Państwowy Instytut Geologiczny Państwowy Instytut Badawczy Państwowa służba geologiczna Państwowa służba hydrogeologiczna

Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV.

UMOWA NFOŚiGW nr 307/2021/Wn-07/FG-sm-dn/D z dnia 21.04.2021 r. Zadanie 22.5004.2101.00.1

Pakiet danych geologicznych do postępowania przetargowego na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego oraz wydobywanie ropy naftowej i gazu ziemnego ze złóż

> Obszar przetargowy "GORZÓW WIELKOPOLSKI S"

Opracował: Zespół pod kierunkiem dr. Marka Jasionowskiego i mgr Eweliny Krzyżak

Koordynator zadania: dr Krystian WÓJCIK

Sfinansowano ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej

Warszawa, kwiecień 2021 r.

Skład zespołu

dr Marek JASIONOWSKI - kierownik zespołu mgr Ewelina KRZYŻAK – kierownik zespołu mgr Dariusz BRZEZIŃSKI mgr Martyna CZAPIGO-CZAPLA mgr inż. Joanna FABIAŃCZYK mgr Anna GABRYŚ-GODLEWSKA dr Anna GRYCZKO-GOSTYŃSKA mgr inż. Dominika KAFARA mgr Anna KALINOWSKA dr Hubert KIERSNOWSKI mgr inż. Sylwia KIJEWSKA mgr Paulina KOSTRZ-SIKORA dr Aleksandra KOZŁOWSKA dr Olimpia KOZŁOWSKA mgr Jowita KUMEK dr Krzysztof LESZCZYŃSKI mgr Martyna LEŚNIAK mgr inż. Barbara MASSALSKA mgr inż. Rafał NASIŁOWSKI mgr Elżbieta PRZYTUŁA dr inż. Olga ROSOWIECKA inż. Leszek SKOWROŃSKI mgr Marcin TYMIŃSKI mgr inż. Krzysztof WAŚKIEWICZ mgr inż. Dorota WEGLARZ mgr inż. Michał WOROSZKIEWICZ dr Krystian WÓJCIK

Pakiet danych geologicznych dla obszaru przetargowego "Gorzów Wielkopolski S" został przygotowany w ramach umowy z NFOŚiGW na realizację zadania pn. "Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV". Zgodnie z art. 49.f Ustawy z dnia 9 czerwca 2011 roku Prawo geologiczne i górnicze (Dz. U. 2011 Nr 163 poz. 981, t.j. Dz. U. z 2021 r. poz. 1420, 2269) obszary przeznaczone do postępowania przetargowego ustala organ koncesyjny we współpracy z państwową służbą geologiczną. Obszar przetargowy "Gorzów Wielkopolski S" został wskazany do przetargu przez Ministra Środowiska na podstawie "Ogłoszenia o granicach przestrzeni dla których planowane jest wszczęcie postępowania przetargowego na koncesje na poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż w 2021 r. (5 runda przetargowa)" z dnia 26 czerwca 2020 r. (pismo znak: DGK-IV.4750.5.2020.MW).

Dane o budowie geologicznej i potencjale złożowym obszaru przetargowego "Gorzów Wielkopolski S" obejmują informację geologiczną będącą własnością Skarbu Państwa, dostępną w zasobach Narodowego Archiwum Geologicznego PIG-PIB oraz w ogólnodostępnych publikacjach naukowych. Źródła zamieszczonych informacji są zawarte w końcowej części pakietu danych geologicznych. Dane źródłowe, dotyczące w szczególności sejsmiki 2D i 3D, a także wyniki badań przeprowadzonych w otworach wiertniczych, karotaże oraz wyniki innych analiz istotnych z punktu widzenia poszukiwań naftowych, wraz z ich wyceną, zostały zebrane i są dostępne do wglądu w ramach "DATA ROOMU", zorganizowanego w Czytelni Narodowego Archiwum Geologicznego w Warszawie w trakcie trwania 5. rundy przetargowej.

Spis treści
1. WSTĘP
1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM5 Krystian Wójcik
1.2. UWARUNKOWANIA ŚRODOWISKOWE7 Anna Gabryś-Godlewska, Dominika Kafara, Paulina Kostrz-Sikora, Olimpia Kozłowska
2. BUDOWA GEOLOGICZNA15
2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ15 Rafał Nasiłowski
2.2. TEKTONIKA
2.3. STRATYGRAFIA
Marek Jasionowski, Hubert Kiersnowski, Aleksandra Kozłowska, Ewelina Krzyżak, Krzysztof Leszczyński,Krzysztof Waśkiewicz, Krystian Wójcik
2.3.1. KARBON
2.3.2. PERM – CZERWONY SPĄGOWIEC
2.3.3. PERM – CECHSZTYN
2.3.4. TRIAS
2.3.5. JURA
2.3.6. KREDA
2.3.7. KENUZUIK
2.4. HYDROGEOLOGIA
Elzbieta Przytuła, Anna Gryczko-Gostynska, Dorota Węglarz
3. SYSTEM NAFTOWY
Marek Jasionowski, Hubert Kiersnowski, Ewelina Krzyżak, Barbara Massalska, Krzysztof Waśkiewicz
3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO57
3.2. SKAŁY MACIERZYSTE
3.3. SKAŁY ZBIORNIKOWE
3.4. SKAŁY USZCZELNIAJĄCE I NADKŁADU
3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODOROW67
4. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW
Marcin Tymiński, Michał Woroszkiewicz
4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETARGOWEGO70
4.2. ZŁOŻE ROPY NAFTOWEJ JENINIEC
4.3. ZŁOŻE GAŻU ZIEMNEGO STANOWICE
4.4. ZŁOŻE ROPY NAFTOWEJ DZIEDUSZYCE
4.5. ZŁUŻE GAŻU ZIEMNEGO KROBIELEWKO86

5. OTWORY WIERTNICZE Jowita Kumek, Leszek Skowroński, Krystian Wójcik	
5.1. INFORMACJE OGOLNE	
5.2. BACZYNA 1	
5.3. BACZYNA-2	
5.4. BRZUZUWA I	
5.5. CIECIERZYCE I/ CIECIERZYCE IK	
5.6. DZIERZOW IK/DZIERZOW IK-BIS	
5./. JENINIEC 4	
5.8. JEZYKI I	
5.9. LUBNO I	
5.10. MASZKOW I	
5.11. PŁONICA I	
5.12. KACŁAW IK	
5.13. STANOWICE 1	
5.14. STANOWICE 2	
5.15. STANOWICE 3	
5.16. WĘDKZYN I	
5.17. WĘDRZYN 5	
0. SEJSMIKA	
Syiwia Kijewska	
7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNET Olga Rosowiecka	OTELLURYCZNE 120
7.1. BADANIA GRAWIMETRYCZNE	120
7 2 BADANIA MAGNETYCZNE	124
7 3 BADANIA MAGNETOTELLURYCZNE	126
8. PODSUMOWANIE Krystian Wójcik	
9. MATERIAŁY ZRODŁOWE	

1. WSTĘP 1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM

Obszar przetargowy "Gorzów Wielkopolski S" ma powierzchnię 691,38 km² i obejmuje fragment bloku koncesyjnego na poszukiwanie i rozpoznawanie złóż węglowodorów oznaczonego numerem 183 (Fig. 1.1). Koordynaty geograficzne punktów załamania granic obszaru przetargowego są zdefiniowane w Tab. 1.1, a położenie tych punktów ilustruje Fig. 1.2.

Nr	Współrzędne PL-92		
punktu	Х	Y	
1	549450.19	244711.63	
2	546785.65	241113.57	
3	540242.75	241894.16	
4	540873.53	247572.85	
5	546430.59	247861.28	
6	547712.18	259199.82	
7	540414.53	256580.45	
8	531745.15	262931.15	
9	531753.26	263057.74	
10	521496.05	262559.19	
11	521556.67	262436.44	
12	521365.66	247695.31	
13	528872.38	239725.61	
14	528621.24	236900.92	
15	527049.18	228863.08	
16	540948.98	229635.49	
17	547125.25	229978.70	
18	550209.91	230150.11	
	z wyłączeniem po	oligonu	
zdefiniowanego punktami 19–26:			
19	537338.87	235938.86	
20	537381.70	235451.89	
21	537161.68	235262.61	
22	536191.17	234978.91	
23	535945.30	236140.79	
24	536032.11	236456.84	
25	536631.59	236671.44	
26	537053.67	236400.94	

Tab. 1.1. Współrzędne punktów załamania granic obszaru przetargowego "Gorzów Wielkopolski S" (Fig. 1.1 i 1.2).

W latach 1995–2017 obszar przetargowy "Gorzów Wielkopolski S" oraz obszary przyległe były objęte koncesjami węglowodorowymi, na których prace prowadziła firma PGNiG S.A.: "Lubniewice" nr 21/95/p, "Chartów – Ośno Lubuskie" nr 26/99/p, "Kostrzyń – Myślibórz" nr 22/95/p i "Gorzów Wielkopolski – Myślibórz" nr 42/2001/p.

Obecnie, w bezpośrednim sąsiedztwie obszaru przetargowego, znajdują się dwie koncesje PGNiG S.A.: "Gorzów Wielkopolski – Międzychód" nr 69/98/Ł oraz "Sulęcin – Międzyrzecz" nr 15/97/p.

W granicach obszaru przetargowego, a zwłaszcza w jego bliskim sąsiedztwie, udokumentowano liczne złoża ropy naftowej i gazu ziemnego. Najważniejsze z nich, które mogą posłużyć jako analogi przyszłych poszukiwań, to Jeniniec, Dzieduszyce, Krobielewko i Stanowice. Obszar przetargowy "Gorzów Wielkopolski S" jest perspektywiczny dla poszukiwań konwencjonalnych złóż ropy naftowej i gazu ziemnego w dolomicie głównym.

→Fig. 1.1. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na mapie koncesji na poszukiwanie, rozpoznawanie oraz wydobywanie węglowodorów oraz podziemne bezzbiornikowe magazynowanie substancji i podziemne składowanie odpadów według stanu na 30.11.2021 r.

GORZÓW WIELKOPOLSKI S

Fig. 1.2. Punkty załamania granic oraz pozycja obszaru przetargowego "Gorzów Wielkopolski S" na tle sąsiednich koncesji według stanu na 30.11.2021 r.

1.2. UWARUNKOWANIA ŚRODOWISKOWE

Położenie administracyjne

Obszar przetargowy "Gorzów Wielkopolski S" jest położony w granicach administracyjnych województwa lubuskiego. W obrebie obszaru znajdują się tereny należące do będącego miastem na prawach powiatu Gorzowa Wielkopolskiego oraz do 9 gmin (w tym 6 wiejskich i 3 miejsko-wiejskich), spośród których część ma znikomy udział w powierzchni obszaru przetargowego. Największym ośrodkiem urbanizacyjnym jest Wielkopolski – zlokalizowany Gorzów w północnej części obszaru. Powierzchnia miasta wynosi 85,72 km², a liczba jego mieszkańców przekracza 123,5 tys. (Bank Danych Lokalnych GUS, stan na 31.12.2019 r.). Gorzów Wielkopolski jest rdzeniem Miejskiego Obszaru Funkcjonalnego, w skład którego - poza nim samym - wchodzi 7 otaczajacych go gmin, w tym m.in.: Bogdaniec, Deszczno, Lubiszyn, Santok oraz Skwierzyna.

Miasto jest dużym ośrodkiem przemysłowym skupiającym podmioty reprezentujące różne branże: chemiczną, elektroniczną, maszynową, energetyczną, farmaceutyczną, motoryzacyjną czy spożywczą.

Sieć komunikacyjna

Dostępność komunikacyjną opisywanego obszaru zapewnia przede wszystkim droga ekspresowa S3, która ma nie tylko strategiczne znaczenie dla układu komunikacyjnego Polski zachodniej, ale jest też ważną arterią europejską, ponieważ stanowi fragment międzynarodowej trasy E65. W ciągu drogi S3, w granicach obszaru przetargowego, znajduje się fragment obwodnicy Gorzowa Wielkopolskiego oraz odcinek Gorzów Wielkopolski Południe – Międzyrzecz Północ wraz z węzłem Skwierzyna Zachód. Węzeł ten stanowi skrzyżowanie trasy S3 z drogą krajową nr 24 (relacji Pniewy - Rudnica), która przebiega

równoleżnikowo przez południową część obszaru przetargowego i komunikuje Skwierzynę ze wsią Rudnica. W rejonie leśniczówki w Wałdowicach DK nr 24 łączy się DK nr 22 (prowadzącą od polsko-rosyjskiego przejścia granicznego w Grzechotkach do Kostrzyna nad Odrą). DK nr 22 przez opisywany teren biegnie horyzontalnie od miejscowości Krzeszyce (zachodnia granica obszaru przetargowego) do Wałdowic, a następnie skręca w kierunku północnym i biegnie przez Bolemin i Pradocin do Gorzowa Wielkopolskiego. Poza opisanymi szlakami sieć komunikacyjną tworzą drogi skategoryzowane jako gminne, powiatowe i wojewódzkie. W grupie tych ostatnich znajdują się: DW nr 136 (Lubniewice - Wałdowice), DW nr 132 (Gorzów Wielkopolski - Bogdaniec - Nowiny Wielkie), a także DW nr 131 (Krzeszyce - Dzierzażna -Świerkocin – Nowiny Wielkie).

Elementem infrastruktury komunikacyjnej są również linie kolejowe. Biegnąca przez wschodnią część obszaru "Gorzów Wielkopolski S" linia nr 367 (Zbąszynek – Gorzów Wielkopolski) jest linią pasażerską, niezelektryfikowaną, jednotorową, skategoryzowaną jako pierwszorzędna. Z kolei przez północną część opisywanego terenu przebiega linia nr 203 (Tczew – Kostrzyn). Linia ta jest linią znaczenia państwowego, kategorii pierwszorzędnej, dwutorową, niezelektryfikowaną.

Infrastruktura techniczna

Elementami infrastruktury techniczno-inżynieryjnej, znajdującymi się w granicach obszaru przetargowego, są przebiegające przez jego wschodnią część 2 napowietrzne jednotorowe linie elektroenergetyczne najwyższych napięć (400 kV Krajnik – Plewiska i 220 kV Gorzów - Leśniów). Z informacji publikowanych przez Polskie Sieci Elektroenergetyczne S.A. wynika, że docelowo przez opisywany obszar przebiegać będzie również dwutorowa linia elektroenergetyczna 400 kV Baczyna -Plewiska, która połączy dwie stacje węzłowe: SE 400/220/110 kV Plewiska oraz SE 400/ 110 kV Baczyna (realizowaną jako odrębne zadanie inwestycyjne w gminie Lubiszyn). Zakończenie prac budowlanych, związanych z przedmiotową inwestycją, jest planowane na 2025 rok. Przez obszar przetargowy przebiegają również 2 nitki gazociągów gazu wysokometanowego (o średnicy 500 relacji

Skwierzyna – Barlinek i 700 mm relacji Szczecin – Lwówek).

Położenie fizycznogeograficzne

Zgodnie z regionalizacją fizyczno-geograficzną Polski (Kondracki, 2013), obszar przetargowy "Gorzów Wielkopolski S" jest położony w zasięgu 5 różnych mezoregionów, przy dominującym znaczeniu dwóch z nich: Kotliny Gorzowskiej oraz Pojezierza Łagowskiego.

Kotlina Gorzowska, której długość dochodzi do 120 km, a szerokość do 35 km, jest największym mezoregionem Pradoliny Toruńsko-Eberswaldzkiej. Powstała w wyniku odpływu na zachód wód fluwioglacjalnych w subfazie krajeńsko-wąbrzeskiej oraz w fazie pomorskiej. Jest to rozległa, płaska równina pocieta gesta siecia rowów i kanałów melioracyjnych, w pradolinie Warty i Noteci, często zalewana wodą w okresie wysokich stanów wód. W zasięgu tego mezoregionu wydzielono 4 submezoregiony, w tym, rozciągającą się między Santokiem przy ujściu Noteci i Kostrzynem, Dolinę Dolnej Warty, Obornicką Dolinę Warty - odcinek doliny Warty od ujścia Wełny pod Obornikami do ujścia Noteci, a także Międzyrzecze Warty i Noteci.

Pojezierze Łagowskie, które obejmuje swoim zasięgiem południową część obszaru przetargowego, charakteryzuje się pagórkowatą powierzchnią terenu z licznymi wzniesieniami, które rozcinają głębokie rynny wypełnione jeziorami. Jednym z głębszych jest, położone w rejonie miejscowości Lubniewice, jezioro Krajnik (35 m głębokości). Prawie cały teren Pojezierza Łagowskiego porastają bory sosnowe.

Pojezierze Poznańskie zajmuje niewielki fragment we wschodniej części obszaru przetargowego. Mezoregion ten stanowi przedłużenie Pojezierza Łagowskiego i jest zbudowany z moren czołowych o mniejszej wysokości. W krajobrazie przestrzennym Pojezierza Poznańskiego dominują bory sosnowe i użytki rolne. Najbardziej skrajny – południowo-wschodni – kraniec obszaru przetargowego stanowi część, rozdzielającego oba pojezierza, mezoregionu Bruzdy Zbąszyńskiej.

Północno-zachodnie krańce obszaru przetargowego przynależą do mezoregionu Równiny Gorzowskiej. Jej krajobraz tworzy lekko falista wysoczyzna morenowa, zbudowana z glin zwałowych zlodowacenia wisły, urozmaicona zbudowanymi z piaskowo-żwirowych osadów lodowcowych wzgórzami, które tworzą nieregularne skupiska. Najwyższe i najbardziej zwarte zgrupowanie tych form występuje między Racławiem, Stanowicami i Lubnem, gdzie tworzą kulminacje o wysokości do 120-140 m n.p.m. W kierunku południowo-wschodnim wysoczyzna morenowa opada długimi zboczami do pradoliny Warty na linii Gorzów Wielkopolski - Bogdaniec -Nowiny Wielkie. Wyraźnie zaznaczająca się krawędź morfologiczna, o wysokości do 50 m, jest rozcięta licznymi dolinkami denudacyjnymi oraz głębiej wciętymi dolinami rzek.

Formy ochrony przyrody

Część terenów położonych w zasięgu granic obszaru przetargowego podlega ochronie prawnej, realizowanej na mocy przepisów Ustawy o ochronie przyrody (Dz.U. z 2020 r., poz. 55 z późn. zm.). Wśród obszarowych form chronionych znajduje się tu m.in. 6 rezerwatów przyrody (w tym 3 leśne: Bogdanieckie Grądy, Dębowa Góra i Morenowy Las, 1 stepowy: Gorzowskie Murawy, 1 wodny: Janie im. Włodzimierza Korsaka oraz 1 faunistyczny: Santockie Zakole), które łącznie zajmują jednak znikomą powierzchnię (około 0,8%) w stosunku do całkowitej powierzchni obszaru przetargowego. Podobnie jest w przypadku Parku Krajobrazowego Ujście Warty i otuliny Parku Narodowego Ujście Warty, których niewielkie powierzchnie przekraczają zachodnią granicę obszaru "Gorzów Wielkopolski S", zajmując łącznie poniżej 1% jego powierzchni. Relatywnie większe części opisywanego obszaru są natomiast włączone w granice obszarów chronionego krajobrazu, które łacznie zajmują około 33% jego powierzchni. Największy udział w przestrzeni obszaru przetargowego ma OChK Gorzowsko-Krzeszycka Dolina Warty, który znajduje się w jego zachodniej części (17%). Ponad 14,5% zajmują również obszary sieci Natura 2000 - na opisywanym terenie znajduja się 2 specjalne obszary ochrony (SOO) wyznaczone w ramach tzw. dyrektywy siedliskowej (największy z nich - PLH080006 Ujście Noteci, a także PLH080058 Murawy Gorzowskie) oraz 3 obszary specjalnej ochrony (OSO) utworzone w oparciu o tzw. dyrektywe ptasia (PLB320015 Ostoja Witnicko-Debniańska, PLB300015 Puszcza Notecka i PLB 080002 Dolina Dolnej Noteci), a także, posiadający wspólne granice, obszar ptasi i siedliskowy (PLC080001 Ujście Warty). Wśród innych form chronionych należy wymienić 26 użytków ekologicznych oraz 44 obiekty uznane za pomniki przyrody, wśród których jeden jest stanowiskiem bluszczu pospolitego na robinii akacjowej, jeden stanowi wyjątkowy ekosystem w skali regionu, porośnięty drzewami i krzewami zasiedlony przez różnorodne gatunki płazów, gadów, ptaków i ssaków, zaś pozostałe to rosnące pojedynczo lub w większych skupiskach drzewa.

Poza opisanymi powyżej formami chronionymi, za cenne przyrodniczo należy uznać areały gruntów ornych wysokich klas bonitacyjnych, występujące w południowej i południowo-wschodniej części obszaru oraz, rozciagajace się zarówno na północ jak i na południe od Bogdańca w zachodniej i północnozachodniej części opisywanego terenu. Poza nimi, w dolinie Warty, pomiędzy Kołczynem a Maszewem, oraz w zachodniej części terenu, pomiędzy Bogdańcem a Świerkocinem, wyraźnie zaznaczają się też łąki wykształcone glebach pochodzenia organicznego. na W strukturze zagospodarowania terenu uwagę zwracają także kompleksy leśne. Stanowią one część opisanych powyżej obszarów prawnie chronionych, a niektóre - na mocy rozporządzenia Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 25 sierpnia 1992 r. (Dz.U. z 1992 r., nr 67, poz. 337) - posiadają status lasów ochronnych. Ich zwarte kompleksy zlokalizowane sa głównie w centralnej i północno-zachodniej części obszaru.

Złoża kopalin

Charakteryzowany obszar przetargowy jest miejscem prowadzenia działalności wydobywczej i przetwórczej. W jego granicach znajdują się 22 złoża kopalin udokumentowane i zestawione w bazie danych MIDAS (2021): z granic obszaru przetargowego wyłączono położone w rejonie wsi Gostkowice i Roszkowice złoże ropy naftowej Jeniniec (ID 4947). Kopalinami eksploatowanymi są niemal wyłącznie kruszywa naturalne (21 złóż), wyjątek stanowi złoże gazu ziemnego Stanowice (ID 9505), leżące przy północnej granicy obszaru, pomiędzy Stanowicami a Baczyną.

W ramach prac wykonywanych na potrzeby Mapy Geośrodowiskowej Polski, w granicach obszaru przetargowego wyznaczono kilkanaście zróżnicowanych pod względem powierzchni obszarów perspektywicznych występowania piasków oraz piasków i żwirów. Znajdują się one przede wszystkim w południowej i zachodniej części opisywanego regionu. Jedyny obszar prognostyczny wyznaczono dla torfów – jest on zlokalizowany w okolicy wsi Krasnołęg, przy drodze wojewódzkiej nr 22.

Złoża kopalin udokumentowanych na obszarze przetargowym "Gorzów Wielkopolski S" zestawiono w Tab. 1.2. Z kolei uwarunkowania środowiskowe obszaru "Gorzów Wielkopolski S" zostały podsumowane w Tab. 1.3 i na Fig. 1.3.

ID złoża	Nazwa złoża	Typ kopaliny
2914	Krzeszyce	kruszywa naturalne
4572	Deszczno-Łagodzin	kruszywa naturalne
4573	Stężyca	kruszywa naturalne
5216	Deszczno-Łagodzin p. Krasowiec	kruszywa naturalne
9505	Stanowice	gazy ziemne
10245	Baczyna-OP	kruszywa naturalne
10247	Łupowo-OP	kruszywa naturalne
12343	Łupowo-SW	kruszywa naturalne
12352	Maszków	kruszywa naturalne
13343	Płonica Zachód	kruszywa naturalne
13461	Maszewo Wschód	kruszywa naturalne
13462	Bolemin	kruszywa naturalne
13922	Deszczno-Łagodzin p. Krasowiec 1	kruszywa naturalne
13924	Deszczno-Kolonia I	kruszywa naturalne
14196	Deszczno-Łagodzin 1	kruszywa naturalne
15028	Deszczno-Łagodzin 2	kruszywa naturalne
15515	Deszczno-Łagodzin 3	kruszywa naturalne
15954	Deszczno-Łagodzin 4	kruszywa naturalne
17267	Stężyca 1	kruszywa naturalne
17945	Bolemin I	kruszywa naturalne
17968	Prądocin	kruszywa naturalne
18812	Płonica Zachód I	kruszywa naturalne

Tab. 1.2. Złoża kopalin na obszarze przetargowym "Gorzów Wielkopolski S" według bazy MIDAS, 2021.

KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH				
	DLA O	BSZARU PRZETARGOW DZÓW WIELKOPOLSKI	VEGO	
	"GU LOKALIZACIA OBSZARU	Nazwa i numer arkusza	Gorzów Wielkopolski	387 Santok (Górki)
1.	PRZETARGOWEGO	many w skali	388 Krzeszyce (I	ubniewice) 426
1.	NA MAPIE	$1:50\ 000$	Bledze	w 427
		Województwo	lubu	skie
		Powiat	Gorzów Wielkopolski	
		Gmina i % powierzchni		•
		zajmowanej	Carrées Wielken eleki (2.710/)	
		w granicach obszaru	GOIZOW WIELKOPOISKI (3,7170)	
		przetargowego		
2.	POŁOŻENIE	Powiat	gorzowski	
	ADMINISTRACYJNE	Carlas	Lubiszyn $(1,61\%)$,	Witnica $(2,81\%)$,
		Gmina	Bogdaniec (15,46%),	Deszczno $(22, 28\%)$,
		Dowiot	Santok (1,/3%)	
		Gmina	$\frac{\text{Sulęcinski}}{\text{Krzeszweg}(16.60\%) \text{Lubriewieg}(9.45\%)}$	
		Powiat	miedzyrzecki	
		Gmina	Skwierzyna (6 68%) Bledzew (20 58%)	
		Makroregion	Pojezierze Południow	vopomorskie (314.6)
		Mezoregion	Równina Gorzo	owska (314.61)
		Makroregion	Pradolina Toruńsko-E	berswaldzka (315.3)
	REGIONALIZACJA FIZYCZNO-	Mezoregion	Kotlina Gorzov	wska (315.33)
3	GEOGRAFICZNA	Makroregion	Pojezierze Lubuski	e (Brandenbursko-
5.	(WG KONDRACKIEGO, 2013	Makioregion	Lubuskie) (315.4)	
	ORAZ SOLONA i in., 2018)	Mezoregiony	Pojezierze Łagowskie (315.42),	
		Malmanaian	Bruzda Zbąszyńska (315.44)	
		Makroregion	Pojezierze Wielk	opolskie (315.5)
		Wiezoregion	549450 19	244711 63
			546785.65	241113 57
			540242.75	241894.16
			540873,53	247572,85
			546430,59	247861,28
			547712,18	259199,82
			540414,53	256580,45
			531745,15	262931,15
			531753,26	263057,74
			521496,05	262559,19
			521556,67	262436,44
	Μαράι ργεριτε ρινιντάν		521305,00	247695,31
	WSPOŁRZĘDNE PUNKTOW		528672,58	239723,01
4.	OBSZARU PRZETARGOWEGO	Układ PL-1992 [X; Y]	527049 18	230900,92
	ODSLARU I KLE I ARGOWEGO		540948.98	229635.49
			547125,25	229978,70
			550209,91	230150,11
			z wyłączeniem polig	onu zdefiniowanego
			punktami:	
			537338,87	235938,86
			537381,70	235451,89
			537161,68	235262,61
			536191,17	234978,91
			535945,30	230140,79
			536631 50	230430,84
			537053 67	236400.94
	POW. OBSZARU)	551055,01	230+00,24
5.	PRZETARGOWEGO	[km ²]	691,38	
6.	CEL KONCESJI		poszukiwanie i roz węglowodorów or	zpoznawanie złoż raz wydobywanie

KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH DLA OBSZARU PRZETARGOWEGO CODZĆW WIEL KOPOLSKI S"			
	"GU	RZUW WIELKOPULSKI	Naclawa daréw za zléż
7	WIEK FORMACII 7Ι ΟŻOWE Ι		węgłowodorów ze złoż
7.	PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE:		perm – cechsztyn (dolonint główny)
	Parki Narodowe		nie; otulina Parku Narodowego Ujście Warty (<1%)
	Rezerwaty	[tak/ nie]	Bogdanieckie Grądy (<1%), Dębowa Góra (<1%), Gorzowskie Murawy (<1%), Janie im. Włodzimierza Korsaka (<1%), More- nowy Las (<1%), Santockie Zakole (<1%)
	Parki Krajobrazowe		PK Ujście Warty (<1%)
8.	Obszary chronionego krajobrazu	jeśli "tak" to: nazwa obszaru oraz % po- wierzchni zajmowanej w granicach obszaru przetargowego	OChK Lasy Witnicko-Dzieduszyckie (<1%), OChK Dolina Obry (4%), OChK Dolina Warty i Dolnej Noteci (6%), OChK Gorzowsko-Krzeszycka Dolina Warty (17%), OChK Pojezierze Lubniewicko- Sulęcińskie (5%), OChK D.Postomii (<1%)
	Natura 2000 – SOO		PLH080006 Ujście Noteci (3%), PLH080058 Murawy Gorzowskie (<1%)
	Natura 2000 – OSO		PLB320015 Ostoja Witnicko-Dębniańska (6%), PLB300015 Puszcza Notecka (<1%), PLB080002 Dolina Dolnej Noteci (3%)
	Natura 2000 – SOO+OSO		PLC080001 Ujście Warty (5%)
	Zespoły przyrodniczo- -krajobrazowe		Kijewickie Kierki (1%)
	Użytki ekologiczne		26
	Pomniki przyrody	[tak (ilość)/ nie]	44
	Stanowiska dokumentacyjne		nie
9.	GLEBY CHRONIONE	[tak/ nie]	tak
10.	KOMPLEKSY LESNE	[tak/ nie]	tak
11.	LASY OCHRONNE	[tak (powierzchnia,% powierzchni zajmowanej w granicach obszaru przetargowego)/ nie]	129,7 km ² (18,8%)
	OBIEKTY DZIEDZICTWA	[tak (ilość)/ nie]	
12	KULTUROWEGO	Grodzisko	1
120	Zabytki archeologiczne	Osada	3
13.	GŁÓWNE ZBIORNIKI WÓD PODZIEMNYCH	[tak (numer, nazwa i wiek zbiornika)/ nie]	138 Pradolina Toruń Eberswalde; Q
14.	STREFY OCHRONNE UJĘĆ WODY	[tak / nie]	tak
15.	STREFY OCHRONY UZDROWISKOWEJ	[tak/ nie]	nie
16.	TERENY ZAGROŻONE PODTOPIENIAMI	[tak/ nie]	tak
17.	UDOKUMENTOWANE ZŁOŻA KOPALIN	[tak (rodzaj kopaliny)/ nie]	tak (kruszywa naturalne, gazy ziemne)
18.	OBSZARY PROGNOSTYCZNE I PERSPEKTYWICZNE WY- STĘPOWANIA KOPALIN (z wyłączeniem węglowodorów)	[tak (rodzaj kopaliny)/ nie]	tak (piaski, piaski i żwiry, torfy)
19.	SIECI PRZESYŁOWE GAZU	[tak/ nie]	tak
20.	PODZIEMNE MAGAZYNY GAZU	[tak/ nie]	nie
21.	DATA WYPEŁNIENIA KARTY		26.02.2021 r.
22.	ZESTAWIENIE I OPRACOWANIE DANYCH	Paulina Kostrz-Sikora, Dominika Kafara	

Tab. 1.3. Karta uwarunkowań środowiskowych obszaru przetargowego "Gorzów Wielkopolski S".

Fig. 1.3. Mapa środowiskowa obszaru "Gorzów Wielkopolski S".

Ministerstwo Klimatu i Środowiska

Mapa środowiskowa obszaru "GORZÓW WIELKOPOLSKI S"

Environmental Map

of the "GORZÓW WIELKOPOLSKI S" area

1000 m 0 1 2 3 4 5 6 7 8 9 km

woj. LUBUSKIE powiat Gorzów Wielkopolski 1 - m. Gorzów Wielkopolski 2 - gm. Zwierzyn powiat gorzowski 3 - gm. Lubiszyn 4 - gm. Witnica 5 - gm. Bogdaniec 6 - gm. Deszczno 7 - gm. Santok powiat sulęciński 8 - gm. Krzeszyce 9 - gm. Lubniewice 10 - gm. Sulęcin powiat sulubicki 11 - gm. Ośno Lubuskie powiat międzyrzecki 12 - gm. Skwierzyna 13 - gm. Bledzew 14 - gm. Międzyrzecz

Położenie obszaru przetargowego na arkuszach 1:50 000 Location of tender area on maps with a scale of 1:50 000

Zestawienie danych oraz redakcja komputerowa mapy: Dominika Kafara Data compilation and map edition:

Weryfikacja: Anna Gabryś-Godlewska

Objaśnienia do mapy środowiskowej obszaru

"GORZÓW WIELKOPOLSKI S"

Legend of the environmental map of the "GORZÓW WIELKOPOLSKI S" area

(opracowano na podstawie bazy MGśP z zasobów PIG-PIB*) (based on MGśP database*)

ZŁOŻA KO PERSPEK MINERAL DEPOS	PALIN ORAZ TYWY I PROGNOZ SIT AND	Y ICH WYSTĘPOWANIA		A PRZYRODY, KRAJOBRAZU CTWA KULTUROWEGO
PERSPECTIVE A	REA'S, PROGNOSTIC AREA'S F	FOR DOCUMENTING DEPOSITS	PROTECTION O	r nature, landscape and cultural heritage
	piaski i żwiry sands and gravels	iły i łupki ilaste raw materials		grunty orne (klasy I-IVa użytków rolnych) arable land (class I-IVa)
	sands	torfy peat		łąki na glebach pochodzenia organicznego meadows on organic soils
2914	identyfikator z bazy MIDAS ID from the MIDAS database of t	złoża małokonfliktowego the small environmental conflict		lasy forests
4572	identyfikator z bazy MIDAS	złoża konfliktowego the environmental conflict		lasy ochronne protected forests
	granica złoża deposit boundary			zieleń urządzona urban greenery
	granica obszaru prognostyc prognostic area boundary	znego	· · · · ·	granice terenów zarządzanych przez Dyrekcję Generalną Lasów Państwowych boundary of areas managed by General Directorate of the State Forests
	granica obszaru perspektyw perspective area boundary	vicznego		granica strefy ochronnej (otuliny) parku narodowego boundary of buffer zone of national park
•	złoże o powierzchni < 5 ha deposit with area < 5 ha		·	granica parku krajobrazowego; nazwa parku boundary of landscape park; park name
GÓRNICT	WO I PRZETWÓRS	TWO KOPALIN		granica obszaru chronionego krajobrazu; nazwa obszaru boundary of protected landscape area; area name
MINING AND MIN	IERAL PROCESSING granica obszaru górniczego			granica zespołu przyrodniczo-krajobrazowego, nazwa zespołu boundary of nature and landscape complex; complex name
	boundary of the mining area granica terenu górniczego		St	granica rezerwatu przyrody (St - stepowy, Fn - faunistyczny, L - leśny, W - wodny) boundary of natural reserve (St - steppe, Fn - faunistic, L - forests, W - water)
	boundary of the mining terrain obszar i teren górniczy złoża	a o powierzchni ≤ 5 ha	¥-¥-¥-¥-¥-	granica strefy ochronnej (otuliny) rezerwatu przyrody boundary of buffer zone of natural reserve
•	area and terrain of the deposit with area < 5 ha punkt niekoncesjonowanej eksploatacji kopaliny (p - rodzaj kopaliny)			Obszary Europejskiej Sieci Ekologicznej Natura 2000; kod obszaru Natura 2000 ecological network, area code
• p Symbol konaliny	point of unlicensed exploitation o	of a mineral (p - type of mineral)	00000	aleja drzew pomnikowych avenue of monumental trees
Mineral symbol:	y.	Symbol of the stratigraphic unit:	\circ	Obszary Europejskiej Sieci Ekologicznej Natura 2000 o powierzchni < 5 ha; kod obszaru Natura 2000 ecological network with area < 5ha; area code
R - ropa naftowa	a	Quaternary Ng - Neogen	▲ ⁿ	pomnik przyrody żywej (n - liczba obiektów) animate nature monument (n - numer of objects)
crude oil i(ic) - iły i łupki il	aste ceramiki budowlanej	Neogene Pg - Paleogen	•	pomnik przyrody nieożywionej inanimate nature monument
building cer pż - piaski i żwir	amics raw materials Y	Paleogene P - Perm Description	\square	użytek ekologiczny ecological area
sands and gr p - piaski	aveis	Permian	Φ ⁿ	użytek ekologiczny o powierzchni < 5 ha (n - liczba obiektów) ecological area with area < 5 ha (n - number of objects)
t - torfy			\mathbf{v}	geostanowisko o znaczeniu krajowym geostie of national importance
		+	głaz narzutowy o średnicy >1,5 m niezakwalifikowany jako pomnik przyrody glacial eratic less than 1.5m in diameter, not qualified as natural monument	
SURFACE AND U	JNDERGROUNG WATERS		*	stanowisko archeologiczne archeological site
	obszary dolinne zagrożone valley flood hazard area	podtopieniami		
	granica działu wodnego dru	igiego rzędu	ADDITIONAL INF	CJE DODATKOWE
	granica działu wodnego trze water divide of third rank	eciego rzędu		granica powiatu distirct boundary
	granica działu wodnego czy	vartego rzędu		granica gminy, miasta commune or town boundary
138	granica głównego zbiornika principle boundary aquifer with I	wód podziemnych wraz z jego numerem D number	— \$3 —	oś autostrady lub drogi szybkiego ruchu highway or express route
	granica strefy ochrony ujęci water intake protected area bour	i a wód ndary	BOGDANIEC	siedziba urzędu gminy, miasta commune or town office headquarter
• ••Q••••	granica leja depresyjnego w (Q - wiek eksploatowanych boundary of a cone depression d	vywołanego eksploatacją wód podziemnych utworów) sused by water exploitation (Q - age of exploited rocks)	*****	sieć gazociągów przesyłowych naturał gas pipeline network
•	źródło spring		*****	sieć elektroenergetyczna najwyższych napięć high-voltage power network
Zb. Bledzew	zbiornik retencyjny wraz z je water reservoir with its name	ego nazwą		granica obszaru przetargowego boundary of tender area
∎ <mark>k</mark> Q	ujęcie wód podziemnych o (k - komunalne, p - przemys underground water intake with ca (k - municipal, p - industrial, Q - a	wydajności ≥ 50 m³/h słowe, Q - wiek ujmowanych utworów) apacity ≥ 50 m³/h age of exploited rocks)		

* Wykorzystano informacje udostępniane przez: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, urzędy morskie oraz z baz danych PSG i PSH w PIG-PIB * Data source: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, maritime offices and from database of PSG and PSH

2. BUDOWA GEOLOGICZNA 2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ

W budowie geologicznej obszaru przetargowego "Gorzów Wielkopolski S" można wyróżnić platformę zachodnioeuropejską (paleozoiczną) oraz jej pokrywę permsko-mezozoiczną i kenozoiczną. W obrębie obszaru wyróżnia się trzy piętra strukturalne: waryscyjskie, laramijskie (staroalpejskie) oraz kenozoiczne (Żelaźniewicz i in., 2011).

Dane na jego temat najstarszego – waryscyjskiego – piętra strukturalnego są szczątkowe: piętro jest zbudowane ze sfałdowanych i zdyslokowanych karbońskich skał wielkopolskiego pasma fałdowo-nasuwczego (Żelaźniewicz i in. 2011; Nawrocki i Becker, 2017; Fig. 2.1–2.2). Analizowany obszar leży na północ od strefy uskokowej Dolska (Żelaźniewicz i in. 2011), w obrębie wyniesienia Brandenbursko-Wolsztyńskiej (Kiersnowski i in., 2010). Budowę piętra waryscyjskiego ilustrują przekroje geologiczne na Fig. 2.3.

Pokrywę osadową platformy paleozoicznej buduje laramijskie (staroalpejskie) pięto strukturalne. Tworzą je słabo zdeformowane skały kompleksu permsko-mezozoicznego. Obszar "Gorzów Wielkopolski S" leży w zachodniej części synklinorium szczecińskomiechowskiego – w tzw. niecce szczecińskogorzowskiej (Fig. 2.2.A). W tej części synklinorium wyróżnia się również jednostkę niższego rzędu – blok Gorzowa (Dadlez, 1974; Narkiewicz i Dadlez, 2008; Karnkowski, 2010). Ogólną budowę piętra laramijskiego, oprócz przekrojów na Fig. 2.3, ilustrują Fig. 2.4–2.6. Najpłycej występują piętra kenozoicznego, które zalegają niezgodnie na strukturach permsko-mezozoicznych.

W dalszej części przedstawiono charakterystykę poszczególnych wydzieleń stratygraficznych. Do ich opisu wykorzystano dane z otworów położonych w granicach obszaru przetargowego: Baczyna 1, 2, Brzozowa 1, Ciecierzyce 1, 1K, Dzierżów 1K, 1K-BIS, Jeniniec 4, Jeżyki 1, Lubno 1, Maszków 1, Płonica 1, Racław 1K, Stanowice 1, 2, 3, Wędrzyn 1, 5. Ich lokalizację można znaleźć na Fig. 2.4–2.6 oraz na Fig. 5.1.

Fig. 2.1. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy głównych jednostek tektonicznych Polski pod pokrywą permsko-mezozoiczną i kenozoiczną (Żelaźniewicz i in., 2011).

Fig. 2.2. A. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na szkicu głównych jednostek tektonicznych Niżu Polskiego na powierzchni podkenozoinczej (Nawrocki i Becker, 2017). **B**. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na szkicu głównych jednostek waryscyjskiego planu tektonicznego (Nawrocki i Becker, 2017).

Fig. 2.3. A. Fragment regionalnego przekroju geologicznego wzdłuż zintegrowanego profilu sejsmicznego ZRG00697 (Wagner i in., 2008, zmodyfikowane). **B**. Model geofizyczno-geologiczny pokrywy osadowej wzdłuż profilu BMT-5 (Stefaniuk i in., 2008). Czerwonym prostokątem zaznaczono fragment profilu przebiegający przez obszar przetargowy "Gorzów Wielkopolski S". Lokalizację przekrojów zamieszczono na Fig. 2.4–2.6.

Fig. 2.4. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy kompleksu permsko-mezozoicznego (Dadlez i in., 1998a).

Fig. 2.5. Obszar przetargowy "Gorzów Wielkopolski S" na tle fragmentu mapy geologicznej Polski bez utworów kenozoicznych (Dadlez i in., 2000).

Fig. 2.6. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle map ścięcia na poziomie -3000 m n.p.m. (Kotański, 1997).

2.2. TEKTONIKA

Skały najstarszego – waryscyjskiego – piętra strukturalnego zostały nawiercone jedynie w sąsiedztwie obszaru przetargowego. Waryscyjskie podłoże platformy zachodnioeuropejskiej charakteryzuje się słabym rozpoznaniem geologicznym. Wynika to z małej ilości otworów nawiercających skały podpermskie, jak również silnym tłumieniem sygnału sejsmicznego przez ewaporaty cechsztynu. Podłoże podpermskie tworzą silnie zaangażowane tektonicznie skały karbonu o upadach dochodzących do 80° (Mazur i in., 2003). W planie waryscyjskim obszar przetargowy sytuuje się w wielkopolskim paśmie fałdowo-nasuwczym, będącym częścią eksternidów waryscyjskich (Fig 2.1-2.2). W dzisiejszym obrazie podłoża podpermskiego, na obszarze "Gorzów Wielkopolski S", zaznacza się wyniesienie Brandenbursko-Wolsztyńskie (Kiersnowski i in., 2010) - palegeomorfologiczna (paleotektoniczna: Karnkowski, 2010) struktura, rozciągająca się w kierunku NW-SE (Fig. 2.7). Wyniesienia ma charakter izolowanych zrębów i rowów, co sugeruje, że jest to wypiętrzony element wielkoskalowej, tektonicznej, prawoskrętnej strefy uderzeniowoprzesuwczej, prawdopodobnie postwaryscyjskiej (Kiersnowski i in., 2010). Możliwe, że jest ona związana ze strefą uskokową Dolska.

Powierzchnia stropowa karbonu na obszarze przetargowym znajduje się na głębokości 3500–4000 m p.p.t. i zapada w kierunku północno-wschodnim (Poprawa i Kiersnowski, 2010). Mapa stropu powierzchni podpermskiej (Kudrewicz, 2008) ukazuje bardziej zróżnicowaną morfologię stropu piętra waryscyjskiego. Obserwuje się na niej elewacje i depresje, układające się linijnie w kierunku NW-SE (Fig. 2.8).

W planie staroalpejskim obszar "Gorzów Wielkopolski S" jest zlokalizowany w obrębie bloku Gorzowa, znajdującego się w segmencie szczecińsko-gorzowskim, należącym do synklinorium szczecińsko-miechowskiego. Blok Gorzowa jest położony w zachodniej, dystalnej części asymetrycznego, ryftowego basenu polskiego, z którym jest związany genetycznie (Karnkowski, 2010). Istotnym elementem strukturalnym piętra staroalpejskiego jest wyniesienie Brandenbursko-Wolsztyńskie (Kiersnowski i in., 2010), którego aktywność paleotektoniczna zaznaczała się podczas permu i mezozoiku. W permie był to obszar intensywnych procesów wulkanicznych (Karnkowski, 2010).

Na skałach karbonu niezgodnie zalegają wulkanity dolnego czerwonego spągowca, powstałe w warunkach postwaryscyjskiej ekstensji tektonicznej, związanej z założeniem sedymentacyjnym basenu niemiecko-polskiego (Kiersnowski i Buniak, 2006). Ich miąższość wynosi od zera w południowowschodniej części obszaru przetargowego i wzrasta do prawie 500 m na północnymzachodzie (Fig. 2.9).

Powierzchnia podcechsztyńska najpłycej występuje na głębokości -3100 m n.p.m. w południowo-wschodniej części obszaru oraz ulega pogłębieniu do około -3400 m n.p.m. w kierunku północnym (Kudrewicz, 2008; Fig. 2.10). Nieliczne uskoki rozpoznane na mapie powierzchni podcechsztyńskiej nie mają znacznej długości i przebiegają w kierunkach NW-SE oraz NE-SW.

Na skałach cechsztynu leżą monoklinalnie wychylone ku północnemu wschodowi skały mezozoiku: triasu, jury i kredy (Fig. 2.3 i Fig. 2.7). Na skutek ruchów tektonicznych fazy młodokimeryjskiej nastąpiła przerwa w sedymentacji na przełomie jury i kredy (Mamczur i in., 1997). Obszar przetargowy "Gorzów Wielkopolski S" znajduje się w brzeżnej strefie występowania zjawisk tektoniki solnej. Obserwuje się tu stosunkowo płaskie poduszki i soczewy solne nad którymi powstawały szerokopromienne antykliny. Rozpoczęcie zjawisk halokinetycznych szacuje się na późny trias, a sam ruch soli był powolny i rozłożony w czasie (Czekański i in. 2010; porównaj Dadlez i in., 1998a – Fig. 2.4).

W planie podkenozoicznym na powierzchni całego obszaru przetargowego odsłaniają się skały późnej kredy – kampan (Dadlez i in., 2000; Fig. 2.5). Całość przykrywają niezgodnie zalegające na nich utwory kenozoiku.

Fig. 2.7. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle map ścięcia na poziomie -4000 m n.p.m. (Kotański, 1997).

Fig. 2.8. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy strukturalnej stropu powierzchni podpermskiej (Kudrewicz, 2008).

Fig. 2.9. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy miąższości wulkanitów dolnego czerwonego spągowca (Wagner i in., 2008).

Fig. 2.10. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy strukturalnej stropu powierzchni podcechsztyńskiej (Kudrewicz, 2008).

Fig. 2.11. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle mapy paleomiąższości cechsztynu (Wagner i in., 2008).

2.3. STRATYGRAFIA 2.3.1. KARBON

Rozprzestrzenienie i miąższość

Utwory karbonu na obszarze przetargowym "Gorzów Wielkopolski S" nie zostały nawiercone. Rozpoznano je jedynie w dwóch otworach wiertniczych, znajdujących się poza granicami omawianego rejonu. Pierwszym z nich jest otwór Jeniniec 2, zlokalizowany w pobliżu złoża ropy naftowej Jeniniec, a drugi otwór – Santok 1 – jest położony za północnowschodnią krawędzią obszaru przetargowego (Fig. 5.1). Strop utworów karbonu w otworze Jeniniec 2 został nawiercony na głębokości 3638,0 m, a spąg otworu znajduje się na głębokości 3796,0 m. Miąższość przewierconych skał karbońskich wynosi 158,0 m.

Na obszarze przetargowym "Gorzów Wielkopolski S" strop podłoża podpermskiego (w większości przypadków strop karbonu) nie wykazuje zbyt dużego zróżnicowania morfologicznego (Fig. 2.8). Najpłycej podłoże podpermskie występuje w centralnej części obszaru przetargowego. W kierunku północno-zachodnim i zachodnim obserwuje się jego stopniowe zapadanie.

Litologia i stratygrafia

Na podstawie analizy archiwalnego opisu rdzeni oraz karotaży geofizycznych (PG i PNG), profil karbonu w otworze Jeniniec 2 można podzielić na dwie części (Fig. 2.12). Część dolna (o miąższości >72 m) została wyróżniona od spągu otworu do głębokości około 3724,0 m. Charakteryzuje się zwiększoną ilością przeławiceń piaskowcowomułowcowo-iłowcowych (Fig. 2.12). Pakiety piaskowcowe są drobno- i średnioziarniste,

kwarcytowe, najczęściej barwy brunatnowiśniowej, zbite o bardzo dużej twardości. Wśród nich pojawiają się nieokreślone litologicznie zabliźnione "żyły". Rozpoznane w rdzeniach wiertniczych warstwy mułowcowo-iłowcowe posiadają barwę brązowofioletowo-zielonkawa lub wiśniowo-czerwoną. Górna część profilu karbonu (od głębokości około 3724,0 m do 3638,0 m; miaższość 86 m) charakteryzuje się dominacją pakietów piaskowców w porównaniu do dolnej części (Fig. 2.12). Są to piaskowce drobnoziarniste, kwarcytowe, zbite i twarde. Pojawiają się w nich szczeliny o grubości od 0,3 do 0,5 cm, wypełnione, w niektórych przypadkach, częściowo kalcytem. Wśród utworów górnej części profilu pojawiają się kilkumetrowe warstwy iłowcowo-mułowcowe (Fig. 2.12). W najwyższej części profilu, według dokumentacji otworowej (Liberska, 1988a) występują niezdefiniowane litologicznie skały. Na podstawie opisu rdzeni i krzywych geofizycznych zinterpretowano je iako przeławicające się warstwy mułowców i piaskowców (Fig. 2.12). Utwory te są drobnoziarniste, barwy brunatnej, twarde, porozcinane nieokreślonymi litologicznie "żyłami". Powyższą interpretację mogą w pewnym stopniu potwierdzać wyniki uzyskane z otworów, które znajdują się poza granicami obszaru przetargowego. W świetle badań sedymentologicznych, uzyskanych z obszaru wielkopolskiego pasma fałdowo-nasunięciowego (w tym z obszaru przetargowego), utwory karbonu, składające się ze stosunkowo monotonnej serii turbidytowej, są interpretowane jako flisz (Mazur i in., 2003).

Omówione powyżej utwory karbonu wykazują silne zaangażowanie tektoniczne, o czym świadczą duże i zmienne upady warstw oraz silne sprasowanie, zwłaszcza w partiach iłowcowo-mułowcowych (Mazur i in., 2003). Również w innych otworach, zlokalizowanych poza obszarem przetargowym, na rdzeniach wiertniczych karbonu obserwuje się wysokie upady warstw, osiągające nawet do 80°.

Na podstawie badań palinologicznych wykonanych w czterech próbach pobranych z rdzeni na odcinku 3641,2–3765,4 m wiek utworów karbonu w otworze Jeniniec 2 określono na górny karbon, westfal A (Górecka i Parka, 1988). Należy jednakże brać pod uwagę ostatnie prace opublikowane przez Górecką-Nowak (2007, 2008), w których zawarta jest nowa interpretacja palinostratygraficzna karbonu SW Polski, wykonana na podstawie stratygraficznych zasięgów miospor. Granica pomiędzy utworami górnego karbonu a dolnego czerwonego spągowca została określona na podstawie rdzeni wiertniczych oraz karotaży. Występuje ona w opisanych wyżej wyinterpretowanych mułowców i piaskowców, a wiąże się pojawieniem brekcji zbudowanej najprawdopodobniej z klastów skał wulkanicznych oraz karbońskich.

Petrografia utworów karbonu

Charakterystykę petrograficzną oparto na dokumentacjach wynikowych dwóch w/w otworów wiertniczych, w których przewiercono karbon. Wykorzystano również dane zamieszczone w opracowaniu archiwalnym "Petrologia, sedymentologia i nowa litostratygrafia utworów czerwonego spągowca dolnego z wybranych profili platformy waryscyjskiej" (Maliszewska i in., 2008).

Osady karbonu (westfal A) w otworze Jeniniec 2. Występują tu osady klastyczne: piaskowce, mułowce i iłowce, które tworza przeławicające się pakiety. Piaskowce charakteryzują się barwą czerwonobrunatną i są zwięzłe. Reprezentują one arenity, prawdopodobnie kwarcowe, o strukturze od drobno- do gruboziarnistej i bezładnej teksturze. Materiał ziarnisty jest słabo wysortowany o zróżnicowanym stopniu obtoczenia (od dobrze do słabo obtoczonego). Głównym składnikiem piaskowców jest kwarc. W mniejszej ilości występują litoklasty (mułowce, kwarcyty, skały wulkaniczne), blaszki muskowitu oraz ziarna skaleni. Wśród minerałów akcesorycznych wyróżniono turmalin, cyrkon, apatyt i tlenki żelaza. Spoiwo piaskowców jest krzemionkowo-ilaste. Skała jest pocięta żyłkami kalcytowymi. Porowatość piaskowców waha się od 2,91 do 5,69%, przeciętnie wynosi 4,2%, a przepuszczalność jest <0,1 mD.

Iłowce i mułowce charakteryzują się strukturą pelitowo-aleurytowo-psamitową i teksturą często kierunkową, podkreśloną ułożeniem składników mineralnych. Są zbudowane głównie z minerałów ilastych i ziaren kwarcu. Brunatnoczerwona barwa skały jest prawdopodobnie efektem występowania hematytu i wodorotlenków żelaza. Miejscami iłowce i mułowce mają barwę szarozieloną.

Osady karbonu w otworze Santok 1. Utwory karbonu w otworze Santok 1 są reprezentowane przez pakiet skał piaszczysto-ilastych o typowym dla podłoża podpermskiego wykształceniu litologicznym. Wyróżnia się tu trzy typy skał: piaskowce, mułowce oraz iłowce. Piaskowce, ze względu na zawartość materiału wulkanicznego, określono jako piaskowce wulkanoklastyczne. Są one reprezentowane przez waki i arenity lityczne oraz arkozowe (Fig. 2.13.A-B). Struktura piaskowców jest od bardzo drobno- do średnioziarnistej, a tekstura jest bezładna, sporadycznie kierunkowa - podkreślona ułożeniem blaszek łyszczyków. Materiał ziarnisty jest słabo obtoczony i źle wysortowany. Głównymi składnikami szkieletu ziarnowego piaskowców są kwarc, skalenie i litoklasty. Wśród nich dominują ziarna kwarcu, którego przeciętna zawartość waha się od 23,0 do 29,0% obj. skały. Ziarna kwarcu monokrystalicznego przeważaja nad polikrystalicznym; ponadto obserwowano kwarc pochodzenia wulkanicznego (zatoki korozyjne). Zawartość skaleni (plagioklazy i skalenie potasowe) waha się od 10,6 do 23,0% obj. skały. W obrębie ziaren skaleni obserwowano efekty działania procesów argi-

lityzacji i karbonatyzacji. Litoklasty występuia w ilości od 11 do 24,6% obj. skały. Wśród litoklastów okruchy skał magmowych (kwaśne i zasadowe skały wylewne, szkliwo wulkaniczne, granitoidy) przeważają nad metamorficznymi. W okruchach skał wulkanicznych bardzo często widoczne są efekty sylifikacji oraz argilityzacji, rzadziej karbonatyzacji. Wśród łyszczyków występują muskowit i biotyt, ponadto widoczne są blaszki chlorytów. Minerały akcesoryczne obejmują cyrkon, rutyl i apatyt. Spoiwo piaskowców stanowi matriks ilasto-krzemionkowy. Minerałom ilastym przeważnie towarzyszą wodorotlenki żelaza i hematyt, miejscami w znacznej ilości, maksymalnie 18,3% obj. skały. Ponadto występują cementy weglanowe (kalcyt, ankeryt) oraz anhydrytowe. W skale widoczne są żyłki kalcytowe. Porowatość piaskowców waha się od 3,51 do 6,80%, przeciętnie 5,3%, a przepuszczalność wynosi <0,001 mD.

Mułowce i iłowce charakteryzują się strukturą pelitowo-aleurytową, miejscami z domieszką frakcji psamitowej. Wykazują teksturę bezładną lub kierunkową podkreśloną ułożeniem minerałów blaszkowych. Główną masę skały stanowią minerały ilaste. W masie ilastej występują blaszki muskowitu, pojedyncze ziarna kwarcu, materia organiczna i związki żelaza. Udział tlenków i wodorotlenków żelaza jest znaczny, o czym świadczy brązowa barwa skał.

Fig. 2.12. Profil stratygraficzno-geofizyczno-litologiczny górnego karbonu i dolnego permu w otworze Jeniniec 2. Interpretacja i opracowanie graficzne: K. Waśkiewicz (materiały niepublikowane).

Fig. 2.13.A. Ziarno kwarcu polikrystalicznego (Qp) oraz pseudomorfoza kalcytowo-anhydrytowa po skaleniu (strzałka) w wace litycznej; otwór Santok 1, głęb. 3892,7 m., obraz PL, nikole skrzyżowane (Maliszewska i in., 2008). **B.** Ziarno skalenia potasowego (Sk) zastępowane przez kalcyt (Ka) w wace arkozowej. Obok widoczne ziarno plagioklazu wtórnie zalbityzowane (Ab); otwór Santok 1, głęb. 3896,4 m., obraz PL, nikole skrzyżowane (Maliszewska i in., 2008).

2.3.2.PERM – CZERWONY SPĄGOWIEC

Rozprzestrzenienie i miąższość

Na obszarze przetargowym "Gorzów Wielkopolski S" 6 otworów wiertniczych nawierciło utwory czerwonego spągowca. Dodatkowo, na przygranicznym złożu ropy naftowej Jeniniec, jest położony jeden otwór nawiercający czerwony spągowiec (Jeniniec 7) oraz jeden przewiercający go i dowiercający się do karbonu (Jeniniec 2). Są to (tam, gdzie były dostępne, podano przedziały głębokości):

- Jeniniec 4: 3261,5–3290,0 m,
- Jeżyki 1,
- Maszków 1,
- Płonica 1,
- Wędrzyn 1: 3141,0–3170,0 m,
- Wędrzyn 5: 3157,5–3210,0 m.

Miąższość nawierconych utworów czerwonego spągowca jest zróżnicowana, waha się od 28,5 m do 120 m. Jedynie w otworze Jeniniec 2 czerwony spągowiec został całkowicie przewiercony, osiągając 386 m miąższości.

Litologia i stratygrafia

W niniejszym opracowaniu przyjęto nieformalny podział stratygraficzny zaproponowany przez Pokorskiego (1981, 1988, 1997), w którym dolny czerwony spągowiec odpowiada tradycyjnemu wydzieleniu autun. Jest on reprezentowany głównie przez skały wulkaniczne i podrzędnie wulkanoklastyczne (seria epiklastyczno-piroklastyczna). Górny czerwony spągowiec w tradycyjnym podziale stratygraficznym był określany jako sakson, wykształcony w postaci skał osadowych.

Dolny czerwony spągowiec

Utwory dolnego czerwonego spągowca na obszarze przetargowym są reprezentowane przez wielkopolską formację wulkanogeniczną (Pokorski, 1981, 1988, 1997). Składają się nań dwa typy wylewnych skał wulkanicznych: 1) bazalty, andezyty i trachyandezyty oraz 2) ryolity, dacyty i trachity. W wielu przypadkach na skałach pierwszego typu zalegają pokrywy kwaśnych law (Maliszewska i in., 2016). Jednakże, regionalnie, w profilu pionowym dolnego czerwonego spągowca dominują objętościowo skały andezytowobazaltowe nad skałami kwaśnymi (Maliszewska i in., 2016).

Obserwuje się regionalny wzrost miąższości serii wulkanicznej na osi NW-SE. Na obszarze przetargowym miąższość wzrasta stopniowo, osiągając największe wartości w północno-zachodniej części (Fig. 2.9).

Na interpretacjach budowy geologicznej, których podstawą są dane sejsmiczne, zwraca uwagę powierzchnia stropowa karbonu, granicząca ze skałami wulkanicznymi oraz przyjęta miąższość skał wulkanicznych (Fig. 2.8– 2.9). Powierzchnia ta wydaje się być wysoce arbitralna, ponieważ interpretatorzy (Dyjaczyński i Dąbrowska-Żurawik – materiały niepublikowane; w Bylina, 2006; Fig. 2.14) zastosowali metodę częściowego odwzorowania stropu wulkanitów, przy założonej równomiernej miąższości skał wulkanicznych. W tej sytuacji przekrój poprzez skały karbonu i skały wulkaniczne należy uznać za hipotetyczny.

Na obszarze bloku Gorzowa i jego sąsiedztwie, w otworach przewiercających skały dolnego czerwonego spągowca, sięgających do karbonu, wykonano korelację geologiczną (Fig. 2.15). Pomiędzy otworami Jeniniec 2 i Santok 1, uskoki występujące w podłożu karbonu nie miały wpływu na miaższość pokrywy wulkanicznej dolnego czerwonego spagowca. We wczesnym etapie rozwoju basenu, przed powstaniem pokrywy wulkanicznej, istniał uskok położony na północny wschód od wiercenia Santok 1 i związany z nim próg tektoniczny (Fig. 2.15). Późniejsza ewolucja tektoniczna spowodowała powstanie (odmłodzenie) strefy tektonicznej, znajdującej się na południowy zachód od wiercenia Santok 1 i zrzut bloku Santoka o około 150 m (Fig. 2.16). Obszar na północny wschód od Santoka został zrzucony o dalsze 500 m (Fig. 2.16).

Górny czerwony spągowiec

W 6 otworach na obszarze przetargowym "Gorzów Wielkopolski S" i w jego sąsiedztwie rozpoznano osadowe utwory górnego czerwonego spągowca. Składają się one z szarych kwarcowych piaskowców o spoiwie węglanowym, drobno- i średnioziarnistych, rzadziej różnoziarnistych. Ziarna kwarcu charakteryzują się najczęściej złym obtoczeniem i złym wysortowaniem. W kilku przypadkach w piaskowcach zaobserwowano warstwowania przekątne dużej skali.

Utwory górnego czerwonego spągowca na obszarze przetargowym "Gorzów Wielkopolski S" występują w formie "resztkowej". Ich zasięgi są ograniczone do pojedynczych, bardzo cienkich pokryw osadowych. Miąższości utworów górnego czerwonego spągowca wynoszą od 1,5 do maksymalnie 5 m. Na Fig. 2.17 przedstawiono interpretację rozmieszczenia stref uskoków tektonicznych różnych generacji. Uskoki te zostały rozmieszczone w oparciu o mapy strukturalne 3D spągu cechsztynu oraz analizę transformacji zdjęć grawimetrycznych. Przedstawione różnymi kolorami strefy różnych generacji uskoków tektonicznych oraz interpretowane zrzuty tektoniczne (Fig. 2.15 i Fig. 2.16) wskazują na możliwość istnienia na obszarze przetargowym "Gorzów Wielkopolski S" licznych struktur tektonicznych w podłożu cechsztynu.

Potencjał zbiornikowy dolnego czerwonego spągowca

Ostatnie odkrycie wysokometanowego gazu (91% CH₄) w porowatych skałach wulkanicznych dolnego czerwonego spągowca w wierceniu Goszczanowo 1K, zlokalizowanym na wschód od wierceń Ciecierzyce 1/1K i Santok 1, może sugerować możliwość istnienia tego typu pułapek także na obszarze przetargowym "Gorzów Wielkopolski S". Dotychczas wulkanity dolnego czerwonego spagowca nie były szczegółowo badane pod kątem poszukiwań naftowych. Wykonywane analizy ograniczały się w wielu przypadkach jedynie do opisu petrologicznego tych skał (m.in. Maliszewska i in., 2016), wyjaśnienia genezy ich powstania (m.in. Bylina, 2006) oraz badań właściwości petrofizycznych (dokumentacje otworowe). Wyniki zamieszczane w dokumentacjach otworowych przez firmy naftowe wskazują na zróżnicowaną porowatość, mogącą osiągać średnio około 5% oraz niską przepuszczalność <1 mD. Pomimo słabych/ średnich własności petrofizycznych, w wielu otworach rejestrowano przypływy gazu o wysokiej zawartości węglowodorów. Zakładając migracje pionową oraz mając na uwadze wyniki m.in. z otworu Goszczanowo 1K, można spodziewać się występowania w podłożu enklaw skał wulkanicznych dolnego czerwonego spągowca utworów górnego karbonu, które, jako skały macierzyste, mogły generować lepszej jakości gaz. Kluczowym czynnikiem dla zrozumienia roli utworów dolnego czerwonego spągowca (skał wulkanicznych) jako potencjalnej skały zbiornikowej bądź skały, przez którą zachodziła migracja fluidów, jest wykonanie szczegółowych badań petrologiczno-diagenetycznych, połączonych z modelowaniem naftowym. Dodatkowo, sugeruje się ponowne wykartowanie horyzontu spągu cechsztynu i lokalizacji stref uskokowych, w których wulkanity dolnego czerwonego spągowca mogą tworzyć pułapki strukturalne, jak również stanowić potencjalne skały zbiornikowe typu szczelinowego.

Fig. 2.14. Interpretacja geologiczna głębokościowych przekrojów sejsmicznych Namyślin – Jeniniec i Sulęcin – Lubiszyn (Dyjaczyński i Dąbrowska-Żurawik, materiały niepublikowane; w Bylina, 2006). C – karbon, Pv – czerwony spągowiec dolny, Pz – cechsztyn, Tp₁ – pstry piaskowiec dolny, Tp₃ – pstry piaskowiec górny (ret), Tm – wapień muszlowy, Tk – kajper, 1 – sól, 2 – anhydryt, 3 – dolomit, 4 – iłowiec, 5 – skały wulkaniczne czerwonego spągowca, 6 – karbońskie skały klastyczne, 7 – margle, wapienie, 8 – wapienie, margle, 9 – piaskowce, mułowce, 10 – uskok.

Fig. 2.15. Korelacja geologiczna pomiędzy wierceniami Jeniniec 2 i Santok 1. Interpretacja H. Kiersnowski (materiały niepublikowane). Lokalizacja przekroju geologicznego znajduje się na Fig. 2.17.

Fig. 2.16. Korelacja geologiczna pomiędzy wierceniami Jeniniec 2 i Santok 1. Wersja współczesna. Interpretacja H. Kiersnowski (materiały niepublikowane). Lokalizacja przekroju geologicznego znajduje się na Fig. 2.17.

Fig. 2.17. Mapa litofacjalno-paleogeograficzna stropu osadów górnego czerwonego spągowca, tuż przed transgresją morza cechsztyńskiego (Kiersnowski i in., 2020). Na figurze zaznaczono przekrój geologiczny prezentowany na Fig. 2.15–2.16.

2.3.3. PERM – CECHSZTYN

Rozprzestrzenienie i miąższość

Spąg osadów cechsztyńskich na terenie obszaru przetargowego "Gorzów Wielkopolski S" znajduje się na głębokości od około -3000 do ponad -3400 m n.p.m. (Fig. 2.10). Utwory te nawiercono w 18 otworach wiertnicznych, rozmieszczonych dość nierównomiernie na tym obszarze (Fig. 2.10). Są to (tam, gdzie były dostępne, podano przedziały głębokości):

- Baczyna 1,
- Baczyna-2: 2689,0–3167,0 m,
- Brzozowa 1,
- Ciecierzyce 1: 2620,5–3204,0 m,
- Ciecierzyce 1K: 2679,0–3007,0 m TVD,
- Dzierżów 1K: 2531,43–3031,87 m TVD,

- Dzierżów 1K-BIS: 2533,1–3034,1 m TVD,
- Jeniniec 4: 2372,5–3261,5 m,
- Jeżyki 1,
- Lubno 1,
- Maszków 1,
- Płonica 1,
- Racław 1K: 2732,0-3256,0 m,
- Stanowice 1,
- Stanowice 2,
- Stanowice 3: 2726,0–3261,0 m,
- Wędrzyn 1: 2361,0–3141,0 m,
- Wędrzyn 5: 2391,0–3157,5 m.

Utwory cechsztynu na obszarze "Gorzów Wielkopolski S" osiągają miąższość kilkuset

metrów (Fig. 2.18). Maksymalna całkowita miąższość cechsztynu stwierdzona w otworze Jeniniec 4 wynosi 889 m. W większości otworów utwory cechsztynu nie zostały przewiercone, a wiercenia kończono w wyższej części anhydrytu głównego. Spośród 18 otworów tylko 6 z nich: Jeniniec 4, Jeżyki 1, Maszków 1, Płonica 1, Wędrzyn 1, 5, przewierciło całą sekwencję cechsztyńską.

Litologia i stratygrafia

W obrębie sekwencji ewaporatowej cechsztynu Niżu Polskiego można wyróżnić cztery cyklotemy – od PZ1 do PZ4 (Wagner, 1994, Wagner i Peryt, 1997; Fig. 2.19), które odpowiadają cyklotemom Werra, Strassfurt, Leine i Aller z basenu niemieckiego (Richter-Bernburg, 1955). Większa część osadów cechsztyńskich powstawała podczas transgresywno-regresywnych cykli węglanowo-ewaporatowych (PZ1–PZ3; Fig. 2.20), najwyższa zaś część profilu (cyklotemy od PZ4a do PZ4e – Fig. 2.21) – podczas terygenicznowęglano-wych cykli klimatycznych, związanych z wahaniami klimatu od wilgotnego do suchego (Wagner i Peryt, 1997).

Sedymentacja cyklotemów PZ1-PZ3 rozpoczynała się generalnie utworami węglanowymi, przy czym w przypadku PZ1 była poprzedzona depozycja niewielkiej miaższości warstwy łupka miedzionośnego T1 (zwykle kilkadziesiąt cm), a w przypadku PZ3 - szarego ilu solnego T3. Deponowane utwory weglanowe to odpowiednio: wapień cechsztyński Ca1, dolomit główny Ca2 i dolomit płytowy Ca3 (Fig. 2.19, Fig. 2.20-2.21). Mają one zwykle niewielką miąższość (od kilku do kilkudziesięciu metrów) i są rozdzielone dużej miąższości ewaporatami (do kilkuset metrów) wykształconymi głównie w facjach siarczanowych (anhydryt) i chlorkowych (sól kamienna – halit).

Cyklotem PZ1

Osady cechsztynu na obszarze "Gorzów Wielkopolski S" zostały przewiercone w sześciu otworach wiertniczych: Jeniniec 4, Jeżyki 1, Maszków 1, Płonica 1, Wędrzyn 1 i 5. Według informacji zawartych w dokumentacjach geologicznych dostępnych otworów (Jeniniec 4, Wędrzyn 1 i 5; Tab. 2.1) w otworach tych nie stwierdzono obecności łupka miedzionośnego (zob. Liberska, 1988b; Sowa i in., 2017)

Sedymentacja wapienia cechsztyńskiego (Ca1) na obszarze "Gorzów Wielkopolski S" zachodziła w głębokowodnej strefie równi basenowej zbiornika cechsztyńskiego (Fig. 2.22), w związku z czym, osady te osiągają tutaj niewielką miąższość (od 1 do kilku metrów: Jeniniec 4 – 1 m, Wędrzyn 5 – 3 m) i są reprezentowane głównie, jak wynika z opisów zamieszczonych w dokumentacjach wynikowych otworów, przez wapienie (Fig. 2.23) o bardzo słabych własnościach zbiornikowych.

Podczas cyklotemu PZ1 doszło do wyraźnego zróżnicowania basenu – wyodrębniły się depresyjne strefy basenowe, w których osadzały się utwory anhydrytu dolnego (A1d), soli najstarszej (Na1) i anhydrytu górnego (A1g) oraz strefy płytkowodne, gdzie tworzyły się wyłącznie anhydryty. Przykrywająca Ca1 sukcesja ewaporatowa, należąca do anhydrytu dolnego i anhydrytu górnego, osiąga na omawianym obszarze miąższość do 250 m (Fig. 2.23). W otworach Wędrzyn 1 i 5 stwierdzono także obecność soli najstarszej o miąższości około 50 m, rozdzielającej w/w jednostki litostratygraficzne.

Osady cyklotemu PZ1 na obszarze "Gorzów Wielkopolski S" osiągają miąższość od ponad 190 m (Wędrzyn 5) do prawie 260 m (Jeniniec 4; Tab. 2.1).

Cyklotem PZ2

Utwory cyklotemu PZ2 na obszarze "Gorzów Wielkopolski S" osiągają od niewiele ponad 100 m (w otworze Dzierżów 1K 118 m – możliwa redukcja tektoniczna) do prawie 360 m (359 m w otworze Jeniniec 4) miąż-szości (Fig. 2.24, Tab. 2.1).

Utwory dolomitu głównego (Ca2) mają bardzo zróżnicowaną miąższość, zależną od położenia w określonej strefie paleogeograficznej basenu. Morze cechsztyńskie w rejonie Gorzowa Wielkopolskiego wkroczyło na zróżnicowaną morfologicznie powierzchnię. Na wzniesieniach powstawały platformy i mikroplatformy siarczanowe cyklotemu Werra, na których, w wyniku kolejnego cyklu transgresywnego, rozwinęły się

platformowe utwory dolomitu głównego (Czekański i in., 2010; Fig. 2.25). Większość obszaru "Gorzów Wielkopolski S" zajmuje właśnie platforma węglanowa (Fig. 2.25-2.26). Osady dolomitu głównego osiągają tam znaczną miąższość, lokalnie dochodzącą do blisko 100 m (94,5 m w otworze Racław 1K i 94 m w otworze Stanowice 3), zwykle jednak mieszczącą się w granicach 50 m (Fig. 2.26). Zachodnia i wschodnia część obszaru zajmuje równia basenowa (Fig. 2.25-2.26), na której osady dolomitu głównego mają niewielką miąższość. W otworze Jeniniec 4 wynosi ona tylko 0,5 m, natomiast w otworze Wędrzyn 1, znajdującym się w pobliżu skłonu platformy węglanowej - 6 m.

Utwory dolomitu głównego pierwotnie miały litologię wapienną, lecz są obecnie w większości całkowicie zdolomityzowne. Jedynie w strefie basenowej są wykształcone jako ciemnoszare wapienie, silnie zailone i niekiedy lekko dolomityczne, a na skłonie przewarstwienia wapieni platformy jako i dolomitów z wyraźną przewagą tych ostatnich. Mikrofacjalnie osady basenowe to laminowane madstony, niekiedy z podrzędnym udziałem bioklastów i grubszego materiału ziarnistego, związanego z dystalnymi częściami spływów turbidytowych (Jaworowski i Mikołajewski, 2007; Czekański i in., 2010). Miejscami spotyka się oznaki biostabilizacji w postaci mat mikrobialnych.

W obrębie platformy węglanowej można wyróżnić trzy strefy paleofacjalne (Wagner, 2012), charakteryzujące się odmiennym wykształceniem mikrofacjalnym (Jaworowski i Mikołajewski, 2007; Czekański i in., 2010; Fig. 2.25–2.27):

 stok platformy węglanowej, na którym, zależnie od jego morfologii, występują muły węglanowe, muły piaszczyste, piaski węglanowe, zlepieńce i brekcje węglanowe. W niektórych profilach obecne są także zlepieńce oraz brekcje anhydrytowe. Mikrofacjalnie są to madstony, pakstony, flotstony i rudstony. Geneza tych utworów była przedmiotem kontrowersji. Zwykle uznaje się je za materiał powstały w wyniku redepozycji związanej z progradacją krawędzi platformy węglanowej (Jaworowski i Mikołajewski, 2007; Słowakiewicz i Mikołajewski, 2009). Niektórzy badacze z kolei uważają je za produkt niskiego stanu poziomu morza, składający się w znacznej mierze z materiału autochtonicznego (Zdanowski, 2003, 2004);

- barierę oddzielającą obszar równi platformowej od otwartego morza. Bariera jest budowana przez osady ziarniste deponowane w płytkim wysokoenergetycznym środowisku oraz niekiedy różne utwory mikrobialne. Dominują takie mikrofacje jak greinstony ooidowe lub onkoidowe, a rzadziej pakstony, wakstony, rudstony i flotstony.
- równię platformową, na której panowały • warunki płytkowodne. Niewielkie różnice w batymetrii powodowały powstanie stref wysoko- i niskoenergetycznych. W strefach wysokoenergetycznych tworzyły się głównie greinstony ooidowe z przewarstwieniami mikrobialitów. Powszechna jest biostabilizacja osadów. Strefy niskoenergetyczne, związane z obniżeniami wewnątrz platformy, są zdominowane przez madstony, wakstony i pakstony peloidowe z onkoidami i licznymi bioklastami (ślimaki, małże, małżoraczki, otwornice). Intraklasty i ooidy były dostarczane ze stref o wyższej hydrodynamice.

Wykształcenie facjalne osadów platformowych dolomitu głównego na obszarze "Gorzów Wielkopolski S" przedstawiono na przykładzie otworów Dzierżów 1K/1K-BIS, Stanowice 3 i Racław 1K.

W otworach Dzierżów 1K i 1K-BIS stwierdzono zróżnicowany zespół mikrofacji, zdominowany przez osady ziarniste – pakstony i greinstony. Duże znaczenie odgrywają utwory mikrobialne - od cienkich naskorupień stabilizujących osady ziarniste poprzez maty mikrobialne do stromatolitów. Sporadycznie występują utwory redeponowane, związane z zewnętrznym stokiem platformy weglanowej. Materiał ziarnisty, występujący w greinstonach, pakstonach i flotstonach, stanowią głównie ooidy, onkoidy, peloidy oraz intraklasty (w tym fragmenty mikrobialitów). W zmiennych ilościach, w różnych partiach profilu, występują też bioklasty (małżoraczki, małże, ślimaki i otwornice). Na podstawie analizy sedymentologiczno-facjalnej dolomitu głównego można stwierdzić, że profil ten reprezentuje utwory powstałe w różnych subśrodowiskach depozycji, związanych z szeroko pojętą barierą oraz z zewnętrznym skłonem platformy węglanowej. Osady były deponowane w większości w płytkowodnym środowisku o zróżnicowanej aktywności hydrodynamicznej, głównie powyżej podstawy falowania.

W profilu dolomitu głównego w otworze Stanowice 3 również dominują pakstony, greinstony i flotstony. Sporadycznie spotyka się także wakstony oraz bandstony (mikrobiality). Materiał ziarnisty w greinstonach i pakstonach stanowią głównie onkoidy, ooidy i intraklasty. W zmiennych ilościach, w różnych częściach profilu, występują peloidy oraz bioklasty (małżoraczki, ślimaki i otwornice). Budujące niższą część profilu flotstony i rudstony składają się z różnej wielkości litoklastów (maksymalnie 35 cm średnicy) oraz onkoidów, peloidów, ooidów i drobnych intraklastów. Znaczną część litoklastów tworzą redeponowane utwory mikrobialne. Otwór ten reprezentuje skłon platformy węglanowej (niższa część profilu) oraz różne subśrodowiska związane z platformą węglanową sensu stricte (wyższa część profilu). Utwory dolomitu głównego były deponowane tu głównie w sublitoralnych warunkach płytkowodnych o zróżnicowanej energii hydrodynamicznej generalnie powyżej podstawy falowania.

W otworze Racław 1K, reprezentującym brzeżną część platformy węglanowej, dominującą mikrofację stanowią greinstony i pakstony onkoidowo-intraklastowo-peloidowe, w obrębie których spotyka się przewarstwienia utworów mikrobialnych/stromatolitów. W najniższej części profilu występują flotstony z poziomami greinstonów i pakstonów. Własności zbiornikowe tych utworów w górnej i środkowej części profilu (osady ziarniste) można uznać za dobre, natomiast dolna część profilu charakteryzuje się słabą porowatością.

Zalegający na utworach dolomitu głównego anhydryt podstawowy (Tab. 2.1) jest wykształcony jako anhydryt krystaliczny, miejscami skrytokrystaliczny z nieregularnymi smugami szarobrunatnej substancji ilastej i nieregularnymi żyłkami prawie czarnej substancji węglanowej (Sowa i in., 2017). Osiąga on miąższość od kilku do około 20 m (20,2 m w otworze Stanowice 3). Zwiększona miąższość anhydrytu może występować na niewielkich podniesieniach podłoża. Zróżnicowany głębokościowo zbiornik sedymentacyjny anhydrytu podstawowego wyrównała sól starsza (Na2), która w niektórych otworach osiąga miąższość ponad 300 m (maksymalnie 339 m w otworze Jeniniec 4). W dwóch otworach (Racław 1K i Stanowice 3) stwierdzono obecność starszej soli potasowej (K2) o miąższości odpowiednio 9,5 i 31 m. Sedymentację cyklotemu PZ2t kończy anhydryt kryjący (A2r) o miąższości nieprzekraczającej kilku metrów (maksymalnie prawie 6 m w otworze Dzierżów 1K-BIS).

Cyklotem PZ3

Utwory cyklotemu PZ3 na obszarze "Gorzów Wielkopolski S" mają miąższość około 200 m (Fig. 2.28, Tab. 2.1). W wierceniach stwierdzono miąższości od 159,5 m (otwór Wędrzyn 5) do ponad 253 m (otwór Dzierżów 1K-BIS). We wszystkich otworach sedymentację cyklotemu PZ3 rozpoczyna szary ił solny T3 o miąższości kilku metrów (od 2 m do maksymalnie ponad 6 m w otworze Dzierżów 1K). Wyżej spoczywają osady anhydrytu głównego o miąższości od nieco ponad 20 m (22 m w otworze Stanowice 3) do prawie 100 m (otwór Dzierżów 1K). Ostatnie ogniwo stanowi młodsza sól kamienna Na3, osiągająca miąższość od 116 m w otworze Wędrzyn 1 do 188,5 m w otworze Stanowice 3.

Cyklotem PZ4

Osady cyklotemu PZ4 mają miaższość od 48 m (otwór Wędrzyn 1) do 102,5 m (otwór Jeniniec 4; Fig. 2.29; Tab. 2.1). Najniższą część stanowi czerwony ił solny T4a o miąższości kilku metrów, który został stwierdzony we wszystkich wierceniach. Następnie w większości otworów stwierdzono anhydryt pegmatytowy dolny (1-2 m miaższości) oraz we wszystkich otworach sól kamienna najmłodszą (od 20 do 65,5 m miąższości). W niektórych otworach nawiercono również młodsze ogniwa cyklotemu (anhydryt pegmatytowy górny, ił solny czerwony górny, sól kamienna najwyższą). W otworach Jeniniec 4, Stanowice 3, Wędrzyn 1 i 5 stwierdzono także stropową serię terygeniczną cechsztynu (PZt) o miąższości od kilku do 25 m (otwór Jeniniec 4).

Petrografia dolomitu głównego

Utwory dolomitu głównego na obszarze przetargowym "Gorzów Wielkopolski S" są wykształcone obecnie głównie jako dolomity. Pierwotnie były to wapienie, które – podobnie jak w całym basenie cechsztyńskim – uległy dolomityzacji w trakcie diagenezy na skutek refluksu solanek ewaporatowych (np. Peryt i Scholle, 1996). W zależności od tego, w jakiej części basenu zachodziła depozycja (np. równia basenowa czy platforma), utwory te charakteryzują się odmienną charakterystyką mikrofacjalną i petrograficzną.

W otworach zlokalizowanych na platformie węglanowej dominują facje ziarniste – greinstony/pakstony onkoidowe/ooidowe lub peloidowe. Często zawierają one przewarstwienia utworów mikrobialnych. Utwory tak wykształcone są szczególnie typowe dla środowisk wysokoenergetycznych, a zatem w obszarze bariery oraz w obrębie płycizn wewnątrzplatformowych. W głębszych częściach wewnętrznych platformy występują pakstony i wakstony.

Na skłonie platformy, poza redeponowanymi z płytszych środowisk osadami drobnoziarnistymi, występują także flotstony i rudstony, a w bardziej dystalnych częściach skłonu – osady typu wakstonów. Materiał ziarnisty w greinstonach, pakstonach i flotstonach stanowią głównie ooidy, onkoidy, peloidy oraz intraklasty (w tym fragmenty utworów mikrobialnych). W zmiennych ilościach, w różnych partiach profili, występują też bioklasty (małżoraczki, małże, ślimaki i otwornice).

Utwory dolomitu głównego w trakcie swojej postdepozycyjnej historii podlegały znacznemu wpływowi różnych procesów diagenetycznych. Najważniejszym była wyżej wspomniana powszechna dolomityzacja, która w większości nie spowodowała zatarcia pierwotnych cech strukturalno-teksturalnych osadu (tzw. *fabric preserving dolomitization*); rzadko obserwuje się dolomityzację niszczącą pierwotną strukturę (dolomity krystaliczne). Dolomityzacja doprowadziła do wytworzenia się porowatości międzykrystalicznej w obrębie zdolomityzowanych, pierwotnie kalcytowych komponentów budujących te utwory.

Procesy diagenetyczne, przede wszystkim cementacja dolomitowa i anhydrytowa, doprowadziły do znacznej lub całkowitej redukcji pierwotnej przestrzeni porowej; znacznie rzadziej zachowana jest porowatość pierwotna. Obserwuje się ponadto procesy rozpuszczania, kompakcji chemicznej (powstanie stylolitów), rekrystalizacji i neomorfizmu agradacyjnego oraz anhydrytyzacji, które niekiedy utrudniają identyfikację pierwotnych cech strukturalnych i teksturalnych.

Utwory dolomitu głównego równi basenowej to laminowane, zdolomityzowane madstony, zwykle pozbawione pierwotnej makroporowatości lub zawierające większe pory wypełnione siarczanami. Zwykle mają dobrze zachowane pierwotne cechy strukturalnoteksturalne, niekiedy zaś są całkowicie zrekrystalizowane.W pewnych przypadkach występują żyłki wypełnione grubokrystalicznym dolomitem. Na omawianym obszarze tak wykształcone utwory dolomitu głównego nawiercono tylko w dwóch otworach – Jeniniec 4 i Wędrzyn 1.

Podsumowując, można generalnie stwierdzić, że, tak jak zauważyli to już Mikołajewski i Słowakiewicz (2008), opisując podobnie wykształcone utwory dolomitu głównego na pobliskim półwyspie Grotowa, przeobrażenia diagenetyczne oraz rozwój przestrzeni porowej zachodziły wielostopniowo i związane były zarówno z etapem synsedymentacyjnym /wczesnodiagenetycznym jak również – pogrzebania. Niektóre z nich przyczyniły się do obniżenia potencjału zbiornikowego (cementacja dolomitowa i anhydrytowa, kompakcja), inne w znacznym stopniu mogły go poprawić (selektywne rozpuszczanie, szczelinowatość). Najbardziej niekorzystnie na zachowanie pierwotnej przestrzeni porowej w osadach ziarnistych wpłynęła cementacja dolomitowa i anhydrytowa.

Koncepcje poszukiwawcze w utworach dolomitu głównego

Utwory dolomitu głównego na obszarze przetargowym są nierównomiernie rozpoznane. Część północna obszaru oraz jego południowe
krańce mają dobre rozpoznanie sejsmiczne (zdjęcia 3D) oraz pokrycie otworami wiertniczymi. Część południowa (poza najbardziej południowymi krańcami), obejmująca na zachodzie obszar równi basenowej zatoki Witnicy, a na wchodzie wielkopolską platformę węglanową, jest relatywnie słabo rozpoznana – tylko sejsmiką 2D. Brakuje tam badań sejsmicznych 3D i nie wykonano tam otworów wiertniczych. Na obszarze platformy węglanowej znajduje się szereg nierozwierconych struktur (Fig. 2.25), zlokalizowanych zarówno w obrębie samej platformy, jak i u jej podnóża/na skłonie.

Sugerowane kierunki poszukiwań:

1. Przeprowadzenie badań w rejonie zatoki Witnicy pod kątem obecności analogicznych struktur, w których odkryto złoże ropy naftowej Jeniniec. Rejon ten charakteryzuje się słabym pokryciem linii sejsmicznych 2D, w związku z czym zaleca się wykonanie zdjęcia sejsmicznego 3D. Prace powinny być skoncentrowane wokół poszukiwań grzbietów platform anhydrytowych PZ1, na których istnieje prawdopodobieństwo występowania mikroplatform węglanowych, jak w przypadku złoża Jeniniec.

2. Reinterpretacja danych sejsmicznych 2D oraz wykonanie zdjęcia 3D w NE części obszaru przetargowego. Badania powinny skupić się na poszukiwaniu struktur w obrębie skłonu platformy i przyległej zatoki Noteci.

Fig. 2.18. Miąższość utworów cechsztynu na obszarze przetargowym "Gorzów Wielkopolski S" (Wagner, 1998)

Fig. 2.19. Stratygrafia cechsztynu w Polsce. Podział litostratygraficzny jest oparty na pracach Wagnera (1987, 1988, 1994; za Słowakiewicz i Mikołajewski, 2009).

Fig. 2.20. Chronostratygrafia cechsztynu – cyklotemy PZ1, PZ2 i PZ3 i sekwencje depozycyjne (Wagner i Peryt, 1997). Objaśnienia na Fig. 2.21.

Fig. 2.21. Klimatyczne sekwencje depozycyjne cechsztynu cyklotemu PZ4 (Wagner i Peryt, 1997). LST – ciąg systemowy niskiego stanu względem poziomu morza, TST – ciąg transgresywny, HST – ciąg systemowy wysokiego stanu względem poziomu morza, mfs – powierzchnia maksimum regresji, 1 – piaskowce, 2 – mułowce, iłowce, 3 – zubry, 4 – sole kamienne, ilaste, 5 – sole kamienne, 6 – anhydryty, 7 – wilgotny, 8 – suchy.

Fig. 2.22. Mapa paleogeograficzna utworów wapienia cechsztyńskiego na obszarze "Gorzów Wielkopolski S" (Buniak i in., 2013a; zmodyfikowane).

→ Objaśnienia do map na Fig. 2.23–2.24 i Fig. 2.28–2.29 (Wagner, 1998).

Fig. 2.23. Paleogeografia i miąższości wapienia cechsztyńskiego (Ca1) i cyklotemu PZ1 wraz z lokalizacją obszaru przetargowego "Gorzów Wielkopolski S" (Wagner, 1998).

Fig. 2.24. Paleogeografia i miąższości cyklotemu PZ2 wraz z lokalizacją obszaru przetargowego "Gorzów Wielkopolski S" (Wagner, 1998).

Fig. 2.25. Paleogeografia dolomitu głównego na obszarze przetargowym "Gorzów Wielkopolski S" i w jego sąsiedztwie wraz z lokalizacją złóż węglowodorów oraz struktur perspektywicznych (Buniak i in., 2013b).

Fig. 2.26. Paleogeografia i miąższości dolomitu głównego na obszarze przetargowym "Gorzów Wielkopolski S" i w jego sąsiedztwie (Wagner, 2012).

Fig. 2.27. Model architektury depozycyjnej utworów dolomitu głównego w rejonie Międzychodu podczas wysokiego stanu względnego poziomu morza HST (Jaworowski i Mikołajewski, 2007, zmodyfikowane; w: Czekański in., 2010).

Fig. 2.28. Paleogeografia i miąższości cyklotemu PZ3 wraz z lokalizacją obszaru przetargowego "Gorzów Wielkopolski S" (Wagner, 1998).

Fig. 2.29. Paleogeografia i miąższości cyklotemu PZ4 wraz z lokalizacją obszaru przetargowego "Gorzów Wielkopolski S" (Wagner, 1998).

Litostratygrafia			Głębokość (miąższość) [m]							
	ostratygrafia	Baczyna-2	Jeniniec 4	Racław 1K	Stanowice 3	Wędrzyn 1	Wędrzyn 5	Dzierżów 1K	Dzierżów 1K-BIS	Ciecierzyce 1K
Cyklotem PZ4		67,0	78,5	70,0	92,5	48,0	51,0	56,54	56,01	58,5
Су	vklotem PZ3	192,5	194,0	215,0	213,5	163,0	159,5	287,69	253,11	>184,0
Na3	sól kamienna młodsza	2756,0–2920,0 (164,0)	2451,0–2608,5 (157,5)	2807,0–2977,0 (170,0)	2818,5–3007,0 (188,5)	2409,0–2525,0 (116,0)	2442,0–2580,5 (138,5)	2587,97–2769,66 (181,69)	2589,15–2744,53 (155,38)	2679,0–2835,5 (>156,5)
A3	anhydryt główny	2920,0–2946,0 (26,0)	2608,5–1643,0 (34,5)	2977,0–3020,0 (43,0)	3007,0–3029,0 (22,0)	2525,0–2568,0 (43,0)	2580,5–2607,5 (27,0)	2769,66–2849,48 (99,82)	2744,53–2839,77 (95,24)	2835,5–2861,0 (25,5)
Т3	ił solny szary	2946,0–2948,0 (2,0)	2643,0–2645,0 (2,0)	3020,0–3022,0 (2,0)	3029,0–3032,0 (3,0)	2568,0–2572,0 (4,0)	2607,5–2611,5 (4,0)	2849,48–2875,66 (6,18)	2839,77–2842,26 (2,49)	2861,0–2863,0 (2,0)
Су	klotem PZ2	171,5	359,0	194,5	195,2	340,0	350,5	117,71	146,55	>144,0
A2r	anhydryt kryjący	2948,0–2950,0 (2,0)	2645,0–2648,5 (3,5)	3022,0–3024,5 (2,5)	3032,0–3034,0 (2,0)	2572,0–2575,0 (3,0)	_	2875,66–1876,55 (0,89)	2842,26–2848,24 (5,98)	2863,0–2864,5 (1,5)
Na2r	sól kamienna starsza kryjąca	_	_	_	_	_	_	_	_	_
К2	sól potasowa starsza	_	_	3024,5–3034,0 (9,5)	3034,0–3065,0 (31,0)	_	_	_	_	_
Na2	sól kamienna starsza	2950,0–3060,5 (110,5)	2648,5–2987,5 (339,0)	3034,0–3102,5 (68,5)	3065,0–3113,0 (48,0)	2575,0–2894,0 (319,0)	2613,5–2903,0 (289,5)	2876,55–2932,32 (55,77)	2848,24–2928,0 (79,76)	2864,5–2994,5 (130,0)
A2	anhydryt podstawowy	3060,5–3066,5 (6,0)	2987,5–3003,5 (16,0)	3102,5–3122,0 (19,5)	3113,0–3133,0 (20,2)	2894,0–2906,0 (12,0)	2903,0–2912,0 (9,0)	2932,32–2937,76 (5,44)	2928,00–2946,94 (18,94)	2994,5–1998,5 (4,0)
Ca2	dolomit główny	3066,5–3119,5 (53,0)	3003,5–3004,0 (0,5)	3122,0–3216,5 (94,5)	3133,2–3227,2 (94,0)	2906,0–2912,0 (6,0)	2912,0–2964,0 (52,0)	2937,76–2993,37 (55,61)	2946,94–2988,81 (41,87)	2998,5–3007,0 (>8,5)
Су	vklotem PZ1	>47,5	257,5	>39,5	>33,8	229,0	193,5	>38,5	>45,33	-
A1g	anhydryt górny	3119,5–3167,0 (>47,5)	*3004,0–3260,5 (256,5)	3216,5–3256,0 (>39,5)	3227,2–3261,0 (>33,8)	2912,0–3023,0 (111,0)	2964,0–3034,0 (70,0)	2993,37–3031,87 (38,5)	2988,81–3034,14 (>45,33)	_
Na1	sól kamienna najstarsza	_	_	_	_	3023,0–3062,0 (39,0)	3034,0–3082,0 (48,0)	_	_	_
A1d	anhydryt dolny	_	_	_	_	**3062,0–3139,0 (77,0)	**3082,0–3154,5 (72,5)	_	_	_
Ca1 + T1	wapień cechsztyński i łupek miedzionośny	_	3260,5–3261,5 (1,0)	_	_	3139,0–3141,0 (2,0)	3154,5–3157,5 (3,0)	_	_	_
miąższ	zość cechsztynu	>478,5	889,0	>519,0	>535,0	780	754,5	>500,44	>501	>386,5

Tab. 2.1. Głębokość występowania i miąższość cechsztynu w otworach wiertniczych zlokalizowanych na obszarze przetargowym "Gorzów Wielkopolski S". *A1d+A1g, **razem z najstarszą solą dolną (5,5; 4,0) i anhydrytem środkowym (24,0; 24,0).

2.3.4. TRIAS

Rozprzestrzenienie i miąższość

Utwory triasu na obszarze przetargowym "Gorzów Wielkopolski S" mają zwykle nieco poniżej 1500 m miąższości i jedynie w otworze Racław 1K stwierdzono większe wartości (1585,5 m). Spąg osadów triasowych znajduje się na głębokości od 2372,5 m w otworze Jeniniec 4 do 2732,0 m w otworze Racław 1K. Osady te zostały przewiercone w 18 następujących otworach wiertniczych (tam, gdzie były dostępne, podano przedziały głębokości):

- Baczyna 1,
- Baczyna-2: 1224,0–2689,0 m,
- Brzozowa 1,
- Ciecierzyce 1/1K: 1150,0–2620,5 m,
- Dzierżów 1K: 1091,0–2552,5 m,
- Jeniniec 4: 960,5–2372,5 m,
- Jeżyki 1,
- Lubno 1,
- Maszków 1,
- Płonica 1,
- Racław 1K: 1146,5–2732,0 m,
- Stanowice 1,
- Stanowice 2,
- Stanowice 3: 1247,0–2726,0 m,
- Wędrzyn 1: 923,0–2361,0 m,
- Wędrzyn 5: 954,0–2391,0 m.

Litologia i stratygrafia

Osady permskie (cechsztyn) na obszarze przetargowym wykazują ciągłość sedymentacyjną z utworami triasowymi. Występujące tutaj twory triasowe należą do trzech nieformalnych jednostek litostratygraficznych. Są to: pstry piaskowiec (oraz ret), wapień muszlowy

2.3.5. JURA

Rozprzestrzenienie i miąższość

Utwory jury na obszarze przetargowym "Gorzów Wielkopolski S" osiągają miąższość od 339,0 m w otworze Jeniniec 4 do 407,0 m w otworze Dzierżów 1K. Spąg osadów jurajskich znajduje się na głębokości od 923,0 m w otworze Wędrzyn 1 do 1247,0 m w otworze

i kajper. Najwyższa stropowa część profilu triasowego na omawianym obszarze, chronostratygraficznie należąca do noryku, wydzielana jest osobno (zob. niżej). Miąższość utworów pstrego piaskowca (trias dolny) waha się w granicach 619,5-733,0 m. Jest wykształcony jako kompleks naprzemianległych warstw iłowców, mułowców i piaskowców z cienkimi przewarstwieniami wapieni (oolitowych), margli i anhydrytów (Feldman-Olszewska, 2014b). Litostratygraficznie osady te należą do formacji bałtyckiej, pomorskiej i retu (Szyperko-Teller, 1997; Feldman-Olszewska, 2014a). Osady wapienia muszlowego (trias środkowy - bez najwyższej części) mają miąższość około 250 m (od 233,5 m w otworze Dzierżów 1K do 260,5 m w otworze Wędrzyn 5 i wyjątkowo 328 m w otworze Ciecierzyce 1). Tworzą je głównie wapienie i niekiedy margle, zawierające liczną morską faunę. Występują w nich przewarstwienia dolomitów i anhydrytów (w środkowej części profilu) oraz mułowców/piaskowców (w górnej części). Osady kajpru (najwyższy trias środkowy i trias górny) mają miąższość od 276 m do 367 m i są wykształcone głównie jako iłowce z przewarstwieniami piaskowców. W środkowej części profilu utwory te zawierają przewarstwienia anhydrytów (warstwy gipsowe dolne i górne przedzielone tzw. piaskowcem trzcinowym). Najwyższą część profilu triasu na omawianym obszarze jest zaliczana do warstw jarkowskich i zbąszyneckich (tzw. retyk; por. Feldman-Olszewska, 2014a).

Stanowice 3. Osady te zostały przewiercone w 16 otworach wiertniczych – tych samych, które nawierciły utwory triasu.

Litologia i stratygrafia

Utwory jury na omawianym obszarze spoczywają na szarych mułowcach wieku retyckiego (Pieńkowski, 2014). We wszystkich otworach wiertniczych na tym obszarze stwierdzono obecność jury dolnej i środkowej; w dwóch otworach (Wędrzyn 1 i 5) w dokumentacjach otworowych wydzielono także jurę górną, co wydaje się mieć słabe podstawy stratygraficzne.

Utwory dolnojurajskie stanowią zdecydowaną większość profilu jury, osiągające miąższość od około 350,0 do około 375,0 m. Są wykształcone w różnych lądowych i morskich facjach silikoklastycznych, głównie jako piaskowce, mułowce i niekiedy iłowce (Pieńkowski, 2014; Feldman-Olszewska, 2014a). W osadach tych spotyka się cienkie przewarstwienia syderytowe oraz przerosty lignitu.

W otworze Gorzów Wielkopolski IG-1, znajdującym się tuż przy granicy omawianego obszaru, w ich obrebie wydzielono 10 sekwencji depozycyjnych rozdzielonych powierzchniami erozyjnymi (Pieńkowski, 2014). Litostratygraficznie, poczynając od spągu profilu, utwory dolnej jury reprezentują następujące formacje: zagajską, skłobska, ostrowiecką, gielniowską, komorowską, borucicka (Feldman-Olszewska, 2014c). Osady jury środkowej mają małą miąższość, wynoszącą w otworach wiertniczych od około 15 m do nieco ponad 60 m. Są one wykształcone jako morskie mułowce, iłowce i niekiedy piaskowce (Feldman-Olszewska, 2014c)

2.3.6. KREDA

Rozprzestrzenienie i miąższość

Osady kredy występują na całym obszarze przetargowym "Gorzów Wielkopolski S" i obejmują kredę dolną i górną. Spąg tych utworów stwierdzono na głębokości od 861 m (Stanowice 3) do około 577 (Wędrzyn 1). Miąższości kredy dolnej są niewielkie – na ogół od kilku do kilkunastu metrów. Kreda górna ma miąższość kilkuset metrów, prawdopodobnie nie przekraczającą 700 m. Granice dolna i górna sukcesji kredowej są na całym obszarze granicami erozyjnymi.

Litologia i stratygrafia

Kreda dolna na obszarze przetargowym jest reprezentowana przez formację mogileńską. Na Niżu Polskim formacja ta dzieli się na 3 ogniwa: pagórczańskie (barrem), goplańskie (apt) i kruszwickie (alb dolny - środkowy). Z korelacji regionalnych i ogólnego rozwoju basenu sedymentacyjnego wczesnej kredy wynika, że w strefie bloku Gorzowa najprawdopodobniej występuje jedynie ogniwo kruszwickie, reprezentujące, jak się przyjmuje, alb dolny i środkowy. Niewykluczone też, że mamy tu do czynienia wyłącznie z albem środkowym (Raczyńska, 1979a, b). Utwory zaliczone do ogniwa kruszwickiego nie posiadają w tym rejonie żadnej dokumentacji biostratygraficznej (Raczyńska, 1979a). Reprezentowane są przez piaskowce o różnym uziarnieniu, miejscami słabo zwięzłe i rozsypliwe, zawierające grubsze ziarna frakcji żwirowej. Są to utwory szelfu silikoklastycznego płytszego.

Powyżej ogniwa kruszwickiego (albu dolnego – środkowego) występuje alb górny. W jego obrębie wyróżnia się warstwę fosforytonośną w spągu, reprezentowaną przez piaskowce z konkrecjami fosforytowymi i licznym glaukonitem. Ku stropowi piaskowce przechodzą w margle piaszczyste i margle.

Sukcesja kredy górnej na obszarze przetargowym obejmuje pełen profil od cenomanu po mastrycht (Jaskowiak-Schoeneichowa, 1979, 1981). Sa reprezentowane wszystkie piętra kredy górnej, z tym, że mastrycht występuje jedynie w północnej części obszaru. Na pozostałej części profil kredy kończa utwory kampanu. Nie wydziela się tu i nie stosuje jednostek litostratygraficznych o znaczeniu regionalnym, a jedynie nieliczne lokalne jednostki, nie mające zastosowania przy korelacjach litologiczno-stratygraficznych na szerszą skalę. Niemal cały profil kredy górnej jest reprezentowany przez litofacje węglanowe (przede wszystkim różne typy wapieni). wykształcenia litologicznego Specyfika w kredzie górnej jest taka, że występują na ogół stopniowe przejścia między poszczególnymi typami skał. W cenomanie dominują wapienie, wapienie organogeniczne i wapienie margliste zarówno szelfu węglanowego płytszego, jak i głębszego. Lokalnie występują też margle (w najniższej części cenomanu). W turonie i niższym koniaku przeważają wapienie, wapienie organogeniczne inoceramowe i wapienie margliste głównie głębszej strefy szelfu węglanowego. W profilu pojawiają się krzemienie, rzadziej czerty, szczególnie liczne w jego wyższej części. Również

2.3.7. KENOZOIK

Rozprzestrzenienie i miąższość

Utwory kenozoiku rozpoznano na całym obszarze przetargowym w licznych otworach wiertniczych. Osiągają one miąższość od około 170 do 245 m.

Litologia i stratygrafia

Utwory kenozoiku na obszarze przetargowym "Gorzów Wielkopolski S" są reprezentowane przez paleogen (oligocen), neogen (miocen) oraz czwartorzęd (plejstocen i holocen). Kompleks kenozoiczny, w rejonie Gorzowa Wielkopolskiego, według Romanka (2009), obejmuje morskie skały oligoceńskie (formacja mosińska dolna i górna, formacja rupelska) oraz osady z pogranicza lądu i morza (formacja czempińska). Z niewielką przerwą na utworach oligoceńskich leżą lądowe osady mioceńskie (formacja gorzowska, krajeńska, adamowska i poznańska).

Czwartorzęd reprezentuje sześć poziomów litostratygraficznych glin lodowcowych i towarzyszących im piasków i żwirów wodnolodowcowych oraz piasków i mułków zastoiskowych. Z okresu interglacjału ferdynandowskiego, wielkiego, zlodowaceń północnopolskich, holocenu i prawdopodobnie interglacjału lubelskiego i eemskiego notowane są osady rzeczne, a z interglacjałów wielkiego i eemskiego znane są osady jeziorne.

Obszar przecinają wielkie, wydłużone, wycięte w podłożu czwartorzędu glacidepresje. Pospolite są też formy mniejsze, zamknięte, o średnicy kilku kilometrów i głębokości w wyższym koniaku i santonie dominują wapienie. W kampanie nadal kontynuują się utwory węglanowe, przy czym wyżej w profilu po raz pierwszy pojawiają się litofacje kredy piszącej, charakterystyczne dla zachodniej części bloku Gorzowa. Utwory mastrychtu występują wyłącznie w północnej i części obszaru. Przeważają litofacje węglanowe: wapienie i kreda pisząca, być może lokalnie z wkładkami margli.

100 m. Struktury te wypełnione są osadami glacjalnymi zlodowacenia nidy. Nidziańskie osady glacjalne oraz skały ich podłoża zorganizowane są w struktury fałdowo-łuskowe, o amplitudach od kilku do kilkudziesięciu metrów i promieniach od kilkudziesięciu do 200 m. Łącznie nadają one obszarowi charakterystyczny styl budowy geologicznej cechujący się zaburzonym pograniczem skał czwartorzędowych i ich podłoża, obecnością głębokich depresji glacitektonicznych i ich fałdowo-łuskowych wypełnień oraz towarzyszących depresjom mniej wyrazistych glacielewacji. Za proces deformacji i wypełniania odpowiada przede wszystkim najstarszy na analizowanym obszarze, nidziański lądolód. Utworzone przezeń struktury zostały później zmodyfikowane przez młodsze lądolody. Zaburzone osady paleogeńskie, neogeńskie i czwartorzędowe budują glacitektoniczne plejstoceńskie piętro strukturalne. Podścielają je horyzontalnie zalegające utwory paleogeńsko-neogeńskiego piętra strukturalnego, a nadbudowują lokalnie zaburzone w morenach spietrzonych osady czwartorzedowe plejstoceńsko-holoceńskiego piętra strukturalnego.

Znaczną część powierzchni terenu zajmują holoceńskie piaski eoliczne tworzące liczne wydmy, a także piaski, muły i iły rzeczne tarasów zalewowych oraz piaski rzeczne i wodnolodowcowe tarasów nadzalewowych (strefy pradoliny stadiału górnego zlodowacenia wisły; Romanek, 1996; Trela, 2000; Piotrowski i Sochan, 2002; Multan, 2003).

2.4. HYDROGEOLOGIA

Regionalizacja hydrogeologiczna

Obszar przetargowy "Gorzów Wielkopolski S" jest położony w trzech regionach wodnych: 98,3% jego powierzchni położone jest w regionie wodnym Warty, 1,5% w regionie wodnym Dolnej Odry i Przymorza Zachodniego i 0,2% w regionie wodnym Noteci. Obszar przetargowy "Gorzów Wielkopolski S" jest również położony na granicy kilku jednostek bilansowych wód podziemnych, których procentowy udział powierzchni kształtuje się następująco: P-XVIII Dolna Warta - 71,9%, P-XIII Obra - 15,1%, P-XII Warta od Obrzycka do Noteci 11,3%, P-XV Noteć Pradoliny Toruńsko-Eberswaldzkiej 0,2%, S-IX Myśla, Kurzyca, Słubia 1,5%. W podziale na jednolite części wód podziemnych należy do następujacych obszarów JCWPd w udziale: 52,8% do JCWPd nr 33; 19,4% do JCWPd nr 40; 15,1% do JCWPd nr 59; 11,0% do JCWPd nr 41; 1,5% do JCWPd nr 23 i 0,2% do JCWPd nr 34. Przez obszar przetargowy "Gorzów Wielkopolski S" przepływa rzeka Warta, która jest największą rzeką regionu i odwadnia cały obszar. W południowej części przepływa rzeka Obra, będąca lewym dopływem Warty, natomiast w północno-wschodnim fragmencie obszaru przetargowego znajduje się odcinek ujściowy Noteci do Warty (Fig. 2.30).

Zgodnie z podziałem regionalnym zwykłych wód podziemnych (Paczyński i Sadurski, 2007) cały obszar należy do prowincji Odry, RW - regionu Warty, subregionu Warty nizinnego SWN, natomiast niewielki, północno-zachodni fragment, należy do regionu Dolnej Odry i Zalewu Szczecińskiego RDO. Rozpoznanie warunków hydrogeologicznych zostało przedstawione na Mapie hydrogeologicznej Polski w skali 1 : 50 000 (MhP GUPW) - arkusze Witnica (Cudak i Razowska-Jaworek, 2004), Gorzów Wielkopolski (Razowska-Jaworek i Cudak, 2004a), Santok (Kos, 2004a), Lipki Wielkie (Kos, 2004b), Słońsk (Mazurowski i Wiśniowski, 2002), Krzeszyce (Razowska-Jaworek i Cudak, 2004b), Bledzew (Wróblewska i Herman, 2004a), Skwierzyna (Wróblewska i Herman, 2004b).

Piętra i poziomy wodonośne

Na omawianym obszarze głównym użytkowym piętrem wodonośnym jest piętro czwartorzędowe, natomiast piętro neogeńskie ma charakter podrzędny i jest eksploatowane lokalnie. W czwartorzędowym piętrze wodonośnym można wyróżnić następujące poziomy wodonośne: poziom wód gruntowych, występujący zarówno na obszarze pradoliny Toruńsko-Eberswaldzkiej, jak i na wysoczyźnie, oraz poziom międzyglinowy, a także lokalnie poziom podglinowy.

Poziom wód gruntowych najpowszechniej występuje w strukturach dolinnych Warty, Obry i częściowo Noteci, jak również w obszarach pradolinnych. Poziom wód gruntowych pradoliny Toruńsko-Eberswaldzkiej jest wiazany z piaskami rzecznymi tarasów akumulacyjnych Warty i Noteci (lokalnie Obry) oraz z piaskami i żwirami interglacjału eemskiego i zlodowacenia środkowopolskiego. Zalega bardzo płytko pod powierzchnią terenu – na głębokości mniejszej niż 5 m.p.p.t., chociaż lokalnie może występować poniżej 5 m. Zwierciadło wód tego poziomu ma generalnie charakter swobodny. Niewielkie napięcie hydrostatyczne może pojawiać się lokalnie w strefach występowania utworów zastoiskowych. Miąższość strefy zawodnionej wynosi od 10 do 40 metrów (lokalnie przekracza 50 m). Wydajności potencjalne studni są zróżnicowane i wahają się od 30 do ponad 120 m³/h, współczynnik filtracji wynosi średnio 5x10⁻⁴ m/s. Opisywany poziom jest intensywnie eksploatowany przez ujęcie komunalne dla Gorzowa Wielkopolskiego w Siedlicach.

Poziom wód gruntowych na wysoczyźnie jest związany z piaskami i żwirami wodnolodowcowymi zlodowacenia północnopolskiego. Jest to poziom o zwierciadle swobodnym, lokalnie napiętym. Najczęściej występuje on na głębokości 5–15 m p.p.t. i jest zasilany przez opady atmosferyczne. Ze względu na niekorzystne parametry hydrogeologiczne i złą jakość wód poziom ten ma znikomy charakter użytkowy. Drenaż poziomu odbywa się poprzez rzeki i cieki powierzchniowe. Zasila niżej położone poziomy wodonośne.

Poziom międzyglinowy na wysoczyźnie jest związany z utworami piaszczysto-żwirowymi zlodowacenia środkowopolskiego. Występuje tu jedna lub nawet lokalnie cztery warstwy wodonośne o różnym zasięgu, parametrach hydrogeologicznych, wodonośności i stopniu izolacji. Zwierciadło wody ma charakter naporowy, lokalnie swobodny, a warstwy wodonośne stwierdzono na głębokości 15-50 m, lokalnie głębiej. W związku z tym kontakty hydrauliczne pomiędzy warstwami wodonośnymi są o różnym stopniu złożoności. Głównie tworzą go dwa poziomy wodonośne przedzielone glinami: górny i dolny. Użytkowy poziom wodonośny górny zalega na głębokości od około 20,0 m do 60,0 m p.p.t., pod przykryciem izolującej warstwy glin o miąższości od 10,0 do 35 m. Miąższość poziomu jest zmienna i mieści się w przedziale od 3,0 do prawie 50,0 m. Zwierciadło wody ma charakter naporowy. Poziom ten charakteryzuje się następującymi parametrami hydrogeologicznymi: współczynnik filtracji waha się od 2x10⁻⁵ do 9x10⁻⁴ m/s, przewodność mieści się w przedziale od około 50 do prawie $800 \text{ m}^2/24 \text{ h}$, a wydajność potencjalna od oko-1,5 do 100,0 m³/h. Międzyglinowy poziom wodonośny dolny jest ujmowany przez Wodociagi w Skwierzynie dwiema studniami. Poziom wodonośny w tym rejonie, o miąższości około 20 m, stwierdzono na głębokości 120-150 m. Zwierciadło ma charakter artezyjski (stabilizuje się ponad 10,0 m n.p.t.), współczynnik filtracji wynosi 2x10⁻⁴ m/s. przewodność osiąga wartość oko 380 m²/24h, a wydajność potencjalna studni 120,0-135,0 m^3/h .

Poziom podglinowy jest związany z piaskami wodnolodowcowymi zlodowacenia południowopolskiego, zalegającymi w dolinie Warty. Miąższość warstwy wodonośnej wynosi około 40 m, a wody tego poziomu są wodami naporowymi. W otworze w okolicach Wawrowa (na północ od obszaru przetargowego) poziom podglinowy został nawiercony/ stwierdzony na głębokości około 110–150 m p.p.t. pod izolującymi go glinami i mułkami o miąższości około 80 m.

Chemizm wód piętra czwartorzędowego w rejonie obszaru przetargowego opracowano na podstawie danych z hydrogeologicznych opracowań kartograficznych (Mapa hydro-

z monitoringu diagnostycznego wód podziemnych, przeprowadzonego przez PIG-PIB w latach 2011-2020. Są to wody typu HCO₃-SO₄-Ca, SO₄-HCO₃-Ca, HCO₃-Ca, o odczynie obojętnym lub lekko zasadowym (pH od 6,75 do 7,99). Mineralizacja wód, wyrażona suchą pozostałością, waha się w granicach $300-700 \text{ mg/dm}^3$, jednakże w obszarach o wysokiej antropopresji, mineralizacja płytkich poziomów wód piętra czwartorzędowego może dochodzić do ponad 1000 mg/dm³. Zgodnie z Rozporządzeniem Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych (Dz.U. 2019, poz. 2148) wody piętra czwartorzędowego zostały zaklasyfikowane w rejonie obszaru przetargowego do klas od II do V w zależności od lokalizacji punktu. Najniższą jakością wód podziemnych charakteryzują się punkty należące do sieci monitoringu wód podziemnych w okolicach Gorzowa Wielkopolskiego. Wskaźnikami fizyczno-chemicznymi znacząco obniżającymi klasę jakości wód są przede wszystkim podwyższone zawartości żelaza, manganu, siarczanów oraz NH₄. Wartości stężeń żelaza w tych wodach oscylują zazwyczaj w granicach od <0,01 do 12,00 mg/dm³ (lokalnie dochodząc do nawet do 20,00 mg/dm³), natomiast jonu amonowego wahają się od <0,05 do 12,9 mg/dm³ przy średniej 0,71 mg/dm³. Zawartości pozostałych form azotu w wodach podziemnych, czyli azotanów i azotynów nie przekraczają wartości granicznych dla wód pitnych i wynoszą odpowiednio do 4,65 mg/dm³ azotanów i do 0,11 mg/dm³ azotynów. Stężenia chlorków w wodach podziemnych wahaja sie od 4,37 do 59,9 mg/dm³ w studniach zlokalizowanych w Gorzowie Wielkopolskim, natomiast siarczanów od 0,7 do 840,0 mg/dm³ w punkcie położonym w obrębie Gorzowa Wielkopolskiego. Zawartości manganu w wodach podziemnych piętra czwartorzędowego są znacząco przekroczone i wynoszą od 0,004 do 1,646 mg/dm³ przy średniej wartości wynoszacej 0,424 mg/dm³.

geologiczna Polski w skali 1 : 50 000) oraz

Oprócz piętra czwartorzędowego podrzędnie występuje neogeńskie piętro wodonośne, związane z mioceńskimi piaskami drobnoi średnioziarnistymi, przewarstwionymi mułkami lub weglem brunatnym. Lokalnie może być połączone z piętrem czwartorzędowym. Połączony poziom neogeńsko-czwartorzędowy posiada napięte zwierciadło wody, które stabilizuje się na rzędnej ponad 60 m n.p.m. Głębokość jego zalegania wynosi poniżej 20 m a średnia miąższość poziomu to ponad 40 m. Wydajności potencjalne studni wahaja się od 70 do 120 m³/h a współczynnik filtracji wynosi średnio $1,5 \times 10^{-4}$ m/s. W przypadku negeńskiego poziomu wodonośnego miąższość osadów wodonośnych wynosi od kilku do ponad 40 m, a średnia wartość współczynnika filtracji 3,0 x 10⁻⁴ m/s. Przewodność osiąga wartość od kilku do ponad 500 m²/24h, a wydajności potencjalne studni wierconych mieszczą się w przedziale od 10 do 70 m³/h. Strop warstw wodonośnych zalega na głębokości od kilkunastu do ponad 50 m (lokalnie może dochodzić do około 100 m), zwierciadło ma charakter naporowy i stabilizuje się na głębokości kilku metrów. Zasilanie poziomu mioceńskiego następuje drogą przesączania wód z poziomów wyżej ległych. Jest eksploatowany przez ujęcie miejskie w Lubniewicach.

Chemizm wód podziemnych piętra neogeńskiego w rejonie obszaru przetargowego opracowano na podstawie danych z hydrogeologicznych opracowań kartograficznych (Mahydrogeologiczna Polski pa W skali 1 : 50 000) oraz z monitoringu diagnostycznego wód podziemnych przeprowadzonego w latach 2011-2020. Wody ujmowane z piętra neogeńskiego są zazwyczaj wodami typu HCO₃-Ca-Na-Mg o odczynie obojętnym lub lekko zasadowym (pH od 7,32 do 8,00). Mineralizacja wód wyrażona suchą pozostałością waha sie w granicach $200-500 \text{ mg/dm}^3$. Zgodnie z Rozporządzeniem Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych (Dz.U. 2019, poz. 2148) wody piętra neogeńskiego zostały zaklasyfikowane w rejonie obszaru przetargowego do II klasy jakości. Wskaźnikami fizyczno-chemicznymi w zakresie stężeń II klasy jakości są przede wszystkim podwyższone zawartości NH₄, żelaza oraz wodorowęglanów. Zawartości żelaza w tych wodach oscylują zazwyczaj

w granicach 0,02–3,41 mg/dm³ (lokalnie dochodząc do 5,50 mg/dm³), natomiast jonu amonowego wahaja się od 0,66 do 0,76 mg/dm³, przekraczając wartości graniczne dla wód pitnych. Zawartości pozostałych form azotu w wodach podziemnych, czyli azotanów i azotynów nie przekraczają wartości granicznych dla wód pitnych i wynoszą odpowiednio do 0,44 mg/dm³ azotanów i do 0,02 mg/dm³ azotynów. Stężenia chlorków w wodach podziemnych wahają się od 7,16 do 11,70 mg/dm³ (lokalnie poza obszarem przetargowym osiągają wartości od 3,00 do 50,00 mg/dm³), natomiast siarczanów od <0,50 do 4,61 mg/dm³ (poza obszarem przetargowym dochodzą do 100 mg/dm³ nie przekraczając jednak wartości granicznych dla wód pitnych), zaś maksymalna zawartość manganu wynosi 0,069 mg/dm³ (lokalnie do 0,42 mg/dm³), nieznacznie przekraczając normy.

GZWP

Jak nadmieniono, w granicach obszaru przetargowego "Gorzów Wielkopolski S" występuje niewielki fragment głównego zbiornika wód podziemnych GZWP nr 138 Pradolina Toruń-Eberswalde (Mikołajków i Sadurski, 2017; Tab. 2.2). Obejmuje on niecałe 1% powierzchni obszaru przetargowego.

W przeważającej części stopień zagrożenia głównego użytkowego poziomu wodonośnego został określony jako bardzo wysoki i wysoki (Fig. 2.31). Głównie występuje on w rejonie Gorzowa Wielkopolskiego oraz w dolinie Warty. Jest to związane ze zlokalizowanym w tym rejonie zespołem miejskoprzemysłowym Gorzowa Wielkopolskiego oraz ze słabo izolowanymi poziomami wodonośnymi doliny Warty. Na pozostałym obszarze, szczególnie na południe od doliny Warty, stopień zagrożenia głównego użytkowego poziomu wodonośnego został określony jako średni i niski - przede wszystkim w południowo-wschodnim i północno-zachodnim rejonie obszaru przetargowego.

Zasoby i ujęcia wód podziemnych

Obszar "Gorzów Wielkopolski S" jest położony w obrębie czterech dokumentacji hydrogeologicznych ustalających zasoby dyspozycyjne wód podziemnych. W Tab. 2.3 zestawiono wielkość zasobów dyspozycyjnych w poszczególnych rejonach wodnogospodarczych wód podziemnych.

Na obszarze przetargowym "Gorzów Wielkopolski S" jest zlokalizowanych kilkadziesiąt ujęć wód podziemnych, które eksploatują wody wszystkich użytkowych pięter wodonośnych. Najwięcej ujęć bazuje na czwartorzędowym piętrze wodonośnym. Ujęcia o największych poborach powyżej 100 tys. m³/rok, są skoncentrowane w rejonie Gorzowa Wielkopolskiego, Lubniewic i Skwierzyny oraz Nowin Wielkopolskich. Eksploatują one wody na potrzeby komunalne mieszkańców a ich lokalizację warunkuje obecność dużych zespołów miejsko-przemysłowych. Informacje o zasobach eksploatacyjnych oraz o średnim poborze wód podziemnych ujęć zlokalizowanych w granicach obszaru przetargowego podano w Tab. 2.4.

W obrębie obszaru przetargowego jest zlokalizowana jedna strefa ochronna ujęcia wód podziemnych "Gorzów Wielkopolski", ustanowiona Rozporządzeniem Dyrektora Regionalnego Zarządu Gospodarki Wodnej w Poznaniu z dnia 1 października 2009 r. w sprawie ustanowienia strefy ochronnej ujęcia wody podziemnej "GORZÓW WIELKOPOL-SKI" dla miasta Gorzowa Wielkopolskiego (Dz.U. Nr 106, poz. 1415).

Poza obszarem przetargowym, wokół ujęć komunalnych Gorzowa Wielkopolskiego, ustanowiono strefy ochrony pośredniej:

 Rozporządzenie Dyrektora Regionalnego Zarządu Gospodarki Wodnej w Poznaniu z dnia 19 lutego 2014r. w sprawie ustanowienia strefy ochronnej komunalnego ujęcia wody dla miasta Gorzowa Wielkopolskiego, ujęcie "Kłodawa" w miejscowości Kłodawa wraz z Rozporządzeniem Dyrektora Regionalnego Zarządu Gospodarki Wodnej Poznaniu z dnia 7 czerwca 2016 r. zmieniającym rozporządzenie w sprawie ustanowienia strefy ochronnej komunalnego ujęcia wody dla miasta Gorzowa Wielkopolskiego, ujęcie "Kłodawa" w miejscowości Kłodawa. Rozporządzenie Dyrektora Regionalnego Zarządu Gospodarki Wodnej w Poznaniu z dnia 19 lutego 2014 r. w sprawie ustanowienia strefy ochronnej komunalnego ujęcia wody w miejscowości Gorzów Wielkopolski, ujęcie "Centralne" wraz z Rozporządzeniem Dyrektora Regionalnego Zarządu Gospodarki Wodnej w Poznaniu z dnia 7 czerwca 2016 r. zmieniającym rozporządzenie w sprawie ustanowienia strefy ochronnej komunalnego ujęcia wody w miejscowości Gorzów Wielkopolski, ujęcie "Centralne".

W granicach terenów ochrony pośredniej obowiązują ograniczenia w użytkowaniu terenu oraz lokalizowaniu niektórych inwestycji. Zasięg stref ochronnych oraz pełen zakres tych ograniczeń jest dostępny w Rozporządzeniach Dyrektora RZGW Poznań (http://poznan.rzgw.gov.pl/o-rzgw/proceduryzaatwiania-spraw/strefy-ochronne-uj).

Fig. 2.30. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle jednostek fizycznogeograficznych oraz GZWP.

Fig. 2.31. Położenie obszaru przetargowego "Gorzów Wielkopolski S" na tle jednostek hydrogeologicznych.

GORZÓW WIELKOPOLSKI S

Numer zbiornika	Nazwa zbiornika	Wiek utworów	Typ ośrodka wodonośnego	Szacunkowe zasoby dyspozycyjne [tys. m³/24h]	Średnia głębokość zwierciadła wód podziemnych [m p.p.t.]
138	Pradolina Toruń- Eberswalde (Noteć)	Q _p	porowy	192,7	1-9

Tab. 2.2. Podstawowa charakterystyka hydrogeologiczna głównego zbiornika wód podziemnych którego fragment występuje na obszarze przetargowym "Gorzów Wielkopolski S" (Kleczkowski, 1990; Mikołajków i Sadurski, 2017). Q_P – utwory czwartorzędu w pradolinach.

Tytuł dokumentacji	Wykonawca	Nr decyzji za- twierdzającej zasoby dyspozy- cyjne	Obszar bilansowy wód pod- ziemnych	Rejon wodno- gospodarczy wód pod- ziemnych	Powierzchnia rejonu wodno- gospodarczego [km ²]	Zasoby dys- pozycyjne w rejonie wodno- gospodarczym [m ³ /24h]
Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilanso- wego zlewni Obry i Mogilnicy (Janiszewska i in., 2017)	Hydroconsult Sp. z o.o. Poznań	DGK- II.4731.6.2018.MJe z dn. 09.11.2018	P-XIII Obra	Dolna Obra (P-XIII J)	649,54	105 600
Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilanso- wego: Zlewnia Dolnej Warty po Obrę i zlewnia Dolnej Noteci (Niedworok i in., 2018)	IMS Sp. z o.o. Arcadis Sp. z o.o. Oddział w War- szawie	DGK- II.4731.29.2018.AJ z dn. 12.04.2019 r.	P-XII Warta od Obrzycka do Noteci	Warta od Kamionki do Noteci (P-XII CD)	750,18	93 043
Dokumentacja hydrogeologiczna				Kłodawka (P-XVIII A)	333.9	39 456
ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilanso- wego P-XVIII Dolna Warta (Rodzoch i in.,	HYDROEKO – Biuro Poszuki- wań i Ochrony Wód Andrzej Rodzoch	DGK- II.4731.9.2017.SJ z dn. 18.05.2018	P-XVIII Dolna Warta	Warta – kanały prado- linne (P-XVIII A)	1109,8	176 758
2017)				Postomia (P-XVIII B)	435,2	63 222
Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych zlewni Myśli, Kurzycy i Słubi (Kapuściński i in., 2007)	Przedsiębiorstwo Geologiczne POLGEOL S.A.	DGkdh/4790-6626- 5/8269/07/MJ z dn. 27.09.2007 r.	S-IX-Myśla, Kurzyca, Słubia	Myśla dolna ze zlewnią bezpośrednią Odry	665,52	54 462,2

Tab. 2.3. Zestawienie wielkości ustalonych zasobów dyspozycyjnych wód podziemnych w rejonach wodnogospodarczych znajdujących się w obrębie obszaru przetargowego "Gorzów Wielkopolski S".

GORZÓW WIELKOPOLSKI S

Nr	Użytkownik ujęcia	Nazwa ujęcia/ miej- scowość	Zasoby eksploatacyjne [m ³ /h]	Wiek warstwy wodonośnej	Pobór (2018) [m ³ /24h]
1	Przedsiębiorstwa Wodociągów i Kanalizacji Sp. z o.o. w Gorzowie Wielkopolskim	SUW Siedlice	5 590,0	Q	16 152,2
2	Zakład Usług Komunalnych Sp. z o.o. w Skwierzynie	SUW Skwierzyna	290,0	Q	700,0
3	Zakład Usług Komunalnych Krzeszyce	Malta	72,0	Q	690,6
4	Przedsiębiorstwa Wodociągów i Kanalizacji Sp. z o.o. w Gorzowie Wielkopolskim	SUW Maszewo	77,0	Q	555,8
5	Miejskie Zakłady Komunalne Sp. z o.o. w Witnicy	Nowiny Wielkie	150,0	Q	491,0
6	Zakład Gospodarki Komunalnej Lubniewice	Lubniewice	90,0	Pg-Ng	376,0

Tab. 2.4. Wykaz największych ujęć zbiorowego zaopatrzenia w wodę w granicach obszaru przetargowego "Gorzów Wielkopolski S".

3. SYSTEM NAFTOWY 3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO

System naftowy jest określany jako zespół procesów geologicznych i naftowych prowadzący do powstania złoża węglowodorów. Do podstawowych elementów systemu naftowego zalicza się: skałę macierzystą - ze względu na zawartość kopalnej substancji organicznej stanowi ona źródło powstawania weglowodorów, skałę zbiornikowa, której odpowiednie właściwości petrofizyczne (porowatość, przepuszczalność) i filtracyjne pozwalają na akumulację weglowodorów oraz skałę uszczelniającą, która jest skałą nieprzepuszczalną i uniemożliwia ucieczkę medium złożowego. Ponadto, nieodzownym elementem systemu naftowego w złożach konwencjonalnych, jest pułapka naftowa, która, ze względu na swoje cechy strukturalne, stratygraficzno-litologiczne i tektoniczne, tworzy miejsce akumulacji węglowodorów. Niezbędnym do zaistnienia systemu naftowego i powstania złoża węglowodorów jest zespół procesów umiejscowionych w przestrzeni, jak również w czasie geologicznym, na które składają się: generowanie, ekspulsja, migracja i akumulacja węglowodorów oraz formowanie pułapki złożowej. Wzajemne relacje czasowe pomiędzy wspomnianymi elementami i procesami systemu naftowego pozwalają na powstanie złoża.

Na obszarze "Gorzów Wielkopolski S" występuje system naftowy dolomitu głównego. Istnieje również wiele przesłanek za występowaniem systemu karbońsko-permskiego, lecz potwierdzenie jego obecności wymaga wykonania dodatkowych badań.

System naftowy dolomitu głównego jest system niezależnym, hydrodynamicznie zamkniętym od spągu i stropu ewaporatami

cechsztynu. Spośród podstawowych elementów systemu naftowego w utworach dolomitu głównego występują zarówno skały macierzyste oraz skały zbiornikowe (Kotarba i Wagner, 2007; Waśkiewicz i Kiersnowski, 2020). Obecnie, za skały macierzyste uważa sie utwory pochodzenia mikrobialnego (glonowo-sinicowego; Kotarba i Wagner, 2007), które mogą występować w dwóch odmianach: 1) zwartej - kompleksy związane z budowlami mikrobialno-glonowymi oraz warstwami mudstonów, 2) rozproszonej - tworzące laminy stabilizujące osad ziarnisty (Słowakiewicz i Gasiewicz, 2013; Słowakiewicz i in., 2016). Na podstawie Waśkiewicza i Kiersnowskiego (2020), do początku XXI w. panował pogląd, że podstawowymi skałami macierzystymi dla utworów dolomitu głównego są jego facje basenowe. Późniejsze badania geochemiczne tych facji wykazały ich znikomą rolę w generacji i migracji weglowodorów do stref platformowych (Kotarba i Wagner, 2007; Słowakiewicz i Mikołajewski, 2011; Słowakiewicz i Gasiewicz, 2013). Świadczyć za tym miały następujące fakty:

- a) zawartość znikomej ilości materii organicznej (poniżej 0,3% wag. TOC),
- b) bardzo małe miąższości facji basenowych (poniżej 10 m),
- c) duża dojrzałość termiczna materii organicznej (powyżej 1,4% Ro),
- d) pogrążenie na głębokość około 4 km,
- e) ich pozycja determinowałaby długą ścieżkę migracyjną do skał zbiornikowych facji platformowych.

Podstawowymi skałami zbiornikowymi w systemie naftowym dolomitu głównego są zdolomityzowane grainstony i pakstony.

Fig. 3.1. Schemat systemu naftowego dla obszaru przetargowego "Gorzów Wielkopolski S" i jego okolic. Stratygrafia: D - dolny, Ś – środkowy, G – górny, CIS – cisural, GUA – gwadelup, LOP – loping, DG – dolomit główny, Q – czwartorzęd; skały zbiornikowe: normalny kolor – konwencjonalne, rozjaśniony kolor – niekonwencjonalne; w pozostałych przypadkach: normalny kolor – pewne elementy systemu naftowego, rozjaśniony kolor – drugorzędne lub mniej prawdopodobne elementy systemu naftowego (właczajac niższy perm).

3.2. SKAŁY MACIERZYSTE

Dolomit główny Litologia: madstony, bandstony, pakstony, greinstony

Role potencjalnych skał macierzystych w dolomicie głównym w rejonie bloku Gorzowa najlepiej spełniają utwory płytkowodnej platformy węglanowej oraz głębokowodne utwory skłonu platformy i zatoki równi basenowej. Skały macierzyste platform węglanowych dolomitu głównego są obserwowane przede wszystkim w obrębie wewnętrzzewnetrznych skłonów nvch i barier. a w mniejszym stopniu na obszarze równi platformowej oraz wyniesieniach stref barierowych (Fig. 2.25-2.27; Wagner, 2004; Kotarba i Wagner, 2007; Czekański i in., 2010). W kontekście paleogeograficznym, obszar przetargowy obejmuje swoim zasięgiem południowo-wschodnią i środkową część platformy Gorzowa, w tym południową część półwyspu Sanoka oraz północno-zachodnią część platformy wielkopolskiej, w tym niemal cały półwysep Maszkowa (Fig. 2.25-2.26; Wagner, 1994, 2004; Wagner i in., 2000). Obserwowana miaższość cześci macierzystej platformy zazwyczaj nie przekracza 15 m, co stanowi mniej niż 20% całkowitego profilu dolomitu głównego. Niższe miąższości spotyka się w obrębie wyniesień stref barierowych, a najwyższe (do około 25 m) w wewnętrznych i zewnętrznych skłonach barier (Kotarba i Wagner, 2007). W obrębie platformy węglanowej zróżnicowanie mikrofacjalne jest bardzo duże (greinstony, pakstony, wakstony, madstony, rudstony, boundstony), silny jest także stopień zdolomityzowania osadów. Powszechne są struktury biologiczne, w tym biolaminacje i maty mikrobialne, a także stromatolity i algowe trombolity (Wagner i in., 2000; Kotarba i Wagner, 2007; Jaworowski i Mikołajewski, 2007).

Skały macierzyste facji głębokowodnych występują w obrębie skłonu platform węglanowych oraz zatokach równi basenowej. Utwory zatok równi basenowych w rejonie Gorzowa Wielkopolskiego okalają platformę węglanową oraz jej skłon zarówno od strony zachodniej (zatoka Witnicy), jak i północnowschodniej (zatoka Noteci; Fig. 2.25-2.26; Wagner, 1994, 2004; Wagner i in., 2000). Największa miąższość skał macierzystych znajduje się w obrębie skłonów platform, gdzie może sięgać do 30 m i stanowić ponad 50% miąższości w profilu pionowym. W rejonach zatok równi basenowych dolomit główny ma miąższość do 30 m i w niektórych rejonach (np. w otworze Gorzów Wielkopolski 2) skały macierzyste obejmują całą miąższość profilu (Kotarba i Wagner, 2007). Skłon platformy węglanowej jest wykształcony w postaci pakstonów naprzemiennie z flotstonami, a rzadziej rudstonami, powstałymi z materiału redeponowanego z platformy węglanowej. W niektórych profilach są obecne wkładki biolaminowanych, dolomitycznych i wapiennych mudstonów. Skały macierzyste równi basenowych są reprezentowane przez laminowane mudstony z cienkimi warstwami mikrobialnymi (Wagner i in., 2000; Kotarba i Wagner, 2007; Jaworowski i Mikołajewski, 2007). W Tab. 3.1 zostały podane wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na poszczególne mikrofacje w dolomicie głównym bloku Gorzowa oraz zachodniej części zatoki Noteci (Kosakowski i Krajewski, 2015).

Współczesna zawartość rozproszonej materii organicznej (TOC) w dolomicie głównym bloku Gorzowa jest stosunkowo niska i w większości przypadków waha się w granicach między 0,01 a 1,0% wag., choć sporadycznie sięga 4% wag. skały (Wojtysiak i Chruścińska, 2013; Solarska, 2003; Zielińska-Pikulska, 2003a; Kotarba i Wagner, 2007; Kosakowski i Krajewski, 2015). Według modelowań, pierwotna zawartość TOC (TOC0) w tych skałach wahała się między 1 a 5%

wag. Kotarba i Wagner (2007), prowadząc badania geochemiczne dolomitu głównego w rejonie bloku Gorzowa, w tym z licznych otworów nawierconych w obrębie obszaru przetargowego i jego bliskich okolic (m.in. w otworach Baczyna-2, Ciecierzyce 1, Dzierżów 1K, Gorzów Wielkopolski 2, Gorzów Wielkopolski IG-1, Jeżyki 1, Stanowice 2 i 3), stwierdzili przewagę kerogenu typu II z domieszką kerogenów typu I i III. Podobnie jak w innych rejonach występowania dolomitu głównego, dominującymi producentami biomasy były bakterie i algi morskie. Typowo morskie pochodzenie oraz ropotwórczy charakter materii organicznej w dolomicie głównym potwierdzają liczne badania geochemiczne z Polski i Niemiec (np.: Kotarba i in., 2000a, b; Hammes i in., 2013; Słowakiewicz i in., 2018).

Według Kosakowskiego i Krajewskiego (2015), bituminy pochodzące z otworów nawiercających platformę Gorzowa oraz zatokę Noteci są w głównej mierze epigenetyczne. Zwiększonym udziałem syngenetycznych bituminów w tym rejonie charakteryzują się facje skłonu platformy węglanowej. Na przewagę węglowodorów migracyjnych wskazują również wyniki analizy pirolitycznej próbek dolomitu głównego, pochodzące z otworów Baczyna-2, Ciecierzyce 1, Racław 1K i Stanowice 3 (Wojtysiak i Chruścińska, 2013; Solarska, 2003; Zielińska-Pikulska, 2003a). Obserwacje petrologiczne, prowadzone na próbkach z otworów Ciecierzyce 1, Dzierżów 1K, Santok 1 oraz Stanowice 3, pozwoliły stwierdzić, że głównym komponentem w składzie maceralnym omawianych skał są asocjacje organiczno-mineralne. Wyjątek stanowi dolomit główny, nawiercony otworem Stanowice 3, w którym stałe bituminy stanowią do 94% składu macerałów. W pozostałych wymienionych otworach oraz, miejscowo, w otworze Stanowice 3, stałe bitumy osiągają maksymalnie 17% składu. Pomniejszymi składnikami są również macerały grupy inertynitu (0-19%), liptynitu (0-13%) oraz witrynitu (0-10%; Kosakowski i Krajewski, 2015).

Średnia refleksyjność witrynitu (Ro) pomierzona na próbkach dolomitu głównego z rejonu przetargowego jest stosunkowo jednolita i przyjmuje wartości w granicach od 1,06 do 1,40%, co odpowiada zakresowi temperatur między końcowym etapem okna ropnego, a początkiem okna gazowego. Otrzymywane wartości Tmax wahają się między 432 a 482°C (Kotarba i Wagner, 2007; Kosakowski i Krajewski, 2015), wskazując na dojrzałość termiczną na poziomie środkowego oraz późnego okna ropnego, a miejscami wyższą. Rozkład dojrzałości termicznej materii organicznej basenu cechuje wyraźna strefowość, w której dojrzałość stopniowo wzrasta w kierunku osi bruzdy śródpolskiej (Kotarba i in., 2000a, b). Dolomit główny w rejonie bloku Gorzowa cechuje słaby lub średni potencjał do generowania węglowodorów. Skały macierzyste o dobrym i bardzo dobrym potencjale węglowodorowym występują lokalnie, w formie izolowanych warstw (np.: Kotarba i in., 2000a, b; Wagner, 2004; Kosakowski i Krajewski, 2015), które nie zostały jednak nawiercone otworami zlokalizowanymi na obszarze przetargowym. Biorąc pod uwagę sprzyjające warunki podgrzania oraz rodzaj rozproszonego materiału organicznego, dolomit główny stanowi prawdopodobne źródło akumulacji węglowodorów ciekłych oraz w mniejszym stopniu gazowych.

Total organic carbon (TOC) (wt. %) $0.02 to 6.8 cm (20)$ (21) $0.00 to 0.21 (43)$ (93) $0.04 to 1.19 (20)$ (21) $0.02 to 2.8 (94)$ (22) $0.27 \text{ and } 0.25 (1)$ $0.04 to 0.51 (2)$ (21) $S_1 + S_2 (mg HC/g rock)$ $0.17 to 0.92 (12)$ (22) $0.17 to 0.95 (12)$ (22) $0.12 to 0.82 (4)$ (21) $0.12 to 0.82 (4)$ (22) $0.12 to 0.92 (4)$ (23) $1.12 to 0.01 (4)$ (20) $89 \text{ and } 104 (1)$ $8 to 2.01 (10) to 0.8 (12)$ (21)Hydrogen index (HI) (mg HC/g TOC) $15 to 168 (12)$ (21) $5 to 61 (21)$ (21) $7 to 52 (4)$ (21) $11 to 496 (40)$ (21) $89 \text{ and } 104 (1)$ $8 to 2.01 (10) to 0.8 (12)$ (21)Oxygen index (OI) (mg CO_J/g TOC) $12 to 2.29 (21)$ (21) $9 to 490 (31)$ (21) $39 to 2.20 (4)$ (21) $11 to 496 (40)$ (21) $85 \text{ and } 88 (1)$ $100 to 41 to 1.8 (12)$ (12)Tmax (°C) $454 to 558 (7)$ (21) $ 402 to 456 (11)$ (21) $ -$ Production index (PI) $0.17 to 0.75 (12)$ (21) $0.35 to 0.97 (12)$ (22) $0.00 to 856 (1)$ (11) $0.00 to 22 (28)$ $ 220 to 2.04 (10)$ (21) $0.00 to 20 to 2.04 (10)$ Saturated HC (3) $2.12 to 2.2 (1)$ (11) $1.22 to 2.2 (1)$ (12) $1.20 to 2.2 (28)$ $ 2.00 to 0.05 (10)$ Saturated HC (3) $1.21 to 2.4 (13)$ (12) $1.22 to 2.2 (13)$ (12) $1.02 to 2.2 (28)$ $ 2.00 to 0.05 (28) (28)$ Index/FaciesVIIIXXIXIXIIXII $X to 0.00 to 0$		Ι	II	III	V	VI	VII
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Гotal organic carbon (TOC) (wt. %)	$\frac{0.02 \text{ to } 0.66}{0.27}$ (20)	$\frac{0.00 \text{ to } 0.71}{0.83} \frac{(43)}{(3)}$	$\frac{0.04 \text{ to } 1.19}{0.19} \frac{(29)}{(4)}$	$\frac{0.02 \text{ to } 2.85}{0.26} \frac{(94)}{(8)}$	0.27 and 0.25 (1)	$\frac{0.04 \text{ to } 0.55}{0.19} \frac{(30)}{(8)}$
Hydrogen index (HI) (mg HC/g TOC)15 $\frac{15 m (21)}{128}$ $\frac{5 m (21)}{128}$ $\frac{7 \ln (21)}{128}$ $\frac{7 \ln (21)}{3}$ \frac	$S_1 + S_2 (mg HC/g rock)$	$\frac{0.17 \text{ to } 0.92}{0.48} \frac{(12)}{(2)}$	$\frac{0.17 \text{ to } 0.96}{0.28} \frac{(31)}{(2)}$	$\frac{0.10 \text{ to } 8.22}{2.33} \frac{(4)}{(3)}$	$\frac{0.13 \text{ to } 9.02}{2.09} \frac{(40)}{(7)}$	1.22 and 1.30 (1)	$\frac{0.08 \text{ to } 1.53}{0.67} \frac{(15)}{(5)}$
Oxygen index (OI) (mg CO2/g TOC) $\frac{12 \text{ to } 259 (27)}{12}$ $\frac{9 \text{ to } 490 (31)}{22}$ $\frac{39 \text{ to } 270 (4)}{122}$ $11 \text{ to } 496 (40)$ 85 and 88 (1) $\frac{100 \text{ to } 181 \text{ Is } 183}{183}$ $T_{max} (^{\circ}C)$ $454 \text{ to } 558 (7) \\ 330 (21)$ $ 402 \text{ to } 456 (11) \\ 442 \times 86 (11)$ $ -$ Production index (PI) $0.17 \text{ to } 75 (12) \\ 0.17 \text{ to } 17 (2)$ $235 \text{ to } 0.01 (31) \\ 226 \times 10 (21) \\ 120 \times 14 \times 12 \\ 226 \times 11 \\ 110 \times 14 \times 12 \\ 226 \times 11 \\ 110 \times 11 \\ 120 \times 110 \\ 120 \times 110 \\$	Hydrogen index (HI) (<i>mg HC/g TOC</i>)	$\frac{15 \text{ to } 168}{83} \frac{(12)}{(2)}$	$\frac{5 \text{ to } 61}{28} \frac{(31)}{(2)}$	$\frac{7 \text{ to } 152}{73} \frac{(4)}{(3)}$	$\frac{12 \text{ to } 270}{123} \frac{(40)}{(7)}$	89 and 104 (1)	$\frac{8 \text{ to } 231}{76} \frac{(15)}{(5)}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Oxygen index (OI) (mg CO ₂ /g TOC)	$\frac{12 \text{ to } 259}{49} \frac{(21)}{(2)}$	$\frac{9 \text{ to } 490}{82} \frac{(31)}{(2)}$	$\frac{39 \text{ to } 270}{122} \frac{(4)}{(3)}$	$\frac{11 \text{ to } 496}{250} \frac{(40)}{(7)}$	85 and 88 (1)	$\frac{100 \text{ to } 418}{183} \frac{(15)}{(5)}$
Production index (PI) $0.17 \pm 0.075 (12) \\ 0.041 (2)$ $0.35 \pm 0.081 (4) \\ 0.067 (2)$ $0.28 \pm 0.88 (4) \\ (2)$ $0.15 \pm 0.08 (40) \\ (2)$ $0.80 \text{ and } 0.80 (1)$ $0.15 \pm 0.08 \\ 0.067 (7)$ Bitumens (ppm) $290 \pm 0.960 (1) \\ 280 \pm 0.960 (1)$ $240 \pm 0.550 (6) \\ 280 \pm 0.960 (1)$ $200 \pm 0.960 (11) \\ 1140 (2)$ $30 \pm 0.874 (101) \\ 1280 (10)$ $ 290 \pm 0.224 \\ 285 \\ 290 \pm 0.24 \\ 285 \\ 280 \pm 0.44 \\ 281 \\ 290 \pm 0.24 \\ 285 \\ 280 \pm 0.44 \\ $	Γ_{max} (°C)	$\frac{454 \text{ to } 558}{530} \frac{(7)}{(2)}$	_	_	$\frac{402 \text{ to } 456}{442} \frac{(11)}{(4)}$	_	_
Bitumens (ppm) $\frac{290 \text{ to } 606 \text{ (b)}}{540 \text{ (1)}}$ $\frac{240 \text{ to } 350 \text{ (c)}}{285 \text{ (2)}}$ $\frac{200 \text{ to } 9660 \text{ (11)}}{100 \text{ (c)}}$ $\frac{30 \text{ to } 3740 \text{ (101)}}{100 \text{ (c)}}$ - $\frac{290 \text{ to } 224 \text{ 285}}{285 \text{ 285}}$ Aromatics HC (%) $\frac{23 \text{ to } 25 \text{ (3)}}{244 \text{ (1)}}$ $\frac{26 \text{ to } 38 \text{ (4)}}{33 \text{ (2)}}$ $\frac{10 \text{ to } 23 \text{ (7)}}{16 \text{ (2)}}$ $\frac{10 \text{ to } 32 \text{ (28)}}{17 \text{ (5)}}$ -12 and 33 \text{ 21 to } 33 \text{ 22 to } 27 \text{ 22 to } 27 \text{ 22 to } 27 \text{ 22 to } 228 \text{ 22 to } 72	Production index (PI)	$\frac{0.17 \text{ to } 0.75}{0.41} \frac{(12)}{(2)}$	$\frac{0.35 \text{ to } 0.91}{0.67} \frac{(31)}{(2)}$	$\frac{0.28 \text{ to } 0.85}{0.61} \frac{(4)}{(3)}$	$\frac{0.15 \text{ to } 0.89}{0.63} \frac{(40)}{(7)}$	0.80 and 0.80 (1)	$\frac{0.15 \text{ to } 0.83}{0.69} \frac{(15)}{(5)}$
Aromatics HC (%) $\frac{23 \text{ to } 25 \text{ (3)}}{244 \text{ (1)}}$ $\frac{26 \text{ to } 33 \text{ (2)}}{13 \text{ (2)}}$ $\frac{10 \text{ to } 23 \text{ (2)}}{16 \text{ (2)}}$ $\frac{10 \text{ to } 32 \text{ (28)}}{(25)}$ $-$ 12 and 33 \text{ (21 and 42)}Saturated HC (%) $\frac{12 \text{ to } 18 \text{ (3)}}{16 \text{ (1)}}$ $\frac{15 \text{ to } 34 \text{ (4)}}{18 \text{ (2)}}$ $\frac{24 \text{ to } 22 \text{ (7)}}{23 \text{ (2)}}$ $\frac{16 \text{ to } 87 \text{ (28)}}{49 \text{ (55)}}$ $-$ 17 and 44 \text{ (28)}Resins (%) $\frac{16 \text{ to } 38 \text{ (33)}}{32 \text{ (11)}}$ $\frac{21 \text{ to } 32 \text{ (4)}}{25 \text{ (2)}}$ $\frac{41 \text{ to } 29 \text{ (7)}}{23 \text{ (2)}}$ $\frac{7 \text{ to } 55 \text{ (28)}}{17 \text{ (5)}}$ $-$ 7 and 27 \text{ (28)}Asphaltenes (%) $27 \text{ to } 42 \text{ (31)}$ $12 \text{ to } 32 \text{ (4)}$ $10 \text{ to } 242 \text{ (7)}$ $1 \text{ to } 28 \text{ (28)}$ $ -$ 28 \text{ to } 34 \text{ (28)}Index/FaciesVIIIIXXIXIIXIIXVTotal organic carbon (TOC) (wt. %) $0.01 \text{ to } 0.75 \text{ (32)}$ $0.03 \text{ to } 2.32 \text{ (74)}$ $0.02 \text{ to } 3.82 \text{ (54)}$ $0.14 \text{ and } 0.78 \text{ (2)}$ $0.02 \text{ to } 0.96 \text{ (6)}$ S ₁ + S ₂ (mg HC/g rock) $0.08 \text{ to } 7.14 \text{ (7)}$ $0.05 \text{ to } 19.31 \text{ (45)}$ $0.02 \text{ to } 3.82 \text{ (54)}$ $0.14 \text{ and } 0.78 \text{ (2)}$ $0.05 \text{ to } 0.83 \text{ (6)}$ Hydrogen index (H1) (mg HC/g TOC) $16 \text{ to } 172 \text{ (5)}$ $53 \text{ to } 304 \text{ (45)}$ 4023 (47) 4023 (47) 4023 (46) Oxygen index (O1) (mg CO ₂ /g TOC) $149 \text{ to } 376 \text{ (4)}$ $24 \text{ to } 440 \text{ (45)}$ $404 \text{ to } 443 \text{ (11)}$ $404 \text{ to } 443 \text{ (11)}$ $ 439 \text{ and 44 \text{ (28)}$ Production index (PI) 0.64	Bitumens (ppm)	$\frac{290 \text{ to } 960}{540} \frac{(8)}{(1)}$	240 to 350 (6) 285 (2)	$\frac{200 \text{ to } 9660}{1140} \frac{(11)}{(2)}$	$\frac{30 \text{ to } 8740}{1280} \frac{(101)}{(6)}$	_	$\frac{290 \text{ to } 2240}{285} \frac{(3)}{(3)}$
Saturated HC (%) $12 \text{ to 18} (3)$ $16 \text{ to 18} (1)$ $15 \text{ to 34} (4)$ $16 \text{ to 16} (1)$ $24 \text{ to 72} (7)$ $16 \text{ to 29} (2)$ $16 \text{ to 87} (28)$ 	Aromatics HC (%)	$\frac{23 \text{ to } 25}{24} \frac{(3)}{(1)}$	$\frac{26 \text{ to } 38}{33} \frac{(4)}{(2)}$	$\frac{10 \text{ to } 23}{16} \frac{(7)}{(2)}$	$\frac{10 \text{ to } 32}{17} \frac{(28)}{(5)}$	_	12 and 30 (2)
Resins (%) $16 \ 0.28 \ (3)$ $24 \ 0.61 \ 100 \ 1$	Saturated HC (%)	$\frac{12 \text{ to } 18}{16} \frac{(3)}{(1)}$	$\frac{15 \text{ to } 34}{18} \frac{(4)}{(2)}$	$\frac{24 \text{ to } 72}{36} \frac{(7)}{(2)}$	$\frac{16 \text{ to } 87}{49} \frac{(28)}{(5)}$	_	17 and 47 (2)
Asphaltenes (%) $\frac{27 \text{ to } 42}{36} (\frac{3}{11})$ $\frac{12 \text{ to } 32}{23} (\frac{4}{11})$ $\frac{10 \text{ to } 42}{25} (\frac{7}{2})$ $\frac{1 \text{ to } 48}{17} (\frac{28}{5})$ $ 28 \text{ to } 34$ Index/FaciesVIIIIXXIXIIXIIXVTotal organic carbon (TOC) (wt. %) $\frac{0.01 \text{ to } 0.75}{0.16} (\frac{32}{(4)})$ $\frac{0.03 \text{ to } 2.32}{0.34} (\frac{74}{(8)})$ $\frac{0.02 \text{ to } 3.82}{0.34} (\frac{54}{(5)})$ $0.14 \text{ and } 0.78 (2)$ $\frac{0.02 \text{ to } 0.90}{0.883} (\frac{6}{(3)})$ S_1 + S_2 (mg HC/g rock) $\frac{0.01 \text{ to } 0.75}{1.39} (\frac{12}{(2)})$ $\frac{0.03 \text{ to } 2.32}{2.45} (\frac{74}{(7)})$ $\frac{0.02 \text{ to } 9.24}{0.34} (\frac{47}{(5)})$ 6.91 $\frac{0.54 \text{ to } 1.60}{0.28} (\frac{6}{(3)})$ Hydrogen index (HI) (mg HC/g TOC) $16 \text{ to } 172 (5)$ $53 \text{ to } 304 (\frac{45}{(7)})$ $4 \text{ to } 243 (\frac{47}{(7)})$ 126 $\frac{57 \text{ to } 148 (6}{9} (\frac{3}{3})$ Oxygen index (OI) (mg CO_2/g TOC) $149 \text{ to } 376 (\frac{24}{(2)})$ $24 \text{ to } 443 (11)$ $404 \text{ to } 443 (11)$ $ 439 \text{ and } 44$ Production index (PI) $0.64 \text{ to } 0.88 (7)$ $0.23 \text{ to } 0.89 (\frac{45}{(7)})$ $0.23 \text{ to } 0.89 (\frac{45}{(7)})$ $0.23 \text{ to } 0.89 (\frac{45}{(3)})$ 0.860 $0.48 \text{ to } 0.83 (\frac{6}{(3)})$ Bitumens (ppm) $150 \text{ to } 870 (7)$ $240 \text{ to } 14730 (20)$ $540 \text{ to } 12610 (\frac{35}{(3)})$ 8500 $300 \text{ to } 1540 (\frac{41111}{111}$	Resins (%)	$\frac{16 \text{ to } 38}{24} (1)$	$\frac{21 \text{ to } 30}{26} \frac{(4)}{(2)}$	$\frac{4 \text{ to } 29}{23} \frac{(7)}{(2)}$	$\frac{7 \text{ to } 25}{16} \frac{(28)}{(5)}$	_	7 and 27 (2)
Index/FaciesVIIIIXXIXIIXVTotal organic carbon (TOC) (wt. %) $\frac{0.01 \text{ to } 0.75 (32)}{0.16}$ $\frac{0.03 \text{ to } 2.32 (74)}{0.34 (8)}$ $\frac{0.02 \text{ to } 3.82 (54)}{0.34 (5)}$ $0.14 \text{ and } 0.78 (2)$ $\frac{0.02 \text{ to } 0.90 (62)}{0.88 (7)}$ S ₁ + S ₂ (mg HC/g rock) $\frac{0.08 \text{ to } 1.14 (7)}{1.39} (2)$ $\frac{0.05 \text{ to } 19.31 (45)}{2.45 (7)}$ $\frac{0.05 \text{ to } 9.24 (47)}{2.38 (45)}$ 6.91 $\frac{0.54 \text{ to } 1.60 (62)}{0.28 (62)}$ Hydrogen index (HI) (mg HC/g TOC) $\frac{16 \text{ to } 172 (5)}{1.39 (2)}$ $\frac{53 \text{ to } 304 (45)}{130 (7)}$ $\frac{4 \text{ to } 243 (47)}{123 (45)}$ 126 $\frac{57 \text{ to } 188 (6)}{95 (3)}$ Oxygen index (OI) (mg CO ₂ /g TOC) $\frac{149 \text{ to } 376 (4)}{239 (22)}$ $\frac{24 \text{ to } 440 (45)}{146 (7)}$ $7 \text{ to } 391 (45)$ $ 30 \text{ to } 126 (6)$ $T_{max} (^{\circ}C)$ $402 \text{ and } 409 (1)$ $\frac{404 \text{ to } 443 (1)}{428} (1)$ $\frac{404 \text{ to } 433 (11)}{(3)}$ $ 439 \text{ and } 444$ Production index (PI) $0.64 \text{ to } 0.88 (7) \\ 0.67 (7) (2)$ $0.23 \text{ to } 0.89 (45) \\ 0.67 (7)$ $0.23 \text{ to } 0.89 (45) \\ 0.67 (3)$ 0.860 $0.48 \text{ to } 0.83 (6) \\ 0.699 (6) (3) \\ 0.697 (6) (3) \\ 0.57 (1) (6)$ $5400 \text{ to } 12610 (35) \\ 3370 (3)$ 8500 $300 \text{ to } 1540 (4) \\ 0.1115 (4) (1115 (4) (4) (1115 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)$	Asphaltenes (%)	$\frac{27 \text{ to } 42}{36} \frac{(3)}{(1)}$	$\frac{12 \text{ to } 32}{23} \frac{(4)}{(1)}$	$\frac{10 \text{ to } 42}{25} \frac{(7)}{(2)}$	$\frac{1 \text{ to } 48}{17} \frac{(28)}{(5)}$	_	28 to 34 (2)
Total organic carbon (TOC) (wt. %) $0.01 \text{ to } 0.75 \text{ (32)} \\ 0.16 \text{ (4)}$ $0.03 \text{ to } 2.32 \text{ (74)} \\ 0.34 \text{ (8)}$ $0.02 \text{ to } 3.82 \text{ (54)} \\ 0.34 \text{ (6)}$ $0.14 \text{ and } 0.78 \text{ (2)}$ $0.02 \text{ to } 0.90 \text{ (6)} \\ 0.83 \text{ (7)}$ $S_1 + S_2$ (mg HC/g rock) $0.08 \text{ to } 7.14 \text{ (7)} \\ 1.39 \text{ (2)}$ $0.05 \text{ to } 19.21 \text{ (47)} \\ 2.48 \text{ (5)}$ $0.05 \text{ to } 9.24 \text{ (47)} \\ 2.38 \text{ (5)}$ 6.91 $0.54 \text{ to } 126 \text{ (6)} \\ 0.28 \text{ (6)} \text{ (7)}$ Hydrogen index (HI) (mg HC/g TOC) $16 \text{ to } 172 \text{ (5)} \\ 71 \text{ (2)}$ $53 \text{ to } 304 \text{ (45)} \\ 130 \text{ (7)}$ $4 \text{ to } 243 \text{ (47)} \\ 123 \text{ (5)}$ 126 $57 \text{ to } 148 \text{ (6)} \\ 95 \text{ (3)}$ Oxygen index (OI) (mg CO_2/g TOC) $149 \text{ to } 376 \text{ (4)} \\ 129 \text{ to } 376 \text{ (4)} \\ 239 \text{ (2)}$ $24 \text{ to } 440 \text{ (45)} \\ 146 \text{ (7)}$ $7 \text{ to } 391 \text{ (45)} \\ 71 \text{ (6)}$ $ 30 \text{ to } 122 \text{ (6)} \\ 82 \text{ (3)}$ $T_{max} (^{\circ}C)$ $402 \text{ and } 409 \text{ (1)}$ $404 \text{ to } 443 \text{ (11)} \\ 428 \text{ (7)} \\ 0.77 \text{ (2)}$ $0.23 \text{ to } 0.89 \text{ (45)} \\ 0.67 \text{ (7)}$ 0.866 $0.48 \text{ to } 0.83 \text{ (6)} \\ 0.68 \text{ to } 0.89 \text{ (6)} \\ 0.69 \text{ to } 0.69 \text{ (5)} \\ 0.67 \text{ (7)}$ Bitumens (ppm) $150 \text{ to } 8470 \text{ (7)} \\ 150 \text{ to } 8470 \text{ (7)} \\ (2)$ $240 \text{ to } 14730 \text{ (20)} \\ 3515 \text{ (6)}$ $540 \text{ to } 12610 \text{ (35)} \\ 3370 \text{ (33)}$ 8500 $300 \text{ to } 150 \text{ to } 401 \text{ to } 1115 \text{ (40)} \\ 1115 \text{ (40)} $	Index/Facies	VIII	IX	XI		XII	XV
$S_1 + S_2 (mg HC/g rock)$ $0.08 \text{ to } 7.14 \ (2)$ $0.05 \text{ to } 19.31 \ (45)$ $0.05 \text{ to } 9.24 \ (47)$ 6.91 $0.54 \text{ to } 1.60 \ (5)$ Hydrogen index (HI) (mg HC/g TOC) $16 \text{ to } 172 \ (5)$ $53 \text{ to } 304 \ (45)$ $4 \text{ to } 243 \ (47)$ 126 $57 \text{ to } 148 \ (6)$ Oxygen index (OI) (mg CO ₂ /g TOC) $149 \text{ to } 376 \ (4)$ $24 \text{ to } 440 \ (45) \ (7)$ $7 \text{ to } 391 \ (45) \ (7)$ $ 30 \text{ to } 126 \ (6)$ $T_{max} (^{\circ}C)$ $402 \text{ and } 409 \ (1)$ $404 \text{ to } 443 \ (11) \ (3)$ $404 \text{ to } 443 \ (13) \ (3)$ $ 439 \text{ and } 444$ Production index (PI) $0.64 \text{ to } 0.88 \ (7) \ (2)$ $0.23 \text{ to } 0.89 \ (45) \ (7)$ $0.23 \text{ to } 0.89 \ (45) \ (3)$ 0.86 $0.48 \text{ to } 0.83 \ (6) \ (3)$ Bitumens (ppm) $150 \text{ to } 8470 \ (7) \ (2)$ $240 \text{ to } 14730 \ (20) \ (3515 \ (3)$ $540 \text{ to } 12610 \ (355) \ (3)$ 8500 $300 \text{ to } 1540 \ (41115) \ (311115) \ (31115) \ (31115) \ (31115) \ (31115) \$	Гotal organic carbon (TOC) (wt. %)	$\frac{0.01 \text{ to } 0.75}{0.16} \frac{(32)}{(4)}$	$\frac{0.03 \text{ to } 2.32}{0.34} \frac{(7)}{(3)}$	$\frac{(4)}{(8)}$ $\frac{0.02 \text{ to } 3}{0.34}$	<u>.82</u> (54) (6)	0.14 and 0.78 (2)	$\frac{0.02 \text{ to } 0.90}{0.83} \frac{(9)}{(6)}$
Hydrogen index (HI) (mg HC/g TOC) $16 \text{ to } 172 \frac{(5)}{71}$ $53 \text{ to } 304 \frac{(45)}{130}$ $4 \text{ to } 243 \frac{(47)}{123} \frac{(47)}{(5)}$ 126 $57 \text{ to } 148 \frac{(6)}{95} \frac{(5)}{(3)}$ Oxygen index (OI) (mg CO ₂ /g TOC) $149 \text{ to } 376 \frac{(4)}{239} \frac{24 \text{ to } 440 \frac{(45)}{146} \frac{7}{(7)}$ $7 \text{ to } 391 \frac{(45)}{146 \frac{7}{(7)}}$ $ \frac{30 \text{ to } 126 \frac{(6)}{82} \frac{(6)}{(3)}$ $T_{max} (^{\circ}C)$ $402 \text{ and } 409 (1)$ $\frac{404 \text{ to } 443 \frac{(11)}{(3)}}{428 \frac{10}{(7)} \frac{223 \text{ to } 0.89 \frac{(45)}{(7)}}{0.67 \frac{7}{(7)}}$ $0.23 \text{ to } 0.89 \frac{(45)}{(7)}$ $ 439 \text{ and } 444 \frac{443 \frac{10}{(3)}}{0.69 \frac{10}{(3)} \frac{150 \text{ to } 8870 \frac{(7)}{(2)}}{0.77 \frac{12}{(2)}}$ $\frac{024 \text{ to } 14730 \frac{(20)}{3515 \frac{6}{(6)}} \frac{540 \text{ to } 12610 \frac{(35)}{3370 \frac{33}{(3)}}}{8500}$ $\frac{300 \text{ to } 1540 \frac{(43)}{4115 \frac{4}{(115)}} \frac{400 \text{ to } 1540 \frac{(45)}{(3)}}{3370 \frac{3370}{(3)}}$	$S_1 + S_2 (mg HC/g rock)$	$\frac{0.08 \text{ to } 7.14}{1.39} (2)$	<u>0.05 to 19.31</u> 2.45	$\frac{(45)}{(7)}$ $\frac{0.05 \text{ to } 9}{2.38}$	<u>.24 (47)</u> (5)	6.91	$\frac{0.54 \text{ to } 1.60}{0.28} \frac{(6)}{(3)}$
Oxygen index (OI) (mg CO2/g TOC) $\frac{149 \text{ to } 376 \left(\frac{4}{(2)}\right)}{239 \cdot 6 \left(\frac{2}{(2)}\right)}$ $\frac{24 \text{ to } 440 \left(\frac{45}{(7)}\right)}{146 \cdot (7)}$ $\frac{7 \text{ to } 391 \left(\frac{45}{(7)}\right)}{146 \cdot (7)}$ $ \frac{30 \text{ to } 126 \left(\frac{6}{(3)}\right)}{82 \cdot (3)}$ $T_{max} (^{\circ}C)$ 402 and 409 (1) $\frac{404 \text{ to } 443 \left(\frac{11}{(3)}\right)}{428 \cdot (3)}$ $\frac{404 \text{ to } 443 \left(\frac{11}{(3)}\right)}{428 \cdot (7)}$ $-$ 439 and 44Production index (PI) $0.64 \text{ to } 0.88 \left(\frac{7}{(2)}\right)$ $0.23 \text{ to } 0.89 \left(\frac{455}{(7)}\right)$ $0.23 \text{ to } 0.89 \left(\frac{455}{(7)}\right)$ 0.86 $\frac{0.48 \text{ to } 0.83 \left(\frac{6}{(3)}\right)}{0.67 \cdot (7)}$ Bitumens (ppm) $\frac{150 \text{ to } 8470 \left(\frac{7}{(2)}\right)}{1570 \cdot (2)}$ $\frac{240 \text{ to } 14730 \left(\frac{20}{(6)}\right)}{3515 \cdot (6)}$ $\frac{540 \text{ to } 12610 \left(\frac{355}{(3)}\right)}{3370 \cdot (3)}$ 8500	Hydrogen index (HI) (<i>mg HC/g TOC</i>)	$\frac{16 \text{ to } 172}{71} \frac{(5)}{(2)}$	$\frac{53 \text{ to } 304}{130} \frac{(45)}{(7)}$	4 to 243 123	(47) (5)	126	$\frac{57 \text{ to } 148}{95} \frac{(6)}{(3)}$
T_{max} (°C) 402 and 409 (1) $\frac{404 \text{ to } 443}{428} \frac{(11)}{(3)}$ $\frac{404 \text{ to } 443}{428} \frac{(11)}{(3)}$ - 439 and 44 Production index (PI) $\frac{0.64 \text{ to } 0.88}{0.77} \frac{(7)}{(2)}$ $\frac{0.23 \text{ to } 0.89}{0.67} \frac{(45)}{(7)}$ $\frac{0.23 \text{ to } 0.89}{0.67} \frac{(45)}{(7)}$ 0.86 $\frac{0.48 \text{ to } 0.83}{0.69} \frac{(6)}{(3)}$ Bitumens (ppm) $\frac{150 \text{ to } 8470}{1570} \frac{(7)}{(2)}$ $\frac{240 \text{ to } 14730}{3515} \frac{(20)}{(6)}$ $\frac{540 \text{ to } 12610}{3370} \frac{(35)}{(3)}$ 8500 $\frac{300 \text{ to } 1540}{1115} \frac{(44)}{(44)}$	Oxygen index (OI) (mg CO ₂ /g TOC)	$\frac{149 \text{ to } 376}{239} \frac{(4)}{(2)}$	$\frac{24 \text{ to } 440}{146} \frac{(45)}{(7)}$	7 to 391 146	(45) (7)	-	$\frac{30 \text{ to } 126}{82} \frac{(6)}{(3)}$
Production index (PI) $0.64 \text{ to } 0.88 \text{ (7)} \\ 0.77 \text{ (2)}$ $0.23 \text{ to } 0.89 \text{ (45)} \\ 0.67 \text{ (7)}$ $0.23 \text{ to } 0.89 \text{ (45)} \\ 0.67 \text{ (7)}$ 0.86 $0.48 \text{ to } 0.83 \text{ (6)} \\ 0.69 \text{ (3)}$ Bitumens (ppm) $150 \text{ to } 8470 \text{ (7)} \\ 1570 \text{ (2)}$ $240 \text{ to } 14730 \text{ (20)} \\ 3515 \text{ (6)}$ $540 \text{ to } 12610 \text{ (35)} \\ 3370 \text{ (3)}$ 8500 $300 \text{ to } 1540 \text{ (4)} \\ 1115 \text{ (4)}$	$T_{max} (^{\circ}C)$	402 and 409 (1)	$\frac{404 \text{ to } 443}{428} \frac{(11)}{(3)}$	$\frac{1}{10}$ $\frac{404 \text{ to } 44}{428}$	$\frac{43}{(3)}$	-	439 and 442 (1)
Bitumens (ppm) $\frac{150 \text{ to } 8470 (7)}{1570 (2)}$ $\frac{240 \text{ to } 14730 (20)}{3515 (6)}$ $\frac{540 \text{ to } 12610 (35)}{3370 (3)}$ 8500 $\frac{300 \text{ to } 1540 (400 1115 $	Production index (PI)	$\frac{0.64 \text{ to } 0.88}{0.77} \frac{(7)}{(2)}$	<u>0.23 to 0.89</u> (4 0.67 ((5) (7) (0.23 to 0 (0.67	<u>.89</u> (45) (7)	0.86	$\frac{0.48 \text{ to } 0.83}{0.69} \frac{(6)}{(3)}$
	Ritumens (nnm)	$\frac{150 \text{ to } 8470}{1570} \frac{(7)}{(2)}$	240 to 14730 3515	(20) (6) 540 to 12 3370	2610 (35) (3)	8500	$\frac{300 \text{ to } 1540}{1115} \frac{(4)}{(4)}$
Aromatics HC (%) $\frac{9 \text{ to } 20 \ (3)}{15 \ (2)}$ $\frac{11 \text{ to } 15 \ (6)}{14 \ (4)}$ $\frac{6 \text{ to } 26 \ (20)}{18 \ (3)}$ 18 12	bitumens (ppm)	0 to 20 (2)	11 to 15 (6)	<u>6 to 26 (</u>	20) (3)	18	12
Saturated HC (%) $\frac{52 \text{ to } 68}{58} \frac{(3)}{(2)}$ $\frac{26 \text{ to } 76}{46} \frac{(6)}{(4)}$ $\frac{40 \text{ to } 86}{61} \frac{(20)}{(3)}$ 68 70	Aromatics HC (%)	$\frac{9020}{15}$ (2)	14 (4)		(-)		
Resins (%) $\frac{6 \text{ to } 14 (3)}{10 (2)}$ $\frac{6 \text{ to } 15 (6)}{11 (4)}$ $\frac{2 \text{ to } 16 (20)}{9 (3)}$ 4 8	Aromatics HC (%) Saturated HC (%)	$\frac{9 \text{ to } 20}{15} \frac{(3)}{(2)}$ $\frac{52 \text{ to } 68}{58} \frac{(3)}{(2)}$	$ \begin{array}{r} 14 & (4) \\ \underline{26 \text{ to } 76} & (6) \\ \underline{46} & (4) \end{array} $	40 to 86 61	$\frac{(20)}{(3)}$	68	70
Asphaltenes (%) $6 to 25 (3)$ $\frac{7 to 50}{40} (6)$ $\frac{2 to 24}{13} (20)$ 10 10	Aromatics HC (%) Saturated HC (%) Resins (%)	$\frac{9 to 20}{15} \frac{(3)}{(2)}$ $\frac{52 to 68}{58} \frac{(3)}{(2)}$ $\frac{6 to 14}{(2)} \frac{(3)}{(2)}$	$ \begin{array}{r} 14 & (4) \\ \underline{26 \text{ to } 76} & (6) \\ \underline{46} & (4) \\ \underline{6 \text{ to } 15} & (6) \\ \underline{11} & (4) \end{array} $	$\frac{40 \text{ to } 86}{61}$ $\frac{2 \text{ to } 16}{9}$	(20) (3) (3) (3)	68 4	70 8

Tab. 3.1. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym bloku Gorzowa oraz zachodniej części zatoki Noteci (Kosakowski i Krajewski, 2015). Objaśnienia parametrów: TOC - całkowity węgiel ograniczny, T_{max} - temperatura maksymalnej generacji węglowodorów w trakcie crackingu kerogenu, S2 – potencjał generacyjny, S1 – wolne węglowodory, PI – wskaźnik produkcyjności, HI – wskaźnik wodorowy, OI – wskaźnik tlenowy, Bitumens – zawartość bituminów, Aromatics HC -- zawartość węglowodorów aromatycznych, Saturated HC -- zawartość węglowodorów nasyconych, Rasins -- zawartość żywic, Asphaltenes -- zawartość asfaltenów. Zakres parametrów geochemicznych podany jest w liczniku, wartości średnie w mianowniku, w nawiasie: liczba próbek (licznik) oraz liczba otworów (mianownik). Objaśnienia mikrofacji: I - węglanowe dolomadstony i wakstony (facja basenowa, facja podstawy skłonu platformy węglanowej); II - mikrobialno-klastyczne dolopakstony i dolomadstony (facja środkowej i dolnej partii oraz podstawy skłonu platformy węglanowej); III - mikrobrekcje, litoklastyczne dolopakstony, greinstony, dolofloatstony, dolomadstony (facja górnej i środkowej partia skłonu platformy węglanowej); IV – laminowane dolopakstony peloidalne, dolobindstony, dolomadstony (facja rampy stoku platformy węglanowej); V – dologreinstony i dolo-pakstony ooidowe (facja wysokoenergetycznej, płytkiej bariery platformy węglanowej, facja wewnątrzplatformowej ławicy oolitowej oraz facja wyższej partii stoku platformy węglanowej); VI – mikrytowe dologreinstony i pakstony ooidowe (facja średnioenergetycznj, płytkiej wewnątrzplatformowej ławicy oolitowej); VII - mikrobialne dolobindstony i mikroframestony, dolopakstony (facja płytkich, krawędziowych lub wewnątrzplatformowych raf mikrobialnych); VIII - dolopakstony i floatstony onkoidowe (facja płytkiej, otwartomorskiej laguny); IX - algowe dolopakstony i grainstony z ziarnami agregatowymi, dolobindstony (facja płytkiej, otwartej lub ograniczonej wewnętrznej platformy węglanowej, budowle mikrobialno-glonowe); X – bioklastowo-peloidowe dolowakstony i madstony (facja płytkiej, chronionej wewnętrznej platformy węglanowej z umiarkowaną lub niską cyrkulacją wód); XI – fenestralne, mikrobialne dolobindstony, dolomadstony i dolopakstony (facja wewnątrzplatformowej równi pływowej); XII – dolorudstony i greinstony pizolitowe (facje ławicowe i barierowe dotknięte działalnością wody opadowej); XIII – dolorudstony i floatstony litoklastyczne, dolopakstony (facje wewnątrzplatformowych kanałów i równi pływowych); XIV - słabo laminowany mikryt, mikrosparyt z minerałami ewaporatowymi (facja wewnątrzplatformowych kanałów i równi pływowych); XV – laminity ewaporatowe, węglanowe dolomadstony i bindstony (sabkha).

61

3.3. SKAŁY ZBIORNIKOWE

Dolomit główny

<u>Rozprzestrzenienie</u>: na całym obszarze przetargowym.

<u>Miąższość</u>: maksymalnie 94,5 m w otworze Racław 1K i 94 m w otworze Stanowice 3. <u>Głębokość stropu</u>: od 2906,0 m w otworze

Wędrzyn 1 do 3133,2 m w otw. Stanowice 3.

Na podstawie dotychczasowych badań dolomitu głównego w rejonie Gorzowa, najlepsze właściwości kolektorskie stwierdzono na platformach węglanowych i u podnóży ich stoków (Jaworowski i Mikołajewski, 2007; Słowakiewicz i Mikołajewski, 2009; Czekański i in., 2010; Kwolek i Mikołajewski, 2010). Wartości parametrów zbiornikowych w otworach wiertniczych zlokalizowanych na obszarze "Gorzów Wielkopolski S" przedstawia Tab. 3.2. Porowatość w poszczególnych mierzonych próbkach waha się w bardzo szerokim przedziale - od wartości bliskich 0 do nawet ponad 37%, przy czym minimalne wartości zmierzono w madstonach basenowych (otwory Jeniniec 4 i Wędrzyn 1). W profilu osadów platformowych, gdzie dominują skały zbiornikowe, obserwuje się bardzo duże wahania porowatości (Fig. 3.2-3.3).

Własności zbiornikowe platformowych utworów dolomitu głównego na omawianym obszarze są zmienne i uzależnione zarówno pierwotnych cech strukturalno-teksod turalnych skały jak i od przeobrażeń diagenetycznych. W otworze Stanowice 3 najwyższymi porowatościami cechują się utwory ziarniste, występujące w różnych częściach profilu, natomiast najniższe porowatości mają silnie zanhydrytyzowane utwory skłonu, występujące w spągowej części profilu. Charakteryzują się one bardzo niskimi przepuszczalnościami lub ich brakiem.

Przepuszczalność omawianych utworów jest również bardzo zmienna (Tab. 3.2). Praktycznie brak przepuszczalności stwierdzono w utworach basenowych (otwory Jeniniec 4 i Wędrzyn 1). W utworach platformowych przepuszczalność jest, w większości próbek, również zbliżona do zera, a tylko niektóre wykazują większe wartości (rzędu kilkunastu do kilkudziesięciu mD; Fig. 3.2), sporadycznie przekraczając 100 mD i więcej (jak

w przypadku kilku próbek z otworu Baczyna-2, gdzie stwierdzono ponad 1000 mD, co należy wiązać ze szczelinowatością). Ogólnie uśredniona przepuszczalność jest bardzo niewielka i waha się od 0 w otworach nawiercających osady basenowe do ponad 3,7 mD w otworze Ciecierzyce 1K. Zwykle przepuszczalność nie idzie w parze z porowatościa, co jest prawdopodobnie związane z tym, że porowatość w wielu wypadkach ma charakter mikroporowatości międzykrystalicznej (związanej z dolomityzacja). Dobrą przepuszczalnością charakteryzują się tylko krótkie odcinki profilów. Na przykład w otworze Racław 1K doskonałe własności filtracyjne stwierdzono jedynie w najwyższej części profilu (5 próbek w interwale około 2,5 m), chociaż podobną, całkiem dużą porowatość, obserwuje się i w niższych jego partiach.

W strefach facjalnych dolomitu głównego, obejmujących m.in. wschodnią część platformy Gorzowa i zatokę Noteci, Semyrka (2013) wyróżnił trzy podstawowe subfacje: ziarnozwięzłe, mułozwięzłe i mikrobialne (bandstony), które charakteryzują się zróżnicowanymi własnościami petrofizycznymi (porowatość efektywna i dynamiczna). Na podstawie danych porozymetrycznych wykonano ocenę oraz klasyfikację naftową utworów dolomitu głównego. Bandstony zakwalifikowano jako skały zbiornikowe o niskiej i średniej pojemności dla gazu, a także bardzo niskiej i niskiej pojemności dla ropy naftowej w porowym typie przestrzeni filtracji. Utwory mułozwięzłe zakwalifikowano do skał niskiej, lokalnie średniej pojemności dla gazu i ropy. Charakteryzują się one porowym systemem przestrzeni porowych. Skały zbiornikowe reprezentowane przez subfacje ziarnozwięzłe zaklasyfikowano do średnich, lokalnie wysokich pojemności dla gazu, a w przypadku ropy naftowej do niskiej, lokalnie średniej i wysokiej pojemności w porowym oraz porowoszczelinowym typie przestrzeni filtracji.

Skład gazu pobrany z interwału dolomitu głównego (Ca2) w znacznej części otworów wiertniczych nawierconych na obszarze przetargowych charakteryzuje się dużym zróżni-

cowaniem (Tab. 3.3). Jest to zjawisko typowe zarówno dla regionu, jak i dla całego interwału obserwowanego również po stronie niemieckiej. W wielu otworach występuje znaczna ilość azotu (nawet do 94% w otworze Stanowice 3), lecz należy mieć również na uwadze otwory takie jak Wędrzyn 5 czy Jeniniec 4, gdzie zawartość metanu wynosi odpowiednio 40,78 i 73,99%. Skały macierzyste dolomitu głównego charakteryzują się często niekorzystną tendencją do wytwarzania niepożądanych gazów innych niż węglowodory, takich jak H₂S, CO₂ i przede wszystkim N₂ (Pletsch i in., 2010). Azot wchodzący w skład gazów dolomitu głównego, powstał najprawdopodobniej w większości z morskiej substancji organicznej podczas jej przeobrażenia termogenicznego (Kotarba i in., 2000a).

W utworach dolomitu głównego w 6 otworach wiertniczych znajdujących się na obszarze przetargowym (Tab. 3.4) wykonano analizy wody złożowej. W większości przypadków są charakteryzowane jako solanki chlorkowosodowe, niekiedy dodatkowo wapniowe.

Podsumowując, można stwierdzić, iż własności zbiornikowe utworów dolomitu głównego w otworach wiertniczych zlokalizowanych na obszarze "Gorzów Wielkopolski S" są bardzo zmienne. Zależą one zarówno od pierwotnych cech strukturalno-teksturalnych osadu jak i późniejszych przeobrażeń diagenetycznych. Utwory dolomitu głównego na obszarze "Gorzów Wielkopolski S" to głównie zdolomityzowane greinstony i pakstony deponowane w płytkim środowisku platformy weglanowej i jej skłonu oraz mikrytowe wapienie (madstony), deponowane w głębszym środowisku równi basenowej. Utwory te charakteryzowały się kompletnie odmiennymi własnościami zbiornikowymi. Utwory platformowe miały pierwotnie zwykle bardzo dobrą porowatość i przepuszczalność, które jednak w trakcie diagenezy ulegały powszechnie znacznemu pogorszeniu głównie na skutek scementowania przestrzeni porowej i kompakcji chemicznej. Osady basenowe z swojej natury miały słabe własności zbiornikowe. Dolomityzacja mogła przyczynić się do wzrostu mikroporowatości międzykrystalicznej, która zwykle nie jednak jest skorelowana z dobrą przepuszczalnością.

Fig. 3.2. Zależność przepuszczalności poziomej od porowatości w utworach dolomitu głównego w otworze Dzierżów 1K (Szczawińska, 2003).

Fig. 3.3. Zależność porowatości od głębokości w utworach dolomitu głównego w otworze Dzierżów 1K (Szczawińska, 2003).

Otwór wiertniczy	Interwał [m]	llość prób porowatość/ przepuszczalność	Porowatość [%] Min.–Max. (średnia)	Przepuszczalność [mD] Min.–Max. (średnia)	Zawartość bituminów [%] Min.–Max. (średnia)
Baczyna-2	3067,0–3112,0	82/75	3,22–37,48 (20,11)	<0,001->1000 (7,90)	0,017–1,278
Ciecierzyce 1K	3006,65–3114,65	17/14	11,0–24,98 (20,1)	0,023–15,786 (3,74)	0,046–0,690
Dzierżów 1K	3026,05-3088,05	125/101	0,35–20,81 (7,13)	<0,001–152,615 (3,51)	0,009–0,415
Dzierżów 1K-BIS	2952,05–2994,60	86/76	0,67–16,06 (6,74)	<0,001–13,962 (1,50)	0,012–0,429
Jeniniec 4	3004,20-3004,30	1/1	0,37	0,10	—
Racław 1K	3119,0-3214,05	159/153	1,19–34,59 (12,02)	<0,001–39,68	0,003–0,793
Stanowice 3	3132,60-3220,05	182/163	0,7–19,75 (4,72)	<0,001–15,387	0,006–0,725
Wędrzyn 1	2905,75–2924,75	10/10	0–3,8 (1,01)	(0,0)	0,0168–0,1104 (0,0601)
Wędrzyn 5	2912,0–2964,0	_	0,01–16,6 (6,14)	0–19,9 (0,12)	0,0088–0,0956 (0,0305)

Tab. 3.2 Wybrane wyniki badań własności petrofizycznych utworów dolomitu głównego i bezpośrednio go przykrywających/podścielających w otworach wiertniczych na obszarze "Gorzów Wielkopolski S" na podstawie dokumentacji wynikowych (patrz rozdział 5).

Otwór Interwał		Analizy gazu	Uwani
wiertniczy	[m]	[% obj.]	Uwagi
		CH ₄ - 23,93	
		C₂H₆–3,10	gaz ziemny gazolinowo-azotowy-
	3068,0-3085,0	$C_{3}H_{8}-1,27$	siarkowodorowy
		N ₂ -66,15	Shirkowodorowy
Baczyna-2		H ₂ S–2,84	
Buezjila 2		CH ₄ -22,01	
		C₂H₆–3,04	gaz ziemny gazolinowo-azotowy-
	3090,0-3099,0	C ₃ H ₈ -1,76	siarkowodorowy
		N ₂ -67,20	Shirkowodorowy
		$H_2S-3,79$	
		CH ₄ -25,98	
		$C_2H_6-2,55$	
Ciecierzyce	3008 0-23017 0	C₃H₈ –1,43	gaz ziemny gazolinowo-azotowy-
1K	5000,0 25017,0	N ₂ -60,64,84	siarkowodorow
		$H_2S-2,97$	
		CO ₂ -9,17	
		węglowodory razem–25,81	
	3024 0-3044 0	N ₂₋ 74,14	gaz ziemny gazolinowo-azotowy
	3024,0 3044,0	$H_2-0,04$	guz ziennių guzennowe uzerowy
Dzierżów		CO ₂ -0,01	
1K		węglowodory razem–24,52	
111		N ₂ -72,15	gaz ziemny gazolinowo-azotowy-
	3024,0-3044,0	H ₂ -0,13	siarkowodorowy
		$H_2S-2,82$	Shirkowodorowy
		CO ₂ -0,38	
		CH ₄ -73,99	
Jeniniec 4		C₂H ₆ − 0,79	
	2986 0-3010 0	Propan–0,04	_
	2900,0 3010,0	N ₂ -22,48	
		CO ₂ 0,04	
		H ₂ -2,50	
		CH ₄ –65,36	
	2986,0-3010,0	$C_2H_6-1,44$	_
		Propan–0,19	

		N ₂ -31,52	
		CO ₂ -0,13	
		H ₂ -1,26	
		węglowodory razem	
Paclaw		21,43	gaz ziemny gazolinowo azotowy
1K	3115,6–3140,0	N ₂ -77,55	siarkowodorowy
IX		CO ₂ 0,22	starkowodorowy
		$H_2S-0,80$	
		węglowodory razem	
		10,92	
	3146,0–3183,0	N ₂ -86,20	gaz ziemny bezgazolinowo-azotowy
		$H_2-2,74$	
Stanowice 3		CO ₂ -0,10	
Stallowice 5	3146,0–3183,0	węglowodory razem	
		4,70	
		N ₂ –94,48	gaz ziemny gazolinowo-azotowy
		H ₂ -0,55	
		CO ₂ -0,26	
		węglowodory razem	
	2906,0–2912,0	11,08	
Wędrzyn 1		N ₂ -88,74	_
		$H_2-0,08$	
		He-0,02	
		węglowodory razem	
Wadrzup 5	2912,0–2937,0	40,78	
		N ₂ -50,57	
wçurzyn 5		H ₂ –0,50	—
		He-0,06	
		CO ₂ –5,86	

Tab. 3.3. Wybrane wyniki analiz gazu dla interwałów opróbowujących poziom dolomitu głównego i (niekiedy) utwory bezpośrednio go przykrywające/podścielające na obszarze "Gorzów Wielkopolski S" na podstawie dokumentacji wynikowych (patrz rozdział 5).

Otwór	Interwał	Analizy wody	Uwogi
wiertniczy	[m]	[g/litr]	Uwagi
		Cl ⁻ -195,0865	
		Br-0,6526	
		HCO_{3} -1,2810	
		CO_3^{-2} -0,4200	
		SiO ₃ ²⁻ -0,9471	
	3090,0–3099,0	SO ₄ ²⁻ -1,5638	solanka ok. 33% chlorkowo-sodowa
		${ m NH_4^+}\!\!-\!\!0,\!4000$	
		Fe ⁺³ -0,5469*	
		Ca ²⁺ -6,7335	
		Mg ²⁺ -0,2918	
Baczuna 2		Na ⁺ -119,3762**	
DacZylla 2	3090,0–3099,0	Cl ⁻ -210,0020	
		Br-1,9980	
		HCO ₃ 1,0980	
		$CO_3^2 - 0,0000$	
		SiO ₃ ²⁻ -1,2764	solanka ok 35% chlorkowo-sodowa
		SO ₄ ²⁻ -0,7819	z duża ilościa ionów bromu i amonu
		NH_4^+ -1,2500	z duzą noscią jonow broniu i amonu
		$Fe^{3+}-0,1174*$	
		Ca^{2+} -27,4148	
		$Mg^{2+}-1,8969$	
		Na ⁺ -101,5450**	
		Cl ⁻ -70,1283	
Racław		Br-0,0825	woda separatora w czasie testu pro-
1K	3122,0–3131,0	HCO ₃ -1,2932	dukcyjnego - typ genetyczny wg Suli-
11X		CO_{3}^{2} -0,0000	na Cl-Ca, płyn o charakterze infiltratu
		SiO ₃ ²⁻ -0,1798	

		SO ₄ ²⁻ -1,1852	
		NH_4^+ -0,2000	
		$Fe^{3+}-0,6828*$	
		Ca ²⁺ -1,7796	
		Mg^{2+} 0,5545	
		Na ⁺ -42,4809**	
		Cl ⁻ -202,5497	
		Br-1,3453	
		HCO ₃ -1,4152	
		$CO_3^{2-}-0.0000$	
		$SiQ_3^2 - 0.9598$	
Stanowice 3	3177 0-3219 0	$SO_4^{2^2} - 0.8642$	solanka ok. 32,5% chlorkowo-sodowa-
	01111,0 0213,0	NH ⁺ -0 5500	wapniowa, z dużą ilością magnezu
		$Fe^{3+} - 0.7217*$	
		$Ca^{2+}-196737$	
		M_{α}^{2+} 13,1783	
		$N_{2}^{+} = 81.1703$	
		$C1^{-}$ 105 811/	
		R_{r}^{-1} 1 9791	
	3177,0–3219,0	HCO = 2.0740	
		CO^{2-} 0.0000	
		$CO_3 = 0,0000$	adapte alt 22.5% ablertrage adapte
Standarda 2		$SIO_3 = 4,8070$	solalika ok. 52,5% cilioikowo-sodowa-
Stanowice 5		$SO_4 = 0.8107$	wapniowa, sinie skazona jonami zela-
		$NH_4 = -0.8500$	za i węglowodorami
		$Fe^{-12,5024^{*}}$	
		Ca^{-23} , /156	
		Mg ² –8,9529	
		Na -/0,9/20**	
		CI-218	
	2906,0–2912,0	Br –3,32	
Wędrzyn 1		$HCO_3 - 0,18$	
		CO_3^2 -brak	
		OH ⁻ -brak	woda z separatora - brązowa niekla-
		$SiO_{2}-0,15$	rowna ciecz z warstwą białego osadu
		$SO_{4^{2^{-}}} - 0,41$	na dnie
		Fe ³⁺ -brak	
		$Ca^{2+}-21,0$	
		$Mg^{2+}-31,5$	
		K^{+} -7,6	

Tab. 3.4. Wyniki analiz wody złożowej dla interwałów opróbowujących poziom dolomitu głównego i (niekiedy) utwory bezpośrednio go przykrywające/podścielające na obszarze "Gorzów Wielkopolski S" na podstawie dokumentacji wynikowych (patrz rozdział 5). * $-Al^{3+} + Fe^{3+}$, ** $-Na^+ + K^+$

3.4. SKAŁY USZCZELNIAJĄCE I NADKŁADU

Najważniejszymi skałami uszczelniającymi dla systemu naftowego dolomitu głównego są nadległe utwory cechsztynu (cyklotemów PZ2, PZ3 i PZ4), głównie skały ewaporatowe – anhydryty i sole kamienne. Dodatkowo, do skał uszczelniających mniejszej rangi, można zaliczyć ilaste utwory triasu, charakteryzujące się dużymi miąższościami.

3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW

Cechsztyński system naftowy

Skały macierzyste: madstony, bandstony, pakstony, greinstony

Skały zbiornikowe: zdolomityzowane greinstony i pakstony.

Skały uszczelniające: od spągu są izolowane przez utwory ewaporatowo-anhydrytowe cyklotemu PZ1, zaś od stropu tą samą sukcesją litologiczną cyklotemu PZ2.

Skały nadkładu (około 3000 m miąższości): utwory pozostałych cyklotemów cechsztynu (PZ3, PZ4) i kompleks mezozoiczno-kenozoiczny.

Kształt i wielkość pułapek: strukturalne, litologiczne, mieszane.

Wiek i mechanizm utworzenia pułapek: na obszarze przetargowym "Gorzów Wielkopolski S" pułapki mają charakter strukturalny lub strukturalno-litologiczny (m.in. Pikulski, 1998; Kwolek i Mikołajewski, 2010). Są one powiązane ze strefami paleogeograficznymi dolomitu głównego, zwłaszcza z krawędziową częścią platformy węglanowej i jej podnóża oraz występującymi izolowanymi podniesieniami, na których mogły powstawać rafy. Przypuszcza się, że część z tych pułapek może mieć charakter pierwotny, które nie uległy rozformowaniu w wyniku późniejszych ruchów tektonicznych, o czym świadczy występowanie m.in. akumulacji metanu mikrobialnego (Kotarba i in., 2000b).

Wiek i mechanizm generacji, ekspulsji, migracji i akumulacji węglowodorów: utwory dolomitu głównego spełniają rolę zarówno skały macierzystej jak i zbiornikowej (Kotarba i in., 2000a, b; Kosakowski i Krajewski, 2015), a migracja węglowodorów z nimi związana odbywała się na bardzo krótkich dystansach. Stopień przeobrażenia materii organicznej na obszarze "Gorzów Wielkopolski S" w skali refleksyjności witrynitu, obliczony na podstawie wyników analizy metylobernzotiofenu, biomarkerów grupy waha sie w granicach 0,8 % do 1,1 % (Fig. 3.4). Korelacja wskaźników geochemicznych ropy naftowej i gazu ziemnego wskazuje, że obydwa te media są współgenetyczne, tzn., powstały w wyniku przeobrażenia tej samej macierzystej substancji organicznej, która znajduje się w utworach węglanowych dolomitu (Kotarba i in., 2000a). Wstępna generacja węglowodorów nastąpiła najprawdopodobniej już pod koniec cechsztynu, biorąc pod uwagę procesy bakteryjnego generowania weglowodorów oraz obecność w niektórych złożach gazu pochodzenia mikrobialnego (Kotarba i in., 2000b). Właściwa, wczesna faza generacyjna, rozpoczęła się już we wczesnym triasie (Fig. 3.5). Skały macierzyste dolomitu głównego na całym obszarze południowo-zachodniej Polski weszły w tzw. "okno ropne" między późnym triasem (osady basenowe) wraz z pogrzebaniem do około 2000 m, a wczesną jurą (osady platformowe) przy pogrzebaniu do około 1800 do 2200 m (Pletsch i in., 2010). Według Karnkowskiego (2010) maksymalne pogrzebanie utworów cechsztyńskich na bloku Gorzowa osiągnęło około 3000 m. Zwiększony strumień cieplny w permie i starszym mezozoiku przyczynił się do wczesnego i szybkiego dojrzewania materii organicznej. Wyniesienie oraz erozja na bloku Gorzowa w czasie wczesnej kredy zatrzymały generację węglowodorów, a ponowne pogrążenie tego obszaru w późnej kredzie pozwoliło na powrót do warunków termalnych z końca jury (Karnkowski, 2010).

Według Kotarby i Wagnera (2007), procesy generowania węglowodorów na obszarze gorzowskim mogły przebiegać dwiema ścieżkami. W pierwszej ścieżce generacja była procesem jednoetapowym z pełnym wytworzeniem masy węglowodorowej w późnym triasie. W drugiej ścieżce generowanie odbyło się w dwóch etapach. 80 do 90 % masy węglowodorów zostało wytworzone z kerogenu pod koniec okresu jurajskiego, a pozostała generacja odbyła się w okresie pokredowym. W konsekwencji ropa naftowa gromadziła się w pułapkach na przełomie triasu i jury, a nasycenie gazem złóż ropy nastąpiło do późnej jury, a ostateczne wytworzenie gazu nastąpiło w okresie paleogenu lub neogenu. Węglowodory migrowały zaledwie maksymalnie kilka kilometrów od skał źródłowych do skał zbiornikowych w warstwach dolomitu głównego.

Ropy naftowe dolomitu głównego na obszarze bloku Gorzowa zostały wytworzone z ropotwórczego glonowego kerogenu typu II, który znajduje się w środkowej lub końcowej fazie niskotemperaturowych procesów termogenicznych (Kotarba 2000a,b). Stopień przeobrażenia rop rośnie z zachodu na wschód i jest bardzo zróżnicowany pomimo, że akumulacje występują na podobnej głębokości, co może świadczyć o wielofazowości procesów generowania lub/i migracji węglowodorów.

Według Kotarby i Wagnera (2007), potencjał generacyjny skał macierzystych dolomitu głównego na półwyspie Grotowa, który jest położony w sąsiedztwie obszaru "Gorzów Wielkopolski S" waha się od 12,4 kg HC/m³ do 80,5 kg HC/m³ (np. w profilu Lubiatów 1 wynosi 28,0 kg HC/m³ – Fig. 3.6). Potencjał ekspulsji waha się od 7,6 kg HC/m³ do 67,8 kg HC/m³. Potencjał generacyjny na jednostkę powierzchni waha się od 133 kg HC/m² do 2052 kg HC/m² – w otworze Lubiatów 1 jest to 804 kg HC/m².

Znaczna większość badanych próbek analizowanego gazu, pochodzącego z utworów dolomitu głównego, jest genetycznie związana z ropą naftową wytworzoną z ropotwórczego kerogenu typu II (Kotarba i in., 2000b). Zasadnicza część metanu, jak też wyższych węglowodorów gazowych, została wytworzona we wczesnej (niskotemperaturowej) fazie procesów termogenicznych. W niektórych złożach mikrobialna składowa metanu jest bardzo istotna, czego znakomitym przykładem jest złoże Jeniniec, znajdujące się w obrębie obszaru "Gorzów Wielkopolski S", związane z występowaniem niewielkiej izolowanej platformy węglanowej.

Obecność metanu mikrobialnego świadczy o tym, że pułapki były już uformowane i uszczelnione na wstępnym (mikrobialnym) stadium przeobrażenia substancji organicznej dolomitu głównego. Później pułapki te były sukcesywnie wypełniane węglowodorami termogenicznymi, które powstawały na kolejnych wyższych etapach przeobrażenia tej samej substancji macierzystej. Nie można wykluczyć dopływu gazu z utworów karbonu, który został wytworzony z kerogenu III typu na wysokotemperaturowym etapie procesów termogenicznych, jak ma to miejsce w przypadku pobliskiego złoża Sulęcin (Kotarba i in., 2000b; zobacz Fig. 4.1).

Fig. 3.4. Mapa rozkładu stopnia przeobrażenia obliczonego w skali refleksyjności witrynitu R_0 (%) na podstawie dystrybucji metylodibenzotiofenów w ropie naftowej (Kotarba i in., 2000b; zmodyfikowane). Granatowym konturem zaznaczono granice obszaru przetargowego "Gorzów Wielkopolski S".

Fig. 3.5. Modelowania historii pogrzebania dla otworów Buszewo 1 i Stanowice 1 z paleotemperaturami spągu cyklotemu PZ1, które reprezentują kolorem żółtym wartości 12–140°C i pomarańczowym 120– 160°C (Kotarba i in., 2020). U.P. – cechsztyn, P – perm, T – trias, J – jura, Cr – kreda, Pg – paleogen, N – neogen. Lokalizację wymienionych otworów można znaleźć na Fig. 3.4.

Fig. 3.6. Całkowita ilość wytworzonych i podległych ekspulsji węglowodorów ze skał dolomitu głównego w otworze Lubiatów 1, położonym w pobliżu obszaru "Gorzów Wielkopolski S" (Kotarba i Wagner, 2007). C – karbon, P – perm, T – trias, J – jura, K – kreda, Cn – kenozoik.

4. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETARGOWEGO

W obrębie obszaru przetargowego "Gorzów Wielkopolski S" udokumentowano dwa złoża węglowodorów (Fig. 4.1). Są to:

- złoże ropy naftowej Jeniniec (NR4941; Fig. 4.2–4.4);
- złoże gazu ziemnego Stanowice (GZ9505; Fig. 4.5);

W bliskim sąsiedztwie obszaru znajdują się również dwa złoża węglowodorów (Fig. 4.1):

- złoże ropy naftowej Dzieduszyce (NR10584; Fig. 4.6–4.8);
- złoże gazu ziemnego Krobielewko (GZ19116; Fig. 4.9).

W dalszej części rozdziału przedstawiono ich ogólną charakterystykę.

→Fig. 4.1. Złoża węglowodorów na i w sąsiedztwie obszaru przetargowego "Gorzów Wielkopolski S". Złoża eksploatowane są obramowane czerwonym konturem obszarów górniczych.

4.2. ZŁOŻE ROPY NAFTOWEJ JENINIEC

Położenie administracyjne

województwo – lubuskie powiat – gorzowski

gmina – Bogdaniec

Powierzchnia całkowita złoża

- 142,12 ha
- Głębokość zalegania

-2971,0 m n.p.m.

Stratygrafia

perm – cechsztyn (dolomit główny)

Koncesja na wydobywanie

123/93 z dnia 21 czerwca 1993 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa

Użytkownik złoża

PGNiG S.A. w Warszawie

Data rozpoczęcia eksploatacji

sierpień 1986 roku (próbna eksploatacja)

Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4941

Dokumentacje w NAG PIG-PIB

1. Czekański, E., Liberska, H., Michalus, L. 1989. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Inw. 16487 CUG, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 27.09.1989 r., znak: KZK/012/J/5647/89.

2. Burdzy, M., Kuś, A. 2001. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Dodatek nr 1. Inw. 323/2002, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 19.12.2001 r., znak: DG/kzk/EZD/7363/2001.

3. Burdzy, M., Kuś, A. 2002. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Dodatek nr 2. Inw. 324/2002, Arch. CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 25.02.2002 r., znak: DG/kzk/EZD/7388/2002.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2001):

• 108,00 tys. t ropy naftowej w kat. A

• 12,50 mln m³ gazu ziemnego w kat. A Wydobywalne zasoby bilansowe wg stanu na 31.12.2019 roku: •3,83 tys. t ropy naftowej w kat. A

•0,62 mln m³ gazu ziemnego w kat. A Zasoby przemysłowe wg stanu na 31.12.2019 roku:

- 3,83 tys. t zasobów przemysłowych ropy naftowej w kat. A oraz 225,50 tys. t zasobów nieprzemysłowych ropy naftowej w kat. A
- brak zasobów przemysłowych gazu ziemnego, 26,12 mln m³ zasobów nieprzemysłowych gazu ziemn. w kat. A Wydobycie w 2019 roku:

• 1,84 tys. t ropy naftowej w kat. A

•0,16 mln m³ gazu ziemnego w kat. A

Budowa złoża

Złoże ropy naftowej Jeniniec (Fig. 4.4.A) odkryto w 1986 roku odwiertem Jeniniec 1 i znajduje się ono na bloku Gorzowa, w zachodniej części wału wolsztyńskiego. Struktura Jenińca ma formę regularnej kopuły o średnicy około 3 km, lekko wydłużonej ku SW. Akumulację ropy stwierdzono w utworach dolomitu głównego (Fig. 4.4.B), odznaczających się dużą zmiennością litologicznofacjalną, miąższości i własności kolektorskich. Jest to złoże typu warstwowolitologicznego. Jego górna granica odpowiada stropowi dolomitu głównego, natomiast dolna wyznaczono na głębokości, do której dolomit jest nasycony węglowodorami. W płaszczyźnie poziomej granica złoża przebiega wzdłuż izolinii przecięcia rzędnej -2971 m z powierzchnia stropu dolomitu głównego. W żadnym z odwierconych otworów nie stwierdzono wody złożowej. W złożu występuje ropa naftowa lekka, parafinowa, niskosiarkowa oraz rozpuszczony w niej gazolinowy gaz ziemny.

Otwory zlokalizowane na złożu (Fig. 4.4.A; stan na 2021 r.)

tan na 2021 r.)			
Nazwa otworu	Głębokość spągu [m]	Stratygrafia na dnie	
JENINIEC 1	2925,0	perm górny	
JENINIEC 7	3268,0	perm	

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.1.
Historia produkcji: dane zestawiono w Tab. 4.2–4.3 i na Fig. 4.2–4.3. Według informacji zawartych w dodatku nr 1 do dokumentacji geologicznej złoża (Burdzy i Kuś, 2001) eksploatację złoża rozpoczęto w sierpniu 1986 r.

próbną eksploatacją odwiertu Jeniniec 1, a właściwą eksploatację złoża rozpoczęto w styczniu 1988 r. Do dnia 31.12.1988 r. ze złoża wydobyto ogółem 16,338 tys. t ropy naftowej i 1,7805 mln m³ gazu ziemnego.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			23,280	MPa	wg pomiaru z dnia 20.11.2000 r.
ciśnienie nasycenia			21,530	MPa	
ciśnienie złożowe pierwotne			55,010	MPa	
miąższość efektywna złoża			16,500	m	
nasycenie ropą			70,000	%	
porowatość			13,000	%	
przepuszczalność			15,030	mD	
temperatura złoża			106,000	°C	
warunki produkowania				_	system energetyczny wodnonapo- rowy (dominujący)
współczynnik wydobycia			0,280	_	
wydajność odwiertów			32,000	t/d	średnia z września 2001 r.
zapiaszczenie				%	nie określono
parametry jakościowe ropy naftowej (kopalina główna)					
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy			0,824	g/cm ³	
zawartość frakcji benzynowej			20,000	% obj.	
zawartość frakcji naftowej			22,200	% obj.	
zawartość siarki			0,750	% wag.	
parame	etry jakościo	we gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	11,373	14,693		kcal/m ³	
wartość opałowa	10,359	13,387		kcal/m ³	
zawartość C ₂ H ₆	9,418	30,664		% obj.	
zawartość CH ₄	22,338	52,730		% obj.	
zawartość dwutlenku węgla	0,051	0,851		% obj.	
zawartość H ₂	0,008	10,358		% obj.	
zawartość He	0,022	0,049		% obj.	
zawartość N ₂	3,245	34,888		% obj.	
zawartość siarkowodoru	2,717	6,573		% obj.	
zawartość węglowodorów	64,786	93,821		% obj.	
zawartość węgl. ciężkich C ₃₊	15,698	22,540		% obj.	
zawartość węgl. ciężkich C ₃₊	406,993	501,900		g/Nm ³	

Tab. 4.1. Parametry złoża ropy naftowej Jeniniec i parametry jakościowe kopalin (MIDAS, 2021 według Czekańskiego i in., 1989; Burdzego i Kuś, 2002).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t, kat. A+B
2019/12/31	1,84
2018/12/31	1,99
2017/12/31	_
2016/12/31	_
2015/12/31	-
2014/12/31	2,93
2013/12/31	6,83
2012/12/31	5,82
2011/12/31	5,61
2010/12/31	3,69
2009/12/31	0,62
2008/12/31	4,93
2007/12/31	5,48
2006/12/31	5,83
2005/12/31	6,11
2004/12/31	7,26
2003/12/31	4,47
2002/12/31	4,86
2001/12/31	5,04
2000/12/31	5,67
1999/12/31	3,34
1998/12/31	4,57
1997/12/31	4,06
1996/12/31	4,73
1995/12/31	5,23
1994/12/31	6,07
1993/12/31	5,84
1992/12/31	8,99
1991/12/31	8,03
1990/12/31	5,50
1989/12/31	7,70
1988/12/31	12,39
1987/12/31	3,30
1986/12/31	0,65

Tab. 4.2. Historia wydobycia ropy naftowej (kopalina główna) w złożu Jeniniec (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2019 według bazy MIDAS, 2021; lata 1989–1991 według bilansów złóż kopalin w Polsce; wcześniejsze lata wg dodatku nr 1 do dokumentacji geologicznej złoża – Burdzy i Kuś, 2001; danych z lat 1986–1988 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³ , kat. A+B
2019/12/31	0,16
2018/12/31	0,19
2017/12/31	_
2016/12/31	_
2015/12/31	_
2014/12/31	0,39
2013/12/31	0,84
2012/12/31	0,70
2011/12/31	0,68
2010/12/31	0,47
2009/12/31	0,07
2008/12/31	0,59
2007/12/31	0,64
2006/12/31	0,71
2005/12/31	0,77

2004/12/31	0,73
2003/12/31	0,53
2002/12/31	0,56
2001/12/31	0,61
2000/12/31	0,66
1999/12/31	0,38
1998/12/31	0,51
1997/12/31	0,47
1996/12/31	0,53
1995/12/31	0,65
1994/12/31	0,74
1993/12/31	0,75
1992/12/31	1,01
1991/12/31	0,96
1990/12/31	0,70
1989/12/31	0,93
1988/12/31	1,35
1987/12/31	0,35
1986/12/31	0,07

Tab. 4.3. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Jeniniec (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2019 według bazy MIDAS, 2021; lata 1989–1991 według bilansów złóż kopalin w Polsce; wcześniejsze lata wg dodatku nr 1 do dokumentacji geologicznej złoża – Burdzy i Kuś, 2001; danych z lat 1986–1988 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Fig. 4.2. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Jeniniec (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2019 według bazy MIDAS, 2021; lata 1989–1991 według bilansów złóż kopalin w Polsce; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Burdzy i Kuś, 2001; danych z lat 1986–1988 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Fig. 4.3. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Jeniniec (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1992–2019 według bazy MIDAS, 2021; lata 1989–1991 według bilansów złóż kopalin w Polsce; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Burdzy i Kuś, 2001; danych z lat 1986–1988 brak w bilansach złóż kopalin w Polsce w wersji papierowej).

Fig. 4.4. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Jeniniec i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże ropy naftowej Jeniniec (na podstawie Czekańskiego i in., 1989).

4.3. ZŁOŻE GAZU ZIEMNEGO STANOWICE

Położenie administracyjne województwo – lubuskie powiat - gorzowski gmina – Bogdaniec, Lubiszyn Powierzchnia całkowita złoża 282 ha Głębokość zalegania od -3010,00 do -3041,00 m n.p.m. **Stratygrafia** perm – cechsztyn (dolomit główny) Koncesja na wydobywanie brak Użytkownik złoża brak Data rozpoczęcia eksploatacji złoże nieeksploatowane Nadzór górniczy Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 9505

Dokumentacje w NAG PIG-PIB

1. Zielińska-Pikulska, J. 2003b. Dokumentacja geologiczna złoża gazu ziemnego Stanowice w kategorii C. Inw. 151/2004, Arch. CAG PIG, Warszawa. Zatwierdzona dec. Ministra Środowiska z dn. 22.12.2003 r., znak: DG/kzk/EZD/489-7481/2003.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2002):

• 603,00 mln m³ gazu ziemnego w kat. C Wydobywalne zasoby bilansowe wg stanu na 31.12.2019 roku:

• 602,03 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe wg stanu na 31.12.2019 roku:

• brak

Wydobycie w 2019 roku:

• brak

Budowa złoża

Złoże gazu ziemnego Stanowice (Fig. 4.5.A) odkryto w 1996 roku odwiertem Stanowice 1,

w obrębie bloku Gorzowa. Akumulacja gazu występuje w utworach dolomitu głównego (Fig. 4.5.B; strefa facjalna z dominacją sedymentacji związanej ze środowiskiem lagunowym), w pułapce strukturalno-litologicznej o charakterze masywowym. Poziom dolomitu głównego w rejonie złoża tworzy nieregularną antyklinę o powierzchni 4 km² i dłuższej osi przebiegającej z NW na SE. W jej granicach wyinterpretowano trzy kulminacje o maksymalnej amplitudzie około 30 m, w których następnie wykonano trzy otwory wiertnicze. Górną granicę złoża stanowi powierzchnia morfologiczna dolomitu głównego, wyżej zalegają ewaporaty cechsztynu. Z uwagi na brak wody złożowej i występowanie w spągowej części dolomitu głównego 2-metrowej miąższości warstwy bez własności kolektorskich dolną granicę złoża przyjęto umownie na poziomie 2 m nad spagiem Ca2. Od W i E złoże ogranicza strefa słabych własności zbiornikowych. W rejonie złoża nie stwierdzono znaczących stref dyslokacyjnych.

Otwory zlokalizowane na złożu (Fig. 4.5.A;

stan na 2021 r.)		
Nazwa otworu	Głębokość spągu [m]	Stratygrafia na dnie
STANOWICE 1	3200,0	perm górny
STANOWICE 2	3200,0	perm górny

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.4.

Historia produkcji: złoże Stanowice obecnie nie jest zagospodarowane. Według informacji zawartych w dokumentacji geologicznej złoża (Zielińska-Pikulska, 2003b) od dnia 23.07.1998 roku do dnia 25.08.1998 roku ze złoża wydobyto ogółem 0,97 mln m³ gazu ziemnego (wydobycie z testów przeprowadzonych w odwiertach Stanowice 1 i Stanowice 2).

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			55,000	MPa	
ciśnienie denne P _{ds}			55,050	MPa	otwór Stanowice 2 (23.07-03.08.1998 r.)
ciśnienie denne P _{ds}			54,960	MPa	otwór Stanowice 1 (13-25.08.1998 r.)
ciśnienie złożowe pierwotne			55,000	MPa	
głębokość położenia wody pod- ścielającej			3041,00	m p.p.m.	nie określono, przyjęto umowny kontur obliczeniowy na głębo- kości 3041m p.p.m.
miąższość efektywna złoża			16,070	m	
porowatość	0,080	34,320	8,280	%	
przepuszczalność	0,680	17,000	0,800	mD	
stopień mineralizacji wody złożowej			325,440	g/l	
temperatura złoża			117,000	°C	
typ chemiczny wody złożowej				_	solanka Cl-Na-Mg
warunki produkowania				—	produkcja samoczynna
współczynnik nasycenia wę- glowodorami			0,800	_	
współczynnik wydobycia			0,700	_	
wydajność absolutna V _{abs}			298,000	Nm ³ /min	otwór Stanowice 1
wydajność absolutna V _{abs}			422,000	Nm ³ /min	otwór Stanowice 2
wydajność dozwolona V _{dozw}			90,000	Nm3/min	otwór Stanowice 2
wydajność dozwolona V _{dozw}			50,000	Nm ³ /min	otwór Stanowice 1
wykładnik ropny/kondensatowy			0,283	l/Nm ³	0,000210 t/Nm ³
zapiaszczenie				%	nie dotyczy
ра	rametry ja	kościowe g	azu ziemn	ego (kopalina głów	na)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,927	_	względem powietrza
wartość opałowa			16,360	MJ/Nm ³	
zawartość C ₂ H ₆			3,371	% obj.	
zawartość CH ₄			23,137	% obj.	
zawartość dwutlenku węgla			0,410	% obj.	
zawartość H ₂			0,027	% obj.	
zawartość He			0,004	% obj.	
zawartość Hg			0,010	mg/m ³	
zawartość N ₂			67,014	% obj.	
zawartość siarkowodoru			1,244	% obj.	
zawartość węglowodorów cięż- kich C ₃₊			243,660	g/Nm ³	

Tab. 4.4. Parametry złoża gazu ziemnego Stanowice i parametry jakościowe kopaliny (MIDAS, 2021 według Zielińskiej-Pikulskiej, 2003b).

В

Fig. 4.5. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Stanowice i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże gazu ziemnego Stanowice (na podstawie Zielińskiej-Pikulskiej, 2003b).

4.4. ZŁOŻE ROPY NAFTOWEJ DZIEDUSZYCE

Położenie administracyjne

województwo – lubuskie powiat – gorzowski gmina – Witnica

Powierzchnia całkowita złoża 316 ha

Głębokość zalegania

-2974,5 m n.p.m.

Stratygrafia

perm – cechsztyn (dolomit główny) Koncesja na wydobywanie 11/2007 z dnia 3 października 2007 roku wydana przez Ministra Środowiska

Użytkownik złoża

PGNiG S.A. w Warszawie Data rozpoczęcia eksploatacji 30.04.2004 roku (próbna eksploatacja) Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 10584

Dokumentacje w NAG PIG-PIB

1. Strzelecka, D. 2006. Dokumentacja geologiczna złoża ropy naftowej Dzieduszyce w kategorii C. Inw. 704/2006, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 11.04.2006 r., znak: DGkzk-479-3/7637/2964/06/EZD.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2005):

• 535,00 tys. t ropy naftowej w kat. C

•76,00 mln m³ gazu ziemnego w kat. C Wydobywalne zasoby bilansowe wg stanu na 31.12.2019 roku:

•445,45 tys. t ropy naftowej w kat. C

•63,71 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe wg stanu na 31.12.2019 roku:

- 226,93 tys. t zasobów przemysłowych ropy naftowej w kat. C oraz 3253,51 tys. t zasobów nieprzemysłowych ropy naftowej w kat. C
- brak zasobów przemysłowych gazu ziemnego, 494,73 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C

Wydobycie w 2019 roku:

- •15,64 tys. t ropy naftowej w kat. C
- •2,26 mln m³ gazu ziemnego w kat. C

Budowa złoża

Złoże ropy naftowej Dzieduszyce (Fig. 4.8.A) jest zlokalizowane w obrębie bloku Gorzowa, w północno-zachodniej cześci wału wolsztyńskiego. Ropa naftowa jest zakumulowana w utworach dolomitu głównego (Fig. 4.8.B) wykształconych w facji barierowej, w pułapce złożowej. Jest to złoże warstwowe o charakterze strukturalno-litologicznym. Górna granica złoża pokrywa się ze stropem dolomitu głównego, dolną wyznacza spąg tych utworów lub poziom wody podścielającej. Utwory dolomitu głównego w rejonie złoża wykazują słabe zaangażowanie tektoniczne. Na SE od odwiertu Dzieduszyce 1 prawdopodobnie znajduje się strefa dyslokacyjna o przebiegu SW-NE, jednak nie stanowi ona bariery dla przepływu płynów złożowych. Złoże Dzieduszyce tworzy zamknięty układ hydrodynamiczny. W złożu występuje ropa naftowa parafinowa, niskosiarkowa oraz rozpuszczony w niej metanowo-azotowy gaz ziemny.

Otwory zlokalizowane na złożu (Fig. 4.8.A;

stan na 2021 r.)

Nazwa otworu	Głębokość spągu [m]	Stratygrafia na dnie
DZIEDUSZYCE 1	3499,0	perm
DZIEDUSZYCE 2	3200,0	perm górny
DZIEDUSZYCE 3	3151,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.5.

Historia produkcji: dane zestawiono w Tab. 4.6–4.7 i na Fig. 4.6–4.7. Według informacji zawartych w dokumentacji geologicznej złoża (Strzelecka, 2006) od dnia 26.07.2000 roku do dnia 31.12.2005 roku ze złoża wydobyto ogółem 15,393 tys. t ropy naftowej oraz 1,713 mln m³ gazu ziemnego (wydobycie z testów przeprowadzonych w odwiertach Dzieduszyce 2 i Dzieduszyce 3).

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			51,490	MPa	stan na dzień 31.12.2005 r.
ciśnienie złożowe pierwotne			54,760	MPa	na głębokości -2990 m
głębokość położenia wody pod- ścielającej			-3009,00	m	
miąższość efektywna złoża			20,500	m	średnia z mapy miąższości efek- tywnej
porowatość efektywna			11,370	%	średnia z mapy porowatości efektywnych
przepuszczalność			9,425	mD	
stopień mineralizacji wody zło- żowej			281,680	g/l	
temperatura złoża			120,500	°C	na głębokości -2999,0 m
typ chemiczny wody złożowej				_	solanka Cl-Na
warunki produkowania				-	ekspansja gazu rozpuszczonego w ropie
współczynnik nasycenia węglo- wodorami			0,740	-	
współczynnik wydobycia			0,150	_	
wydajność absolutna V _{abs}				t/d	nie dotyczy
wydajność dozwolona V _{dozw}		60,000		t/d	otwór Dzieduszyce 2
wydajność dozwolona V _{dozw}		26,000		t/d	otwór Dzieduszyce 3
wykładnik gazowy			142,000	m ³ /t	
wykładnik gazowy			117,000	m ³ /m ³	
wykładnik wodny				m ³ /t	nie badano
zapiaszczenie				%	nie badano
pa	rametry jal	kościowe ro	py naftowe	ej (kopalina głów	na)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość	0,820	0,828	0,824	g/cm ³	w temperaturze 20°C
lepkość	8,700	24,750	14,780	cSt	
zawartość chlorków	0,000	550,000	65,000	mg/dm ³	
zawartość frakcji benzynowej	23,000	23,600	23,300	% obj.	
zawartość frakcji naftowej	2,400	20,000	11,200	% obj.	
zawartość parafiny	10,030	13,930	11,440	% wag.	
zawartość siarki	0,230	0,290	0,260	% wag.	
zawartość siarkowodoru	20,800	448,800	243,600	mg/dm ³	
param	netry jakośc	ciowe gazu	ziemnego (l	kopalina towarzy	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	31,730	47,580	38,816	MJ/m ³	
gęstość	0,781	0,978	0,812	_	względem powietrza
liczba Wobbego	34,780	50,760	40,936	MJ/m ³	
zawartość C ₂ H ₆	6,840	13,901	10,594	% obj.	
zawartość CH ₄	41,359	49,777	46,284	% obj.	

<u>.</u>					
zawartość dwutlenku węgla	0,391	9,403	1,675	% obj.	
zawartość He	0,000	0,070	0,022	% obj.	
zawartość Hg	1,948	6,400	3,519	$\mu g/m^3$	
zawartość N ₂	19,932	35,702	27,959	% obj.	
zawartość siarkowodoru	1,670	6,301	2,613	% obj.	
zawartość węglowodorów	41,359	49,777	46,284	% obj.	
zawartość węglowodorów cięż- kich C ₃₊	6,115	18,604	10,838	% obj.	

Tab. 4.5. Parametry złoża ropy naftowej Dzieduszyce i parametry jakościowe kopalin (MIDAS, 2021 według Strzeleckiej, 2006).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie ropy naftowej z wydobywalnych zasobów bilansowych w tys. t, kat. C
2019/12/31	15,64
2018/12/31	11,74
2017/12/31	8,04
2016/12/31	7,83
2015/12/31	4,23
2014/12/31	3,48
2013/12/31	4,43
2012/12/31	5,39
2011/12/31	3,74
2010/12/31	2,66
2009/12/31	2,50
2008/12/31	3,04
2007/12/31	0,38
2006/12/31	1.07

Tab. 4.6. Historia wydobycia ropy naftowej (kopalina główna) w złożu Dzieduszyce (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę według bazy MIDAS, 2021).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilansowych w mln m ³ , kat. C
2019/12/31	2,26
2018/12/31	1,68
2017/12/31	1,19
2016/12/31	1,10
2015/12/31	0,61
2014/12/31	0,52
2013/12/31	0,61
2012/12/31	0,70
2011/12/31	0,53
2010/12/31	0,37
2009/12/31	0,37
2008/12/31	0,45
2007/12/31	0,05
2006/12/31	0,16

Tab. 4.7. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Dzieduszyce (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę według bazy MIDAS, 2021).

Fig. 4.6. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Dzieduszyce (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę według bazy MIDAS, 2021).

Fig. 4.7. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Dzieduszyce (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę według bazy MIDAS, 2021).

Fig. 4.8. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Dzieduszyce (na podstawie CBDG, 2021). **B.** Przekrój przez złoże ropy naftowej Dzieduszyce (na podstawie Strzeleckiej, 2006).

4.5. ZŁOŻE GAZU ZIEMNEGO KROBIELEWKO

Położenie administracyjne

województwo – lubuskie powiat – międzyrzecki, drezdenecki gmina – Skwierzyna, Drezdenko

Powierzchnia całkowita złoża 5069,50 ha

Głębokość zalegania

od -2936,00 m do -3240,00 m n.p.m.

Stratygrafia

perm – cechsztyn (dolomit główny) Koncesja na wydobywanie brak Użytkownik złoża brak

Data rozpoczęcia eksploatacji złoże nieeksploatowane Nadzór górniczy

Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 19116

Dokumentacje w NAG PIG-PIB

1. Strzelecka, D. 2017. Dokumentacja geologiczno-inwestycyjna złoża gazu ziemnego Krobielewko. Inw. 2941/2018, Arch. CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 11.06.2018 r., znak: DGK-IV.4741.95.2017.AT.

Zasoby

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2016):

- 25 886,50 mln m³ gazu ziemn. w kat. C
- 854,00 tys. t kondensatu współwystępującego w kat. C

Wydobywalne zasoby bilansowe wg stanu na 31.12.2019 roku:

- 25 886,50 mln m³ gazu ziemn. w kat. C
- 854,00 tys. t kondensatu współwystępującego w kat. C

Zasoby przemysłowe wg stanu na 31.12.2019 roku:

- 15 667,00 mln m³zasobów przemysłowych gazu ziemnego w kat. C oraz 36 106,00 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. C
- 517,00 tys. t zasobów przemysłowych kondensatu współwystępującego w kat. C oraz 1191,00 tys. t zasobów nieprzemysłowych kondensatu współwystępującego w kat. C

Budowa złoża

Złoże gazu ziemnego Krobielewko (Fig. 4.9.A) odkryto w 1980 roku odwiertem Krobielewko-1. Występuje ono na bloku Gorzowa, w obrębie struktury (platformy) Krobielewka, która kształtem jest zbliżona do bumerangu, a jej dłuższa oś ma przebieg N-S. Złoże gazu ziemnego stwierdzono w utworach dolomitu głównego (dolomity ziarniste, zbite, masywne, zrekrystalizowane, wykształcone w płytkiej facji morskiej; Fig. 4.9.B). Gaz jest zakumulowany w pułapce strukturalnej, a ze względu na formę jest to złoże warstwowe. Cała struktura zapada na N, różnica głębokości zalegania stropu dolomitu głównego wynosi ponad 200 m. Miąższość utworów dolomitu głównego maleje również w kierunku N. Górna i dolna granica złoża pokrywają się odpowiednio ze stropem i ze spągiem dolomitu głównego, pionowe granice są związane z zanikiem właściwości zbiornikowych. Na etapie dokumentowania złoża nie stwierdzono wody złożowej. W złożu Krobielewko występuje gaz ziemny azotowy oraz kondensat, który nie stanowi oddzielnej akumulacji.

Otwory zlokalizowane na złożu (Fig. 4.9.A; stan na 2021 r.)

<i>full liu 2021 1.</i>		
Nazwa otworu	Głębokość spagu [m]	Stratygrafia na dnie
	~[~.8~ []	,
KROBIELEWKO I	3005,0	perm gorny
KROBIELEWKO 2	3445,0	perm
KROBIELEWKO 4K	3415,0	perm górny
KROBIELEWKO 5	3283,0	perm górny
KROBIELEWKO 7	$3276,0^{1}$	brak danych
KROBIELEWKO 8	$3080,0^1$	brak danych

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.8.

Historia produkcji: złoże Krobielewko obecnie nie jest zagospodarowane. Według informacji zawartych w dokumentacji geologiczno-inwestycyjnej złoża (Strzelecka, 2017) na etapie poszukiwania i rozpoznawania złoża do dnia 31.12.2016 roku nie prowadzono wydobycia.

Wydobycie w 2019 roku:

[•] brak

¹ Informacja ze spisów zdawczo-odbiorczych prób okruchowych i rdzeni wiertniczych (dokumentacje wynikowe otworów są niedostępne – pochodzą z bieżącego dokumentowania przebiegu robót geologicznych).

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi			
błąd oszacowania średnich warto- ści parametrów złoża i zasobów			41,100	%	dla zasobów wydobywalnych			
błąd oszacowania średnich warto- ści parametrów złoża i zasobów			39,300	%	dla zasobów geologicznych			
ciśnienie aktualne			57,670	MPa	na głębokości -3088 m TVDSS			
ciśnienie złożowe pierwotne			57,670	MPa	na głębokości -3088 m TVDSS			
miąższość efektywna złoża			33,500	m	średnia z mapy miąższości efek- tywnej			
porowatość			11,500	%				
przepuszczalność			3,010	mD				
temperatura złoża			118,300	°C	na głębokości -3088 m TVDSS; 391,28°K			
współczynnik nasycenia węglo- wodorami			85,600	%				
współczynnik wydobycia			0,500	-				
wydajność dozwolona V _{dozw}	100,000	240,000	184,000	m ³ /min	na podstawie prognozy wydobycia			
wykładnik ropny/kondensatowy			33,000	g/m ³	ustalono na podstawie średniego składu gazu z otworu Krobielewko 5 przy użyciu programu GasVLevr.3.4.			
parametry jakościowe gazu ziemnego (kopalina główna)								
par	ametry jako	ściowe gazu	ziemnego (k	opalina głów	yna)			
par Nazwa parametru	ametry jako Wartość min.	ściowe gazu Wartość max.	ziemnego (k Wartość średnia	opalina głów Jednostka	vna) Uwagi			
par Nazwa parametru ciepło spalania	ametry jako Wartość min. 4,570	ściowe gazu Wartość max. 17,130	ziemnego (k Wartość średnia 11,268	opalina głów Jednostka MJ/m ³	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa	ametry jako Wartość min. 4,570 4,150	ściowe gazu Wartość max. 17,130 15,620	ziemnego (k Wartość średnia 11,268 10,304	opalina głów Jednostka MJ/m ³ MJ/m ³	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C ₂ H ₆	ametry jako Wartość min. 4,570 4,150 1,054	ściowe gazu Wartość max. 17,130 15,620 2,834	ziemnego (k Wartość średnia 11,268 10,304 1,966	Jednostka MJ/m ³ MJ/m ³ % obj.	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C ₂ H ₆ zawartość CH ₄	wartość min. 4,570 4,150 1,054 5,843	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736	Jednostka MJ/m ³ MJ/m ³ % obj. % obj.	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla	Sametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj.	Uwagi			
parNazwa parametruciepło spalaniawartość opałowazawartość C_2H_6 zawartość CH_4 zawartość dwutlenku węglazawartość He	wartość min. 4,570 4,150 1,054 5,843 0,048 0,000	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj.	Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość He zawartość N2	wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj.	Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj.	Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość c2H6 zawartość C44 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj. % obj.	Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+ parametric	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190 etry jakościo	<pre>ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900 we kondensa</pre>	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457 atu (kopalina	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj.	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+ parametru	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190 etry jakościo Wartość min.	<pre>ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900 we kondensa Wartość max.</pre>	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457 tu (kopalina Wartość średnia	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj.	Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość cp46 zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+ parametru ciężar właściwy ropy	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190 etry jakościo Wartość min. 	<pre>ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900 we kondensa Wartość max</pre>	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457 tu (kopalina Wartość średnia 0,749	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj.	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość C2H6 zawartość C44 zawartość H4 zawartość H4 zawartość N2 zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+ parametru ciężar właściwy ropy lepkość	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190 etry jakościo Wartość min.	<pre>ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900 we kondensa Wartość max</pre>	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457 atu (kopalina Wartość średnia 0,749 0,900	Jednostka MJ/m ³ MJ/m ³ % obj. % obj.	vna) Uwagi			
par Nazwa parametru ciepło spalania wartość opałowa zawartość c2H6 zawartość C44 zawartość dwutlenku węgla zawartość He zawartość siarkowodoru zawartość węglowodorów cięż-kich C3+ parametru ciężar właściwy ropy lepkość pozostałość po destylacji	ametry jako Wartość min. 4,570 4,150 1,054 5,843 0,048 0,000 64,490 0,457 1,190 etry jakościo Wartość min.	ściowe gazu Wartość max. 17,130 15,620 2,834 20,630 1,182 0,028 91,552 8,734 3,900 we kondensa Wartość max.	ziemnego (k Wartość średnia 11,268 10,304 1,966 13,736 0,490 0,013 76,887 4,372 2,457 atu (kopalina Wartość średnia 0,749 0,900 1,580	Jednostka MJ/m ³ MJ/m ³ % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. % obj. g/cm ³ °E % wag.	vna) Uwagi			

Tab. 4.8. Parametry złoża gazu ziemnego Krobielewko i parametry jakościowe kopalin (MIDAS, 2021 według Strzeleckiej, 2017).

Fig. 4.9. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Krobielewko i w jego sąsiedztwie (na podstawie CBDG, 2021). **B.** Przekrój przez złoże gazu ziemnego Krobielewko (na podstawie Strzeleckiej, 2017).

5. OTWORY WIERTNICZE 5.1. INFORMACJE OGÓLNE

Na obszarze przetargowym "Gorzów Wielkopolski S" znajduje się 16 otworów wiertniczych o głębokości >500 m MD, które osiągnęły lub przewierciły interwały perspektywiczne (Tab. 5.1). Ich lokalizację można znaleźć na Fig. 5.1. W następnych podrozdziałach przedstawiono ich ogólną charakterystykę. Przykładowy profil jednego z nich – Jeniniec 4 – zilustrowano na Fig. 5.2. Informacje źródłowe niniejszego rozdziału – dane geologiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru "Gorzów Wielkopolski S" – zostały zebrane i wycenione w osobnym miejscu – "Projekcie cyfrowych danych geologicznych". Jest on dostępny do wglądu w ramach "DATA RO-OMu" w Czytelni NAG w trakcie trwania piątej rundy przetargów na koncesje węglowodorowe w Polsce.

Nazwa otworu	Rok wykonania	Właściciel informacji geologicznej	Koncesja (dla otworów wyko- nanych po 1994 r.)	Głębokość [m]	Stratygrafia na dnie
Baczyna 1	2000	PGNiG S.A.	Gorzów Wlkp Myślibórz 59/95/p	3204,0	perm
Baczyna-2	2002	Skarb Państwa	Gorzów Wlkp Myślibórz 42/2001/p	3167,0	perm górny
Brzozowa 1	1993	PGNiG S.A.	Lubniewice 57/92/p	3218,0	perm
Ciecierzyce 1	2001	PGNiG S.A.	Lubniewice 21/95/p	3092,0	perm górny
Ciecierzyce 1K	2002	Skarb Państwa	Lubniewice 21/95/p	3017,0	perm górny
Dzierżów 1K	2002	Skarb Państwa	Lubniewice 21/95/p	3130,0	perm górny
Dzierżów 1K-BIS	2002	Skarb Państwa	Lubniewice 21/95/p	3040,0	perm górny
Jeniniec 4	1988	Skarb Państwa		3290,0	perm
Jeżyki 1	1994	PGNiG S.A.	Gorzów-Myślibórz 78/92/p	3401,0	perm
Lubno 1	1999	PGNiG S.A.	Kostrzyn – Myślibórz 22/95/p	3217,0	perm górny
Maszków 1	1992	PGNiG S.A.	Lubniewice 57/92/p	3168,0	perm
Płonica 1	1994	PGNiG S.A.	Lubniewice 57/92/p	3353,0	perm
Racław 1K	2002	Skarb Państwa	Gorzów Wlkp Myślibórz 42/2001/p	3256,0	perm górny
Stanowice 1	1996	PGNiG S.A.	Gorzów Wlkp Myślibórz 59/95/p	3200,0	perm górny
Stanowice 2	1998	PGNiG S.A.	Gorzów Wlkp Myślibórz 59/95/p	3200,0	perm górny
Stanowice 3	2002	Skarb Państwa	Gorzów Wlkp Myślibórz 42/2001/p	3261,0	perm górny
Wędrzyn 1	2008	Skarb Państwa	Lubniewice 21/95/p	3170,0	perm
Wędrzyn 5	2009	Skarb Państwa	Lubniewice 21/95/p	3210,0	perm

Tab. 5.1. Otwory wiertniczne o głębokości >500 m MD osiągające interwały perspektywiczne na obszarze przetargowym "Gorzów Wielkopolski S" wraz z wskazaniem roku wykonania, właściciela informacji geologicznej, koncesji, na której zostały wykonane (dotyczy otworów wykonanych po 1989 r.), głębokości końcowej i stratygrafii na dnie.

Fig. 5.1. Otwory wiertniczne o głębokości >500 m MD osiągające interwały perspektywiczne na obszarze przetargowym "Gorzów Wielkopolski S" i jego sąsiedztwie.

5.2. BACZYNA 1

Głębokość: 3204,0 m

Rok zakończenia wiercenia: 2000

Rdzenie: 3109,0–3163,0 m, 56 skrzynek, PGNiG S.A., Centralny Magazyn Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Baczyna 1, zgromadzone w dokumentacji wynikowej (Solarska, 2000) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Nussbeutel i in., 2000), są własnością inwestora (PGNiG S.A.) i nie mogą zo-

5.3. BACZYNA-2

Głębokość otworu: 3167,0 m Rok zakończenia wiercenia: 2002 Rdzenie: 3031,0–3112,0 m, 80 skrzynek, CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Głęb	okość	
[m]		Stratygrafia
od	do	
0,0	238,0	kenozoik
238,0	810,0	kreda górna
810,0	822,0	kreda dolna
822,0	1224,0	jura środkowa i dolna
1224,0	2689,0	trias
1224,0	1460,0	\rightarrow retyk
1460,0	1820,0	→kajper
1820,0	2060,0	→wapień muszlowy
2060,0	2689,0	→pstry piaskowiec
2689,0	3167,0	perm
2689,0	2690,0	→anhydryt graniczny A4a2
2690,0	2747,0	→sól najmłodsza Na4a
2747,0	2748,0	\rightarrow anhydryt pegmatytowy A4a1
2748,0	2756,0	→czerwony ił solny T4a
2756,0	2920,0	→sól młodsza Na3
2920,0	2946,0	→anhydryt główny A3
2946,0	2948,0	\rightarrow szary ił solny T3
2948,0	2950,0	→anhydryt kryjący A2r
2950,0	3060,5	→sól starsza Na2
3060,5	3066,5	\rightarrow anhydryt podstawowy A2
3066,5	3119,5	→dolomit główny Ca2
3119,5	3167,0	\rightarrow anhydryt A1g

stać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Solarska, A. 2000. Dokumentacja wynikowa odwiertu poszukiwawczego Baczyna 1. Inw. 134624, Arch. CAG PIG, Warszawa.
- Nussbeutel, D., Balcerowicz, H., Czaja, E. 2000. Opracowanie pomiarów średnich prędkości w Baczyna 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Baczyna 1. B22 VS, Arch. CAG PIG, Warszawa.

Wyniki badań skał:

W dokumentacji geologicznej likwidowanego otworu wiertniczego Baczyna-2 (Czajka, 2019) znajdują się wyniki badań przeprowadzonych na rdzeniach, wyniki prób złożowych i analiz wody i ropy naftowej. Laboratoryjne badania rdzeni z odwiertu Baczyna-2 zostały przeprowadzone w interwale 3067,0-3112,0 m, tj. w obrębie dolomitu głównego, i objęły pomiar porowatości (82 próby: 3,22-37,48%, średnio 20,11%), przepuszczalności (75 prób: 5 prób – bardzo przepuszczalne >1000 mD, 7 prób – brak przepuszczalności, 63 próby: 0,017-80,201 mD, średnio 7,896 mD) i gęstości objętościowej (82 próby: 1,79-2,892 g/cm³, średnio 2,297 g/cm³). Oprócz tego wykonano badania zawartości wody złożowej i ropy naftowej w przestrzeni porowej dla 4 próbek dolomitu głównego z interwału 3085,0-3112,0 m, w których nasycenie por wodą wyniosło 6,3-89,9%, natomiast ropą 1,3-20,4% obj. Ponadto w wymienionej dokumentacji znajdują się wyniki analiz geochemicznych rdzeni – zawartości całkowitego węgla organicznego TOC i zawartości bituminów BEX (50 próbek), rozdziałów grupowych otrzymanych ekstraktów bitumicznych (3 próbki), jak również dystrybucji n-alkanów i izoprenoidów (3 próbki skał i 1 próbka ropy naftowej) oraz badań pirolitycznych Rock-Eval (6 próbek). Wskazują one, że utwory

dolomitu głównego charakteryzują się podwyższoną zawartością substancji organicznej, szczególnie w górnej części, a przeważająca część bituminów jest pochodzenia migracyjnego. Analiza n-alkanów i izoprenoidów potwierdziła morskie pochodzenie bituminów i ropy naftowej (Czajka, 2019).

Wyniki geofizyki otworowej:

W dokumentacji geologicznej likwidowanego otworu wiertniczego Baczyna-2 (Czajka, 2019) oraz w opracowaniu pomiarów średnich prędkości w otworze Baczyna-2 i sprawozdaniu z opracowania pionowego profilowania sejsmicznego (Mierzwińska i Czaja, 2002a) znajdują się również wyniki badań geofizyki wiertniczej. Zostały one podsumowane w Tab. 5.2.

Próby złożowe:

W trakcie wiercenia otworu, po dowierceniu do głębokości 3085 m zapuszczono i zapięto próbnik złoża typu Halliburton 5"-T-H2S i opróbowano interwał 3068–3085 m uzyskując przypływ gazu palnego z H_2S i śladami ropy naftowej. Szacunkowa wydajność gazu wynosi 130 m³/min.

Po zakończeniu wiercenia, po wykonaniu perforacji rur 7" w interwale 3090–3099 m, odebrano z rurek syfonowych płyn nadpakerowy. Po okresowym syfonowaniu oczyszczającym na zwężce iglicowej, w czasie 18 h odebrano 20,4 m³ solanki z gazem i ropą naftową.

Dokumentacje:

- Czajka, D. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Baczyna-2. Inw. 7667/2019, Arch. CAG PIG, Warszawa
- Mierzwińska, E., Czaja, E. 2002a. Opracowanie pomiarów średnich prędkości w otworze: Baczyna-2, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Baczyna-2. B17 VS, Arch. CAG PIG, Warszawa.
- Solarska, A. 2002. Dokumentacja wynikowa otworu: Baczyna-2. SW/SZ/690, Arch. PGNiG S.A., Warszawa.
- Solarska, A. 2004. Dokumentacja geologiczna likwidacji odwiertu poszukiwawczego Baczyna-2. Inw. 2787/2019, Arch. CAG PIG, Warszawa.
- Wojtysiak, B., Chruścińska, J. 2013. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złoża ropy naftowej i gazu ziemnego Gorzów Wlkp. – Myślibórz, nr 42/2001/p. Inw. 5801/2013, Arch. CAG PIG, Warszawa.

Głębokość [m]		Nazwa profilowania	
od	do		w CDDG
20	3167	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
20	3167	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
30	3158	PAdt: profilowanie akustyczne czasu interwałowego	TAK
0	3166,75	PG: profilowanie naturalnego promieniowania gamma	TAK
0	3167	PG: profilowanie naturalnego promieniowania gamma	NIE
260,25	3161	PNG: profilowanie neutron-gamma	TAK
20	3167	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
20	3155	PSr: profilowanie średnicy otworu (CALI)	NIE
20	3166,75	PSr: profilowanie średnicy otworu (CALI)	TAK
		prędkości średnie	
20	3140	profilowanie prędk. śr., czas interpolowany podwojony Tx2	TAK
20	3140	profilowanie prędk. śr., czas interpolowany TW	TAK
180	3150	profilowanie prędk. śr., czas pomierzony Tr PW1	TAK
180	3150	profilowanie prędk. śr., czas pomierzony Tr_PW2	TAK
180	3150	profilowanie prędk. śr., czas pomierzony Tr_PW3	TAK
180	3150	profilowanie prędk. śr., czas uśredniony Tr_PO	TAK
20	3140	profilowanie prędk. śr., gradient czasu interpol. DT VSP	TAK

Tab. 5.2. Geofizyka wiertnicza wykonana w otworze Baczyna-2 (Czajka, 2019; Mierzwińska i Czaja, 2002a; CBDG, 2021).

5.4. BRZOZOWA 1

Głębokość otworu: 3218,0 m **Rok zakończenia wiercenia:** 1993 **Rdzenie:** brak

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Brzozowa 1, zgromadzone w dokumentacji wynikowej (Potera, 1994a) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Czaja, 1993), są własnością inwe-

5.5. CIECIERZYCE 1/ CIECIERZYCE 1K

Głębokość otworu: 3092,0/3017,0 m Rok zakończenia wiercenia: 2001/2002 Rdzenie (otwór Ciecierzyce 1): 2993,0– 3047,0 m, 56 skrzynek; (otwór Ciecierzyce 1K): 3006,0–3015,0 m, 9 skrzynek; CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia (Sowa i in., 2017):

Głebo	kość	
[n	1]	Stratygrafia
od	do	
	(Ciecierzyce 1
0,00	175,0	kenozoik
175,0	749,0	kreda
749,0	1150,0	jura
1150,0	2620,5	trias
1150,0	1397,0	\rightarrow retyk
1397,0	1673,0	→kajper
1673,0	2001,0	→wapień muszlowy
2001,0	2620,5	→pstry piaskowiec
2620,5	3204,0	perm
2620,5	2621,5	→anhydryt graniczny A4a
2621,5	2675,5	→sól kam. najmłodsza Na4a
2675,5	2676,5	\rightarrow anhydryt pegmatytowy
2676,5	2679,0	<i>→il solny czerwony dolny T4a</i>
2679,0	2763,0	→sól kam. młodsza górna Na3g
2763,0	2775,0	→sól potasowa młodsza K3
2775,0	2836,5	→sól kam. młodsza dolna Na3d
2836,5	2863,0	→anhydryt główny A3
2863,0	2866,0	→il solny szary T3
2866,0	2867,5	→anhydryt kryjący A2r
2867,5	2875,5	\rightarrow sól kam. starsza górna Na2g
2875,5	2879,0	→sól potasowa starsza K2
2879,0	2992,5	→sól kam. starsza dolna Na2d
2992,5	2998,0	\rightarrow anhydryt podstawowy A2
2998,0	3038,0	→dolomit główny Ca2
3038,0	3092,0	→anhydryt górny A1g

stora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Potera, J. 1994a. Dokumentacja wynikowa otworu Brzozowa 1. Inw. 133271, Arch. CAG PIG, Warszawa.
- Czaja, E. 1993. Opracowanie pomiarów średnich prędkości w otworze Brzozowa 1. B158 VS, Arch. CAG PIG, Warszawa.

Ciecierzyce 1K				
2679,0	2837,0	→sól kam. młodsza Na3		
2837,0	2863,0	→anhydryt główny A3		
2863,0	2865,0	→il solny szary T3		
2865,0	2866,0	→anhydryt kryjący A2r		
2866,0	3003,5	→sól kamienna starsza Na2		
3003,5	3008,0	→anhydryt podstawowy A2		
3008,0	3017,0	→dolomit główny Ca2		

Wyniki badań skał:

Dane geologiczne zgromadzone w dokumentacji wynikowej otworu wiertniczego Ciecierzyce 1 (Solarska, 2003), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

W dokumentacji wynikowej otworu Ciecierzyce 1K, który stanowi boczną odnogę otworu Ciecierzyce 1 z punktem odejścia na głębokości 2698,0 m i odchyleniem na spodzie 73,54 m w kierunku północnym, znajdują się wyniki analiz porowatości i gęstości objętościowej 17 próbek rdzeni dolomitu głównego oraz przepuszczalności 14 próbek. Pomierzone wartości porowatości wynoszą 11–24,98%, średnio 20,1%, gęstości objętościowej średnio 2,271 g/cm³, a przepuszczalności 0,023– 15,786 mD, średnio 3,74 mD. W interwale 3007,5-3012,1 m w 2 próbkach pomierzono nasycenie por wodą, która wynosi średnio 1,805%. Dla 10 próbek wykonano oznaczenie zawartości całkowitego węgla organicznego (TOC) i zawartości bituminów (BEX). Wartości TOC wynoszą 0,07-4,32%, a wartości BEX 0,046-0,690%. Tylko jedna próbka

z wypełnienia stylolitu ma TOC >0,3%. Dokumentacja wynikowa otworu Ciecierzyce 1K (Solarska, 2003) zawiera również wyniki 9 analiz gazu i 6 analiz ropy z dolomitu głównego. Ponadto dokumentacja zawiera opis rdzeni oraz analizę petrolitologiczną utworów dolomitu głównego.

Badania wykonane w otworach Ciecierzyce 1 i Ciecierzyce 1K zostały podsumowane i skomentowane również w Dokumentacji prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego "Lubniewice" nr 21/95/p (Sowa i in., 2017). W dokumentacji tej zamieszczono też oryginalne wyniki badań z dokumentacji wynikowej, które częściowo (otwór Ciecierzyce 1K) są własnością Skarbu Państwa.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworów Ciecierzyce 1 i Ciecierzyce 1K (Solarska, 2003), jak również Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego "Lubniewice" nr 21/95/p (Sowa i in., 2017) zawierają wyniki geofizyki wiertniczej wraz z plikami LAS. Ich uzupełnieniem jest dokumentacja pomiarów średnich prędkości (Mierzwińska i Czaja, 2002b). Zakres geofizyki wiertniczej dla otworu Ciecierzyce 1K (jako że dane te są własnością Skarbu Państwa) został podsumowany w Tab. 5.3.

Objawy węglowodorów:

W otworze Ciecierzyce 1K (Solarska, 2003) do głębokości 3006,0 m w trakcie wiercenia nie obserwowano żadnych objawów węglowodorów w płuczce. W rdzeniu z głębokości 3006,0–3011,0 m obserwowano mikroodgazowania i zapach węglowodorów. Podobnie w rdzeniu z głębokości 3011,0–3015,0 m stwierdzono liczne odgazowania, szczególnie intensywne w strefach spękań i szwów stylolitowych.

Próby złożowe:

W trakcie wiercenia otworu Ciecierzyce 1K nie przeprowadzono prób złożowych. Po zakończeniu wiercenia zapuszczono paker do głębokości 2630,0 m, wywołano otwór odbierając z rurek płyn nadpakerowy i gaz, po czym przeprowadzono syfonowanie i test produkcyjny. Razem, w czasie 97 godzin i 40 minut uzyskano 217 047 m³ gazu i kondensat.

- Chruścińska, J., Wiśniewska, S. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Ciecierzyce 1 oraz Ciecierzyce 1K. Inw. 8554/2019, Arch. CAG PIG, Warszawa.
- Mierzwińska, E., Czaja, E. 2002b. Opracowanie pomiarów średnich prędkości w otworze: Ciecierzyce 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Ciecierzyce 1. C63 VS, Arch. CAG PIG, Warszawa.
- Solarska, A. 2003. Dokumentacja wynikowa odwiertu poszukiwawczego Ciecierzyce-1, Ciecierzyce 1K. Inw. DW-134902/2, Arch. CAG PIG, Warszawa.
- Sowa, D., Sikorska-Piekut, W., Puchalski, A., Janowska, J., Strzelecka, D. 2017. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p. Inw. 369/2019, Arch. CAG PIG, Warszawa.

Głębokość [m]		Nazwa profilowania	
od	do		w CDDG
2686	3008,5	dRoB: poprawka gęstości	TAK
2606,4	3001	Interwałowy czas akustyczny	TAK
2685,5	3004,5	NPHI: profilowanie porowatości neutronowej w skali wapienia	TAK
2645	3006	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	TAK
2606,4	3001	PAdt: profilowanie akustyczne czasu interwałowego	TAK
2606,4	3001	PAt1: profilowanie czasu akustycznego T1	TAK
2606,4	3001	PAt2: profilowanie czasu akustycznego T2	TAK

GORZÓW WIELKOPOLSKI S

2606,4	3003,5	PG: profilowanie naturalnego promieniowania gamma	TAK
2660	3005	PK: profilowanie krzywizny odwiertu	TAK
2695,5	3004	Profilowanie objętości otworu	TAK
2695,5	3008,5	PSr: profilowanie średnicy otworu (CALI)	TAK
2606,4	2997	PSrX: profilowanie średnicy otworu w płaszcz. X	TAK
2686	3008,5	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	TAK
2660	3005	Upadomierz sześcioramienny	TAK

Tab. 5.3. Geofizyka wiertnicza wykonana w otworze Ciecierzyce 1K (Solarska, 2003; Sowa i in., 2017; Mierzwińska i Czaja, 2002b; CBDG, 2021).

5.6. DZIERŻÓW 1K/DZIERŻÓW 1K-BIS

Głębokość otworu: 3130,0 m/3040,0 m **Rok zakończenia wiercenia:** 2002

Rdzenie: 2997,0–3089,0 m, 90 skrzynek (Dzierżów 1K), 2939,0–3002,0 m, 63 skrzynki (Dzierżów 1K-BIS), CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia (CBDG, 2021):

Głębokość		
[m]		Stratygrafia
od	do	
	-	Dzierżów 1K
0,0	179,5	kenozoik
179,5	684,0	kreda górna
684,0	715,5	jura środkowa
715,5	1091,0	jura dolna
1091,0	2552,5	trias
1320,0	1438,0	→gipsowa górna seria
1438,0	1498,5	→piaskowiec trzcinowy
1498,5	1580,0	→gipsowa dolna seria
1580,0	1678,0	→kajper dolny
1678,0	1911,5	→wapień muszlowy
1911,5	2025,5	→ret
2025,5	2552,5	→pstry piaskowiec
2552,5	3130,0	perm
2552,5	2614,0	→sól kam. najmłodsza Na4a
2614,0	2615,0	\rightarrow anhydryt pegmatytowy A4a1
2615,0	2617,5	→ił solny czerwony T4
2617,5	2836,0	→sól kamienna młodsza Na3
2836,0	2953,0	→anhydryt główny A3
2953,0	2960,0	→il solny szary T3
2960,0	2961,0	→anhydryt kryjący A2r
2961,0	3023,0	→sól kamienna starsza Na2
3023,0	3026,5	→anhydryt podstawowy A2
3026,5	3090,0	→dolomit główny Ca2
3090,0	3130,0	→anhydryt A1
	Dz	zierżów 1K-BIS
2365,5	2539,0	trias
2539,0	3040,0	perm
2539,0	2593,0	→sól kam. najmłodsza Na4a
2593,0	2594,0	\rightarrow anhydryt pegmatytowy A4a1
2594,0	2595,5	\rightarrow <i>il solny czerwony T4</i>
2595,5	2752,0	→sól kamienna młodsza Na3

2752,0	2847,5	→anhydryt główny A3
2847,5	2850,0	\rightarrow ił solny szary T3
2850,0	2856,0	→anhydryt kryjący A2r
2856,0	2936,0	→sól kamienna starsza Na2
2936,0	2952,5	→anhydryt podstawowy A2
2952,5	2997,0	→dolomit główny Ca2
2997,0	3040,0	→anhydryt A1

Wyniki badań skał:

W dokumentacji wynikowej otworu Dzierżów 1K (Szczawińska, 2003) znajdują się wyniki analiz własności fizykochemicznych 125 próbek rdzeni z interwału 3026,05-3088,05 m. Średnia porowatość tych próbek wynosi 7,13% przy wartościach skrajnych od 0,35% do 20,81%. Przepuszczalność w tym interwale wynosi <0,001–152,615 mD przy średniej 3,51 mD. Gęstość objętościowa wynosi zaś średnio 2,576 g/cm³. W dokumentacji znajdują się też wyniki analizy rdzenia na oznaczenie nasycenia por wodą 14 próbek z interwału 3028,5-3081,05 m. Wartość ta waha się w zakresie 2,61-8,19%. Oprócz nich dokumentacja zawiera wyniki analizy pirolitycznej Rock-Eval 7 próbek z interwału 3028,45-3062,45 m oraz wyniki pomiarów TOC i BEX 40 próbek z interwału 3026,75-3087,25 m. Ich uzupełnieniem są wyniki analiz n-alkanów 4 próbek z głębokości 3028,45-3062,45 m, dla których wskaźnik Pr/n-C₁₇ jest poniżej 0,5, a wskaźnik Pr/PH poniżej 3,0.

W dokumentacji wynikowej (Szczawińska, 2003) znajdują się też wyniki analizy litologiczno-facjalnej dolomitu głównego przeprowadzonej na podstawie obserwacji 85 płytek cienkich i 6 polerów i pogłębionej badaniami XRD, składu mineralnego i analizami chemicznymi. Dokumentacja wynikowa otworu Dzierżów 1K (Szczawińska, 2003) zawiera również wyniki analiz 5 próbek gazu pobranych z głębokości 3024–3044 m. Zawartość metanu w czystym gazie w tych próbkach mieści się w przedziale 18,0029–20,3219% obj.

W dokumentacji wynikowej otworu Dzierżów 1K-BIS (Szczawińska, 2003) znajdują się wyniki analiz własności fizykochemicznych 86 próbek rdzeni z interwału 2952,05-2994,60 m. Średnia porowatość tych próbek wynosi 6,74% przy wartościach skrajnych od 0,67% do 16,06%. Przepuszczalność w tym interwale wynosi <0,001-13,962 mD przy średniej 1,5 mD. Gęstość objętościowa wynosi zaś średnio 2,578 g/cm³. Dokumentacja zawiera też wyniki analizy pirolitycznej Rock-Eval 7 próbek z interwału 2952,90-2982,50 m oraz wyniki pomiarów TOC i BEX 19 próbek z interwału 2952,90-2994,15 m. Ich uzupełnieniem są wyniki analiz n-alkanów 4 próbek z głębokości 2952,90-2988,50 m, dla których wskaźnik Pr/n-C₁₇ jest poniżej 0,5, wskaźnik Pr/PH poniżej 3,0 a CPI(Total) jest bliskie jedności.

W dokumentacji wynikowej (Szczawińska, 2003) znajdują się też wyniki analizy litologiczno-facjalnej dolomitu głównego przeprowadzonej na podstawie obserwacji 70 płytek cienkich i 3 polerów i pogłębionej badaniami XRD, składu mineralnego i analizami chemicznymi.

Dokumentacja wynikowa otworu Dzierżów 1K (Szczawińska, 2003) zawiera również wyniki analiz 5 próbek gazu pobranych z głębokości 3024–3044 m. Zawartość metanu w czystym gazie w tych próbkach mieści się w przedziale 18,0029–20,3219% obj.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej wykonanej w otworach Dzierżów 1K i Dzierżów 1K-BIS (Szczawińska, 2003; CBDG, 2021) został podsumowany w Tab. 5.4.

Objawy węglowodorów i próby złożowe:

Podczas wiercenia otworu Dzierżów 1K nie stwierdzono zaników ani wyrzutów płuczki. W rdzeniach z interwału 2999–3017 m nie stwierdzono objawów. Dopiero w następnych odcinkach: 3017–3035 m, 3035–3044 m, 3044–3062 m, 3062–3080 m, 3080–3090 m zaobserwowano ślady odgazowań, fluorescencję pod lampą Wood'a oraz zapach bituminów i siarkowodoru.

Aparatura kontrolno-pomiarowa w trakcie przewiercania dolomitu głównego zarejestrowała podwyższone tło gazowe 0,010–0,020% CH z maksimum 0,1634% na głębokości 3028 m. Stropowa część dolomitu głównego jest strefą gazową, zaś poniżej 3043 m występuje strefa ropna i ropna – zawodniona. Po przewierceniu dolomitu głównego tło gazowe spadło, osiągając 0,001–0,002% C₁ z maksimum na głębokości 3099 m 0,0058% C₁. Poniżej 3120 m obserwowano bardzo niskie zgazowanie płuczki.

W trakcie wiercenia otworu Dzierżów 1K przeprowadzono próbę złożową próbnikiem Halliburton 5"-T-H₂S w anhydrycie górnym i dolomicie głównym na głębokości 3024– 3044 m. W wyniku opróbowania stwierdzono słaby przypływ gazu palnego z siarkowodorem w ilości 9 nm³/min, przy przepuszczalności skały zbiornikowej 0,039 mD. Po zakończeniu wiercenia prób złożowych nie przeprowadzono.

Podczas wiercenia otworu Dzierżów 1K-BIS nie stwierdzono zaników ani wyrzutów płuczki. W rdzeniach z interwału 2939– 2957 m, 2957–2966 m, 2966–2984 m, 2984– 3002 m zaobserwowano ślady odgazowań oraz zapach bituminów i ślady ropy naftowej.

Aparatura kontrolno-pomiarowa w trakcie przewiercania anhydrytu podstawowego zarejestrowała nieznacznie podwyższone wskazania na poziomie 0,002–0,003% C₁, a w dolomicie głównym – 0,15% C₁ przy tle gazowym na poziomie 0,02%, wskazując fazę gazu, gazu/ropy lub gazu/kondensatu, przy czym gęstość wzrasta w głębokości 2973 m. W anhydrycie A1 wskazania ponownie sięgnęły poziomu 0,1% C₁ zgazowania płuczki.

W trakcie wiercenia otworu Dzierżów 1K-BIS przeprowadzono próbę złożową próbnikiem Halliburton $3^7/_8$ "-T-H₂S w dolomicie głównym na głębokości 2952–2966 m nie uzyskując przypływu. Drugą próbę przeprowadzono na głębokości 2965–3002 m również nie uzyskując przypływu. Po zakończeniu wiercenia prób złożowych nie przeprowadzono.

- Sowa, D., Sikorska-Piekut, W., Puchalski, A., Janowska, J., Strzelecka, D. 2017. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p. Inw. 369/2019, Arch. CAG PIG, Warszawa.
- Szczawińska, I. 2003. Dokumentacja wynikowa odwiertów poszukiwawczych Dzierżów 1K, Dzierżów 1K-BIS. Inw. DW-134921/2, Arch. CAG PIG, Warszawa.
- Szczawińska, I. 2004. Dokumentacja geologiczna likwidacji odwiertów poszukiwawczych Dzierżów 1K, Dzierżów 1K-BIS. Inw. 5985/2019, Arch. CAG PIG, Warszawa.

Głęb	Glębokość		
[1	n]	Nazwa profilowania	w CBDG
od	do		
2	252	DZIERZOW IK	NUE
2	253	APHI: porowatosc akustyczna	NIE
253	1780	APHI: porowatosc akustyczna	NIE
1730	2578	APHI: porowatość akustyczna	NIE
2	253	DPHI: porowatość gęstościowa w skali wapienia	NIE
253	1780	DPHI: porowatość gęstościowa w skali wapienia	NIE
1730	2578	DPHI: porowatość gęstościowa w skali wapienia	NIE
0	253	dRoB: poprawka gęstości	NIE
254	1780	dRoB: poprawka gęstości	NIE
1730	2578	dRoB: poprawka gęstości	NIE
2579	3132	dRoB: poprawka gęstości	NIE
254	1780	IDL	NIE
254	1780	IDM	NIE
29	253	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
1730	2578	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
29	253	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
1730	2578	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
2	253	Interwałowy czas akustyczny	NIE
254	1775	Interwałowy czas akustyczny	NIE
1730	2578	Interwałowy czas akustyczny	NIE
2579	3128	Interwałowy czas akustyczny	NIE
2586	3132	MSFL: mikrolaterolog sferycznie ogniskowany	NIE
0	253	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2	253	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
205	1780	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
253	1780	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
1730	2578	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2571	3129	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2998	3119	PA: profilowanie akustyczne (pełny obraz falowy)	NIE
20	253	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
53	2580	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
2	253	PAdt: profilowanie akustyczne czasu interwałowego	NIE
254	1775	PAdt: profilowanie akustyczne czasu interwałowego	NIE
1730	2578	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2579	3128	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2	253	PAt1: profilowanie czasu akustycznego T1	NIE
254	1775	PAt1: profilowanie czasu akustycznego T1	NIE
1730	2578	PAt1: profilowanie czasu akustycznego T1	NIE
2579	3128	PAt1: profilowanie czasu akustycznego T1	NIE
2	253	PAt2: profilowanie czasu akustycznego T2	NIE
254	1775	PAt2: profilowanie czasu akustycznego T2	NIE
1730	2578	PAt2: profilowanie czasu akustycznego T2	NIE
2579	3128	PAt2: profilowanie czasu akustycznego T2	NIE
0	250	PG: profilowanie naturalnego promieniowania gamma	NIE
205	1780	PG: profilowanie naturalnego promieniowania gamma	NIE
1730	2575	PG: profilowanie naturalnego promieniowania gamma	NIE

2494	3124,5	PG: profilowanie naturalnego promieniowania gamma	NIE
2575	3131	PG: profilowanie naturalnego promieniowania gamma	NIE
2571	3130	PGG: profilowanie gamma-gamma gęstościowe (GGDN)	NIE
15	2565	pionowe profilowanie sejsmiczne	NIE
25	250	PK: profilowanie krzywizny odwiertu	NIE
225	1775	PK: profilowanie krzywizny odwiertu	NIE
1730	2575	PK: profilowanie krzywizny odwiertu	NIE
29	253	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
254	1780	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
1730	2578	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
254	1776	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
1730	2578	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
2585	3129	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
254	1776	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
1730	2578	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
2585	3129	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
2571	3130	POTA: profilowanie zawartości potasu	NIE
15	2565	profilowania prędkości średnich	NIE
0	255	PSr: profilowanie średnicy otworu (CALI)	NIE
1730	2575	PSr: profilowanie średnicy otworu (CALI)	NIE
2575	3131	PSr: profilowanie średnicy otworu (CALI)	NIE
2579	3132	PSr: profilowanie średnicy otworu (CALI)	NIE
2586	3132	PSr: profilowanie średnicy otworu (CALI)	NIE
29	253	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
254	1780	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
254	2578	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
2579	3131	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
0	253	RHOB: gestość objętościowa (elektronowa) w stanie nasyconym	NIE
254	1780	RHOB: gestość obietościowa (elektronowa) w stanie nasyconym	NIE
1730	2578	RHOB: gestość obietościowa (elektronowa) w stanie nasyconym	NIE
2579	3132	RHOB: gestość obietościowa (elektronowa) w stanie nasyconym	NIE
2571	3130	sPGbezU: prof. spektrometr. naturalnego prom. gamma bez uranu	NIE
2571	3130	THOR: profilowanie zawartości toru	NIE
2579	3132	Upadomierz sześcioramienny	NIE
2571	3130	URAN: profilowanie zawartości uranu	NIE
		DZIERŻÓW 1K-BIS	1
2365,5	2562,5	dRoB: poprawka gestości	NIE
2562	3042.5	dRoB: poprawka gestości	NIE
2336.5	2557	Interwałowy czas akustyczny	NIE
2562	3034	Interwałowy czas akustyczny	NIE
2562	3042	MSFL: mikrolaterolog sfervcznie ogniskowany	NIE
2336.5	2559	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2502.5	3036.5	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2562	3039	PA: profilowanie akustyczne (pełny obraz falowy)	NIE
1955	2562	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
2336.5	2557	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2562	3034	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2336.5	2557	PAt1: profilowanie czasu akustycznego T1	NIE
2562	3034	PAt1: profilowanie czasu akustycznego T1	NIE
2336.5	2557	PAt2: profilowanie czasu akustycznego T2	NIE
2562	3034	PAt2: profilowanie czasu akustycznego T2	NIE
2562	3042.5	PE: efekt fotoelektryczny	NIE
2265	2560	PG: profilowanie naturalnego promieniowania gamma	NIE
2334.6	2559	PG: profilowanie naturalnego promieniowania gamma	NIE
2495	3030	PG: profilowanie naturalnego promieniowania gamma	NIE
2495	3034	PG: profilowanie naturalnego promieniowania gamma	NIE
2499 5	3035	PG: profilowanie naturalnego promieniowania gamma	NIE
2325	3030	nionowe profilowanie seismiczne	NIF
0	2560	PK: profilowanie krzywizny odwiertu	NIE
2562	3042.5	poprawka dla efektu fotoelektrycznego	NIE
2336.5	2559	POst: profilowanie oporności sterowane (LLD) o dużym zasiegu	NIE

3038	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
2559	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
3038	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
3035	POTA: profilowanie zawartości potasu	NIE
3030	profilowania prędkości średnich	NIE
3012	profilowanie oporności sterowane o dużym zasięgu z odwróconym warkoczem	NIE
3012	profilowanie oporności sterowane o średnim zasięgu wykonane łącznie z LLDO	NIE
2560	PSr: profilowanie średnicy otworu (CALI)	NIE
2562,5	PSr: profilowanie średnicy otworu (CALI)	NIE
3030	PSr: profilowanie średnicy otworu (CALI)	NIE
3042	PSr: profilowanie średnicy otworu (CALI)	NIE
3042,5	PSr: profilowanie średnicy otworu (CALI)	NIE
2562,5	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	
3042,5	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	
3035	THOR: profilowanie zawartości toru	NIE
3042	Upadomierz sześcioramienny	NIE
3035	URAN: profilowanie zawartości uranu	NIE
	Prędkości średnie	•
3020	profilowanie prędk. śr., czas interpolowany podwojony Tx2	TAK
3020	profilowanie prędk. śr., czas interpolowany TW	TAK
3021,7	profilowanie prędk. śr., czas pomierzony Tr_PW1	TAK
3021,7	profilowanie prędk. śr., czas pomierzony Tr_PW2	TAK
3021,7	profilowanie prędk. śr., czas pomierzony Tr_PW3	TAK
3021,7	profilowanie prędk. śr., czas uśredniony Tr_PO	TAK
3020	profilowanie prędk. śr., gradient czasu interpol. DT_VSP	TAK
	3038 2559 3038 3035 3030 3012 2560 2562,5 3030 3042,5 2562,5 3042,5 3042,5 3042,5 3042,5 3042,5 3042,5 3042,5 3042,5 3021,7 3021,7 3021,7 3021,7 3021,7	3038POst: profilowanie oporności sterowane (LLD) o dużym zasięgu2559POst: profilowanie oporności sterowane (LLS) o małym zasięgu3038POst: profilowanie oporności sterowane (LLS) o małym zasięgu3030POTA: profilowanie zawartości potasu3030profilowania prędkości średnich3012profilowanie oporności sterowane o dużym zasięgu z odwróconym warkoczem3012profilowanie oporności sterowane o średnim zasięgu wykonane łącznie z LLDO2560PSr: profilowanie średnicy otworu (CALI)2562,5PSr: profilowanie średnicy otworu (CALI)3030PSr: profilowanie średnicy otworu (CALI)3042PSr: profilowanie średnicy otworu (CALI)3042,5PSr: profilowanie średnicy otworu (CALI)2562,5RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym3042,5RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym3042Upadomierz sześcioramienny3035URAN: profilowanie zawartości toru3042profilowanie prędk. śr., czas interpolowany TX23020profilowanie prędk. śr., czas pomierzony Tr_PW13021,7profilowanie prędk. śr., czas pomierzony Tr_PW33021,7profilowanie prędk. śr., czas ustredniony Tr_PO3021,7profilowanie prędk. śr., gradient czasu interpol. DT_VSP

Tab. 5.4. Geofizyka wiertnicza wykonana w otworach Dzierżów 1K i Dzierżów 1K-BIS według dokumentacji wynikowej (Szczawińska, 2003) i CBDG, 2021.

5.7. JENINIEC 4

Głębokość otworu: 3290,0 m Rok zakończenia wiercenia: 1988 Rdzenie: 3004,0–3289,0 m, 148 skrzynek, CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia (CBDG, 2021):

Głębok	kość [m]	Stratuarafia
od	do	Stratygrana
0,0	170,0	kenozoik
170,0	621,0	kreda
621,0	682,5	jura środkowa
682,5	960,5	jura dolna
960,5	2372,5	trias
960,5	1205,0	→w-wy zbąszyneckie i jarkowskie
1205,0	1324,0	→gipsowe warstwy górne
1324,0	1394,5	\rightarrow piaskowiec trzcinowy
1394,5	1470,0	→gipsowe warstwy dolne
1470,0	1543,5	→kajper dolny
1543,5	1791,0	→wapień muszlowy
1791,0	1910,0	\rightarrow ret
1910,0	2372,5	\rightarrow pstry piaskowiec
2372,5	3290,0	perm
2372,5	2397,5	→terygeniczna seria stropowa PZt
2397,5	2422,5	→sól kam. najmł. stropowa Na4b2
2422,5	2425,5	<i>→</i> ił solny czerwony górny T4b
2425,5	2448,0	→sól kamienna najmłodsza Na4a

2448,0	2451,0	\rightarrow ił solny czerwony dolny T4a
2451,0	2608,5	→sól kamienna młodsza Na3
2608,5	2643,0	→anhydryt główny A3
2643,0	2645,0	\rightarrow ił solny szary T3
2645,0	2648,5	→anhydryt kryjący A2r
2648,5	2987,5	→sól kamienna starsza Na2
2987,5	3003,5	→anhydryt podstawowy A2
3003,5	3004,0	→dolomit główny Ca2
3004,0	3260,5	→anhydryt A1
3260,5	3261,5	→wapień cechsztyński Ca1
3261,5	3290,0	→czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu Jeniniec 4 (Liberska, 1988b) znajdują się wyniki analiz własności fizykochemicznych 23 próbek rdzeni z interwału 3004,25–3281,55 m. Porowatość 1 próbki rdzenia z dolomitu głównego wynosi 0,37%, a przepuszczalność – 0,1 mD. Dla wapienia cechsztyńskiego średnia porowatość wynosi 0,29%, a przepuszczalność 0,1 mD (2 próbki). Piaskowce czerwonego spągowca charakteryzują się z kolei średnią porowatością 7,92% i przepuszczalnością 0,10–0,11 mD (4 próbki). Pozostałe wyniki uzyskano dla skał wylewnych czerwonego spągowca.

Dokumentacja wynikowa otworu Jeniniec 4 (Liberska, 1988b) zawiera również wyniki analiz 5 próbek gazu pobranych z głębokości 2986–3010 m (opróbowany poziom – dolomit główny, 2 próby) oraz 3238,5– 3290,5 m (opróbowany poziom – czerwony spągowiec, 3 próby). Zawartość metanu w czystym gazie w tych próbkach mieści się odpowiednio w przedziale 65,36–73,99% obj. w czystym gazie w dolomicie głównym i 55,39–73,84% obj. w czerwonym spągowcu.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej wykonanej w otworze Jeniniec 4 (Liberska, 1988b; Klecan, 1988; CBDG, 2021) został podsumowany w Tab. 5.5.

Objawy węglowodorów i próby złożowe:

Podczas wiercenia otworu Jeniniec 4 nie stwierdzono zaników ani przypływów płuczki. W rdzeniach z interwału 3004–3109 m stwierdzono zapach siarkowodoru, a w rdzeniach z czerwonego spągowca – zapach gazu. Aparatura kontrolno-pomiarowa wskazała podwyższone zawartości węglowodorów w płuczce od głębokości 2625 m do spodu otworu (maksymalnie 85%).

W trakcie wiercenia otworu Jeniniec 4 przeprowadzono 3 próby złożowe. Na głębokości 3261,5–3265,5 m zapięcie było nieudane – w zlewce stwierdzono ślady gazu. Na głębokości 3261,5–3278,5 zapuszczono próbnik złoża KII-2M-95 z pakerem na głębokości 3249,5 m, nie uzyskując przypływu, a jedynie ślady gazu w zlewce. Na głębokości 3261,5– 3290,0 m z pakerem zapiętym na głębokości 3251,5 m przeprowadzono próbę złożową uzyskując gaz palny w autoklawie z ciśnieniem 120 atm.

Po zakończeniu wiercenia przeprowadzono 2 próby w dolomicie głównym. W interwale 2991–3010 m z pakerem na głębokości 2972 m stwierdzono brak przypływu, a jedynie ślady gazu pochodzącego z czerwonego spągowca (nieszczelny korek cementowy). Następnie wykonano perforację bezpociskową interwału 2986–2994 m i opróbowano interwał 2986–3010 m próbnikiem KII-2M-95 z pakerem zapiętym na głębokości 2976 m. Nie uzyskano przypływu, a jedynie ślady gazu w autoklawie migrujące z czerwonego spągowca.

- Liberska, H. 1988b. Dokumentacja wynikowa otworu rozpoznawczego Jeniniec 4. Inw. 130773, Arch. CAG PIG, Warszawa.
- Klecan, A. 1988. Opracowanie pomiarów średnich prędkości w odwiercie Jeniniec 4. J78 VS, Arch. CAG PIG, Warszawa.
- Czekański, E., Liberska, H., Michalus, L. 1989. Dokumentacja geologiczna złoża ropy naftowej Jeniniec, województwo: gorzowskie, gmina: Bogdaniec. Inw. 16487 CUG, Arch. CAG PIG, Warszawa.

Głębokość [m]		Nazwa profilowania	
od	do		
3150	3281	logPOst odwr.: prof. oporności ster. odwrócone (wyniki zlogarytm.)	NIE
3150	3281	logPOst: prof. oporności ster. (wyniki zlogarytm.)	NIE
2991	3200	PA: profilowanie akustyczne	NIE
3150	3290	PA: profilowanie akustyczne	NIE
2990	3291	PAdt: profilowanie akustyczne czasu interwałowego	TAK
0	1070	PG: profilowanie naturalnego promieniowania gamma	NIE
0	3290	PG: profilowanie naturalnego promieniowania gamma	TAK
1000	3004	PG: profilowanie naturalnego promieniowania gamma	NIE
2950	3200	PG: profilowanie naturalnego promieniowania gamma	NIE
3150	3290	PG: profilowanie naturalnego promieniowania gamma	NIE
25	250	PK: profilowanie krzywizny odwiertu	NIE
200	1050	PK: profilowanie krzywizny odwiertu	NIE
1650	2400	PK: profilowanie krzywizny odwiertu	NIE
3025	3200	PK: profilowanie krzywizny odwiertu	NIE
0	3291	PNG: profilowanie neutron-gamma	TAK
0	1070	PNN: profilowanie neutron-neutron	NIE

3004	PNN: profilowanie neutron-neutron	NIE
3200	PNN: profilowanie neutron-neutron	NIE
3290	PNN: profilowanie neutron-neutron	NIE
3285	PO: profilowania oporności standardowe	NIE
1840	PO: profilowanie oporności EL03	TAK
250	POg: prof. oporności sondą gradientową	NIE
1070	POg: prof. oporności sondą gradientową	NIE
1841	POg: prof. oporności sondą gradientową	NIE
3281	POst odwr.: prof. oporności ster. odwrócone	NIE
3290	POst: prof. oporności sondą 3-elektr. ster. (LL3)	TAK
2417	POst: profilowanie oporności sterowane	NIE
3200	POst: profilowanie oporności sterowane	NIE
3290	POst: profilowanie oporności sterowane	NIE
3290	PSr: profilowanie średnicy otworu (CALI)	TAK
250	PSr: profilowanie średnicy otworu (CALI)	NIE
1070	PSr: profilowanie średnicy otworu (CALI)	NIE
2422	PSr: profilowanie średnicy otworu (CALI)	NIE
3190	PSr: profilowanie średnicy otworu (CALI)	NIE
3290	PSr: profilowanie średnicy otworu (CALI)	NIE
	Prędkości średnie	
3180	profilowanie prędk. śr., czas interpolowany podwojony Tx2	TAK
3180	profilowanie prędk. śr., czas interpolowany TW	TAK
3194	profilowanie prędk. śr., czas pomierzony Tr_PW1	TAK
3194	profilowanie prędk. śr., czas pomierzony Tr_PW2	TAK
3194	profilowanie prędk. śr., czas pomierzony Tr_PW3	TAK
3194	profilowanie prędk. śr., czas uśredniony Tr_PO	TAK
3180	profilowanie prędk. śr., gradient czasu interpol. DT_VSP	TAK
	3004 3200 3290 3285 1840 250 1070 1841 3281 3290 2417 3200 3290 2417 3200 3290 250 1070 2422 3190 3290 3290 3290 3180 3180 3194 3194 3194 3194 3194 3180	3004PNN: profilowanie neutron-neutron3200PNN: profilowanie neutron-neutron3290PNN: profilowanie neutron-neutron3285PO: profilowanie oporności standardowe1840PO: profilowanie oporności EL03250POg: prof. oporności sondą gradientową1070POg: prof. oporności sondą gradientową1841POg: prof. oporności sondą gradientową3285POst odwr.: prof. oporności ster. odwrócone3290POst: prof. oporności sondą gradientową3281POst odwr.: prof. oporności ster. odwrócone3290POst: profilowanie oporności sterowane3200POst: profilowanie oporności sterowane3290POst: profilowanie oporności sterowane3290PSr: profilowanie średnicy otworu (CALI)250PSr: profilowanie średnicy otworu (CALI)250PSr: profilowanie średnicy otworu (CALI)250PSr: profilowanie średnicy otworu (CALI)1070PSr: profilowanie średnicy otworu (CALI)250PSr: profilowanie średnicy otworu (CALI)3290PSr: profilowanie średnicy otworu (CALI)3190PSr: profilowanie średnicy otworu (CALI)3180profilowanie prędk. śr., czas interpolowany podwojony Tx23180profilowanie prędk. śr., czas pomierzony Tr_PW13194profilowanie prędk. śr., czas pomierzony Tr_PW33194profilowanie prędk. śr., gradient czasu interpol. DT_VSP

Tab. 5.5. Geofizyka wiertnicza wykonana w otworze Jeniniec 4 (na podstawie Liberskiej, 1988; Klecana, 1988; CBDG, 2021).

5.8. JEŻYKI 1

Głębokość otworu: 3401,0 m **Rok zakończenia wiercenia:** 1994 **Rdzenie:** 1957,0–3401,0 m, 110 skrzynek, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Jeżyki 1, zgromadzone w dokumentacji wynikowej (Potera, 1994b) i w opracowaniu średnich prędkości (Ogonowski i in., 1994), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

- Potera, J. 1994b. Dokumentacja wynikowa odwiertu poszukiwawczego Jeżyki 1. Inw. 133519, Arch. CAG PIG, Warszawa.
- Ogonowski, W., Balcerowicz, H., Czaja, E. 1994. Opracowanie pomiarów średnich prędkości w otworze Jeżyki 1. J80 VS, Arch. CAG PIG, Warszawa.

5.9. LUBNO 1

Głębokość otworu: 3217,0 m Rok zakończenia wiercenia: 1999 Rdzenie: 3115,0–3204,0 m, 89 skrzynek, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Lubno 1 zgromadzone w dokumentacji wynikowej (Dudzińska, 2000) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Leszczyńska i in., 1999), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Dudzińska, K. 2000. Dokumentacja wynikowa odwiertu poszukiwawczego Lubno 1. Inw. 134582, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1999. Opracowanie pomiarów średnich prędkości w otworze Lubno-1. Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Lubno 1. L62 VS, Arch. CAG PIG, Warszawa.
- Chruścińska, J., Wojtysiak, B., Rostkowski, R. 2015. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Kostrzyn Myślibórz nr 22/95/p. Inw. 2727/2015, Arch. CAG PIG, Warszawa.

5.10. MASZKÓW 1

Głębokość otworu: 3168,0 m

Rok zakończenia wiercenia: 1992 **Rdzenie:** 2771,0–3156,0 m, 65 skrzynek,

PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku; 3148,0–3156,0 m, 5 skrzynek, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Michałowie.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Maszków 1 zgromadzone w dokumentacji wynikowej (Liberska, 1992) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Czaja, 1992), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

- Liberska, H. 1992. Dokumentacja wynikowa otworu poszukiwawczego Maszków 1. Inw. 133159, Arch. CAG PIG, Warszawa.
- Czaja, E. 1992. Opracowanie pomiaru średnich prędkości w odwiercie Maszków 1. Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Maszków 1. M25 VS, Arch. CAG PIG, Warszawa.

5.11. PŁONICA 1

Głębokość otworu: 3353,0 m **Rok zakończenia wiercenia:** 1994 **Rdzenie:** 2893,0–3353,0 m, 102 skrzynki, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Płonica 1 zgromadzone w dokumentacji wynikowej (Potera, 1995) i w opracowaniu średnich prędkości (Leszczyńska i in., 1995), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Potera, J. 1995. Dokumentacja wynikowa odwiertu poszukiwawczego Płonica 1. Inw. 133656, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1995. Opracowanie pomiarów średnich prędkości w odwiercie Płonica 1, Opracowanie pionowego profilowania sejsmicznego w odwiercie Płonica 1. P79 VS, Arch. CAG PIG, Warszawa.

5.12. RACŁAW 1K

Głębokość otworu: 3256,0 m Rok zakończenia wiercenia: 2002 Rdzenie: 3104,0–3220,0 m, 107 skrzynek, CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia	(Kozikowski,	2002):
--------------	--------------	--------

Głęb	okość	Stuatyonafia
L] bo	nj do	Stratygrana
0,0	195,0	kenozoik
195,0	757,0	kreda
757,0	771,0	jura środkowa
771,0	1146,5	jura dolna
1146,5	2732,0	trias
1146,5	1387,0	\rightarrow retyk
1387,0	1754,0	→kajper
1754,0	1999,0	→wapień muszlowy
1999,0	2732,0	\rightarrow pstry piaskowiec
2732,0	3256,0	perm
2732,0	2738,5	→sól kamienna najmł. górna Na4b
2738,5	2747,0	→ił solny czerwony górny T4b
2747,0	2800,1	→sól kamienna najmł. dolna Na4a
2800,1	2802,0	\rightarrow anhydryt pegmatytowy A4a1
2802,0	2807,0	\rightarrow ił solny czerwony dolny T4a
2807,0	2977,0	→sól kamienna młodsza Na3
2977,0	3020,0	→anhydryt główny A3
3020,0	3022,0	→il solny szary T3
3022,0	3024,5	→anhydryt kryjący A2r
3024,5	3034,0	→sól potasowa starsza K2
3034,0	3102,5	→sól kamienna starsza Na2
3102,5	3122,0	\rightarrow anhydryt podstawowy A2
3122,0	3216,5	→dolomit główny Ca2
3216,5	3256,0	→anhydryt górny A1

Wyniki badań skał:

W dokumentacji wynikowej otworu Racław 1K (Kozikowski, 2002) znajdują się wyniki analiz własności fizykochemicznych 159 próbek rdzeni z interwału 3119,0-3214,05 m. Średnia porowatość próbek z dolomitu głównego wynosi 12,02% przy wartościach skrajnych od 1,19% do 34,59%. Przepuszczalność w części stropowej dolomitu głównego wynosi 4,95-39,68 mD przy średniej 17,80 mD. W niższej części wartości przepuszczalności wahaja się w przedziale 0–2,36 mD przy średniej 0,094 mD. Gęstość objętościowa wynosi zaś średnio 2,49 g/cm³. W dokumentacji znajdują się też wyniki analizy rdzenia na oznaczenie % nasycenia por wodą 3 próbek z interwału 3122,45-3139,95 m. Wartość ta waha sie w zakresie 2,31-3,93%. Oprócz nich dokumentacja zawiera wyniki pomiarów TOC i BEX 41 próbek z interwału 3119,7-3214,4 m. Ich uzupełnieniem są wyniki analiz n-alkanów 3 próbek z głębokości 3130,9-3150,0 m, dla których wskaźnik Pr/n-C₁₇ jest poniżej 0,5, wskaźnik Pr/PH poniżej 3,0, a CPI(Total) są bliskie jedności.

Dokumentacja wynikowa otworu Racław 1K (Kozikowski, 2002) zawiera również wyniki analiz 14 próbek gazu pobranych z głębokości 3115,6–3140,0 m (6 próbek) i 3122,0–3131,0 m (8 próbek). Zawartość metanu w czystym gazie w tych próbkach mieści się w przedziale 14,80–15,87% obj.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej wykonanej w otworze Racław 1K (Kozikowski, 2002; CBDG, 2021) podsumowano w Tab. 5.6.

Objawy węglowodorów i próby złożowe:

Podczas wiercenia otworu Racław 1K nie stwierdzono zaników ani wyrzutów płuczki. W rdzeniach z interwału 3104,0-3220,0 m stwierdzono zapach siarkowodoru, bituminów i ślady odgazowań wzdłuż szczelin i przemazów ilastych. Aparatura kontrolno-pomiarowa wskazała podwyższone zawartości węglowodorów w płuczce w spągu anhydrytu głównego, sięgające 0,06% TG (Total Gas). Wyraźny wzrost zgazowania nastąpił po nawierceniu dolomitu głównego - 4,1% TG, by następnie, od głębokości 3123,0 m oscylować w przedziale 0,5-1,0% TG, punktowo sięgając 2,5% TG i 3,2% TG na głębokościach odpowiednio 3135,0 m MD i 3142,0 m. Poniżej, tj. do 3165,0 m MD wartości mieściły się w przedziale 0,1–0,2% TG.

W trakcie wiercenia otworu Racław 1K przeprowadzono 1 próbę złożową próbnikiem rurowym na głębokości 3119,5–3140,0 m,

stwierdzając przypływ gazu z siarkowodorem o wydajności 300 nm³/min i przepuszczalności testowej 1,3 mD.

Po zakończeniu wiercenia przeprowadzono perforację w interwale 3122,0–3131,0 m i test produkcyjny wydobywając po oczyszczeniu 540 857 nm³ gazu, 128,511 m³ ropy i 4252 1 wody. Szacunkowa wydajność wynosiła 155 nm³/min.

- Chruścińska, J., Wojtysiak, B. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Racław 1K. Inw. 7698/2019, Arch. CAG PIG, Warszawa.
- Kozikowski, M. 2002. Dokumentacja wynikowa odwiertu poszukiwawczego Racław 1K. Inw. 134816, Arch. CAG PIG, Warszawa.
- Wojtysiak, B., Chruścińska, J. 2013. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złoża ropy naftowej i gazu ziemnego Gorzów Wlkp. – Myślibórz, nr 42/2001/p. Inw. 5801/2013, Arch. CAG PIG, Warszawa.

Głębokość			Plik LAS
[m]		Nazwa profilowania	
od	do		
254,5	1768	DPHI: porowatość gęstościowa w skali wapienia	NIE
1658	2752	DPHI: porowatość gęstościowa w skali wapienia	NIE
254,5	1768	dRoB: poprawka gęstości	NIE
1658	2752	dRoB: poprawka gęstości	NIE
2716	3238	dRoB: poprawka gęstości	NIE
254,5	1768	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
1650	2752	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
254,5	1768	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
1650	2752	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
254,5	1763	Interwałowy czas akustyczny	NIE
1653	2748	Interwałowy czas akustyczny	NIE
2633,5	3256	MSFL: mikrolaterolog sferycznie ogniskowany	NIE
5	176	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
1654,5	2750	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2712	3216	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2753,5	3256	PA: profilowanie akustyczne (pełny obraz falowy)	NIE
29	2752	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
35	254	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
2600	3236	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
254,5	1763	PAdt: profilowanie akustyczne czasu interwałowego	NIE
1653	2748	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2753,5	3246	PAdt: profilowanie akustyczne czasu interwałowego	NIE
254,5	1763	PAt1: profilowanie czasu akustycznego T1	NIE

1653	2748	PAt1: profilowanie czasu akustycznego T1	NIE
2753,5	3246	PAt1: profilowanie czasu akustycznego T1	NIE
254,5	1763	PAt2: profilowanie czasu akustycznego T2	NIE
1653	2748	PAt2: profilowanie czasu akustycznego T2	NIE
2753,5	3246	PAt2: profilowanie czasu akustycznego T2	NIE
5	1763	PG: profilowanie naturalnego promieniowania gamma	NIE
1653	2751	PG: profilowanie naturalnego promieniowania gamma	NIE
2753,5	3244	PG: profilowanie naturalnego promieniowania gamma	NIE
2710	3235	PGG: profilowanie gamma-gamma gęstościowe (GGDN)	NIE
15	2745	pionowe profilowanie sejsmiczne	NIE
2760	3225	pionowe profilowanie sejsmiczne	NIE
25	1760	PK: profilowanie krzywizny odwiertu	NIE
1700	2750	PK: profilowanie krzywizny odwiertu	NIE
2760	3256	PK: profilowanie krzywizny odwiertu	NIE
254,5	1768	POst: prof. oporności sonda 3-elektr. ster. (LL3)	NIE
1650	2752	POst: prof. oporności sonda 3-elektr. ster. (LL3)	NIE
254.5	1765	POst: profilowanie oporności sterowane (LLD) o dużym zasiegu	NIE
1652	2752	POst: profilowanie oporności sterowane (LLD) o dużym zasiegu	NIE
2653.5	3252	POst: profilowanie oporności sterowane (LLD) o dużym zasiegu	NIE
254.5	1765	POst: profilowanie oporności sterowane (LLS) o małym zasiegu	NIE
1652	2752	POst: profilowanie oporności sterowane (LLS) o małym zasiegu	NIE
2653.5	3252	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
2710	3235	POTA: profilowanie zawartości potasu	NIE
15	2745	profilowania predkości średnich	NIE
2760	3225	profilowania prędkości średnich	NIE
220	2752	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
223 5	1765	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
2670	3253	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
220	2752	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
223 5	1765	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
223,3	3253	PSrV: profilowanie średnicy otworu w płaszcz. V	NIE
3120	3233	PLIW: Profilowanie unadu warstw	NIE
254.5	1768	RHOB: gestość obietościowa (elektronowa) w stanie pasyconym	NIE
1658	2752	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
2716	3238	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
2710	3235	sPGbezU: prof spektrometr naturalnego prom gamma bez uranu	NIE
2710	3235	THOR: profilowanie zawartości toru	NIE
2754	3256	Unadomierz sześcioramienny	NIE
2734	3235	LIBAN: profilowanie zawartości uranu	NIE
2710	5255	Pradzaści śradnia	ML
20	3080	profilowanie predk śr. cząs interpolowany podwojony Ty?	ΤΔΚ
20	3080	profilowanie prędk. sr., czas interpolowany podwojoli y 1X2	ТАК
75	3001 0	profilowanie prędk. sr., czas nomierzony Tr. PW1	
60	3001.9	profilowanie prędk. śr., czas pomierzony Tr_DW2	
90	3091,9	profilowanie predk. śr., czas pomierzony Tr_DW2	
 	3091,9	profilowanie prędk. śr., czas połnicizony Tr. PO	
20	2020	promowanie pręuk. si., czas usieuniony 11_rO	
20	3080	promowanie prędk. sr., gradieni czasu interpol. D1_VSP	IAK

Tab. 5.6. Geofizyka wiertnicza wykonana w otworze Racław 1K (Kozikowski, 2002; CBDG, 2021).

5.13. STANOWICE 1

Głębokość otworu: 3200,0 m Rok zakończenia wiercenia: 1996 Rdzenie: 3123,0–3200,0 m, 40 skrzynek, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: dane geologiczne z otworu Stanowice 1 zgromadzone w dokumentacji wynikowej (Pikulski, 1997) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Leszczyńska i in., 1996), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

Dokumentacje:

- Pikulski, L. 1997. Dokumentacja wynikowa odwiertu poszukiwawczego Stanowice
 1. Inw. 134028, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1996. Sprawozdanie z opracowania pomiarów średnich prędkości w otworze Stanowice 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Stanowice 1. S83 VS, Arch. CAG PIG, Warszawa.

5.14. STANOWICE 2

Głębokość otworu: 3200,0 m Rok zakończenia wiercenia: 1998 Rdzenie: 3112,0–3148,0 m, 36 skrzynek, PGNiG S.A., Archiwum Rdzeni Wiertniczych w Chmielniku.

Geofizyka otworowa, wyniki badań skał, objawy węglowodorów i wyniki prób złożowych: Dane geologiczne z otworu Stanowice 2 zgromadzone w dokumentacji wynikowej (Szczawińska, 1999) i w opracowaniu średnich prędkości i pionowego profilowania sejsmicznego (Leszczyńska i in., 1998), są własnością inwestora (PGNiG S.A.) i nie mogą zostać zaprezentowane w niniejszym opracowaniu.

- Szczawińska, I. 1999. Dokumentacja wynikowa odwiertu poszukiwawczego Stanowice 2. Inw. 134340, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1998. Opracowanie pomiarów średnich prędkości oraz sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Stanowice 2. S84 VS, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2003b. Dokumentacja geologiczna złoża gazu ziemnego Stanowice w kat. C, miejsc. Racław, Stanowice, gm. Lubiszyn, Bogdaniec, pow. gorzowski, woj. lubuskie. Inw. 151/2004, Arch. CAG PIG, Warszawa.

5.15. STANOWICE 3

Głębokość otworu: 3261,0 m **Rok zakończenia wiercenia:** 2002 **Rdzenie:** 3102,0–3237,0 m, 132 skrzynki, CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia (CBDG, 2021):

Głęb	okość	Stratuquefie
nd I	n] do	Stratygrana
0.0	268.0	kenozoik
268,0	847,0	kreda górna
847,0	861,0	kreda dolna
861,0	887,5	jura środkowa
887,5	1247,0	jura dolna
1247,0	2726,0	trias
1247,0	1494,0	\rightarrow retyk
1494,0	1857,0	→kajper
1857,0	2100,0	→wapień muszlowy
2100,0	2726,0	\rightarrow pstry piaskowiec
2726,0	3261,0	perm
2726,0	2744,5	<i>→</i> iłowce przejściowe
2744,5	2810,0	→sól kamienna najmłodsza Na4
2810,0	2812,0	\rightarrow anhydryt pegmatytowy
2812,0	2818,5	\rightarrow ił solny czerwony dolny T4a
2818,5	3007,0	→sól kamienna młodsza Na3
3007,0	3029,0	→anhydryt główny A3
3029,0	3032,0	\rightarrow ił solny szary T3
3032,0	3034,0	→anhydryt kryjący A2r
3034,0	3065,0	→sól kamienna starsza Na2
3065,0	3113,0	→sól potasowa starsza K2
3113,0	3133,2	\rightarrow anhydryt podstawowy A2
3133,2	3227,2	→dolomit główny Ca2
3227,2	3261,0	→anhydryt górny A1

Wyniki badań skał:

W dokumentacji wynikowej otworu Stanowice 3 (Zielińska-Pikulska, 2003a) znajdują się wyniki analiz własności fizykochemicznych 184 próbek rdzeni z interwału 3132,60– 3220,05 m. Dla dolomitu głównego wartość porowatości wahała się w granicach 0,7– 19,75%, średnio 4,72% (182 próbki), a przepuszczalność – dla 163 próbek wynosiła <0,001mD, dla 10 próbek – 0,015–0,125mD, a dla 1 próbki –15,387 mD. Wykonano również analizy rdzeni na oznaczenie % nasycenia por wodą dla 16 próbek z interwału 3129,0–3219,0 m. Nasycenie por wodą wynosi od 3,90% do 29,50%.

Utwory dolomitu głównego objęto również szczegółową analizą sedymentologiczną wspartą analizami petrograficznymi i mikrofacjalnymi (obserwacje mikroskopowe 130 płytek cienkich). Wykonano również analizy z zastosowaniem mikroskopu elektronowego SEM (10 próbek) oraz badania składu mineralnego metodą dyfrakcji RTG (25 próbek). W wyniku kompleksowych analiz stwierdzono, że profil dolomitu głównego w otworze Stanowice 3 reprezentuje środowiska depozycji węglanowej związane zarówno z brzeżną strefą platformy węglanowej jak i jej skłonem (Wojtysiak i Chruścińska, 2013).

Wykonane analizy geochemiczne w otworze Stanowice 3 obejmowały analizy zawartości całkowitego wegla organicznego TOC i zawartości bituminów BEX (43 próbki), rozdziały grupowe otrzymanych 11 ekstraktów bitumicznych (6 próbek), jak również n-alkanów dystrybucję i izoprenoidów (4 próbki) oraz badania pirolityczne Rock-Eval (7 próbek). Tylko około 3% profilu dolomitu głównego stanowią skały potencjalnie macierzyste (o zawartości TOC >0,3 %), substancja organiczna ma cechy kerogenu typu morskiego oraz wysoki stopień dojrzałości, a dolomit główny jest raczej poziomem zbiornikowym a nie macierzystym dla weglowodorów (Wojtysiak i Chruścińska, 2013).

W otworze Stanowice 3 wykonano 4 analizy gazu (z płuczki z interwału 3146–3183 m), według których zawartość metanu wynosi od 3,13% do 9,21% obj. w czystym gazie. Oprócz tego wykonano dwie analizy płuczki z tego samego interwału oraz dwie analizy wody z interwału 3177–3219 m.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej w otworze Stanowice 3 (Mierzwińska i Czaja, 2002c; Zielińska-Pikulska, 2003a; CBDG, 2021) został podsumowany w Tab. 5.7.

Objawy węglowodorów i próby złożowe:

Podczas wiercenia otworu Stanowice 3 zaobserwowano rozproszone ślady odgazowań i zapach siarkowodoru w rdzeniach z interwałów 3111–3129 m, 3129–3147 m, 3147– 3165 m, 3165–3183 m, 3165–3219 m, 3183– 3201 m i 3201–3219 m. Ponadto w rdzeniu z głębokości 3147–3165 m pojawiły się wysięki żółtej ropy. Aparatura kontrolno-pomiarowa w trakcie wiercenia otworu w głębokości 3129 m wskazała wartości 1,16% TG (*Total Gas*), a podczas rdzeniowania interwału 3129–3147 m – 1,24% TG. Przy głębokości 3147 m podczas płukania na profilu obiegowym zarejestrowano zgazowanie płuczki max. 6,44% TG. W głębokości 3165 m zgazowanie płuczki wynosiło maksymalnie 0,72% TG.

W trakcie wiercenia otworu Stanowice 3 przeprowadzono 3 próby złożowe. Na głębokości 3121–3147 m przeprowadzono próbę złożową próbnikiem KII-2M-146 uzyskując śladowy przypływ gazu. Na głębokości 3146– 3183 m zapuszczono próbnik złoża Halliburton 5"-R-H₂S uzyskując niewielki przypływ gazu. Na głębokości 3177–3219 m przeprowadzono próbę złożową próbnikiem KII-2M-146 uzyskując przypływ około 3 m³ słabo zgazowanej wody złożowej.

Dokumentacje:

 Mierzwińska, E., Czaja, E. 2002c. Opracowanie pomiarów średnich prędkości w otworze: Stanowice 3, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Stanowice 3. S85 VS, Arch. CAG PIG, Warszawa.

- Wojtysiak, B., Chruścińska, J. 2013. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złoża ropy naftowej i gazu ziemnego Gorzów Wlkp. - Myślibórz, nr 42/2001/p. Inw. 5801/2013, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2003a. Dokumentacja wynikowa odwiertu rozpoznawczego Stanowice 3. Inw. 134851, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2003b. Dokmentacja geologiczna złoża gazu ziemnego "Stanowice" w kat. C, miejsc. Racław, Stanowice, gm. Lubiszyn, Bogdaniec, pow. gorzowski, woj. Lubuskie. Inw. 151/2004, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2004. Dokumentacja geologiczna likwidacji otworu rozpoznawczego Stanowice 3. Inw. 8449/2019, Arch. CAG PIG, Warszawa.

Głębokość			
l	m]	Nazwa profilowania	w CBDG
od	do		NUT
32	268	APHI: porowatosc akustyczna	NIE
285	1851	APHI: porowatość akustyczna	NIE
1775	2746	APHI: porowatość akustyczna	NIE
2766	3261	APHI: porowatość akustyczna	NIE
32	3261	BS: średnica nominalna wiercenia	TAK
4	282	DPHI: porowatość gęstościowa w skali wapienia	NIE
283	1851	DPHI: porowatość gęstościowa w skali wapienia	NIE
1775	2746	DPHI: porowatość gęstościowa w skali wapienia	NIE
2766	3261	DPHI: porowatość gęstościowa w skali wapienia	NIE
1	284	dRoB: poprawka gęstości	NIE
283	1851	dRoB: poprawka gęstości	NIE
1775	2747	dRoB: poprawka gęstości	NIE
2755	3261	dRoB: poprawka gęstości	NIE
32	282	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
283	1851	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
1775	2745	ILD: profilowanie indukcyjne o dużym zasięgu	NIE
32	282	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
283	1851	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
1775	2745	ILM: profilowanie indukcyjne o średnim zasięgu	NIE
2766	3260	MSFL: mikrolaterolog sferycznie ogniskowany	NIE
0	1849	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
11,5	282	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
1775	2746	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
2755	3258	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
3121	3259	PA: profilowanie akustyczne (pełny obraz falowy)	NIE
10	280	PA: profilowanie akustyczne TTIM	NIE
283	1847	PA: profilowanie akustyczne TTIM	NIE
1775	2743	PA: profilowanie akustyczne TTIM	NIE
--------	---------	--	-----
2760	3258.5	PA: profilowanie akustyczne TTIM	NIE
10	283	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
40	2765	PAc: pomiar akustyczny stanu zacementowania rur okładzinowych	NIE
10	280	PAdt: profilowanie akustyczne czasu interwałowego	NIE
32	3263	PAdt: profilowanie akustyczne czasu interwałowego	ТАК
283	1847	PAdt: profilowanie akustyczne czasu interwałowego	NIE
1775	2743	PAdt: profilowanie akustyczne czasu interwałowego	NIE
2760	3258.5	PAdt: profilowanie akustyczne czasu interwałowego	NIE
10	280	PAt1: profilowanie czasu akustycznego T1	NIE
10	280	PAt1: profilowanie czasu akustycznego T1	NIE
283	1847	PAt1: profilowanie czasu akustycznego T1	NIE
1775	27/3	PAt1: profilowanie czasu akustycznego T1	NIE
2760	3258.5	PAt1: profilowanie czasu akustycznego T1	NIE
10	280	PAt2: profilowanie czasu akustycznego T2	NIE
283	1847	PAt2: profilowania czasu akustycznego T2	NIE
1775	2743	PAt2: profilowania czasu akustycznego T2	NIE
2760	2745	PAt2: profilowanie czasu akustycznego T2	NIE
2760	3238,3	PAL2: promovanie czasu akustycznego 12	NIE
075	2262	PG: profilowanie naturalnego promieniowania gamma	
0,75	3203	PG: profilowanie naturalnego promieniowania gamma	
1775	280	PG: profilowanie naturalnego promieniowania gamma	NIE
1775	2743	PG: profilowanie naturalnego promieniowania gamma	NIE
2677	3255,5	PG: profilowanie naturalnego promieniowania gamma	NIE
2766	3256,5	PGG: profilowanie gamma-gamma gęstosciowe (GGDN)	NIE
15	2760	pionowe profilowanie sejsmiczne	NIE
25	280	PK: profilowanie krzywizny odwiertu	NIE
250	1850	PK: profilowanie krzywizny odwiertu	NIE
1750	2740	PK: profilowanie krzywizny odwiertu	NIE
2740	3260	PK: profilowanie krzywizny odwiertu	NIE
3,5	3262	PNG: profilowanie neutron-gamma	TAK
32	282	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
32	2745,25	POst: prof. oporności sondą 3-elektr. ster. (LL3)	TAK
283	1851	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
1775	2745	POst: prof. oporności sondą 3-elektr. ster. (LL3)	NIE
283	1850	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
284,25	3257,5	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	TAK
1775	2743	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
2766	3257,5	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	NIE
283	1850	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
284,25	3257,5	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	TAK
1775	2743	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
2766	3257,5	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
2755	3256,5	POTA: profilowanie zawartości potasu	NIE
15	2760	profilowania prędkości średnich	NIE
3119,8	3233	profilowanie oporności sterowane o dużym zasięgu z odwróconym warkoczem	NIE
3119,8	3233	profilowanie oporności sterowane o średnim zasięgu wykonane łącznie z LLDO	NIE
3,5	3261,5	PSr: profilowanie średnicy otworu (CALI)	TAK
2766	3260	PSr: profilowanie średnicy otworu (CALI)	NIE
2766	3261	PSr: profilowanie średnicy otworu (CALI)	NIE
0	284	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
32	283,5	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
239	1857	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
240	2746	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
283	1851	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
283	2745	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
2760	3260	PSrX: profilowanie średnicy otworu w płaszcz. X	NIE
0	284	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
32	283.5	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIF
239	1857	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
240	2746	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
283	1851	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
		produce or white or white product in product in	

283	2745	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
2760	3260	PSrY: profilowanie średnicy otworu w płaszcz. Y	NIE
2810	3260	PUW: Profilowanie upadu warstw	NIE
3130	3230	PUW: Profilowanie upadu warstw	NIE
0,75	3262,25	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	TAK
1	284	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
283	1851	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
1775	2747	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
2755	3261	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	NIE
2766	3256,5	sPGbezU: prof. spektrometr. naturalnego prom. gamma bez uranu	NIE
2755	3256,5	THOR: profilowanie zawartości toru	NIE
2766	3260	Upadomierz sześcioramienny	NIE
2755	3256,5	URAN: profilowanie zawartości uranu	NIE
Prędkości średnie			
20	3240	profilowanie prędk. śr., czas interpolowany podwojony Tx2	TAK
20	3240	profilowanie prędk. śr., czas interpolowany TW	TAK
150	3255	profilowanie prędk. śr., czas pomierzony Tr_PW1	TAK
135	3255	profilowanie prędk. śr., czas pomierzony Tr_PW2	TAK
180	3255	profilowanie prędk. śr., czas pomierzony Tr_PW3	TAK
135	3255	profilowanie prędk. śr., czas uśredniony Tr_PO	TAK
20	3240	profilowanie prędk. śr., gradient czasu interpol. DT_VSP	TAK

Tab. 5.7. Geofizyka wiertnicza wykonana w otworze Stanowice 3 (Mierzwińska i Czaja, 2002c; Zielińska-Pikulska, 2003a; CBDG, 2021).

5.16. WĘDRZYN 1

Głębokość otworu: 3170,0 m **Rok zakończenia wiercenia:** 2008 **Rdzenie:** brak

Stratygrafia (CBDG, 2021):

Głębokość		
[m]		Stratygrafia
od	do	
0,0	245,0	kenozoik
245,0	577,0	kreda
577,0	923,0	jura
923,0	2361,0	trias
923,0	1155,0	\rightarrow retyk
1155,0	1479,0	→kajper
1479,0	1747,0	→wapień muszlowy
1747,0	2361,0	→pstry piaskowiec
2361,0	3170,0	perm
2361,0	2369,0	<i>→</i> iłowce przejściowe
2369,0	2405,0	→sól kam. najmłodsza Na4
2405,0	2409,0	\rightarrow ił solny czerwony dolny T4a
2409,0	2525,0	→sól kamienna młodsza Na3
2525,0	2568,0	→anhydryt główny A3
2568,0	2572,0	→ił solny szary T3
2572,0	2575,0	→anhydryt kryjący A2r
2575,0	2894,0	→sól kamienna starsza Na2
2894,0	2906,0	\rightarrow anhydryt podstawowy A2
2906,0	2912,0	→dolomit główny Ca2
2912,0	3023,0	→anhydryt górny A1g
3023,0	3062,0	→sól najstarsza górna Na1g
3062,0	3086,0	→anhydryt środkowy
3086,0	3090,0	→sól najstarsza dolna Na1d
3090,0	3139,0	\rightarrow anhydryt dolny A1d

3139,0	3141,0	→wapień cechsztyński Ca1
3141,0	3170,0	→czerwony spągowiec

Wyniki badań skał:

W dokumentacji prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p (Sowa i in., 2017; w NAG brak dokumentacji wynikowej otworu) znajdują się wyniki badań przeprowadzonych w otworze Wędrzyn 1. Są to wyniki analiz własności fizykochemicznych 10 próbek rdzeni z interwału 2905,75-2924,75 m, dla których porowatość średnia wynosi 1,007% i waha się w przedziale od 0 do 3,8%, przepuszczalność zawsze wynosi 0,0 mD, a gęstość objętościowa średnia – 2,854%. W w/w dokumentacji znajduje się także podsumowanie badań specjalistycznych:

• analiza rozkładu nasyceń metodą jądrowego rezonansu magnetycznego NMR;

• pomiar elektrycznych parametrów skał;

• jakościowa analiza składu mineralnego skał metodą rentgenowskiej analizy fazowej;

• pomiar zawartości pierwiastków promieniotwórczych: uranu, toru i potasu. Nie zamieszczono danych źródłowych tych analiz. Zamieszczono jednak wyniki analiz bitumin 4 prób z interwału 2906–2912 m. Średnia zawartość bitumin wynosi 0,0601% wag. i waha się w przedziale 0,1104–0,0168% wag. W dokumentacji znajduje się także opis 22 płytek cienkich z dolomitu głównego.

Dokumentacja Sowy i in. (2017) zawiera również wyniki analiz 4 próbek gazu z głębokości 2906–2912 m (3 próbki) i 3141– 3170 m. Zawartość metanu w pierwszych trzech próbkach wynosi 4,793–5,323% obj., zaś w ostatniej – 70,71% obj. Zamieszczono również wyniki 1 analizy kondensatu z głębokości 2906–2912 m oraz 2 analiz wody z tego samego interwału.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej wykonanej w otworze Wędrzyn 1 (Dalętka i Zawadzka-Gruza, 2008; Sowa i in., 2017; CBDG, 2021) został podsumowany w Tab. 5.8.

Objawy węglowodorów i próby złożowe:

W dokumentacji prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p (Sowa i in., 2017) brak informacji na temat objawów węglowodorów w trakcie wiercenia. Podano natomiast wyniki opróbowań 3 horyzontów. W pierwszym interwale 2879–2917 m uzyskano ciśnienie złożowe 47,2 Mpa na głębokości 2875 m i przypływ gazu palnego ze śladami węglowodorów ciekłych. W drugim interwale 3116–3170 m uzyskano bardzo słaby przypływ gazu palnego. W interwale 2906–2912 m wykonano perforację uzyskano ciśnienie złożowe 41,4 MPa na głębokości 2900 m i po kwasowaniu i syfonowaniu oczyszczającym odebrano łącznie 243,9 m³ gazu palnego, 45,8 m³ kondensatu i 6,9 m³ płynu złożowego.

Dokumentacje:

- Dalętka, A., Zawadzka-Gruza, M. 2008. Opracowanie wyników pionowego profilowania sejsmicznego i pomiarów średnich prędkości w otworze: Wędrzyn 1. W170 VS, Arch. CAG PIG, Warszawa.
- Kuczak, M. 2008. Dokumentacja geologiczna likwidacji otworu Wędrzyn 1. Inw. 135710, Arch. CAG PIG, Warszawa.
- Sowa, D., Sikorska-Piekut, W., Puchalski, A., Janowska, J., Strzelecka, D. 2017. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p. Inw. 369/2019, Arch. CAG PIG, Warszawa.

Głębokość [m]		Nazwa profilowania	
od	do	•	
300	3170	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
0	3170	PG: profilowanie naturalnego promieniowania gamma	NIE
300	3170	POst: profilowanie oporności sterowane (LLS) o małym zasięgu	NIE
30	3170	PSr: profilowanie średnicy otworu (CALI)	NIE
300	3170	170 RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	
Prędkości średnie			
65,5	2285,5	profilowanie prędk. śr., czas zredukowany PW1	TAK
65,5	3080,5	profilowanie prędk. śr., czas zredukowany PW2	TAK
65,5	2285,5	profilowanie prędk. śr., czas zredukowany PW3	TAK
65,5	3080,5	profilowanie prędk. śr., czas zredukowany PW4	TAK
65,5	3080,5	profilowanie prędk. śr., czas zredukowany uśredniony	TAK

Tab. 5.8. Geofizyka wiertnicza wykonana w otworze Wędrzyn 1 (CBDG, 2021).

5.17. WĘDRZYN 5

Głębokość otworu: 3210,0 m Rok zakończenia wiercenia: 2009 Rdzenie: 2910,0–3210,0 m, 41 skrzynek, CAG PIG-PIB, Archiwum Rdzeni Wiertniczych w Chmielniku.

Stratygrafia (CBDG, 2021):

Głębokość		
[]	m]	Stratygrafia
od	do	
0,0	239,0	kenozoik
239,0	590,0	kreda dolna
590,0	954,0	jura
954,0	2391,0	trias
954,0	1179,0	\rightarrow retyk
1179,0	1502,0	→kajper
1502,0	1762,5	→wapień muszlowy
1762,5	2391,0	→pstry piaskowiec
2391,0	3210,0	perm
2391,0	2399,5	→iłowce przejściowe
2399,5	2439,5	→sól kam. najmłodsza Na4
2439,5	2442,0	\rightarrow ił solny czerwony dolny T4a
2442,0	2580,5	→sól kamienna młodsza Na3
2580,5	2607,5	→anhydryt główny A3
2607,5	2611,5	\rightarrow il solny szary T3
2611,5	2613,5	→anhydryt kryjący A2r
2613,5	2903,0	→sól kamienna starsza Na2
2903,0	2912,0	→anhydryt podstawowy A2
2912,0	2964,0	→dolomit główny Ca2
2964,0	3034,0	→anhydryt górny A1g
3034,0	3082,0	→sól najstarsza górna Na1g
3082,0	3106,0	→anhydryt środkowy A1s
3106,0	3111,5	→sól najstarsza dolna Na1d
3111,5	3154,5	\rightarrow anhydryt dolny A1d
3154,5	3157,5	→wapień cechsztyński Ca1
3157,5	3210,0	→czerwony spągowiec

Wyniki badań skał:

W dokumentacji prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p (Sowa i in., 2017; w NAG brak dokumentacji wynikowej otworu) znajduje się opis badań przeprowadzonych w otworze Wędrzyn 5. Według tej dokumentacji, analiza własności fizyczno-chemicznych rdzeni z interwału 2912-2964 m wykazała dla dolomitu głównego porowatość średnia 6,14% z wahaniami w zakresie od 0,01 do 16,6%, przepuszczalność średnią 0,12 mD z wahaniami w zakresie od 0 do 19,9 mD, natomiast dla czerwonego spągowca z interwału 3157,5-3210 m porowatość średnią 3,48%

z zakresem wartości od 0,61 do 6,4% i przepuszczalność średnią 0,12 mD z wahaniem wartości w zakresie od 0 do 1,8 mD. Nie załączono jednak danych źródłowych tych analiz.

W interwale głębokości 2913,4-2964,0 m wykonano analizy geochemiczne, według których utwory dolomitu głównego w otworze wiertniczym Wędrzyn 5 zawierają ropotwórcze skały macierzyste średniej lub dobrej (do 1,28% TOC) jakości w stropowej (2913,4-2923,1 m) i spagowej (2949,65-2964,0 m) części profilu. W środkowej części nie stwierdzono występowania skał macierzystych (Sowa i in., 2017). Dalej autorzy dokumentacji wskazują, że potencjał naftowy badanych skał węglanowych jest niski lub zaledwie średni (do 2,11 mg HC/g skały w głębokości 2952,00 m), a badania geochemiczne ujawniły występowanie mieszaniny I i II typu kerogenu, bardzo wydajnego pod względem generowania ropy naftowej i gazu ziemnego. Analizy mikroskopowe udokumentowały zawartość materii organicznej w głównie w postaci stałych bituminów o stopniu przeobrażenia w przedziale 0,53-0,95% Ro (w skali refleksyjności witrynitu), który odpowiada przejściu przez maksimum okna ropnego (Sowa i in., 2017).

Dokumentacja Sowy i in. (2017) zawiera również streszczenie wyników analiz 1 próbki gazu z głębokości 2912–2937 m D, w której węglowodory stanowią razem 40,78% obj., a azot 50,57% obj. Zamieszczono również skrócone wyniki 4 analiz płynu z interwałów 2912–2937 m (2 próbki), 3155–3210 m i 3157,5–3210 m oraz wynik analizy bitumin z 12 prób z utworów dolomitu głównego. Średnia zawartość bitumin wynosi 0,0305% wag., a wartości wahają się w przedziale 0,0088–0,0956% wag.

Wyniki geofizyki otworowej:

Zakres geofizyki otworowej wykonanej w otworze Wędrzyn 5 (Miluk, 2009; Sowa i in., 2017; CBDG, 2021) został podsumowany w Tab. 5.9.

Objawy węglowodorów i próby złożowe:

W dokumentacji prac geologicznych niekończacych sie udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p (Sowa i in., 2017) znajduje się opis objawów węglowodorów zaobserwowanych w rdzeniach wiertniczych. W interwale 2910-2919 m zanotowano wysięki ropne oraz zapach bituminów. W rdzeniach z interwałów 2919–2937 m i 2937–2951 m wyczuwalny był zapach siarkowodoru. W następnym odcinku 3157-3169 m były widoczne drobne odgazowania, zaś w rdzeniu z głębokości 3203-3210 m nie zaobserwowano oznak węglowodorów.

W otworze Wędrzyn 5 opróbowano 2 interwały. W pierwszym na głębokości 2912– 2937 m uzyskano ciśnienie złożowe 46,09 MPa na głębokości 2886 m, otrzymując przypływ 4,5 m³ słabo zgazowanej wody złożowej. W drugim odcinku na głębokości 3157,5–3210 m uzyskano ciśnienie złożowe 51,071 MPa na głębokości 3151 m, otrzymując przypływ 4,3 m³ wody złożowej.

Dokumentacje:

- Miluk, A. 2009. Opracowanie wyników pionowego profilowania sejsmicznego i pomiarów średnich prędkości w otworze: Wędrzyn-5. W171 VS, Arch. CAG PIG, Warszawa.
- Pyrka, A., Kuczak, M. 2010. Dokumentacja geologiczna likwidacji otworu Wędrzyn 5. Inw. 135857, Arch. CAG PIG, Warszawa.
- Sowa, D., Sikorska-Piekut, W., Puchalski, A., Janowska, J., Strzelecka, D. 2017. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p. Inw. 369/2019, Arch. CAG PIG, Warszawa.

Głębokość [m]		Nazwa profilowania	
od	do		w CDDG
35	3210	BS: średnica nominalna wiercenia	NIE
290	3210	MSFL: mikrolaterolog sferycznie ogniskowany	NIE
290	3210	NPHI: profilowanie porowatości neutronowej w skali wapienia	NIE
290	3210	PAdt: profilowanie akustyczne czasu interwałowego	NIE
0	3210	PGG: profilowanie gamma-gamma gęstościowe (GGDN)	NIE
290	3210	POst: profilowanie oporności sterowane (LLD) o dużym zasięgu	
35	3210	PSr: profilowanie średnicy otworu (CALI)	
290	3210	RHOB: gęstość objętościowa (elektronowa) w stanie nasyconym	
0	3210	sPGbezU: prof. spektrometr. naturalnego prom. gamma bez uranu	NIE
		Prędkości średnie	
9,5	3129,5	profilowanie prędk. śr., czas zredukowany PW1	TAK
15	3210	profilowanie prędk. śr., czas zredukowany PW1	TAK
9,5	3129,5	profilowanie prędk. śr., czas zredukowany uśredniony T	
15	3210	profilowanie predk. śr., czas zredukowany uśredniony	

Tab. 5.9. Geofizyka wiertnicza wykonana w otworze Wędrzyn 5 (Miluk, 2009; Sowa i in., 2017; CBDG, 2021).

Fig. 5.2. Uproszczony profil otworu Jeniniec 4 na podstawie dokumentacji wynikowej (Liberska, 1988b).

6. SEJSMIKA

Obszar "Gorzów Wielkopolski S" jest pokryty równomiernie rozłożoną siatką profili sejsmicznych 2D. Znaczna część terenu została rozpoznana również zdjęciami sejsmicznymi 3D (Fig. 6.1-6.2). Pierwsze badania na omawianym terenie wykonano już pod koniec lat 50-tych ubiegłego wieku, kiedy to w 1959 r. zrealizowano temat sejsmiczny, który pozwolił na rozpoznanie regionalne. Kolejne badania z lat 60-tych i początku 70-tych mają obecnie ograniczone możliwości wykorzystania, ze względu na ówczesne możliwości techniczne i jakość danych. W tematach zrealizowanym w latach 1978 i 1979 zostały one wykorzystane jedynie w celach porównawczych.

Znakomita większość danych została pomierzona w latach 90-tych XX wieku i pozostaje własnością Inwestora (PGNiG S.A., Tab. 6.1). Przez obszar "Gorzów Wielkopolski S" przechodzi również linia P2 wykonana w ramach głębokich sondowań sejsmicznych projektu POLONAISE'97. Badania te są jednak ukierunkowane na rozpoznanie głębokich struktur litosfery i ze względu na cel badań i rozdzielczość danych nie są wykorzystywane w poszukiwaniu węglowodorów.

Badania sejsmiczne wykonane na obszarze przetargowym "Gorzów Wielkopolski S" umożliwiły identyfikację licznych struktur perspektywicznych w horyzontach sejsmicznych P1 (spąg czerwonego spągowca), Z1' (spąg cechsztynu) i Z2 (strop anhydrytu podstawowego):

STRUKTURY	HORYZONT SEJ- SMICZNY
Podniesienie Ciecierzyc E	Z2, Z1', P1
Podniesienie Ciecierzyc W	Z2, Z1', P1
Struktura Dzierżowa	Z2,
Struktura Płonicy	Z2, Z1', P1

Podniesienie Trzebieszewa	Z2, P1
Struktura Trzebieszewa E	Z2, P1
Struktura Bolemina	Z2, Z1', P1
Struktura Bledzewa	Z2, Z1', P1
Podniesienie Bledzewa W	Z1'
Podniesienie Bledzewa E	Z1'
Podniesienie Bledzewa S	Z1', P1
Struktura Lubniewic	Z2, Z1', P1
Struktura Brzozowej	Z2, Z1', P1
Struktura Maszkowa	Z2, Z1', P1
Struktura Dzieduszyc N	Z2, Z1'
Struktura Stanowic	Z2, Z1'
Struktura Bogdańca	Z2, Z1'
Podniesienie Bogdańca E	Z1'
Struktura Jeżyk	Z2, Z1'
Struktura Jenińca	Z2, Z1'

Wśród danych sejsmicznych 3D największy udział powierzchniowy mają dane należące do Inwestora (PGNiG S.A., Tab. 6.2). Są to zdjęcia zlokalizowane w północnej części obszaru. Pozostałe dane należą do Skarbu Państwa, m.in. zrealizowane w ostatnich latach zdjęcie Maszków – Bolemin, zlokalizowane w centralnej części obszaru.

W zestawieniu tabelarycznym (Tab. 6.1) nie uwzględniono linii krótszych niż 2 km, a także (w Tab. 6.2) nie wzięto pod uwagę dwóch zdjęć sejsmicznych 3D Chartów W i Chartów N, których powierzchnia w granicach obszarach wyniosła odpowiednio 1,1 i 0,8 km².

Informacje źródłowe niniejszego rozdziału – dane sejsmiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru "Gorzów Wielkopolski S", zostały zebrane i wycenione w osobnym miejscu – "Projekcie cyfrowych danych geologicznych". Jest on dostępny do wglądu w ramach "DATA RO-OMu" w Czytelni NAG w trakcie trwania piątej rundy przetargów na koncesje węglowodorowe w Polsce.

Nazwa	Rok	Temat	Właściciel	Długość
T0220175	1975	Miedzyrzecz – Nowy Tomyśl	Skarh Państwa	11.09
T0220175	1975	Międzyrzecz – Nowy Tomysł Międzyrzecz – Nowy Tomyśl	Skarb Państwa	2.12
T0050176	1976	Skwierzyna – Nowa Sól	Skarb Państwa Skarb Państwa	17.25
T0080176	1976	Skwierzyna – Nowa Sól	Skarb Państwa Skarb Państwa	3.38
TC150876	1976	Kostrzyń – Skwierzyna	Skarb Państwa	2.68
TD150876	1976	Kostrzyń – Skwierzyna	Skarb Państwa	5.97
T0010477	1977	Sulecin – Świebodzin	Skarb Państwa	24.16
T0020477	1977	Sulecin – Świebodzin	Skarb Państwa	4,34
T0030477	1977	Sulęcin – Świebodzin	Skarb Państwa	3,06
T0300477	1977	Sulęcin – Świebodzin	Skarb Państwa	20,73
T0320477	1977	Sulęcin – Świebodzin	Skarb Państwa	15,8
T0340477	1977	Sulęcin – Świebodzin	Skarb Państwa	7,73
T0080378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	2,04
T0150378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	24,03
T0160378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	25,6
T0240378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	9,55
T0250378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	6,78
T0290378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	8,59
T0350378	1978	Myślibórz – Krzyż	Skarb Państwa	2,55
T0390378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	2,09
T0460378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	17,6
T0470378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	19,14
T0500378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	9,47
T0510378	1978	Kostrzyn – Gorzów Wielkopolski	Skarb Państwa	13,09
T0150379	1979	Myślibórz – Krzyż	Skarb Państwa	14,78
T0160379	1979	Myślibórz – Krzyż	Skarb Państwa	23,16
T0170379	1979	Myślibórz – Krzyż	Skarb Państwa	7,29
T0180379	1979	Myślibórz – Krzyż	Skarb Państwa	14,6
T0190379	1979	Myśliborz – Krzyż	Skarb Panstwa	13,45
10520379	1979	Mysliborz – Krzyż	Skarb Panstwa	12,65
IA350379	1979	Mysliborz – Krzyz	Skarb Panstwa	10,15
W1/A0184	1984	Choine Cautor Willer Streales Kraisáslais	Skarb Panstwa	0,35
T0250287	1987	Chojna – Gorzow wikp. – Strzeice Krajeńskie	Skarb Panstwa	2,96
T0200287	1987	Kosuzyii Choine Gorzów Wilken Strzelee Kreieńskie	Skarb Panstwa Skarb Daństwa	12.06
T0280288	1900	Chojna – Gorzów Wikp. – Suzeice Krajeńskie	Skarb Państwa	6.44
T0400288	1988	Chojna – Gorzów Wlkp. – Suzelce Krajeńskie	Skarb Państwa	17 71
T0470288	1988	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	Skarb Państwa	4 51
T0400280	1989	Choina – Gorzów Wikp. – Strzelce Krajeńskie	PGNiG S A	13 36
T0420289	1989	Choina – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S A	12,79
T0430289	1989	Choina – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S A	13 44
T0440289	1989	Choina – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	16,77
T0450289	1989	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	12,95
T0460289	1989	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	12,75
T0770290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	11,99
T0780290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	14,47
T0800290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	11,31
T0810290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	24,33
T0820290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	24,89
T0830290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	8,91
T0840290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	10,49
T0850290	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	21,63
T0100293	1990	Chojna – Gorzów Wlkp. – Strzelce Krajeńskie	PGNiG S.A.	2,21
T0190293	1993	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	11,98
T0200293	1993	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	20,87
T0210293	1993	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	15,89
T0320293	1993	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	6,1
T0370293	1993	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNIG S.A.	12,84
T0390293	1993	Dzieduszyce – Gorzow Wikp. – Lubniewice	PGNIG S.A.	11,94
10180294	1994	Dzieduszyce – Gorzow Wikp. – Lubniewice	PUNIC S.A.	0,00
10270294	1994	Dzieduszyce – Gorzow wikp. – Lubniewice	runiu S.A.	15,39

T0310694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	7,75
T0320694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	10,28
T0330694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	12.56
T0340694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	11.65
T0350694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S A	10.24
T0360694	1994	Dzieduszyce – Gorzów Włkp. – Lubniewice	PGNiG S A	11.76
T0370694	1994	Dzieduszyce – Gorzów Włkp. – Lubniewice	PGNiG S A	14.46
T0400294	100/	Dzieduszyce Gorzów Wikp. – Lubniewice	PGNIG S A	13.46
T0400274	100/	Sulecin Miedzyrzecz	PGNIG S A	2.05
T1150604	1994	Dzieduszuce Gerzów Wilten Lubriewice	PCNIG S.A.	2,05
T1150094	1994	Dzieduszyce – Gorzów Wikp. – Lubniewice	PONIC S.A.	0.04
T1170604	1994	Dzieduszyce – Gorzów Wikp. – Lubniewice	PONIO S.A.	9,94
T1170694	1994	Dzieduszyce – Gorzow wikp. – Lubniewice	PGNIG S.A.	9,04
T1330694	1994	Dzieduszyce – Gorzow Wikp. – Lubniewice	PGNIG S.A.	11,74
T1340694	1994	Dzieduszyce – Gorzow Wlkp. – Lubniewice	PGNiG S.A.	12,1
T1350694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGN1G S.A.	12,07
T1360694	1994	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	10,26
T0210295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,85
T0220295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,55
T0230295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	10,93
T0240295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	10,86
T0250295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	10,29
T0260295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	9,73
T0270295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	15
T0280295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	13,41
T0290295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	15,27
T0300295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	16.85
T0310295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	20.51
T0320295	1995	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S A	15.48
T0330295	1995	Dzieduszyce – Gorzów Włkp. – Lubniewice	PGNiG S A	17 71
T0340295	1995	Dzieduszyce – Gorzów Włkp. – Lubniewice	PGNiG S A	17,71
T0350295	1995	Dzieduszyce – Gorzów Wikp. – Lubniewice	PGNiG S A	14.77
T0360295	1995	Dzieduszyce – Gorzów Wikp. – Lubniewice	PGNiG S A	16.07
T0370295	1005	Dzieduszyce Gorzów Wikp. Lubniewice	PGNIG S A	20.56
T0370295	1995	Dzieduszyce – Gorzów Wikp. – Lubniewice	PCNIG S A	18.68
T0200205	1995	Dzieduszyce – Gorzów Wikp. – Lubniewice	PCNIG S.A.	24.84
T0390293	1995	Dzieduszyce – Gorzów Wilter – Lubriewice	PONIO S.A.	24,04
T0400293	1995	Dzieduszyce – Gorzów Wikp. – Lubilewice	PONIO S.A.	10,05
T0410293	1995	Dzieduszyce – Gorzów wikp. – Lubilewice	PONIO S.A.	25,41
T0420295	1995	Dzieduszyce – Gorzów Wikp. – Lubniewice	PGNIG S.A.	25,88
10430295	1995	Dzieduszyce – Gorzow Wikp. – Lubniewice	PGNIG S.A.	12,48
10440295	1995	Dzieduszyce – Gorzow Wikp. – Lubniewice	PGNIG S.A.	10,57
10440695	1995	Sulęcin – Międzyrzecz	PGNIG S.A.	6
10550695	1995	Sulęcin – Międzyrzecz	PGN1G S.A.	3,74
10/40695	1995	Sulęcin – Międzyrzecz	PGN1G S.A.	2,41
10300696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,89
10310696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	12,43
10320696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,22
T0330696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	17,27
T0340696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	11,43
T0350696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	24,9
T0360696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	25,02
T0450296	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,97
T0450696	1996	Dzieduszyce - Gorzów Wlkp Lubniewice	PGNiG S.A.	7,43
T0500696	1996	Dzieduszyce – Gorzów Wlkp. – Lubniewice	PGNiG S.A.	8,87
T0510696	1996	Sulęcin – Międzyrzecz	PGNiG S.A.	2,86
T0520696	1996	Sulęcin – Międzyrzecz	PGNiG S.A.	2,76
T0590696	1996	Sulęcin – Międzyrzecz	PGNiG S.A.	7,38
T0010697	1997	Sulęcin – Międzyrzecz	PGNiG S.A.	7,32
T0530697	1997	Sulęcin – Międzyrzecz	PGNiG S.A.	5,34
T0540597	1997	Sulęcin – Międzyrzecz	PGNiG S.A.	2,31
T0560597	1997	Sulęcin – Międzyrzecz	PGNiG S.A.	9,08
T0570597	1997	Sulecin – Miedzvrzecz	PGNiG S.A.	7,57
T0580597	1997	Sulecin – Miedzyrzecz	PGNiG S.A.	5,44
T0710497	1997	Sulęcin – Międzyrzecz	PGNiG S.A.	2,38

T0180498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	10,45
T0190498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	7,37
T0200498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	5,75
T0210498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	8,78
T0220498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	7,71
T0230498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	5,27
T0260498	1998	Gorzów Wielkopolski – Międzychód	PGNiG S.A.	7,18
T0560499	1999	Międzyrzecz – Międzychód	PGNiG S.A.	8,91
T0570499	1999	Międzyrzecz – Międzychód	PGNiG S.A.	3,6
T0590499	1999	Międzyrzecz – Międzychód	PGNiG S.A.	7,52
T0600499	1999	Międzyrzecz – Międzychód	PGNiG S.A.	8,29
T0110500	2000	Międzyrzecz – Międzychód	PGNiG S.A.	8,41
T0180500	2000	Międzyrzecz – Międzychód	PGNiG S.A.	5,33
			Suma:	
			Skarb Państwa	407,15
			Inwestor	1145,59

Tab. 6.1. Lista linii sejsmicznych wykonanych na obszarze przetargowym "Gorzów Wielkopolski S".

Nazwa	Rok wykonania	Koncesje (dla badań wykonanych po 2001 r.)	Właściciel	Pow. [km ²]
Dzieduszyce – Stanowice 3D	1997		PGNiG S.A.	86,92
Gorzów Wielkopolski – Santok 3D	2000		PGNiG S.A.	168,76
Nowa Wieś – Templewo 3D	2001		PGNiG S.A.	4,42
Wędrzyn 3D	2005	Sulęcin-Międzyrzec 15/97/p, Lubniewice 21/95/p	Skarb Państwa	32,99
Sulęcin- 3D	2013	Sulęcin-Międzyrzec	Skarb Państwa	4,84
Maszków – Bolemin 3D	2014	15/97/p, Lubniewice 21/95/p, Chartów-Ośno Lubuskie 26/99/p	Skarb Państwa	119,28
			Suma:	
			Skarb Państwa	157,11
			Inwestor	260,1

Tab. 6.2. Lista zdjęć sejsmicznych 3D wykonanych na obszarze przetargowym "Gorzów Wielkopolski S".

Fig. 6.1. Badania sejsmiczne wykonane na obszarze przetargowym "Gorzów Wielkopolski S" i w jego sąsiedztwie wraz z lokalizacją głębokich otworów wiertniczych i złóż węglowodorów.

Fig. 6.2. Badania sejsmiczne wykonane na obszarze przetargowym "Gorzów Wielkopolski S" (przycięte do granicy obszaru) wraz z lokalizacją głębokich otworów wiertniczych i złóż węglowodorów.

7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE 7.1. BADANIA GRAWIMETRYCZNE

Prace grawimetryczne, zmierzające do pokrycia obszaru przedstawionego na Fig. 7.1 zdjęciem o charakterze półszczegółowym, rozpoczęto pod koniec lat 60-tych XX w. Obszar przetargowy "Gorzów Wielkopolski S" jest pokryty zdjęciem "Niecka Szczecińska i zewnętrzna strefa Monokliny Przedsudeckiej" (Kleszcz, 1973). Od wschodu zdjęcie to sąsiaduje z tematem "Synklinorium Szczecińsko-Mogileńskie" (Bochnia i Duda, 1968), a od południa z tematem "Gorzów - Jarocin" (Duda i Kruk, 1973). Wszystkie trzy zdjęcia zostały wykonane ze średnim zagęszczeniem punktów pomiarowych 2,5 pkt/km². Współrzedne punktów pomiarowych zostały wyznaczone w układzie Borowa Góra, a wartości anomalii Bouguera obliczone w systemie poczdamskim z przyśpieszeniem normalnym wg wzoru Helmerta z 1901 r.

Stworzenie komputerowego banku danych grawimetrycznych umożliwiło opracowanie i opublikowanie "Atlasu grawimetrycznego Polski" (Królikowski i Petecki, 1995), w którym anomalie grawimetryczne zostały obliczone w międzynarodowym systemie grawimetrycznym IGSN 71 (International Gravity Standardization Net, 1971), z uwzględnieniem formuły Moritza na pole normalne dla elipsoidy odniesienia GRS 80 (Geodetic Reference System, 1980). Atlas zawiera mapy anomalii grawimetrycznych o charakterze przeglądowym w skalach 1 : 500 000 i 1:750 000. Tak opracowane dane pomiarowe zdjęcia poszczegółowego są dostępne w CBDG (2021), w postaci cyfrowego banku danych. Współrzędne stacji (punktów) zostały przeliczone na układ 1992 przez Instytut Geodezji i Kartografii (Kryński, 2007). Należy jednak pamiętać, że tak przeliczone lokalizacje charakteryzują się błędem przekraczającym w niektórych przypadkach 100 m. Problem ten zostanie wyeliminowany w ciągu najbliższych lat, ponieważ, w 2021 r., jest planowane rozpoczęcie I etapu projektu realizowanego na zlecenie Ministerstwa Klimatu Środowiska, а finansowanego przez NFOŚiGW, którego celem jest m.in. korekta błędów lokalizacji stanowisk grawimetrycznych, błędów wyrównania osnowy grawimetrycznej, wykonanie nowej redukcji danych z uwzględnieniem współcześnie obowiązujących systemów odniesienia. W efekcie (który ma zostać osiagniety w połowie 2024 r.) danym grawimetrycznym m.in. pokrywającym obszar przetargowy "Gorzów Wielkopolski S" zostaną przypisane poprawne lokalizacje określone w państwowym układzie współrzędnych geodezyjnych PUWG 1992.

Wyżej opisane problemy z układem Borowa Góra nie dotyczą zdjęć szczegółowych, których w rejonie obszaru przetargowego "Gorzów Wielkopolski S" jest kilka. Są to (z jednym wyjątkiem) zdjęcia profilowe. Pierwszym z nich jest regionalny profil Gorzów Wielkopolski - Bytów (Kleszcz, 1975; Fig. 7.1), wykonany z dwustumetrowym krokiem pomiarowym. Dwa kolejne zdjęcia profilowe ukierunkowane były na poszukiwanie złóż węgla brunatnego. Pierwsze z nich, zlokalizowane w zachodniej części analizowanego obszaru (Okulus i in., 1981; Fig. 7.1), zostało wykonane z krokiem 50 m, a drugie (Ostrowska i Pisuła, 1991; Fig. 7.1) – na wschód od obszaru przetargowego "Gorzów Wielkopolski S" - wykonano z krokiem stumetrowym.

Fig. 7.1. Lokalizacja stanowisk grawimetrycznych z pomiarów półszczegółowych i szczegółowych (profile grawimetryczne) na obszarze przetargowym "Gorzów Wielkopolski S" (na podstawie danych CBDG, 2021).

Profile widoczne w północno-wschodnim narożu Fig. 7.1 należą do tematu: Goleniów – Stargard Szczeciński – Choszczno – Krzyż (Smrek, 1981), a zostały wykonane z krokiem pomiarowym 50 m. Ostatnim zdjęciem szczegółowym, widocznym na Fig. 7.1 jest zdjęcie "Sulęcin" (Łyszkowska, 1975), ukierunkowane na śledzenie powierzchni podpermskiej. W tym przypadku profile zostały zrealizowane z dwustumetrowym krokiem pomiarowym.

W latach 90-tych XX w., na zlecenie PGNiG S.A. zostało wykonane nowe zdjęcie półszczegółowe o średnim zagęszczeniu 5,5 pkt/km² (Musiatewicz i Lisowski, 1993; Fig. 7.1). Zdjęcie to niestety nadal dokumentowano w układzie Borowa Góra. Było ono opracowane w formie cyfrowej, ale obecnie nie jest w takiej formie dostępne w CBDG. Są to jedyne dane grawimetryczne z omawianego obszaru, nie będące własnością Skarbu Państwa. Badania pozwoliły na przeprowadzenie interpretacji ukierunkowanej na rozpoznanie struktur w dolnym cechsztynie i czerwonym spągowcu. Mapy anomalii resztkowych, wykonane dla różnych promieni (metoda Griffina) umożliwiły powiązanie ich ze strukturami m.in. Sulęcina, Chartowa, Lubiszyna, Gorzowa Wlkp., Korbielewka, Międzyrzecza.

Fig. 7.2. Mapa anomalii grawimetrycznych w redukcji Bouguera w rejonie obszaru przetargowego "Gorzów Wielkopolski S" (Królikowski i Petecki, 1995).

Bogaty materiał pomiarowy stał się podstawą do wielu opracowań interpretujących obraz grawitacyjny obszaru obecnego zainteresowania (Cieśla i in., 1997; Gaczyński i in., 1986; Kozera i Wronicz, 1976; Królikowski i in., 1985, 1986).

Mapa anomalii grawimetrycznych w redukcji Bouguera została przedstawiona na Fig. 7.2. Według podziału na regiony grawimetryczne, zaproponowanego przez Królikowskiego i Peteckiego (1995), obszar przetargowy "Gorzów Wielkopolski S" znajduje się w północno-zachodnim krańcu Niżu Szczecińsko-Mogileńsko-Miechowskiego,

w tzw. depresji nadnoteckiej. Pochodzenie tej anomalii nie zostało definitywnie wyjaśnione. Większość badaczy skłonna jest zakładać dominujący udział podłoża krystalicznego w jej powstaniu (Królikowski i Petecki, 1995). Nie wyklucza się również wpływu orogenu waryscyjskiego. Potwierdzeniem takich przypuszczeń jest silna korelacja pomiędzy osią gradientu grawimetrycznego w północno-wschodniej części Fig. 7.2 z obserwowanym zasięgiem waryscyjskich deformacji fałdowo-nasuwczych (Żelaźniewicz i in., 2011).

Na Fig. 7.3 przedstawiono mapę gradientu pionowego z anomalii w redukcji Bouguera. Gradient pionowy uwypukla drobne, lokalne anomalie, które należy wiązać z płytszymi źródłami, "wygaszając" jednocześnie anomalie o charakterze regionalnym. Wyraźnie widoczna jest korelacja pomiędzy obszarami o podwyższonych wartościach gradientu pionowego, a zasięgami platform węglanowych zaczerpniętych z mapy Czekańskiego i in. (2010).

Fig. 7.3. Mapa gradientu pionowego z anomalii grawimetrycznych w redukcji Bouguera (Wybraniec, niepublikowane). Białe poligony – zasięgi platform węglanowych według Czekańskiego i in. (2010).

Dokumentacje grawimetryczne

- Bochnia, N., Duda, W. 1968. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Synklinorium Szczecińsko-Mogileńskie, 1967. Inw. 1435, Arch. CAG PIG, Warszawa.
- Cieśla, E., Petecki, Z., Wybraniec, S., Gientka, D., Staniszewska, B., Twarogowski, J., Żółtowski, Z. 1997. Kompleksowa interpretacja grawimetrycznomagnetyczna Polski zachodniej, 1997 rok. Inw. 7/98, 4746/2015, Arch. CAG PIG, Warszawa.
- Duda, W., Kruk, B. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Gorzów – Jarocin, 1971-1972. Inw. 1754, Arch. CAG PIG, Warszawa.
- Gaczyński, E., Petecki, Z., Zientara, P., Wybraniec, S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze

ujemnych anomalii grawimetrycznych w północno-zachodniej Polsce, 1986. Inw. 34526, Arch. CAG PIG, Warszawa.

- Kleszcz, T. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Niecka Szczecińska i zewnętrzna strefa Monokliny Przedsudeckiej, (II etap badań), 1972. Inw. 1745, Arch. CAG PIG, Warszawa.
- Kleszcz, T. 1975. Dokumentacja badań grawimetryczno-magnetycznych. Temat: Profile regionalne Chociwel - Lębork (A) oraz Gorzów Wielkopolski – Bytów (B), 1974-1975. Inw. 1859, Arch. CAG PIG, Warszawa.
- Kozera, A., Wronicz, S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, Arch. CAG PIG, Warszawa.
- 8. Królikowski, C., zespół 1985. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od

podłoża podpermskiego północnozachodniej Polski, etap I – Model strukturalno-gęstościowy. Inw. 33910, Arch. CAG PIG, Warszawa.

- Królikowski, C., zespół 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap II /ostatni/ - Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, Arch. CAG PIG, Warszawa.
- Lyszkowska, J. 1975. Dokumentacja szczegółowych badań grawimetrycznych. Temat: Sulęcin, 1974 i 1975 r. Inw. 1865, Arch. CAG PIG, Warszawa.
- Musiatewicz, M., Lisowski, K. 1993. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Zachodnia Polska, obszar: Chojna – Międzyrzecz, 1990

7.2. BADANIA MAGNETYCZNE

Pierwszym zdjęciem magnetycznym wykonanym w rejonie obszaru przetargowego "Gorzów Wielkopolski S" było zdjęcie (obecnie o wartości jedynie archiwalnej) pionowej składowej ziemskiego pola magnetycznego Z, o charakterze regionalnym, tj. wykonane z zagęszczeniem rzędu 0,22 pkt/km² (Kozera, 1955; Fig. 7.4). Zdjęcie całkowitego wektora ziemskiego pola magnetycznego T zostało zrealizowane na początku lat 90-tych XX w. (Kosobudzka, 1991; Fig. 7.4). Jest to zdjęcie rozproszone, naziemne, o charakterze półszczegółowym - wykonane ze średnim zagęszczeniem 3 pkt/km².

Mapa anomalii magnetycznych ∆T została przedstawiona na Fig. 7.5. Według podziału zaproponowanego przez Peteckiego i Rosowiecką (2017), obszar przetargowy "Gorzów - 1993. Inw. 4375/2013, Arch. CAG PIG, Warszawa.

- 12. Okulus, H., Wojas, A., Jakubiak, H., Konarczak, M. 1981. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawimetrycznych (obszary Sosnowo, Witnica, Górzyca, Ośno), rok badań 1980. Inw. 2110, Arch. CAG PIG, Warszawa.
- 13. Ostrowska, K., Pisuła, M. 1991. Dokumentacja szczegółowych badań grawimetrycznych dla tematu: Poszukiwanie złóż węgla brunatnego w obrębie anomalii grawimetrycznych, II faza, 1990 rok. Inw. 1281/91, Arch. CAG PIG Warszawa.
- 14. Smrek, A. 1981. Dokumentacja szczegółowych profilowych badań grawimetrycznych. Temat: Goleniów – Stargard Szczeciński – Choszczno – Krzyż, II etap, 1980. Inw. 2109, Arch. CAG PIG, Warszawa.

Wielkopolski S" znajduje się w obrębie domeny centralnej i zachodniej Polski (CWPd -Central and Western Poland domain). Domena ta jest rozległym niżem magnetycznym, w obrębie którego brak jest silnych anomalii o znaczeniu regionalnym. Brak takich anomalii wskazuje: albo na znacząco niskie namagnesowanie skał podłoża krystalicznego, albo na niezdeformowany tektonicznie strop tegoż podłoża, na znaczących głębokościach. Zauważyć należy, że zachodnie przedłużenie CWPd na terenie wschodnich Niemiec, również zdominowane przez anomalie ujemne (Wonik i in., 2001; Gabriel i in., 2011), jest powiązane z obecnością miąższej, niskoprędkościowej górnej skorupy (Guterch i Grad, 2006).

Fig. 7.4. Lokalizacja stanowisk pomiarowych pola geomagnetycznego na obszarze przetargowym "Gorzów Wielkopolski S" (na podstawie danych CBDG, 2021).

Fig. 7.5. Mapa anomalii modułu całkowitego pola geomagnetycznego T w rejonie obszaru przetargowego "Gorzów Wielkopolski S" (Petecki i Rosowiecka, 2017).

Dokumentacje magnetyczne

1. Kosobudzka, I. 1991. Dokumentacja półszczegółowych badań magnetycznych T. Temat: Niecka Szczecińska i Monoklina Przedsudecka rok 1981-1989, rejon Sulęcin – Myślibórz oraz Kościan – Krzyż, Zbąszyn – Międzychód, Choszczno – Ińsko, Cedynia – Pyrzyce. Inw. 1259/91, Arch. CAG PIG, Warszawa.

7.3. BADANIA MAGNETOTELLURYCZNE

Jednymi z pierwszych badań magnetotellurycznych w rejonie obszaru przetargowego "Gorzów Wielkopolski S" był temat "Myślibórz – Międzyrzecz" (Śmiechowski, 1973; Fig. 7.6). Celem prac było wykrycie struktur podpermskich oraz stref występowania czerwonego spągowca. Wykonane badania były kontynuacją i rozwinięciem wcześniejszych prac wykonanych w 1968 roku w rejonie Gorzów Wielkopolski – Chojna (Śmiechowski, Kozera, A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Grupę Magnetyczną II PPG w 1955 r. Inw. 40604, Arch. CAG PIG, Warszawa.

1968), których celem było kartowanie powierzchni stropowej cechsztynu. Analizy wykazały jednak, ze poziomem oporowym w tym rejonie nie może być cechsztyn lecz poziom starszy od niego. Zaznaczony na Fig. 7.6 żółty obszar to wynik połączenia obu wymienionych powyżej tematów w ramach wspólnej interpretacji przez Śmiechowskiego (1973). Pomiary te nie są dostępne w formie cyfrowej w CBDG (2021).

Fig. 7.6. Lokalizacja sondowań magnetotellurycznych na obszarze przetargowym "Gorzów Wielkopolski S" (na podstawie danych CBDG, 2021; wybrane przekroje zilustrowano na Fig. 7.7–7.9).

W latach 2007-2008 wykonano pierwszy etap realizacji projektu prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej (Miecznik i Stefaniuk, 2005). Etap ten obejmował wykonanie pomiarów na dwóch profilach BMT-5 i D-PL. Pierwszy z profili przecina obszar przetargowy "Gorzów Wielkopolski S" (Fig. 7.6). Profil ten ma 300 km długości i przebiega wzdłuż linii profilu refrakcyjnego P2 (program POLONAISE'97). Celem pomiarów było zbadanie geometrii krawędzi kratonu, szczególnie w utworach pokrywy platformowej. Wyniki przedstawiono jako przekroje opornościowe z interpretacją geologiczną w skali poziomej 1 : 500 000. Na bazie wyników magnetotellurycznych, sejsmicznych i otworowych opracowano model geofizyczno-geologiczny pokrywy osadowej wzdłuż profilu BMT-5 (Dziewińska w Stefaniuk i in., 2008; Fig. 7.7).

Fig. 7.7. Model geofizyczno-geologiczny pokrywy osadowej wzdłuż profilu BMT-5 (Dziewińska, w: Stefaniuk i in., 2008). Czerwonym prostokątem zaznaczono fragment profilu znajdujący się w obrębie obszaru przetargowego "Gorzów Wielkopolski S".

W ramach przedsięwzięcia "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (Hot Dry Rocks) w Polsce" (Wójcicki i in., 2013) wykonany został zestaw 320 sondowań magnetotellurycznych wzdłuż dziewięciu profili (Stefaniuk i in., 2011), z których dwa (profile 3-HDR-10 i 7-HDR-10) wkraczają na obszar przetargowy "Gorzów Wielkopolski S" (Fig. 7.6), a pozostałe sąsiadują bezpośrednio z obszarem od strony północno-zachodniej. Rejestrowano pięć składowych pola magnetotellurycznego: Ex, Ey Hx, Hy, Hz. W wyniku interpretacji danych przedstawiono mapy rozkładu oporności wzdłużnej utworów podcechsztyńskich, miąższości podcechsztyńskich utworów niskooporowych i wysokooporowych.

Na Fig. 7.8 został przedstawiony przekrój geoelektryczny wzdłuż profilu 7-HDR-10. Pod względem geoelektrycznym jest to ośrodek sześciowarstwowy. Pierwsza warstwa, wysokooporowa, o miąższości do 200 m, związana jest z utworami czwartorzędowymi. Poniżej występuje warstwa o opornościach rzędu 5-15 Ωm, z wkładkami niskooporowymi (<3 Ω m). W obrazie geoelektrycznym w interwale głębokościowym 0-1500 m zauważyć można dwie strefy wysokooporowe (pomiędzy sondowaniami H7_12p – H7_13p i H7_23 – H7 28), które uznano za niewiarygodne. W interwale głębokości 1500-2500 m p.p.m., pomiędzy sondowaniami H7_15 - H7_21 oraz H7_29 - H7_34 zauważalne jest zwiekszenie oporności, które może być związane z pojawieniem się skał węglanowych w utworach triasu środkowego i dolnego. Pod kompleksem niskooporowym zalegają wysokooporowe utwory cechsztynu, które charakteryzują się względnie stałą miąższością i zapadaniem w kierunku północnym. Poniżej znajduje się warstwa o obniżonej oporności (3-15 Ωm). Strop podścielającej całość warstwy wysokooporowej najpłycej zalega w południowej części profilu. Lokalne wyniesienia stropu podłoża można zaobserwować w rejonie sondowań H7_7 – H7_8 i pomiędzy sondowaniami H7_14p – H7_18p.

Na Fig. 7.9 został przedstawiony przekrój geoelektryczny wzdłuż profilu 3-HDR-10. Pod względem geoelektrycznym ośrodek geologiczny można określić jako sześciowarstwowy. Przynależność stratygraficzna czerech pierwszych warstw (do cechsztynu włącznie) jest taka sama jak w przypadku poprzedniego przekroju. Strefa charakteryzująca się podwyższonymi opornościami pomiędzy sondowaniami H3_18 – H3_24 w interwale głębokości 0–1500 m jest niejednoznaczna w interpretacji, co jest związane z gorszą jakością danych pomiarowych spowodowaną bliskim sasiedztwem miasta Gorzów Wielkopolski. Wskazać można także jeszcze zwiększenie oporności utworów dolnego triasu w okolicach sondowań H3_3 – H3_4 oraz H3_8 – H3_9 wywołane zapewne zwiększeniem udziału skał węglanowych. Poniżej spągu cechsztynu zalega warstwa charakteryzująca się opornościami rzędu kilkunastu Ω m. Strop zalegającej pod nią wysokooporowej warstwy najpłycej występuje w rejonie sondowań H3_1 – H3_3 i łagodnie opada w kierunku ENE i ostro w kierunku WSW. Na profilu 3-HDR-10 wyinterpretowane zostały najwyższe wartości oporności utworów podcechsztyńskich.

Fig. 7.8. Przekrój geoelektryczny wzdłuż profilu 7-HDR-2010 (Stefaniuk i in., 2011). Lokalizacja przekroju na Fig. 7.6.

Fig. 7.9. Przekrój geoelektryczny wzdłuż profilu 3-HDR-2010 (Stefaniuk i in., 2011). Lokalizacja przekroju na Fig. 7.6.

Dokumentacje magnetotelluryczne

- Miecznik, J., Stefaniuk, M. 2005. Projekt prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej – etap I. Inw. 5677/2009; 1349/2005, Arch. CAG PIG, Warszawa.
- Stefaniuk, M., Wojdyła, M., Petecki, Z., Pokorski, J. 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych) Etap I: 2007 – 2008. Inw. 1277/2009; 3090/2014; 4547/2015; 4548/2015, Arch. CAG PIG, Warszawa.
- Stefaniuk, M., Wojdyła, M., Sada, M. 2011. Dokumentacja badań magnetotellurycznych dla przedsięwzięcia inwestycyjnego z dziedziny potrzeb geologii pod tytułem: "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (Hot Dry Rocks) w Polsce". Inw. 762/2013; 8115/2016; 8116/2016, Arch. CAG PIG, Warszawa.
- Śmiechowski, R. 1968. Opracowanie badań tellurycznych wykonanych w rejonie: Kostrzyń – Gorzów Wielkopolski – Chojna przez grupę telluryczną PGGN w 1968 roku. Inw. 41016, Arch. CAG PIG, Warszawa.
- Śmiechowski, R. 1973. Opracowanie badań magnetotellurycznych wykonanych w rejonie: Myślibórz – Międzyrzecz przez grupę telluryczną PGGN w 1972 roku. Inw. 44222, Arch. CAG PIG, Warszawa.

8. PODSUMOWANIE

Perspektywy naftowe poszczególnych horyzontów stratygraficznych oraz związane z nimi koncepcje poszukiwawcze na obszarze przetargowym "Gorzów Wielkopolski S" zostały opisane w rozdziale 2. Ich podstawą są dane dotyczące systemów naftowych, złóż węglowodorów zlokalizowanych na obszarze przetargowym i w jego okolicy, otworów wiertniczych, sejsmiki i grawimetrii, magnetyki i magnetotelluryki (rozdziały 3–7). Poniżej zestawiono najważniejsze informacje o obszarze przetargowym "Gorzów Wielkopolski S" w formie karty informacyjnej, a także zaproponowano minimalny program fazy poszukiwawczo-rozpoznawczej przyszłej koncesji, której zakres umożliwi odkrycie złoża.

	Nazwa obszaru:	"GORZÓW WIELKOPOLSKI S"		
e ogólne		Na lądzie		
		Arkusze mapy topograficznej w skali 1 : 50 000: Gorzów Wielkopolski 387, Santok		
		(Górki) 388, Krzeszyce (Lubniewice) 426, Bledzew 427		
		Fragmenty bloków koncesyjnych nr: 183		
	Lokalizacja:	Położenie administracyjne: województwo lubuskie: powiat Gorzów Wielkopolski,		
		gmina m. Gorzów Wielkopolski (3,71%); powiat gorzowski, gminy: Lubiszyn (1,61%),		
		Witnica (2,81%), Bogdaniec (15,46%), Deszczno (22,28%), Santok (1,73%); powiat		
an		sulęciński, gminy: Krzeszyce (16,69%), Lubniewice (8,45%); powiat międzyrzecki,		
D		gminy Skwierzyna (6,68%), Bledzew (20,58%)		
	Тур:	poszukiwanie i rozpoznawanie złóż węglowodorów		
-		oraz wydobywanie węglowodorów ze złóż		
	Czas obowiązywania:	koncesja na 30 lat w tym:		
		faza poszukiwawczo-rozpoznawcza (5 lat),		
		faza wydobywcza – po uzyskaniu decyzji inwestycyjnej		
Udziały		zwycięzca przetargu 100%		
Powierzchnia [km ²]		691,38		
	Rodzaj złoża	konwencjonalne złoża gazu ziemnego i ropy naftowej		
Piętra strukturalne		kenozoiczne		
		laramijskie		
		waryscyjskie		
Systemy naftowe		I. permski/cechsztyński – dolomitu głównego		
Skały zbiornikowe		I. zdolomityzowane greinstony i pakstony dolomitu głównego		
Skały macierzyste		I. madstony, bandstony, pakstony, greinstony dolomitu głównego		
Skały uszczelniające		I. od spągu izolowane przez utwory ewaporatowo-anhydrytowe cyklotemu PZ1,		
		od stropu ewaporaty cyklotemu PZ2		
Typ pułapki		I. strukturalne, litologiczne, mieszane		
Złoża rozpoznane		Jeniniec (NR4941). Stanowice (GZ9505).		
na	i i w pobližu obszaru	Dzieduszyce (NR10584), Krobielewko (GZ19116)		
	przetargowego			
		19/5 Międzyrzecz – Nowy Tomysl 2D, 2 profile (Skarb Panstwa)		
	1976 Skwierzyna – Nowa Sól 2D, 2 profile (Skarb Państwa)			
	1976 Kostrzyn – Skwierzyna 2D, 2 profile (Skarb Państwa)			
		19// Sulęcin – Swiebodzin 2D, 6 profili (Skarb Panstwa)		
Tractizawana zdiacia sai		1970 NUSULZYII – UUIZUW WIEIKUPUISKI ZD, 11 PIUIIII (SKarb Palistwa) 1978-1979 Myślibórz – Krzyż 2D, 78 profili (Skarb Państwa)		
	alizowane zdiecia sei-	1970-1979 Wyshouz - Kizyz 2D, 70 profil (Skarb Panstwa) 1984 Chociwel - Czaplinek 2D, 1 profil (Skarb Państwa)		
zreanzowane zujęcia sej- smiczne, rejon, (właściciel)		1904 Chochwel – Czapinick 2D, 1 profil (Skarb Państwa) 1987 Kostrzyń 2D, 1 profil (Skarb Państwa)		
		1987-1988 Choina – Gorzów Wlkn – Strzelce Kraieńskie 2D 5 profili (Skarb Państwa)		
		1989-1993 Chojna – Gorzów Wlkp. – Strzelce Krajeńskie 2D, 5 profili (PGNiG S A)		
		1993-1996 Dzieduszyce – Gorzów Wlkp, – Lubniewice 2D, 57 profili (PGNiG S.A.)		
		1994-1997 Sulecin – Miedzyrzecz 2D. 14 profili (PGNiG S.A.)		
		1998 Gorzów Wielkopolski – Międzychód 2D, 7 profili (PGNiG S.A.)		
		1999-2000 Międzyrzecz – Międzychód, 6 profili (PGNiG S.A.)		
		1994-1997 Sulęcin – Międzyrzecz 2D, 14 profili (PGNiG S.A.) 1998 Gorzów Wielkopolski – Międzychód 2D, 7 profili (PGNiG S.A.) 1999-2000 Międzyrzecz – Międzychód, 6 profili (PGNiG S.A.)		

Karta informacyjna obszaru przetargowego "Gorzów Wielkopolski S"

	1997 Dzieduszyce – Stanowice 3D (PGNiG S.A.)		
	2000 Gorzów Wielkopolski – Santok 3D (PGNiG S.A.)		
	2001 Nowa Wieś – Templewo 3D (PGNiG S.A.)		
	2005 Wędrzyn 3D (Skarb Państwa)		
	2013 Sulęcin 3D (Skarb Państwa)		
	2014 Maszków – Bolemin 3D (Skarb Państwa)		
	Baczyna 1 (3204,0 m), Baczyna-2 (3167,0 m), Brzozowa 1 (3218,0 m),		
	Ciecierzyce 1/1K (3092,0/3017,0 m), Dzierżów 1K/1K-BIS (3130,0/3040,0 m),		
Otwory reperowe	Jeniniec 4 (3290,0 m), Jeżyki 1 (3401,0 m), Lubno 1 (3217,0 m),		
(głębokość)	Maszków 1 (3168,0 m), Płonica 1 (3353,0 m), Racław 1K (3256,0 m),		
	Stanowice 1 (3200,0 m), Stanowice 2 (3200,0 m), Stanowice 3 (3261,0 m),		
	Wędrzyn 1 (3170,0 m), Wędrzyn 5 (3210,0 m)		

Proponowany minimalny program prac fazy poszukiwawczo-rozpoznawczej

- interpretacja i analiza archiwalnych danych geologicznych
- wykonanie badań sejsmicznych 2D (80 km PW) lub 3D (50 km²) lub reinterpretacja danych sejsmicznych 2D (80 km)
- wykonanie jednego odwiertu wiertniczego o maksymalnej głębokości 4000 m TVD sięgającego utworów podłoża permu wraz z obligatoryjnym rdzeniowaniem interwałów perspektywicznych

9. MATERIAŁY ŹRÓDŁOWE

- Bochnia, N., Duda, W. 1968. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Synklinorium Szczecińsko-Mogileńskie, 1967. Inw. 1435, Arch. CAG PIG, Warszawa.
- Buniak, A., Mikołajewski, Z., Wagner, R. 2013a. Mapa paleogeograficzna wapienia cechsztyńskiego (Ca1), 1 : 500 000. PGNiG, Departament Poszukiwania Złóż, Ośrodek Północ w Pile; Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Buniak, A., Kwolek, K., Nowicka, A., Dyjaczyński, K., Papiernik, B., Peryt, T., Protas, A., Wagner, R. 2013b. Mapa perspektyw poszukiwawczych w utworach dolomitu głównego. PGNiG, Oddział w Zielonej Górze; Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Burdzy, M., Kuś, A. 2001. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Dodatek nr 1. Inw. 323/2002, Arch. CAG PIG, Warszawa.
- Burdzy, M., Kuś, A. 2002. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Dodatek nr 2. Inw. 324/2002, Arch. CAG PIG, Warszawa.
- Bylina, P. 2006. Low-grade metamorphism of Permian mafic rocks from the Gorzów Wielkopolski block (fore-Sudetic monocline, NW Poland): age and mechanism. *Mineralogia Polonica*, **37**, 3–50.
- **CBDG**, **2021**. Centralna Baza Danych Geologicznych. <u>http://geoportal.pgi.gov.pl</u>
- Chruścińska, J., Wiśniewska, S. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Ciecierzyce 1 oraz Ciecierzyce 1K. Inw. 8554/2019, Arch. CAG PIG, Warszawa.
- Chruścińska, J., Wojtysiak, B. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Racław 1K. Inw. 7698/2019, Arch. CAG PIG, Warszawa.
- Chruścińska, J., Wojtysiak, B., Rostkowski, R. 2015. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej

i gazu ziemnego Kostrzyn – Myślibórz nr 22/95/p. Inw. 2727/2015, Arch. CAG PIG, Warszawa.

- Cieśla, E., Petecki, Z., Wybraniec, S., Gientka, D., Staniszewska, B., Twarogowski, J., Żółtowski, Z. 1997. Kompleksowa interpretacja grawimetrycznomagnetyczna Polski zachodniej, 1997 rok. Inw. 7/98, 4746/2015, Arch. CAG PIG, Warszawa.
- Cudak, J., Razowska-Jaworek, L. 2004. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Witnica (0386). Państwowy Instytut Geologiczny, Warszawa.
- Czaja, E. 1992. Opracowanie pomiaru średnich prędkości w odwiercie Maszków 1. Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Lubno 1. M25 VS, Arch. CAG PIG, Warszawa.
- Czaja, E. 1993. Opracowanie pomiarów średnich prędkości w otworze Brzozowa 1. B158 VS, Arch. CAG PIG, Warszawa.
- Czajka, D. 2019. Dokumentacja geologiczna likwidowanego otworu wiertniczego Baczyna-2. Inw. 7667/2019, Arch. CAG PIG, Warszawa
- Czekański, E., Liberska, H., Michalus, L. 1989. Dokumentacja geologiczna złoża ropy naftowej Jeniniec. Inw. 16487 CUG, Arch. CAG PIG, Warszawa.
- Czekański, E., Kowolek, K., Mikołajewski, Z. 2010. Złoża węglowodorów w utworach cechsztyńskiego dolomitu głównego (Ca2) na bloku Gorzowa. *Przegląd Geologiczny*, 58, 695–703.
- Dadlez, R. 1974. Types of local tectonic structures in the Zechstein-Mesozoic complex of northwestern Poland. *Biuletyn Instytutu Geologicznego*, 274, 149–177.
- Dadlez, R., Iwanow, A., Leszczyński, K., Marek, S. 1998a. Mapa tektoniczna kompleksu cechsztyńsko-mezozoicznego, 1 : 500 000. Państwowy Instytut Geologiczny, Warszawa.
- Dadlez, R., Marek, S., Pokorski, J. 1998b. Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce:

1 : 2 500 000 . Państwowy Instytut Geologiczny, Warszawa.

- Dadlez, R., Marek, S., Pokorski, J. 2000. Mapa geologiczna Polski bez utworów kenozoiku, 1 : 1 000 000. Państwowy Instytut Geologiczny, Warszawa.
- Dalętka, A., Zawadzka-Gruza, M. 2008. Opracowanie wyników pionowego profilowania sejsmicznego i pomiarów średnich prędkości w otworze: Wędrzyn 1. W170 VS, Arch. CAG PIG, Warszawa.
- Duda, W., Kruk, B. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Gorzów – Jarocin, 1971-1972. Inw. 1754, CAG PIG, Warszawa.
- **Dudzińska, K. 2000.** Dokumentacja wynikowa odwiertu poszukiwawczego Lubno 1. Inw. 134582, Arch. CAG PIG, Warszawa.
- Feldman-Olszewska, A. (red.), 2014a. Gorzów Wielkopolski IG-1. Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego – Państwowego Instytutu Badawczego, 141.
- Feldman-Olszewska, A. 2014b. Charakterystyka litologiczno-stratygraficzna utworów dolnego i środkowego pstrego piaskowca oraz stratygrafia sekwencji. [W:] Feldman-Olszewska, 2014a [red.], Gorzów Wielkopolski IG-1. Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 141, 141–155.
- Feldman-Olszewska, A. 2014c. Charakterystyka litologiczno-stratygraficzna i sedymentologiczna jury środkowej. [W:] Feldman-Olszewska, 2014a [red.], Gorzów Wielkopolski IG-1. Profile Glębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 141, 215–219.
- Gabriel, G., Vogel, D., Scheibe, R., Lindner, H., Pucher, R., Wonik, T., Krawczyk, C. M. 2011. Anomalies of the Earth's total magnetic field in Germany – the first complete homogenous data set reveals new opportunities for multiscale geoscientific studies. *Geophysical Journal International*, 184, 1113–1119.
- Gaczyński, E., Petecki, Z., Zientara, P., Wybraniec, S. 1986. Analiza obszarów badań geofizycznych na podstawie map gradientu pionowego pola grawitacyjnego. Badania geofizyczne na obszarze ujemnych anomalii grawimetrycznych w pół-

nocno-zachodniej Polsce, 1986. Inw. 34526, Arch. CAG PIG, Warszawa.

- Górecka, T., Parka, Z. 1988. Badania palinologiczne 5 prób skał z otworu wiertniczego Jeniniec 2. [W:] Liberska, 1988a [red.], Dokumentacja wynikowa odwiertu poszukiwawczego Jeniniec 2. Inw. 131385, Arch. CAG PIG, Warszawa.
- Górecka-Nowak, A. 2007. Palynological constraints on the age of the Carboniferous clastic succession of SW Poland (Fore-Sudetic area) based on miospore data. *Geological Quarterly*, **51**, 39–56.
- Górecka-Nowak, A. 2008. New interpretations of the Carboniferous stratigraphy of SW Poland based on miospore data. *Bulletin of Geosciences*, 83, 101–116.
- Guterch, A., Grad, M. 2006. Lithospheric structure of the TESZ in Poland based on modern seismic experiments. *Geological Quarterly*, **50**, 23–32.
- Hammes, U., Krause, M., Mutti, M. 2013. Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany. *Environmental Earth Sciences*, 70, 3797–3816.
- Janiszewska, B., Dąbrowski, S. Straburzyńska, R. (red.), 2017. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilansowego zlewni Obry i Mogilnicy, woj. wielkopolskie, lubuskie. Inw. 6220/2018, Arch. CAG PIG, Warszawa.
- Jaskowiak-Schoeneichowa, M. 1979. Kreda górna (łącznie z albem górnym). [W:] Budowa geologiczna niecki szczecińskiej i bloku Gorzowa. *Prace Instytutu Geologicznego*, 96, 77–89.
- Jaskowiak-Schoeneichowa, M. 1981. Sedymentacja i stratygrafia kredy górnej w północno-zachodniej Polsce. *Prace Instytutu Geologicznego*, 98.
- Jaworowski, K., Mikołajewski, Z. 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zech-

stein Basin. *Przegląd Geologiczny*, **55**, 1017–1024.

- Kapuściński, J., Nowak, I., Bielec, R. 2007. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych zlewni Myśli, Kurzycy i Słubi, woj. zachodniopomorskie i lubuskie Inw. 4273/2007, Arch. CAG PIG, Warszawa.
- Karnkowski, P.H. 2010. Budowa geologiczna oraz geneza i ewolucja bloku Gorzowa. *Przegląd Geologiczny*, **58**, 680– 688.
- Kiersnowski, H., Buniak, A. 2006. Evolution of the Rotliegend Basin of northwestern Poland. *Geological Quarterly*, **50**, 119–138.
- Kiersnowski, H. Buniak A., Waśkiewicz, K. 2020. Mapa litofacji stropu osadów czerwonego spągowca górnego. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Kiersnowski, H., Peryt, T. M., Buniak, A., Mikołajewski, Z. 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend–Lower Zechstein) of the Wolsztyn–Pogorzela High, west Poland. *Geological Journal*, 44, 319–335.
- Klecan, A. 1988. Opracowanie pomiarów średnich prędkości w odwiercie Jeniniec 4. J78 VS, Arch. CAG PIG, Warszawa.
- Kleszcz, T. 1973. Dokumentacja półszczegółowych badań grawimetrycznych. Temat: Niecka Szczecińska i zewnętrzna strefa Monokliny Przedsudeckiej, (II etap badań), 1972. Inw. 1745, Arch. CAG PIG, Warszawa.
- Kleszcz, T. 1975. Dokumentacja badań grawimetryczno-magnetycznych. Temat: Profile regionalne Chociwel – Lębork (A) oraz Gorzów Wielkopolski – Bytów (B), 1974-1975. Inw. 1859, Arch. CAG PIG, Warszawa.
- **Kondracki, J. 2013.** Geografia regionalna Polski, Wydawnictwa Naukowe PWN, Warszawa.
- Kos, M. 2004a. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Santok (0388). Państwowy Instytut Geologiczny, Warszawa.
- Kos, M. 2004b. Objaśnienia do mapy hydrogeologicznej Polski w skali

1 : 50 000, ark. Lipki Wielkie (0389). Państwowy Instytut Geologiczny, Warszawa.

- Kosakowski, P., Krajewski, M. 2015. Hydrocarbon potential of the Zechstein Main Dolomite (Upper Permian) in western Poland: Relation to organic matter and facies characteristics. *Marine and Petroleum Geology*, **68**, 675 – 694.
- Kosobudzka, I. 1991. Dokumentacja półszczegółowych badań magnetycznych T. Temat: Niecka Szczecińska i Monoklina Przedsudecka rok 1981-1989, rejon Sulęcin – Myślibórz oraz Kościan – Krzyż, Zbąszyn – Międzychód, Choszczno – Ińsko, Cedynia – Pyrzyce. Inw. 1259/91, Arch. CAG PIG, Warszawa.
- Kotański, Z. (red.), 1997. Atlas Geologiczny Polski: mapy geologiczne ścięcia poziomego, 1 : 750 000. Państwowy Instytut Geologiczny, Warszawa.
- Kotarba, M., Wagner, R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski–Międzychód–Lubiatów area: geological and geochemical approach to microbial-algal source rock. *Przegląd Geologiczny*, **55**, 1025 – 1036.
- Kotarba, M.J., Więcław, W., Stecko, Z. 2000a. Skład, geneza i środowisko generowania gazu ziemnego w utworach dolomitu głównego zachodniej części obszaru przedsudeckiego. *Przegląd* Geologiczny, 48, 429–435.
- Kotarba, M.J., Więcław, D., Kowalski, A. 2000b. Skład, geneza i środowisko generowania ropy naftowej w utworach dolomitu głównego zachodniej części obszaru przedsudeckiego. *Przegląd Geologiczny*, 48, 436–442.
- Kotarba, M., Bilinkiewicz, E., Kosakowski, P. 2020. Origin of hydrocarbon and non-hydrocarbon (H₂S, CO₂ and N₂) components of natural gas accumulated in the Zechstein Main Dolomite carbonate reservoir of the western part of the Polish sector of the Southern Permian Basin. *Chemical Geology*, **554**, 1–21.
- Kozera, A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Grupę

Magnetyczną II PPG w 1955 r. Inw. 40604, Arch. CAG PIG, Warszawa.

- Kozera, A., Wronicz, S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, Arch. CAG PIG, Warszawa.
- Kozikowski, M. 2002. Dokumentacja wynikowa odwiertu poszukiwawczego Racław 1K. Inw. 134816, Arch. CAG PIG, Warszawa.
- Królikowski, C., Petecki, Z. 1995. Atlas grawimetryczny Polski. Państwowy Instytut Geologiczny, Warszawa.
- Królikowski, C., zespół. 1985. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap I – Model strukturalno-gęstościowy. Inw. 33910, Arch. CAG PIG, Warszawa.
- Królikowski, C., zespół. 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północnozachodniej Polski, etap II /ostatni/ - Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, Arch. CAG PIG, Warszawa.
- Kryński, J. 2007. Precyzyjne modelowanie quasigeoidy na obszarze Polski – wyniki i ocena dokładności. *Seria Monograficzna IGiK*, **13**, Warszawa
- Kuczak, M. 2008. Dokumentacja geologiczna likwidacji otworu Wędrzyn 1. Inw. 135710, Arch. CAG PIG, Warszawa.
- Kudrewicz, R. 2008. Mapy strukturalne powierzchni podcechsztyńskiej i podpermskiej, 1 : 500 000. [W:] Wagner i in., 2008 [red.], Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce – badania geologiczne. Inw. 2293/2009, Arch. CAG PIG, Warszawa.
- Kwolek, K., Mikołajewski, Z. 2010. Kryteria identyfikacji obiektów litofacjalnych jako potencjalnych pułapek złożowych w utworach dolomitu głównego (Ca2) u podnóża platform i mikroplatform węglanowych w środkowo-zachodniej

Polsce. *Przegląd Geologiczny*, **58**, 426–435.

- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1995. Opracowanie pomiarów średnich prędkości w odwiercie Płonica 1, Opracowanie pionowego profilowania sejsmicznego w odwiercie Płonica-1. P79 VS, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1996. Sprawozdanie z opracowania pomiarów średnich prędkości w otworze Stanowice 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Stanowice 1. S83 VS, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1998. Opracowanie pomiarów średnich prędkości oraz sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Stanowice 2. S84 VS, Arch. CAG PIG, Warszawa.
- Leszczyńska, D., Balcerowicz, H., Czaja, E. 1999. Opracowanie pomiarów średnich prędkości w otworze Lubno-1. Sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze Lubno 1. L62 VS, Arch. CAG PIG, Warszawa.
- Liberska, H., 1988a. Dokumentacja wynikowa odwiertu poszukiwawczego Jeniniec 2. Inw. 131385, Arch. CAG PIG, Warszawa.
- Liberska, H., 1988b. Dokumentacja wynikowa otworu rozpoznawczego Jeniniec 4. Inw. 130773, Arch. CAG PIG, Warszawa.
- Liberska, H. 1992. Dokumentacja wynikowa otworu poszukiwawczego Maszków 1. Inw. 133159, Arch. CAG PIG, Warszawa.
- Łyszkowska, J. 1975. Dokumentacja szczegółowych badań grawimetrycznych. Temat: Sulęcin, 1974 i 1975 r. Inw. 1865, Arch. CAG PIG, Warszawa.
- Maliszewska, A., Jackowicz, E., Kiersnowski, H., Kozłowska, A., Kuberska, M., Waksmundzka, M.I., Krzemińska, E. 2008. Petrologia, sedymentologia i nowa litostratygrafia utworów czerwonego spągowca dolnego z wybranych profili platformy waryscyjskiej. Inw. 2293/2009, Arch. CAG PIG, Warszawa.

- Maliszewska, A., Jackowicz, E., Kuberska, M., Kiersnowski, H. 2016. Skały permu dolnego (czerwonego spągowca) zachodniej Polski – monografia petrograficzna. *Prace Państwowego Instytutu Geologicznego*, 20, 1–115.
- Mamczur, S., Radecki, S., Wojtkowiak, Z. 1997. O największym złożu ropy naftowej w Polsce Barnówko–Mostno– Buszewo (BMB). Przegląd Geologiczny, 45, 582–588.
- Mazur, S., Kurowski, L., Aleksandrowski, P., Żelaźniewicz, A. 2003. Variscan foreland fold-thrust belt of Wielkopolska (W Poland): new structural and sedimentological data. *Geolines*, 16, 71.
- Mazurowski, M, Wiśniowski, Z. 2002. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Słońsk (0425). Państwowy Instytut Geologiczny, Warszawa.
- MIDAS, 2021. System Gospodarki i Ochrony Bogactw Mineralnych Polski. http://geoportal.pgi.gov.pl/portal/page/port al/midas
- Miecznik, J., Stefaniuk, M. 2005. Projekt prac magnetotellurycznych w rejonie segmentu pomorskiego bruzdy śródpolskiej – etap I. Inw. 5677/2009; 1349/2005, Arch. CAG PIG, Warszawa.
- Mierzwińska, E., Czaja, E. 2002a. Opracowanie pomiarów średnich prędkości w otworze: Baczyna-2, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Baczyna-2. B17 VS, Arch. CAG PIG, Warszawa.
- Mierzwińska, E., Czaja, E. 2002b. Opracowanie pomiarów średnich prędkości w otworze: Ciecierzyce 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Ciecierzyce 1. C63 VS, Arch. CAG PIG, Warszawa.
- Mierzwińska, E., Czaja, E. 2002c. Opracowanie pomiarów średnich prędkości w otworze: Stanowice 3, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Stanowice 3. S85 VS, Arch. CAG PIG, Warszawa.
- Mikołajewski, Z., Słowakiewicz, M. 2008. Mikrofacje i diageneza utworów dolomitu głównego (Ca2) w rejonie bariery Międzychodu (Półwysep Grotowa, Polska

Zachodnia). Biuletyn Państwowego Instytutu Geologicznego, **429**, 91–97.

- Mikołajków, J., Sadurski, A., (red.), 2017. Informator PSH Główne Zbiorniki Wód Podziemnych w Polsce, Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Miluk, A. 2009. Opracowanie wyników pionowego profilowania sejsmicznego i pomiarów średnich prędkości w otworze: Wędrzyn-5. W171 VS, Arch. CAG PIG, Warszawa.
- Multan, M. 2003. Szczegółowa mapa geologiczna Polski 1 : 50 000. Arkusz 426 Krzeszyce. Państwowy Instytut Geologiczny, Warszawa.
- Musiatewicz, M., Lisowski, K. 1993. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Zachodnia Polska, obszar: Chojna – Międzyrzecz, 1990 -1993. Inw. 4375/2013, Arch. CAG PIG, Warszawa.
- Narkiewicz, M., Dadlez, R. 2008. Geologiczna regionalizacja Polski – zasady ogólne i schemat podziału w planie podkenozoicznym i podpermskim. *Przegląd Geologiczny*, 56, 391–397.
- Nawrocki, J., Becker, A. (red.), 2017. Atlas Geologiczny Polski. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warszawa.
- Niedworok, A., Koślacz, R., Koziołek, J., Wąsik, M., Śliwka, R., Wyszowska, I., Otrębski, A., Kudłacik, J., Urbaniak, M., Michalak, J. 2018. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilansowego: Zlewnia Dolnej Warty po Obrę i zlewnia Dolnej Noteci [woj. lubuskie, wielkopolskie, zachodniopomorskie. Inw. 4049/2019, Arch. CAG PIG, Warszawa.
- Nussbeutel, D., Balcerowicz, H., Czaja, E. 2000. Opracowanie pomiarów średnich prędkości w Baczyna 1, sprawozdanie z opracowania pionowego profilowania sejsmicznego w otworze: Baczyna 1. B22 VS, Arch. CAG PIG, Warszawa.
- Ogonowski, W., Balcerowicz, H., Czaja, E. 1994. Opracowanie pomiarów średnich prędkości w otworze Jeżyki 1. J80 VS, Arch. CAG PIG, Warszawa.

- Okulus, H., Wojas, A., Jakubiak, H., Konarczak, M. 1981. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawimetrycznych (obszary Sosnowo, Witnica, Górzyca, Ośno), rok badań 1980. Inw. 2110, Arch. CAG PIG, Warszawa.
- Ostrowska, K., Pisuła, M. 1991. Dokumentacja szczegółowych badań grawimetrycznych dla tematu: Poszukiwanie złóż węgla brunatnego w obrębie anomalii grawimetrycznych, II faza, 1990 rok. Inw. 1281/91, Arch. CAG PIG Warszawa.
- Paczyński, B, Sadurski, A., (red.), 2007. Hydrogeologia regionalna Polski, tom Iwody słodkie. Państwowy Instytut Geologiczny, Warszawa.
- Peryt, T.M., Scholle, P.A. 1996. Regional setting and role of meteoric water in dolomite formation and diagenesis in an evaporite basin: studies in the Zechstein (Permian) deposits of Poland. *Sedimentology*, **43**, 1005–1023.
- Petecki, Z., Rosowiecka, O. 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. *Geological Quarterly* **61**, 934–945.
- Pieńkowski, G. 2014. Sedymentacja, stratygrafia sekwencyjna, chemostratygrafia i minerały ilaste w profilu jury dolnej. [W:] Feldman-Olszewska, 2014a [red.], Gorzów Wielkopolski IG-1. *Profile Glębokich Otworów Wiertniczych*, **141**, 191–198.
- **Pikulski, L. 1997.** Dokumentacja wynikowa odwiertu poszukiwawczego Stanowice 1. Inw. 134028, Arch. CAG PIG, Warszawa.
- Pikulski, L. 1998. Sedymentacja oraz rozwój litofacjalny utworów dolomitu głównego (Ca2) w rejonie złoża Barnówko-Mostno-Buszewo (BMB), zachodnia Polska. *Przegląd Geologiczny*, **46**, 426– 435.
- Piotrowski, A., Sochan, A. 2002. Szczegółowa mapa geologiczna Polski 1 : 50 000. Arkusz 387 Gorzów Wielkopolski. Państwowy Instytut Geologiczny, Warszawa.
- Pletsch, T., Appel, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P.,

Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag, C., Papiernik, B., Van Bergen, F. 2010. Petroleum generation and migration. [W:] Doornenbal i Stevenson, 2010 [red.], Petroleum Geolo-gical Atlas of the Southern Permian, Basin Area. 225–253. EAGE Publications b.v., Houten.

- **Pokorski, J. 1981.** Propozycja formalnego podziału litostratygraficznego czerwonego spągowca na Niżu Polskim. *Kwartalnik Geologiczny*, **25**, 41–58
- **Pokorski, J. 1988.** Rotliegendes lithostratigraphy in north-western Poland. *Bulletin of the Polish Academy of Sciences*, **36**, 99–108.
- **Pokorski, J. 1997.** Perm dolny (czerwony spągowiec). Litostratygrafia i litofacje. Formalne i nieformalne jednostki litostratygraficzne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, **153**, 35–38.
- Poprawa, P., Kiersnowski, H. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań niekonwencjonalnych złóż gazu ziemnego - etap I. Inw. 2439/2011, Arch. CAG PIG, Warszawa.
- Potera, J. 1994a. Dokumentacja wynikowa otworu Brzozowa 1. Inw. 133271, Arch. CAG PIG, Warszawa.
- Potera, J. 1994b. Dokumentacja wynikowa odwiertu poszukiwawczego Jeżyki 1. Inw. 133519, Arch. CAG PIG, Warszawa.
- **Potera, J. 1995.** Dokumentacja wynikowa odwiertu poszukiwawczego Płonica 1. Inw. 133656, Arch. CAG PIG, Warszawa.
- **Pyrka, A., Kuczak, M. 2010.** Dokumentacja geologiczna likwidacji otworu Wędrzyn 5. Inw. 135857, Arch. CAG PIG, Warszawa.
- Raczyńska, A. 1979a. Kreda dolna (bez albu górnego). [W:] Jaskowiak-Schoeneichowa, 1979 [red.], Budowa geologiczna niecki szczecińskiej i bloku Gorzowa. *Prace Instytutu Geologicznego*, 96, 69–77.
- Raczyńska, A. 1979b. Stratygrafia i rozwój litofacjalny młodszej kredy dolnej na Niżu Polskim. *Prace Instytutu Geologicznego*, 89.

- Razowska-Jaworek, L., Cudak, J. 2004a. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Gorzów Wielkopolski (0387). Państwowy Instytut Geologiczny, Warszawa.
- Razowska-Jaworek, L., Cudak, J. 2004b. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Krzeszyce (0426). Państwowy Instytut Geologiczny, Warszawa.
- Richter-Bernburg, G. 1955. Stratigraphische Gliederung des deutschen Zechsteins. Zeitschrift der Deutschen Geologischen Gesellschaft, 105, 843–854.
- Rodzoch, A., Karwacka, K., Muter, K., Urszulak, M., Pazio-Urbanowicz, I., Jeleniewicz, G., Mia, D. 2017. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilansowego P-XVIII Dolna Warta, woj. lubuskie, zachodniopomorskie. Inw. 2880/2018, Arch. CAG PIG, Warsza-wa.
- Romanek, A. 1996. Szczegółowa mapa geologiczna Polski 1 : 50 000. Arkusz 388 Santok. Państwowy Instytut Geologiczny, Warszawa.
- Romanek, A. 2009. Kenozoik na pograniczu Ziemi Lubuskiej, Pomorza i Wielkopolski. *Prace Państwowego Instytutu Geologicznego*, 192.
- Semyrka, R. 2013. Jakościowa i iloścowa charakterystyka petrofizyczna subfacji dolomitu głównego w strefach paleogeograficznych. *Gospodarka Surowcami Mineralnymi*, 29, 99–114.
- Słowakiewicz, M., Gąsiewicz, A. 2013. Palaeoclimatic imprint, distribution and genesis of Zechstein Main Dolomite (Upper Permian) petroleum source rocks in Poland: Sedimentological and geochemical rationales. *Geological Society, London, Special Publications*, **376**, 523–538.
- Słowakiewicz, M., Mikołajewski, Z. 2009. Sequence Stratigraphy of the Upper Permian Zechstein Main Dolomite Carbonates in Western Poland: A New Approach. *Journal of Petroleum Geology*, 32, 215–233.
- Słowakiewicz, M., Mikołajewski, Z. 2011. Upper Permian Main Dolomite microbial carbonates as potential source rocks

for hydrocarbons (W Poland). *Marine and Petroleum Geology*, **28**, 1572–1591.

- Słowakiewicz, M., Blumenberg, M., Więcław, D., Röhling, H.-G., Scheeder, G., Hindenberg, K., Leśniak, A., Idiz, E.
 F., Tucker, M. E., Pancost, R. D., Kotarba, M. J., Gerling, J. P. 2018. Zechstein Main Dolomite oil characteristics in the Southern Permian Basin: I. Polish and German sectors. *Marine and Petroleum Geology*, 93, 356–375.
- Słowakiewicz, M., Perri, E., Tucker, M.E. 2016. Micro- and Nanopores in Tight Zechstein 2 Carbonate Facies from the Southern Permian Basin, NW Europe. *Journal of Petroleum Geology*, **39**, 149– 168.
- Smrek, A. 1981. Dokumentacja szczegółowych profilowych badań grawimetrycznych. Temat: Goleniów – Stargard Szczeciński – Choszczno – Krzyż, II etap, 1980. Inw. 2109, Arch. CAG PIG, Warszawa.
- Solarska, A. 2000. Dokumentacja wynikowa odwiertu poszukiwawczego Baczyna 1. Inw. 134624, Arch. CAG PIG, Warszawa.
- Solarska, A. 2002. Dokumentacja wynikowa otworu: Baczyna-2. SW/SZ/690, Arch. PGNiG S.A., Warszawa.
- Solarska, A. 2003. Dokumentacja wynikowa odwiertu poszukiwawczego Ciecierzyce 1, Ciecierzyce 1K. Inw. DW-134902/2 Arch. CAG PIG, Warszawa.
- Solarska, A. 2004. Dokumentacja geologiczna likwidacji odwiertu poszukiwawczego Baczyna-2. Inw. 2787/2019, Arch. CAG PIG, Warszawa.
- Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W. 2018. Physico-geographical mesoregions of Poland - verification and adjustment of boundaries on the basis of contemporary spatial data. *Geographia Polonica*, 91.

- Sowa, D., Sikorska-Piekut, D., Puchalski, A., Janowska, J., Strzelecka, D. 2017. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego Lubniewice nr 21/95/p. Inw. 369/2019. Arch. CAG PIG, Warszawa.
- Stefaniuk, M., Wojdyła, M., Petecki, Z., Pokorski, J. 2008. Dokumentacja badań geofizycznych. Temat: Budowa geologiczna pokrywy osadowej i podłoża krystalicznego segmentu pomorskiego bruzdy śródpolskiej na podstawie kompleksowych badań geofizycznych (profilowań magnetotellurycznych) Etap I: 2007 – 2008. Inw. 1277/2009; 3090/2014; 4547/2015; 4548/2015, Arch. CAG PIG, Warszawa.
- Stefaniuk, M., Wojdyła, M., Sada, M. 2011. Dokumentacja badań magnetotellurycznych dla przedsięwzięcia inwestycyjnego z dziedziny potrzeb geologii pod tytułem: "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (Hot Dry Rocks) w Polsce". Inw. 762/2013; 8115/2016; 8116/2016, Arch. CAG PIG, Warszawa.
- Strzelecka, D. 2006. Dokumentacja geologiczna złoża ropy naftowej Dzieduszyce w kategorii C. Inw. 704/2006, Arch. CAG PIG, Warszawa.
- Strzelecka, D. 2017. Dokumentacja geologiczno-inwestycyjna złoża gazu ziemnego Krobielewko. Inw. 2941/2018, Arch. CAG PIG, Warszawa.
- Szczawińska, I. 1999. Dokumentacja wynikowa odwiertu poszukiwawczego Stanowice 2. Inw. 134340, Arch. CAG PIG, Warszawa.
- Szczawińska, I. 2003. Dokumentacja wynikowa odwiertów poszukiwawczych Dzierżów 1K, Dzierżów 1K-BIS. Inw. DW-134921/2, Arch. CAG PIG, Warszawa.
- Szczawińska, I. 2004. Dokumentacja geologiczna likwidacji odwiertów poszukiwawczych Dzierżów 1K, Dzierżów 1K-BIS. Inw. 5985/2019, Arch. CAG PIG, Warszawa.

- Szyperko-Teller, A. 1997. Trias dolny (pstry piaskowiec). Litostratygrafia i litofacje. Formalne i nieformalne jednostki litostratygraficzne. [W:] Marek i Pajchlowa, 1997 [red.], Epikontynentalny perm i mezozoik w Polsce. *Prace Państwowego Instytutu Geologicznego*, **153**, 112–117.
- Śmiechowski, R. 1968. Opracowanie badań tellurycznych wykonanych w rejonie: Kostrzyń – Gorzów Wielkopolski – Chojna przez grupę telluryczną PGGN w 1968 roku. Inw. 41016, Arch. CAG PIG, Warszawa.
- Śmiechowski, R. 1973. Opracowanie badań magnetotellurycznych wykonanych w rejonie: Myślibórz – Międzyrzecz przez grupę telluryczną PGGN w 1972 roku. Inw. 44222, Arch. CAG PIG, Warszawa.
- **Trela, W. 2000.** Szczegółowa mapa geologiczna Polski 1 : 50 000. Arkusz 427 Bledzew. Państwowy Instytut Geologiczny, Warszawa.
- Wagner, R. 1987. Stratigraphy of the Uppermost Zechstein in South-Western Poland, *Bulletin of the Polish Academy of Sciences*, **35**, 265–273.
- Wagner, R. 1988. Ewolucja basenu cechsztyńskiego w Polsce. *Kwartalnik Geologiczny*, **32**, 33–51.
- Wagner, R. 1994. Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. *Prace Państwowego Instytutu Geologicznego*, 146.
- Wagner, R. 1998. Mapy paleogeograficzne cechsztynu. [W:] Dadlez i in., 1998 [red.], Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce, 1 : 2 500 000. Inw. 3417/98, 4610/2015, Arch. CAG PIG, Warszawa.
- Wagner, 2004. R. Mapa paleogeograficzna dolomitu głównego (Ca2) -Półwysep [W:] Wagner Grotowa. i Kotarba, 2004 [red.], Algowe skały macierzyste dolomitu głównego i ich potencjał węglowodorowy jako podstawa dla genetycznej oceny zasobów ropy naftowej i gazu ziemnego w strefie Gorzowa-Międzychodu. Kat. OPR/G/2257, Arch. PGNiG S.A., Warszawa.
- Wagner, R. 2012. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. Państwowy Instytut Geologiczny

– Państwowy Instytut Badawczy, Warszawa.

- Wagner, R., Peryt, T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. *Geological Quarterly*, **41**, 457–474.
- Wagner, R., Dyjaczyński, D., Papiernik, B., Peryt, T. M., Protas, A. 2000. Mapa paleogeograficzna dolomitu głównego (Ca2) 1 : 500 000. [W:] Kotarba, 2000 [red.], Bilans i potencjał węglowodorowy dolomitu głównego basenu permskiego Polski. Arch. WGGiOŚ AGH, Kraków.
- Wagner, R., Buniak, A., Dadlez, R., Grotek, I., Kiersnowski, H., Kuberska, M., Kudrewicz, R., Lis, P., Maliszewska, A., Mikołajewski, Z., Papiernik, B., Pokorski, J., Poprawa, P., Skowroński, L., Słowakiewicz, M., Szewczyk, J., Wolnowski, T. 2008. Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce - badania geologiczne. Inw. 2293/2009, Arch. CAG PIG, Warszawa.
- Waśkiewicz, K., Kiersnowski H. 2020. Systemy naftowe basenów permskich. Basen permski (czerwony spagowiec; główny). dolomit [W:] Feldman-Olszewska, 2020 [red.], Pięcioletni plan rozpoznania rewaluacji stanu geologicznego kraju z wykorzystaniem nowoczesnych technik eksploracyjnych szczególnie na większych głębokościach i nowych strukturach geologicznych, pod kątem poszukiwań i wydobycia weglowodorów. Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, 41-77.
- Wojtysiak, B., Chruścińska, J. 2013. Dokumentacja prac geologicznych niekończących się udokumentowaniem zasobów złoża kopaliny wykonanych na obszarze koncesji na poszukiwanie i rozpoznawanie złoża ropy naftowej i gazu ziemnego Gorzów Wlkp. - Myślibórz, nr 42/2001/p. Inw. 5801/2013 Arch. CAG PIG, Warszawa.
- Wonik, T., Trippler, K., Geipel, H., Greinwald, S., Pashkevitch, I. 2001.

Magnetic anomaly map for Northern, Western, and Eastern Europe. *Terra Nova*, **13**, 203–2013.

- Wójcicki, A., zespół. 2013. Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (Hot Dry Rocks) w Polsce (raport końcowy). Inw. 3738/2020, Arch. CAG PIG, Warszawa.
- Wróblewska, E., Herman, G. 2004a. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Bledzew (0427). Państwowy Instytut Geologiczny, Warszawa.
- Wróblewska, E., Herman, G. 2004b. Objaśnienia do mapy hydrogeologicznej Polski w skali 1 : 50 000, ark. Skwierzyna (0428). Państwowy Instytut Geologiczny, Warszawa.
- Zdanowski, P. 2003. Lowstand systems tract deposition of the Main Dolomite in the Gorzów region (Polish Zechstein Basin). 22nd IAS Meeting of Sedimentology, Opatija, 225.
- Zdanowski, P. 2004. Stratygrafia sekwencji dolomitu głównego (cechsztynu) w rejonie gorzowskim ze szczególnym uwzględnieniem utworów LST. VIII National Meeting of Sedimentologists, Polish Sedimentological Conference, Zakopane, 133.
- Zielińska-Pikulska, J. 2003a. Dokumentacja wynikowa odwiertu rozpoznawczego Stanowice 3. Inw. 134851, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2003b. Dokumentacja geologiczna złoża gazu ziemnego Stanowice w kategorii C. Inw. 151/2004, Arch. CAG PIG, Warszawa.
- Zielińska-Pikulska, J. 2004. Dokumentacja geologiczna likwidacji otworu rozpoznawczego Stanowice 3. Inw. 8449/2019, Arch. CAG PIG, Warszawa.
- Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Ślączka, A., Żaba, J., Żytko, K. 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.