WYNIKI BADAŃ GEOFIZYCZNYCH

Olga ROSOWIECKA

WYNIKI LABORATORYJNYCH POMIARÓW GĘSTOŚCI OBJĘTOŚCIOWEJ

Zebrane w tabeli 16 wyniki laboratoryjnych pomiarów gęstości objętościowej (ρ) pochodzą z "Dokumentacji pomiarów gęstości objętościowej i porowatości otwartej skał, rok 1982" (Fuliński, 1983). Dokumentacja przedstawia wyniki pomiarów wykonanych przez Przedsiębiorstwo Poszukiwań Geofizycznych (obecnie Przedsiębiorstwo Badań Geofizycznych sp. z o.o. – PBG) w Warszawie. W czasie prac badawczych przyjęto zasadę opróbowania w odstępach co ok. 25 cm, aczkolwiek opróbowanie to nie zostało wykonane w sposób ciągły wzdłuż całego rdzenia, a rozpoczęto je od głęb. 355 m – tj. w obrębie utworów jury dolnej. Oznaczenia wykonano dla 2228 próbek. Gęstość objętościową p próbki wyznaczano za pomocą gęstościomierzy GS-2 i GS-3 produkcji Przedsiębiorstwa Poszukiwań Geofizycznych oraz wag analitycznych. Wartość gęstości objętościowej odczytywano bezpośrednio ze wskazań gęstościomierza. Do badań przyjmowano próbki powietrzno-suche, a nasycanie próbek dokonywano w stanie swobodnym w ciągu 24 h.

Tabela 16

Chronostratygrafia Głębokość [m] (od-do) Liczba pomiarów $\rho [g/cm^3]$ Chronostratigraphy Depth (top-bottom) Number of measurements Czaplinek IG 1 min.-maks. średnia arytmetyczna min.-max. arithmetic average CZWARTORZĘD 0,0-89,0 0 _ _ pleistocen 0,0-89,0 0 NEOGEN 89,0-146,5 0 miocen 89,0-146,5 0 _ _ Kenozoik miocen dolny 89,0-146,5 0 _ _ PALEOGEN 146,5-211,5 0 _ _ oligocen 146,5-211,5 0 _ rupel 146,5-211,5 0 2,24-2,46 JURA 211,5-626,0 16 2.37 2,24-2,46 jura dolna 211,5-626,0 16 2.37 211,5-376,0 16 2,24-2,46 2,37 svnemur 376,0-626,0 0 hetang _ hetang środ.- górny 376,0-597,5 0 Mezozoik hetang dolny 597,5-626,0 0 TRIAS ?626,0-?2603,0 304 2,43-3,05 2,72 ?626,0-?957,5 0 trias górny ?957,5-?1253,5 trias środkowy 0 ?1253,5-?2603,0 trias dolny 304 2.43 - 3.052.722603,0-5045,0 PERM 1220 2,09-3,21 2,73 cechsztyn 2603,0-4106,0 366 2,09-3,21 2,71 czerwony spągowiec 4106,0-5045,5 854 2,58-2,88 2,74 Paleozoik KARBON 5045,5-6006,0 668 2,54-3,52 2,72 missisip 5045,5-6006,0 668 2,54-3,52 2,72 5045,5-6006,0 668 2,54-3,52 2,72 wizen

Minimalne, maksymalne i średnie wartości gęstości objętościowej ρ dla poszczególnych wydzieleń chronostratygraficznych uzyskane na podstawie zbioru pomiarów laboratoryjnych

The minimum, maximum and average values of the bulk density ρ for individual stratigraphic units, based on laboratory measurements database

Próbka skały o wielkości ok. 30 cm³ po nasyceniu w płynie (alkohol etylowy z gliceryną) o ciężarze właściwym 1,00 g/ cm³ zawieszana była na jednym z ramion gęstościomierza i, po odpowiednim zrównoważeniu układu jego ramion, zanurzona również w płynie o $\rho = 1$ g/cm³. Wartość ρ tej nasączonej próbki skały odczytywana była ze skali gęstościomierza w położeniu równowagi układu ramion. Dane te zostały scyfrowane przez PBG, a następnie dodatkowo opracowane (uporządkowane, uzupełnione i włączone do CBDG) w 2011r. (Rosowiecka, 2011; Rosowiecka, Królikowski, 2014).

Wartości gęstości objętościowej p zostały uśrednione dla poszczególnych wydzieleń chronostratygraficznych w otworze wiertniczym Czaplinek IG 1, a wyniki uśrednień zestawiono w tabeli 16. Utwory permu zostały dodatkowo opisane z uwzględnieniem wydzieleń listostratygraficznych w otworze, a wyniki uśrednień zostały zestawione w tabeli 17. Utwory kenozoiku, jako nierdzeniowane, nie mogły być opróbowane stąd też brak pomiarów dla tego interwału. Jura dolna została opróbowana tylko w najniższym odcinku synemuru, stąd uzyskanej wartości średniej ρ nie należy traktować jako reprezentatywnej dla całego interwału, a tym bardziej dla całej jury dolnej.

Utwory triasu zostały opróbowany jedynie na odcinku triasu dolnego (od 1600 m w kierunku spągu). Średnia wartość ρ jest stosunkowo wysoka: 2,72 g/cm³ (tab. 16) przy średniej dla całej Polski wynoszącej 2,57 g/cm³ (Grabowska i in., 1998). Utwory permu zostały opróbowane nierównomiernie, wręcz fragmentarycznie podobnie jak utwory wyżej zalegające. Przedstawienie charakterystyk gęstościowych dla poszczególnych jednostek litostratygraficznych (tab. 17) miało na celu pokazanie, że stosunkowo wysoka wartość

Tabela 17

Minimalne, maksymalne i średnie wartości gęstości objętościowej ρ dla poszczególnych wydzieleń litostratygraficznych permu uzyskane na podstawie zbioru pomiarów laboratoryjnych

The minimum, maximum and average values of the bulk density ρ for individual Permian lithostratigraphic units, based on laboratory measurements database

Litostratygrafia lithostratigraphy		Głębokość [m] (od–do)	Liczba pomiarów	ρ [g/cm ³]		
		Depth (top – bottom)	Number of measurements	min. – maks. min. – max.	średnia arytmetyczna arithmetic average	
PERM		2603,0-5045,0	1220	2,09-3,21	2,73	
CECHSZTYN		2603,0-4106,0	366	2,09-3,21	2,71	
Formacja rewalska		2603,0-2635,0	18	2,70-2,80	2,74	
Cechsztyn 4e	PZ4e	2635,0-2654,0	20	2,18-2,74	2,37	
Cechsztyn 4d	PZ4d	2654,0-2721,5	42	2,17-2,76	2,27	
Cechsztyn 4c	PZ4c	2721,5-2752,0	0	_	-	
sól kamienna najmłodsza stropowa	Na4b2	2752,0-2769,0	0	_	-	
ił solny czerwony górny	T4b	2769,0-2813,0	0	_	-	
sól kamienna najmłodsza górna	Na4a2	2813,0-2851,0	0	_	-	
anhydryt pegmatytowy górny	A4a2	2851,0-2852,0	0	_	-	
sól kamienna najmłodsza dolna	Na4a1	2852,0-2888,5	0	_	-	
anhydryt pegmatytowy dolny	A4a1	2888,5-2890,0	0	_	-	
sól podścielająca	Na4a0	2890,0-2892,0	0	_	-	
ił solny czerwony dolny		2892,0-2921,0	16	2,09-2,21	2,16	
Cechsztyn 3	PZ3	2921,0-3244,0	20	2,15-2,19	2,15	
sól kamienna młodsza	Na3	2921,0-3201,0	20	2,15-2,19	2,15	
anhydryt główny	A3	3201,0-3229,0	0	_	-	
dolomit płytowy i szary ił solny	Ca3 i T3	3229,0-3244,0	0	_	-	
Cechsztyn 2	PZ2	3244,0-3885,0	116	2,70-3,21	2,90	
anhydryt kryjący	A2r	3244,0-3251,0	0	_	-	
sól kamienna starsza kryjąca	Na2r	3251,0-3257,5	0	_	_	
sól potasowa starsza	K2	3257,5-3378,5	0	_	-	
sól kamienna starsza	Na2	3378,5–3870,0	52	2,70-3,01	2,80	
anhydryt podstawowy	A2	3870,0-3872,5	11	2,77-3,21	2,97	
dolomit główny	Ca2	3872,5–3885,0	53	2,94-3,06	2,99	
Cechsztyn 1	PZ1	3885,0-4106,0	134	2,70-3,08	2,88	
anhydryt górny	Alg	3885,0-3947,5	8	2,96-3,07	3,00	
sól kamienna najstarsza	Na1	3947,5-4070,0	0	—	-	
anhydryt dolny	Ald	4070,0-4096,5	86	2,72-3,08	2,89	
wapień cechsztyński	Cal	4096,5-4105,6	38	2,70-3,07	2,85	
łupek miedzionośny	T1	4105,6-4106,0	2	2,87-2,88	2,88	
CZERWONY SPĄGOWIEC		4106,0-5045,0	854	2,58-2,88	2,74	
górny czerwony spągowiec		4106,0–5045,0	854	2,58-2,88	2,74	

średniej gęstości objętościowej permu górnego wynika z faktu braku pomiarów w obrębie nieomalże wszystkich poziomów utworów solnych. Wyjątkiem jest poziom Na2, z którego pobrano jedynie 20 spośród 366 próbek dla całego permu górnego. Opróbowany został również poziom Na3, ale wyłącznie w dolnym jego odcinku (od głęb. 3857 m). Interwał ten jest zdominowany przez obecność ciężkich anhy-

Marcin ŁOJEK

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

CEL BADAŃ

Otwór wiertniczy Czaplinek IG 1 wykonano w celu zbadania utworów podcechsztyńskich i podpermskich centralnej części antyklinorium pomorskiego w aspekcie ich wykształcenia litologicznego, budowy strukturalnej i zawartości bitumin. Głównym zadaniem geofizycznym było zbadanie horyzontu refleksyjnego V_{or} 5600 m/s, przebiegającego w rejonie wiercenia na głęb. 5800 m. Pozostałymi celami było wyznaczenie na podstawie geofizyki otworowej poziomów zbiornikowych i dokonanie ich charakterystyki oraz określenie zarówno litologii przewiercanych utworów, jak i stanu technicznego odwiertu.

drytów i nieco lżejszych wapieni. Taki sposób opróbowania

permu górnego poskutkował tym, że jego średnia wartość

ρ niewiele różni się od średniej uzyskanej dla czerwonego

spagowca (2,71 g/cm³ vs 2,74 g/cm³). Ilaste i mulaste utwory

karbonu charakteryzują się niewielką zmiennością gęstości

objętościowej. Pojedyncze pomiary na poziomie >3 g/cm³

wskazują na wystąpienia syderytów.

ZAKRES WYKONANYCH BADAŃ

Opracowanie danych geofizyki wiertniczej wykonano na podstawie dokumentacji wynikowej otworu badawczego Czaplinek IG 1 (Bojarski i in., w Szyperko-Teller, Raczyńska, 1981) oraz zbiorów scyfrowanych danych pomiarowych znajdujących się w zasobach Centralnej Bazy Danych Geologicznych (CBDG). Pomiary geofizyki otworowej zrealizowano w interwale głębokościowym 0-6006 m. W otworze Czaplinek IG 1 pomiary geofizyki wiertniczej wykonano w 19 etapach pomiarowych (tab. 18). Tak krótkie odcinki pomiarowe nie wynikały z częstego wykonywania buta, lecz ze względu na częste awarie wiertnicze (wynikające z samej natury i niedoskonałości sprzętu oraz jego awaryjności) w latach 70. XX w. Pomiary geofizyki wiertniczej zostały wykonane z krokiem próbkowania 0,25 m, jedynie pomiar krzywizny otworu wykonano z krokiem co 25 m. Do głęb. 4085 m pomiary wykonało Przedsiębiorstwo Badań Geofizycznych - Warszawa, Zespół Geofizyki Wiertniczej w Poznaniu, pozostałe pomiary wykonało Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego w Toruniu, Baza Geofizyki Wiertniczej w Pile. Średnica nominalna otworu w interwale 120-1587 m wynosiła 438 mm, w interwale 1583–4081 m wynosiła 308 mm, w interwale 4076-5235 m wynosiła 216 mm, w interwale 5235-5236 m wyniosła 143 mm. Głębokość zarurowania odwiertu dla poszczególnych średnic zestawiono w tabeli 19. Wysokość stołu wynosiła 7 m. Podczas wiercenia wykorzystywano następujące płuczki wiertnicze: od 0 do 850 m bentonitowa, od 850 do 2648,5 m gipsowa, od 2648,5 do 4131 m solno-skrobiowa, od 4131 do 4523 m bentonitowa, od 4523 do 4810 m bentonitowo-barytowa, od 4810 do 5047 m solno-bentonitową, od 5047 do 5243 m bentonitowo-solną, od 5243 do 5456 m potasowo-chlorkową, od 5456 do 6006 m potasową. Zestawienie wszystkich wykonanych pomiarów wraz z typem sondy wykonującej pomiar oraz z interwałem wg dokumentacji i wg plików .las dostępnych w CBDG zestawiono w tabeli 18. W tabeli 19 zestawiono typy aparatury i kabli użytych podczas pomiarów geofizycznych.

OCENA JAKOŚCI DANYCH I STANU OTWORU

Pomiary zostały wykonane niekalibrowaną aparaturą pomiarową (tab. 19), przez co pomierzone wartości nawet w tym samym odcinku dają różne wyniki na skutek odmiennych parametrów technicznych sondy, co znacząco utrudnia dalsze analizy matematyczne danych. Dodatkowo uzyskane wyniki są obarczone błędem ze względu na zły stan ścian otworu, liczne kawerny czy pozostawianie obciążników w otworze na skutek przechwycenia przewodu wiertniczego na głęb. 576 m z powodu ucieczki płuczki. Pomiary oporności wyraźnie wskazują na obecność obciążników w interwale 190–300,5 m. Od 120 m do 404 metrów w kompleksach piaskowców i mułowców powstają kawerny do 480 mm (przy średnicy nominalnej 438 mm). W interwale 400–725 m w kompleksach dobrze przepuszczalnych piaskowców doszło do zmniejszenia średnicy do 430 mm na skutek osadzania na ścianach filtratu płuczkowego (*mud cake*). W interwale 725–1585 m w iłowcach i mułowcach występują liczne kawerny do 640 mm. W kompleksach wapiennych

Tabela 18

Wykaz badań geofizyki otworowej wykonanych w otworze Czaplinek IG 1

	Libt of wen logs performed in		
Data wykonania badania Date of measurement	Nazwa wykonanego pomiaru (skrót), typ sondy Type of measurement (abbreviated), type of probe	Interwał głębokościowy badań wg dokumentacji [m] Depth interval according to the documentation [m]	Interwał głębokość badań wg plików LAS [m] Real depth interval [m] according to LAS files [m]
1	2	3	4
	PG (GR), DRST–3 Nr 120	0-465	0,25-465,75
21-22.08.1977	PK, IK Nr 550	25-465	brak dostępnych danych
	PŚr (CALI), KS–3 Nr 32	120-465	104-464,75
21–22.08.1977	PO (EL09), M2.5A0.25B	120-465	101-464,75
	PO (EN10), B2.5A0.25M	120-465	100,75-464,75
	POst (LL3), TBK-3 Nr 4724	120-465	100,25-465,75
	PNNnt (NECN), DRST–3 Nr 120	120-465	70,25-464,75
	PS (SP)	120-465	96,2-464,75
	PS (SP)	120-465	130,5-464,75
	PT, FOG–3 Nr 7306	0-305	brak dostępnych danych
19.09.1977	PT, FOG–3 Nr 7306	0-657	brak dostępnych danych
	PŚr (CALI), KS–3 Nr 32	120-657	brak dostępnych danych
	PG (GR), DRST–3 Nr 108	400–900	376,5-899,75
	PK, IT–200 Nr 658	100-905	brak dostępnych danych
	PŚr (CALI), SKS–4	120-900	375,75–900,75
	PO (EL09), M2.5A0.25B	120-900	350,5-901,75
27.10.1977	PO (EN10), B2.5A0.25M	120-900	392,25–905,75
	POst (LL3), TBK Nr 119	400–900	386,25–907,75
	PNNnt (NECN), DRST–3 Nr 108	400–900	391,25–916,75
	PS (SP)	120-900	118,5–901,75
	PG (GR), DRST–3 Nr 120	850-1580	850,25-1580,5
	PK, IT Nr 77754	850-1580	brak dostępnych danych
	PŚr (CALI), KS–3 Nr 32	120-1580	850,25–1579,75
	PO (EL09), M2.5A0.25B	120–1575	847,5–1575,75
	PO (EN10), B2.5A0.25M	850-1575	847,5–1574,75
	POst (LL3)	850-1580	840,25–1577,75
27–28.01.1978	PNNnt (NECN), DRST–3 Nr 120	850-1580	849,5–1579,75
	PS (SP)	850-1575	850,25–1576,75
	PS (SP)	850–1575	850,25–1577,5
	PAdt (DT), 01.7N0.85N	120-1580	101–1579,75
	PAt1 (T1), 01.7N0.85N	120-1580	103,25–1579,75
	PAt2 (T2), 01.7N0.85N	120-1580	103,25–1579,75
	PG (GR), DRST–3 Nr 120	1520-2076	1504,25-2083,75
	PK, IT Nr 77754	1525-2075	brak dostępnych danych
	PŚr (CALI), KS–3 Nr 32	1583-2072	1581,25–2075,5
	PO (EL09), M2.5A0.25B	1583-2072	1575,75–2073,75
	PO (EN10), B2.5A0.25M	1583-2072	1575,75–2069,75
28-29.03.1978	POst (LL3), TBK Nr 4724	1583–2072	1572,5–2073,75
28–29.03.1978	PNNnt (NECN), DRST–3	1520-2076	1504,25-2081,75
	PNG (NEGR), DRST–3 Nr 108	1520-2076	1507,25–2076,5
	PS (SP)	1583–2072	1584,25–2069,5
	PS (SP)	1583-2072	1584,25–2070,5
	PAdt (DT), USBA–21/T	1583-2076	1577,75–2074,75

List of well logs performed in the Czaplinek IG 1 borehole

1	2	3	4	
	PAt1 (T1), USBA-21/T	1583–2076	1573,25–2074,75	
cd. 28_29.03.1978	PAt2 (T2), USBA–21/T	1583–2076	1573,5–2072,75	
20 29.03.1970	PAc, USBA–21/T	23–1583	brak dostępnych danych	
	PG (GR), DRST–3 Nr 120	2020–2560	2019,75–2562,5	
	PK, IT Nr 77754	2025-2560	brak dostępnych danych	
	PŚr (CALI), KS–3 Nr 32	1583–2560	2020,25–2559,75	
	PO (EL09), M2.5A0.25B	1583–2555	2014,75-2556,75	
	PO (EN10), B2.5A0.25M	2020-2555	2015,25–2554,75	
	POst (LL3), TBK	2020-2560	2011,25–2556,75	
19-20.05.1978	PNNnt (NECN), DRST-3	2020-2560	2012,25-2561,5	
	PNG (NEGR), DRST-3 Nr 120	2020-2560	2014,25–2563,75	
	PS (SP)	1583–2555	2014,5–2552,75	
	PS (SP)	2020-2555	2014,5–2552,75	
	PAdt (DT)	2020-2560	2020,25–2557,75	
	PAtl (Tl)	2020-2560	2018,75–2558,5	
	PAt2 (T2)	2020-2560	2018,75–2557,75	
30.06-02.07.1978	PO, A0.5M0.1N	5–2571	brak dostępnych danych	
	PG (GR), DRST–3 Nr 120	2500-3860	2496,75–3859,75	
-	PK, IT Nr 77754	2500–3860	brak dostępnych danych	
	PŚr (CALI), KS–3 Nr 32	1583–3860	2499,75–3864,5	
	PO (EL09), M2.5A0.25B	1583–3860	2486,25–3864,75	
	PO (EN10), B2.5A0.25M	2500–3860	2482,25–3864,75	
	POst (LL3), TBK	2500–3860	2497,5–3864,5	
10-13.10.1978	PNNnt (NECN), DRST–3	2500–3860	2500,25–3859,75	
-	PNG (NEGR), DRST–3 Nr 120	2500–3860	2491,25-3862,75	
	PS (SP)	1583–3860	brak dostępnych danych	
	PS (SP)	2500-3860	brak dostępnych danych	
	PAdt (DT), USBA–21/T	2500–3860	2495,25–3861,5	
	PAt1 (T1), USBA–21/T	2500–3860	2496,5–3864,75	
	PAt2 (T2), USBA–21/T	2500–3860	2497,25–3864,75	
	PG (GR), DRS1–3 Nr 120	3800-4085	3794,75-4084,75	
	PK, IT Nr 77754	3800-4085	brak dostępnych danych	
	PSr (CALI), KS–3 Nr 32	1583-4085	3797,5–4085,5	
	PO (EL09), M2.5A0.25B	1583-4085	3792,25-4089,75	
	PO (ENI0), B2.5A0.25M	3800-4085	3791,5-4088,75	
16-19.11.1978	PNNnt (NECN), DRSI–3 Nr 14/	3800-4085	3795,25-4091,75	
	PNG (NEGR), DRST–3 Nr 120	3800-4085	3798,25-4090,75	
	PS (SP)	1583–4085	3793,25-4089,5	
	PS (SP)	3800-4085	3793,5–4088,75	
	PAdt (D1), USBA-21/1	3800-4085	3798,25–4086,5	
	PATI (11), USBA-21/1	3800-4085	3797,25-4086,75	
	PAT2 (12), USBA-21/1	3800-4085	3799–4087,75	
	PG (GR), SP-62 Nr 10	4000–4525	4075,25-4523,75	
	PK Déc (CALD)	4000-4530	brak dostępnych danych	
14-16.07.1979	PSr (CALI)	4087-4515	4082,75-4514,75	
	PO (EL02), A0.5M0.1N	4087–4526	4087,5-4526,75	
	PO (EL03), A1.0M0.1N	4087–4526	4088,25-4525,75	
	PO (EL09), A2.0M0.5N	4087–4526	4090,25–2524,75	

1	2	3	4
	PO (EL14), A4.0M0.5N	4087–4526	4091,5-4525,75
cd. 14–16.07.1979	EL26, A8.0M1.0N	4087–4526	4095,5-4527,75
	PO (EN10), N8.5M0.5A	4087–4526	4088,5-4524,5
	POst (LL3)	4087–4526	4082,5-4529,75
	PNG (NEGR), SP-62 Nr 10	4000-4525	4075,5-4524,75
	PS (SP)	4095–4529	4096,5-4528,75
	PAdt (DT), N0.85N1.05O	4087–4530	4083,75-4524,75
	PAt1 (T1), USBA–DA	4087–4530	4083,5-4524,75
	PAt2 (T2), USBA–DA	4087–4530	4081,25-4524,75
	PG (GR), SP-62 Nr 10	4470-4800	4423,25-4797,75
	РК	4500-4810	brak dostępnych danych
	PŚr (CALI)	4487–4803	4421,25-4799,75
	PO (EL02), A0.5M0.1N	4480-4805	4447,25-4807,75
	PO (EL03), A1.0M0.1N	4480-4805	4446,5-4804,75
	PO (EL09), A2.0M0.5N	4480-4805	4438–4804,5
	PO (EL14), A4.0M0.5N	4480-4805	4443,25-4804,75
3-5.11.1979	PO (EL26), A8.0M1.0N	4480-4805	4445,25-4805,75
	PO (EN10), N8.5M0.5A	4480-4805	4447,25-4807,75
	POst (LL3)	4425-4810	4426,25-4809,75
	PNG (NEGR), SP-62 Nr 10	4470-4800	4418,5-4799,75
	PS (SP)	4487–4809	4422-4808,5
	РТ	4707–4810	brak dostępnych danych
	PAdt (DT), N0.85N1.05O	4440-4802	4433-4801,75
	PAt2 (T2), USBA–DA	4440-4802	4435,25-4802,5
	PG (GR), SP-62 Nr 719	4780-5102	4743,25–5102,5
-	PK, IK Nr 67113	4900–5100	brak dostępnych danych
	PŚr (CALI)	4087–5096	4741,25–5095,75
	PO (EL09), M2.5A0.25B	4780–5101	4751,5–5101,75
	PO (EN10), B2.5A0.25M	4780–5101	4754,25–5101,75
1-3.04.1980	POst (LL3)	4780-5102	4713,5–5101,75
	mPOst	4780–5102	brak dostępnych danych
	PNG (NEGR), SP-62 Nr 719	4780-5102	4746,25–5101,75
	PS (SP)	4780–5101	4778,25–5101,75
	PAdt (DT), USBA–DA–A	4780–5086	4733,5–5086,75
	PAt1 (T1), USBA–DA–A	4780–5086	4737,25–5086,75
	PG (GR), SP-62 Nr 719	5075-5234	5027,25-5233,75
	РК	5075-5225	brak dostępnych danych
	PŚr (CALI)	4078–5230	5026-5229,75
	PO (EL09), M2.5A0.25B	5075-5229	5037–5228,75
	PO (EN10), B2.5A0.25M	5075-5229	5040,75-5228,75
10 21 05 1080	POst (LL3)	5075-5233	5046,25-5232,75
1)-21.03.1900	mPOst	5075-5233	brak dostępnych danych
	PNG (NEGR), SP-62 Nr 719	5075-5234	5046,25-5233,75
	PS (SP)	5075-5229	5041,75-5233,75
	PAdt (DT), USBA–DA–A	5050-5233	5026-5232,75
	PAt1 (T1), USBA–DA–A	5050-5233	5024,5-5232,75
	РТ	5135-5233	brak dostępnych danych

1	2	3	4
	PG (GR), SP-62 Nr 719	5185-5480	5186,25–5479,75
10, 25,09,1090	PK, IK Nr 6703	5220–5450	brak dostępnych danych
	PŚr (CALI)	5236–5470	5236,5-5473,75
	PO (EL09), M2.5A0.25B	5236–5472	5237,25–5472,5
	PO (EN10), B2.5A0.25M	5236–5472	5236,5-5471,75
	POst (LL3)	5236–5473	5235,25-5318,5
19-25.08.1980	mPOst	5236–5473	brak dostępnych danych
	PNG (NEGR), SP-62 Nr 719	5185–5480	5186,25–5479,75
	PS (SP)	5236–5472	5236,25-5479,75
	PAdt (DT), USBA–DA–A	5236–5480	5180,25-6002,75
	PAt1 (T1), USBA–DA–A	5236–5480	brak dostępnych danych
	РТ	5413-5463	brak dostępnych danych
	PG (GR), SP-62 Nr 719	5450-5688	5423,5-5686,75
	PK, IK Nr 6703	5400–5690	brak dostępnych danych
	PŚr (CALI)	5236–5688	5426-5690,75
	PO (EL09), M2.5A0.25B	5450–5685	5416,25-5684,75
	PO (EN10), B2.5A0.25M	5450-5685	5421,25-5684,75
	POst (LL3)	5450-5688	5389,25-5688,5
4-7.10.1980	mPOst	5450-5688	brak dostępnych danych
	PNG (NEGR), SP-62 Nr 719	5450-5688	5426,25-5687,75
	PS (SP)	5450-5685	5439,25-5684,75
	PAdt (DT), USBA–DA–A	5450-5688	brak dostępnych danych
	PAt1 (T1), USBA–DA–A	5450-5688	brak dostępnych danych
	PT	5635-5685	brak dostępnych danych
	PEx	5236–5684	brak dostępnych danych
	PG (GR), SP-62 Nr 719	5650–5869	5611,25-5869,5
	PK, IK Nr 6703	5650-5870	brak dostępnych danych
	PŚr (CALI)	5236-5863	5611,25-5862,75
	mCAL	5763–5863	brak dostępnych danych
0 12 02 1001	PO (EL09), M2.5A0.25B	5650–5866	5624–5865,75
9-13.02.1981	PO (EN10), B2.5A0.25M	5650–5866	5626,25-5865,75
	POst (LL3)	5650–5869	5646,25-5865,75
	PNG (NEGR), SP-62 Nr 719	5650–5869	5645,75-5868,75
	PS (SP)	5650–5866	5627–5867,75
	PT	5819–5869	brak dostępnych danych
	PG (GR), SP-62 Nr 33	5800-6000	5796,25-6001,75
	РК	5675-6000	brak dostępnych danych
	PŚr (CALI), SKO–11 Nr 111	5235–5995	5801,25-5991,75
	PO (EL02), A0.5M0.1N	5800-6006	brak dostępnych danych
	PO (EL03), A1.0M0.1N	5800-6006	brak dostępnych danych
16 20 04 1001	PO (EL09), A2.0M0.5N	5800-6006	5795,5-6007,75
16-28.04.1981	PO (EL14), A4.0M0.5N	5800-6006	brak dostępnych danych
	PO (EL26), A8.0M1.0N	5800-6006	brak dostępnych danych
	PO (EN10), N2.0M0.5A	5800-6006	5796,25-6006,75
	PS (SP)	5235–5995	5801-6009,5
	PT, TEG-60 Nr 403	5823-6004	brak dostępnych danych
	РТ	3000-6000	brak dostępnych danych

1	2	3	4		
	PAdt (DT), N0.85N1.05O	5180-600	brak dostępnych danych		
cd.	PAtl (Tl), SPAK-4	5180-600	brak dostępnych danych		
16-28.04.1981	PAt2 (T2), SPAK-4	5180-600	brak dostępnych danych		
	PAc, USBA–2 Nr DM–21H	5235-6000	brak dostępnych danych		
8.05.1981	PTu, TEG–2 Nr 403	5-5750	19,5–5768,75		
5.07.1981	PEIm	2500-4300	brak dostępnych danych		

PG (GR) – profilowanie gamma, PK – profilowanie krzywizny odwiertu, PŚr (CALI) – profilowanie średnicy, PO (EL09) – sondowanie oporności gradientowe, PO (EN10) – sondowanie oporności potencjałowe, POst (LL3) – prof. oporności sondą 3–elektr. sterowaną, PNNnt (NECN) – profilowanie neutron-neutron nadtermiczne, PS (SP) – profilowanie naturalnych potencjałów, PAdt (DT) – profilowanie akustyczne interwałowe, PAt1 (T1) – profilowanie akustyczne T1, PAt2 (T2) – profilowanie akustyczne T2, PNG (NEGR) – profilowanie neutron–gamma, PAc – pomiar akustyczny stanu zacementowania rur okładzinowych, PO – profilowanie oporności standardowe, PO (EL02) – sondowanie oporności gradientowe, PO (EL03) – sondowanie oporności gradientowe, PO (EL14) – sondowanie oporności gradientowe, PO (EL26) – sondowanie oporności gradientowe, PT – profilowanie temperaturowe, mPOst – mikroprofilowanie oporności sterowanej, PEx – profilowanie ekscentryczności, mCAL – mikroprofilowanie średnicy otworu, PTu – profilowanie temperatury przy ustalonej równowadze termicznej, PEIm – profilowanie elektromagnetyczne

PG (GR) – gamma ray log, PK – deviation log, PŚr (CALI) – caliper, PO (EL09) – lateral electrical log, PO (EN10) – electrical log, POst (LL3) – electrode 3 guard log (laterolog), PNNnt (NECN) – epithermal neutron log, PS (SP) – spontaneous potential log, PAdt (DT) – interval transit time log, PAt1 (T1) – sonic travel time log (t1), PAt2 (T2) – sonic travel time log (t2), PNG (NEGR) – neutron–gamma log, PAc – CBL casing amplitude, PO – electrical log, PO (EL02) – lateral electrical log, PO (EL03) – lateral electrical log, PO (EL03) – lateral electrical log, PO (EL04) – lateral electrical log, PO (EL05) – lateral electrical log, PO (EL0

Tabela 19

Wykaz użytych aparatur pomiarowych i typów kabli w otworze Czaplinek IG 1 wraz z parametrami zarurowania

List of measuring equipment and cable types used in the Czaplinek IG 1 borehole, and casing parameters

		i	r				1
Data wykonania badania Date of measurement	Nazwa aparatury Tool's name	Typ kabla Cable type	Głębokość otworu wg danych wiertniczych Well depth in MD [m]	Średnica nominalna Nominal diameter [mm]	Głębokość zarurowania wg danych wiertniczych Casing depth in driller's [m]	Głębokość zarurowania wg danych geofizycznych Casing depth in logger's [m]	Zewnętrzna średnica rur Casing ext. diameter [cale/in]
21-22.08.1977	AKS/Ł–7 Nr 280	7H4R	467,3	438	119	120	185%
19.09.1977			661,2	438	119	120	185%
27.10.1977	AKS/Ł-7 Nr 208		913	438	119	120	185/8
27–28.01.1978	AKS/Ł-7 Nr 280	KTB-6	1 587	438	119	120	185/8
28-29.03.1978	AKS/Ł-7 Nr 280	7H4R	2 068	308	1587	1583	133/8
19-20.05.1978	AKS/Ł-7 Nr 280	7H4R	2 551	308	1587	1583	133/8
30.06-02.07.1978			2 625	308	1587	1583	135/8
10-13.10.1978	AKS/Ł-7 Nr 280	7H4R	3 857	308	1587	1583	133/8
16–19.11.1978	AKS/Ł-7 Nr 280	7H4R	4 081	308	1587	1583	133/8
14-16.07.1979	AKS/Ł-64 Nr 174		4 521	216	4076	4087	95/8
03-05.11.1979	AKS/Ł-64 Nr 174	7 żyłowy Lyon	4 810	216	4076	4087	95/8
01-03.04.1980	AKS/Ł–7	KTBF-6	5 100	216	4076	4087	95/8
19-21.05.1980	AKS/Ł-7 Nr 1345	KTBF-6	5 236	216	4076	4087	95/8
19-25.08.1980	AKS/Ł-7 Nr 1345	USA-7	5 483	143	5235	5236	65/8
04-07.10.1980	AKS/Ł-7 Nr 1345	USA-7	5 684	143	5235	5236	65/8
09-13.02.1981	AKS/Ł-7 Nr 1345	USA-7	5 869	143	5235	5236	65/8
16-28.04.1981	AKS/Ł-64 Nr 174		6 006	143	5235	5236	65/8
08.05.1981			6 006	143	5235	5236	65/8
05.07.1981			6 006	143	5235	5236	65/8

rzadko obserwowane są kawerny – jedynie w odcinkach o dużej porowatości. Od 1583 do 1861 m występuje duże skawernowanie w utworach ilasto-mułowcowych, dochodzące do 520 mm, a średnia średnica tego odcinka wyniosła ok. 420 mm (przy średnicy nominalnej 308 mm). W interwale 1861–2312,5 m średnia średnica otworu była nieznacznie większa od nominalnej i wyniosła 340 mm. Na odcinku 2312,5–2460 m w kompleksach iłowców i iłowców mułowcowych zaobserwowano silne wypłukanie ścian otworów aż do 620 mm (przy średniej 450 mm). W interwale 2460–2631 m średnica jest dość równa i wynosi średnio 330 mm (nominalna 308 mm). Poniżej tej głębokości rozpoczynają się utwory cechsztynu, w których utrzymuje się reguła, że w solach powiększenie średnicy otworu osiągnęło do 460 mm, a w anhydrytach utrzymuje się na zbliżonym poziomie do nominalnej (308 mm). W interwale 5045–5315 występuje strefa silnego skawernowania dochodząca do 480 mm (przy średnicy nominalnej poniżej 216 mm). Liczne odcinki skawernowania znacząco wpłynęły na stan zacementowania rur w otworze. Bardzo dobre wiązanie cementu z rurami zaobserwowano jedynie w odcinku 1546–1551 m. Dobry stan zacementowania stwierdzono w odcinkach głęb.: 135–168,5; 265–278; 300–380; 437,5–447; 509,5–535; 557–594; 602– 622,5; 1461,5–1470,5; 1512–1524. W pozostałych odcinkach stan zacementowania jest słaby lub zły.

INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Interpretacja uzyskanych krzywych geofizycznych pozwoliła na obliczenie dla wybranych warstw piaskowcowych o potencjale zbiornikowym parametrów zailenia, porowatości i mineralizacji wody złożowej, oraz określenia oporności wody złożowej. Wyniki tych analiz zostały zebrane w tabeli 20. Wytypowane interwały prezentowały najlepsze parametry kolektorskie. Wytypowano jedynie 21 interwałów i to o niewielkiej miąższości (tab. 20). Dowodzi to, że rejon otworu Czaplinek IG 1 charakteryzuje się niekorzystnymi parametrami zbiornikowymi, co zostało również potwierdzone w wynikach badań laboratoryjnych na próbkach pobranych z rdzeni oraz przebiegu prób złożo-

Tabela 20

	-			
Interwał głębokościowy Depth interval [m]	Zailenie Shale volume [%]	Porowatość Porosity [%]	Mineralizacja wody złożowej Formation water mineralization [g/dm ³]	Oporność wody złożowej Formation water resistance [ohmm]
425-430	7	11,0	~3	2,20
477–484	8	11,5	~3	2,20
574,5–595	12	12,6	~3	2,20
638,5-645	10	12,3	~3	2,10
687,5-690,5	12	11,5	~3	2,10
971,5–973,5	28	22,0	14	0,40
1007–1010	22	20,0	12	0,50
1122,5–1125	20	19,0	14	0,10
1675–1677	10	11,7	~30	0,16
1710–1713	10	11,4	45	0,11
1738,5–1743,5	15	12,1	45	0,11
1831,5–1832,5	10	13,6	35	0,14
1864,5–1869	20	12,2	50	0,10
1918,5–1922	15	12,9	60	0,09
2011–2014	15	11,2	100	0,07
2050–2053,5	~30	13,4	85	0,08
2215-2226	12	12,0	150	0,04
2226–2227	15	11,0	150	0,04
4971–4974	~30	12,0	_	0,03
4977,5-4982	28	11,0	150	0,04
4995,5-4999,5	~30	7,0	-	0,045

Wyniki interpretacji parametrów zbiornikowych dla wybranych warstw piaskowca w otworze Czaplinek IG 1 Interpretation results of reservoir parameters for selected sandstone lavers in the Czaplinek IG 1 borehole

wych w wytypowanych horyzontach. Wśród kompleksów skalnych należących do jury i triasu dominują utwory ilaste, a warstwy piaskowcowe wykształcone są jedynie w postaci cienkich wkładek, w większości przypadków silnie zailonych (fig. 49). Podobnie w utworach cechsztynu nie zarejestrowano cech kolektorskich; nawet pomiary w dolomicie głównym nie osiągnęły pozytywnych parametrów. W piaskowcach jury i retyku zailenie wyniosło ok. 10%, porowatość ok. 11%, a mineralizacja wody złożowej wyniosła ok. 3 g/dm³. W kajprze i wapieniu muszlowym średnia mineralizacja wynosi ok. 14 g/dm³. W pstrym piaskowcu mineralizacja wody złożowej dość szybko rośnie z 40 g/dm³ w górnej partii, przez 73 g/dm³ w partii środkowej, po 150 g/dm³ w dolnej części środkowego pstrego piaskowca. Pokrywa się

Fig. 49. Wyniki interpretacji zailenia w otworze Czaplinek IG 1

 $GR-profilowanie \ gamma, \ J1-dolna \ jura, \ T3-trias \ górny, \ T2-trias \ środkowy, \ T1-trias \ dolny, \ Pz-perm \ cechsztyn, \ Pr-perm \ czerwony \ spągowiec, \ C-karbon$

The results of shale volume interpretation in the Czaplinek IG 1 borehole

 $GR-gamma\ ray\ log,\ J1-Lower\ Jurassic,\ T3-Upper\ Triassic,\ T2-Middle\ Triassic,\ T1-Lower\ Triassic,\ Pz-Permian\ Zechstein,\ Pr-Permian\ Rotliegend,\ C-Carboniferous$

to z wynikami opróbowania w spągu środkowego pstrego piaskowca (1686-1709 m) próbnikiem złożowym, gdzie mineralizacja wody osiągnęła 174 g/dm3. Zawodnienie horyzontów w badanych warstwach wynosi 100%. Najlepszymi wartościami porowatości charakteryzują się piaskowce kajpru i retyku, gdzie porowatość wynosi ok. 20%. Dla pozostałych piaskowców porowatość kształtuje się w okolicach 11%. Najlepsze właściwości kolektorskie posiada miąższa warstwa piaskowca leżącą w dolnej części środkowego pstrego piaskowca (2215-2227 m) - jest to tak zwane ogniwo piaskowców drawskich należące do formacji pomorskiej. Piaskowiec ten leży wśród iłowców, przez co jest dobrze izolowany od sąsiednich utworów. Wyróżnia się on bardzo dobrą przepuszczalnością (powyżej 20 mD). W utworach karbonu, w szczególności w kompleksie z Nadarzyc, zauważalny jest bardzo niski współczynnik porowatości całkowitej w zakresie kilku procent (3-16%) ze średnią 7,3%, i medianą 6%. Porowatość efektywna jest ponad dwa razy niższa na skutek wysokiego zailenia i wysokiego współczynnika wody związanej, i zawiera się w przedziale 0-8% ze średnią 3%, oraz medianą 1,7% (fig. 50). Wyniki te dobrze współgrają z pomiarami laboratoryjnymi wykonanymi na materiale rdzeniowym z tego interwału. Przepuszczalność wyliczona według formuły Coatesa wyniosła od 0,01 do 10 mD ze średnią wartością 1,2 mD, a medianą 0,4 mD. Wyniki laboratoryjne rdzeni w tym interwale wykazywały przepuszczalność poniżej 0,5 mD.

Profilowanie krzywizny

Pomiary inklinometrem wykonywano odcinkowo w całym otworze aż do głęb. 6000 m. Otwór do 400 metrów był prosty, choć aparatura od głęb. 100 m wykazywała krzywiznę o wartości 0°30', lecz niemożliwe było zmierzenie azymutu. Wartość krzywizny mieściła się w granicach błędu wykorzystanego urządzenia pomiarowego, przez co można uznać, że otwór na tym odcinku ma przebieg pionowy. Od 400 do 525 m obserwowany jest stopniowy wzrost krzywizny od 0,3° do 2°, i azymucie odpowiednio od 100° do 135°. W interwale 525-905 m odchylenie wynosi 2°30', a azymut od 60° do 115°. Poniżej 905 m następuje stopniowe zmniejszenie krzywizny >2°. Na głęb. 2650 m krzywizna wynosi 0°. Poniżej tej głębokości do 4080 m otwór ponownie ma przebieg pionowy. Całkowite odejście na tym odcinku osi odwiertu od pionu wyniosło 33,5 m w azymucie 109°. Dalej do głęb. 5230 m obserwowano niewielką krzywiznę o wartościach od 0° do 4,3°, i azymucie odpowiednio od 0° do 250°. Od 5240 m kąt skrzywienia wzrasta i jest powyżej 5°, z maksymalną wartością 12° (przy azymucie 320°) osiągniętą w interwale 5750-5825 m. Poniżej głęb. 5825 m krzywizna maleje, żeby na głęb. 6000 m osiągnąć kąt 6° i azymut 340°.

Profilowanie temperatur

Pomiary temperatur wykonano w dniu 8.05.1981 r. w interwale głębokościowym 5–5750 m. W oparciu o wyniki tego pomiaru określono wartość stopnia i gradientu geotermicznego dla poszczególnych interwałów głębokościowych (tab. 21). Średni gradient geotermiczny w interwale 5–5750 m wyniósł 1,8°C/100 m, zaś średni stopień geotermiczny 55,44 m/°C. Wykonane zostały również pomiary temperatur w celu wyznaczenia temperatury spodu otworu. Temperatura na spodzie otworu wyniosła 141°. Zestawienie pozostałych pomiarów przedstawiono w tabeli 22.

Profilowanie gęstości i zawartości węgla organicznego

Na podstawie delty akustycznej oraz wyliczonego zailenia z wykorzystaniem formuły zaproponowanej przez Gyllenhammar (2020) określono syntetyczną gęstość skał.

Tabela 21

Wyniki obliczenia stopnia geotermicznego i gradientu geotermicznego w otworze Czaplinek IG 1 The results of calculation of the geothermal degree and geothermal gradient in the Czaplinek IG 1 borehole

Interwał głębokościowy Depth interval [m]	Stopień geotermiczny Geothermal degree [m/°C]	Gradient geotermiczny Geothermal gradient [°C/100m]
0-211	40,0	2,5
211-626	143,0	0,7
626–1092	38,0	2,6
1092–1253,5	38,0	2,6
1253,5–2063	37,0	2,7
2603-2921	50,0	2,0
2921–3244	66,6	1,5
3244–3881	71,4	1,4
3881-4106	71,4	1,4
4106–5045	41,7	2,4
5045-5300	31,2	3,2
5300-5750	36,0	2,8

Fig. 50. Zestawienie wybranych unormowanych pomiarów geofizyki wraz z wyliczoną porowatością i przepuszczalnością w otworze Czaplinek IG 1 w utworach formacji z Nadarzyc (karbon)

CALI - profilowanie średnicy otworu (szrafura kratki - strefa wymycia/skawernowania, szrafura kropki - strefa "mud cake" filtratu płuczkowego), GR - profilowanie gamma, DT - profilowanie akustyczne interwałowe

Summary of selected standardized well logs with calculated porosity and permeability in the Czaplinek IG 1borehole in the Nadarzyce Formation (Carboniferous)

CALI - caliper (grate pattern - washout/caverning zone, dot pattern - zone of mud cake), GR - gamma ray log, DT - interval transit time log (sonic)

Tabela 22

Wartości temperatury maksymalnej (BHT) w otworze Czaplinek IG 1

Głębokość / Depth [m]	4531	4810	5100	5233	5463	5685	5869	6006
Temperatura / Temperature [°C]	95,5	102	117,3	122,5	132,8	139	141,2	141

Bottom Hole Temperature (BHT) in the Czaplinek IG 1 borehole

Wyliczone wartości dobrze pokrywają się z pomiarami laboratoryjnymi (Poprawa, Kiersnowski, 2010) otrzymanymi z próbek pobranych z rdzeni (fig. 51). Na podstawie krzywej gęstości, krzywej akustycznej i krzywej oporności skonstruowano krzywą zawartości węgla organicznego w otworze (fig. 51), zgodnie z formułą przedstawioną przez Ridera (2000). Otrzymane wyniki dowodzą, że zawartość węgla organicznego w całym profilu otworu jest bardzo niska, jedynie w górnej partii, szczególnie w kompleksie węgli brunatnych, przekracza znacząco 10%.

Profilowanie przewodności cieplnej

W 2011 roku J. Szewczyk wykonał dla 60 otworów z obszaru basenu polskiego, w tym dla otworu Czaplinek IG 1, wyliczenia przewodności cieplnej w oparciu o swój autorski system Geoflog (Szewczyk, w: Poprawa i in., 2011). Metoda ta oprócz uwzględnienia litologii ośrodka (w tym zailenia) brała również pod uwagę wyliczoną z krzywych porowatość całkowitą oraz rodzaj medium wypełniającego pory. Porównanie wyników laboratoryjnych oznaczeń przewodności cieplnej próbek z otworu Czaplinek IG 1 na podstawie badań metodą klasyczną oraz metodą skanera optycznego z wynikami obliczeń tego parametru metodą geofizyczną dały bardzo dobra korelację. Strumień cieplny dla otworu Czaplinek IG 1 na podstawie krzywych geofizycznych wyniósł 68,3 mWm⁻² (Szewczyk, w: Poprawa i in., 2011). Szczegółowe wyniki zostały zebrane w dokumentacji Poprawy i innych (2011, Projekt: "Historia oraz geneza zdarzeń termicznych w basenie polskim i jego osadowym podłożu - ich znaczenie dla rekonstrukcji procesów generowania weglowodorów"), dostępnej w Narodowym Archiwum Geologicznym.

Fig. 51. Wyniki interpretacji gęstości i całkowitej zawartości węgla organicznego w otworze Czaplinek IG 1

The results of density and total organic carbon interpretation in the Czaplinek IG 1 borehole

Sylwia KIJEWSKA

SEJSMIKA W REJONIE OTWORU CZAPLINEK IG 1

Otwór Czaplinek IG 1 w planie powierzchni podkenozoicznej (piętro permsko-mezozoiczne) jest zlokalizowany w NW części antyklinorium śródpolskiego, a dokładniej w środkowej części segmentu pomorskiego. Pod pokrywą permsko-mezozoiczną otwór znajduje się na obszarze platformy epikaledońskiej (Żelaźniewicz i in., 2011).

W promieniu 10 km od otworu Czaplinek IG 1 od 1979 roku wykonano blisko 20 profili sejsmicznych. Natomiast w odległości ok. 4 km od otworu przebiega refrakcyjny profil TTZ wykonany w 1993 r. w ramach Programu Głębokich Sondowań Sejsmicznych. W bezpośrednim sąsiedztwie otworu zlokalizowano jednak tylko 4 profile i można uznać, że obszar jest słabo rozpoznany sejsmicznie.

W analizie budowy strukturalnej w rejonie otworu Czaplinek IG 1 wykorzystano profil WB160181 (fig. 4) wykonany w 1981 roku przez Przedsiębiorstwo Badań Geofizycznych w ramach tematu sejsmicznego Piła–Bydgoszcz. Obraz falowy analizowanego profilu ma zadowalającą jakość, ale rozdzielczość danych nie jest wysoka. Wpływ na jakość i rozdzielczość danych ma stosowana ówcześnie metodyka badań, która była mocno ograniczona możliwościami technicznymi.

W ramach interpretacji wyróżniono następujące horyzonty sejsmiczne (stropy): karbonu, czerwonego spągowca, cechsztynu, pstrego piaskowca, wapienia muszlowego, kajpru i jury dolnej.

Identyfikacja i korelacja horyzontu wyznaczającego strop karbonu jest niejednoznaczna, a wyznaczony przebieg jest hipotetyczny (fig. 4, linia niebieska przerywana). Jest to spowodowane obecnością wysokoprędkościowych utworów cechsztynu (sole i anhydryty), które tłumią znaczną część energii fal sejsmicznych i w znacznym stopniu wpływają na zapis refleksów pochodzących od głębiej zlokalizowanych horyzontów. Zalegające na karbonie osady czerwonego spągowca stanowią miąższy pakiet naprzemianległych piaskowców i mułowców, a miejscami również iłowców. W obrębie warstwy nie zaobserwowano żadnych struktur, jednak może to wynikać z wpływu wyżejległych utworów ewaporatowych, które ograniczają możliwości rejestracji obrazu sejsmicznego. Ogólnie jednak budowa strukturalna, jaką prezentuje cały przekrój sejsmiczny, nie jest skomplikowana, w tym nie zaznaczają się uskoki. Jedynie w południowej i centralnej części profilu widoczne jest znaczne zwiększenie miąższości osadów cechsztynu. Interpretacja przekroju wskazuje, że ruchy soli cechsztyńskich, indukowane najprawdopodobniej w trakcie wyniesienia antyklinorium śródpolskiego (Krzywiec, 2002; por. Becker, ten tom), uformowały poduszkę solną, która została przewiercona w północnym skrzydle struktury otworem Czaplinek IG 1. Pozostałe warstwy mezozoiczne do jury dolnej układają się antyklinalnie, zgodnie z ukształtowaniem stropu permu, bez widocznych zmian miąższości, które mogłyby wskazywać na czas powstania poduszki solnej. Wyżej zdeponowane osady uległy silnej erozji polaramijskiej, która w tym rejonie sięgnęła osadów jurajskich. Można zatem stwierdzić, że struktura antyklinalna nie powstała wcześniej niż pod koniec wczesnej jury. Miąższość zinterpretowanych warstw triasu jest zróżnicowana. Największe miąższości ma pstry piaskowiec, a w jego stropie zarejestrowano nieco silniejsze odbicia pochodzące od wapieni marglistych i piaskowców. Najmniej miąższy jest wapień muszlowy, który zaczynają margle i wapienie, a kończą iłowce z pakietami piaskowców. Horyzonty sejsmiczne zapisały się tu wyraźnie. Podobnie wygląda sytuacja kajpru, który zbudowany jest głównie z naprzemianległych iłowców i piaskowców.

W stropie osadów jurajskich w analizowanym otworze stwierdzono piaskowiec. Powyżej natomiast zdeponowane są naprzemianległe osady mułowców, piasku, iłowców i gliny. Granica pomiędzy warstwami została wyznaczona po maksimum amplitudy i równocześnie stanowi regionalną powierzchnię erozyjną.

Kinga BOBEK

WYNIKI POMIARÓW PRĘDKOŚCI ŚREDNICH

Pomiary pionowych profilowań sejsmicznych w otworze Czaplinek IG 1 zostały wykonane w dniach 06–08.11 1979 roku przez Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego z siedzibą w Toruniu. Do wykonania pomiarów zastosowano aparaturę typu POISK SK z sondą 6-elementową. Pomierzone wartości zebrano z zakresu głęb. 549–3924 m w 15-metrowych interwałach głębokościowych, co odpowiada poziomom stratygraficznym od jury dolnej do spągowych serii cechsztynu. Prace prowadzono z trzech punków wzbudzenia (PW) rozmieszczonych następująco:

PW1	d = 150 m	$A = 140^{\circ}N = 0,0 m$	g = 21 m
PW2	d = 150 m	$A = 265^{\circ}N = 0,5 m$	g = 18 m
PW3	d = 150 m	$A = 360^{\circ}N = -0.5 \text{ m}$	g = 15 m

gdzie:

- d odległość punktu wzbudzenia od głębokiego odwiertu;
- A azymut mierzony w punkcie głębokiego odwiertu w kierunku PW;
- N-niwelacja PW w stosunku do wylotu głębokiego odwiertu;
- g średnia głębokość strzelania.

W celu skontrolowania głębokości strzelania oraz momentu wybuchu, na kolejnych punktach strzałowych ustawiono geofony korekcyjne. Po korektach pomiarów i wyeliminowaniu zakłóceń na sejsmogramach przeprowadzono analizę jakości uzyskanych wyników na podstawie dokładności i pewności odczytanych czasów zerwań pierwszych impulsów oraz intensywności fal odbitych. Wysokość wylotu otworu wynosi 125 m, natomiast do obliczeń prędkości średnich przyjęto poziom odniesienia równy 0 m n.p.m. Po wykonaniu pomiarów i zebraniu odpowiednich odczytów, wykonano redukcję głębokości do poziomu odniesienia wykorzystując dane na temat głębokości punktu pomiarowego, głębokości zanurzenia geofonu oraz niwelacji poszczególnych punktów strzałowych. W następnym kroku obliczeniowym wprowadzono również poprawki czasowe uwzględniające zmiany głębokości strzelania dla poszczególnych pomiarów w stosunku do poziomu odniesienia wspólnego dla wszystkich punktów wzbudzenia.

W kolejnym etapie obliczeń wykonana została redukcja czasu poprawionego do pionu dla każdego z punktów wzbudzania: t_{r1} , t_{r2} oraz t_{r3} . Redukcję czasu wykonano przy założeniu jednorodności ośrodka skalnego od punktu wzbudzenia do głębokości zanurzenia geofonu. Taki układ oznacza, że spodziewany przebieg promienia sejsmicznego jest prostoliniowy, a czas można zredukować korzystając z następującego równania:

$$t_r = \frac{h_r}{\sqrt{h_r^2 + d^2}} \cdot t_p$$

gdzie:

- t_r czas zredukowany
- h_r głębokość punktu pomiarowego zredukowana do poziomu odniesienia
- d odległość punktu wzbudzenia od głębokiego odwiertu dla danego PW

Uzyskane wartości h_r oraz t_r finalnie posłużyły do obliczenia prędkości średnich (V_{ir}) zgodnie ze wzorem:

$$V_{\dot{s}r} = \frac{h_r}{t_r}$$

Otrzymane wartości obliczonej prędkości średniej V_{sr} oraz wejściowych wartości czasów zredukowanych t_{rl} , t_{r2} , t_{r3} wraz z ich wartością średnią oznaczoną symbolem *tr* zestawiono w tabeli 23. Obliczenia prowadzono za pomocą odpowiedniego programu komputerowego opracowanego w PIG--PIB przez Stefana Wronicza, a uzyskane wyniki zapisano w plikach tekstowych w formacie .las.

Zestaw otrzymanych wyników stanowił podstawę konstrukcji krzywych prędkości średnich (fig. 52A) oraz hodografu pionowego (fig. 52B). Krzywa prędkości średnich została dodatkowo wygładzona metodą średniej ruchomej, w celu zredukowania wpływu wartości odstających. Uzyskany hodograf pionowy wskazuje na liniową zależność między wzrostem głębokości a czasem rejestracji.

Po przeprowadzeniu powyższych obliczeń wyznaczane są poszczególne kompleksy prędkościowe, a w szczególności ich wartości średnie poprzez zastosowanie procedury wygładzenia pomiarów czasu. Zastosowanie wygładzania wyników uzyskanych z pomiarów pozwala na zniwelowanie wpływu przypadkowych skoków otrzymanych wartości spowodowanych błędami pomiarowymi. Krzywe wygładzone służą do wyznaczenia stref o maksymalnej zmienności wartości prędkości średnich, które odpowiadają granicom poszczególnych kompleksów prędkościowych.

Krzywe prędkości zostały obliczone poprzez wyrównanie otrzymanych czasów zredukowanych do pionu, stosując w tym celu splot z filtrem trójkątnym dobranym odpowiednio do wartości uzyskanych w rozpatrywanym otworze. Przetwarzanie to w pierwszym etapie polegało na przeliczeniu czasu i prędkości do poziomu odniesienia i interpolacji otrzymanych wartości dla stałych przedziałów głębokości, co 20 m (od 20 do 3340 m). Filtry zastosowane w kolejnym kroku obliczeniowym pozwoliły z kolei na usunięcie

Fig. 52. Wykres prędkości średnich (A) i hodograf pionowy (B) (poziom odniesienia 0 m n.p.m.)

 t_r – średni czas zredukowany, V_{sr} – prędkość średnia, h – głębokość Q – czwartorzęd, Ng – neogen, Pg – paleogen, J₁ – jura dolna, T₃ – trias

górny, T_2 – trias środkowy, T_1 – trias dolny, PZ4 – cechsztyn 4, PZ3 – cechsztyn 3, PZ2 – cechsztyn 2, PZ1 – cechsztyn 1

Average seismic velocity (A) and travel-time curve (B) (reference level 0 m a.s.l.)

 t_r - average reduced time, V_{sr} - average velocity, h - depth

Q – Quaternary, Ng – Neogene, Pg – Paleogene, $J_{_1}$ – Lower Jurassic, $T_{_3}$ –Upper Triassic, $T_{_2}$ – Middle Triassic, $T_{_1}$ – Lower Triassic, PZ4 –

Zechstein 4, PZ3 – Zechstein 3, PZ2 – Zechstein 2, PZ1 – Zechstein 1

Tabela 23

Zestawienie wartości czasów pomierzonych z trzech punków wzbudzenia (t_{r1}, t_{r2} i t_{r3}), średniej wartości czasu zredukowanego (t_r) oraz odpowiadającej mu wartości prędkości średniej (V_{sr}) dla danej glębokości (h)

Time measured from three shot points $(t_{r1}, t_{r2} \text{ and } t_{r3})$, reduced time (t_r) and values of the average velocity (V_{sr}) for a measured depth (h)

<i>h</i> [m]	<i>t</i> _{r1} [s]	<i>t</i> _{r2} [s]	$t_{r3}[s]$	<i>t</i> _r [s]	$V_{\rm sr}$ [m/s]	<i>h</i> [m]	<i>t</i> _{r1} [s]	<i>t</i> _{r2} [s]	$t_{r3}[s]$	<i>t</i> _r [s]	$V_{\rm śr}$ [m/s]
1	2	3	4	5	6	1	2	3	4	5	6
549	0,000	0,193	0,194	0,194	2868,333	1209	0,377	0,374	0,377	0,376	3217,573
564	0,000	0,196	0,197	0,197	2872,814	1224	0,380	0,378	0,381	0,380	3223,736
594	0,000	0,205	0,205	0,205	2880,069	1239	0,384	0,382	0,384	0,383	3231,737
609	0,000	0,210	0,212	0,211	2900,214	1254	0,388	0,386	0,388	0,387	3239,327
624	0,000	0,213	0,216	0,215	2914,033	1269	0,000	0,390	0,391	0,391	3246,223
639	0,000	0,216	0,219	0,218	2921,363	1284	0,395	0,394	0,395	0,395	3254,061
654	0,000	0,223	0,222	0,223	2932,743	1299	0,400	0,397	0,399	0,399	3261,773
669	0,000	0,229	0,227	0,228	2939,791	1314	0,403	0,400	0,402	0,402	3267,447
699	0,000	0,238	0,237	0,238	2943,686	1329	0,406	0,405	0,406	0,406	3273,294
714	0,000	0,242	0,243	0,243	2949,832	1344	0,411	0,409	0,410	0,410	3279,562
729	0,000	0,246	0,247	0,247	2958,284	1359	0,414	0,413	0,415	0,414	3284,625
744	0,000	0,249	0,252	0,251	2965,037	1374	0,418	0,417	0,418	0,418	3291,152
759	0,000	0,254	0,256	0,255	2971,643	1389	0,422	0,420	0,422	0,421	3300,180
774	0,000	0,260	0,000	0,260	2973,520	1404	0,425	0,423	0,425	0,424	3310,118
789	0,000	0,265	0,265	0,265	2970,844	1419	0,428	0,427	0,426	0,427	3319,920
804	0,000	0,271	0,271	0,271	2967,039	1434	0,431	0,430	0,430	0,430	3327,707
819	0,000	0,000	0,277	0,277	2963,292	1449	0,435	0,434	0,433	0,434	3335,194
834	0,283	0,281	0,282	0,282	2961,635	1461	0,439	0,438	0,437	0,438	3341,515
849	0,288	0,286	0,287	0,287	2962,196	1479	0,443	0,442	0,441	0,442	3346,717
864	0,291	0,291	0,291	0,291	2966,860	1494	0,447	0,444	0,445	0,445	3352,318
879	0,297	0,295	0,296	0,296	2974,712	1509	0,450	0,448	0,450	0,449	3359,702
894	0,301	0,299	0,300	0,300	2983,075	1524	0,453	0,452	0,453	0,453	3367,104
909	0,304	0,302	0,304	0,303	2989,899	1539	0,456	0,456	0,457	0,456	3373,899
924	0,309	0,306	0,309	0,308	2997,241	1554	0,460	0,458	0,460	0,459	3382,065
939	0,313	0,311	0,314	0,313	3004,354	1569	0,464	0,462	0,463	0,463	3389,631
954	0,318	0,316	0,318	0,317	3011,172	1584	0,467	0,465	0,466	0,466	3398,057
969	0,322	0,320	0,322	0,321	3018,467	1599	0,470	0,469	0,470	0,470	3406,356
984	0,325	0,324	0,325	0,325	3027,447	1614	0,474	0,472	0,472	0,473	3415,510
999	0,330	0,327	0,330	0,329	3039,293	1629	0,477	0,474	0,476	0,476	3423,588
1014	0,333	0,331	0,334	0,333	3051,505	1644	0,479	0,477	0,480	0,479	3432,516
1029	0,336	0,335	0,336	0,336	3064,042	1659	0,483	0,481	0,483	0,482	3440,380
1044	0,340	0,338	0,340	0,339	3078,755	1674	0,486	0,484	0,486	0,485	3447,192
1059	0,343	0,341	0,343	0,342	3094,400	1689	0,491	0,488	0,488	0,489	3453,430
1074	0,346	0,345	0,345	0,345	3109,756	1704	0,494	0,492	0,492	0,493	3459,586
1089	0,349	0,348	0,348	0,348	3126,041	1719	0,497	0,495	0,496	0,496	3465,178
1104	0,352	0,351	0,351	0,351	3142,047	1734	0,501	0,498	0,500	0,500	3471,613
1119	0,355	0,353	0,355	0,354	3155,430	1749	0,505	0,501	0,503	0,503	3477,971
1134	0,358	0,356	0,358	0,357	3168,557	1764	0,508	0,504	0,506	0,506	3483,333
1149	0,362	0,361	0,362	0,362	3181,434	1779	0,510	0,508	0,511	0,510	3489,528
1164	0,365	0,364	0,365	0,365	3191,761	1794	0,515	0,512	0,514	0,514	3496,991
1179	0,368	0,367	0,368	0,368	3200,144	1809	0,517	0,516	0,517	0,517	3503,906
1194	0,373	0,370	0,373	0,372	3209,528	1824	0,519	0,518	0,520	0,519	3510,746

Tabela 23 cd.

1	2	3	4	5	6
2529	0,665	0,665	0,666	0,665	3800,291
2544	0,668	0,668	0,670	0,669	3806,057
2559	0,671	0,671	0,672	0,671	3810,639
2574	0,675	0,674	0,674	0,674	3815,176
2589	0,678	0,678	0,678	0,678	3820,049
2604	0,682	0,680	0,681	0,681	3823,753
2619	0,685	0,683	0,684	0,684	3827,417
2634	0,688	0,687	0,688	0,688	3831,424
2649	0,691	0,690	0,691	0,691	3835,389
2664	0,694	0,693	0,695	0,694	3838,948
2679	0,697	0,697	0,697	0,697	3841,027
2694	0,701	0,700	0,700	0,700	3842,349
2709	0,706	0,704	0,706	0,705	3843,287
2724	0,710	0,708	0,709	0,709	3843,838
2739	0,714	0,712	0,712	0,713	3845,083
2754	0,717	0,716	0,715	0,716	3848,482
2769	0,719	0,718	0,719	0,719	3852,214
2784	0,721	0,721	0,723	0,722	3856,275
2664	0,694	0,693	0,695	0,694	3838,948
2679	0,697	0,697	0,697	0,697	3841,027
2694	0,701	0,700	0,700	0,700	3842,349
2709	0,706	0,704	0,706	0,705	3843,287
2724	0,710	0,708	0,709	0,709	3843,838
2739	0,714	0,712	0,712	0,713	3845,083
2754	0,717	0,716	0,715	0,716	3848,482
2769	0,719	0,718	0,719	0,719	3852,214
2784	0,721	0,721	0,723	0,722	3856,275
2799	0,725	0,725	0,725	0,725	3861,363
2814	0,728	0,728	0,729	0,728	3866,406
2829	0,730	0,731	0,731	0,731	3870,707
2844	0,733	0,734	0,733	0,733	3874,278
2859	0,738	0,736	0,737	0,737	3878,167
2874	0,742	0,739	0,742	0,741	3881,837
2889	0,745	0,743	0,000	0,744	3882,530
2904	0,748	0,745	0,000	0,747	3883,075
2919	0,752	0,000	0,000	0,752	3884,639
2949	0,760	0,759	0,760	0,760	3885,495
2964	0,764	0,761	0,763	0,763	3885,463
2979	0,766	0,765	0,768	0,766	3887,323
2994	0,770	0,768	0,771	0,770	3889,977
3009	0,774	0,772	0,774	0,773	3892,268
3024	0,776	0,776	0,777	0,776	3894,876
3039	0,780	0,779	0,780	0,780	3897,463
3054	0,783	0,783	0,783	0,783	3900,361
3069	0,786	0,786	0,787	0,786	3903,232
3084	0,790	0,789	0,790	0,790	3906,736

	-			_	-
1	2	3	4	5	6
1839	0,522	0,521	0,524	0,522	3518,856
1854	0,526	0,525	0,527	0,526	3527,758
1869	0,529	0,527	0,531	0,529	3534,774
1884	0,531	0,530	0,533	0,531	3542,590
1899	0,535	0,533	0,537	0,535	3551,652
1914	0,538	0,535	0,540	0,538	3560,179
1929	0,540	0,538	0,543	0,540	3568,164
1944	0,543	0,542	0,546	0,544	3576,947
1959	0,546	0,545	0,548	0,546	3584,332
1974	0,550	0,547	0,551	0,549	3591,191
1989	0,553	0,551	0,555	0,553	3598,839
2004	0,556	0,554	0,558	0,556	3605,109
2019	0,559	0,557	0,560	0,559	3611,729
2034	0,563	0,561	0,563	0,562	3619,140
2049	0,565	0,563	0,567	0,565	3627,111
2064	0,568	0,566	0,570	0,568	3633,936
2079	0,572	0,569	0,000	0,571	3641,544
2094	0,575	0,572	0,575	0,574	3648,228
2109	0,577	0,576	0,578	0,577	3655,258
2124	0,580	0,579	0,582	0,580	3661,160
2139	0,583	0,582	0,584	0,583	3668,045
2154	0,586	0,586	0,587	0,586	3674,861
2169	0,588	0,589	0,590	0,589	3682,027
2184	0,592	0,591	0,593	0,592	3688,292
2199	0,594	0,595	0,596	0,595	3694,909
2214	0,598	0,598	0,599	0,598	3700,633
2229	0,601	0,600	0,603	0,601	3706,295
2244	0,604	0,603	0,607	0,605	3712,302
2259	0,608	0,606	0,609	0,608	3718,253
2274	0,611	0,608	0,612	0,610	3723,337
2289	0,613	0,612	0,616	0,614	3728,371
2304	0,617	0,616	0,619	0,617	3733,749
2319	0,621	0,619	0,622	0,621	3738,262
2334	0,623	0,622	0,625	0,623	3741,938
2349	0,626	0,626	0,628	0,627	3747,160
2364	0,631	0,629	0,632	0,631	3751,547
2379	0,633	0,631	0,635	0,633	3755,483
2394	0,637	0,636	0,638	0,637	3759,378
2409	0,640	0,639	0,641	0,640	3764,803
2424	0,643	0,642	0,645	0,643	3769,385
2439	0,646	0,645	0,647	0,646	3774,712
2454	0,649	0,648	0,650	0,649	3778,832
2469	0,652	0,651	0,654	0,652	3782,912
2484	0,656	0,655	0,658	0,656	3786,938
2499	0,659	0,660	0,660	0,660	3790,919
2514	0,661	0,663	0,663	0,662	3794,860
		,	,		,

6

Tabela 23 co	1.
--------------	----

1	2	3	4	5	6
3519	0,879	0,879	0,882	0,880	3998,244
3534	0,883	0,882	0,885	0,883	4000,145
3549	0,885	0,887	0,889	0,887	4001,120
3564	0,889	0,890	0,893	0,891	4002,685
3579	0,893	0,894	0,895	0,894	4004,237
3594	0,895	0,897	0,899	0,897	4005,338
3609	0,898	0,900	0,903	0,900	4006,581
3624	0,903	0,000	0,906	0,905	4008,105
3639	0,906	0,909	0,909	0,908	4009,320
3654	0,909	0,912	0,912	0,911	4010,231
3669	0,912	0,915	0,916	0,914	4012,452
3684	0,917	0,918	0,919	0,918	4014,516
3699	0,920	0,920	0,922	0,921	4016,563
3714	0,925	0,925	0,923	0,924	4018,595
3729	0,927	0,928	0,927	0,927	4020,331
3744	0,929	0,931	0,932	0,931	4021,188
3759	0,935	0,934	0,935	0,935	4023,181
3774	0,939	0,938	0,938	0,938	4026,011
3789	0,941	0,940	0,941	0,941	4029,396
3804	0,943	0,942	0,943	0,943	4033,906
3819	0,945	0,945	0,946	0,945	4039,816
3834	0,947	0,000	0,949	0,948	4045,414
3849	0,950	0,949	0,951	0,950	4049,848
3864	0,953	0,952	0,953	0,953	4054,823
3879	0,956	0,000	0,956	0,956	4058,925
3894	0,958	0,958	0,958	0,958	4061,874
3909	0,962	0,961	0,962	0,962	4063,347
3924	0,965	0,965	0,000	0,965	4065,285

-	-			e	Ů
3099	0,792	0,793	0,793	0,793	3910,543
3114	0,795	0,796	0,795	0,795	3914,650
3129	0,798	0,798	0,799	0,798	3919,382
3144	0,801	0,801	0,802	0,801	3924,570
3159	0,803	0,804	0,805	0,804	3929,558
3174	0,807	0,806	0,000	0,807	3934,189
3189	0,810	0,809	0,809	0,809	3939,113
3204	0,813	0,813	0,812	0,813	3944,001
3219	0,815	0,816	0,815	0,815	3947,728
3234	0,817	0,819	0,818	0,818	3951,263
3249	0,822	0,821	0,822	0,822	3955,096
3264	0,824	0,825	0,825	0,825	3958,260
3279	0,827	0,828	0,828	0,828	3961,076
3294	0,830	0,831	0,832	0,831	3964,826
3309	0,833	0,834	0,835	0,834	3967,919
3324	0,836	0,836	0,838	0,837	3970,358
3339	0,839	0,840	0,842	0,840	3972,622
3354	0,843	0,844	0,845	0,844	3974,708
3369	0,847	0,000	0,848	0,848	3976,146
3384	0,849	0,851	0,852	0,851	3977,884
3399	0,854	0,853	0,855	0,854	3979,921
3414	0,857	0,857	0,858	0,857	3982,099
3429	0,860	0,860	0,862	0,861	3984,412
3444	0,863	0,863	0,866	0,864	3986,708
3459	0,866	0,866	0,869	0,867	3988,683
3474	0,870	0,870	0,871	0,870	3991,555
3489	0,873	0,874	0,875	0,874	3994,106
3504	0,875	0,876	0,878	0,876	3996,333

4

3

przypadkowych odchyleń wartości wynikających z niedokładności pomiaru oraz zaokrąglenie otrzymanych wartości czasu pomierzonego do 1 ms przy pierwszym wygładzeniu. W wyniku powtarzania wymienionych operacji zaokrąglane są załamania hodografu odpowiadające zmianom prędkości w kolejnych warstwach. Zbiory danych, powstałe po zastosowaniu opisanej procedury i dodatkowe obejmujące przetworzone czasy pomiarów po redukcji do poziomu odniesienia, w kolejnym etapie posłużyły do wyznaczenia odpowiadających im prędkości średnich.

Wymienione wyżej informacje obejmujące wartości filtrów wybrane dla tego otworu oraz pliki .las z wymienionymi wyżej zbiorami danych, zawarte są w banku danych prędkościowych utworzonych w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten znajduje się obecnie w CBDG.

Wykryte różnice czasów pomiędzy kolejnymi wygładzeniami spowodowane są zmianami prędkości fali sejsmicznej w kolejnych warstwach, związanymi ze zmiennością litologiczną poszczególnych kompleksów. Zjawisko to wykorzystano w celu wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych różnic czasu wygładzonego n i n + 1 razy. Granice te wyznaczono poprzez obliczenie maksymalnych gradientów średniej prędkości fali. Otrzymane wartości prędkości średniej w interwałach pomiędzy kolejnymi punktami przegięcia odpowiadają uśrednionym wartościom kompleksów o prędkościach istotnie różnych od tych uzyskanych dla warstw sąsiednich.

Wszystkie wymienione powyżej obliczenia oraz graficzna prezentacja wyników zostały wykonane z wykorzystaniem przygotowanego w tym celu modułu obliczeniowego.

Wyniki wymienionych wyżej obliczeń zawierające zestaw wartości prędkości wygładzonych (V_w) , prędkości interwałowych (V_i) oraz prędkości kompleksowych (V_k) zestawiono w tabeli 24, natomiast uzyskane krzywe tych prędkości przedstawiono w formie graficznej na figurze 53. W celu powiązania otrzymanych różnic prędkości średniej z poszczególnymi kompleksami odpowiadającymi jednostkom

1

Zestawienie wartości głębokości (h), prędkości interwałowej (V_i), prędkości kompleksowej (V_k) oraz prędkości wygładzonej (V_w)

Depth (<i>h</i>), interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values	
---	--

<i>h</i> [m]	$V_i[m/s]$	V_k [m/s]	$V_w[m/s]$]	<i>h</i> [m]	$V_i[m/s]$	V_k [m/s]	$V_w[m/s]$
1	2	3	4]	1	2	3	4
20	2834,789	2834,668			880	3201,024	3416,243	3312,081
40	2834,789	2834,668	2834,668		900	3201,024	3416,243	3410,932
60	2834,789	2834,668	2834,869		920	3697,951	3416,243	3517,721
80	2834,789	2834,668	2834,869		940	3697,951	3416,243	3633,061
100	2834,789	2834,668	2834,668]	960	3697,951	3416,243	3760,105
120	2834,708	2834,668	2834,668		980	3697,951	3416,243	3899,396
140	2834,708	2834,668	2834,869]	1000	3697,951	3416,243	4048,583
160	2834,708	2834,668	2834,869	1	1020	4354,832	3416,243	4199,034
180	2834,708	2834,668	2834,668	1	1040	4354,832	4416,125	4335,573
200	2834,708	2834,668	2834,668]	1060	4354,832	4416,125	4440,497
220	2834,789	2834,668	2834,869	1	1080	4354,832	4416,125	4499,438
240	2834,789	2834,668	2834,869	1	1100	4354,832	4416,125	4505,519
260	2834,789	2834,668	2834,668]	1120	4335,761	4416,125	4464,286
280	2834,789	2834,668	2834,668]	1140	4335,761	4416,125	4389,334
300	2834,789	2834,668	2834,869	1	1160	4335,761	4416,125	4298,764
320	2836,397	2834,869	2834,869]	1180	4335,761	4416,125	4209,640
340	2836,397	2834,869	2835,070	1	1200	4335,761	4054,876	4132,658
360	2836,397	2944,207	2836,075	1	1220	4036,490	4054,876	4073,320
380	2836,397	2944,207	2838,490		1240	4036,490	4054,876	4033,885
400	2836,397	2944,207	2843,737	1	1260	4036,490	4054,876	4013,244
420	2895,529	2944,207	2853,881	1	1280	4036,490	4054,876	4008,819
440	2895,529	2944,207	2872,119	1	1300	4036,490	4054,876	4018,889
460	2895,529	2944,207	2901,494]	1320	4096,514	4054,876	4042,037
480	2895,529	2944,207	2944,424	1	1340	4096,514	4054,876	4075,395
500	2895,529	2944,207	3002,101		1360	4096,514	4054,876	4114,803
520	3172,488	2944,207	3071,725]	1380	4096,514	4054,876	4153,686
540	3172,488	2944,207	3146,633]	1400	4096,514	4215,259	4185,852
560	3172,488	2944,207	3217,503		1420	4231,013	4215,259	4208,311
580	3172,488	3257,263	3273,590		1440	4231,013	4215,259	4222,973
600	3172,488	3257,263	3307,425]	1460	4231,013	4215,259	4236,391
620	3284,827	3257,263	3317,300		1480	4231,013	4329,239	4254,867
640	3284,827	3257,263	3306,058		1500	4231,013	4329,239	4284,031
660	3284,827	3257,263	3280,571]	1520	4398,118	4329,239	4325,727
680	3284,827	3257,263	3247,544		1540	4398,118	4329,239	4375,410
700	3284,827	3257,263	3210,531		1560	4398,118	4329,239	4426,737
720	3124,414	3257,263	3171,834]	1580	4398,118	4498,830	4471,272
740	3124,414	3257,263	3134,551		1600	4398,118	4498,830	4500,956
760	3124,414	3416,243	3102,218		1620	4492,565	4498,830	4512,635
780	3124,414	3416,243	3082,139		1640	4492,565	4498,830	4506,534
800	3124,414	3416,243	3081,427		1660	4492,565	4498,830	4489,338
820	3201,024	3416,243	3104,867		1680	4492,565	4498,830	4469,274
840	3201,024	3416,243	3153,828		1700	4492,565	4556,698	4455,335
860	3201,024	3416,243	3224,766		1720	4502,071	4556,698	4454,343

Tabela 24 cd.

1	2	3	4	7	1	2	3	4
1740	4502 071	4556 698	4470 772		2660	4482 496	4434 262	4442 470
1760	4502,071	4556,698	4507.042		2680	4482,496	4434,262	4402.377
1780	4502,071	4556,698	4559,964		2700	4482,496	4434,262	4389,816
1800	4502,071	4556,698	4625,882		2720	4468,675	4434,262	4406,742
1820	4795,703	4556,698	4699,248		2740	4468,675	4434,262	4446,421
1840	4795,703	4556,698	4771,561		2760	4468,675	4434,262	4494,887
1860	4795,703	4926,802	4836,759		2780	4468,675	4434,262	4531,551
1880	4795,703	4926,802	4890,573		2800	4468,675	4475,608	4537,205
1900	4795,703	4926,802	4927,929		2820	4411,311	4475,608	4507,550
1920	4941,444	4926,802	4946,822		2840	4411,311	4475,608	4448,399
1940	4941,444	4926,802	4950,495		2860	4411,311	4475,608	4378,284
1960	4941,444	4926,802	4943,765		2880	4411,311	4481,656	4318,255
1980	4941,444	4926,802	4932,182		2900	4411,311	4481,656	4281,738
2000	4941,444	4926,802	4923,683		2920	4335,761	4481,656	4276,245
2020	4933,886	4937,053	4921,865		2940	4335,761	4481,656	4299,688
2040	4933,886	4937,053	4926,715		2960	4335,761	4481,656	4345,464
2060	4933,886	4937,053	4935,834		2980	4335,761	4481,656	4406,257
2080	4933,886	4937,053	4947,434		3000	4335,761	4481,656	4475,775
2100	4933,886	4937,053	4957,244		3020	4680,333	4481,656	4551,143
2120	4937,784	4866,772	4959,702		3040	4680,333	4481,656	4633,384
2140	4937,784	4866,772	4953,560		3060	4680,333	4481,656	4723,666
2160	4937,784	4866,772	4936,443		3080	4680,333	4481,656	4818,697
2180	4937,784	4866,772	4910,988		3100	4680,333	4481,656	4913,401
2200	4937,784	4866,772	4878,644		3120	5052,036	5003,909	4996,877
2220	4784,918	4866,772	4841,443		3140	5052,036	5003,909	5058,809
2240	4784,918	4866,772	4803,651		3160	5052,036	5003,909	5092,298
2260	4784,918	4866,772	4765,309		3180	5052,036	5003,909	5092,298
2280	4784,918	4866,772	4729,810		3200	5052,036	5003,909	5062,010
2300	4784,918	4675,191	4700,353		3220	4896,201	5003,909	5008,138
2320	4664,179	4675,191	4677,268		3240	4896,201	5003,909	4938,881
2340	4664,179	4675,191	4662,548		3260	4896,201	5003,909	4862,631
2360	4664,179	4675,191	4656,035		3280	4896,201	5003,909	4786,407
2380	4664,179	4675,191	4654,410		3300	4896,201	4585,503	4715,869
2400	4664,179	4675,191	4657,662		3320	4600,028	4585,503	4653,869
2420	4686,255	4675,191	4665,811		3340	4600,028	4585,503	4605,112
2440	4686,255	4675,191	4676,722		3360	4600,028	4585,503	4572,996
2460	4686,255	4675,191	4690,982		3380	4600,028	4585,503	4554,771
2480	4686,255	4675,191	4708,652		3400	4600,028	4585,503	4548,556
2500	4686,255	4675,191	4727,015		3420	4541,532	4585,503	4549,591
2520	4720,990	4667,989	4740,460		3440	4541,532	4585,503	4550,108
2540	4720,990	4667,989	4742,708		3460	4541,532	4501,970	4544,938
2560	4720,990	4667,989	4727,574		3480	4541,532	4501,970	4529,498
2580	4720,990	4667,989	4692,082	1	3500	4541,532	4501,970	4504,505
2600	4720,990	4667,989	4638,757	1	3520	4440,300	4501,970	4474,773
2620	4482,496	4667,989	4572,474	1	3540	4440,300	4501,970	4445,432
2640	4482,496	4667,989	4502,983	1	3560	4440,300	4584,671	4422,822
L	1	1	1		I	1	1	l

1	2	3	4
3580	4440,300	4584,671	4410,630
3600	4440,300	4584,671	4411,116
3620	4478,481	4584,671	4424,779
3640	4478,481	4584,671	4450,873
3660	4478,481	4584,671	4488,834
3680	4478,481	4584,671	4539,265
3700	4478,481	4584,671	4607,764
3720	4888,780	4584,671	4699,248
3740	4888,780	4584,671	4815,216

Tabela 24 cd.

1	2	3	4
3760	4888,780	4584,671	4952,947
3780	4888,780	4584,671	5098,789
3800	4888,780	5312,649	5228,075
3820	5312,649	5312,649	5316,321
3840	5312,649	5312,649	5349,739
3860	5312,649	5312,649	5333,333
3880	5312,649	5312,649	5289,606
3900	5312,649	5312,649	5247,278
3920	5230,126	5312,649	

stratygraficznym rozpoznanym w otworze Czaplinek IG 1, otrzymane wykresy zestawiono z profilem litostratygraficznym.

Najwyższą część profilu otworu Czaplinek IG 1, obejmującą interwał głębokościowy odpowiadający poziomom stratygraficznym od czwartorzędu do stropu formacji ostrowieckiej (synemur), rozpoznano jako jeden kompleks prędkościowy o średniej prędkości fali wynoszącej 2835 m/s. Poniżej stropu formacji ostrowieckiej zaobserwowano niewielki wzrost prędkości kompleksowej z 2835 m/s do 2944 m/s, który kontynuuje się do głębokości odpowiadającej spągowej części formacji skłobskiej (hetang górny i środkowy). Zaobserwowany wzrost prędkości średniej w tym przypadku związany jest najprawdopodobniej ze zwiększonym udziałem piaskowców w formacjach ilasto--piaszczystych, charakterystycznych dla dolnej jury. Kolejny wyznaczony kompleks prędkościowy obejmuje utwory spagowej części jury dolnej (formacja skłobska i zagajska) oraz górnego triasu (kajper górny - warstwy wielichowskie) i charakteryzuje się wyższą prędkością średnią, wynoszącą 3257 m/s. Niewielki wzrost prędkości średniej zaobserwowano w interwale głębokościowym odpowiadającym formacjom od spągowej partii warstw wielichowskich do spągowej części warstw sulechowskich (trias środkowy). Odnotowany wzrost prędkości średniej w tym przypadku związany jest najprawdopodobniej z obecnością wkładek dolomitu i anhydrytu, które charakteryzują się średnio wyższą prędkością przejścia fali sejsmicznych od skał ilastych znajdujących się w ich otoczeniu. Poniżej wymienionego kompleksu odnotowano jeden z najwyższych kontrastów prędkościowych, gdzie następuje wzrost średniej prędkości z 3416 m/s do 4416 m/s, co związane jest z granicą pomiędzy ilastymi warstwami sulechowskimi (kajper dolny) o niskich prędkościach i wysokoprędkościowymi wapieniami górnego wapienia muszlowego. Spadek opisanej wartości kompleksowej do 4055 m/s zaobserwowano natomiast na głębokości odpowiadającej spągowym partiom dolnego wapienia muszlowego (trias środkowy), gdzie formacje wapnisto-ilaste przechodzą w margle z wkładkami ilastymi o generalnie niższych prędkościach przejścia fali sejsmicznej. W obrębie formacji triasu dolnego wyznaczono szereg niewielkich kompleksów prędkościowych, charakteryzujących się stopniowym wzrostem średniej prędkości

Fig. 53. Wykresy prędkości interwałowych (V_i) , kompleksowych (V_k) i wygładzonych (V_w) (poziom odniesienia 0 m n.p.m.)

Objaśnienia symboli jak na figurze 52

Interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) (reference level 0 m a.s.l.)

Explanations of symbols as in Figure 52

propagacji fali o wartościach: 4215-4329-4499-4557 m/s, co związane jest prawdopodobnie ze zwiększającą się miąższością wkładek piaskowcowych w kompleksie ilasto-mułowcowym, widocznych w tym interwale głębokościowym. Najwyższą zmianę średniej prędkości w obrębie utworów pstrego piaskowca zaobserwowano na głęb. 1840-1860 m, gdzie średnia prędkość kompleksowa wzrasta z 4557 m/s do 4927 m/s. Zarejestrowany wzrost prędkości średniej związany jest ze zmianą litologii w obrębie środkowego pstrego piaskowca, gdzie w formacjach ilasto-mułowcowych z wkładami piaskowców pojawiają się drobnoziarniste piaskowce dolomityczne o znacznie wyższej prędkości przechodzenia fali sejsmicznej. Poniżej wymienionego kompleksu piaskowców dolomitycznych, w obrębie dolnego triasu, wyodrębniono dodatkowo trzy kompleksy prędkościowe o wartościach prędkości średniej równej odpowiednio: 4867-4675-4668 m/s. Zaobserwowany w obrębie tych kompleksów stopniowy spadek średniej prędkości spowodowany jest najwyraźniej przez zwiększający się udział iłowców i mułowców w kompleksie środkowego i dolnego pstrego piaskowca. Zauważalny spadek średniej prędkości z 4668 m/s do 4434 m/s zaobserwowano następnie na granicy pomiędzy PZ4e i PZ4d, gdzie następuje zmiana litologii z ciemnoczerwonych iłowców do szarych soli kamiennych. Kolejny kompleks prędkościowy o znacznej różnicy średniej prędkości w odniesieniu do otoczenia (wzrost z 4482 m/s do 5004 m/s i spadek do 4586 m/s) wyznaczono pomiędzy młodszą solą kamienną (Na3) i anhydrytem głównym (A3) oraz anhydrytem kryjącym (A2r) i starszą solą kamienną kryjącą (Na2r). Poniżej, w obrębie PZ2 nie zaobserwowano znacznych zmian prędkości kompleksowych, poza niewielkim spadkiem wartości prędkości średniej w obrębie kompleksu starszej soli kamiennej (Na2). Wyraźny wzrost prędkości średniej zaobserwowano natomiast na głębokości odpowiadającej granicy pomiędzy starszą solą kamienną (Na2) i anhydrytem podstawowym (A2), gdzie dochodzi do zmiany średniej prędkości kompleksowej z 4585 m/s do 5313 m/s.

Przedstawiona powyżej analiza pozwala na potwierdzenie założenia, że prędkość średnia, obliczona jako pochodna czasu pomierzonego, jest zależna od zmienności litologicznej poziomów stratygraficznych rozpoznanych w profilu otworu Czaplinek IG 1 i odzwierciedla budowę geologiczną w jego najbliższym otoczeniu. Zmienność wartości prędkości kompleksowych dla poszczególnych wydzieleń stratygraficznych przedstawia się następująco:

- $Q + Ng + Pg + J_1: 2835 \text{ m/s}$
- J₁: 2835–2944–3257 m/s
- $T_3: 3257 3416 \text{ m/s}$
- T₂: 3416-4416-4054 m/s
- T₁: 4054-4215-4329-4498- 4557-4927-4937-4867 -4675-4668 m/s
- PZ4:4668-4434-4475-4481 m/s
- PZ3: 4481-5004 m/s
- PZ2: 5004-4586-4502-4585-5313 m/s
- PZ1: 5313 m/s

Otrzymane wyniki prędkości kompleksowych przedstawione w niniejszym opracowaniu pozwalają na identyfikację najbardziej wyraźnych odbić refleksyjnych na profilach sejsmicznych i ich dowiązanie do odpowiednich jednostek litostratygraficznych. W przypadku otworu Czaplinek IG 1, wyraźnie widoczne będą refleksy związane z granicą pomiędzy utworami dolnego kajpru i górnego wapienia muszlowego, młodszą solą kamienną (Na3) i anhydrytem głównym (A3) oraz starszą solą kamienną (Na2) i anhydrytem podstawowym (A2). Możliwym do zidentyfikowania refleksem będzie również dodatni kontrast prędkościowy zaobserwowany w obrębie środkowego pstrego piaskowca.

Wyniki obliczeń wykonanych w ramach przedstawionych powyżej analiz pozwolą na uzupełnienie aktualnego modelu prędkościowego, który jest kluczową częścią opracowania interpretacji sejsmicznych w najbliższym otoczeniu opracowanego otworu. Pomimo braku pomiarów poniżej poziomów cechsztyńskich, które jednak zostały nawiercone w otworze Czaplinek IG 1 (głęb. odwiertu – 6006 m) i tym samym ograniczonego zakresu stratygraficznego, przeprowadzone pomiary prędkości średnich pozwolą na wykonanie korelacji i przyporządkowanie poziomów refleksyjnych na przekrojach sejsmicznych granicom pomiędzy utworami pstrego piaskowca i kajpru oraz dwóm poziomom cechsztyńskim.