BADANIA GEOFIZYCZNE

Michał ROMAN, Andrzej GŁUSZYŃSKI

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

W otworze Komarów IG 1 wykonano badania geofizyczne w 4 odcinkach pomiarowych. Badania przeprowadziło Przedsiębiorstwo Poszukiwań Geofizycznych z Warszawy w okresie od 12.06.1965 r. do 22.03.1967 r. oraz dodatkowo w dniu 19.01.1968 r. wykonano profilowanie średnicy otworu. Badania wykonano przy użyciu standardowych

Fig. 36. Schematyczne zestawienie scyfrowanych badań geofizyki otworowej wykonanych w otworze wiertniczym Komarów IG 1

GR – profilowanie naturalnej promieniotwórczości gamma, GGDN – profilowanie gamma-gamma, NEGR – profilowanie neutron-gamma, CALI – profilowanie średnicy, SP – profilowanie potencjałów naturalnych, EL – gradientowe profilowania oporności, EN – potencjałówe profilowania oporności, MRES – profilowanie oporności płuczki, LL3 – sterowane profilowanie oporności, PPW (duks/dupw) – profilowanie potencjałów wzbudzonych rejestrowane z różną czułością, TEMP – profilowanie temperatury w warunkach nieustalonych, TEMU – profilowanie temperatury w warunkach nieustalonych

Schematic presentation of digitized well logging measurements performed in the Komarów IG 1 borehole

GR – gamma ray log, GGDN – density log, NEGR – neutron-gamma log, CALI – caliper, SP – spontaneous potential log, EL – lateral conventional electrical log, EN – normal conventional electrical log, MRES – mud resistivity log, LL3 – laterolog, PPW (duks, dupw) – induced potential log recorded with different sensitivities , TEMP – temperature log in unstable conditions, TEMU – temperature log in stable condition

Tabela 24

Wykaz badań geofizyki otworowej wykonanych w otworze wiertniczym Komarów IG 1

	Data wykonania badań	Data wykonania badań Rodzaj wykonanych badań Interwał głęboko- ściowy badań [m]		Głębokość otworu podczas wykonywa- nia badań [m]	Średnica nominalna otworu [mm]		
		POpl	0,25-417,75				
		PŚr	0,25-422,75				
		PO: EL07	1,25-416,75				
		PO: EL03	1,25–417,75				
		PO: EL02	1,50-418,75				1–3.
		PO: EL14	2,50-415,75				
	11–12.06.1965 r.	PO: EL26	3,25-416,75	419,8			
		PO: EL18	5,25-416,75				
		PG	5,50-419,75				
		PS	6,75-423,75				
		POpl	6,00–146,00				
		PK	25,00-415,00				
		PNG	6,25–1705,75		308 (w interwale 0,0–409,8 m średnica		
		POpl	348,25-1501,75				
		PK	350,00-1700,00				
		PTn	353,25-1701,50				8-1
		PG	372,50-1709,75		otworu wy- nosiła 438		
		POst (LL3)	395,25-1707,75	mm)			
		PPW (dupw)	396,50-1707,75				
	2 11 11 1065 -	PO: EL02	397,50-1700,75				
	2–11.11.1903 1.	PO: EN16	398,25-1698,75				
		PO: EL03	399,25–1700,50	1708,0			
		PO: EL07	399,25-1701,50				22.0
		PŚr	400,25-1668,75				19.0
		PS	402,25-1699,75				POpl
		PO: EL14	399,50–1698,75				- prot
		PO: EL26	399,80-1706,70				natur
ļ		GGDN	1 025,7–1708,80				profil
	16–21.11.1965 r. (karotaż węglowy)	PO, PS i grad PS, POpl, PG, PNG, PŚr	760,00–1707,00				(later) w wa kach POpl

List of well logs from the Komarów IG 1 borehole

	Data wykonania badań	Rodzaj wykonanych badań	Interwał głęboko- ściowy badań [m]	Głębokość otworu podczas wykonywa- nia badań [m]	Średnica nominalna otworu [mm]	
		PŚr	1703,25-2293,75			
		PO: EL02	1705,25-2289,50			
		PO: EN16	1706,25–2288,50			
		PO: EL03	1707,25–2287,75			
	1–3.12.1966 r.	PO: EL07	1707,25–2290,75	2297,0	216	
		PS	1709,25–2295,75			
		PO: EL14	1709,50-2288,75			
		PO: EL26	1710,50-2289,75			
		РК	1700,00-2295,00			
		PG	1650,10-2530,10			
		PNG	1650,25–2529,75			
		PS	2288,75-2529,75			
		PŚr	2288,50-2530,75			
		PO: EL02	2288,75-2529,75			
		PO: EL03	2289,50-2529,75			
	8–11.03.1967 r.	PO: EL07	2291, 50–2529,75			
		PO: EL14	2292,25-2529,75	2547,8	143	
		PO: EL24	2290,50-2529,75			
		PO: EL16	2287,60-2530,00			
		РТ	2292,50-2530,75			
		POpl 2291,70-25				
		PK	2300,00-2530,00			
	22.03.1967 r.	7 r. PTu 0,25–2542,75				
	19.01.1968 r.	PŚr	2280,05-2479,95			

POpl – profilowanie oporności płuczki, PŚr – profilowanie średnicy, PO – profilowanie oporności (EL – gradientowe, EN – potencjałowe), PG – profilowanie naturalnej promieniotwórczości gamma, PS – profilowanie naturalnych potencjałów, PK – profilowanie krzywizny otworu, PNG – profilowanie neutron – gamma, POst – sterowane profilowanie oporności (laterolog), PPW – profilowanie prądowe, PT – profilowanie temperatury w warunkach nieustalonych, PTu – profilowanie temperatury w warunkach ustalonych

aparatur produkcji radzieckiej typu AKS-4 i AKSŁ-51/M. Wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane, jednostki w których rejestrowano te profilowania to impulsy na minutę. Scyfrowane wyniki i dane pomiarowe znajdują się w formacie plików LAS w Centralnej Bazie Danych Geologicznych (numer identyfikacyjny CBDG otworu 83469).

POpl - mud resistivity log, PŚr - caliper, PO - conventional electrical log (EL - lateral, EN - normal), PG - gamma ray log, PS - spontaneous potential log, PK - deviation log, PNG - neutron-gamma ray log, POst - laterolog, PPW - induced potential log, PT - temperature log in unstable conditions, PTu - temperature log in stable conditions

Fig. 37. Unormowane wartości profilowania gamma i profilowanie średnicy (strzałkami zaznaczono miejsca połączeń odcinków pomiarowych)

Normalized values of the natural gamma ray log and caliper (arrows indicate connection points between individual log intervals)

- W otworze wykonano następujące profilowania:
- średnicy otworu PŚr (CALI),
- naturalnego promieniowania gamma PG (GR),
- gamma-gamma gęstościowe PGG (GGDN),
- neutron-gamma (PNG),
- potencjałów samoistnych(PS),
- oporności płuczki (POpl),
- sterowane oporności (laterolog) (POst, LL3),
- temperatury przy nieustalonej równowadze temperatury (PTn),
- temperatury przy ustalonej równowadze (PTu),
- potencjałów wzbudzonych (PPW (duks)),
- potencjałów wzbudzonych (PPW (dupw)),
- oporności (PO) sondami: EL02 -A0.5M0.1N, M0.5A0.1B; EL03 - A1.0M0.1N, M1.0A0.1B; EL07 -A2.5M0.25N, M2.5A0.25B; EL14 - M4.0A0.5B, A4.0M0.5N; EL18 - N5.0M0.5A; EL26 - M8.0A-0.5B, A8.0M0.5N, EN16 - M0.5A5.0B.

W tabeli 24 zestawiono interwały profilowań z głębokością i średnicą otworu oraz datami wykonania. Graficzne zestawienie wykonanych pomiarów znajduje się na figurze 36. Połączone i znormalizowane wyniki profilowania gamma dla całego otworu przedstawia figura 37. Znajduje się na niej również krzywa profilowania średnicy otworu z oznaczonymi za pomocą strzałek głębokościami łączenia odcinków badań. Profilowanie gamma zostało znormalizowane z użyciem metodyki opisanej w pracy Szewczyka (2000).

PROFIL LITOLOGICZNY

Opracowano dwa warstwowe profile litologiczne – jeden na podstawie opisów profilu wiertniczego, tak z rdzeni wiertniczych, jak i prób okruchowych, oraz drugi na podstawie danych geofizycznych. Oba profile zaprezentowano na figurze 38. W tabeli 25 zestawiono różnice między głębokościami stropów bądź spągów warstw zidentyfikowanych i przyporządkowanych w obydwu wymienionych profilach. Wielkość tych różnic sięga maksymalnie około 13 metrów, co jest wielkością znaczącą, nawet jak na realia lat 60. Błąd ten przypuszczalnie wynika z różnego stopnia rozciągania kilkukilometrowej długości kabli geofizycznych. Innym źródłem różnic głębokości warstw litologicznych jest niepełny uzysk rdzenia i związana z tym niejednoznaczność przyporządkowania głębokościowego wyróżnianych warstw. Z uwagi na te różnice, a także brak informacji o dokładnej głębokości poboru próbek i ich ograniczonej reprezentatywności (objętości próbek są znikome wobec objętości warstw skalnych), wszelkie korelacje danych geofizycznych z wynikami badań laboratoryjnych próbek muszą mieć charakter statystyczny i są obciążone znacznym błędem.

Fig. 38. Profil gęstości objętościowej obliczony na podstawie danych geofizyki otworowej zestawiony z oznaczeniami na próbkach Pionowymi zielonymi liniami oznaczono prawdopodobną niestabilna pracę sondy neutron – gamma

Bulk density calculated from the well logs juxtaposed to the laboratory analysis

Green lines indicate intervals where neutron - gamma data are probably corrupted

Tabela 25

Różnice w głębokościach stropów bądź spągów warstw wyznaczanych różnymi metodami

Differences between tops or bottoms of the layers determined using different methods

Głębokości stropu	Głębokości stropu/ spągu warstw [m]	
wg opisu rdzenia i zwiercin	wg geofizyki otworowej	[m]
1271,6	1266,9	4,7
1319,4	1316,8	2,6
1474,5	1473,4	1,1
1590,5	1586,6	3,9
1611,2	1608,1	3,1
1731,5	1722,0	9,5
1740,0	1731,8	8,2
1806,0	1795,0	11,0
1812,5	1802,7	9,8
1823,0	1813,9	9,1
1845,7	1838,3	7,4
1916,3	1908,0	8,3
1942,9	1934,1	8,8
2355,4	2345,4	10,0

Głębokości stropu/	Różnica głębokości		
wg opisu rdzenia i zwiercin	wg geofizyki otworowej	լայ	
2365,4	2355,2	10,2	
2375,0	2362,7	12,3	
2380,8	2371,9	8,9	
2399,1	2389,2	9,9	
2443,0	2430,2	12,8	
2467,2	2456,0	11,2	
2479,4	2468,0	11,4	
2485,3	2475,5	9,8	
2494,1	2483,8	10,3	
2497,6	2487,1	10,5	
2504,0	2493,7	10,3	
2530,7	2520,0	10,7	
2534,5	2524,3	10,2	

W trakcie ustalania warstwowego oraz objętościowego profilu litologicznego na podstawie danych geofizycznych, uwzględniono została wzajemnych przesunięć omawianych grup danych. Proces obliczenia porowatości oraz gęstości objętościowej skał był poprzedzony podziałem profilu na tzw. odcinki metodyczne, w obrębie których ustalono stałe określające spodziewany zakres zmienności parametrów interpretacyjnych lub wartości tych parametrów. Dla profilu otworu Komarów IG 1 wybrano 6 takich odcinków metodycznych. Poprawność wyboru odcinków oraz przypisanych im parametrów określano iteracyjnie. Miarą ich poprawności była statystyczna zgodność uzyskiwanych wyników z wynikami odpowiadających im badań laboratoryjnych lub parametrów geofizycznych określanych innymi metodami badawczymi np. średnimi prędkościami sejsmicznymi (tzw. sejsmiczna prędkość pseudoakustyczna DT_VSP).

PROFIL POROWATOŚCIOWY

Na figurze 39 przestawiono obliczony profil porowatości całkowitej oraz warstwowy profil porowatości efektywnej wraz z wydzieleniem warstw zbiornikowych i uszczelniających dla głębokości poniżej 890 m. Analizę wykonano za pomocą systemu GEOFLOG. Uwzględnienie litologii i porowatości efektywnej pozwala stwierdzić charakter warstwy – zbiornikowy lub izolacyjny (Górecki i in., 2006). Figura 40 pokazuje mineralizację wód pobranych z dwóch warstw wodonośnych (z głębokości 919 i 2302 m) na tle mineralizacji wód z innych otworów wykonanych na obszarze Niżu Polskiego. Wartości mineralizacji są nieco mniejsze niż średnie wartości mineralizacji wód dla otworów z rejonu Niżu Polskiego obliczone metodą najmniejszych kwadratów.

PROFIL GĘSTOŚCIOWY

Na figurze 38 przedstawiono profil gęstości objętościowej obliczonej na podstawie danych geofizycznych z użyciem systemu GEOFLOG w interwale 890–2530 m. Głębokości pobrania próbek do oznaczeń gęstości objętościowej były opisane jedynie za pomocą głębokości stropu i spągu poboru rdzenia. Przyjęto więc średnią głębokość rdzenia

Pionową zieloną linią oznaczono prawdopodobną niestabilną pracę sondy neutron-gamma. PENSYLW. – pensylwan, K. – kreda, G. – górna, D. – dolna

Reservoir properties of aquifers and confining beds, and total porosity profile

Green line indicates interval where neutron-gamma data are probably corrupted. PENSYLW. - Pennsylvanian, K. - Cretaceous, G. - Upper, D. - Lower

jako punkt poboru wszystkich próbek z tego rdzenia. Gęstość objętościową oznaczono łącznie dla 5037 próbek. Pod tym względem otwór Komarów IG 1 jest jednym z otworów o największej liczbie badań tego parametru na obszarze Polski. Gęstość objętościową p policzono za pomocą wzoru:

$$\rho = \rho_{\rm m} \left(1 - \Phi - V_{\rm sh}\right) + \rho_{\rm w} \Phi + \rho_{\rm sh} V_{\rm sh}$$

Fig. 40. Mineralizacja wód podziemnych badanych poziomów zbiornikowych na tle mineralizacji wód Niżu Polskiego

Groundwater mineralization of the tested aquifers against the groundwater mineralization in the Polish Lowlands

gdzie:

- $\rho_m -$ gęstość szkieletu skalnego ustalona za pomocą typu litologii,
- Φ porowatość całkowita wyznaczona na podstawie profilowania neutron gamma poprawionego na wpływ zailenia i skalibrowanego do próbek,
- V_{sh} procent objętościowy minerałów ilastych ustalony na podstawie profilowania gamma,

 $\rho_w - gęstość wody,$

 ρ_{sh} – gęstość minerałów ilastych.

Znaczne rozbieżności między gęstością wyznaczoną z pomiarów geofizyki otworowej a gęstościami oznaczonymi na próbkach w interwałach 400–900 m i 1700–1950 m wynikać mogą z niestabilnej pracy sondy radiometrycznej, szczególnie w głębszym odcinku. W odcinku górnym mogą być również wynikiem tego, że oznaczenia gęstości na próbkach odnoszą się do skały nasyconej wodą (brak jednoznacznych informacji na ten temat w opisie danych laboratoryjnych).

WARUNKI TERMICZNE

W otworze Komarów IG 1 dokonano pomiaru temperatury w warunkach zbliżonych do ustabilizowanych, a w jednym odcinku pomiarowym – pomiaru temperatury w warunkach nieustalonych. Wyniki tych pomiarów przedstawiono na figurze 41. Czas "stójki" otworu przed pomiarem temperatury w warunkach ustalonych wynosił około 14 dni.

Wartość temperatury strefy przypowierzchniowej (GST) wynosi według Szewczyka (2005) +8,82°C. Duża różnica wynosząca ok. 9°C między temperaturą GST a temperaturą strefy przypowierzchniowej ekstrapolowanej z profilowania temperatury w warunkach ustalonych (E) świadczy o braku całkowitej stabilizacji warunków termicznych w otworze.

Obliczona wartość gęstości wgłębnego strumienia cieplnego wynosząca 65,9 mWm⁻² nie odbiega od jego wartości obliczonych dla innych otworów na analizowanym obszarze (Szewczyk, Gientka, 2009). Temperatura ustabilizowana na głębokości 2000 metrów, tj. poza zasięgiem głębokościowym glacjalnych zmian klimatycznych, wynosi 57,45°C.

Opracowanie danych geofizyki otworowej wykonano m.in. w programie Techlog, który został udostępniony PIG--PIB przez Schlumberger Information Solutions w celu prowadzenia prac naukowo-badawczych.

Fig. 41. Charakterystyka termiczna otworu wiertniczego Komarów IG 1

TEMU – profilowanie temperatury w warunkach ustalonych, TEMP – temperatura w warunkach nieustalonych, E – temperatura strefy przypowierzchniowej estymowana z TEMU, GST – temperatura strefy przypowierzchniowej na podstawie pomiarów meteorologicznych, D. – dolna/y, PENS. – pensylwan, ŚRODK. – środkowy

Thermal data from the Komarów IG 1 borehole

 $TEMU - temperature \ log \ in \ stable \ condition, \ TEMP - temperature \ log \ in \ unstable \ conditions, \ E - ground \ surface \ temperature \ estimated \ from \ TEMU \ curve, \ GST - ground \ surface \ temperature \ from \ meteorological \ measurements, \ D. - lower, \ PENS. - Pennsylvanian, \ SRODK. - middle$

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

WYNIKI POMIARÓW PRĘDKOŚCI ŚREDNICH

Pomiary średnich prędkości w otworze Komarów IG 1 zostały wykonane w 1967 roku przez Przedsiębiorstwo Geofizyki Przemysłu Naftowego w Krakowie aparaturą SS-24-P nr 406 i geofonem głębinowym SIS-49. Pomiary wykonano na głębokości od 58 do 2457 m, co obejmuje całą głębokość otworu (przy 50-metrowym interwale pomiaru).

Prace strzałowe prowadzono z trzech punktów strzałowych (PS) zlokalizowanych w następującej sytuacji:

PS nr	d	A [°]	Ν
1	150	316	0,0
2	150	150	-4,0
3	150	250	-3,5

gdzie:

d - odległość PS od głębokiego otworu [m],

A – azymut kierunku głęboki otwór – punkt strzałowy,

 N – wysokość względna otworu strzałowego w stosunku do wylotu głębokiego otworu [m]. Powyższe usytuowanie PS zostało podyktowane warunkami metodycznymi i terenowymi.

Wielkość ładunków wybuchowych oraz głębokość strzelania z poszczególnych PS przedstawiono w tabeli 26.

Prace strzałowe wykonano przy użyciu środków wybuchowych dynamitu IG3 i zapalników RALT. W celu kontroli głębokości strzelania na poszczególnych punktach

Wielkość ładunków wybuchowych oraz głębokość strzelania z poszczególnych punktów strzałowych (PS)

Explosive power and shot-point depths from the individual shot points

Nr punktu strzałowego	Wielkość ładunku [kg]	Głębokość strzelania [m]	Przyjęta głębokość strzelania (poziom odniesienia) [m]
1	0,2-8,0	15-20	18,0
2	0,2-8,0	10-20	14,0
3	0,2–10,0	7–18	14,5

Tabela 26

strzałowych zastosowano geofony korekcyjne – K_1 , usytuowane w odległości nie większej niż 5 m od punktu. Dla kontroli momentu wybuchu ustawiono w pobliżu otworu geofon korekcyjny K_2 .

Obliczenia wykonano na podstawie rejestracji czasu przejścia fali w pierwszych impulsach.

Pierwsze impulsy fali sejsmicznej dochodzące do geofonu głębinowego zarejestrowano jednocześnie na kanałach odpowiednio: 13 przy filtracji 0/30, 14 i 15 przy filtracji 0/45. Zapisy geofonów korekcyjnych zarejestrowano na oddzielnych kanałach odpowiednio geofonu K_1 na kanale 1, K_2 na 2 i 7 oraz K_3 na 3 kanale. Dla dokładnego rejestrowania momentu wybuchu stosowano specjalny obwód – sposób pętli. Do pomiaru użyto kabla karotażowego KTO-4.

Zakłócenia na sejsmografach były wywołane zjawiskiem powstawania fal na osprzęcie wiertniczym i geofizycznym, tj. np. rurach i kablach. Pomiary prędkości średnich otrzymane z trzech PS-ów sprowadzono do jednego poziomu odniesienia (18 m) poniżej wylotu głębokiego otworu. Jakość materiału podstawowego oraz poprawność opracowania końcowego ogólnie oceniono jako bardzo dobre, co dla poszczególnych PS przedstawia tabela 27. Wartość oceny zawiera pewność korelacji, jakość impulsu oraz maksymalny błąd w określeniu występowania fali.

Zestawienie to potwierdza obserwowany zanotowany minimalny rozrzut punktów z poszczególnych PS-ów we wszystkich trzech układach funkcji. Daje to podstawę do stwierdzenia, że otrzymany wynik końcowy jest prawidłowy.

Do obliczenia krzywej prędkości średnich jako poziom odniesienia przyjęto poziom pomiaru, czyli 212 m n.p.m. przy rzędnej otworu wynoszącej 237 m n.p.m.

Głębokość zredukowana do poziomu odniesienia została obliczona ze wzoru:

$$h_r = h - h_{no} \pm N \pm \Delta h$$

gdzie:

h

- *h_r* głębokość zredukowana punktu pomiarowego do poziomu odniesienia [m];
 - głębokość zanurzenia geofonu głębinowego [m];
- h_{na} głębokość poziomu odniesienia [m];
- Δh różnica głębokości między h_{po} a poziomem odniesienia [m].

Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

$$t_p = t_{obs} + \Delta th$$

gdzie:

 t_p – czas poprawiony;

 t_{obs} – czas obserwowany;

Δth – poprawka wynikająca z głębokości punktu wzbudzania, poziomu odniesienia, miąższości strefy małych prędkości, prędkości w tej strefie i prędkości pod nią. Redukcję czasu do pionu dokonano przy założeniu jednorodności ośrodka od punktu wybuchu do głębokości zanurzenia geofonu.

Czas zredukowany dla poszczególnych punktów wzbudzania liczono na podstawie wzoru:

$$t_r = \frac{h_r}{\sqrt{hr^2 + d^2}} \times t_p$$

gdzie:

d - odległość danego PS od głębokiego otworu.

W celu wyeliminowania anizotropii ośrodka obliczono średni czas redukowany (*tr*), jako średnią arytmetyczną pomiarów czasu zredukowanego z poszczególnych punktów wzbudzania.

Wartości h_r i t_r posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{sr} = \frac{h_r}{t_r}$$

W tabeli 28 zestawiono wartości zbiorcze, jako h_r , t_r , V_{sr} . Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 42A) i hodografu pionowego (fig. 42B). Do wykreślenia krzywej prędkości średnich wykorzystano wartości uśrednione z poszczególnych punktów wzbudzania. Przedstawiony na figurze 42B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano wygładzanie wartości pomiarów geofizycznych. Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo od punktu do punk-

Tabela 27

Jakość materiału podstawowego dla poszczególnych PS

Basic material quality for the individual shot points

Punkt	Interwał	Jakość j	oomiaru
strzałowy	[m]	b. dobra	dobra
	40-1740	+	
1	1740–2040		+
	2040-2440	+	
2	40-90		+
2	90–2440	+	
3	40-2440	+	

Tabela 28

Zestawienie wartości głębokości (h_r), czasu zredukowanego (t_r) i prędkości średniej (V_{ir})

Głębokość h _r [m]	Średni czas zredukowany $t_r[s]$	Prędkość średnia V _ś [m/s]
40	0,025667	1558
90	0,048000	1875
140	0,070333	1990
190	0,095000	2000
240	0,111000	2162
290	0,131667	2202
340	0,156333	2174
390	0,173333	2250
440	0,190000	2315
490	0,211000	2322
540	0,229000	2358
590	0,253333	2328
640	0,267333	2394
690	0,286333	2409
740	0,299333	2472
790	0,316333	2497
840	0,324000	2592
890	0,332667	2675
940	0,346333	2714
990	0,358000	2765
1040	0,369000	2818
1090	0,385000	2831
1140	0,398000	2864
1190	0,408333	2914
1240	0,424500	2921

Values of depth (h_{r}) , reduced time (t_{r}) and average velocity (V_{ir})

Głębokość h _r [m]	Średni czas zredukowany t_r [s]	Prędkość średnia V _{śr} [m/s]
1290	0,432333	2983
1340	0,447333	2995
1390	0,462000	3008
1440	0,474500	3034
1490	0,487667	3055
1540	0,502000	3067
1590	0,513667	3095
1640	0,519333	3157
1690	0,529333	3192
1740	0,544667	3194
1790	0,553333	3234
1840	0,564667	3258
1890	0,569667	3317
1940	0,582000	3333
1990	0,596000	3338
2040	0,599000	3405
2090	0,610333	3424
2140	0,620000	3451
2190	0,639333	3425
2240	0,646500	3464
2290	0,647333	3537
2340	0,650667	3596
2390	0,660667	3617
2440	0,671000	3636

tu w granicach błędu pomiarowego. Warunkiem jej wykorzystania jest jednakowy odstęp między punktami pomiarowymi. Podaną metodę zastosowano do wygładzania odczytów czasu z pomiarów prędkości średnich w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono, wyrównując pomiary czasu zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu odniesienia pomiaru i ich interpolacji dla znormalizowanych przedziałów głębokości, co 20 m. Następnie wyznaczone wartości wygładzono przy użyciu specjalnego programu przez zastosowanie operacji splotu z filtrem trójkątnym stosując 20 razy filtr 0,25 i 0,5. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych, wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone pomiary czasu po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu, oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonym w latach 90. XX wieku w Zakładzie Geofizyki Państwowego Instytutu Geologicznego na potrzeby interpretacji prac sejsmicznych.

Różnice wartości czasów między kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wy-

Fig. 42. Wykres prędkości średnich (A) i hodograf pionowy (B) (poz. odn. 212,0 m n.p.m.)

t_r – średni czas zredukowany, V_{śr} – prędkość średnia

Average seismic velocity (A) and travel-time curve (B) (reference level 212.0 m a.s.l.)

 t_r – average reduced time, V_{sr} – average velocity

znaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasu wygładzonego n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wyróżniają się tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości obliczonych prędkości odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości V_w (prędkość wygładzona), V_i (prędkość interwałowa) i V_k (prędkość kompleksowa) obliczonych z pomiarów czasu wygładzonego zawiera tabela 29. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 43. Wykresy powyższe wzbogacono profilem stratygraficznym wiercenia, co umożliwia bezpośrednie powiązanie zmian prędkości z kompleksami litologiczno-stratygraficznymi w otworze oraz z refleksami sejsmicznymi.

Przedstawiona krzywa prędkości średnich (fig. 42A) wykazuje stopniowy wzrost wartości od 1550 do 3630 m/s, charakteryzujący warstwy kredy, jury, karbonu i dewonu, z dużymi i licznymi anomaliami do głębokości około 900 m, czyli w interwale obejmującym utwory kredy. Poniżej, aż do końca otworu, przebieg krzywej jest łagodniejszy i spokojniejszy.

Prędkości interwałowe i kompleksowe (fig. 43) wykazują również zgodność z profilem geologicznym otworu. Utwory kredy o znacznej miąższości (921 m) reprezentowane przez kolejne piętra od mastrychtu do albu o zróżnicowanych miąższościach w profilu otworu charakteryzują się tzw. schodkowym wzrostem wartości prędkości kompleksowych od 2000, przez 2350, 2500, 2600, 2950 do 4450 m/s, co pozostaje w związku ze składem litologicz-

Tabela 29

Zestawienie uśrednionych wartości V_i, V_k, V_w obliczonych z czasu wygładzonego

Averaged V_i , V_k and V_w values calculated from smoothed time

<i>h</i> _{<i>r</i>} [m]	V_i [m/s]	$V_k [{ m m/s}]$	$V_w [{ m m/s}]$	<i>h_r</i> [m]	V_i [m/s]	$V_k [{ m m/s}]$	V_w [m/s]
20	1941	1994	_	340	2537	2498	2511
40	1941	1994	1906	360	2537	2498	2561
60	1941	1994	1960	380	2537	2498	2608
80	1941	1994	2025	400	2537	2633	2641
100	1941	1994	2094	420	2622	2633	2652
120	2252	1994	2162	440	2622	2633	2642
140	2252	2354	2227	460	2622	2633	2616
160	2252	2354	2289	480	2622	2633	2587
180	2252	2354	2345	500	2622	2967	2562
200	2252	2354	2390	520	2590	2967	2551
220	2430	2354	2420	540	2590	2967	2559
240	2430	2354	2434	560	2590	2967	2589
260	2430	2354	2435	580	2590	2967	2642
280	2430	2354	2435	600	2590	2967	2715
300	2430	2498	2445	620	2590	2967	2802
320	2537	2498	2470	640	2590	2967	2898

Tabela 29 cd.

<i>h_r</i> [m]	V_i [m/s]	V_k [m/s]	$V_w [{ m m/s}]$	<i>h_r</i> [m]	V_i [m/s]	V_k [m/s]	$V_{_{W}}$ [m/s]
660	2590	2967	2999	1560	4386	3898	4499
680	2590	2967	3107	1580	4386	3898	4723
700	2947	2967	3225	1600	4386	4891	4898
720	3630	2967	3362	1620	4850	4891	4978
740	3630	2967	3527	1640	4850	4891	4948
760	3630	2967	3724	1660	4850	4891	4837
780	3630	2967	3949	1680	4850	4891	4701
800	3630	2967	4183	1700	4850	4722	4595
820	4496	4460	4391	1720	4671	4722	4549
840	4496	4460	4535	1740	4671	4722	4579
860	4496	4460	4590	1760	4671	4722	4679
880	4496	4460	4562	1780	4671	4722	4832
900	4496	4460	4477	1800	4671	4722	5004
920	4226	4460	4373	1820	5196	4722	5157
940	4226	4460	4270	1840	5196	5189	5248
960	4226	3943	4177	1860	5196	5189	5258
980	4226	3943	4091	1880	5196	5189	5197
1000	4226	3943	4008	1900	5196	5189	5107
1020	3863	3943	3931	1920	5095	5189	5036
1040	3863	3943	3865	1940	5095	5104	5023
1060	3863	3943	3822	1960	5095	5104	5080
1080	3863	3943	3810	1980	5095	5104	5187
1100	3863	3943	3827	2000	5095	5104	5295
1120	3945	3943	3870	2020	5096	5096	5336
1140	3945	3943	3925	2040	5096	5096	5264
1160	3945	3943	3978	2060	5096	5096	5078
1180	3945	3967	4019	2080	5096	5096	4832
1200	3945	3967	4041	2100	5096	5096	4595
1220	3981	3967	4042	2120	4561	5143	4430
1240	3981	3967	4020	2140	4561	5143	4384
1260	3981	3967	3975	2160	4561	5143	4493
1280	3981	3967	3912	2180	4561	5143	4792
1300	3981	3967	3840	2200	4561	5143	5316
1320	3720	3967	3771	2220	5980	5143	5678
1340	3720	3898	3719	2240	5980	5143	5980
1360	3720	3898	3688	2260	5980	5143	6180
1380	3720	3898	3682	2280	5980	6040	6250
1400	3720	3898	3695	2300	5980	6040	6280
1420	3785	3898	3719	2320	5470	6040	6250
1440	3785	3898	3752	2340	5470	6040	6186
1460	3785	3898	3796	2360	5470	6040	6020
1480	3785	3898	3860	2380	5470	5719	5760
1500	3785	3898	3955	2400	5470	5719	5432
1520	4386	3898	4093	2420	5310	5719	5210
1540	4386	3898	4279	2440	5310	5719	5139

 h_r – głębokość, V_i – prędkość interwałowa, V_k – prędkość kompleksowa, V_w – prędkość wygładzona h_r – depth, V_i – interval velocity, V_k – complex velocity, V_w – smoothed velocity

nym tych pięter. Tę zmienność w wyższych piętrach profilu do głębokości około 750 m, wykształconego głównie jako margle i wapienie margliste, podkreślają granice kontrastów prędkości interwałowych korelujące się z kontaktem utworów mastrychtu górnego i dolnego z przystropowymi utworami kampanu. Najwyraźniejsza granica prędkości przypada na głębokość korelującą się ze stropem utworów turonu, odznaczających się obecnością w nich wapieni o dużej zawartości węglanów. Najwyższa w obrębie utworów kredy górnej prędkość 4450 m/s dotycząca utworów piaszczystych dolnej części profilu łącznie z pakietami wapienno-marglisto-piaszczystymi cenomanu obejmuje również ogniwa kredy dolnej i kimerydu.

Granice geologiczne kreda-jura i jura-karbon nie wykazują znaczących zmian w wartościach prędkości kompleksowej, jedynie niewielkie na wykresach prędkości in-

Fig. 43. Wykresy prędkości wygladzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) ; (poz. odn. 212,0 m n.p.m.)

 $V_{\rm w}$ – prędkość wygładzona, $V_{\rm i}$ – prędkość interwałowa, $V_{\rm k}$ – prędkość kompleksowa,

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_i) ; (reference level 212.0 m a.s.l.)

 V_w - smoothed velocity, V_i - interval velocity, V_k - complex velocity,

terwałowej, co wskazuje na brak istotnych zmian litologicznych między tymi formacjami. Natomiast bardzo wyraźnie wydziela się miąższy około 640-metrowy kompleks o prawie stałej prędkości kompleksowej oscylującej w granicach 3900–3950 m/s cechującej utwory oksfordu, baszkiru i serpuchowu. Dodatkowo na krzywej prędkości interwałowej można zaobserwować wzrost wartości w przedziale odpowiadającym dolnym warstwom baszkiru.

Granica w pobliżu stropu utworów wizenu wyróżnia się gwałtowną zmianą prędkości interwałowych i kompleksowych (kontrast 1000 m/s) do wartości 4900 m/s. Trójdzielny wykres obejmujący przedział wizenu wyznacza wysokie wartości: 4900, 4700 i 5200 m/s, co należy przypisać znacznej miąższości wapieni zawartych w tych ogniwach. Granica karbon-dewon nie wyróżnia się istotnymi zmianami wartości prędkości kompleksowej. Utwory franu w całym swoim interwale charakteryzują się zbliżonymi do wartości przypisanych warstwom wizenu, prędkościami kompleksowymi rzędu 5100-5150 m/s. Znaczący skok prędkości kompleksowej o 900 m/s ma miejsce na granicy zwiazanej z kontaktem osadów dewonu górnego i środkowego, wydzielając serię o prędkości kompleksowej 6050 m/s na głębokości zalegania żywetu i górnego eiflu. Wiąże się to z większą zawartością procentową dolomitów i anhydrytów w stosunku do skał terygenicznych, charakterystycznych z kolei dla serii najniższego eiflu o wydzielonej prędkości kompleksowej 5700 m/s.

Wykonanie pomiarów prędkości fal sejsmicznych umożliwia właściwą interpretację głębokościową przekrojów sejsmicznych w otoczeniu głębokiego otworu wiertniczego.