystyczne granice odbijające, stanowiące poziomy przewodnie. Zaliczają się do nich: strop cechsztynu, seria piaskowców w niższym baszkirze i granica w strefie kontaktu franu i dewonu dolnego. W nawiązaniu do wyników prac sejsmicznych z otoczenia otworu Wilga IG 1, można potwierdzić, że charakterystyczny refleks powstający w strefie kontaktu franu i dewonu dolnego, obok rejestracji związanych z utworami cechsztynu, należy do najbardziej wyróżniających się w obrębie utworów paleozoicznych. Uzyskane wyniki wskazują, że stanowi on przewodni horyzont w pracach powierzchniowych, którego śledzenie wyznacza obszar występowania dewonu górnego w północno-zachodniej części basenu lubelskiego. Poza tym w utworach podcechsztyńskich, w środkowej części baszkiru i w obrębie dewonu dolnego (lochkowu), zanotowano granice o słabszej dynamice, co wiąże się z drobnowarstwowym wykształceniem tych utworów.