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Abstract. In this study, we examine the major components of polar motion, focusing on quantifying their temporal
variability. In particular, by using the combined Earth orientation series SPACE99 computed by the Jet Propulsion Labo-
ratory (JPL) from 1976 to 2000 at daily intervals, the Chandler and annual wobbles are separated by recursive band-pass
filtering of the ����� and ����� components. Then, for the trigonometric, exponential, and elliptic forms of representation,
the parameters including their uncertainties are computed at epochs using quarterly sampling. The characteristics and
temporal evolution of the wobbles are presented, as well as a summary of estimates of different parameters for four
epochs.

Key words: Polar motion, Chandler wobble, annual wobble, representation (trigonometric, exponential, elliptic), para-
meter, variability, uncertainty

1 Introduction

Variations in the Earth’s rotation provide fundamental information about the geophysical processes that occur in all
components of the Earth. Therefore, the study of the Earth’s rotation is of great importance for understanding the
dynamic interactions between the solid Earth, atmosphere, oceans and other geophysical fluids. In the rotating, terrestrial
body-fixed reference frame, the variations of Earth rotation are measured by changes in length-of-day (LOD), and polar
motion (PM).

The theoretical foundation of studying of PM was derived by Euler (1758), Lagrange (1788) and Poinsot (1834, 1851).
Afterwards, intensive efforts at several observatories were aimed to prove its existence by resolving variations in latitude.
Finally, in 1888, a real latitude variation was detected by Küstner at the Berlin Observatory. Moreover, in 1891/92,
there was the discovery by Chandler that the motion of the pole consists of two superposed constituents. The first, of
late referred to as Chandler wobble, has a period of about 427 days, while the second has an annual period. Within the
scientific community, the problem of PM has raised considerable interest. After an effort covering 10 years, international
activities in this field began in September 1899 with the establishment of the International Latitude Service (ILS) as
the first permanent world-wide scientific cooperation to monitor the motion of the Earth’s pole of rotation with respect
to six observing sites based on continuous latitude observations. The ILS was reorganised in 1962 as the International
Polar Motion Service (IPMS), and has provided valuable observations for PM over about 100 years. All ILS latitude
observations have been reanalysed and combined to the PM solution within a consistent system for the period 1899.9-
1979.0 by Yumi and Yokoyama (1980). Based on optical astrometry observations, a PM time series for the period 1899.7-
1992.0 was obtained from a re-analysis within the Hipparcos frame by Vondrák et al. (1998). For more information on
the PM time series available from mid-19th century to the present, see Höpfner (2000).

Based on optical astrometry and ILS data, a large number of polar motion studies have been made in order to derive the
dominant terms of PM, including the secular drift of the Earth’s pole, the Chandler and annual motions. Some pertinent
examples should be noted: Wanach (1916) derived the mean parameters of the dominant motions from ILS data for the
epoch 1900-1912. The radius and period variations of the Chandler motion was examined by Kimura (1917) who used
the two time series of observations made at Greenwich and Pulkowa from 1825 until 1890 and the time series of the
latitude variation investigations of Albrecht and Wanach. It should be noted that Kimura predicted a marked minimum
in the Chandler radius to occur at around 1930. Assuming the Chandler period to be 1.2 years, Iijima (1965) separated
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the secular, Chandler and seasonal components from ILS data for the period 1900.0-1963.2 with a 0.1-year sampling.
The results were then investigated with respect to annual changes. In particular, he found that the Chandler period varies
from about 1.1 to 1.2 years and that the smaller period happens when the Chandler component has a smaller amplitude
and vice versa. Based on the ILS data for 1900-1962, Proverbio et al. (1971) analysed the Chandler motion with time
using Orlov’s method, confirming a correlation between the amplitudes and periods. Using latitude variations observed
at 20 stations (5 ILS and 15 independent stations) between 1900 to 1970 and 1900 to 1980, the properties of the Chandler
wobble including amplitude, phase and ellipticity were derived by Guinot (1972, 1982). An analysis of the homogeneous
ILS time series for the period 1899-1977 made by Wilson and Vicente (1980) was concerned with annual, Chandler and
long-period motions of the Earth’s pole.

Dickman (1981) also studied these terms using the homogeneous ILS time series from 1899.9-1979.0, with a focus on
controversial PM features apparently possessed by the older ILS data. Okubo (1982) dealt with the question of whether
the Chandler period varies over time. He found that a variability may be explained for an invariant period model. Chao
(1983) applied the autoregressive harmonic analysis to the homogeneous 80-year-long ILS time series, again focusing
on the dominant PM terms. Some of principal conclusions found in that work include how the Chandler wobble can
be adequately modelled as a linear combination of four (coherent) harmonic components and that the annual wobble is
relatively stationary both in amplitude and in phase. Based on BIH and ILS data, Lenhardt and Groten (1987) studied
the character of the Chandler wobble. They concluded that the double peak structure in the ILS spectra does not reflect
a two component wobble but could be attributed to a phase shift or other events. Using the longest astrometric PM time
series that was available (from 1846 to 1988), Nastula et al. (1993) investigated amplitude variations in the Chandler
and annual wobbles, including their prediction. For the Chandler, annual, semi-Chandler and semi-annual components
of polar motion for the epoch 1976 to 1987, parameter average estimates including their uncertainties can be found
in Höpfner (1995, 1996a). Vicente and Wilson (1997) estimated the Chandler frequency from a variety of PM time
series derived from optical and space geodetic data spanning various intervals from 1846 through to the early 1990s.
According to their results, its variation may not be significant. Earth rotation parameters obtained from the reanalysis in
the Hipparcos frame for the epoch 1899.7 to 1992.0 by Vondrák et al. (1998) were studied with respect to longer-period
polar motion, in particular the mean pole position, its drift and parameters of annual and Chandler wobbles, using a least-
squares fit at running intervals of 8.5 years, the Chandler frequency to be 0.845 cycles per year; see Vondrák (1999). The
same PM time series and the EOP (IERS) C01 time series computed by the International Earth Rotation Service (IERS)
from 1861.0 to 1997.0 were analysed by Schuh et al. (2001). Their research considered the linear drift and decadal
variations of the pole and the Chandler and annual wobbles. The amplitude, phase and period variations of both wobbles
were analysed, using a least-squares fit in terms of an iterative procedure with a sliding time window of 13.76 years.
From this analysis, it was seen that the PM reanalysis series is more consistent than the IERS series. For an overview of
polar motion studies, see Dick et al. (2000).

Since the middle of the 1970s, the Earth Orientation Parameters (EOPs) have been measured by precise space-geodetic
techniques such as VLBI (Very Long Baseline radio Interferometry), LLR (Lunar Laser Ranging), SLR (Satellite Laser
Ranging) and most recently, GPS (Global Positioning System). By combining independent measurements of the Earth’s
orientation taken by the space-geodetic techniques, more precise PM time series are now available. Therefore, compared
to earlier polar motion studies, an analysis of these data should provide more precise results. In this study, we consider the
major periodic components of polar motion, in particular the Chandler and annual wobbles, with a focus on quantifying
their temporal variability.

2 Data sets used in this study

The data sets used to examine the Chandler and annual motions are the combined Earth orientation series, SPACE99, as
computed by the Jet Propulsion Laboratory (JPL), from MJD 43049.0 (1976 9 28.0) to 51565.0 (2000 1 22.0) at daily
intervals (Gross, 2000). Using a Kalman filter, this solution is based on data from space-geodetic techniques (LLR,
SLR,VLBI, and, since mid-1992, GPS). Before their combination, bias-rate corrections and uncertainty scale factors are
applied to the independent series to make them consistent with each other. Moreover, the combined series is referred in
bias and rate to the IERS 1999 solutions, i. e., it is consistent with the IERS combined Earth orientation series EOP(IERS)
C04. For more information and in particular for the uncertainties and the differences between SPACE99 and EOP(IERS)
C04, see Gross (2000).

Figure 1 shows the input data of polar motion in terms of an irregular spiral curve using the mathematical perspective
in space-time view of Höpfner (1994a). The beat with a cycle of ca. six years is induced by the superposition of the two
dominant oscillations, with periods of about 435 and 365 days, respectively.
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Figure 1. Polar motion as computed by JPL (Gross, 2000) using the mathematical perspective in space-time view of Höpfner (1994a). The �
	 -axis
points towards the Greenwich meridian and the ��� -axis towards ��
 � E longitude.

3 Data processing and results

In studying the Chandler and annual components of polar motion, processing the data consists of the following analysis
steps:

(1) Separating the low-frequency component by low-pass filtering and the Chandler and annual wobbles by recursive
band-pass filtering for the � � � and � � � components with one-day sampling

Compared to other analysis methods such as least-squares fit, filtering is most appropriate for separating variable
signals when studying their behaviour over time. As in our previous studies, digital filters have been applied; see Höpfner
(1996b) for details dealing with constructing the zero-phase digital filters. To filter out the Chandler term from the
daily values of the time series, a Chandler filter analogous to the filter developed for separating the annual term was
designed. The Chandler and annual filters have a cosine shape modified over four periods as weight function. In order
to best separate both periodic terms from each, the procedure applied was that of successive approximation by alternate
elimination of the Chandler and annual terms. The results obtained for both wobbles are represented in Figs. 2 and 3 in
a similar manner as Fig. 1. In particular, the Chandler motion is described by the elliptic spiral in Fig. 2, and, for the
annual motion, the same is shown in Fig. 3. It should be noted that the filtered wobbles are truncated at the beginning
and the end of the analysis intervals. The Chandler motion is referred to the time interval from MJD 44004.0 (1979 5
11.0) to 50610.0 (1997 6 11.0) and the annual motion from MJD 43843.0 (1978 12 1.0) to 50771.0 (1997 11 19.0).

(2) Calculating optimal estimates for the periods of the Chandler and annual wobbles over time
For this step, we applied a method, based on the maximum, zero crossing and minimum of a periodic function, to the

filtered periodic terms separately for the � � � and � � � components (for details about this method, see the Appendix in
Höpfner (2001)). This resulted in two period time series for the Chandler and annual wobbles, one for the � � � component
and another for the ����� component. In both cases, the differences between them were between 0 and 2 days, i. e. not
significant, and we determined the final period time series as means. The standard deviations of the period means are�

0.48 and
�

0.54 days. Figure 4 shows the period variability of the Chandler and annual wobbles over time.
(3) Deriving the trigonometric Fourier coefficients � � , � � and � � , � � of the Chandler and annual wobbles, and their

uncertainties, for the ����� and ����� components
The expressions for the periodic terms have the trigonometric form � ������� (2 � t/T) + � ������� (2 � t/T) and � ����� � (2 � t/T)

+ � �!�"�#� (2 � t/T) for the ����� and ����� components respectively, where t is the time in days elapsed since 1977.0 (MJD
43144.0) and T the period of the concerned wobble in days. Using a least-squares fit, the trigonometric Fourier coeffi-
cients � � , � � and � � , � � and their uncertainties were derived for � � and � � from the filtered time series at running intervals
of 441 days for the Chandler wobble and 375 days for the annual wobble, with quarterly sampling, taking variable periods
as computed according to (2) and presented in Fig. 4.
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Figure 2. Chandler wobble filtered out from the series EOP (JPL) SPACE99 using the mathematical perspective in space-time view of Höpfner (1994a).
The � 	 -axis points towards the Greenwich meridian and the � � -axis towards ��
 � E longitude.
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(4) Computing the parameters and their uncertainties of the Chandler and annual wobbles for the trigonometric, expo-
nential and elliptic representations

The periodic terms in (3) have the equivalent expressions for the just mentioned representations as follows:
- The trigonometric form is described by % �&����� (2 � t/T - ' � ) and % �(����� (2 � t/T - ' � ) for the �)��� and ����� components,

with the amplitudes % � , % � and the phases ' � , ' � of the oscillations of the real and imaginary parts. From the trigonometric
Fourier coefficients � � , � � and � � , � � , the amplitudes % � , % � and the phases ' � , ' � of the oscillations of the real and
imaginary parts are computed according to the formulas

% �+*-, � � �/. � � ��021354 �76 % �8*9, � ��(. � ��:0�13<; (1)

and

' �+* 4�= ��> 4 � � �
� �

4 �76 ' �8* 4�= ��> 4 � � �
� �@? (2)

- The exponential form is expressed as ( ACB + i DEB ) F�G
H (i 2 � t/T) + ( AJI + i DKI ) F�G$H (-i 2 � t/T) with the exponential
Fourier coefficients A B , D B and A I , D I being circular motions of the positive and negative frequencies. Instead of ( A B
+ i D B ) and ( A I + i D I ), another way to express this is L�M B L�F�G
H (i N B ) and L�M I L�F�G
H (i N I ), with the circular motions
having amplitudes L$M B L , L M I L and phases N B , N I . In each case, an elliptical path results from the circular motions
of the positive and negative frequencies. For the exponential Fourier coefficients A B , D B and A I , D I , the following
relationships to the trigonometric Fourier coefficients � � , � � and � � , � � exist:

A B *POQSR � � . � �:T 4 �76 D B *POQSR � �U� � ��T (3)

and

A I *POQSR � �V� � ��T 4 �76 D I *WOQXR � � . � ��T ? (4)

The amplitudes LYMUBZL , L:M8IUL and the phases N2B , N@I of the circular motions are obtained by

L M B L * L A B .\[ D B L * , A �B . D �B 0213 (5)

and

L M I L * L A I .\[ D I L * , A � I . D �I 0213<; (6)
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and

N�B * 4�= ��> 4 � D B
A B

4 �76 N@I * 4�= ��> 4 � D I
A I ? (7)

- Concerning the elliptic motion, knowledge of its parameters is of particular interest in the geophysical interpretation.
The major and minor semi-axes a, b of the ellipse are given by

� * L M B L . L M I L 4 �76 � * L M B L � L M I L ; (8)

and their directions ]7^ , ]
_ by

] ^ * OQSR N B . N I T 4 �76 ] _ * ] ^ . � Q ? (9)

The numerical eccentricity ` is a dimensionless measure for the divergence of the ellipse from the circle and is obtained
by

` * R � � � � � T 13
� ? (10)

If ` *ba ; then there is a circle; if adc ` c O ; then there is an ellipse. For example, the orbit of the Earth has only the
numerical eccentricity ` = 0.0167.

Note that, for all parameters and quantities of the periodical terms, the formulas for computing their standard deviations
can be found in Höpfner (1994b). Using the results of (3), we computed the parameters and their uncertainties for the
trigonometric, exponential, and elliptic forms of representation for the Chandler and annual wobbles. Figure 5 shows
the variation of the semi-major and semi-minor axes (top) and the direction of the major axis (bottom) of the Chandler
motion. In Fig. 6, the same is shown for the annual motion. Additional information including some results of the different
parameters and the related standard deviations of the Chandler and annual wobbles at four chosen epochs (Oct./Nov.
1980, Oct./Nov. 1984, Jan./Feb. 1989, Jan./Feb. 1993) are given in Table 1.

4 Discussion of the results

Before discussing the results obtained from this work, it needs to be stated that, compared to the PM time series based
on optical astrometric measurements, the combined Earth orientation series SPACE99 used in this study are qualitatively
better. However, the separation of two signals with similar time varying periods, in particular the Chandler and annual
wobbles, requires a special effort.
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Figure 6. Variations in the semi-major and semi-minor axes (top) and direction of the major axis (bottom) of the annual motion. The solutions with
their standard deviations are shown at quarterly sampling.

To derive the parameter of the Chandler and annual wobbles and the associated uncertainties in the temporal variability,
we applied a 4-step procedure as described in Sect. 3. Some of our results are plotted in Figs. 2 to 6 and summarised in
Table 1. As can be seen, the parameter estimates show remarkably small uncertainties. Concerning their variability over
time, this is clear without the estimated uncertainties, i.e. statistically significant, and the courses appear rather steady.
Therefore, it can be said that the method used to derive these solutions for the Chandler and annual wobbles yields results
of high quality. However, it should be mentioned that a few of the estimates at the beginning and end of the time series
may be less accurate because of an edge effect of the recursive band-pass filtering.

The Chandler wobble is found to show a period variation between 422 and 438 days with a estimated standard deviation
of only

�
0.48 days (top of Fig. 4), while its amplitude mean varies from 0.15” to 0.20” (top of Fig. 5). Concerning

a possible elliptic motion, note that the semi-major axis a only differs by 0.001” to 0.006” from the semi-minor axis
b, resulting in the numerical eccentricity ` ranging between 0.10 to 0.23. Therefore, the Chandler wobble has a quasi-
circular prograde (i.e. counter-clockwise) motion. Comparing the changes in amplitude with those in period, we notice
that both are similar in their time dependence, i.e., there is a correlation between the amplitudes and periods over this
analysis interval, as found in previous polar motion studies covering the last century over different time periods (e.g.
Iijima, 1965; Proverbio et al., 1971; Vondrák, 1999). From the direction of the major axis of the Chandler wobble plotted
in the bottom panel of Fig. 5, a distortion in the quasi-circular Chandler ellipse occurs between about a7� and

Q a�a�� , and
is likely to be prograde (retrograde) if the amplitude increases (decreases).

A significant change in the period of the annual wobble, from 350 to 371 days with an uncertainty of
�

0.54 days, can
be seen (bottom of Fig.4). Since the semi-major axis of the annual wobble is always visibly larger than the semi-minor
axis (top of Fig. 6), there exists a significantly elliptic annual motion that is prograde, similar to the Chandler wobble.
For the annual wobble, the semi-major axis a varies between 0.063” and 0.096”, and the semi-minor axis b between
0.056” and 0.087”, with the differences between both axes over this time interval reaching a minimum of 0.002” and a
maximum of 0.009”. The numerical eccentricity ` of the annual motion ellipse ranges from 0.26 to 0.49. Comparing the
annual period curve (bottom of Fig. 4) with the semi-axis curves (top of Fig. 6) reveals the shorter (longer) periods of
the elliptic annual motion are probably associated with smaller (larger) semi-axes. The direction of the major axis of the
annual wobble ellipse (bottom of Fig. 6) shows considerably less change than the Chandler wobble ellipse (bottom of
Fig. 5), its variability over time being around O:��� � and O:��� � for the analysis interval.

Recent studies are referred to following analysis intervals: From 1848 to1988 by Nastula et al. (1993), from 1976
to 1987 by Höpfner (1995, 1996a), from 1899.7 to 1992.0 by Vondrák (1999) and from 1861.0 to 1992.0 by Schuh et
al. (2001). While it should be appropriate to use these results as a comparison with ours, there are either no or only
relatively short common intervals, making such comparisons difficult. However, we can say that the average results of
the Chandler and annual wobbles obtained by Höpfner (1995, 1996a) conform to the estimates in this work. In Vondrák
(1999), the parameter estimates plotted over the time interval 1904-1988 are the semi-major and semi-minor axes and
phase of the Chandler and annual wobbles, and in addition the orientation of the annual wobble ellipse. Note that the
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adopted Chandler frequency is 0.845 cycles per year, i.e., a Chandler period of 432.25 days, and the time t is elapsed in
days since 1900.0. Considering the estimates that cover the same time interval as ours (1980-1988), there is agreement
between our and their results for the semi-axes of the Chandler and annual wobbles. Also, estimates for the direction of
the major axis of annual motion are similar. For the phases, we notice that they refer to different time counting and period
lengths. The common interval of our parameter estimates and those by Schuh et al. (2001) is shorter (1980-1985), with
the time t in that work elapsed since 1945.0 compared to 1977.0 here. We find a similarity in the magnitude and time
evolution of the Chandler and annual periods with our over the common interval. The same can be said for the amplitudes
of the Chandler wobble, whereas the amplitudes of the annual wobble computed by Schuh et al. (2001) are similar to our
in magnitude, but differ in their temporal course.

The time series EOP(IERS) C04 is a combined EOP solution available since 1962 at 1-day intervals from IERS. For
the uncertainty of a daily value, see for example, IERS (2000), where it is shown that the uncertainty decreases by
replacing the classical method for measuring polar motion by space-geodetic techniques. This was done over 6 periods,
ranging from 30 milliarcseconds at the beginning of the series to 0.2 milliarcseconds at its end. That time series could be
processed in a similar manner as described here, after which, a comparison may be made of the parameter estimates of
the Chandler and annual wobbles with this work’s results, revealing the significant differences between the JPL and IERS
systems. Note that compared to the combined Earth orientation series SPACE99 used in this study, EOP(IERS) C04 is
nearly 15 years longer. Therefore, the parameter estimates in terms of a time series in the IERS system are earlier, which
would also be of special interest.

5 Concluding remark

Concentrating on the Chandler and annual wobbles of polar motion, the main results of our study are the characteristics
and time evolution of both periodic components from 1980 to 1998 relative to the JPL system being important for
geophysical interpretations, including prediction, model development and validation.
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Vondrák, J., Earth rotation parameters 1899.7-1992.0 after reanalysis within the Hipparcos frame, Surveys in Geophysics, 20, 169–195, 1999.
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