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Abstract

In this thesis, an analysis of the various parameters derivable from polarimetric SAR measurements is
reported. The theory related to polarimetry and the state of the art of its application to remote sensing
of the Earth by means of SAR systems are thoroughly discussed.

The experimental part of this work pursues the task of analyzing all the relevant polarimetric param-
eters. In the first part of the thesis, a systematic study of the different ways of examining polarimetric
data has been performed. The main aim was to evaluate possible differences among the various polari-
metric observables and the amount and usefulness of the information they contain. In this context, these
observables have been compared by means of the accuracy estimates resulting from classification tests
of real polarimetric SAR data. In the analysis proposed here, such accuracy estimates act as an objective
measure of the “utility” of the observables.

In the second part, some of the aforementioned polarimetric observables have been used for inter-
ferometric applications. The main objective was to determine if a characterization of volume scattering,
one of the terms affecting the interferometric coherence, is possible. Once again a comparison of the
selected parameters has been done in terms of their capability to reduce the effects of volume scattering
in interferometric coherence images.

Since this work is intended as a general survey of polarimetric observables, completeness has been
an important goal, which the author hopes to have achieved. The twofold view of the investigations
reported here, oriented both to classification and interferometry, contributes to a comprehensive under-
standing of the parameters under study.

Keywords: Radar imaging, synthetic aperture radar (SAR), SAR polarimetry, SAR interferometry, polarimet-
ric SAR interferometry, image classification.

Kurzfassung

In dieser Arbeit wird über die Analyse von unterschiedlichen Parametern, ermittelt vom polarimetri-
schen SAR, berichtet. Die Theorie der Polarimetrie und der Stand der Technik in der Radarfernerkun-
dung der Erdoberfläche, die auf SAR-Systemen beruhe, ist gründlich dargestellt.

Der experimentelle Anteil dieser Arbeit beinhaltet die Analyse von allen relevanten polarimetrischen
Parametern. Der erste Teil ist eine systematische Untersuchung von polarimetrischen Daten, wobei
unterschiedliche Wege analysiert werden. Die Hauptaufgabe besteht darin, sowohl die möglichen
Unterschiede zwischen den verschiedenen Eingangsparametern als auch die Anzahl von Parametern
und deren Nutzen zur Informationsgewinnung zu untersuchen. Demzufolge wurden die Eingangspa-
rameter hinsichtlich ihrer Klassifikationsgenauigkeit auf vorhandene SAR Daten verglichen. In der
vorgeschlagenen Untersuchung stellen die Genauigkeitsanalysen ein objektives Kriterium für den so-
genannten “Nutzen” der Eingangsparameter dar.

Im zweiten Teil wurden die zuvor genannten polarimetrischen Eingangsparameter für die interfer-
ometrische Anwendung eingesetzt. Im Vordergrund stand die Bestimmung der Volumenstreuung und
deren Einfluss auf eines der Elemente der interferometrischen Kohärenz. Auch hier fand ein Vergle-
ich der ausgesuchten Parameter in Bezug auf ihre Fähigkeit, den Effekt der Volumenstreuung in der
interferonmetrischen Kohärenz zu reduzieren, statt.

Diese Arbeit möchte eine allgemeine Erfassung von polarimetrischen Eingangsparametern geben,
wobei ein wichtiger Punkt, vom Autor hoffentlich erreicht, die Vollständigkeit ist. Die doppelte Sicht
der vorgestellten Untersuchungen, angelehnt an die Polarimetrie und Interferometrie, trägt zu einem
umfassenden Verständnis der Parameter in dieser Arbeit bei.

Stichworte: Abbildendes Radar, Synthetisches Apertur Radar (SAR), SAR-Polarimetrie, SAR-Interferometrie,
Polarimetrische SAR-Interferometrie, Klassifikation.
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All my riches for her smiles when I slept so soft against her
It’s never over,
All my blood for the sweetness of her laughter...”

Jeff Buckley
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1 Introduction

Research in the field of radar remote sensing has been a promising area for several
decades. In particular, imaging radar systems have become a powerful tool for study-
ing the Earth and its environment. The reasons which make radars useful may be
summarized as follows:

• radars are active systems: this means that they generate electromagnetic (EM)
wave beams whose scattering by targets is the object of study and that they can
operate independently of daylight (unlike, for example, optical sensors).

• Frequency, polarization, power and direction of the transmitted beam can be cho-
sen at will. Radars operate within the microwave (MW) region of the EM spec-
trum that ranges from frequencies of about 3 MHz up to 300 GHz, with corre-
sponding wavelengths λ from 100 m down to 1 mm. However, most of the civil
systems nowadays in use limit themselves to a main set of frequency bands: X
(f ≈ 10 GHz or λ ≈ 3 cm), C (f ≈ 6 GHz or λ ≈ 5 cm), S (f ≈ 3 GHz or λ ≈ 10
cm), L (f ≈ 2 GHz or λ ≈ 15 cm) and P (f ≈ 0.5 GHz or λ ≈ 60 cm).

• Radars can provide (for certain values of moisture and density of the ground)
information from beneath the ground surface (sub-surface information). In the
same way, they can go through vegetation canopies and give information on their
characteristics and on the terrain beneath. Indeed, the penetration depth of an
EM wave is a function of the density and moisture content of the penetrated
medium as well as of the frequency and polarization of the wave itself.

• In most of the common radar frequency bands, these sensors are almost indepen-
dent of weather conditions, as the attenuation of the atmosphere is negligible for
wavelengths λ > 3 cm.

Synthetic aperture radar (SAR) systems can provide better results than conventional
direct aperture radars. Whereas the resolution of an airborne or spaceborne radar de-
pends on antenna dimensions and on the distance from the targets, SAR devices can
simulate antenna dimensions much larger than the real ones and can make the resolu-
tion along the flight-path direction independent from the sensor-to-target distance.

Conventional imaging radars (including SAR) operate with a single fixed-
polarization antenna for both transmission and reception of radar signals. In this way,
for each resolution element in the image, a single scattering coefficient is measured for
a specific combination of transmit and receive polarization states used for recording
the radar echo; hence, a scalar processing is applied to the power backscattered from

1



2 Chapter 1 - Introduction

the observed targets. The use of polarization-sensitive devices is the logical develop-
ment that follows from the consideration of the vector nature of the EM waves. Fully
polarimetric radars are indeed able to transmit and receive both the orthogonal com-
ponents of an EM wave. This ensures that the complete scattering information carried
by radar echo signals is fully used to enhance targets detection and identification.

A brief digression on polarimetry history, covering the last 50 years, would now be
useful.

Although the discovery of polarimetric phenomena in light dates back to the sev-
enteenth century, the earliest studies on polarimetric radars appeared at the end of
the 40s. Worth mentioning are in particular those reported by Kennaugh [Ken54], Sin-
clair [Sin50], Deschamps [Des51], Graves [Gra56] and Copeland [Cop60] which antic-
ipated the classic PhD work by Huynen [Huy70] in 1970. Kennaugh’s contribution
was probably the most meaningful; unfortunately it was for several years classified
and only at the end of the 70s made available for the scientific community. A detailed
review of all these contributions was later conducted by Boerner [BEACM81], [eae85],
[eae92]. However, the potential of radar polarimetry remained underestimated until
the end of the 80s, mainly because of technological limits restricting practical appli-
cations. A fundamental turning point was represented by the NASA/JPL airborne
AIRSAR [ZvZH87], [ZvZ91] that was the first imaging polarimetric SAR system ever
operated and the forerunner to a series of others by different research institutions (see
Figure 1.1).

Thus, concrete applications of polarimetric techniques became possible only recently,
when developments in technology (among others the availability of digital data record-
ing systems and general purpose computers for data reduction) permitted the imple-
mentation of fully polarimetric imaging radars. Even more important has been the so-
lution of the problems related to the coherent analysis of the waves, i. e., the exact mea-
surement of the signal phase. With regard to the role played by phase, backscattered
signals depend completely on the nature of the targets and two extreme situations are
possible: point scatterers and Gaussian scatterers. In the first case, the resolution cell
may be treated as point-like when determining its position and no uncertainties in
phase are present. Backscattering from Gaussian scatterers is, on the contrary, due to a
number of elementary random scatterers among which none provides a contribution
clearly dominating the others. The evaluation of the phase is in this case the result of
an integration over the various contribution from the chosen resolution cell.

It is currently possible to distinguish different branches of what are generally called
polarimetric studies. Regardless of the common basis they share, there are troubles
in relating them partly due to the different conventions adopted in radar and optical
polarimetry. For example, the very definition of polarization handedness can lead to
confusion and misunderstandings.1

1“. . . Circularly polarized waves have either a right-handed polarization or a left-handed polariza-
tion, which is defined by convention. The TELSTAR satellite sent out circularly polarized microwaves.
When it first passed over the Atlantic, the British station at Goonhilly and the French station at Pleumeur
Bodou both tried to receive its signals. The French succeeded, because their definition of sense of po-
larization agreed with the American definition. The British station was set up to receive the wrong
polarization because their definition of sense of polarization was contrary to our definition. . . ”

from J. R. Pierce, “Almost everything about waves”. Cambridge, Massachusetts USA; MIT Press, 1974,
pages 130-131.
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4 Chapter 1 - Introduction

remote sensing systems. In this context, the EM waves may be described either
using two-dimensional Jones vectors or four-dimensional Stokes vectors and, ac-
cordingly, their scattering interactions will be represented by means of scattering
or Stokes matrices. The theory explaining the relations among different represen-
tations and the operations of change-of-basis also have a general relevance.

SAR polarimetry. As anticipated, the principles of synthetic aperture have been ap-
plied also to polarimetric radars giving new momentum to the microwave remote
sensing of the Earth. In some cases, the full scattering matrices or the Kennaugh
matrices can be measured. Technological aspects as well as those connected to
applications of the data are developing rapidly. Much attention is paid, for ex-
ample, to calibration and signal processing or to classification and pattern recog-
nition methods.

Scatterer property modelling. This is the “ultimate” part of the research, which in-
volves both theoretical and experimental aspects: modelling the scattering be-
haviour of point and distributed targets and the interactions using few parame-
ters only, and developing algorithms to invert the models for retrieving physical
quantities from the measurements.

Polarimetric interferometry. A recent development of polarimetry arises from its as-
sociation with interferometric techniques. Their combined application yields no-
table results: polarimetric analysis makes it possible to separate different scat-
tering mechanisms within a given resolution cell, whereas interferometric tech-
niques allow for a topographical characterization of the scattering contributions.
These properties can then be used for improving digital elevation models (DEM)
or for biomass estimation.

Finally, tomographic and holographic techniques are also applicable to SAR data
[RM00], [Rei01] and can be combined with interferometric tools, as they share the com-
mon goal of achieving elevation maps or 3-D images of the observed scenes.

The following two chapters will be devoted to a review, as complete as possible, of
the theory concerning these and other issues. The aim is to define, for each branch, the
established knowledge and the possible future developments of research.

The experimental part of this work will pursue another task. Given the different
possibilities of expressing polarimetric data, we will consider them in a systematic way,
trying to see if substantial differences exist among the various polarimetric observables in terms
of the amount of information they can provide and of its usefulness. For this reason, in Chap-
ter 4 we have compared a set of these quantities by means of measures of classification
accuracy. In other words, we have tested different classification algorithms on ob-
servables extracted by airborne polarimetric SAR data. The chosen algorithms are not
specifically suited for this kind of data but, considering our approach, this is only of
secondary importance. Indeed, with our tests we want to have a measure (hence, some ob-
jective quantities) of the “utility” of the studied observables. A further reason for this choice
was that the classification algorithms used are well-established and in general use in
the remote sensing scientific community. In this way we may also get some idea of the
potential for wider use of polarimetric SAR data.
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Following this systematic overview, we will consider in Chapter 5 some of the po-
larimetric observables and examine them in combination with interferometry. The goal
is to determine whether in this way a characterization of volume scattering, one of the terms
affecting the interferometric coherence, is possible. Again, a comparison of the chosen polari-
metric quantities has been done and an attempt to estimate their usefulness is performed.

As indicated by its general scheme, this work is intended as a survey of polarimetric
observables and one of its merits is hopefully its completeness. Finally, to provide a
better understanding about the observables, these have been considered from different
points of view, namely in classification and SAR interferometry applications.





2 Foundations of radar polarimetry

2.1 Description of electromagnetic waves

Comprehensive introductions to polarimetry theory may be found in classics by Born
and Wolf [BW85], Kennaugh [Ken52], [Ken54], Huynen [Huy70], Azzam and Bashara
[AB77] and Mott [Mot92]. Also a great number of journal publications have been dedi-
cated during the years to general theoretical aspects; noteworthy examples are those by
Cloude [Clo83], [Clo86], van Zyl et al. [vZZE87] and by Kostinski and Boerner [KB86]
whose title we borrow for this chapter. These works are all interesting descriptions of
the state of the art in this field during the eighties and collect almost all the basic equa-
tions of polarimetry. Other reviews of the main concepts of radar polarimetry have
been later presented in [AB89], [vZZ90], [BYXY91] and [Hub94].

As a first step we will introduce EM waves and see how they can be represented
and how different representations are related to each other.

All aspects of macroscopic electromagnetic phenomena may be described in terms
of the set of the Maxwell equations that in MKSA units have the form [Str41], [Jac75],
[Kon86]:

~∇× ~E(~r, t) = − ∂

∂t
~B(~r, t), (2.1)

~∇× ~H(~r, t) = ~J(~r, t) +
∂

∂t
~D(~r, t), (2.2)

~∇ · ~B(~r, t) = 0 , (2.3)
~∇ · ~D(~r, t) = % (~r, t), (2.4)

where:

• ~E is the electric field intensity vector in V olt/meter,

• ~B is the magnetic flux density vector in Tesla,

• ~H is the magnetic field intensity vector in Ampere/meter,

• ~D is the current displacement vector in Coulomb/meter2,

• ~J is the electric current density vector in Ampere/meter2 and

• % is the electric charge density in Coulomb/meter3.

7
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~E, ~B, ~H , ~D, ~J and % are all real-valued functions of time t and spatial location ~r, with
~r being a position vector defined with respect to a specified coordinate system.

If the field vectors are linearly related, the medium is said to be linear and one has:

~B(~r, t) = µ̄(~r) ~H(~r, t) , (2.5)
~D(~r, t) = ε̄(~r) ~E(~r, t) , (2.6)

indicating with µ̄(~r) (expressed in Farad/meter) and ε̄(~r) (in Henry/meter), respec-
tively the dielectric tensor and the magnetic permeability tensor of the medium. In a
homogeneous medium µ̄, and ε̄ are constant and in an isotropic medium they are scalar
quantities.

Generation, propagation and interactions of EM waves with matter are governed by
these laws. Indeed, by means of simple combinations of the Maxwell equations and
using further relationships among the above defined quantities, one can prove that for
the vector fields in a homogeneous isotropic medium a wave motion equation holds
such as:

∇2~Ψ(~r, t) − 1

v2

∂2

∂t2
~Ψ(~r, t) = ~g(~r, t) , (2.7)

with ~Ψ being one of the fields, v the wave propagation velocity and ~g a function of the
sources generating the wave.1

In a linear, source-free (i. e., for % (~r, t) = 0 and in absence of externally applied
electric currents), homogeneous isotropic medium, the wave equation is homogeneous
for every component of ~E:

∇2 ~E(~r, t) − 1

v2

∂2

∂t2
~E(~r, t) = 0 , (2.12)

with:
v =

1√
µε
. (2.13)

1Let us show how an equation similar to (2.7) can be derived for the electric field ~E in a homogeneous
isotropic medium. From Equations (2.1) and (2.5) it follows:

~∇× (~∇× ~E(~r, t)) = ~∇×
(

− ∂

∂t
~B(~r, t)

)

= ~∇×
(

−µ
∂

∂t
~H(~r, t)

)

= −µ
∂

∂t

(

~∇× ~H(~r, t)
)

. (2.8)

Applying the vector identity ~∇×(~∇×~a) = ~∇(~∇·~a)−∇2~a, and substituting ~∇× ~H(~r, t) from Equation (2.2)
one has:

~∇(~∇ · ~E(~r, t)) −∇2 ~E(~r, t) = −µ
∂

∂t
~J(~r, t) − µ

∂2

∂t2
~D(~r, t), (2.9)

that by means of (2.6) becomes:

∇2 ~E(~r, t) − ~∇(~∇ · ~E(~r, t)) − µε
∂2

∂t2
~E(~r, t) = µ

∂

∂t
~J(~r, t). (2.10)

Using Equation (2.4) and assuming ~∇% (~r, t) = 0, Equation (2.10) may be written as:

∇2 ~E(~r, t) − µε
∂2

∂t2
~E(~r, t) = µ

∂

∂t
~J(~r, t), (2.11)

known as the inhomogeneous scalar wave or Helmholtz equation.
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Equation (2.12) allows as a solution any function of the type:

~Ψ(~r, t) = ~Ψ+(ωt− ~k ·~r ) + ~Ψ−(ωt+ ~k ·~r ). (2.14)

~Ψ+ and ~Ψ− represent waves propagating in opposite directions and are twice differen-
tiable functions of:

φ± = ωt∓ ~k ·~r, (2.15)

where ω and ~k are respectively the angular frequency and the propagation vector of
the wave defined concordantly to the position vector; hence, a real-valued solution of
the wave equation of the electric field may be written as:

~E(~r, t) = ~Ereal cos(ωt− ~k ·~r ) (2.16)

(here only one of the two terms of the sum in (2.14) has been considered).

For practical reasons, it is however customary to adopt a complex representation
(this is always possible due to the linearity of the wave equation):

~E(~r, t) = ~E exp j(ωt− ~k ·~r ), (2.17)

taking both ~E(~r, t) and ~E as complex, and to assign physical meaning only to its real
part, Re[ ~E(~r, t)]. This is the convention that we too will use in the following.

For a given real vector ~k, one can determine a phase front of ~E(~r, t) by setting ~k ·~r =

constant and note that it coincides with a plane orthogonal to ~k. Indeed, with this
condition the amplitude of the electric field is the same for all points on the plane and
varies in time, remaining constant on this surface. Such waves are known as plane
waves and Equation (2.17) represents their general form.

Let us consider now a simple physical system such as the one in Figure 2.1,
composed of a transmitting antenna, a target and a receiving antenna and let us de-
fine a global Cartesian coordinate system, with basis vectors x̂, ŷ and ẑ, with its origin
within the target. The plane containing the directions of propagation of the transmitted
and scattered waves is the scattering plane; referring to it, the complex transverse com-
ponents of the electric field illuminating the scatterer are expressed in terms of a local
right-handed coordinate system (ĥ1, v̂1, n̂1), coincident with the transmitting antenna,
defined so that the n1-axis is directed towards the target. In a similar way a local coordinate
system (ĥ2, v̂2, n̂2) is defined with its origin in the receiving system.

In the far field and for small (compared with distances r) targets, waves can be
treated as planar; thus, the electric fields of three monochromatic (i. e., completely
polarized) waves may be expressed as follows:

~ET = (E2
Th1

+ E2
Tv1

)1/2[cosαT ĥ1 + sinαT e
jδT v̂1] · exp j(ωt− ~k ·~r1 + φT ), (2.18)

~ER = (E2
Rh2

+ E2
Rv2

)1/2[cosαR ĥ2 + sinαR e
jδR v̂2] · exp j(ωt+ ~k ·~r2 + φR), (2.19)

~A = (A2
h2

+ A2
v2

)1/2[cosαA ĥ2 + sinαA e
jδA v̂2] · exp j(ωt− ~k · ~r2 + φA), (2.20)

where, in all the equations, α = arctan(Ev/Eh) (Eh and Ev being the absolute values
of the complex components of the electric field), δ and φ are the relative and absolute
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phases respectively, subscripts T and R stand for transmitter and receiver, subscripts
1 and 2 specify the coordinate system and ~A, the antenna height, is the wave that the
receiving antenna would radiate in the +n̂2 direction if it acted as a transmitter (for a
better understanding of the terms involved in the equations above, see also Figure 2.2
and later on in this paragraph).

The three waves propagate in the +n̂1, −n̂2 and +n̂2 directions respectively. In the
case of backscattering, ~ET ∝ ~A only if the same antenna is used for transmitting and
receiving. When this condition is held to be true, one can then write [Ken54]:

~ET =
Z0It
2λr

~A, (2.21)

where Z0 is the impedence of the medium, It the terminal antenna current, λ the wave-
length and r = r1 = r2.

For every monochromatic EM wave, the tip of the vector representing the electric
field describes an ellipse on each generic fixed plane normal to the direction of propa-
gation (i. e., when one considers the evolution in time). According to the IEEE standard
definitions [IEE83], the polarization of a wave receding from an observer is denoted
right-handed if the electric field vector appears to be rotating clockwise in this plane
and left-handed if it appears to be rotating counterclockwise on the chosen perpendicu-
lar plane. Therefore, assuming α = π/4 and δ = π/2, we may define ~A as a left-handed
circularly polarized wave (because of its +n̂2 propagation) and ~ER as a right-handed
one (as it propagates along the −n̂2 direction).

Before going further with the description of the scattering process, it is useful to
introduce some alternative representations of the EM waves. Let ~E be a generic wave
of the form:

~E = (E2
h+ E2

v)
1/2[cosα ĥ+ sinα ejδ v̂] · exp j(ωt− ~k · ~r + φ). (2.22)
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This equation, which is similar to the ones above, can also be rewritten as:

~E = (E2
h+ E2

v)
1/2[cosα ejδhĥ+ sinα ejδv v̂] · exp j(ωt− ~k · ~r ), (2.23)

when each component is expressed with its own absolute phase, i. e. considering:

δh = φ (2.24)

and
δ = δv − δh = δv − φ. (2.25)

One example of the different ways to represent ~E is the Jones vector representation,
which is related to the particular choice we made of the wave local coordinate system.
This is obtained by writing the wave as a complex two-dimensional column vector
like:

E = (E2
h+ E2

v)
1/2 ejφ

[

cosα
sinα ejδ

]

= (E2
h+ E2

v)
1/2

[

cosα ejδh

sinα ejδv

]

. (2.26)

In fact, an isomorphism exists relating generic two-dimensional vectors to two-
dimensional column vectors (for which we adopted respectively the notations: ~V and
V). In many cases, the Jones vectors are defined as normalized vectors, hence dividing
(2.26) by (E2

h+ E2
v)

1/2.

The term in square brackets, the polarization state (PS) of the wave, completely deter-
mines its polarization ellipse at a fixed point in space, but does not contain the direc-
tion of propagation, which must be recovered from the exponent appearing in (2.22).
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Hence, the only polarimetric information which cannot be reconstructed from the Jones
vectors is the handedness, since handedness involves the definition of the direction of
propagation.

To avoid the lack of consistency caused by this insufficiency, the Jones vectors can
be complemented by the subscripts “+” and “−” in order to distinguish between two
directions of propagation: E+ should indicate waves propagating in the +~k direction
and E− in the −~k direction:

~E+ = E+ exp j(ωt− ~k · ~r ) (2.27)
~E− = E− exp j(ωt+ ~k · ~r ). (2.28)

The vectors E± are known as directional Jones vectors [Gra56]. E+ and E− represent
the same state of polarization referring to opposite propagation directions if they are
related by the complex conjugation operation, i. e.:

E± = E∗
∓ . (2.29)

It should be stressed that this relation is valid only for linear polarization bases.

The equation of the polarization ellipse can be derived from the general expression
(2.22). This new representation of the generic wave ~E, a geometrical one (see Fig-
ure 2.3), is characterized by two parameters expressing the ellipticity, i. e., the ratio of
the minor semi-axis b to the major semi-axis a [BEACM81], [BW85]:

tanχ =
b

a
(2.30)
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and inclination angle ψ of the major axis. These parameters are related to those of the
Jones vector by means of:2

tan 2ψ = tan 2α cos δ, (2.31)
sin 2χ = sin 2α sin δ (2.32)

and using them, the PS of ~E (the first column vector that appears in (2.26)) can be
expressed as:

p =

[

cosψ − sinψ
sinψ cosψ

] [

cosχ
j sinχ

]

. (2.33)

Values of χ between −π/4 and +π/4, and values of ψ between 0 and +π (or equiv-
alently between −π/2 and +π/2) are sufficient to describe all possible polarization
states. According to the convention adopted above, a wave propagating in the +~k
direction is right-handed if −π/4 ≤ χ < 0 and left-handed if 0 < χ ≤ π/4.

It is now easier to understand the meaning of Equation (2.29): the conjugation of
the Jones vectors implies a change in the sign of the phase difference δ = δv − δh and,
via (2.32), in the sign of the ellipticity angle χ. Hence, the handedness of the PS also
changes accordingly.

Another representation of the waves closely related to the one we have just intro-
duced, is the Stokes vector3 representation. Such vectors are defined in the following
way:

g =









g0

g1

g2

g3









=









I
Q
U
V









def
=









|Eh|2 + |Ev|2
|Eh|2 − |Ev|2
2Re{E∗

hEv}
2 Im{E∗

hEv}









, (2.34)

where Eh and Ev are the complex components of ~E.

Each component4 of g describes a characteristic of the EM wave, in detail:

• I represents the total wave intensity,

• Q is the difference between horizontal and vertical intensities,

• U is the difference between ±π
2

linear polarizations (the tendency of the wave to
be ±π

2
linear polarized),

• V is the difference of intensities between right and left polarizations (the ten-
dency to be left- or right-handed)

and it can be shown that they are not independent and furthermore that, for a com-
pletely polarized wave (which is the case we are hitherto considering), it results:

g0 = (g2
1 + g2

2 + g2
3)

1/2. (2.35)
2Mathematical details on the derivation of Equations (2.31) and (2.32) are reported in Appendix A.
3A word of caution in the use of the term “vector” is required when referring to the Stokes vectors.

Since the common rules of addition of vectors and of product by a scalar cannot be defined, the Stokes
vectors are not really vectors.

4The definition of g chosen here has been widely used in optics [BW85] and also seems to have
become common in radar polarimetry in recent years. The definition preferred by Huynen [Huy70] and
others [Giu86] is instead obtained by substituting as follows: g1 → g2, g2 → g3 and g3 → g1.
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The relationship with the previous geometrical representation may be brought to-
gether by using (2.31) and (2.32), so that (2.34) can be rewritten as:

g =









E2
h + E2

v

E2
h − E2

v

2EhEv cos δ
2EhEv sin δ









= E2









1
cos 2ψ cos 2χ
sin 2ψ cos 2χ

sin 2χ









. (2.36)

In (2.36), E2 = E2
h + E2

v is the total intensity of the wave.

The Stokes vector can be represented graphically by reference to the Poincaré sphere.

All the possible polarizations of a wave with total intensity E2 = g0 are described
in a three-dimensional Cartesian system (see Figure 2.4). Each PS is represented by
a point on a sphere of radius g0 whose Cartesian coordinates are (g1, g2, g3). On this
sphere the angles 2ψ and 2χ represent the longitude and the latitude of the point defin-
ing the PS. The equator of the Poincaré sphere thus represents linear polarizations, the
poles represent circular polarizations and all left-handed (right-handed) elliptical po-
larizations are mapped onto the northern (southern) hemisphere. The extremes of each
diameter correspond to a pair of orthogonal polarizations [IEE83].

As a final example of the different ways to describe an EM wave, we introduce the
concept of complex polarization ratio, defined as the ratio of the orthogonal complex
electric field components [AB77]:

ρ
def
= Ev/Eh = Ev e

jδv/Eh e
jδh = tanα ejδ = |ρ| ejδ, (2.37)
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where 0 ≤ α < π/2 and 0 ≤ δ < 2π. The two angles α and δ are now defined as De-
schamps parameters [Des51] and determine the polarization state of a wave in terms of
the amplitude ratio and phase difference. Since these parameters can also be geometri-
cally represented by means of a sphere, the Deschamps sphere, it is easy to visualize the
relationship between them and ψ and χ (see Figure 2.5). Using ρ , the two-dimensional
column vector becomes:

E = ejδh
(E2

h+ E2
v)

1/2

√
1 + ρρ∗

[

1
ρ

]

. (2.38)

The previously mentioned “orthogonality” of complex vectors (referred to PSs or
generic vectors) may be defined in terms of an inner product of the form:

〈a|b〉 ≡ a∗xbx + a∗yby , (2.39)

where a and b are two generic column vectors, such that they are orthogonal if:

〈a|b〉 = 0 (2.40)

Now, according to the complex polarization ratio representation, a new definition
of orthogonality of two PSs, denoted by m and n, can be introduced:

ρmρ
∗
n = −1 ⇐⇒ ρm = − 1

ρ∗n
, (2.41)

by means of some very general mathematical considerations (Feynman related it to the
analogous condition for the angular coefficients of two real straight lines [Fey96]).
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2.2 Scattering of electromagnetic waves

Taking into account all the definitions above, we can now continue with the description
of the interactions among the elements of the system in Figure 2.1.

Under the far field assumption, it has been shown that a general EM scattering pro-
cess can be described in terms of a matrix equation of the form [Mot92]:

ER = lim
r/λ→∞

λ

(4π)1/2r
[S]ET , (2.42)

where the distance between the receiving antenna and the target is denoted by r, λ is
the operating wavelength and [S] is a 2 × 2 complex matrix, i. e.:

[S] =

[

Sh2h1
Sh2v1

Sv2h1
Sv2v1

]

. (2.43)

[S] is the scattering matrix and completely defines the interaction; it introduces a map-
ping connecting the vectors representing the incident and scattered waves. Its elements
are, in general, complicated and sensitive functions of frequency, target orientation and
shape, relative orientation of the polarization planes in the bistatic case, etc. The diag-
onal elements Sh2h1

, Sv2v1
and the off-diagonal ones Sh2v1

, Sv2h1
are called respectively

co- and cross-polarized components. Note that the fractional term causes [S] to be di-
mensionless, but (2.42) can be expressed in different ways and [S] can also have the
dimension of a length. However, this proportional term will be omitted from here on
and (2.42) written in the simplified form:

ER = [S]ET . (2.44)

In the most general case, there are seven independent parameters in the bistatic
scattering matrix: four amplitudes and three phases. Indeed, an overall absolute phase
may be neglected, since the power received from the scatterer is independent of this
phase. In the backscatter (or monostatic) case, one has that h1 ≡ h2 and v1 ≡ v2 and
reciprocity dictates that Sh2v1

= Sv2h1
and there are only five independent parameters

in the scattering matrix.

Another fundamental equation of radar polarimetry comes from a different element
of the system: the receiving antenna network. It relates the voltage measured at a
receiving antenna to the polarization of an incoming EM wave (which, in turn, may be
scattered). A formal statement of the voltage equation is [Ken54]:

V = At ER = At[S]ET , (2.45)

where the notation atb ≡ axbx+ayby is for column vectors and superscript t denotes the
transpose. At the beginning of this paragraph, the antenna height A was introduced
as the polarization state of a wave transmitted by the receiving antenna towards the
target. Thus, A is a measurable quantity and is defined on the basis of the radiation
pattern of that antenna. The squared absolute value of V ,

PR = |V (A,ER)|2, (2.46)
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is described as the power transfer equation.

In [KB86], Kostinski and Boerner dealt with the voltage optimization question, which
is the problem of finding which polarizations of the transmitting and receiving anten-
nae maximize the value of P for a target with a known scattering matrix. It must be
noted that in (2.45) there is not an inner product because A is not conjugated; hence,
for normalized vectors the maximum condition for |V |2 is [Ken52]:

A ∝ E∗
R . (2.47)

The physical meaning of this formulation is easily understood if we consider that con-
jugation of any PS reverses the sense of rotation of the wave. Hence, the condition
A ∝ E∗

R means that the returned wave is matched to the receiving antenna when its
polarization ellipse is oriented in space identically with the one due to A (radiated by
the receiving antenna when used as a transmitter) and when they have opposite senses
of rotation when both looked at from the same viewpoint.

Kostinski and Boerner provided a general solution for the voltage optimization
problem which enables one to treat symmetric, asymmetric, monostatic and bistatic
cases in an identical manner (further details on the optimal polarization problem and
other solutions can be found in [Huy70], [AB89] and [BYXY91]). The approach pro-
posed by the two authors has the principal advantage of not requiring diagonalization
of the scattering matrix and therefore the use of change-of-basis formulae. This impor-
tant aspect of polarimetry theory will be dealt with in the next paragraph.

When dealing with power measurements, Equation (2.42) may be expressed in terms
of Stokes vectors and of the corresponding 4× 4 matrix [K], the so-called Kennaugh
matrix, whose elements can be derived from the ones of [S] by means of [vdH81],
[BEACM81]:

[K] = [A]∗([S] ⊗ [S]∗)[A]−1, (2.48)

where ⊗ denotes the Kronecker product of the two matrices and [A] is defined as:

[A] =









1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0









. (2.49)

For completely polarized waves there is a one-to-one correspondence between the scat-
tering matrix [S] and the Kennaugh matrix [K].

In forward scattering cases, [K] must be substituted by the Mueller matrix which is
related to the Kennaugh one by:

[M] = [C][K] or [K] = [C][M], (2.50)

with:

[C] =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









. (2.51)

Before proceeding any further, it is now worthwhile to define some characteristics
of the waves we are considering.
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All of the equations introduced in the previous paragraphs refer to monochromatic
waves that cannot be considered as typical real phenomena. Real systems work with
partially polarized waves, which can be expressed, via Fourier integrals, as a superpo-
sition of plane monochromatic waves. This is the importance of plane waves that, in
this sense, are the basic elements of all wave problems.

When a partially polarized wave is involved, Equation (2.35) must be replaced by:

g0 ≥ (g2
1 + g2

2 + g2
3)

1/2 (2.52)

and the values of the Stokes parameters have to be derived using average estimates
of the measurements, in order to correctly express the statistical variations of the po-
larization. Partially polarized waves are generated, typically, after scattering from real
targets which have to be considered as distributed sets of scatterers varying either in
space or in time. They are referred to as non-deterministic or partial or also random scat-
terers. In this case it was shown that the average Stokes parameters of the backscat-
tered wave are related to those of the illuminating one through an averaged Kennaugh
matrix. This matrix can be calculated by averaging the elements of [K] (we will indi-
cate this operation using angular brackets 〈 〉, that should not be confused with those
defining the inner product of two vectors), but this process does not preserve the re-
lationship with [S]. Hence, the unique connection between the scattering matrix and
the Stokes matrix representation is lost. In such a case, no equivalent scattering matrix
exists for the average Kennaugh matrix [Huy70], [vZZE87], [Mot92].

Taking now into account the considerations above, we can show how the received
power at the antenna terminal is related to the average Kennaugh matrix. In the most
general case of Figure 2.1, it holds:

PR = |V |2 = |At ER|2 = |〈A|ER〉|2, (2.53)

which, for a monostatic system with fixed polarization, yields:

PR = |〈ET |ER〉|2 = |〈ET |[S]ET 〉|2. (2.54)

Using the Stokes vectors, (2.54) may be written in a similar way:

PR = gt
T 〈[K]〉gT , (2.55)

with gT = gT (ψT , χT ) according to (2.36). The value of PR is usually the sum of several
power measurements to reduce statistical variations due to non-deterministic scatter-
ers inside an image resolution cell, so that 〈[K]〉 is the average Kennaugh matrix.

The received power can also be expressed in terms of an area associated with the
scatterer, called scattering cross section σ, such that:

σ = lim
r→∞

(4πr2)

(

PR

PT

)

. (2.56)

At a fixed polarization, i. e., the same polarization of the transmitting and receiving
antennae, σ is a function of ψT and χT only (by means of (2.36)). In the most general
case, one would expect different polarizations and hence: σ = σ(ψR, χR, ψT , χT ).
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2.3 Change-of-basis theory and characteristic polariza-
tions

Let us introduce now some relations that will be extensively used later and let us
refer, for instance, to the wave represented by (2.26). We defined it using a linear basis
but, of course, it would be possible to consider other bases and represent E according
to them.

What must be stressed is that, regardless of the basis we choose, and therefore of the
form in which we represent it, we are dealing with the same wave and there are some
rules to follow in order to guarantee proper comparison of measurements taken with
different antenna sets. The following requirement must be satisfied while changing
basis: all measurable quantities such as voltage, energy density, etc. must remain invariant
under the change-of-basis.

In general, defining a vector in two different bases requires us to find the relation-
ship between its components in the two bases; this relationship is usually expressed by
a matrix which maps the components of the vector in one basis to the components in
the other basis.

The fulfillment of the conditions above imposes some constraints on the matrices
which can be used as change-of-basis matrices: for orthogonal bases, they have to be
unitary matrices.

It will be remembered that the adjoint matrix [B]† of a generic complex matrix [B] is
defined as the complex conjugate of its transpose, i. e.:

[B]†
def
= [B]t∗ (2.57)

and for unitary matrices the following properties hold:5

[U]† ≡ [U]t∗ = [U]−1, (2.58)
[U]†[U] = [U][U]† = [I], (2.59)

| det[U]| = 1. (2.60)

In the 2 × 2 complex case, the unitarity requirement imposes four constraints on
eight parameters. Hence, [U] is, in general, a function of four variables. In radar po-
larimetry it was shown that an appropriate calibration of the system further leads to
the following condition:

det[U] = 1. (2.61)

It is then possible to reduce the number of parameters so that, in terms of the complex
polarization ratio, [U] can be expressed by:

[U] =
1√

1 + ρρ∗

[

ejδh −ρ∗e−jδh

ρejδh e−jδh

]

. (2.62)

Let us consider Equation (2.44) and see more in depth how the scattering matrix
behaves under change-of-basis transformations, starting from the forward scattering.

5Equations (2.58) and (2.59) are necessary and sufficient conditions for unitarity whereas (2.60) is
only necessary (but not sufficient).
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In such a case, the vectors ER and ET will undergo the transformations:

ER = [U]E′
R , (2.63)

ET = [U]E′
T , (2.64)

where the primes indicate quantities expressed in the new polarization basis.

What we require is an obvious physical invariance, namely, that the measured volt-
age at the receiving antenna terminals remains unchanged under the change-of-basis
transformation and that the scattering matrix in (2.44) connects the same physical po-
larization states as in the old basis. One then obtains:

ER = [S]ET ⇒ (2.65)
[U]E′

R = [S][U]E′
T ⇒ (2.66)

E′
R = [U]−1[S][U]E′

T , (2.67)

leading to the unitary similarity transformation for the scattering matrix [S]:

[S′] = [U]−1[S][U], (2.68)

which expresses the invariance of the properties of the target operator [S] following the
change-of-basis.

Significant differences characterize the scattering equation in the monostatic case.
Also for backscattering, the two polarization states (of the transmitted and of the re-
ceived wave) can be referred to using the same reference system and expressed in the
same basis but, obviously, correspond to waves propagating in opposite directions. It
is then important to correctly define their handedness. This is possible by means of the
directional Jones vectors. In a linear basis, keeping in mind that E± = E∗

∓ (see (2.29)),
Equation (2.44) must be rewritten as:

ER,− = [S]ET,+ = [S]E∗
T,− . (2.69)

According to this new expression (we will assume that, for a correct comparison, the
waves propagate in the same direction and for simplicity we will ignore the subscript
“−”), the change-of-basis relation for the scattering matrix becomes:

ER = [S]E∗
T ⇒ (2.70)

[U]E′
R = [S]([U]E′

T )∗ ⇒ (2.71)
E′

R = [U]−1[S][U]∗E′∗
T , (2.72)

which again leads to:
[S′] = [U]−1[S][U]∗ = [U]†[S][U]∗. (2.73)

Simply changing the name of [U]∗ and letting [U]∗ = [U1] , it becomes evident that
the representation of the scattering matrix [S′] in the new polarization basis is obtained
by a unitary congruence transformation of the original scattering matrix [S]:

[S′] = [U1]
t[S][U1] . (2.74)

This relation plays a central role in radar theory since most of systems have a monos-
tatic configuration.



2.3 - Change-of-basis theory and characteristic polarizations 21

The use of the change-of-basis formulae permits the expression of the scattering
matrix in diagonalized forms; hence, one has access to particular representations of
the interactions where the backscattered power is concentrated only in some of the
components of [S].

Let us consider the matrix transformation from the (ĥ, v̂) linear basis into a generic
one with basis vector (ê1, ê2):

[S]=
1

N

[

1 ρ
−ρ∗ 1

] [

Shh Shv

Svh Svv

] [

1 −ρ∗
ρ 1

]

=

=
1

N

[

1 ρ
−ρ∗ 1

] [

Shh + ρShv −ρ∗Shh + Shv

Svh + ρSvv −ρ∗Svh + Svv

]

=

=
1

N

[

Shh + ρShv + ρSvh + ρ2Svv −ρ∗Shh + Shv − ρρ∗Svh + ρSvv

−ρ∗Shh + Svh − ρρ∗Shv + ρSvv ρ∗ρ∗Shh − ρ∗Shv − ρ∗Svh + Svv

]

,

(2.75)

where:
N = 1 + ρρ∗ (2.76)

(we will no longer add the numerical subscripts to the [S] matrix elements, adopting
the broadly used convention of considering the first subscript related to the receiving
system and the second one to the transmitting system).

As reported in [Ken54], the two cross-polar nulls, which define the polarization vec-
tors whose reflected wave has zero cross-polar components, coincide with the co-polar
maxima. To obtain them, one has to impose one of the following zeroing conditions
on the cross-polar terms of (2.75) (due to reciprocity, in the monostatic case they are
equivalent):

−ρ∗Shh + Shv − ρρ∗Svh + ρSvv = 0 (2.77)
−ρ∗Shh + Svh − ρρ∗Shv + ρSvv = 0 (2.78)

Considering the former, taking its complex conjugate and subtracting the latter:
{

(ρ∗Shh − Shv + ρρ∗Svh − ρSvv)S
∗
hv = 0

(ρS∗
hh − S∗

hv + ρρ∗S∗
vh − ρ∗S∗

vv)Shv = 0
(2.79)

results in [BEACM81]:

ρ∗ShhS
∗
hv + ρ∗S∗

vvShv − ρSvvS
∗
hv − ρS∗

hhShv = 0 ⇒ (2.80)
ρ∗(ShhS

∗
hv + S∗

vvShv) = ρ(S∗
hhShv + SvvS

∗
hv) ⇒ ρ∗A∗ = ρA, (2.81)

being:
A = S∗

hhShv + SvvS
∗
hv. (2.82)

Now, taking again (2.77) and multiplying it by A∗:

ρ∗A∗Shh + ρρ∗A∗Shv − SvhA
∗ − ρA∗Svv = 0 ⇒ (2.83)

ρ2AShv + ρ(AShh − A∗Svv) − SvhA
∗ = 0 ⇒ (2.84)

ρ2AShv + ρ(S∗
hhShvShh +

+SvvS
∗
hvShh − ShhS

∗
hvSvv − S∗

vvShvSvv) − SvhA
∗ = 0 ⇒ (2.85)

ρ2A+ ρ(|Shh|2 − |Svv|2) − A∗ = 0. (2.86)
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Equation (2.86) has two possible complex solutions in terms of ρ:

ρ
(p, q)
1, 2 =

|Svv|2 − |Shh|2 ±
√

(|Shh|2 − |Svv|2)2 + 4 |A|2

2A
(2.87)

that lead to two diagonalized [S] matrices:

ρ
(p, q)
1 ⇒ [S](p1, q1) =

[

p 1 0
0 q1

]

, (2.88)

ρ
(p, q)
2 ⇒ [S](p2, q2) =

[

p 2 0
0 q2

]

, (2.89)

where the values of the two pairs of eigenvalues, are obtained by substituting the two
solutions found with (2.87) into (2.75).

It can also be shown that the cross-polar nulls are always mutually orthogonal, in-
deed:

(ρ
(p, q)
1 ) · (ρ(p, q)

2 )∗ =





−B +
√

B2 + 4 |A|2

2A









−B −
√

B2 + 4 |A|2

2A





∗

=

=
B2 −B2 − 4 |A|2

4AA∗
= −1, (2.90)

with:
B = |Shh|2 − |Svv|2 . (2.91)

The other group of characteristic polarizations is represented by the [S] matrix co-
polar nulls. As in the previous case, they can be calculated by setting both the co-polar
terms of (2.75) to zero:

Shh + 2ρShv + ρ2Svv = 0 (2.92)
Svv − 2ρ∗Shv + (ρ∗)2Shh = 0. (2.93)

The solutions of these two equations lead to two pairs of values for ρ, respectively
(ρ

(x)
1 , ρ

(x)
2 ) and (ρ

(y)
1 , ρ

(y)
2 ), and to two pairs of matrices which differ only in their phase

terms. Indeed one gets:

ρ
(x)
1 ⇒ [S]x1

=

[

0 x1

x1 a1

]

, (2.94)

ρ
(x)
2 ⇒ [S]x2

=

[

0 x2

x2 a2

]

, (2.95)

ρ
(y)
1 ⇒ [S]y1

=

[

b1 y1

y1 0

]

, (2.96)

ρ
(y)
2 ⇒ [S]y2

=

[

b2 y2

y2 0

]

, (2.97)

with:
|x1| = |x2| = |y1| = |y2| (2.98)
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and
|a1| = |a2| = |b1| = |b2|. (2.99)

It is important to note here that a more formal approach to the diagonalization of
the scattering matrix is possible (for instance, by means of Takagi’s theorem [HJ85])
which prevents some limits of the equations and derivations above. Indeed, these fail
when diagonalizing some special scattering matrices. It is nevertheless possible to use
them since in the majority of the cases, as it has been proven with experimental data,
they do operate correctly.

In summary, by measuring the target scattering matrix at a fixed observation geome-
try and frequency, the invariant target parameters may be calculated and the resulting
target information used to improve signal-to-clutter ratio or to provide the basis for
target identification using pattern recognition techniques. These properties will be ap-
plied to real data in order to test their capability to describe natural scenes.

2.4 Scattering vectors and second order matrices

So far our attention has been mainly directed toward the scattering matrix. However,
other representations of scattering phenomena, based on second order matrices, prove
to be useful since they can better deal with the real case of partially polarized waves.
It is worthwhile to introduce them before considering, in the next chapter, practical
applications of SAR polarimetry.

Let us begin by rewriting the scattering matrix as a scattering vector, by means of the
following relation [Clo86], [CP96]:

k(4) =









k0

k1

k2

k3









def
=

1

2









Trace([S][Ψ0])
Trace([S][Ψ1])
Trace([S][Ψ2])
Trace([S][Ψ3])









, (2.100)

where Trace[B] is the sum of the diagonal elements of whatever matrix [B] and Ψ =
([Ψ0], [Ψ1], [Ψ2], [Ψ3]) is a set of 2 × 2 complex matrices that form an orthogonal basis.

Among the basis sets used in the literature the most important ones are the follow-
ing:

ΨL =

(

2

[

1 0
0 0

]

, 2

[

0 1
0 0

]

, 2

[

0 0
1 0

]

, 2

[

0 0
0 1

])

(2.101)

and

ΨP =
(√

2 [σ0],
√

2 [σ1],
√

2 [σ2],
√

2 [σ3]
)

=

=

(√
2

[

1 0
0 1

]

,
√

2

[

1 0
0 −1

]

,
√

2

[

0 1
1 0

]

,
√

2

[

0 −j
j 0

])

. (2.102)

The former is a straightforward lexicographic ordering of the elements of [S], while
the latter is based on the Pauli matrices.
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Performing the vectorization of [S] using (2.100), two different scattering vectors can
be derived from the bases above:

k(4)L =









Shh

Shv

Svh

Svv









, (2.103)

k(4)P =
1√
2









Shh + Svv

Shh − Svv

Shv + Svh

j(Shv − Svh)









. (2.104)

Particular attention must be paid to the Pauli matrix basis: as will be shown later, its
elements are related to elementary scattering mechanisms so that the scattering vectors
can be immediately associated with concrete physical phenomena. For this reason it is
also interesting to express the matrix [S] in terms of the elements of the Pauli scattering
vector:

[S] =

[

k0 + k1 k2 − jk3

k2 + jk3 k0 − k1

]

. (2.105)

The multiplication factors 2 and
√

2, which appear in (2.101) and (2.102), are needed
in order to keep the norm of the scattering vector, which is equal to the total scattered
power, independent of the chosen matrix basis Ψ; in fact:

‖k(4)‖2 = 〈k(4)|k(4)〉 = Span([S]) =

= Trace([S][S]†) = Trace([S]†[S]) =

= |Shh|2 + |Shv|2 + |Svh|2 + |Svv|2. (2.106)

Again, as seen for the change-of-basis of the PSs (see page 19), the transformation
from the lexicographic into the Pauli representation of the scattering vectors can be
obtained by means of a relation of the type:

k(4)P = [D(4)]k(4)L, (2.107)

where [D(4)] is a unitary matrix defined as [CP96]:

[D(4)] =
1√
2
[A] (2.108)

with the matrix [A] given by (2.49).

We anticipated on page 18 that real systems involve scatterers situated in dynamic
environments and subject to space and/or time variations (non-deterministic scatter-
ers). This causes the EM waves to be partially polarized and prevents the scattering
process from being described by a single matrix [S] only and hence by a single scatter-
ing vector.

In order to study such phenomena, it is useful to introduce some new matrices,
starting from the covariance matrix, obtained by performing the outer product of the
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lexicographic scattering vectors:

[C(4)]
def
= 〈k(4)L k

†

(4)L〉 =

=









〈|Shh|2〉 〈ShhS
∗
hv〉 〈ShhS

∗
vh〉 〈ShhS

∗
vv〉

〈ShvS
∗
hh〉 〈|Shv|2〉 〈ShvS

∗
vh〉 〈ShvS

∗
vv〉

〈SvhS
∗
hh〉 〈SvhS

∗
hv〉 〈|Svh|2〉 〈SvhS

∗
vv〉

〈SvvS
∗
hh〉 〈SvvS

∗
hv〉 〈SvvS

∗
vh〉 〈|Svv|2〉









. (2.109)

A similar expression can be derived by means of the Pauli scattering vectors, which
brings to the coherency matrix [T(4)]:

[T(4)]
def
= 〈k(4)P k

†

(4)P 〉. (2.110)

Of course, the ensemble averaging becomes redundant for deterministic scatterers;
both matrices are by definition Hermitian positive semidefinite.

The relation between [C(4)] and [T(4)] follows from straightforward mathematics:

[T(4)] = 〈k(4)P k
†

(4)P 〉 = 〈[D(4)]k(4)L k
†

(4)L[D(4)]
†〉 =

= [D(4)]〈k(4)L k
†

(4)L〉[D(4)]
† = [D(4)][C(4)][D(4)]

†. (2.111)

We know that in the backscattering case the reciprocity theorem constrains scatter-
ing matrices to be symmetric, i. e. Shv = Svh ; in such a case the dimensions of the scat-
tering vectors, and hence of the coherency and covariance matrices, may be reduced as
follows:

k(3)L = [Q]k(4)L =





Shh√
2Shv

Svv



 , (2.112)

where:

[Q] =





1 0 0 0

0 1/
√

2 1/
√

2 0
0 0 0 1



 (2.113)

(with [Q][Q]t = [I(3)]), and in a similar way:

k(3)P =
1√
2





Shh + Svv

Shh − Svv

2Shv



 . (2.114)

This leads to covariance and coherency matrices of smaller dimensions, 3 × 3, defined
as:

[C(3)]
def
= 〈k(3)L k

†

(3)L〉 =

=





〈|Shh|2〉
√

2〈ShhS
∗
hv〉 〈ShhS

∗
vv〉√

2〈ShvS
∗
hh〉 2〈|Shv|2〉

√
2〈ShvS

∗
vv〉

〈SvvS
∗
hh〉

√
2〈SvvS

∗
hv〉 〈|Svv|2〉



 (2.115)



26 Chapter 2 - Foundations of radar polarimetry

and

[T(3)]
def
= 〈k(3)P k

†

(3)P 〉 =

=
1

2





〈|Shh + Svv|2〉 〈(Shh + Svv)(Shh − Svv)
∗〉 2〈S∗

hv(Shh + Svv)〉
〈(Shh + Svv)

∗(Shh − Svv)〉 〈|Shh − Svv|2〉 2〈S∗
hv(Shh − Svv)〉

2〈Shv(Shh + Svv)
∗〉 2〈Shv(Shh − Svv)

∗〉 4〈|Shv|2〉



.

(2.116)

The transformation from one representation to the other is again obtained using a
unitary matrix, so that:

k(3)P = [D(3)]k(3)L (2.117)

and
[T(3)] = [D(3)][C(3)][D(3)]

†, (2.118)

with:

[D(3)] =
1√
2





1 0 1
1 0 −1

0
√

2 0



 . (2.119)

2.5 Target decomposition theorems

By means of the new representations provided by the scattering vectors and the covari-
ance and coherency matrices, it is now possible to discuss the target decomposition (TD)
theorems. These methods provide a physical interpretation of the scattered signals, that
is achieved by considering them as superpositions of several contributions and trying
to recognize each of them. This approach was first outlined by Chandrasekhar for light
scattering by small anisotropic particles and later applied to polarized MW by Huynen
[Huy70].

Following Huynen’s fundamental contribution, several decomposition techniques
were proposed, some of them attempting to overcome some limitations of Huynen’s
method.

According to [CP96], three primary classes of such decompositions may be defined:

• coherent theorems, that decompose the [S] matrix into the sum of elementary ma-
trices;

• Huynen type decompositions, which attempt to extract a single scattering matrix
from the average Kennaugh matrix;

• eigenvector decompositions of the coherency or covariance matrices.

Coherent decomposition theorems use [S] matrices, and their underlying principle
is to consider a generic scattering matrix as a linear combination of several others, each
defining a simple deterministic scatterer. Unlike the above mentioned decompositions
of power reflection matrices, decompositions of the scattering matrix are particularly
suited for cases where the scattering is due to few dominant scattering centres.
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For example, using the Pauli matrices it is possible to write:

[S] =

[

a+ b c− jd
c+ jd a− b

]

=

= a

[

1 0
0 1

]

+ b

[

1 0
0 −1

]

+ c

[

0 1
1 0

]

+ d

[

0 −j
j 0

]

, (2.120)

where a, b, c and d are all complex and correspond to the elements of the Pauli scatter-
ing vector (see Equation (2.105)).

According to the hypotheses that have been made, this decomposition yields the co-
herent sum of four scattering mechanisms: the first being single scattering from a plane
surface, the second and third being diplane scattering from corner reflectors with a rel-
ative orientation of 45◦ and the final element being all the antisymmetric components
of the matrix [S] (which corresponds to a scatterer that transforms every incident po-
larization into its orthogonal state). As it causes [S] to be non-symmetric, the last term
disappears, of course, in reciprocal backscattering cases.

Another example of a coherent TD method was presented by Krogager [Kro92],
[Kro93]. His approach was based on the observation that any complex, symmetric
scattering matrix can be decomposed into three components, as if the scattering were
due to a sphere, a diplane and a right- or left-rotating helix. This can be shown by ma-
nipulating the real and imaginary parts of the elements of [S], resulting in the following
formulation:

[S] = ks[S]sphere + ejφ(kd[S]diplane + kh[S]helix), (2.121)

where ks, kd and kh are real quantities and φ represents a relative phase which is equal
to the displacement of the diplane and the helix relative to the sphere.6

The sphere, diplane and helix (henceforth denoted SDH) terms are related to mea-
surable and familiar quantities, in that ks and kd can be measured directly using circular
polarizations. In relation to target imaging, this decomposition provides a means for
representing the target return in three different images, each characterizing different
scattering mechanisms. The advantage is that for those cases where one of the types of
scattering is predominant, the image corresponding to that type will be the only one
containing significant response from the resolution cell in question. A resulting colour
composite image would behave in this way, providing a valid classification system
based on the relative contribution of the three mechanisms. This is particularly useful
for practical applications, because the radar scattering can often be ascribed to one or
more individual scatterers within each resolution cell. These individual contributions
are typically due to major surfaces and to two- or three-sided corners reflectors (dihe-
dral and trihedral). The role of the helix in the above decomposition becomes apparent
from the fact that helix-like scattering may be produced by two or more dihedrals, de-
pending on their relative orientation angles and displacements. On the other hand,
helices as such are rarely found in practice. This means that, for resolution cells where
a significant amount of helix-like scattering is found, one may conclude that the scat-
tering from those resolution cells is mainly due to two or more even-bounce reflection
mechanisms. For diagnostic purposes such information is obviously useful. Likewise

6In Appendix B are reported the exact expressions of the k coefficients as well as details on the fol-
lowing example of coherent decomposition, the Cameron one.
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it is very useful to be able to determine whether the dominating scattering from a res-
olution cell is due to a single bounce mechanism or to a double bounce mechanism
[vZZE87], [vZ89].

The approach proposed by Cameron [CL90], [CYL96] may be considered as a more
generalized example of the “model fitting” seen with the SDH decomposition. Given
a generic matrix [S] (not only in the monostatic case), one can characterize it by its
tendency of being more or less symmetric according to the reciprocity rule and split
it into two terms representing reciprocal and non-reciprocal scattering mechanisms.
Using the k(4)L vector corresponding to [S] this decomposition is expressed by:

k(4)L = krec + knon−rec . (2.122)

In turn, the reciprocal term (the one usually available after calibrating monostatic radar
data) represents a target which is more or less symmetric with respect to an axis in the
plane orthogonal to the radar line-of-sight and again a distinction can be made between
the most dominant and the least dominant symmetric target components,7 that is:

krec = kmax
sym + kmin

sym . (2.123)

Hence, the decomposition follows the scheme:

[S] �
��*

[S]rec

H
HHj [S]non−rec

�
��*

[S]max
sym

H
HHj [S]min

sym

The degrees of reciprocity and symmetry are evaluated in terms of projection angles
of the scattering vectors onto the corresponding subspace and subsets via proper pro-
jection operators. In a similar way, one may compare an arbitrary scattering matrix to
a model scattering matrix. In [CL90], this principle was further pursued leading to a
matrix classification scheme able to assign [S] to one of eleven classes according to the
degree of reciprocity, symmetry and resemblance to a set of model matrices.

In contrast to coherent methods, Huynen decomposition [Huy70] acts on the Ken-
naugh matrix and is based on two key principles: to consider distributed targets for
which 〈[K]〉 has no single equivalent scattering matrix; to try and extract from this
average a “single” Kennaugh matrix (and hence a corresponding [S] matrix) and a “N-
targets” (i. e., random) contribution. This idea was expressed in mathematical terms in
the following way:

〈[K]〉 = [Ks] + 〈[KN ]〉. (2.124)

One of the limits of this approach is that, in general, it does not provide the invariance
of the residue N-matrix under all possible unitary transformations [Clo92].

In fact, Huynen decomposition can also be performed using an equivalent coherency
matrix representation; as this other form can be used to generate a diagonal coherency

7One should note the difference in the use of the word “symmetry” when referred to scattering
matrices and to targets. Indeed, according to the Cameron decomposition, scattering matrices which
are symmetric due to the reciprocity constraint may refer to targets which are geometrically more or less
symmetric in the plane orthogonal to the radar line-of-sight (in the case of a helix, a symmetric scattering
matrix describes a target which is not geometrically symmetric).
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matrix, which may be physically interpreted as statistical independence between a set
of target vectors, such an approach yields a general decomposition into independent
scattering processes. The general expression of this diagonalization is the following:

[T(3)] = [U(3)][Λ][U(3)]
−1, (2.125)

where:

[Λ] =





λ1 0 0
0 λ2 0
0 0 λ3



 (2.126)

is the diagonal matrix with elements the real non-negative eigenvalues, 0 ≤ λ1 ≤ λ2 ≤
λ3, of [T(3)] (the coherency matrix is, indeed, Hermitian positive semidefinite) and

[U(3)] =
[

e1 e2 e3

]

(2.127)

is the unitary eigenvector matrix built using as columns the eigenvectors of [T(3)]. The
eigenvectors are orthogonal since the coherency matrix is Hermitian.

By means of the diagonalization of [T(3)], which is in general of rank 3, the interac-
tion is represented by the non-coherent sum (see the definition (2.116) of [T(3)]) of three
independent (in the sense that they are connected to orthogonal vectors) coherency
matrices [T(3)i], each weighted by its eigenvalue:

[T(3)] = [U(3)][Λ][U(3)]
−1 =

3
∑

i=1

λi[T(3)i] =
3

∑

i=1

λi eie
†
i . (2.128)

For each [T(3)i] matrix it is possible to define a corresponding scattering matrix (i. e.,
a deterministic scattering contribution), while the choice of the eigenvectors for build-
ing the unitary matrix [U(3)] always guarantees an orthogonal basis set. The corre-
spondence between the resulting coherency matrices and their respective scattering
matrices may be referred as well to the relative eigenvectors so that also these can be
used to represent scattering mechanisms as the [S] matrices.





3 SAR polarimetry

3.1 Basics

In this section, SAR systems for polarimetric applications will be introduced. At first,
a general review of the SAR sensors presently operating will be made, of the single-
polarization systems as well as of the multi-polarimetric ones. Then, only polarimetric
SARs will be considered and some aspects of their practical applications will be ana-
lyzed. This should provide a first insight on the potentials of these systems.

Theoretical questions which derive from the complexity of the topic, will be dis-
cussed later on in this chapter.

3.1.1 SAR sensors

As stated before, synthetic aperture radars present important advantages with respect
to conventional ones. Thus, since the beginning of the eighties, a great deal of work
has been performed using these systems. At present, there are several SAR sensors
in operation: single-polarization systems as well as multi-polarimetric ones. Note-
worthy examples in the first group are the satellite mounted SAR systems: ERS-2
(by ESA, operating in C-band), JERS-1 (Japanese, L-band) and RADARSAT-1 (Cana-
dian, C-band) and various airborne systems, namely: TOP-SAR (NASA/JPL, C- and
L-band), IFSARE (Environmental Research Institute of Michigan, X-band), C/X-SAR
(CCRS, Canada, X- and C-band), EMI-SAR (Danish Defence Research Establishment,
C-band), E-SAR (DLR, X-, C-, L- and P-band), DoSAR (Dornier, Germany, X- and
C-band), AeS-1 (AeroSensing, Germany, X-band), RAMSES (Onera, France, X-band),
AER-II (FGAN, Germany, X-band) and ESR (DERA, UK, X-band). In the second group
are included the airborne radars: AIRSAR (by NASA/JPL, which operates in fully po-
larimetric mode in C-, L- and P-band and which has to be mentioned as the forerunner
of all polarimetric SAR), EMI-SAR (DDRE, Denmark, C- and L-band), E-SAR (DLR, L-
and P-band) and NABC/ERIM SAR (ERIM, USA, X-, C- and L-band), and the ASAR
C-band sensor mounted on the ESA ENVISAT satellite. To both groups belongs the
Shuttle Imaging Radar SIR-C/X-SAR, which was flown twice in April and October
1994 and later, in February 2000, with a second antenna mounted on a 60 m boom for
the Shuttle Radar Topography Mission (SRTM): part of the data of the missions were
acquired in fully polarimetric mode in C- and L-band.

The main advantages of SAR systems arise from their imaging geometry, which re-
quires a moving antenna (see Figure 3.1). Scene imaging with a moving device permits
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the simulation of antenna dimensions much larger then the real ones and makes reso-
lution along the flight-path independent of the sensor-target distance.

3.1.2 Early experimental results

Some of the earliest results obtained with SAR polarimetric systems were presented
in a series of related papers by Zebker et al. [ZvZH87], van Zyl et al. [vZZE87] and
Evans et al. [EFvZZ88], following data acquisition campaigns of the NASA/JPL high-
resolution airborne imaging polarimetric SAR (further details on this apparatus, oper-
ating mainly in L-band and later extended to C- and P-band, can be found in [ZvZ91]).
In particular, van Zyl et al. [vZZE87] reported experimental proofs of some basic scat-
tering models: from a large, smooth dielectric surface, from a rough surface and from
a dihedral corner reflector.

In [vZZE87], the scattering cross section σ = σ(ψT , χT ) introduced with (2.56) is
called the polarization signature of the scatterer and is widely used as it provides a re-
ally useful graphical representation of the behaviour of different targets. Indeed, the
information contained in σ(ψT , χT ) may be displayed as three-dimensional figures ex-
pressing the intensity of the backscattering from a target for varying ellipticity χT and
ellipse orientation ψT of the transmitted wave.

The polarization signature, through its plots, has proven to be a valid tool in pat-



3.1 - Basics 33

tern recognition. For example, a dihedral corner reflector, where the transmitted wave
suffers two reflections, has a polarization signature which differs significantly from
that of a wave which is scattered by a rough surface. With respect to these models,
backscatter from ocean exhibits a polarization signature similar to that predicted by
the one of scattering by a slightly rough dielectric surface. Urban regions exhibit the
characteristics expected from dihedral corner reflectors and their polarization signa-
ture is quite different from that of the ocean or of the single-reflection slightly rough
model [EFvZZ88], [ZvZ91].

Rough surface scattering presents an interesting behaviour: in this case, the three-
dimensional plot of σ(ψT , χT ) has minima which never go to null (as happens for other
model scatterers). Hence, a “pedestal” of power returns always greater than zero ap-
pears in the polarization signature of rough surfaces. As pointed out in [vZZE87], this
means that there is some portion of the return which cannot be nulled by changing
the polarization of the transmitting and receiving antennae. In polarimetric observa-
tions, the presence of a pedestal in the signature means that the individual measured
matrices used to calculate the signature were not identical. The more different the in-
dividual matrices, the higher the resulting pedestal. In radar images, this variation
of scattering properties results from various different effects which all cause the mea-
sured scattering, and hence Kennaugh matrices of adjacent resolution elements, to be
slightly different. The most obvious cause of such a variation is when adjacent pix-
els really contain different types of scatterers. Other causes include diffuse (that is,
multiple) scattering and the presence of noise [vZZ90].

Based on these results, an unsupervised classification1 algorithm able to distinguish
between scattering with even number of reflections, odd number of reflections and
diffuse scattering, was tested with good results and presented in a paper by van Zyl
in 1989 [vZ89]. It was shown, for example, that information about the health of forests
can be retrieved without ancillary data, just using this broad class division.

Unfortunately, polarization signatures are not unique. For instance, the polarization
signature of a dielectric sphere has the same form as that of a smooth dielectric surface
at normal incidence. It is also conceivable that different combinations of various scat-
tering mechanisms may yield the same resulting σ(ψR, χR, ψT , χT ). However, under a
more general point of view, it was evident that different polarizations (i. e., different
transmitting and receiving settings) would provide different information according to
the characteristics of the observed scene.

Further aspects of pattern recognition and image interpretation methods will be an-
alyzed in following sections of this work as this area of study frequently overlaps with
those of the inversion methods and, when used for these purposes, of the interferomet-
ric applications.

As stated before, an important characteristic of radar devices is that they permit
measurements of the phase of the signal at a receiving antenna. In this way, besides
studies on the scattered power (as the series reported above), it is possible to analyze
the phase of both the orthogonal components of an EM wave.

An interesting example of these possibilities was reported in a paper by Ulaby et al.
in 1987 [UHD+87]. Again the data used were those of the JPL L-band SAR, but the

1A definition of unsupervised classification may be found in Paragraph 4.2.
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attention was there devoted to the statistical behaviour of the phase difference between
the hh-polarized and the vv-polarized backscattered signals:

φhhvv = φhh − φvv. (3.1)

Measurements were performed over agricultural test sites. While for the over-
whelming majority of cases the φhhvv distribution was symmetrical and centered around
a zero mean value, a different pattern was observed for corn fields: the mean phase
difference was different from zero and increased with increasing look angle θ (see Fig-
ure 3.1). The explanation proposed for this variation was that the corn canopy, most
of whose mass is contained in its vertical stalks, acts like uniaxial crystal characterized
by different velocities of propagation for waves with horizontal and vertical polariza-
tion. Hence, assuming further that the observed backscatter was contributed by di-
rect backscatter from plants, direct backscatter from soil and double-bounce reflection
on soil and plants, a good agreement was found between measurements and model-
derived expectation values.

About the expected distribution of φhhvv, a valid model was later proposed by Sara-
bandi [Sar92]. According to his general hypotheses, the probability density functions
of the phase differences of the scattering matrix elements were derived from the av-
erage Kennaugh, assuming that the elements of [S] are jointly Gaussian. As a result,
the expressions defined for the co- and cross-polarized phase differences were similar
in form and could be considered analogous to the Gaussian distribution for periodic
random variables.

It must be stressed that, regardless of the interesting features related to this kind of
analysis, studies on the phase behaviour of the scattered signals have not been fully
exploited and can be considered as a promising subject for further investigations.

3.1.3 Calibration techniques

A completely different research topic on SAR polarimetric data arises from the cali-
bration problem [ZvZ91], [Fre92] (the latter also for a particularly rich bibliography on
this subject).

A fully polarimetric radar measures the full scattering matrix for every resolution
element in an image. The increase of information with respect to “scalar” radar comes
at a price, not only in the increase in complexity of the design and in the cost of building
the radar system and processing the data, but also in the amount of effort needed to
calibrate the data. Moreover, calibration is specific and peculiar to each apparatus since
each has its own calibration needs.

In [vZ90], a technique was described which used the theoretical result that, for nat-
ural targets with azimuthal symmetry, the co- and cross-polarized components of the
scattering matrix are uncorrelated. Representing this in mathematical form, this means
that:

〈S∗
hhShv〉 = 0 (3.2)

and
〈S∗

vvSvh〉 = 0 , (3.3)
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where, again, 〈 〉 represents the ensemble average over an extended area (i. e., over
several resolution elements).

The tests reported in [vZ90] confirmed the validity of the assumptions (3.2) and (3.3)
for several terrain types, including desert surfaces, ocean surfaces, grasslands and sea
ice, and only showed departures for heavily vegetated areas. The main advantage of
this calibration technique was that it does not require any external calibration device
to be deployed in the observed area before imaging. Besides this, the whole calibration
process resulted in being separable in several independent stages and the cross-talk
calibration to be a well defined part of it.

The already cited paper by Freeman [Fre92] is, instead, a more general survey on
calibration problem, with a wide descriptive purpose; along with other techniques
available for polarimetric data, examples are provided also for methods for calibrating
interferometric SAR data.

3.2 Interactions with the Earth surface

When describing the first experimental applications of polarimetric SAR, we referred
several times to “smooth” and “rough” surfaces. Let us now see more carefully what
we meant with these terms and how the roughness of a surface actually influences the
scattering of an EM wave.

In general, all natural surfaces may be considered as rough but roughness is not an
intrinsic property of the scattering surfaces since it depends on the properties of the
incident wave. Indeed, both the frequency and the incidence angle of the transmitted
wave determine how rough or smooth a certain surface appears to be.

Considering constant wavelength and local incidence angle, the interaction of an
EM wave with surfaces of different roughness may be simplified as follows: the rougher
the surface, the more diffuse the scattering or the smoother the surface, the more di-
rectional the scattering. The case of an ideal smooth boundary surface between two
dielectric media, for instance the air and a homogeneous soil, was explained by Fres-
nel who also determined the reflection coefficient of the horizontal and vertical com-
ponents of an incoming wave as:

Γh(θ) =
µ cos θ −

√

µε− sin2 θ

µ cos θ +
√

µε− sin2 θ
, (3.4)

Γv(θ) =
ε cos θ −

√

µε− sin2 θ

ε cos θ +
√

µε− sin2 θ
, (3.5)

where µ and ε are, respectively, the dielectric constant and the magnetic permeability
of the soil and θ the wave incidence angle.

In natural environments, the hypothesis of smooth boundary surface is hardly met
so that also the scattering presents different characteristics. The backscattered EM
wave from a natural surface consists of two components: a reflected, coherent part
and a diffused, incoherent one (see Figure 3.2). The former resembles the behaviour
of specular reflection on a smooth surface and thus, in the case of a monostatic radar,
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gives no scatter return; the latter is a diffuse scatter and distributes the scattered power
in all directions. As the surface becomes rougher, the coherent component becomes
negligible and the incoherent one consists of only diffuse scattering.

From an electromagnetic point of view, the definition of a surface as rough or smooth
is somewhat arbitrary. Nevertheless, in the literature two main criteria can be found to
define the roughness of a surface: the Rayleigh and the Fraunhofer criterion [UMF82].
Considering a plane monochromatic wave transmitted at some angle θ onto a rough
surface as represented in Figure 3.3, one can easily calculate the phase difference ∆φ
between two rays scattered from different points on the surface:

∆φ = 2h
2π

λ
cos θ, (3.6)

where h expresses the standard deviation of the roughness height with respect to a
reference plane and λ is the wavelength of the incident wave. The Rayleigh criterion
states that if the phase difference ∆φ is less than π/2 radians, i. e., if

h <
λ

8 cos θ
, (3.7)

then the surface may be considered as smooth. The Fraunhofer criterion is more strin-
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gent and requires a ∆φ less than π/8 radians to define a surface as smooth, hence:

h <
λ

32 cos θ
. (3.8)

3.3 Entropy/α analysis

Among the theoretical methods that have been recently applied to the interpretation of
SAR polarimetric data, the entropy/α analysis seems to be particularly promising and
interesting.

Using the eigenvector-based decomposition of the coherency matrix discussed on
page 29, the relative importance of each scattering mechanism (within a given resolu-
tion cell) is expressed by means of its eigenvalues. Indeed, whereas the eigenvectors
discriminate the presence of different scattering behaviours, the eigenvalues underline
the intensity of each mechanism. A quantity that measures the randomness of these
scattering processes is the polarimetric scattering entropy2 H defined as follows:

H =
3

∑

i=1

−Pi log3 Pi , (3.9)

where:
Pi =

λi

3
∑

l=1

λl

. (3.10)

Pi represents the “appearance probability” of each contribution. H ranges from 0 to 1:

• an entropy equal to 0 corresponds to a deterministic scattering process ([T(3)] has
only one non-vanishing eigenvalue);

• an entropy equal to 1 indicates a degenerated eigenvalue spectrum, typical of
random noise processes ([T(3)] has three identical eigenvalues).

To estimate the relative importance of the different scattering mechanisms, a second
polarimetric indicator has been introduced, the polarimetric anisotropy A:

A =
λ2 − λ3

λ2 + λ3

. (3.11)

When H tends to 1 (i. e., when: λ1 ' λ2 ' λ3) or to 0 (λ2 ' λ3 ' 0), A gives no
further information except for low and medium H (λ1 > λ2, λ3), whereas the entropy
says nothing about the relationship between the two minor eigenvalues; the anisotropy
supplies this information. Thus, a medium entropy means that more than a single
scattering mechanism contributes to the back-scattered signal, but it is not clear how
many additional mechanisms are present (one or two). A high A states that only the

2The scattering entropy formulation was first introduced to describe the depolarization degree of an
EM wave (see [BW85]).
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second scattering mechanism is important, whereas a low A indicates a remarkable
contribution of the third one as well.

It is important to note that the set of orthogonal components represented by the
three eigenvectors has no direct physical significance in terms of real scattering mech-
anism. In order to provide a physical interpretation, one needs to relate the degrees of
freedom of the mathematical problem to the observed scattering process [Pap99]. One
should first observe that, in the general bistatic case, the 4×4 covariance and coherency
matrices contain sixteen independent parameters, namely four real power values and
six complex cross-correlations; in the backscattering case the matrices reduce to 3 × 3
ones and contain nine independent parameters. On page 16, we have seen that a co-
herent matrix [S] has instead seven independent parameters in the bistatic case and
five in the reciprocal monostatic one. It is then evident that some limits exist for a sin-
gle scattering matrix to represent a partial scatterer since the latter has, at least, four
more degrees of freedom. The question is then how to interpret these extra degrees of
freedom which the coherency (or covariance) matrix seems to take into account.

Let us reconsider the backscattering case and the k vector derived in the Pauli matrix
basis as expressed by Equation (2.114).

The terms that there appear are simply the three complex elements of the [S] ma-
trix: Shh, Svv and Shv. This implies that the scattering vector is characterized by six
independent parameters.

Further, k(3)P can be written as:

k(3)P = ‖k(3)P‖w, (3.12)

introducing the normalized vector w which has only five degrees of freedom because
of the normalization constraint. Since each generic k vector is associated with an [S]
matrix, and hence to a scattering mechanism, so is each w vector. The five independent
parameters may be associated with five angles, so that:

w =





cosα exp(−jφ)
sinα cosβ exp(−jδ)
sinα sinβ exp(−jγ)



 . (3.13)

A change ∆α and ∆β of the two angles α and β causes a transformation of w de-
scribed by two rotation matrices:

w′ =





cos ∆α − sin ∆α 0
sin ∆α cos ∆α 0

0 0 1



w (3.14)

and

w′ =





1 0 0
0 cos ∆β − sin ∆β
0 sin ∆β cos ∆β



w. (3.15)

This observation leads to the scattering vectors reduction theorem: it is always possible
to reduce an arbitrary scattering mechanism, represented by a complex unitary vector
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w, to the identity [1 0 0]t by means of the following transformations:




1
0
0



=





cosα sinα 0
− sinα cosα 0

0 0 1









1 0 0
0 cos β sin β
0 − sin β cos β









ejφ 0 0
0 ejδ 0
0 0 ejγ



w. (3.16)

The third matrix represents a set of scattering phase angles, whereas the first and the
second ones are canonical forms of plane rotations. Physically only one of them, β,
which ranges from −π to π, corresponds to a physical rotation of the sensor coordi-
nates. Indeed, as long as we use the Pauli basis for the vectorization of the scattering
matrix, β represents the physical orientation of the scatterer about the line-of-sight
[Pap99]. Hence, by calculating β, one may obtain a direct estimate of the target ori-
entation angles (a much simpler way than the polarimetric signature or the Stokes
reflection matrix to determine the target orientation).

The parameter α is not related to the target orientation but represents an internal
degree of freedom of the scatterer. It is associated with the “type” of scattering mech-
anism and can vary in the range [0, π/2]. α = 0 stands for isotropic surfaces, α = π/2
for isotropic diplanes or helices. Low values of α represent all-anisotropic scattering
mechanisms with Shh different from Svv. The boundary between anisotropic surfaces
and diplanes is represented by the case α = π/4, which describes an horizontal dipole.
Finally, the information provided by α about the scatterer is independent of its ori-
entation β, and hence unaffected also by eventual misplacements between radar and
scatterer reference.

When multiple scattering mechanisms are present in the same coherency matrix
(i. e., when more than one eigenvalue appearing in (2.128) is different from zero), the
target is represented by [S] matrices that occur with the probabilities Pi just seen. In this
case, a description of the overall scattering is possible by applying the parameterization
(3.13) to each eigenvector of [T(3)] and then evaluating the mean of these parameters.
In particular, the average α:

α = P1α1 + P2α2 + P3α3 (3.17)

results as the most useful quantity. Target behaviour may indeed be studied in a two-
dimensionalH/α space. Here, since some limits exist to the variation of α as a function
of H , not all the space actually represents real scatterers (i. e., not all the values of
entropy and α have a physical meaning). The curves I and II of Figure 3.5 limit the
feasible space [CFLSS99]. In turn, boundaries can be drawn between sub-areas of this
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region referring to targets with well-defined characteristics (expressed by their values
of α andH); the partition among various regions of theH/α space can actually be used
as a classification method as reported in [CP97].

As we have seen, the unitary matrices needed for the change-of-basis relations can
be derived only by means of the vectors of the bases involved, so that building a uni-
tary matrix using three orthogonal vectors w yields 3 × 5 = 15 parameters and six
constraints due to orthogonality: this means nine degrees of freedom (eight consider-
ing also the special unitarity constraint, det[U(3)] = 1). Thus, bearing in mind these
characteristics of the change-of-basis matrices, it is possible to interpret the difference
in number of independent parameters between the scattering and coherency (or co-
variance) matrices. In order to fully describe these additional degrees of freedom, they
are no longer assigned to the “wave” representation, but to the projection matrices (the
unitary matrices) of the scattering vectors onto the chosen basis of orthogonal vectors
w (i. e., to the chosen ensemble of scattering mechanisms).

3.4 Polarimetric SAR interferometry

This paragraph will introduce the theory concerning the use of polarimetric data for
interferometric applications. Here, only some basic concepts will be given and a more
sophisticated treatment will follow later in this work.

Relatively few examples of interferometric applications of polarimetric SAR data
have been until recently reported in the literature. The main results in this field, to
which this section is dedicated, are those presented by Cloude’s research group [CP98],
[Pap99], [PRC99a], [PRC99b]. At present, also the potential of interferometry with
single-polarization systems is actively investigated (for example, the use of interfero-
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metric coherence images coupled with intensity images to improve thematic land clas-
sification [Alb98], [BSA+99]).

The fundamental idea of radar interferometry consists of an accurate phase analysis
of the radar signals backscattered by a target and acquired by two antennae placed
in different positions, S1 and S2 , as represented in Figure 3.6. This situation can be
realized both by using actually two antennae separated by a fixed distance and by
using only a single antenna mounted on a spaceborne or airborne device which gets
data twice of the same area while moving along two slightly different tracks. In the
second case, besides the exact control of the phase of the transmitted MW beam, the
knowledge of the position of the antenna is very important in order to determine the
distance, the interferometric baseline B , between the two “virtual” antennae.

The analysis performed on the signals follows the well-known rules also valid for
optical interferometry. In particular, when two complex images of the same area ac-
quired from two slightly different points of view are processed together, the result is
a fringe structure similar to those observed in optical experiments. This analogy is so
exact that, for example, it is possible to define a direct parallelism between the Young
two slits experiment and the operation of a SAR interferometer:

• the partially coherent light source is replaced by the resolution cells on the ground
which, when reached by the coherent radar signal, transmit its echo towards the
two receiving antennae;

• the slits are substituted by the two antennae in the positions that they assume
when they receive the pair of images used to synthesize the interferogram;

• the screen where the optic fringes appear is replaced by the whole electronic sys-
tem of data acquisition and processing and by the one needed for the interfero-
gram creation.
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As a result of the coupled imaging and interferogram synthesis, the interferomet-
ric phase (i. e., the phase difference of the two signals coming from the same resolu-
tion cell) and the interferometric coherence (which is a normalized expression of this
phase difference) may be calculated. The importance of these quantities lies in the fact
that they are related to key parameters of the observed scene, for instance the vertical
ground elevation.

Let us consider at first a single-polarization processing. For each resolution cell of
two images, I1 and I2 , of the same area, this involves a complex scalar signal of the
form:

s = |s|ejδ. (3.18)

Thus, it is possible to define a Hermitian positive semidefinite coherency matrix as
[CP98]:

[J] =

〈[

s1

s2

]

[

s∗1 s∗2
]

〉

=

[

〈s1s
∗
1〉 〈s1s

∗
2〉

〈s2s
∗
1〉 〈s2s

∗
2〉

]

(3.19)

using the two involved signals.

From the elements of [J], the interferometric coherence and the expected interfero-
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metric phase are derived in the following ways:

γ = |γ′| =
|〈s1s

∗
2〉|

√

〈s1s∗1〉〈s2s∗2〉
=

|J12|√
J11 J22

(3.20)

and

φ = arctan

(

Im〈s1s
∗
2〉

Re〈s1s∗2〉

)

. (3.21)

The term γ ′, also referred to as correlation coefficient, which represents the complex
cross-correlation between the signals is introduced here as:

γ′ = γ exp(jφ) (3.22)

and the interferometric coherence γ is defined as its absolute value. With the definition
above it holds as well that:

0 ≤ γ ≤ 1. (3.23)

To extend these concepts to vector signals, let us call k1 and k2 the scattering vectors
derived from the polarimetric data received from a resolution element of the imaged
scene (for the sake of simplicity we drop the subscripts which refer to the dimensions
of the vector and to the chosen matrices basis). The expression of such vectors in the
Pauli matrix basis is given by Equation (2.114).

The analogue of [J] in this case can then be defined as:

[T(6)] =

〈[

k1

k2

]

[

k
†
1 k

†
2

]

〉

=

[

[T11] [R12]

[R12]
† [T22]

]

. (3.24)

[T(6)] is a block matrix, Hermitian and positive semidefinite, the elements of which
are the 3 × 3 matrices:

[T11] =
〈

k1k
†
1

〉

, (3.25)

[T22] =
〈

k2k
†
2

〉

(3.26)

and
[R12] =

〈

k1k
†
2

〉

. (3.27)

According to their definition, [T11] and [T22] are the Hermitian coherency matrices
of I1 and I2 (see Equation (2.116)), while [R12] is a complex matrix which takes into
account the interferometric phase relations of the different polarimetric channels be-
tween both images. [R12] is not Hermitian since in general:

k1 6= k2 , (3.28)

hence:
[R12] =

〈

k1k
†
2

〉

6=
〈

k2k
†
1

〉

= [R12]
†. (3.29)

The next step is to take two normalized complex vectors, w1 and w2 (see also
page 38), to generate two complex scalars, µ1 and µ2 , as the projections of the scat-
tering vectors k1 and k2 onto w1 and w2 respectively:

µ1 = w
†
1k1 , (3.30)
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µ2 = w
†
2k2 . (3.31)

By means of these scalars it is possible to redefine [J] for polarimetric quantities by
replacing s1 and s2 in (3.19) by µ1 and µ2:

[J] =

〈[

µ1

µ2

]

[

µ∗
1 µ∗

2

]

〉

=

=

〈[

w
†
1k1

w
†
2k2

]

[

(w†
1k1)

∗ (w†
2k2)

∗
]

〉

=

=

[

w
†
1[T11]w1 w

†
1[R12]w2

w
†
2[R12]

† w1 w
†
2[T22]w2

]

, (3.32)

where it must be noted that, for example:

(w†
1k1)

∗ = (w†
1k1)

†, (3.33)

since this is a scalar quantity.

Thus, the expressions of the interferometric coherence and of the expectation value
of the interferometric phase may again be derived from the elements of [J]:

γ =
|〈µ1µ

∗
2〉|

√

〈µ1µ
∗
1〉〈µ2µ

∗
2〉

=
|J12|√
J11 J22

=

=
|〈w†

1[R12]w2〉|
√

〈w†
1[T11]w1〉〈w†

2[T22]w2〉
(3.34)

and
φ = arg〈µ1µ

∗
2〉 = arg〈w†

1[R12]w2〉 . (3.35)

About the w vectors one can note that using (2.114):

whh =





1/
√

2

1/
√

2
0



, (3.36)

wvv =





1/
√

2

−1/
√

2
0



 (3.37)

and

whv =





0
0
1



, (3.38)

that is, according to (3.30) and (3.31), the hh linear polarization corresponds to a pro-
jection of the given scattering vector onto the normalized vector whh and so on for the
other polarizations.

Given these fundamental expressions, which provide us with a theoretical basis for
studying polarimetric interferometry, let us review what the main experimental results
obtained to date have been.
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In [CP98] and [Pap99] a method was presented to optimize the degree of correlation
of an interferometric pair of images. It consisted of an eigenvalue analysis of the two
equations (with the same eigenvalues) derived by imposing a maximization constraint
on (3.34). According to this technique, for each image of the pair, it is usually possible
to define three vectors w which are eigenvectors of these equations and which rep-
resent different scattering mechanisms; the optimal coherence value is then obtained
using the eigenvectors corresponding to the maximum eigenvalue. As the eigenvec-
tors of a matrix are not uniquely defined, but do admit an arbitrary phase, one should
add an additional condition which fixes the phase difference between the two eigen-
vectors w1 and w2 corresponding to the same mechanism; a sufficient one is to require
that their phase difference be null, that is:

arg{w†
1w2} = 0 . (3.39)

The physical meaning of the coherence optimization is the definition of scattering
mechanisms that would have the closest correspondence to a single point scatterer.

A very interesting result arises from the evaluation of the interferometric phase us-
ing the unitary vectors w which maximize (3.34). As a major source of decorrelation
results to be that due to the height distribution of the scattering coefficient above the
chosen reference plane [ZV92], [BH98], one sees that the coherence optimization partly
resolves just this height distribution. In fact, applying Equation (3.35) to the ith and
jth mechanism and calculating its difference, i. e.:

∆φij = arg{µ1i
µ∗

2i
} − arg{µ1j

µ∗
2j
}, (3.40)

it is in some cases possible to measure the height difference associated to ∆φij . When
applied to the estimation of forests height, this approach shows limits that depend on
the properties of the scattering components. Indeed, while propagation through a ran-
dom volume (that of the branches and layers of leaves where, usually, no preferential
direction is present) is unaffected by changes of polarization, the ground scattering is
polarization dependent; but as no polarization presents only one of the two contribu-
tions, it is not possible to completely separate them and estimate their difference in
height through their interferometric phase difference [PRC99a], [PRC99b].

We have already said that, at present, few reports on applications of polarimetric
SAR interferometry have been published; hence, this section has provided only a short,
but fairly up-to-date description of the state of the art in this study area. Further origi-
nal examples of such applications will be presented in Chapter 5.

The research related to scalar interferometry is, instead, more advanced. Though
some of its features are similar to vector interferometry (for instance, phase unwrapping
methods) we will not deal with them in this work in order to focus our attention on
polarimetry. Nevertheless, starting from scalar technology achievements, several new
topics can be suggested for future vector applications such as differential polarimetric
interferometry, as proposed in [Pap99], or the use of polarimetric coherence images for
pattern recognition and classification.





4 Analysis of polarimetric parameters:
image classification

4.1 Introduction

As already seen, an electromagnetic wave may be described in different ways and each
of them has a particular representation of its scattering interactions. Due to the vecto-
rial nature of EM waves, the interactions are expressed in terms of matrices and again
some matrices connect the various descriptions. We have also seen that some rules ex-
ist which impose constraints on these representations and on the transformation matri-
ces, so that the number of the independent parameters, i. e., the carriers of physically
relevant information, remains constant. The next question becomes: are the various
representations absolutely equivalent? Why choose a particular representation? Are
there parameters which are intrinsically more significant than others?

The answers to these questions should take into account also other considerations.
In fact, the choice between two or more representations depends on the target to be
detected and, in this sense, no absolute best descriptor is given. In the context of classi-
fication applications, the decision whether to use a linearly or an elliptically polarized
base representation may depend on the fact that one is more interested in detecting,
for example, buildings rather than trees. Hence, each problem has to be solved indi-
vidually.

In the following, we will analytically study the various polarimetric parameters, try-
ing to make this review as comprehensive as possible. In order to compare them and
have an objective estimate of how well they may describe a certain target, some clas-
sification tests will be performed. In other words, an attempt to measure the amount
of information provided by the different polarimetric parameters is made. It should
be stressed that the main topic of our research will remain the polarimetric parame-
ters, rather than the adopted classification techniques (of which only the indispensable
notions will be given for sake of completeness) and their results; indeed, their exact
knowledge will prove itself useful to better understand the scattering phenomena in
connection with the characteristics of the wave and of the representation used.

The rest of this chapter is organized as follows: in the next section, the basics on clas-
sification theory and on the classification algorithms used in this work will be given;
then the parameters under study will be briefly reviewed and the experimental setup
described; finally the results of the tests will be reported and discussed for each polari-
metric parameter considered.

47
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4.2 Classification theory and accuracy assessment

Let us introduce here those basic concepts of image classification which are necessary
to understand the tests performed later on in this chapter. Among others, the classifi-
cation algorithms used will be described and some methods for classification accuracy
assessment explained.

4.2.1 Classification theory basics

In general, the classification of an image is a process implying the identification of the
different spectral classes1 present in it and their connection to some specific ground
cover types [Ric94]. Usually, this is accomplished using general mathematical pattern
recognition and pattern classification techniques, though more specific methods have
been developed especially suited for various sensors (as in the case of one based on the
H/α parameters for polarimetric SARs [CP97]). The patterns are the pixels themselves
that contain the values corresponding to the measured parameters; it is a common
practice to represent them through column vectors like:

x =











x1

x2
...
xn











, (4.1)

where x1, x2, · · · , xn are the spectral values of the pixel vector x in bands 1 to n, respec-
tively. Therefore, classification involves labelling the pixels as belonging to particular
spectral (and thus information) classes using the spectral characteristics of the avail-
able data.

During classification, each pixel of an image is no longer identified by its position in
the chosen spatial reference system but by means of the vector belonging to the feature
space relative to the spectral values. One then establishes a set of rules to label the
pixels according to their particular properties in this space. To derive these rules, it is
also necessary to define boundaries among the different classes in the n-dimensional
feature space.

Two main types of classification procedures may be identified: the supervised and
the unsupervised classification methods. Each type finds application in the analysis of
remote sensing image data. These may be used as alternative approaches but are also
often combined into hybrid methodologies.

Unsupervised classification is a means by which pixels are assigned to spectral
classes without foreknowledge of the existence and properties of classes. Most often it
is performed using clustering methods. These procedures can be used to determine at
first the number and location of the spectral classes into which the data fall and then
the spectral class of each pixel. The user finally identifies those classes a posteriori, by
associating a sample of pixels in each class with available data, for instance maps and
information from ground truth.

1“Spectral classes” are defined by similar image pixel values, which may be related to the various
ground coverages in a scene.
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Clustering procedures are generally computationally expensive, they are neverthe-
less central to the analysis of remote sensing imagery. An interesting aspect of these
methods is that whilst the ground cover classes, for a certain application, are usually
known, the corresponding spectral classes are not. Unsupervised classification is there-
fore useful for determining spectral class composition of the data prior to any further
detailed analysis with supervised methods. Examples of proposed algorithms for un-
supervised classification are the K-means and the isodata [TG74]. Other approaches,
not based on clustering, use inherent characteristics of the data used; for polarimet-
ric SAR data, are worth mentioning the already cited methods by van Zyl [vZ89] and
Cloude and Pottier [CP97].

Supervised classification is the procedure most often used for quantitative analy-
sis of remote sensing image data. It is usually based on an important assumption,
namely that each spectral class can be described by a probability distribution in the
multispectral space; this will be a multivariable distribution with as many variables as
the dimensions of the space. Such a distribution describes the chance of finding a pixel
belonging to that class at any given location in the multispectral space. Almost all the
algorithms used for this purpose consist of the same series of basic steps:

1. decide the set of ground coverages into which the image is to be segmented.
The examples in this work are the classes: “water”, “houses”, “roads”, “trees”,
“grass”, “field 1” and “field 2”.

2. A set of prototype pixels, the training data, is then selected for each class of the
desired set. This choice may be done using information from ground surveys,
aerial photographs, topographic maps or any other source of reference data.

3. The following step consists of describing each class by means of some particular
parameters, mainly statistical ones such as the first and second order moments,
depending on the chosen classifier. These parameters characterize the adopted
probability model or directly define the partition of the multispectral space. The
set of parameters for a given class is sometimes called the signature of that class.

4. Using the trained classifier labels, every pixel of the image is assigned to one of
the desired ground cover types (information classes). In practice, the complete
image is automatically classified after the user has directly identified just a por-
tion of it in the second step when defining the training data.

5. Produce tabular summaries or thematic maps summarizing the classification re-
sults.

A variety of algorithms that perform supervised classification are available: paral-
lelepiped, maximum likelihood, minimum distance, Mahalanobis classifier, etc. Here,
we will briefly describe only the first three methods as they are those used in this work.

4.2.2 Parallelepiped classification

The parallelepiped (Parall.) classifier is a very simple supervised classification technique;
in principle, the classifier is trained by inspecting histograms of the individual spectral
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components of the selected training data. The upper and the lower significant bounds
of the histograms are identified as the edges of a multidimensional parallelepiped for
each class. If, on classification, pixels are found to lie in such a parallelepiped they are
labelled as belonging to that class.

Relevant problems of this criteria are that pixels in regions between parallelepipeds
cannot be assigned to any class and pixels in overlapping areas cannot be separated:
in both cases, these pixels are not classified. No statistical costraints in the definition of
the class membership are taken into account here.

4.2.3 Maximum likelihood classification

Maximum likelihood (Max. Lik.) classification is based on the estimation of the statistical
distributions of the spectral components [Ric94]. This allows to evaluate the chance of
finding a pixel belonging to a certain class at any given location in the multispectral
space.

The working hypothesis usually adopted is that the probability distribution for each
class is a multidimensional normal, or Gaussian, distribution. Hence, the probability
of finding a pixel belonging to a given class ωi in a position x of the multispectral space
is described by a function like:

p(x|ωi) =
1

(2π)n/2(det [Σi])1/2
exp

{

−1

2
(x − mi)

t [Σi]
−1(x − mi)

}

, (4.2)

where i = 1, 2, . . . , l is the index identifying the l ground cover classes, mi the mean
vector of the data in class ωi and [Σi] the covariance matrix for that class. For each i, the
[Σ] matrix is defined as:

[Σ] = 〈(x − m) (x − m)t〉 =
1

r − 1

r
∑

j =1

(xj − m) (xj − m)t, (4.3)

being r the total number of pixel of the class. The multidimensional normal distribu-
tion is completely specified by its mean vector and its covariance matrix.

The covariance matrix introduced here is different from the one associated to polari-
metric data. It allows, for instance, to see if a correlation exists between the responses
of a pair of spectral bands: if they are correlated, the corresponding off-diagonal ele-
ments of the covariance matrix are large with respect to the diagonal terms (whereas
little correlation yields off-diagonal terms close to zero). Let us now see how these
hypotheses and expression are actually used by the classifier.

In trying to determine the class or category to which a pixel characterized by a vector
x belongs, it is strictly the conditional probabilities

p(ωi|x), i = 1, 2, . . . , l (4.4)

that are of interest. As already said, the vector x describes the pixel as a point in the
multispectral space with coordinates defined by the values of the parameters. The
probability p(ωi|x) gives the likelihood that the correct class is ωi for the pixel at po-
sition x. Hence, the classification is performed assigning a pixel vector x to class ωi
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when the condition:
p(ωi|x) > p(ωj|x) ∀ j 6= i (4.5)

is verified. The problem is then to estimate the probabilities p(ωi|x) that are unknown.

If sufficient training data are available for each class (each ground cover type de-
fined by the user), the probability distribution, which describes the chance of finding a
pixel from ωi at the position x, can be calculated. This new probability distribution is
indicated with p(x|ωi). The desired p(ωi|x) and the estimated p(x|ωi) are related by the
Bayes theorem [Pap65]:

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
, (4.6)

where p(ωi) is the probability that class ωi occurs in the image and p(x) is the probabil-
ity of finding a pixel from any class at the location x. The p(ωi) are called a priori or prior
probabilities, since they express the probabilities with which the class membership of
a pixel could be predicted before classification. By adopting the same interpretation
principle, the p(ωi|x) are posterior probabilities.

Using (4.6), the classification rule of (4.5) may be written as:

x ∈ ωi if p(x|ωi)p(ωi) > p(x|ωj)p(ωj) ∀ j 6= i. (4.7)

Mathematical convenience results if discriminant functions like:

gi(x) = ln{p(x|ωi)p(ωi)} = ln{p(x|ωi)} + ln{p(ωi)} (4.8)

are used, so that (4.7) is restated as:

x ∈ ωi if gi(x) > gj(x) ∀ j 6= i. (4.9)

At this stage it is assumed that the probability distributions for each class are of the
form of the multivariate normal model, see (4.2). This is an assumption, rather than a
demonstrable property for natural spectral or information classes; however it is cho-
sen because it leads to mathematical simplifications and moreover it is a distribution
for which properties of the multivariate form are well-known. The final form for the
discriminant function, based upon the assumption of normal statistics, is then:

gi(x) = ln p(ωi) −
1

2
ln(det[Σi]) −

1

2
(x − mi)

t[Σi]
−1(x − mi). (4.10)

The boundaries among different classes, because of the second order equation that
characterizes the discriminant function, are quadratic curves such as parabolas, circles
and ellipses. As will be shown later, the boundaries in the minimum distance approach
are expressed by linear equations, hence, the higher order decision rules make the
maximum likelihood classification more efficient for partitioning multispectral space
than the minimum distance one.

It is also possible to introduce a threshold in the case that insufficient training data
are available to estimate the parameters of the class distributions; the threshold of each
class is calculated from the knowledge of its a priori probability and its covariance
matrix.
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4.2.4 Minimum distance classification

The effectiveness of maximum likelihood classification is related to the accuracy in the
estimation of the mean vector m and the covariance matrix [Σ] for each spectral class
[Ric94]. This, in turn, depends upon having a sufficient number of training pixels for
each of those classes. If this condition is not satisfied, an inaccurate estimate of [Σ]
results, leading to poor classification results. When the number of training samples
per classes is limited, it is then worth trying to use a classification approach based only
on the use of m, whose evaluation, even for small quantities of samples, can be more
accurate than that of the covariance matrix elements. A classifier which needs only the
mean vectors of the various classes to be estimated is the minimum distance (Min. Dist.),
which should be more precisely indicated as minimum distance to class means classifier.
Indeed, this algorithm operates by placing a pixel in the class of the nearest mean in
the multispectral measurement space.

An advantage of this method with respect to the maximum likelihood classification
is its computational speed. The main disadvantage stems from the fact that it does not
use the covariance matrix and it therefore models only symmetric classes in the mul-
tispectral space; hence, classes with a well-defined data spread in a particular spectral
direction cannot be represented correctly.

The discriminant function for the minimum distance classifier is derived from the
expression of the squared Euclidean distance between the position of the generic pixel
x to be classified and the mean value mi of i-th class:

d(x,mi)
2 = (x − mi)

t(x − mi). (4.11)

Expanding the product gives:

d(x,mi)
2 = xt x − 2mt

i x + mt
i mi . (4.12)

Classification is performed on the basis of:

x ∈ ωi if d(x,mi)
2 < d(x,mj)

2 ∀ j 6= i . (4.13)

As xt x is common to all d(x,mi)
2, it can be neglected. By reversing the signs of the

expressions above, the assignment to a class is again expressed by the condition (4.9)
with:

gi(x) = 2mt
i x − mt

i mi . (4.14)

As a consequence of the linearity of the discriminant functions, the decision surfaces
for this classifier are planes in the n-dimensional spectral space. The minimum distance
classification is proven to be of value when the number of training samples is limited
and, in such a case, can lead to better results than the maximum likelihood procedure.

Finally, the possibility of adopting a definition for the distance other than the Eu-
clidean is also worth mentioning.

4.2.5 Classification accuracy assessment

The final step in any classification procedure is an accuracy assessment. This should
not be meant as an afterthought but as an integral part of any classification project,
which explains and completes the results of the classifier used.
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The most common way to represent the classification accuracy of remotely sensed
data is in the form of an error matrix (also called confusion matrix). This is a square array
of numbers set out in rows and columns which express the number of sample units
(in this work, pixels) assigned to a particular category relative to the actual category
as verified on the ground. Usually, the columns represent the reference data while
the rows indicate the classification generated from the acquired data. Let us refer,
for example, to Table 4.1 that reports the results relative to one of the tests discussed
later. Considering the class “water”, one can evaluate how its sample pixels have
been classified by studying the corresponding column of the table. Only 39.73% of the
sample pixels have been correctly recognized as belonging to that class; 42.33% have
been assigned to the class “roads” and no pixels at all have been classified as “houses”
or “trees”. The row of the table gives information on the misclassification of the other
sample pixels, so that one sees that 15.13%, 18.99% and 8.19% of the sample pixels
of the classes “roads”, “grass” and and “field 1”, respectively, have been incorrectly
classified as “water”.

The confusion matrix is a very effective way to represent accuracy as much as the
accuracies of each category are plainly described along with both the error of inclusion
(commission errors) and error of exclusion (omission errors) present in the classifica-
tion [Con91], [Ste97].

The error matrix can then be used as a starting point for deriving a series of descrip-
tive and analytical statistical techniques. Perhaps the simplest descriptive statistic is
the overall accuracy (Ov. Acc.), which is computed by dividing the total of correctly as-
signed pixel (i. e., the sum of the major diagonal), by the total number of pixels in
the error matrix. In addition, accuracies of individual categories can be computed in
a similar manner. Traditionally, the total number of “correct pixels” in a category is
divided by the total number of pixels of that category as derived from the reference
data (i. e., the column total). This accuracy measurement indicates the probability of a
reference pixel being correctly classified and is really a measure of the omission error:
it is often called producer’s accuracy (Pr. Acc.) because the producer of the classification
is interested in how well a certain area is classified. On the other hand, if the total num-
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Class water houses roads trees grass field 1 field 2 Total
water 39.73 0.02 15.13 0.04 18.99 8.19 14.04 13.27

houses 0.00 59.26 0.00 4.33 0.00 0.00 0.10 9.93
roads 42.33 0.02 76.21 0.01 19.74 7.95 14.53 21.72
trees 0.00 35.42 0.00 76.42 0.23 2.91 0.69 17.63
grass 14.79 0.06 4.51 0.18 23.00 12.70 20.03 10.19
field 1 1.85 5.04 1.80 18.35 23.52 50.44 27.49 19.00
field 2 1.29 0.19 2.35 0.66 14.52 17.82 23.12 8.26
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00



54 Chapter 4 - Analysis of polarimetric parameters: image classification

ber of “correct pixels” in a category is divided by the total number of pixels classified
in that category, then this result gives a measure of the commissions. This measure,
called user’s accuracy (Us. Acc.), is indicative of the probability that a pixel on the image
actually represents that category on the ground.

It is also common practice to normalize the error matrices by an iterative propor-
tional fitting procedure that forces each row and column in the matrix to sum to one.
In this way, differences in sample sizes used to generate the matrices are eliminated
and, therefore, individual cell values within the matrix are comparable. In addition,
the resulting normalized matrix is more indicative of the off-diagonal cell values (i. e.,
the errors of omission and commission).

Another measure of the accuracy of a classification procedure is the Kappa coefficient
defined as:

K =

N
r

∑

i=1

xii −
r

∑

i=1

(xi+ · x+i)

N2 −
r

∑

i=1

(xi+ · x+i)
, (4.15)

where r is the number of rows in the matrix, xii is the number of observations in row
i and column i, xi+ and x+i are the marginal totals of row i and column i, respectively,
and N is the total number of observations. For 0.4 < K < 0.75 the accuracy of the
classification is good and it is excellent for K > 0.75 [Con91].

In general, it is not possible to give clear-cut rules indicating when each measure
should be used. Each accuracy measure incorporates different information about the
error matrix and therefore must be used as a different computation attempting to ex-
plain the errors performed in the classification.

4.3 Overview on polarimetric parameters

Now that the theoretical bases to our tests and to their interpretation have been pro-
vided, it is possible to explain in detail the adopted analysis strategy and comment
upon the results.

As a first step, it is helpful to summarize the parameters that can be extracted from
a fully polarimetric SAR data set, i. e., those different ways in which these data can be
visualized and analyzed:

Backscattered intensity. This is the observable directly detected by the sensor and
gives the most immediate picture of the observed scene. The use of different
polarization bases can be meaningful as far as intensities are concerned.

Ratios of the [S] matrix elements. One may use this approach in order to enhance and
study the relative behaviour of the polarization channels. In particular, in this
work, we will calculate for SAR data some quantities usually derived for weather
radar data, like the linear depolarization ratios (LDR), i. e., the ratios between cross-
polar channels and co-polar ones, and the differential reflectivity (ZDR), that is, the
ratio between two co-polar channels (an example of a ZDR image is shown in
Figure 4.5).
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Characteristic polarizations. The co- and cross-polar nulls of the scattering matrix
may be calculated to enhance image quality and to retrieve orthogonality prop-
erties of the polarizations.

Parameters of the coherent target decomposition theorems. In general, the applica-
tion of such theorems leads to pictures that express the intensity of various scat-
tering mechanisms. Higher or lower intensity values of one component are con-
nected to the predominance of a mechanism with respect to the others.

Entropy/α parameters. This approach involves the generation of the coherency ma-
trix and the calculation of the eigenvalues and other related quantities. Their
interpretation follows the principles proposed by Cloude and Pottier [CP97].

One should note that, although each parameter provides relevant information about
the scatterers, none seems to be sufficient to fully interpret the response of a scene on
its own, so that their joint use is a common practice. In the recent research literature the
use of Entropy/α method for classification purposes has been reported and carefully
investigated [CP97], [Hel00]. The application of coherent methods for achieving sim-
ilar purposes, however, appears to have remained neglected and basically untested.
This is the reason why, in this contribution, we wish to address this issue, in an at-
tempt to complete the knowledge of all the considered polarimetric parameters.

4.4 Experimental approach

A series of classification tests has been carried out for each one of the different ap-
proaches listed in Paragraph 4.3 [AC00], [PAC+02], [ACP02b]. Since the main interest
of this research is not the theory of pattern recognition and image classification itself,
we have considered these techniques simply as a tool to compare different polarimetric
parameters or, rather, to have a first numerical estimation of their “potential”. Hence,
we have chosen classification algorithms widely used in the field of remote sensing,
though not specifically intended for SAR data, namely the parallelepiped, the min-
imum distance and the maximum likelihood. As previously seen, these algorithms
assign the pixels of the images to selected ground cover types according to some statis-
tical quantities (mean, variance, maxima and minima) extracted from prototype pixels
belonging to these classes. For the Parall. and Min. Dist. classifiers no further assump-
tions are made on the statistical properties of the data or of the pixels belonging to the
classes in particular. Conversely, the Max. Lik. algorithm is based on the hypothesis,
reasonable in most of the cases for remotely sensed data, that the probability distribu-
tions for each class are in the form of multivariate normal models. Since this condition
is hardly met for SAR polarimetric data [FMYS97], the use of this algorithm is contro-
versial and the results presented here must be carefully interpreted.

An original aspect of this work is the study of the dependence of the classification
results on the size of averaging windows of pixels, i. e., all the tests have been per-
formed using images where the values of the pixels have been averaged considering
square windows of increasing size, namely: 3×3, 5×5, 10×10 and 15×15 pixels. Such
an analysis will permit to prove if the chosen polarimetric parameters provide a de-
scription only of “point-like” physical properties of the targets or if they also contain
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“extended”, local information. Indeed, in the first case we expect good accuracy only
for single-pixel or small averaging windows based classification, whereas the presence
and recognition of extended parameters characteristics would lead to enhanced classi-
fication accuracy also for larger averaging windows.

Finally, the comparison among different polarimetric parameters will contribute to
the search of targets and/or ground cover classes that are better recognized and un-
ambiguously characterized by one parameter rather than another.

Regarding the outlined classification approach, it may be objectionable that the
adopted techniques may not be adequate to the data (as we admitted for the Max.
Lik. algorithm) and that more sophisticated approaches could better account for the
statistical properties of targets. Similar doubts could be raised also by the fact that lit-
tle or no attention was paid to noise removal or speckle reduction. However, there is a
heuristic component in any polarimetric approach developed to date and, at this point,
results seem to justify assumptions. Thus, by means of our tests, it is still possible to ac-
complish our tasks: to study the influence of the averaging windows dimensions and
to broadly establish what kind of features are better detected by a given polarimetric
parameter.

4.5 Data sets and test areas

The experimental data used for our tests are the following:

• Single-look complex (SLC) data sets of the area of Oberpfaffenhofen, Germany,
acquired by the E-SAR airborne sensor operated by DLR during a measurement
campaign in October ‘99. The data consist of L-band scattering matrices mea-
sured in the hv-basis.

The imaged area is situated approximately 25 km South West of the city of
Munich and includes several interesting features: the DLR centre, the former
Fairchild Dornier aeroplane factory and the airfield shared by the two firms (see
Figure 4.2).
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RF-band L
Centre frequency 1.3 GHz

Wavelength 23 cm
Bandwidth 100 MHz

Mode Quad Pol (hh, vh, vv, hv)
PRF 400 Hz (per channel)

Transmit peak power 360 W
Antenna gain 17 dB

Range resolution 1.5 m
Azimuth resolution 0.89 m
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Not far from them is situated the town of Gilching. Other important man-made
features are the motorway and the railway line stretching across the image. The
vegetation patches consist of coniferous and mixed forests, meadows and crops.

• Similar data of the same sensor acquired over the urban area of Munich. The
scene contains mainly buildings, but green areas are also present.

Aerial photographs were also used as ground truth and complementary sources of
information.

About the ground cover classes, we will concentrate on those types that are usually
investigated in the literature:

• Urban areas and man-made artifacts (even when isolated);

• forests (trying to distinguish among dense, coniferous and sparse, deciduous
ones);

• sparse vegetation;

• agricultural crops;

• water.

Whenever possible, some other distinctions have been made inside the types de-
scribed above in order to refine this broad grouping (for example, to try to recognize
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different crop types or woods). This was done, in particular, when using the [S] matrix
elements ratios.

The optical images served as ground truth data, since no more precise information
taken on the ground was available. The classes mentioned (forests, water, grass, etc.)
have been identified by direct interpretation of these aerial photographs. Regarding
the class indicated later on as “houses”, this definition refers to quite homogeneous
areas characterized by family houses surrounded by gardens (often including trees).
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4.6 Backscattered wave amplitude

A common analysis procedure was adopted for all the polarimetric parameters. At
first, seven ground cover classes (a more refined set with respect to the coarse one pre-
viously outlined) were defined: “water”, “houses”, “roads”, “trees”, “grass”, “field 1”
and “field 2”. Then, the corresponding prototype pixels from each class were selected
and passed as training samples to each classification algorithm. Finally all of the data
were classified. These last two steps were repeated five times, on a single-pixel basis
and also considering the 3×3, 5×5, 10×10 and 15×15-pixel averaging windows. Tables
summarizing the most meaningful results of all the tests are reported in Appendix C.

In this section we will start by analyzing the backscattered wave amplitude, i. e., the
data directly detected by the sensor and which provide the most immediate pictures
of the observed scene [PAC+02]. The series of tests was performed giving the three
amplitude images in the hv-linear basis, |Shh|, |Svv| and |Shv|, as input to the classifiers.
Only the data of the Oberpfaffenhofen test site were taken into account.

Figure 4.3 shows the classification accuracy assessments in terms of overall accu-
racy and Kappa coefficient. It is clear that increasing the dimensions of the averaging
window the classification accuracy improves; nevertheless, almost all the methods, in-
dependent of window dimensions, do not reach satisfactory accuracy degrees. Indeed,
they all remain below or near the threshold of K > 0.4 which indicates a good classi-
fication accuracy and only the Max. Lik. classifier, for window dimensions larger than
5×5 pixel, clearly exceeds this threshold.

Let us limit ourselves to the case corresponding to the best results: the 15× 15-
pixel window. The classes giving rise to the main recognition problems are: “water”,
“roads” and “grass” (see Appendix C.1). These are the ones corresponding to ground
cover types and samples giving the lowest backscattered intensity. The “grass” train-
ing pixels correspond to the flat area near the runway that, although rougher than the
other two, still tend to reflect most of the incoming MWs away from the backscattering
direction. Basically, the bad classification results for these three classes are due to their
low signal-to-noise ratio (SNR). In particular, the Parall. classifier, the algorithm based
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on the simplest feature space partition, fails to recognize all the samples belonging to
them.

The best results in terms of both the producer’s accuracy and the user’s accuracy
are obtained for the class “trees”: 85.42% and 64.13%, respectively, for the Parall. and
76.42% and 65.08% for the Min. Dist. classifier. This means that most of the pixels
belonging to this class have been correctly classified and that few samples from other
training areas have been erroneously labelled as “trees”. Hence, it seems that the [S]
matrix elements amplitudes are sufficient to characterize the targets associated with
that ground cover type. Conversely, none of the other classes yields such good results;
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for the “houses”, whereas the Us. Acc. is quite high for all the classifiers, the Pr. Acc.
remains low.

As shown in the accuracy assessment graphs, for smaller averaging windows, the
values of Kappa and Ov. Acc. are such that the classification results cannot be consid-
ered valuable.

4.7 Ratios of the scattering matrix elements

Let us now consider the backscattered intensity data from a different point of view and
concentrate on the relative behaviour of the polarization channels [AC00]. In order to
do this, some simple mathematical ratios will be used, namely the linear depolarization
ratios:

LDR(1) = 10 log
|Shv|2
|Svv|2

= 10 log
σhv

σvv

(4.16)

and

LDR(2) = 10 log
|Shv|2
|Shh|2

= 10 log
σhv

σhh

(4.17)

and the differential reflectivity:

ZDR = 10 log
|Shh|2
|Svv|2

= 10 log
σhh

σvv

. (4.18)

As already mentioned, these polarimetric observables have been extensively used
in weather radar applications: for classifying hydrometeors [SCM88] and for estimat-
ing meteorological quantities like the drop size distribution and rain-rates [SBAK79]
via solving inversion problems. Particularly relevant are propagation studies, includ-
ing attenuation studies and studies on the depolarization behaviour of scatterers, like
raindrops or ice crystals, along a propagation path [Hol84]. However, to our knowl-
edge, the application of the ratios of the [S] matrix elements to the remote sensing of
the Earth surface has been limited [ROvZJ93], [DvZE95].

Some other ratios could also be considered, such as those relating the [S] matrix
elements expressed in different bases, for example, the RL-circular one as reported in
[ROvZJ93].

The classification results obtained using different averaging windows do not lead
to meaningful accuracy values for any of the classification algorithms. This may be
due to the very limited variance of the ratio values among the classes. To verify this,
we decided to study the polarization ratios more thoroughly, defining an extended set
of classes for the Oberpfaffenhofen test site and using also other data relative to the
Munich urban area.

The training areas selected in the Oberpfaffenhofen scene were labelled as follows:
“water”, “houses”, “bare asphalt”, “trees”, “grass”, “field 1”, “field 2”, “field 3”,
“field 4” and “field 5”. The “bare asphalt” is represented by the airfield, whereas the
number of fields, which have different optical behaviour, have been extended to five.
One can broadly distinguish harvested soil from not harvested but, unfortunately, the
lack of direct information on the ground, like crop height or humidity, does not allow
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to fully explain the different backscattering signals. Hence, it is only possible to note
the variations of the values in the images and register them without providing but a
hypothetical interpretation.

In the Munich test site, the total number of training areas is lower than in the Oberp-
faffenhofen one. Again, areas representative of the classes “water”, “houses”, “trees”
and “grass” could be found. The class “buildings” has been introduced to define some
bigger buildings, blockhouses and big sheds, which could in no way be associated with
the class “houses” and whose response, especially in the hh-channel, is particularly
high. We reiterate here that the class “houses” was associated to quite homogeneous
areas characterized by family houses surrounded by gardens.

Figure 4.6 (a) reports the mean polarization ratios relative to a 5×5-pixel averaging
window, whereas the values in Figure 4.6 (b) refer to single-pixel estimates. In both
cases, it is evident that the mean values of the three ratios do not vary significantly
among the various classes. Considering also the standard deviations, to have a range
of variation for each class, one can see that these ranges always overlap. This confirms
our hypothesis and explains why none of the ratios suffices to distinguish a class from
the others (at least among the ones we have defined here). As a consequence, classi-
fication based on these images only is unlikely to provide valuable results. Referring,
for instance, to the quantities averaged on a 5×5-pixel window, the test with the Min.
Dist. classifier gives for the Oberpfaffenhofen site an Ov. Acc. around 28 % and a value
for the Kappa coefficient of 0.242, and for Munich a slightly better result of Ov. Acc. =
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57.4 % and K = 0.476 (results far from, or just at the limit of, the range 0.4 < K < 0.75
which indicates a good accuracy).

Almost everywhere the hh-channel response is slightly higher than the vv-one.
Hence, it seems that a real polarization isotropy of the backscattered signal, of which
the ZDR is a function [SCM88], is rarely present.

According to the theory [CM91], [BW85], [UMF82], the predominance of one term
over the other is connected to the type of scattering on the illuminated surface. More
precisely, |Shh| > |Svv| when the incident beam is scattered according to the Fresnel
model, valid for surfaces almost flat, whereas the case of |Shh| < |Svv| is verified for
scattering from rough surfaces described by the Bragg model. The hypothesis of Fres-
nel scattering applies, for example, to the “buildings” (ZDR high and LDR(2) low).
Also the class “bare asphalt” seems to follow this trend, although with less pronounced
evidence. Conversely, the only observed case of significantly negative ZDR average
(and of LDR(1) values lower than the LDR(2) ones) refers to a field where we may
suppose a recent ploughing and, for this reason, an enhanced roughness.

The class “trees”, from which we expected one of the highest average values for the
LDR ratios (assuming the presence of the best conditions to have depolarization effects
due to multiple scattering phenomena) shows clearly this tendency in the Oberpfaffen-
hofen test site and less evidently in the Munich test site. The reason for this difference
can be the type of trees present in the two scenes: mainly coniferous (at least in the
selected sample) in the Oberpfaffenhofen scene, deciduous in the Munich sample. On
the acquisition date, beginning of October, the trees in Munich whould have already
lost their leaves and one can expect from them a less probable evidence of multiple
bounce (and hence depolarization) phenomena.
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4.8 Characteristic polarizations

The co- and cross-polar nulls were introduced in Paragraph 2.3 where we saw that by
their means it was possible to express the scattering matrix in diagonalized forms, and
thereby to better deal with representations of the interactions where the backscattered
power is concentrated only in some of the components of [S].

Referring more in particular to the results of the zeroing constraints, we obtained
two solutions, i. e., two different matrices, with cross-polar null elements (see Equa-
tions (2.88) and (2.89)) and four with co-polar null elements ((2.94), (2.95), (2.96) and
(2.97)). These last four matrices differ only in phase terms (see (2.98) and (2.99)). Thus,
we have selected only some elements of the derived matrices to perform our tests, na-
mely, the two complex terms appearing in (2.88) which were indicated as p1 and q1 and
the two of (2.94) named x1 and a1. The amplitudes of the four chosen elements have
been provided as inputs to the classifiers with the usual repeated tests on different
averaging window dimensions.

When using the co- and cross-polar nulls one gets, in general, better classification re-
sults than with the original amplitudes of the [S] matrix elements [PAC+02], [ACP02b].
This is more evident for the larger averaging windows, as can be seen in Figure 4.7. For
windows of 5 × 5 pixel or larger, the value of Kappa of the Min. Dist. and Max. Lik.
classifiers is almost equal to or greater than 0.4, so that their results can be considered
acceptable (as did not happen for the tests on the original data).

We can comment here in detail on the behaviour of the various classes for the tests
with the 15×15-pixel window (see Appendix C.2). The best classification results are
obtained for the classes “houses”, “trees” and “field 1”. Indeed, for these classes, the
percentages of both the user’s accuracy and producer’s accuracy remain quite high
for all the classification algorithms (the lowest value is of 63.24% for the Prod. Acc.
of the “houses” with the Min. Dist. classifier). Most of the pixels belonging to these
classes have been correctly classified and few samples from other training areas have
been erroneously assigned to the classes “houses”, “trees” or “field 1”. Hence, it seems
that the co- and cross-polar nulls can be used to describe the targets associated with
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those ground cover types. On the contrary, more controversial is the classification of
the “grass” and “field 2” classes, for whom the accuracy estimates remain low even in
the considered best case of 15×15-pixel averaging window. The class “roads”, finally,
seems to represent a problem only for the Parall. classifier that gives a very low value,
3.65%, of producer’s accuracy.

For windows smaller than 15×15 pixels or for single-pixel based tests, the accuracy
estimates drop rapidly and only the class “trees” shows user’s and producer’s accuracy
values higher than 50%.
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4.9 Parameters of the coherent target decomposition the-
orems

In Paragraph 2.5, we presented a review of TD theorems and stressed how these meth-
ods “intrinsically” represent a classification tool since they recognize and weight the
contributions of different targets in a scene. For example, a colour composite image of
the Krogager decomposition coefficients is already a classification image: the identi-
fied features are the three scattering mechanisms contemplated in the model and their
weights are a way to assign the image pixels to each of them.

These methods have been used here as a preliminary step to the supervised classifi-
cations also carried out with the other polarimetric parameters. In particular, we stud-
ied [ACP02b] the three main coherent decomposition theorems: the one by Krogager,
the Pauli one and that of Cameron. Since they are all coherent methods, they provide
information on a pixel-level basis and refer to point-like scatterers. Notwithstanding
their original point-like nature, it is again worth investigating how the significance of
these decomposition theorems stretches over extended areas. Hence, for all of the TD
methods, we repeated our tests with the three classification algorithms: firstly on the
data directly derived through a given decomposition, and secondly after averaging the
relevant parameters. Results are reported in Appendix C.3.

The first TD theorem under consideration is the SDH decomposition [Kro93], [KC95].
As seen on page 27, this approach yields the decomposition of the scattering matrix
into three components, as if the scattering were due to a sphere, a diplane and a right-
or left-wound helix. The relative weight of each contribution is determined by the ki

coefficients appearing in Equation (2.121); they are real quantities and provide three
new pictures of the imaged scene. The classification tests have been performed only
on these values provided as a three-layer input to the classifiers.

The overall accuracy estimates present values for the pixel based tests similar to
those previously seen with the other polarimetric parameters. For Kappa, these are
always near 0.2 for the parallelepiped classifier and 0.3 for the other two.
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It is to be noted that the improvement of the accuracy with increasing dimensions
of the averaging windows is now much faster than in the previous cases. Indeed, for
the Min. Dist. and Max. Lik. classifiers the overall accuracy results are already accept-
able (K > 0.4) for the 3×3-pixel window and reaches values of the order of 0.75 for
15×15-pixel window, which indicates an excellent classification performance. These are
the best results ever obtained with these two algorithms. Although the parallelepiped clas-
sifier presents improved results too, it seems to provide basically the same accuracy
percentages.

With reference to the largest averaging window, one obtains very good Us. Acc. and
Pr. Acc. for all the classes with all three algorithms. Some limits are presented only
by the Parall. classifier with the classes “water”, “roads” and “grass”. Indeed, this
algorithm completely fails in recognizing the training pixels of the class “water” and
classifies those of the “grass” only with an Us. Acc. of 6.33% and a Pr. Acc. of 0.46%.
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The second TD method taken into account in our analysis is the Pauli decompo-
sition. The tests performed on its characteristic parameters, the a, b and c complex
coefficient appearing in (2.120), do not reach as good accuracy values as those of the
Krogager decomposition. The Ov. Acc. of the parallelepiped classifier remains almost
constant for all windows sizes and its values for the other algorithms do not differ
significantly from those obtained by simply using the amplitudes of the three [S] ma-
trix elements. Hence, it seems that no meaningful improvement in terms of amount
of information is provided by this TD theorem with respect to the original data (see
Figure 4.10).
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The detail of the single classes tells us that the best results in terms of producer’s and
user’s accuracy are those relative to the classes “houses” and “trees”, whereas “grass”,
“water” and “roads” present much poorer values. Again, the parallelepiped algorithm
fails to recognize the last three classes. As in the case of the tests directly performed on
the [S] matrix elements, one may suppose that the bad classification results for these
classes are due to their low SNR that is not improved by the decomposition.

As a final example of the coherent TD theorems, we studied the Cameron decom-
position [CL92], [CYL96]. As SAR data are calibrated in order to fulfill reciprocity con-
straints, the basic distinction among scatterers made by this method is based on their
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symmetry with respect to axes lying on a plane orthogonal to the radar line-of-sight.
For this reason one has to perform only the decomposition (2.123) of the [S] matrix into
its most dominant and least dominant symmetric terms (henceforth max sym and min
sym). The norm of the corresponding scattering vectors was then given as input to the
classifiers.

It is evident from Figure 4.11 that the accuracy estimations now reach values compa-
rable with those obtained with the Krogager decomposition. Their maxima are again
obtained for the largest averaging window; the Ov. Acc. ranges from 52% for the Par-
all. classifier to 76% for the Max. Lik. one. For this window size, one can note how
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the maximum likelihood classifier yields good results even for those classes usually
misclassified by the other algorithms, for instance “water” and “grass”. Indeed, the
Us. Acc. remains above 50% in both cases, equal to 64% and 68% respectively. On the
contrary, the parallelepiped classifier fails again to classify the test samples belonging
to these two training areas. Finally, it is also interesting that the Max. Lik. and the Min.
Dist. classifiers provide the same accuracy levels for the pixel-based tests and for those
performed using the two smallest windows.

4.10 Entropy/α parameters

The entropy parameter was discussed in Paragraph 3.3. It represents the capability of
the diagonalized coherency matrix [T(3)] to distinguish among the different scattering
mechanisms that contribute to the backscattered signal from a given resolution cell.
As stated in that section, whilst the eigenvectors of [T(3)] each describe an independent
scattering mechanism, its three eigenvalues (used to determine H) express their rela-
tive intensity and hence give a measure of the “complexity” of the interactions in a cell.
Further information may then be obtained by means of the parameterization given in
(3.13): the type of the identified mechanisms is related to the α angles and a general
description of the given coherency matrix is related to the average α value.

Properties of the scatterers may then be interpreted in terms of these parameters
and their classification performed considering their distribution in the H/α space (see
Figure 4.15). Since some physical limits exist for the variation of α as a function of
H , not all the H/α space represents real scatterers (i. e., not all the values of entropy
and α have a physical meaning). Hence, one can define curves limiting this space and,
inside this physically feasible area, make a further distinction between eight classes of
scattering mechanisms. These are clustered as follows [CP97]:
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Low entropy surface scattering. In this zone, low entropy scattering processes occur
with α values less then 42.5◦. All surface single scattering phenomena should
belong here: those within the geometrical optics limit, those treated by means
of physical optics, Bragg surface scattering and specular scattering phenomena
which do not involve 180◦ phase inversion between Shh and Svv. For instance, at
L-band, water and very smooth terrain surfaces belong to this category.

Low entropy dipole scattering. This area corresponds to strongly correlated mecha-
nisms having a large imbalance between Shh and Svv in amplitude. Isolated di-
pole scatterers, as well as vegetation having clearly oriented anisotropic scatter-
ing elements would appear in this zone.

Low entropy multiple scattering. Double or even-bounce scattering events are to be
located here. This is the case for isolated dielectric and metallic dihedral scatter-
ers.

Medium entropy dominant surface scattering. This zone presents a higher value of
entropy due to increases in surface roughness and to canopy propagation effects.
Hence, surfaces characterized by an increasing roughness/correlation length or
surfaces covered by oblate spheroidal scatterers (such as certain types of leaves)
would be located in this area.

Medium entropy dipole scattering. Moderate entropy with a dominant dipole scat-
tering mechanism characterizes this zone that includes scattering from vegetated
surfaces with anisotropic scatterers and moderate correlation for the orientation
of the scatterers.

Medium entropy multiple scattering. Scattering phenomena contained in this region
are those typically present in forested areas; in effect, double bounce mechanisms
through the canopy increase the entropy. Also urban areas belong to this zone,
as dense packing of localized scattering centres can generate moderate entropy
with low order multiple scattering being dominant.

High entropy vegetation scattering. Scattering phenomena from forest canopies lies
in this region as does the scattering from some types of vegetated surfaces with
random highly anisotropic scattering elements.

High entropy multiple scattering. In this zone, double bounce mechanisms in a high
entropy environment may still be distinguished. Good examples are forests or
scattering from vegetation that has a well-developed branch and crown structure.

The proposed division of theH/α space may not only be directly applied to perform
unsupervised classification but, as well, considered as a tool to check the accuracy
of other classification techniques and their consistency. This is the strategy adopted
in this work. Again, the three chosen supervised classification algorithms were used
to perform tests with different sizes of the averaging window; in this way, a direct
comparison with the other parameters is possible [ACP02b].

The values of H , α and A are calculated after the averaging process, indeed, this
is performed when evaluating the coherency matrix. As in the previous cases, the
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averaging windows have the following dimensions: 3×3, 5×5, 10×10 and 15×15
pixels. A first series of experiments is based only on the H and α parameters, i. e., only
these two have been given as input to the classifiers. The results of the three different
methods in terms of Ov. Acc. and Kappa are illustrated in Figures 4.16 (a) and (b).
A second series also takes into account the anisotropy A (hence, three parameters as
input). The classification tests were repeated for all the cases and further graphs of the
Ov. Acc. and Kappa were derived (see Figures 4.17 (a) and (b)). Tables summarizing
the main results of the classification tests can be found in Appendix C.4.

In both series of tests, the level of accuracy remains relatively low. Because of this,
in [SAC+00] the total backscattered power was used as temporary additional input for
improving the segmentation of the H/α parameters.

The Ov. Acc. and the Kappa coefficient diagrams show again an increasing accuracy
of the classification results ranging from the 3×3 to the 15×15-pixel window. The two
simplest classifiers, namely the Parall. and the Min. Dist., do not present remarkable
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accuracy values. They are not sensitive to the additional anisotropy information: the
values of the overall accuracy and of Kappa are not subject to significant variations. In
particular, the Parall. algorithm provides similar results independently upon use of the
anisotropy as input. Also the Max. Lik. appears to be not so effective as it was when
applied to the SDH coefficients with averaging, even though an increase of accuracy
of 10% has often occurred when adding anisotropy. Moreover, the Gaussian statisti-
cal hypothesis characterizing the Max. Lik. criteria is not satisfied by the polarimetric
variables under study and, as stated before, represents a potential flaw in the use of
this classification method.
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A visual analysis of the resulting classification maps also suggests some limitations
of this method. The similar behaviour of the “water” and “roads” classes makes it
impossible to distinguish them from each other. The urban area appears well defined,
but cultivated fields are often assigned to “houses” or “water” classes. Different kinds
of fields are not separable. Only the class “trees” shows good classification results and
the measured values characterize it unambiguously.
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4.11 Comparisons and conclusions

It is now possible to summarize the results discussed in the previous sections referring
also to Table 4.3 in order to get a general overview over them. Since the tests were
performed on a single data set, the considerations that will follow do not presume
to have an absolute validity but should simply indicate a trend that is reasonable to
assume valid for similar data and imaged scenes.

The first important observation is that little improvement in our classification tests can
be obtained using the incoherent polarimetric parameters derived from the original data rather
than using directly these ones [PAC+02], [ACP02b]. Indeed, the Ov. Acc. increases just
slightly for the tests on the H/α values with respect to those on the amplitude ones. A
possible interpretation is the following: the entropy and anisotropy parameters are de-
rived by the eigenvalues of the coherency matrix; no use is made of the corresponding
eigenvectors. One may then suppose that part of the information originally contained
in the data has been “neglected” leading to poorer, or poorer than expected, classifica-
tion results. Moreover, α is the only quantity that does not express an intensity.

Concerning the coherent parameters, only two of the decomposition methods, na-
mely, the SDH and the Cameron decompositions, lead to significantly higher accuracy
values, whereas the ratios of the [S] matrix elements [AC00] provide results signifi-
cantly worse than all the other polarimetric parameters.

As a further note of caution, it should be reminded that the chosen algorithms im-
plement quite general image classification methods and are not specifically intended
for SAR data; hence, they are not the optimal tools for analyzing them. In general,
the Max. Lik. classifier gives the best results (in terms of Ov. Acc. and Kappa coeffi-
cient); independently from the averaging windows dimensions, the values obtained
are higher than in the other two cases. This may be attributed to the higher versatil-
ity of the second order statistic model of the Max. Lik. classifier in comparison with
the first order statistics criteria adopted by the Parall. and Min. Dist. methods. Due
to these considerations, the unsupervised segmentation proposed in [CP97] would be
more appropriate for the incoherent parameters.

As expected, the choice of the training data set plays a relevant role: some of the
selected ground coverage types always give rise to problems in the classification pro-
cesses and bad accuracy results, whereas, for others, these are constantly acceptable.
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Class. alg. → Maximum likelihood Minimum distance Parallelepiped
Pol. parameters ↓ Ov. Acc. (%) Kappa Ov. Acc. (%) Kappa Ov. Acc. (%) Kappa
Backscattered amplitude 57.03 0.5 50.96 0.43 33.88 0.24
Co- and cross-polar nulls 66.24 0.6 64.41 0.58 44.61 0.36
SDH coefficients 87.37 0.85 77.04 0.73 55.58 0.48
Pauli coefficients 57.61 0.51 52.27 0.44 34.65 0.25
Cameron terms 76.37 0.72 71.35 0.66 52.9 0.45
H/α 60.25 0.54 45.3 0.36 25.48 0.136
H , α and A 64.1 0.58 45.31 0.36 25.71 0.137
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In fact, in all the tests, the classes “houses”, “trees” and “field 1” were better recog-
nized than the classes “roads”, “grass” and “water”. Hence, the role of the analyst with
a ground truth knowledge remains fundamental, in the sense that the selection of the training
data and of the classification items affects the final results sometimes as deeply as the choice of
the type of the inputs.

Regarding the comparison among single-pixel and averaged areas classifications,
we have shown that, by averaging the values of the image pixels, the classification efficiency
is, in general, enhanced. This could mean that the studied parameters refer to physical prop-
erties “spread” over neighbouring and somehow correlated pixels. Indeed, the presence of
“extended” parameter characteristics may have led to improved classification accuracy
for increasing sizes of the averaging windows (at least in the limits of the 15×15-pixel
window as largest size). Another aspect to be taken into account, which influences the
different results, is that the tests compare averages of both real and complex quantities.

It is worthwhile to stress that, to our knowledge, no systematic investigations simi-
lar to ours have been yet conducted on this subject.





5 Analysis of polarimetric parameters:
interferometry

5.1 Overview

Polarimetry and interferometry seem to play distinct roles in radar remote sensing,
leading also to their application to different tasks: polarimetric analysis makes it possi-
ble to separate different scattering mechanisms within a given resolution cell, whereas
interferometric techniques allow for a topographical characterization of the scatter-
ing contributions. As an obvious consequence of these properties, one may try to use
polarimetry and SAR interferometry for those cases when different scatterers are ex-
pected to occupy different positions. In particular, a topic actively investigated is the
possibility to distinguish scatterers separated in height, and steps in this direction have
been recently taken [CP98], [PRC99a], [PRC99b], [PC01], [IC01], [Sag00]. The interest
in doing this is readily found when considering the various sources of decorrelation
affecting two SAR images: a major cause is the volume scattering term, which is re-
lated to the height distribution of the effective scatterers above the chosen reference
plane [ZV92], [BH98]. Hence, “resolving” the volume decorrelation and fixing the ex-
act position of the scattering centres could also lead to an estimation of the height of
the resulting distributed scatterers. Moreover, the exact determination of the volume
scattering contribution is fundamental in DEM generation as well as in biomass esti-
mation.

Due to all these reasons, the question of volume decorrelation is worth special atten-
tion. We present here a study on the potential of target decomposition methods com-
bined with interferometry which is aimed at verifying if they can be used to reduce
this effect and the problems connected to this approach. Given the differences among
TD theorems, in particular among coherent and incoherent ones, we also investigate
if different methods permit us to distinguish between volume scattering (that is, veg-
etated/forested areas) and coherent targets with a profile along their height (basically
buildings and other man-made artifacts).

5.2 Theoretical aspects

In order to understand the phenomenon of decorrelation in SAR interferometry, it is
helpful to provide more details about the expression of the interferometric coherence
introduced in Equation (3.20).

79
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5.2.1 Interferograms generation

Let us consider first a single SAR image and the geometry associated with it as given in
Figure 5.1. Here, the primed coordinates are related to the target, while the unprimed
ones refer to a reference point for the system response h(x,R). With this geometry, the
value of the image for a point on the ground at x′ azimuth position and slant range R′

can be expressed as [HUA95], [BH98]:

s(x,R) =

∫

ũ(~r′) exp(−j2kR′)h(x− x′, R−R′)dV ′ + n(x,R). (5.1)

In (5.1), ~r′ = (x′, y′, z′) and dV ′ = dx′dy′dz′, ũ(~r′) represents the three-dimensional
complex terrain reflectivity (it will be referred to also as the scattering object), h(x −
x′, R−R′) and n(x,R) are respectively the system response and noise, and ~k the signal
wavevector which results as function of the radar look angle θ:

~k = |~k|(0, sin θ, − cos θ). (5.2)

The system response is usually modulated by rectangular filter functions of bandwidth
WR in range and Wx in azimuth, and hence has the form:

h(x,R) = sinc(Wxx) sinc(WRR) =
sin(Wxx)

Wxx

sin(WRR)

WRR
. (5.3)
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Now, let us further assume that the origin of the range coordinate in the SAR image
has been set to:

Rs =
√

H2 + y2
s (5.4)

so that we can define a new range coordinate η as:

η = R−Rs (5.5)

and an axis ξ orthogonal to the η-axis directed as represented in Figure 5.2. In this new
coordinate system, it is possible to derive the plane wave approximation of (5.1) as:

s(x, η) = exp(−j2kRs)

∫

ũ(~r′) exp(−j2~k · ~r′)h(x− x′, η − η′)dV ′ + n(x, η). (5.6)

When doing interferometry (see Figure 5.3), one works with two images character-
ized by different objects ũ1(~r1) and ũ2(~r2) which pass system responses h1(x, η) and
h2(x, η) according to Equation (5.6). Due to the slightly different look angles, the (η, ξ)-
coordinate systems of the images differ. However, the difference ∆θ between the look
angles is small enough such that an average angle θ0 and a single (η, ξ)-coordinate sys-
tem can be considered. Hence, only the exponential factor exp(−j2~k · ~r′) in (5.6) is
different in the two wave-vectors.

As the two SAR images may not have been acquired simultaneously, the scatter-
ers may have changed between acquisitions (we will see later the possible causes of
these changes) and the two complex reflectivities are connected by a cross-correlation
function such that:

E[ũ1(~r1) ũ
∗
2(~r2)] = σve(~r1) δ(~r1 − ~r2), (5.7)
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where E[ ] stands for expectation value and σve(~r) is the volumetric backscatter coefficient
[BH98] of scatterers common to both images and expresses the amount of correlation
of the two complex reflectivities. The coefficient σve(~r) can be interpreted as the tem-
porarily stable scattering contribution; scatterer contributions that have changed be-
tween observations average out in the expectation value.1

Assuming mutually uncorrelated system noise n1(x, η) and n2(x, η) of intensity:

E[|n1|2] = N1 (5.8)

and
E[|n2|2] = N2 , (5.9)

one may use the equations above to write the interferometric coherence as:

γ= |γ′|= |
∫

σve(~r′)h1(x− x′, η − η′)h2(x− x′, η − η′) exp[−j2(~k1 − ~k2)·~r′]dV ′|
√

(S1 +N1)(S2 +N2)
(5.10)

and take the phase of the complex γ ′ as the expected interferometric phase.

S1 and S2 are the noise-free signal intensities of the two images and are equal to:

S1 =

∫

σv1(~r′)|h1(x− x′, η − η′)|2dV ′, (5.11)

1This is true only for random changes of scatterers. Hence, this form of cross-correlation function is
not applicable for objects that perform a rigid movement and whose scattering properties remain stable.
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S2 =

∫

σv2(~r′)|h2(x− x′, η − η′)|2dV ′, (5.12)

where σv1(~r′) and σv2(~r′) represent the volumetric backscatter coefficients of the scat-
tering objects and are a measure of their autocorrelation.

5.2.2 Decorrelation sources

According to [RM92] and [ZV92], the coherence can be written as the product of several
contributions:

γ = γSNR γtemporal γspatial. (5.13)

γSNR represents the decorrelation due to additive noise, while γtemporal stands for tem-
poral scene coherence and is defined as the ratio of temporarily stable scattering con-
tributions to the total scattering intensity transferred to the SAR images (more details
about these contributions and their analytical formulation can be found in [ZV92],
[BH98] and [Pap99]).

The contribution deserving our attention in this chapter is γspatial , which describes
the decorrelation caused by the different processing performed on the two SAR sig-
nals (in the sense that they have been differently “coupled” to the system responses).
In turn, spatial decorrelation itself can be split into two terms relating to different scat-
tering mechanisms, surface scattering and volume scattering, that is:

γspatial = γsur γvol . (5.14)

This is possible under the assumption:

R2 = x2 + y2 + z2(x, y) ≈ x2 + y2 (5.15)

which, referring to Figure 5.1, implies the possibility of choosing the origin of the co-
ordinates on the mean plane of the surface and far from the illuminated area. Hence,
it holds: x, y � z and the dependence of h(x, η) from z can be neglected.

The characteristics of the targets on the ground and their differences (in size, shape,
distribution and temporal stability) deeply influence the SAR image synthesis and the
interferometric application [BH98]. Indeed, due to the high sensitivity to range varia-
tions of the phase term in the integral of (5.6), each scatterer in a resolution cell (meters)
should be located with a precision of the order of a fraction of the wavelength (centime-
ters). This condition is hardly met for natural scenes that usually contain distributed
targets. Also the expression of the volumetric backscatter coefficient depends com-
pletely on the nature of the imaged targets and two extreme situations are possible:
point scatterers and Gaussian (or Rayleigh) scatterers.

The first case relates to ideal targets whose volumetric backscatter coefficient is of
the type:

σve(~r) = σ0 δ(~r − ~r0). (5.16)

This means that the resolution cell may be treated as point-like at least concerning the
determination of its position. Hence, the coherence is equal to 1 and the interferometric
phase is exactly that which corresponds to the path difference from the two antennae
to the target with no uncertainties in range. Such a case is realized, for instance, by “ad
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hoc” artificial targets, the so-called corner reflectors, whose backscatter is so strong as to
completely determine the value of σve(~r) for that resolution cell since the contribution
from surrounding natural targets is overcome. Backscattering from Gaussian scatterers
is, on the contrary, due to several elementary random scatterers among which none
provides a contribution clearly dominating the others.

Another aspect to be considered is the actual spatial distribution of the elementary
scatterers, in particular, their eventual displacement in height. For example, the canopy
layer of forests is constituted by randomly distributed scatterers, the leaves and the
branches, with varying shape and orientation which are also subject to frequent, and
random, changes in time. Backscattering from such targets usually yields very low
coherence values and is referred to as random volume scattering. It is important to stress
that the low coherence is due both to the vertical, almost continuous, structure of the
target (for reasons that will be explained below) and to its low stationarity. For the case
when only varying target heights affect the coherence but the elementary scatterers are
stationary, discrete and limited in number, as those of walls or buildings, then it is
helpful to introduce the new definition of coherent volume scattering [ACP02a], [AC03].

Coming back to Equation (5.14), one can consider the two contributions separately.
The case of pure surface scattering is characterized by:

σve(~r) = σsur(x, y) δ(z − z0), (5.17)

that is, all scattering interactions are assumed to take place at a certain height z = z0

and the degree of correlation depends on the phase variations of the scatterers on this
plane. As we will see, it is possible to compensate the effect of the decorrelation due
to changes in look angle of the sensors, by means of an adequate setting of the system
responses.

Quite different is the scenario when volume scatterers are present. After compen-
sating pure surface effects, γspatial is determined by a volumetric backscatter coefficient
with a profile in z and constant in x and y:

σve(~r) = σvol(z). (5.18)

Its characteristics change significantly depending on whether it represents coherent
volume scatterers (buildings or other man-made artifacts) or a random volume (vege-
tated areas), though for both γvol has the form:

γvol =
|
∫

σvol(z
′) exp[−j2(kz′,1 − kz′,2)z

′]dz′|
∫

σvol(z′)dz′
, (5.19)

where the components kz are the projections onto the z-axis of the wavevectors. In-
deed, in the case of coherent volume scatterers, a limited number of elementary scatter-
ers can be found in each resolution cell or, at least, the number of multiple interactions
is less than in a random volume so that the coherence tends to values nearer to 1 than
in the second case.

5.2.3 Interferometric coherence enhancement

The reduction of the decorrelation effects of γspatial follows different strategies accord-
ing to the mechanisms originating γsur and γvol. Under the hypothesis of pure surface
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scattering, the decorrelation is due only to the fact that the backscattered signals corre-
spond to different bands of the ground reflectivity spectrum [PRGP94], [GGP+94]. This
can be demonstrated starting from the approximated relation between the frequency f
and the ground range wavenumber ky:

ky = 2
2π

λ
sin(θ − α) =

4πf

c
sin(θ − α), (5.20)

taking into account the two-way travel path and also a constant uniform slope of the
terrain represented by α. The difference ∆ky, i. e., the variation of ky generated by a
slight change of the look angle ∆θ, is then:

∆ky =
4πf∆θ

c
cos(θ − α). (5.21)

Thus, in general, a look angle difference ∆θ generates a shift and a stretch of the imaged
terrain spectra. However, if the relative system bandwidth is small, the frequency f in
(5.21) can be substituted by the central frequency f0 and the stretch can be neglected,
then the following equation holds:

∆ky =
4πf0∆θ

c
cos(θ − α). (5.22)

Finally, since the radar is not monochromatic (a certain bandwidth W centered around
f0 is always given), one may conclude that by changing the look angle of the SAR beam
one gets a different band of the ground reflectivity spectrum. This difference is a source
of decorrelation that affects γspatial but, as was shown in [GGP+94], it can be overcome
by means of tunable radars, i. e., systems whose processing filters can be tuned to the
different centre frequencies (a technique known as wavenumber shift filtering):

h2(x, η) = h1(x, η) exp(−j2π∆fη), (5.23)

where:
∆f = − 2Bn

λRs tan(θ − α)
(5.24)

and Bn is the component of the baseline normal to the look direction [BH98]. Equa-
tion (5.24) does not relate to angular dependence of the scatterers, an assumption valid
in this case.

A first method for resolving volume decorrelation by means of polarimetry was
proposed by Cloude and Papathanassiou [CP98]. It consisted of associating a differ-
ent scattering mechanism, and connected to that a scattering centre, to each scattering
vector defined by the optimization of the interferometric coherence (see page 45). Ac-
cording to their expectations, the maximization constraints would act mainly on the
volume term of γspatial (in the hypothesis of reduced effects of temporal decorrelation).
Moreover, in this way, the position in height of the scattering centres can also be de-
fined. Thus this method should provide a first rough estimate of the height of extended
targets.

In [CP98] and [Pap99], this result was suggested as a way to measure tree heights,
assuming that the scattering centres so identified are situated almost at the top and at
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the base of the trees. Unfortunately, when applied to the estimation of forest heights,
this direct approach presents limits that depend on the properties of the different scat-
tering components. The main point is that, while scattering from a random volume
(that of the branches and leaves layer) is unaffected by changes of polarization, the
ground scattering is polarization-dependent but, since no polarization contains only
one of these two contributions, it is not possible to completely separate them. As a
result, the straightforward evaluation of their difference in height through their inter-
ferometric phase difference leads to underestimated values.

A different approach has been adopted specifically for the case of vegetated areas
[PRC99a], [PRC99b], [PC01], [Sag00]. It is based on the use of scattering models con-
necting the interferometric measurements to some basic parameters characterizing the
vegetation, such as the height of the canopies and foliage volume and its extinction
coefficient. By means of these limited sets of parameters, simplified expressions of in-
terferometric quantities (usually the coherence) can be derived; then, via minimization
procedures of the difference between modelled and measured interferometric values,
it is possible to invert the experimental measures and obtain an estimate of the chosen
vegetation parameters. The main difficulty of this way of proceeding is the formula-
tion of the models, which must be simple enough to allow the inversion but, at the
same time, be able to properly describe the complexity of the imaged vegetation layer.

In [PRC99a], [PRC99b] and [PC01], an example of such a model is presented based
on an interactions scenario which includes random volume as well as ground scatter-
ing [TS00]. It consists of a volume of randomly oriented scatterers above the ground.
This is a good approximation for scattering at L-band. With the chosen model, one
calculates the interferometric coherence taking into account direct backscattering from
the ground and from the random volume; the contribution of multiple bounces is ne-
glected. The parameters related to the vegetation layer are its thickness hV , the scatter-
ing amplitude mV (w) for a given polarization w of the randomly oriented scatterers,
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and the volume extinction coefficient σ (in dB/m). Related to the ground beneath the
vegetation are the topographic phase φ0 and the scattering amplitude mG(w). Using
again a vertical axis z with the origin on the ground surface and the same geomet-
ric parameters (average radar look angle θ0, range distance R, baseline B) introduced
before, the complex interferometric coherence is written as [PC01]:

γ′(w) = ejφ0
γ′V +m(w)

1 +m(w)
, (5.25)

with m(w) representing the effective ground-to-volume amplitude ratio:

m(w) =
mG(w)

mV (w)
exp

(

−2σhV

cos θ0

)

(5.26)

and γ′V the complex coherence for the volume alone given by:

γ′V =

∫ hV

0
exp

(

2σz
cos θ0

)

exp(jkzz)dz

∫ hV

0
exp

(

2σz
cos θ0

)

dz
. (5.27)

kz is the effective vertical interferometric wavenumber after spectral shift filtering
and is equal to:

kz =
kB cos θ0

R sin θ0

. (5.28)

The volume extinction coefficient σ represent a mean extinction value of the vegetation
and depends on the scatterers density and on their dielectric constant.

It is interesting to note that, due to (5.25), the position of the effective scattering
centre is defined so that it lies above the ground at a height defined by the ground-to-
volume amplitude ratio and by the attenuation length of the vegetation.

By adopting the same model of the vegetation and of the underlying ground, Sagués
[Sag00] derived an alternative expression for γ ′(w) after spectral filtering:

γ′(w) =
ejφ0

K(w)

[

eχhV − 1

χ
+m(w)hV

]

, (5.29)

with:

K(w) =

[

e2σ cos θ0hV − 1

2σ cos θ0

+m(w)hV

]

(5.30)

and

χ = 2

[

σ cos θ0 cos(∆θ/2) − jk0
∆θ

sin θ0

]

, (5.31)

where k0 is the wavenumber corresponding to the central frequency f0.

To invert the models, the complex interferometric coherence of at least three differ-
ent polarizations must be available so that one has a number of observables equal to
the number of parameters involved. Hence, one must calculate the interferometric co-
herence using different polarizations. In this sense, a useful contribution could come
from target decomposition theorems, especially if they could provide a way to better
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define the ground-to-volume amplitude ratio or to distinguish volume scattering due
to random volumes (for which the models were built) from scattering due to coherent
targets extended in height.

The following sections contain a description of some TD methods analyzed and
compared with the aim of establishing whether some of them could be helpful for
such problems and, if this is not the case, for suggesting more appropriate fields of
application.

5.3 Interferometric coherence analysis

In this section we address the analysis of the correlation properties of the scattering
mechanisms contemplated in a series of decomposition theorems. We will describe at
first their general characteristics and then we will go more deeply through the question
of the volume decorrelation, its causes and its possible reduction [AC01], [ACK02],
[ACP02a] and [AC03].

The study was conducted again with L-band data of the area of Oberpfaffenhofen,
Germany, acquired by the E-SAR sensor of DLR during two different measurement
campaigns (May ‘98 and October ‘99). Both sets are suitable for interferometry, with
baselines of 15 m and 12 m respectively. For the coherence images, an averaging win-
dow of 6×12 pixel (in range and azimuth, respectively) was adopted.

5.3.1 General correlation properties

Let us start by analyzing the SDH decomposition [Kro93] and indicate its generic ith
term as:

[S]i =

[

Shhi
Shvi

Svhi
Svvi

]

, (5.32)

where i refers each time to sphere, diplane or helix. With this technique, the interfero-
metric coherence may be derived in two different ways: using the hh-elements of the
three matrices and also by means of the corresponding scattering vectors. In the first
case, for each scattering mechanism, one has to simply calculate [AC01]:

γi =
|〈Shhi,1

S∗
hhi,2

〉|
√

〈Shhi,1
S∗

hhi,1
〉〈Shhi,2

S∗
hhi,2

〉
, (5.33)

In Figures 5.5 (a), (b) and (c), the results relative to the data set of May ‘98 are repre-
sented; Figure 5.6 shows in more detail the interferometric coherence of the Shh ele-
ments of the diplane-like matrix for the second data set.

When using the scattering vectors, Equation (3.34) can be applied directly and, for
both images of the interferometric pair, one projects the original scattering vectors on
the unitary vectors representing a given scattering mechanism. For example, for the
first image of the pair and the ith term of its decomposition:

µ1i
= w

†
1i
k1 , (5.34)
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where:
w1i

=
k1i

‖k1i
‖ (5.35)
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and k1i
is calculated using the Pauli basis:

k1i
=

1√
2





Shhi,1 + Svvi,1

Shhi,1 − Svvi,1

2Shvi,1



 . (5.36)

As stated before, the final results do not depend on the chosen basis. Of course, the
constraint (3.39) on the phase of the w vectors of the two images corresponding to the
same scattering mechanism must be taken into account.

As a first comment, it should be noted in the images and graphs reported here that
there are some differences between the two series of coherence images, one based on
the hh-elements and the other on the coefficients of the unitary component matrices.
The latter should be preferred, since they seem to be less sensitive to noise effects than
the hh-elements alone.

Considering the data as a whole, one sees that the three scattering mechanisms
present different correlation properties and that, in general, a higher correlation charac-
terizes the sphere-like component with respect to the other terms of the decomposition
and also to the corresponding non-decomposed data. This can be easily seen in the
graphs of Figure 5.9 that report the histograms of the coherence in the various cases.

The higher correlation of the sphere-like terms is particularly evident in the flat area
by the runway, but it is present also in the forested areas. Here, assuming the be-
haviour of the canopies to resemble that of a random volume, the variation of the
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coherence among the three images may indicate the presence of at least two contribu-
tions due to ground scattering [PRC99a], [PRC99b], [PC01]. The degree of coherence of
the diplane-like terms improves in the village and in a small and isolated forest stand
directly to the right of the airfield (see Figure 5.6). In both cases it is again the reduced
effect of the volume decorrelation which explains this result. Indeed, in urban areas,
structures such as flat surfaces and walls are often present and they behave almost like
ideal double bounce scatterers characterized by coherence values almost equal to 1.
Generally, in the presence of man-made artifacts, the contribution of scattering from
isolated points at different heights decreases in comparison with that of mechanisms
that better resemble point scatterers. Quite interesting is also the scenario for the iso-
lated group of trees: they cause a double bounce between the bare field around them
and their trunks, hence another strong contribution of ground scattering with a well-
defined mechanism.

The second TD method considered is that based on the Pauli matrices [ACK02]. In
Equation (2.120), the three terms of the decomposition will be indicated as a, b and
c or, respectively, as first, second and third term. Also in this case the three scatter-
ing mechanisms show different correlation properties, with a (corresponding to the
sphere-like term of the SDH decomposition) having the highest degree of coherence
(see Figures 5.7 (a), (b) and (c)). This depends again on the stronger backscattered
signals from the ground. In the forested areas of the scene, assuming again that the ca-
nopies resemble a random volume, it is possible to observe variations of the coherence
among the three images, suggesting different contributions of the scattering from the
ground beneath the canopies [PRC99a], [PRC99b], [PC01].

The behaviour of the overall coherence histograms shows only one relevant differ-
ence between the two TD methods: the third terms of the Pauli decomposition have a
higher correlation degree than the helix-like terms of the Krogager one. Both elements
of the two decompositions are representative of depolarization processes occurring
with the scattering but, as they do not give similar responses, they seem to be able to
distinguish different depolarization mechanisms.

We studied, as last example of coherent TD methods, the Cameron decomposition
[CL92], [CYL96]. In fact, as SAR data are calibrated in order to fulfill reciprocity con-
straints, the basic distinction among scatterers is based on their symmetry with respect
to the axes lying on a plane orthogonal to the radar line-of-sight. This means that we
had only to perform the decomposition (2.123) of the [S] matrix into its most domi-
nant and least dominant symmetric terms (max sym and min sym). Another point to
remember is that, according to the theory, these two terms are orthogonal.

The interferometric coherences of the two components present aspects which are
quite original with respect to those previously seen. Let us analyze Figures 5.7 (d) and
(e) and Figure 5.9 (d); no other technique leads to such a separation of the coherence
values among the various terms: the correlation of the max sym term is higher than
any of the decompositions terms already considered, while it is also notable the low
backscattered intensity that leads the min sym component to have a very low coher-
ence. Moreover, this enhanced separation characterizes the data as a whole, regardless
of the particular homogeneous subsets of land coverages.

For a better understanding of the results presented to now, we compared them with
a series of images obtained from the optimal polarizations which maximize the inter-
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ferometric coherence [CP98], [Pap99]. These polarizations are no longer related to a
coherent decomposition as the coherence optimization does not operate on the [S] ma-
trix. For obtaining these images we used an averaging window of 6×12 pixels; hence,
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the results are comparable with the previous coherent ones.

When considering the actual improvement of the coherence, one sees in Figure 5.8
that only the first optimal polarizations are highly correlated. The other two polariza-
tion pairs present a degree of coherence comparable to that of the terms of the previous
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TD techniques.

The optimized coherence images provide a valuable comparison with the others,
in particular when trying to estimate how well a coherent decomposition theorem is
able to identify and separate targets with given deterministic properties, i. e., to distin-
guish those targets with a relatively high degree of coherence but whose simultaneous
presence in the very same resolution cell leads to a reduction of its total value. More-
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over, they should also be able to describe distributed targets by finding their “best
representation” as ideal point scatterers. This property of the optimization method
distinguishes it from the coherent ones whose application to distributed targets is still
controversial. Due to these facts, one should expect similar behaviours of the coherent
and incoherent methods in presence of deterministic scatterers whereas they should
behave differently when dealing with partial ones. Practically this can be seen at the
pixel level by comparing the optimal coherences to those relative to the various mech-
anisms of another method and seeing also when they correspond to each other.

Remarking again that targets with symmetry characteristics are also the most co-
herent, at least according to the results obtained with the Cameron decomposition, it
seems conceivable to suppose that the first optimal polarization always identifies those
targets having this kind of property.

Some coherence images relative to the original acquired data have also been in-
cluded for comparison; they are reported in Figures 5.8 (d), (e) and (f). The main infor-
mation that can be retrieved from them regards the predominance of Bragg or Fresnel
scattering from the ground [CM91], [BW85], [UMF82]. The imbalance in backscattered
intensity between the hh- and vv-channels yields also variations of the coherence val-
ues, so that a correlation of the Shh elements higher than those of Svv means a preva-
lence of Fresnel type scattering, typical of almost flat surfaces, whereas the opposite
case is verified for scattering from rough surfaces described by the Bragg model.

5.3.2 Volume decorrelation

As is well known, buildings, houses and other constructions cause volume decorre-
lation just as trees do, but while for random volumes some models for the interfero-
metric coherence are given [TMMvZ96], [TS00], [PC01], to our knowledge, none has
been presented for “coherent” extended targets. In fact, due to their deep intrinsic
differences, urban areas and forests lead to decorrelation effects having original char-
acteristics each and, hence, require different coherence models. However, even when
precise models are not available, it is interesting to see whether these differences can at
least be enhanced and recognized by means of TD theorems. Let us consider again the
correlation properties of the terms in each decomposition procedure, limiting our anal-
ysis to forested and urban areas (we selected areas whose expanse, in terms of number
of pixels, is almost identical).

For each mechanism of the various methods, there is evidence of different behaviour
of the coherence in forests and towns; more in detail, the decompositions show that
there exist different sources of volume decorrelation and that, for reasons we will ex-
plain later on, this can be better resolved when it is due to targets resembling ideal
point scatterers. Comparing Figures 5.10 and 5.11 it is evident that the urban area has
a much higher coherence than the forest. In both cases, no meaningful improvement
seems to be given by the Krogager and Pauli decompositions in general and only the
max sym Cameron terms and the first optimal polarizations show an enhanced coher-
ence [ACP02a], [AC03].

Regarding the coherence distributions, one may note this: for the forest, the his-
tograms of the hh, hv and vv-channels are basically identical and so are also those of
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the Pauli terms. The corresponding histograms for the town data present shapes where
only small differences among the decomposition terms are recognizable. In general,
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this can be explained assuming decorrelation mechanisms that are polarization inde-
pendent; in this case, indeed, similar values of the coherence, distributed in the same
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way, should be expected. On the contrary, if a scattering mechanism depends on the
polarization of the incident wave, so does its correlation and the question is then to find
which polarization puts into evidence this dependence most clearly. According to the
graphs, only the Pauli decomposition partly fails in doing this; all the other methods
lead to coherence distributions with an original behaviour for each term. In particular,
the curves of the Cameron decomposition terms and of the optimal polarizations are
clearly distinguished but their shape does not have not a special meaning.

The point of the shape of the correlation distributions is also worth attention and
some comments about it would be better understood by looking at the graphs of the
urban areas. In an ideal case, given a single point scatterer for each resolution cell of
a scene, the coherence would always be 1 and its distribution simply a δ-distribution
centered there. The more the targets differ from point scatterers the wider is the spread
of the coherence distribution to values lower than 1.

When more than one target is present in each resolution cell, the question is which is
dominant and how do they combine together to return a single backscattered intensity
for a pixel. Due to mutual interactions and differences among the responses, the coher-
ence will be lower than 1 even in the presence of point scatterers if these are vertically
distributed. Only in the case of orthogonal (i. e., completely independent) scattering
mechanisms, is it possible to recover the individual responses separately by selecting
the appropriate polarizations and obtain again coherence values equal to 1. As TD the-
orems perform this separation, one should expect that, for a resolution cell containing
the very same targets of the decomposition model, the coherence of each term would
be 1 or close to 1 depending on the orthogonality of the mechanisms. Hence, the shape
of the coherence histograms of the various terms will also tend to a δ-distribution cen-
tered at 1. In principle, this could represent a measure of the correctness of the adopted
model: the departure of the coherence histogram from a δ-distribution should reveal
how well a certain theoretical model explains the actual targets present in the scene.
This is why we anticipated that coherent decompositions seem to better resolve volume
decorrelation when it is due to targets resembling ideal point scatterers (as it happens
in urban areas) than in the presence of random volume structures (forests). Indeed,
in both situations the experimental results indicate the presence of several scattering
mechanisms (as in the forested areas where different contributions from the ground
are evident), but for the town data the histograms of the coherent decompositions re-
semble those of the optimal polarizations and tend to δ(x − 1), whereas this trend is
not observed for the forest data.

5.4 Interferometric phase analysis

As demonstrated, the method adopted in [CP98] and [Pap99] to resolve volume decor-
relation by means of the optimal polarizations shows some limits when dealing with
random volumes (that is, the case of scattering from vegetated areas). The underes-
timation of the tree heights with this technique is due to the fact that the orthogonal
scattering mechanisms refer to scattering centres placed not exactly at the basis and on
the top of the trees. It is then interesting to investigate other polarizations and see if
better results can be obtained. Hence, we evaluated the expectation value of the in-



5.4 - Interferometric phase analysis 99

terferometric phases of our data in all of the considered cases of TD methods. This
analysis was conducted on a basic level, directly considering the interferograms and
their differences without retrieving from them the corresponding height values.

Let us start by considering again the SDH decomposition. Since it is not derived
from a basis of matrices (as, for example, the Pauli ones), the resulting terms are not
mutually orthogonal; nevertheless, at least one matrix of the Krogager decomposition
is orthogonal to the other two, so that one may assume the corresponding scattering
mechanisms to be statistically independent and one can also check if their distinction
via the chosen decomposition corresponds to their separation in height. Again, one
can proceed either using the Shh elements of the matrices of the decomposition or their
unitary polarization vectors.

Firstly, we refer to the sphere and diplane-like matrices because they are the terms
giving the strongest backscattered power contribution and because the scattering mech-
anisms they represent are more easily associated to real targets in the scene. The in-
terferometric phases relative to the Shh elements of the two terms are represented in
Figures 5.12 (a) and (b), whereas in (c) their difference is shown. Looking at the im-
ages, one sees that the phase difference is not applicable in a straightforward way for
evaluating tree heights: the areas covered with woods do not show any clear variation
in this quantity. Though some part of the forests do present interferometric phase dif-
ferences between the two mechanisms, they cannot be identified yet as homogeneous
and well-defined areas. Another aspect to be considered is the position of the phase
centres corresponding to the two mechanisms. Even when they are correctly identified
and separated, the question as to where they are placed with respect to the real trees
remains. Single bounce phenomena, such as those expressed via the sphere-like ma-
trix, can occur not only on the ground but sometimes on the trunk of the imaged tree.
Uncertainties are also bound to double bounces; for these, in particular, it is not possi-
ble to predict where the scattering centres will be even when related to a ground-trunk
double bounce, that is, almost the “optimal” scenario. Moreover, the decorrelation due
to random volume, being polarization independent, acts in the same way for the two
mechanisms and its influence cannot be used as a further “discriminator” for the phase
centres [PC01].

Similar results were obtained using the sphere and helix terms, leading to the same
conclusions for this other pair of orthogonal mechanisms.

Some more information was obtained from the unitary polarization vectors (see Fig-
ure 5.13); in particular, we report here the example of the sphere and the helix terms.
The use of these quantities permits us to estimate some phase differences in the area
of the forest as well as on the runway of the airfield. One may anticipate the hy-
pothesis of a separation of the scattering centres: the sphere-like mechanism (single
bounce) present mainly on the ground and the depolarization effects, described by the
helix term, basically related to the canopies and hence placed at a variable height be-
low the top of the trees. A controversial point is then the interpretation of the same
phase difference on the runway, since no separation in height of the scattering centres
could have originated it in this case. An explanation may be found in the different
amount of noise of the two contributions: as put in evidence also by the coherence
images previously analyzed, a different “partition” of the noise between the terms of
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the decomposition may be supposed, leading also to separated phase centres (or phase
displacements between the mechanisms).

Due to the substantial similarity of the Krogager and the Pauli decompositions, the
study of the phase differences between the terms of this other TD method does not
lead to new significant results (see Figure 5.14). Again, the areas where more con-
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sistent phase differences may be observed are the runway and the forest. Hence, the
considerations made regarding the SDH terms can be repeated.

Also the results relative to the Cameron decomposition terms and to the optimal
polarizations give rise to an interferometric phase difference on the airfield runway
and in the forest, as can be seen in Figures 5.15 and 5.16. For the runway, the phase
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difference cannot be interpreted in terms of a difference in the height of the scatterers.
Hence, it seems that it represents only a polarimetric (not a geometric) property of the
observed scatterers.

The phase difference measured in the forested areas, though representing height
variations of the phase centres, is affected by “purely” polarimetric properties as well
and, in fact, the runway results may be considered a confirmation of this fact. Due
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to these considerations, again, the observed interferometric phase differences cannot
be used in a straightforward manner to discriminate the phase centres in vegetated
areas and it stresses the limits of the direct application of decomposition (coherent or
incoherent) methods for tree height estimation.

In summary, our analysis does not reveal structured phase differences to be phys-
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ically meaningful. That is, the role played by geometric considerations seems to be
limited. Nevertheless, it puts in evidence other effects, mainly due to the polarimetric
properties of the scatterers, which may be the subject of further, specifically dedicated,
investigations.
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5.5 Final considerations

In this chapter we described the interferometric properties of polarizations derived
after applying TD methods, namely the Krogager decomposition, the Pauli one and
that of Cameron as coherent methods and the optimal polarizations as example of
incoherent methods.

Among the coherent theorems, one should note the use, for the very first time, of
the Cameron decomposition terms for interferometry. As demonstrated, the interfero-
metric coherence of its two components presents aspects which are quite original; no
other technique leads to such a separation of the coherence values among the various
terms: the correlation of the max sym term is higher than any of the other decompo-
sitions terms considered, while it is also notable that the low backscattered intensity
leads the min sym component to have a very low coherence. Moreover, this enhanced
separation characterizes the data as a whole, regardless of the particular homogeneous
subsets of land coverages.

Two topics in particular were investigated: the capability of these methods to re-
solve volume decorrelation and to find the exact position of the scattering centres in
order to estimate the height of distributed scatterers; the distinction between volume
scattering due to random volumes (that is, vegetated areas) and coherent targets with
extension in height (mainly buildings and other man-made artifacts).

We have seen that the scattering mechanisms associated with the various TD methods present
different correlation properties and that, in general, these are strongly influenced by the actual
amount of backscattered signal attributed to the given mechanism after the decomposition, as
well as by its SNR [AC01], [ACK02].

As already known from the literature, at least for the optimal polarizations, the dis-
tinction among the scattering mechanisms does not allow a precise separation in height
of the scattering centres in the presence of random volumes [PC01]. Hence, an estima-
tion of tree height is not possible via a direct measure of the interferometric phase dif-
ferences among scattering mechanisms. We verified this for the optimal polarizations
and also extended the analysis to the coherent cases obtaining similar results.

For the Krogager and the Pauli decompositions, the study of the phase differences
between the terms did not lead to significant results. The areas where more consis-
tent phase differences may be observed are the forest and the runway. Also the results
relative to the Cameron decomposition terms, though more evident, give rise to an in-
terferometric phase difference mainly in the forest and on the airfield runway. In the
first case, the characteristics of random volume scattering do not allow the separation
of the phase centres and the estimation of the volume extension. For the runway, the
phase difference cannot be interpreted in terms of a difference in the height of the scat-
terers. Hence, it seems that it represents only a polarimetric (not a geometric) property
of the observed scatterers.

These investigations do not reveal structured phase differences to be physically
meaningful. These considerations arise a hitherto important question posed to us by
the scientific community before the study was undertaken, namely, how the polari-
metric properties of the decomposition terms are related to the interferometric phase
differences between them. A subject to be, in our opinion, further investigated.
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The results concerning the distinction between random volume scattering and the
newly defined coherent volume scattering were more promising [ACP02a], [AC03]. For
each mechanism of the various methods, there was evidence of different behaviour of the coher-
ence in forests and towns; more precisely, the decompositions confirmed that different sources
of volume decorrelation exist and we explained why this can be better resolved when it is due
to targets resembling ideal point scatterers. Moreover, we showed that coherent and incoherent
TD methods provide similar results in the presence of coherent volume scattering and that their
behaviour differs increasingly with random volume scattering. This property could be used
as a further source of information in classification processes and should also be taken
into account when estimating the height of coherent extended targets (like buildings), since the
theoretical limits to height estimation of random volumes are no longer valid.



6 Conclusions

This work started from the observation that a variety of representations of polarimetric
data exist and that, in the scientific community, a sort of “competition” is more or
less evidently present among them. This situation depends, in part, on the fact that
different polarimetric representations have been developed for pursuing specific tasks
and have hence been “ad hoc” fitted to the proposed goal. Thus we decided that rather
than adopting just one method for a precise scope, that we should consider them all
and compare them in the most extensive way. This systematic approach was intended
to verify if substantial differences exist among the various polarimetric observables in
terms of amount of information they can provide.

The research was then divided into two main parts: a direct analysis of the main
parameters derived from polarimetric SAR data, and a study on those quantities that
are also suitable to interferometric applications.

In Chapter 4, the first part of this study was reported. We compared a set of polari-
metric quantities by means of measures of classification accuracy. A first observation
was that little improvement of the classification tests is obtained using some of the more “re-
fined” polarimetric parameters derived from the original data rather than using directly these
ones [PAC+02], [ACP02b]. Only the ratios of the [S] matrix elements provide results
significantly worse than the other polarimetric parameters [AC00]. Another important
conclusion is related to the comparison among single-pixel and averaged-area clas-
sifications; we showed that, by averaging the values of the image pixels, the classification
efficiency is, in general, enhanced. This could mean that the parameters under study refer
to physical properties “spread” over neighbor pixels and correlated. Indeed, the pres-
ence of “extended” parameter characteristics may have led to improved classification
accuracy for increasing sizes of the averaging windows. This is partly in contradiction
to the theoretical expectation that some quantities should be related only to point-like
scatterers.

In general, better classification results are normally available with optical images
since the chosen classification algorithms were originally developed for this kind of
data. Hence, although valuable results could still be obtained with some of the parame-
ters under study, the use of classification techniques specifically suited for polarimetric
SAR data, like the unsupervised segmentation proposed in [CP97] for the incoherent
parameters, would be more appropriate.

The second part of our research dealt with the interferometric applications of some
of the polarimetric parameters considered. Chapter 5 described the theoretical aspects
of the subject and the results of our investigations that again consisted mainly of a
comparison between coherent and incoherent parameters.
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When deriving the interferometric coherence images, we saw that the polarimetric
parameters studied give different results and can provide original insights into the degree of
coherence of the various scattering mechanisms present in a resolution cell [AC01], [ACK02].

A topic of particular interest was the study of the effects of volume decorrelation
on the interferometric images. In this context, we introduced the concept of coherent
volume scattering [ACP02a], [AC03] in contrast with the random volume one, for the
case when only varying target heights affects the coherence but the elementary scat-
terers are stationary and not randomly distributed. This is the case, for example, for
walls, buildings and other man-made artifacts. An important point is the identifica-
tion of the scattering mechanisms present in each resolution cell. This point relates
the acquired data directly to the physics of the scattering interactions and immediately
provides information about the observed scatterers. Our observations seem to confirm
the capability of coherent decomposition theorems in distinguishing volume decorrelation due to
random volumes (that is, tree foliage) from that which is due to height distribution of coherent
scatterers (as with man-made artifacts).

A part of Chapter 5 was dedicated to the analysis of the phase difference between
interferograms of different decomposition terms. The capability of the target decom-
position theorems to distinguish phase centres associated with separated targets was
then studied referring, in particular, to height estimation of trees and buildings. This
topic was only briefly addressed and studied in this work, but we were able to con-
firm the theoretical expectation that it is not possible to discriminate the phase centres in
vegetated areas since decorrelation due to random volume is polarization independent [PC01].
Hence, also with coherent TDs, tree height determination is not possible by a straight-
forward inversion of the difference in interferometric phases. On the contrary, the use
of these techniques for coherent volume scattering resolution and height estimation is
more promising and, therefore, suggested as a topic for further investigation.



A Relationships among polarization
geometrical parameters

Let us show how Equations (2.31) and (2.32) are derived in [BW85], in the most general
case of elliptic polarization and starting from an EM wave written as (2.23), i. e.:

~E = (E2
h+ E2

v)
1/2[cosα ejδhĥ+ sinα ejδv v̂] · exp j(ωt− ~k · ~r). (A.1)

Writing for simplicity:

a1 = (E2
h+ E2

v)
1/2 cosα, (A.2)

a2 = (E2
h+ E2

v)
1/2 sinα (A.3)

and
τ = ωt− ~k · ~r, (A.4)

one can derive the real part of the components of ~E as:
{

Eh = a1 cos(τ + δh)
Ev = a2 cos(τ + δv).

(A.5)

In general, the axes of the ellipse are not in the ĥ and v̂ directions. Let us reconsider
Figure 2.3 and let (0, x̂, ŷ) be a new reference system with the axes along the axes of the
ellipse so that ψ (0 ≤ ψ < π) is the angle between ĥ and the direction x̂ of the major
axis. Then the components Ex and Ey are related to Eh and Ev by:

{

Ex = Eh cosψ + Ev sinψ
Ey = −Eh sinψ + Ev cosψ.

(A.6)

If 2a and 2b (a ≥ b) are the lengths of the axes of the ellipse, the equation of the
ellipse in the new reference system is:

{

Ex = a cos(τ + δ0)
Ey = ±b sin(τ + δ0),

(A.7)

indicating that the relative phase δ of the two orthogonal components is now expressed
by:

δ = π/2 + δ0. (A.8)

The two signs in (A.7) distinguish the two possible directions in which the end point
of the electric vector may describe the ellipse.

109



110 Appendix A - Relationships among polarization geometrical parameters

x

h

b

v

χ

ψa

y

��� �����	� +-��
����� � !��0� � !�� � �&' ��� � � �"�(���

To determine a and b we compare (A.6) and (A.7) and use (A.5):






































a(cos τ cos δ0 − sin τ sin δ0) =
= a1 cos(τ + δh) cosψ + a2 cos(τ + δv) sinψ =
= a1(cos τ cos δh − sin τ sin δh) cosψ + a2(cos τ cos δv − sin τ sin δv) sinψ

±b(sin τ cos δ0 + cos τ sin δ0) =
= −a1 cos(τ + δh) sinψ + a2 cos(τ + δv) cosψ =
= −a1(cos τ cos δh − sin τ sin δh) sinψ + a2(cos τ cos δv − sin τ sin δv) cosψ.

(A.9)

Next we equate the coefficients of cos τ and sin τ :

a cos δ0 = a1 cos δh cosψ + a2 cos δv sinψ (A.10)
a sin δ0 = a1 sin δh cosψ + a2 sin δv sinψ (A.11)
±b cos δ0 = a1 sin δh sinψ − a2 sin δv cosψ (A.12)
±b sin δ0 = −a1 cos δh sinψ + a2 cos δv cosψ. (A.13)

By squaring and adding the two terms with a and the two terms with b we obtain:

a2 = a2
1 cos2 ψ + a2

2 sin2 ψ + 2a1a2 cosψ sinψ cos δ (A.14)
b2 = a2

1 sin2 ψ + a2
2 cos2 ψ − 2a1a2 cosψ sinψ cos δ. (A.15)

Hence:
a2 + b2 = a2

1 + a2
2. (A.16)
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Next we multiply (A.10) by (A.12), (A.11) by (A.13) and add. This gives:

∓ab = a1a2 sin δ. (A.17)

Further on, dividing (A.12) by (A.10) and (A.13) by (A.11) we obtain:

± b

a
=
a1 sin δh sinψ − a2 sin δv cosψ

a1 cos δh cosψ + a2 cos δv sinψ
=

=
−a1 cos δh sinψ + a2 cos δv cosψ

a1 sin δh cosψ + a2 sin δv sinψ
, (A.18)

and, leaving aside ±b/a, multiplying both the remaining terms by the product of the
two denominators and adding and subtracting the angles, these relations give the fol-
lowing equation for ψ:

(a2
1 − a2

2) sin 2ψ = 2a1a2 cos δ cos 2ψ. (A.19)

Considering now the angle α (0 ≤ α ≤ π/2), such that:

a2

a1

= tanα, (A.20)

Equation (A.19) then becomes:

tan 2ψ =
2a1a2

a2
1 − a2

2

cos δ =
2 tanα

1 − tan2α
cos δ, (A.21)

i. e.:
tan 2ψ = tan 2α cos δ. (A.22)

Now, from (A.16) and (A.17) we also have:

∓ 2ab

a2 + b2
=

2a1a2

a2
1 + a2

2

sin δ =
2 tanα

1 + tan2α
sin δ = sin 2α sin δ. (A.23)

Let χ (−π/4 ≤ χ ≤ +π/4) be another auxiliary angle, such that:

tanχ = ∓ b

a
. (A.24)

The numerical value of tanχ represents the ratio of the axes of the ellipse and the sign
of χ distinguishes the two directions in which the ellipse may be described. Equa-
tion (A.23) may then be rewritten in the form:

sin 2χ = sin 2α sin δ. (A.25)





B Target decomposition theorems

B.1 Krogager decomposition

The following details about the Krogager decomposition method are taken from [Kro93]
and [KC95].

Due to reciprocity, in monostatic configurations, the matrix [S] has the form:

[S] =

[

a+ b c
c a− b

]

(B.1)

(see the general expression (2.120)).

According to Krogager, after mathematical manipulations of the complex elements
a, b and c, [S] can be decomposed as shown in (2.121):

[S] = ks[S]sphere + ej(φb−φa)(kd[S]diplane + kh[S]helix), (B.2)

assuming phase-normalization with respect to a.

ks, kd and kh are real quantities whose values are given by:

ks = |a| , (B.3)

kd = |b|
√

(1 − |Im{d}|)2 + (Re{d})2 , (B.4)
kh = 2|Im{d}||b| , (B.5)

where:
d =

c

b
, (B.6)

while the matrices expressing scattering from a sphere, a diplane and a right- or left-
wound helix have the form:

[S]sphere =

[

1 0
0 1

]

, (B.7)

[S]diplane =

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

, (B.8)

with:
tan 2θ =

Re{d}
1 − |Im{d}| , (B.9)

and

[S]helix =
1

2

[

1 ±j
±j −1

]

. (B.10)

113



114 Appendix B - Target decomposition theorems

The sense of the helix component (the sign of j) is chosen according to sign(φd) =
sign(φc − φb).

However, this representation does not have the desired roll-invariant property, which
means that the parameters calculated in this way are not all independent of the orien-
tation angle around the line of sight.

To avoid this problem, one can adopt a slightly different model, namely [KC95]:

[S] = ejφ{ejφsks[S]sphere + kd[S]diplane(θ) + kh[S]helix(θ)} =

= ejφ

{

ejφsks

[

1 0
0 1

]

+ kd

[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]

+ kh
e∓j2θ

2

[

1 ±j
±j −1

]}

,

(B.11)

where both the diplane and the helix are considered rotated by an angle θ, and express
it (considering only a right-wound helix) in terms of the right-left circular polarization
basis:

[SC] = ejφ

{

ejφsks

[

0 j
j 0

]

+ kd

[

ej2θ 0
0 −e−j2θ

]

+ kh

[

ej2θ 0
0 0

]}

=

= ejφ

[

(kd + kh)e
j2θ jkse

jφs

jkse
jφs −kde

−j2θ

]

. (B.12)

Let us now consider a general symmetric (i. e., having SRL = SLR) scattering matrix
in this basis:

[SC] =

[

SRR SRL

SRL SLL

]

=

[

|SRR|ejφRR |SRL|ejφRL

|SRL|ejφRL −|SLL|ej(φLL−π)

]

(B.13)

and define:

φ1 = φRR + φLL − π , (B.14)
φ2 = φRR − φLL + π , (B.15)

which inserted in (B.13) yield:

[SC] = ej 1

2
φ1

[

|SRR|ej 1

2
φ2 |SRL|ej(φRL− 1

2
φ1)

|SRL|ej(φRL− 1

2
φ1) −|SLL|e−j 1

2
φ2

]

. (B.16)

Now, if |SRR| > |SLL|, we may write:

[SC] = ej 1

2
φ1

[

[(|SRR| − |SLL|) + |SLL|]ej 1

2
φ2 |SRL|ej(φRL− 1

2
φ1)

|SRL|ej(φRL− 1

2
φ1) −|SLL|e−j 1

2
φ2

]

, (B.17)

that, compared with (B.12), yields:

ks = |SRL|, (B.18)
k+

d = |SLL|, (B.19)
k+

h = |SRR| − |SLL|. (B.20)
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Similarly, if |SLL| > |SRR|, one can compare (B.17) with the analogue of (B.12) written
for a left helix and derive:

k−d = |SRR|, (B.21)
k−h = |SLL| − |SRR|. (B.22)

The angles defined in (B.12) can be obtained as well, by comparison, as:

φ =
1

2
(φRR + φLL − π), (B.23)

θ =
1

4
(φRR − φLL + π), (B.24)

φs = φRL − 1

2
(φRR + φLL). (B.25)

All the parameters so calculated have the desired orientation independence, so that,
in general, one has to simply perform a change of basis to RL-circular in order to derive
them.

B.2 Cameron decomposition

The decomposition method proposed by Cameron [CL92], [CYL96] is based on the
repeated extraction of the basic properties of the scatterers, like reciprocity and sym-
metry, by means of projections of the measured scattering vectors onto the relative
subspaces or subsets of reciprocal, symmetric, etc., scattering vectors. Indeed, in the
general case of bistatic configurations, the reciprocity constraint is not given and the
most basic property possessed by a scatterer which can be derived from its [S] matrix
is just its tendency to be approximately reciprocal. Moreover, even in the monostatic
case reciprocity is sometimes violated, due to propagation effects or interactions with
special materials (for example, materials whose interaction with the EM field is non-
linear).

When considering the space of the scattering vectors (expressing them in the lexi-
cographic basis so that k(4)L represents [S]), those corresponding to reciprocal targets
occupy the subspace Vrec ⊂ C

4 generated by the projection matrix [Prec],

[Prec] =









1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1









. (B.26)

Any scattering matrix can be uniquely decomposed into two components orthogonal
in C

4, krec and knon−rec, with: krec ∈ Vrec and knon−rec ∈ Vnon−rec (Vnon−rec is the subspace
of C

4 which is orthogonal to Vrec).

The decomposition is then given by:

k(4)L = krec + knon−rec , (B.27)
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with:

krec = [Prec]k(4)L , (B.28)
knon−rec = ([I] − [Prec])k(4)L . (B.29)

The degree to which a scattering matrix obeys reciprocity can be measured by compar-
ing the magnitude of the two components, krec and knon−rec. This measure is given by
the parameter θrec, which is the angle between the scattering vector and the subspace
Vrec of the vectors corresponding to reciprocal scattering matrices:

θrec = arccos
∥

∥

∥
[Prec]k̂(4)L

∥

∥

∥
, 0 ≤ θrec ≤

π

2
, (B.30)

where:
k̂(4)L =

k(4)L

‖k(4)L‖
. (B.31)

Scattering matrices with θrec = 0 correspond to scatterers which strictly obey the reci-
procity principle whereas scattering matrices with θrec = π/2 lie entirely in the com-
plement of Vrec and thus violate the reciprocity principle.

A reciprocal scattering matrix can be further decomposed into components related
to most dominant symmetric and least dominant symmetric scatterers (intended here
as scatterers having an axis of symmetry in the plane orthogonal to the radar line-of-
sight). This division, unfortunately, does not define two orthogonal subspaces of Vrec,
since both components belong to the subset Wsym of the symmetric scattering vectors,
which is simply a subset of Vrec.

To effect this separation, one uses the three reciprocal matrices (normalized) of the
Pauli set:

[Sa] =
1√
2

[

1 0
0 1

]

, (B.32)

[Sb] =
1√
2

[

1 0
0 −1

]

, (B.33)

[Sc] =
1√
2

[

0 1
1 0

]

(B.34)

and their corresponding scattering vectors ka, kb and kc. Since for a generic krec ∈ Vrec

it holds:
krec = αka + βkb + γkc , (B.35)

being α, β, γ ∈ C, it is then possible to write:

krec = [Psym]krec + ([I] − [Psym])krec = kmax
sym + kmin

sym, (B.36)

defining [Psym] as:

kmax
sym = [Psym]krec = 〈krec|ka〉ka + 〈krec|k′〉k′, (B.37)

with:
k′ = cos θ kb + sin θ kc . (B.38)
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In the equation above, θ is chosen such that |〈krec|k′〉| is a maximum. Within these
hypotheses, it is guaranteed that kmax

sym is the largest symmetric component that can be
extracted from krec. As anticipated, both the most dominant and the least dominant
symmetric components belong to Wsym and it can be proven that they are orthogonal.

[Psym] is defined by introducing k′ given by (B.38), with θ satisfying:

θ =
1

2
χ , (B.39)

where:
sinχ =

βγ∗ + β∗γ
√

(βγ∗ + β∗γ)2 + (|β|2 − |γ|2)2

(B.40)

and

cosχ =
|β|2 − |γ|2

√

(βγ∗ + β∗γ)2 + (|β|2 − |γ|2)2

. (B.41)

Again, the degree to which krec deviates from belonging to the subset Wsym of the
symmetric scattering vectors is measured by the angle τ :

τ = arccos

∣

∣

∣

∣

〈krec|[Psym]krec〉
‖krec‖ · ‖[Psym]krec‖

∣

∣

∣

∣

, 0 ≤ τ ≤ π

4
. (B.42)

If τ = 0 then krec ∈ Wsym. The maximum asymmetry condition, τ = π
4

occurs, on the
contrary, if and only if krec is the scattering vector of a left or right helix.

Equation (B.30) may be generalized in order to compare an arbitrary scattering ma-
trix [S] with a given test one [Stest]. As reported in [CYL96], it is in fact possible to
define a metric which compares normalized scattering matrices belonging to Wsym.
Such a metric is independent of the overall relative phases of the scattering matrices
and independent of the orientations (rotations about the line-of-sight axis) of the scat-
terers represented. In this way, one can iteratively split a scattering matrix into several
components by evaluating its properties (reciprocity, symmetry) and comparing it with
typical ones (such as helices, diplanes, dipoles, etc.)





C Classification results

The classification tests discussed in Chapter 4 lead to numerical estimates of their ac-
curacy expressed in different forms (confusion matrices, error measures, etc.). For sake
of compactness, we report here only the main results of those performed on the data
set of October ‘99 in terms of producer’s and user’s accuracy and of omission and
commission errors.

We choose for the tests on the coherent parameters the measures relative to the
single-pixel basis and to the largest window. For those on the incoherent parameters
(entropy, α and anisotropy), the measures concerning the 3×3-pixel averaging window
have been given as smallest size case.
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C.1 Backscattered wave amplitude

[S] matrix elements (single-pixel basis) - Max. Lik. classification test:

• Overall accuracy = (62243/150262) 41.42%

• Kappa coefficient = 0.316

��!�% � � �&��
� � ��� + # # ��!�'��� � � + # #����� �$� . !�� ��� �	��� !��$� ��� � � �	��� �/! ��� � � 
 �"#	� !��(� � � #$!��$� �&' � ����� �����
�� �&�(. � /��' �	��� ���"� �	��� � �

[S]
. !�� �0� � ��� ��. ��' � � ��� � '�� � �

�
��� �����%�!� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 21.34 29.75 4774/22374 4774/16048

houses 28.71 84.87 6744/23492 6744/7946
roads 78.70 34.89 15411/19582 15411/44170
trees 76.07 57.72 17164/22562 17164/29737
grass 10.54 22.75 1875/17784 1875/8242
field 1 45.28 43.46 11942/26372 11942/27476
field 2 23.94 26.03 4333/18096 4333/16643

��!�% � � �&� � � ���&.�.�� �0� � �&'*!�'  �&.�� �0� � �&'*���(� �&� ����� � . !�� �� � ��� !	� � ��� � � �	��� �/! ��� ��� 
 ��#	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. �  ����� ��� �	� �

[S]
. !��$�(� � ��� ��. ��' � � � � � '"� � �

�
��� ������%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 70.25 78.66 11274/22374 17600/22374

houses 15.13 71.29 1202/23492 16748/23492
roads 65.11 21.30 28759/19582 4171/19582
trees 42.28 23.93 12573/22562 5398/22562
grass 77.25 89.46 6367/17784 15909/17784
field 1 56.54 54.72 15534/26372 14430/26372
field 2 73.97 76.06 12310/18096 13763/18096
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[S] matrix elements (single-pixel basis) - Min. Dist. classification test:

• Overall accuracy = (56676/150262) 37.72%

• Kappa coefficient = 0.27

�!�% � � �&� ��� ������+ # #��"!�'  � � ��+ # #��"����� � . !�� �� � ��� !�� � ��� � � ����� ��� '�� � � � �$� #	� !��(� � � #$!��$� �&' � �� �-�����
�� �&�0. � ��&' ����� �	��� ����� � �

[S]
. !�� �0� � ��� ��. ��' � � ��� � '�� � �

�
��� ������%"!�� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 14.84 28.54 3320/22374 3320/11631

houses 35.26 73.03 8284/23492 8284/11343
roads 67.96 33.84 13307/19582 13307/39323
trees 58.67 53.43 13237/22562 13237/24776
grass 15.45 20.80 2748/17784 2748/13212
field 1 50.07 35.50 13205/26372 13205/37196
field 2 14.23 20.15 2575/18096 2575/12781

�!�% � � �&� � � ���&.�.�� �(� � �&' !�'�*�&.�� �0� � �&' ���(� �&� �� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� ' � � � ��� � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. �  ����� �	���	���

[S]
. !	� �0� � ��� ��. ��' � � ��� � '�� � �

�
� � �����%�!�� � � �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 71.46 85.16 8311/22374 19054/22374

houses 26.97 64.74 3059/23492 15208/23492
roads 66.16 32.04 26016/19582 6275/19582
trees 46.57 41.33 11539/22562 9325/22562
grass 79.20 84.55 10464/17784 15036/17784
field 1 64.50 49.93 23991/26372 13167/26372
field 2 79.85 85.77 10206/18096 15521/18096
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[S] matrix elements (single-pixel basis) - Parall. classification test:

• Overall accuracy = (41626/150262) 27.7%

• Kappa coefficient = 0.168

��!�% � � �&� ��� � ��� + # #��$!�'� � � � + # # �$��� �$� . !�� ���&�	��� !��$� ��� � � ����� ��!�� !�� � � #	� !��(� � ��# !��$� �&' � ����� ����� � �&�0. � 
��' �	��� ���"� �	��� � �

[S]
. !�� �0� � ��� ��. ��' � � ��� � '�� � �

�
��� �����%�!� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 19.46 89.42 4571/23492 4571/5112
roads 0.00 0.00 0/19582 0/0
trees 64.84 59.59 14629/22562 14629/24548
grass 0.00 0.00 0/17784 0/0
field 1 17.87 30.12 4712/26372 4712/15644
field 2 97.89 17.04 17714/18096 17714/103952

��!�% � � �&� ��� ����.�./� �(� � ��' !�'  �&.�� �(� � �&' ���(� �&� ����� � . !	� ��� � ��� !	� � ��� � � �	��� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. �  ����� ��� �	� �

[S]
. !��$�(� � ��� ��. ��' � � � � � '"� � �

�
��� ������%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 10.58 80.54 541/23492 18921/23492
roads 0.00 100.00 0/19582 19582/19582
trees 40.41 35.16 9919/22562 7933/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 69.88 82.13 10932/26372 21660/26372
field 2 82.96 2.11 86238/18096 382/18096
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[S] matrix elements (15×15-pixel averaging window) - Max. Lik. classification test:

• Overall accuracy = (85689/150262) 57.03%

• Kappa coefficient = 0.5

�!�% � � ��� ��� � ��� + # #���!�'��� � � + # #������ �$� . !�� ��� � ��� !	� � ��� � � �	��� �/! ��� � � 
���#	� !��0� � ��#$!��$� ��' � ����� �����
�� �&�0. � ��&' ����� �	��� ����� � �

[S]
. !�� �0� � ��� ��. ��' � � �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 49.62 52.77 11101/22374 11101/21035

houses 64.02 91.96 15039/23492 15039/16354
roads 80.07 52.82 15680/19582 15680/29687
trees 86.83 67.88 19591/22562 19591/28860
grass 47.75 35.02 8491/17784 8491/24246
field 1 42.55 62.25 11222/26372 11222/18027
field 2 25.23 37.87 4565/18096 4565/12053

�!�% � � �&� � � ���&.�.�� �0� � �&'*!�'� �&.�� �(� � �&' ���(� �&� �� �$� . !�� ��� � ��� !�� � ��� � � �	��� �/! �"� ��� 
 ��#	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. �  ����� �	���	���

[S]
. !	� �0� � ��� ��. ��' � � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� ' ���� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 47.23 50.38 9934/22374 11273/22374

houses 8.04 35.98 1315/23492 8453/23492
roads 47.18 19.93 14007/19582 3902/19582
trees 32.12 13.17 9269/22562 2971/22562
grass 64.98 52.25 15755/17784 9293/17784
field 1 37.75 57.45 6805/26372 15150/26372
field 2 62.13 74.77 7488/18096 13531/18096
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[S] matrix elements (15×15-pixel averaging window) - Min. Dist. classification test:

• Overall accuracy = (76552/150262) 50.96%

• Kappa coefficient = 0.43

��!�% � � �&� ��� � ���+ # #��"!�'� � � �+ # #��"����� � . !�� ��� � ��� !	� � ��� � � �	��� � � '�� � � � �$�"# � !�(� � ��# !�� � �&' � �����-�����
�� �&�(. � /��' �	��� ���"� �	��� � �

[S]
. !�� �0� � ��� ��. ��' � � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 39.73 44.57 8890/22374 8890/19944

houses 59.26 93.32 13921/23492 13921/14918
roads 76.21 45.73 14924/19582 14924/32638
trees 76.42 65.08 17243/22562 17243/26497
grass 23.00 26.72 4090/17784 4090/15308
field 1 50.44 46.59 13301/26372 13301/28550
field 2 23.12 33.71 4183/18096 4183/12407

��!�% � � ����
 ��� ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ����� ����� � �&�0. �  ����� �	���	���

[S]
. !	� �(� � ��� ��. ��' � � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� ' ���� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 55.43 60.27 11054/22374 13484/22374

houses 6.68 40.74 997/23492 9571/23492
roads 54.27 23.79 17714/19582 4658/19582
trees 34.92 23.58 9254/22562 5319/22562
grass 73.28 77.00 11218/17784 13694/17784
field 1 53.41 49.56 15249/26372 13071/26372
field 2 66.29 76.88 8224/18096 13913/18096
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[S] matrix elements (15×15-pixel averaging window) - Parall. classification test:

• Overall accuracy = (50912/150262) 33.88%

• Kappa coefficient = 0.24

�!�% � � �&��
�
� � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' ����� �	��� ����� � �

[S]
. !�� �0� � ��� ��. ��' � � �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 48.55 98.75 11406/23492 11406/11550
roads 0.00 0.00 0/19582 0/0
trees 85.42 64.13 19272/22562 19272/30051
grass 0.00 0.00 0/17784 0/0
field 1 9.75 44.28 2572/26372 2572/5809
field 2 97.60 17.35 17662/18096 17662/101804

�!�% � � �&��
 � � � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. �  ����� �	���	���

[S]
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15×15 �
��� ����� ! ����� ! �&� '�� �/� ' ���� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 1.25 51.45 144/23492 12086/23492
roads 0.00 100.00 0/19582 19582/19582
trees 35.87 14.58 10779/22562 3290/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 55.72 90.25 3237/26372 23800/26372
field 2 82.65 2.40 84142/18096 434/18096
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C.2 Characteristic polarizations

[S] matrix co- and cross-polar nulls (single-pixel basis) - Max. Lik. classification test:

• Overall accuracy = (22374/150262) 14.9%

• Kappa coefficient = 0

��!�% � � ����
 ��� ����� + # # � !�'  � � � + # # � ����� � . !�� �����	��� !��$� �� � � �	��� �/! ��� ��� 
 ��# � !�(� � ��# !�� � �&' � ��� � �����
�� �&�(. � /��' �	���

[S]
. !��$�(� � #$�

�
!�'� #�� � �(�

�
��� � !�� '�� � � � ��� � '�� � �

�
��� ������%"!�� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 100.00 14.89 22374/22374 22374/150262

houses 0.00 0.00 0/23492 0/0
roads 0.00 0.00 0/19582 0/0
trees 0.00 0.00 0/22562 0/0
grass 0.00 0.00 0/17784 0/0
field 1 0.00 0.00 0/26372 0/0
field 2 0.00 0.00 0/18096 0/0

��!�% � � �&��
 � � � �&.�./� �0� � �&' !�'� ��.�� �0� � �&' ���(� �&�"��� �$� . !	� ���&� ��� !	� � ��� � � ���"� �/! �"� ��� 
�� #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' �����
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. !��$�(� � #$�

�
!�'� #�� � �(�

�
�"� � !�� '�� � � � � � � '�� � �

�
��� �����%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 85.11 0.00 127888/22374 0/22374

houses 0.00 100.00 0/23492 23492/23492
roads 0.00 100.00 0/19582 19582/19582
trees 0.00 100.00 0/22562 22562/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 0.00 100.00 0/26372 26372/26372
field 2 0.00 100.00 0/18096 18096/18096
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[S] matrix co- and cross-polar nulls (single-pixel basis) - Min. Dist. classification test:

• Overall accuracy = (56996/150262) 37.93%

• Kappa coefficient = 0.273

�!�% � � �&��
 � � � ���&+ # # ��!�'� � � �&+ # # ���� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� '���� � ��� � #	� !��0� � ��#$!	� � �&' � ��� �
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 9.21 25.20 2061/22374 2061/8180

houses 34.64 70.12 8137/23492 8137/11604
roads 67.66 33.72 13249/19582 13249/39291
trees 58.50 54.12 13198/22562 13198/24385
grass 17.00 21.30 3023/17784 3023/14194
field 1 53.93 37.48 14223/26372 14223/37946
field 2 17.16 21.18 3105/18096 3105/14662

�!�% � � �&��
 ��� ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 74.80 90.79 6119/22374 20313/22374

houses 29.88 65.36 3467/23492 15355/23492
roads 66.28 32.34 26042/19582 6333/19582
trees 45.88 41.50 11187/22562 9364/22562
grass 78.70 83.00 11171/17784 14761/17784
field 1 62.52 46.07 23723/26372 12149/26372
field 2 78.82 82.84 11557/18096 14991/18096
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[S] matrix co- and cross-polar nulls (single-pixel basis) - Parall. classification test:

• Overall accuracy = (38098/150262) 25.35%

• Kappa coefficient = 0.14

��!�% � � ����
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 19.00 89.58 4464/23492 4464/4983
roads 0.00 0.00 0/19582 0/0
trees 51.79 55.54 11684/22562 11684/21037
grass 0.00 0.00 0/17784 0/0
field 1 16.06 24.30 4236/26372 4236/17430
field 2 97.89 16.71 17714/18096 17714/106039

��!�% � � �&��
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 10.42 81.00 519/23492 19028/23492
roads 0.00 100.00 0/19582 19582/19582
trees 44.46 48.21 9353/22562 10878/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 75.70 83.94 13194/26372 22136/26372
field 2 83.29 2.11 88325/18096 382/18096
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[S] matrix co- and cross-polar nulls (15×15-pixel averaging window) - Max. Lik.
classification test:

• Overall accuracy = (99530/150262) 66.24%

• Kappa coefficient = 0.6

�!�% � � �&��
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 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' �����

[S]
. !��$�(� � #$�
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15×15 �
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 46.67 37.18 10443/22374 10443/28087

houses 75.02 96.59 17624/23492 17624/18246
roads 88.33 68.83 17296/19582 17296/25130
trees 97.88 78.97 22083/22562 22083/27964
grass 36.38 39.47 6470/17784 6470/16393
field 1 83.50 86.65 22020/26372 22020/25413
field 2 19.86 39.81 3594/18096 3594/9029

�!�% � � �&� � � � ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
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[S]
. !�� �0� � # �

�
!�'� #�� � �0�

�
��� � !�� '�� � � � �
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 62.82 53.33 17644/22374 11931/22374

houses 3.41 24.98 622/23492 5868/23492
roads 31.17 11.67 7834/19582 2286/19582
trees 21.03 2.12 5881/22562 479/22562
grass 60.53 63.62 9923/17784 11314/17784
field 1 13.35 16.50 3393/26372 4352/26372
field 2 60.19 80.14 5435/18096 14502/18096
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[S] matrix co- and cross-polar nulls (15×15-pixel averaging window) - Min. Dist.
classification test:

• Overall accuracy = (96782/150262) 64.41%

• Kappa coefficient = 0.58

��!�% � � �&� � 
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15×15 �
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 42.06 38.95 9411/22374 9411/24162

houses 63.24 99.93 14856/23492 14856/14866
roads 88.48 71.39 17326/19582 17326/24271
trees 99.18 72.12 22378/22562 22378/31030
grass 18.32 31.86 3258/17784 3258/10226
field 1 84.80 86.03 22364/26372 22364/25997
field 2 39.73 36.47 7189/18096 7189/19710
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 61.05 57.94 14751/22374 12963/22374

houses 0.07 36.76 10/23492 8636/23492
roads 28.61 11.52 6945/19582 2256/19582
trees 27.88 0.82 8652/22562 184/22562
grass 68.14 81.68 6968/17784 14526/17784
field 1 13.97 15.20 3633/26372 4008/26372
field 2 63.53 60.27 12521/18096 10907/18096
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[S] matrix co- and cross-polar nulls (15×15-pixel averaging window) - Parall. classi-
fication test:

• Overall accuracy = (67039/150262) 44.61%

• Kappa coefficient = 0.36
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 68.49 93.41 16089/23492 16089/17224
roads 3.65 100.00 715/19582 715/715
trees 97.75 77.72 22055/22562 22055/28379
grass 0.00 0.00 0/17784 0/0
field 1 40.06 95.43 10565/26372 10565/11071
field 2 97.34 19.20 17615/18096 17615/91732
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 6.59 31.51 1135/23492 7403/23492
roads 0.00 96.35 0/19582 18867/19582
trees 22.28 2.25 6324/22562 507/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 4.57 59.94 506/26372 15807/26372
field 2 80.80 2.66 74117/18096 481/18096
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C.3 Parameters of the coherent target decomposition the-
orems

SDH decomposition terms (single-pixel basis) - Max. Lik. classification test:

• Overall accuracy = (58544/150262) 38.96%

• Kappa coefficient = 0.29
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 16.65 26.39 3726/22374 3726/14117

houses 26.89 83.92 6316/23492 6316/7526
roads 73.66 32.61 14425/19582 14425/44238
trees 72.02 54.04 16249/22562 16249/30071
grass 26.15 26.24 4650/17784 4650/17719
field 1 40.53 41.51 10689/26372 10689/25751
field 2 13.75 22.96 2489/18096 2489/10840
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Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 73.61 83.35 10391/22374 18648/22374

houses 16.08 73.11 1210/23492 17176/23492
roads 67.39 26.34 29813/19582 5157/19582
trees 45.96 27.98 13822/22562 6313/22562
grass 73.76 73.85 13069/17784 13134/17784
field 1 58.49 59.47 15062/26372 15683/26372
field 2 77.04 86.25 8351/18096 15607/18096
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SDH decomposition terms (single-pixel basis) - Min. Dist. classification test:

• Overall accuracy = (57938/150262) 38.56%

• Kappa coefficient = 0.28
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Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 20.15 26.45 4508/22374 4508/17046

houses 34.68 71.80 8147/23492 8147/11347
roads 61.77 34.11 12095/19582 12095/35462
trees 59.26 54.66 13371/22562 13371/24460
grass 26.64 26.06 4737/17784 4737/18176
field 1 50.24 37.05 13250/26372 13250/35764
field 2 10.11 22.86 1830/18096 1830/8007

�!�% � � �&� � � � ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
�� � �&' � ����� ����� � �&�0. � ��&' ���"�*) � �  ��#$�&.��"� � � � � �&' � ���(.*� ��� � '�� � �

�
� � �����%�!� � � �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 73.55 79.85 12538/22374 17866/22374

houses 28.20 65.32 3200/23492 15345/23492
roads 65.89 38.23 23367/19582 7487/19582
trees 45.34 40.74 11089/22562 9191/22562
grass 73.94 73.36 13439/17784 13047/17784
field 1 62.95 49.76 22514/26372 13122/26372
field 2 77.14 89.89 6177/18096 16266/18096
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SDH decomposition terms (single-pixel basis) - Parall. classification test:

• Overall accuracy = (39074/150262) 26%

• Kappa coefficient = 0.15

��!�% � � ��� � ��� ����� + # # �&!�'� � � � + # # �&�� � � . !�� ��� � ��� !	� � ��� � � ����� � !��	!�� � ��# � !��0� � ��#$!	� � �&'�� ��� � �����
�� �&�(. � /��' �	��� )�� � ���# �&.���� � � �$� ��' � ���0. � � � � '�� � �

�
��� �����%�!�� � � � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 18.50 87.35 4345/23492 4345/4974
roads 0.00 0.00 0/19582 0/0
trees 55.61 56.04 12546/22562 12546/22389
grass 0.00 0.00 0/17784 0/0
field 1 17.44 26.69 4599/26372 4599/17230
field 2 97.17 16.82 17584/18096 17584/104517

��!�% � � �&� ��� � ����./.�� �(� � ��' !�'� ��./� �(� � ��' ���(� �&� ��� �$� . !�� ��� � ��� !	� � ��� � � ���"� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' ����� )�� � ��#$�&.���� � � �$� ��' � ���0.*� � � � '"� � �

�
��� �����%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 12.65 81.50 629/23492 19147/23492
roads 0.00 100.00 0/19582 19582/19582
trees 43.96 44.39 9843/22562 10016/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 73.31 82.56 12631/26372 21773/26372
field 2 83.18 2.83 86933/18096 512/18096
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SDH decomposition terms (15×15-pixel averaging window) - Max. Lik. classification
test:

• Overall accuracy = (131279/150262) 87.37%

• Kappa coefficient = 0.85

�!�% � � �&� � 
� ������+ # # � !�'� � � � + # # � ����� � . !�� �� �	��� !��$� �� � � �	��� �/! �"� ��� 
 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' ����� )�� � ��#$�&.���� � � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 74.02 82.24 16562/22374 16562/20139

houses 90.80 98.37 21330/23492 21330/21683
roads 87.05 78.18 17046/19582 17046/21804
trees 99.41 91.21 22429/22562 22429/24591
grass 87.34 83.53 15532/17784 15532/18594
field 1 88.18 94.80 23255/26372 23255/24531
field 2 83.58 79.94 15125/18096 15125/18920

�!�% � � �&� � � � ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
 � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ) � �  ��#$�&.������ � � � �&' � ���(.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 17.76 25.98 3577/22374 5812/22374

houses 1.63 9.20 353/23492 2162/23492
roads 21.82 12.95 4758/19582 2536/19582
trees 8.79 0.59 2162/22562 133/22562
grass 16.47 12.66 3062/17784 2252/17784
field 1 5.20 11.82 1276/26372 3117/26372
field 2 20.06 16.42 3795/18096 2971/18096
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SDH decomposition terms (15×15-pixel averaging window) - Min. Dist. classifica-
tion test:

• Overall accuracy = (115760/150262) 77.04%

• Kappa coefficient = 0.73

��!�% � � �&� � ��� ����� +�# #�� !�'� � � �&+ # #�� ����� � . !�� �� � ��� !�� � ��� � � ����� ��� ' � � � � �$� #	� !��0� � ��#$!��$� ��' � ��� �
�"��� � �&�(. � ��&' �	��� )�� � ���# �&.���� � � �$� �&' � ���0. � �

15×15 �
��� ���� ! ����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 55.55 70.02 12428/22374 12428/17749

houses 64.03 100.00 15042/23492 15042/15042
roads 88.33 70.78 17297/19582 17297/24438
trees 100.00 72.76 22562/22562 22562/31008
grass 74.58 79.73 13263/17784 13263/16635
field 1 86.25 93.04 22745/26372 22745/24446
field 2 68.65 59.32 12423/18096 12423/20944

��!�% � � ��� � ��� ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ����� ����� � �&�0. � ��&' ����� )�� � ��#$�&.������ � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 29.98 44.45 5321/22374 9946/22374

houses 0.00 35.97 0/23492 8450/23492
roads 29.22 11.67 7141/19582 2285/19582
trees 27.24 0.00 8446/22562 0/22562
grass 20.27 25.42 3372/17784 4521/17784
field 1 6.96 13.75 1701/26372 3627/26372
field 2 40.68 31.35 8521/18096 5673/18096
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SDH decomposition terms (15×15-pixel averaging window) - Parall. classification
test:

• Overall accuracy = (115760/150262) 55.58%

• Kappa coefficient = 0.48

�!�% � � �&� � � � � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' ����� )�� � ��#$�&.���� � � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 81.04 96.10 19038/23492 19038/19811
roads 23.34 83.12 4571/19582 4571/5499
trees 99.16 86.75 22373/22562 22373/25791
grass 0.46 6.33 81/17784 81/1279
field 1 74.73 92.16 19707/26372 19707/21384
field 2 98.10 23.52 17752/18096 17752/75462

�!�% � � �&� � ��� � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ) � �  ��#$�&.������ � � � �&' � ���(.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 3.90 18.96 773/23492 4454/23492
roads 16.88 76.66 928/19582 15011/19582
trees 13.25 0.84 3418/22562 189/22562
grass 93.67 99.54 1198/17784 17703/17784
field 1 7.84 25.27 1677/26372 6665/26372
field 2 76.48 1.90 57710/18096 344/18096
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Pauli decomposition terms (single-pixel averaging window) - Max. Lik. classifica-
tion test:

• Overall accuracy = (62713/150262) 41.74%

• Kappa coefficient = 0.32

��!�% � � ��� ����� ����� + # # � !�'  � � � + # # � ����� � . !�� �����	��� !��$� �� � � �	��� �/! ��� ��� 
 ��# � !�(� � ��# !�� � �&' � ��� � �����
�� �&�(. � /��' �	��� ��!�� � �  ��#$�&.������ � � � �&' � ���(.*� ��� � '�� � �

�
� � �����%�!� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 20.35 30.60 4554/22374 4554/14883

houses 28.72 85.70 6746/23492 6746/7872
roads 74.13 34.94 14516/19582 14516/41546
trees 76.37 57.47 17230/22562 17230/29981
grass 25.67 27.31 4565/17784 4565/16716
field 1 43.13 44.71 11375/26372 11375/25441
field 2 20.60 26.96 3727/18096 3727/13823

��!�% � � �&� �	� � � �&.�./� �0� � �&' !�'� ��.�� �0� � �&' ���(� �&�"��� �$� . !	� ���&� ��� !	� � ��� � � ���"� �/! �"� ��� 
�� #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' ����� ��!�� � �����#$��./�"� � � � � �&' � ���(.*� ��� � '�� � �

�
��� �����%�!� � � �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 69.40 79.65 10329/22374 17820/22374

houses 14.30 71.28 1126/23492 16746/23492
roads 65.06 25.87 27030/19582 5066/19582
trees 42.53 23.63 12751/22562 5332/22562
grass 72.69 74.33 12151/17784 13219/17784
field 1 55.29 56.87 14066/26372 14997/26372
field 2 73.04 79.40 10096/18096 14369/18096
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Pauli decomposition terms (single-pixel averaging window) - Min. Dist. classifica-
tion test:

• Overall accuracy = (60071/150262) 39.98%

• Kappa coefficient = 0.3

�!�% � � �&� ����� � ���&+ # # ��!�'� � � �&+ # # ���� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� '���� � ��� � #	� !��0� � ��#$!	� � �&' � ��� �
����� � �&�0. � /��' �	��� ��!�� � �  ��#$��./�"� � � � � �&' � ���(.*� ��� � '�� � �

�
� � �����%�!� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 22.64 29.28 5065/22374 5065/17296

houses 35.82 75.85 8416/23492 8416/11096
roads 61.02 34.53 11948/19582 11948/34600
trees 62.88 58.24 14188/22562 14188/24363
grass 28.73 25.98 5109/17784 5109/19668
field 1 51.93 37.96 13696/26372 13696/36078
field 2 9.11 23.03 1649/18096 1649/7161

�!�% � � �&� � � � ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
�� � �&' � ����� ����� � �&�0. � ��&' ���"� � !�� � � ���# �&.���� � � �$� �&' � ���(.*� ��� � '�� � �

�
��� ������%"!�� � � �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 70.72 77.36 12231/22374 17309/22374

houses 24.15 64.18 2680/23492 15076/23492
roads 65.47 38.98 22652/19582 7634/19582
trees 41.76 37.12 10175/22562 8374/22562
grass 74.02 71.27 14559/17784 12675/17784
field 1 62.04 48.07 22382/26372 12676/26372
field 2 76.97 90.89 5512/18096 16447/18096
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Pauli decomposition terms (single-pixel averaging window) - Parall. classification
test:

• Overall accuracy = (41848/150262) 27.85%

• Kappa coefficient = 0.17

��!�% � � ��� �&
�� ����� + # # �&!�'� � � � + # # �&�� � � . !�� ��� � ��� !	� � ��� � � ����� � !��	!�� � ��# � !��0� � ��#$!	� � �&'�� ��� � �����
�� �&�(. � /��' �	��� ��!�� � �  ��#$�&.������ � � � �&' � ���(.*� ��� � '�� � �

�
� � �����%�!� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 19.59 89.74 4602/23492 4602/5128
roads 0.00 0.00 0/19582 0/0
trees 64.83 59.55 14626/22562 14626/24560
grass 0.00 0.00 0/17784 0/0
field 1 18.75 30.78 4944/26372 4944/16062
field 2 97.68 17.09 17676/18096 17676/103419

��!�% � � �&� � � � ����./.�� �(� � ��' !�'� ��./� �(� � ��' ���(� �&� ��� �$� . !�� ��� � ��� !	� � ��� � � ���"� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' ����� ��!�� � �����#$��./�"� � � � � �&' � ���(.*� ��� � '�� � �

�
��� �����%�!� � � �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 10.26 80.41 526/23492 18890/23492
roads 0.00 100.00 0/19582 19582/19582
trees 40.45 35.17 9934/22562 7936/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 69.22 81.25 11118/26372 21428/26372
field 2 82.91 2.32 85743/18096 420/18096
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Pauli decomposition terms (15×15-pixel averaging window) - Max. Lik. classification
test:

• Overall accuracy = (86562/150262) 57.61%

• Kappa coefficient = 0.51

�!�% � � �&� � ��� ������+ # # � !�'� � � � + # # � ����� � . !�� �� �	��� !��$� �� � � �	��� �/! �"� ��� 
 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' ����� ��!�� � �����#$��./�"� � � � � �&' � ���(.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 45.58 44.94 10199/22374 10199/22694

houses 66.96 93.14 15731/23492 15731/16889
roads 77.11 56.32 15099/19582 15099/26811
trees 87.64 69.98 19773/22562 19773/28257
grass 51.46 37.08 9151/17784 9151/24676
field 1 44.92 64.21 11847/26372 11847/18451
field 2 26.32 38.14 4762/18096 4762/12484

�!�% � � �&� � � � ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
 � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ��!�� � �����# �&.���� � � �$� �&' � ���(.*� �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 55.06 54.42 12495/22374 12175/22374

houses 6.86 33.04 1158/23492 7761/23492
roads 43.68 22.89 11712/19582 4483/19582
trees 30.02 12.36 8484/22562 2789/22562
grass 62.92 48.54 15525/17784 8633/17784
field 1 35.79 55.08 6604/26372 14525/26372
field 2 61.86 73.68 7722/18096 13334/18096
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Pauli decomposition terms (15×15-pixel averaging window) - Min. Dist. classifica-
tion test:

• Overall accuracy = (78537/150262) 52.27%

• Kappa coefficient = 0.44

��!�% � � �&� � � � ����� +�# #�� !�'� � � �&+ # #�� ����� � . !�� �� � ��� !�� � ��� � � ����� ��� ' � � � � �$� #	� !��0� � ��#$!��$� ��' � ��� �
�"��� � �&�(. � ��&' �	��� ��!�� � �  ��#$�&.������ � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� ' ���� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 33.04 33.87 7392/22374 7392/21827

houses 59.97 97.53 14087/23492 14087/14444
roads 73.39 48.51 14371/19582 14371/29627
trees 81.78 67.67 18451/22562 18451/27267
grass 34.46 34.75 6128/17784 6128/17637
field 1 53.78 50.66 14182/26372 14182/27996
field 2 21.70 34.25 3926/18096 3926/11464

��!�% � � ��� � ��� ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ����� ����� � �&�0. � ��&' ����� ��!�� � �����# �&.���� � � � � �&' � ���(.*� �

15×15 �
� � ����� ! �����	! �&� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 66.13 66.96 14435/22374 14982/22374

houses 2.47 40.03 357/23492 9405/23492
roads 51.49 26.61 15256/19582 5211/19582
trees 32.33 18.22 8816/22562 4111/22562
grass 65.25 65.54 11509/17784 11656/17784
field 1 49.34 46.22 13814/26372 12190/26372
field 2 65.75 78.30 7538/18096 14170/18096
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Pauli decomposition terms (15×15-pixel averaging window) - Parall. classification
test:

• Overall accuracy = (52069/150262) 34.65%

• Kappa coefficient = 0.25

�!�% � � �&� � ��� � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' ����� ��!�� � �����#$��./�"� � � � � �&' � ���(.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 52.84 97.96 12414/23492 12414/12673
roads 0.00 0.00 0/19582 0/0
trees 85.94 66.60 19390/22562 19390/29112
grass 0.00 0.00 0/17784 0/0
field 1 9.86 47.33 2601/26372 2601/5496
field 2 97.61 17.34 17664/18096 17664/101871

�!�% � � �&� � � � � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ��!�� � �����# �&.���� � � �$� �&' � ���(.*� �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 2.04 47.16 259/23492 11078/23492
roads 0.00 100.00 0/19582 19582/19582
trees 33.40 14.06 9722/22562 3172/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 52.67 90.14 2895/26372 23771/26372
field 2 82.66 2.39 84207/18096 432/18096



144 Appendix C - Classification results

Cameron decomposition terms (single-pixel averaging window) - Max. Lik. classifi-
cation test:

• Overall accuracy = (56193/150262) 37.4%

• Kappa coefficient = 0.27

��!�% � � ��� � ��� ����� + # # � !�'  � � � + # # � ����� � . !�� �����	��� !��$� �� � � �	��� �/! ��� ��� 
 ��# � !�(� � ��# !�� � �&' � ��� � �����
�� �&�(. � /��' �	��� ��!�. ��� �&' ���# �&.���� � � �$� �&' � ���(.*� ��� � '�� � �

�
��� �����%�!�� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 16.21 25.05 3627/22374 3627/14481

houses 25.83 82.39 6068/23492 6068/7365
roads 76.58 31.23 14995/19582 14995/48010
trees 69.24 52.82 15622/22562 15622/29577
grass 24.70 22.55 4392/17784 4392/19474
field 1 40.61 38.93 10710/26372 10710/27509
field 2 4.30 20.25 779/18096 779/3846

��!�% � � �&��� � � � �&.�./� �0� � �&' !�'� ��.�� �0� � �&' ���(� �&�"��� �$� . !	� ���&� ��� !	� � ��� � � ���"� �/! �"� ��� 
�� #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' ����� ��!�. ���	�&' ���# �&.���� � � �$� ��' � ���0. � � � � '�� � �

�
��� �����%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 74.95 83.79 10854/22374 18747/22374

houses 17.61 74.17 1297/23492 17424/23492
roads 68.77 23.42 33015/19582 4587/19582
trees 47.18 30.76 13955/22562 6940/22562
grass 77.45 75.30 15082/17784 13392/17784
field 1 61.07 59.39 16799/26372 15662/26372
field 2 79.75 95.70 3067/18096 17317/18096
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Cameron decomposition terms (single-pixel averaging window) - Min. Dist. classi-
fication test:

• Overall accuracy = 56502/150262) 37.60%

• Kappa coefficient = 0.27

�!�% � � �&����
� � ���&+ # # ��!�'� � � �&+ # # ���� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� '���� � ��� � #	� !��0� � ��#$!	� � �&' � ��� �
����� � �&�0. � /��' �	��� ��!�. ���	�&' ���# �&.���� � � �$� �&' � ���0. � ��� � '�� � �

�
��� �����%�!�� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 14.89 26.34 3332/22374 3332/12651

houses 34.27 69.60 8050/23492 8050/11566
roads 65.65 33.80 12856/19582 12856/38034
trees 56.98 52.86 12855/22562 12855/24318
grass 20.14 23.44 3581/17784 3581/15275
field 1 52.65 36.30 13886/26372 13886/38251
field 2 10.73 19.10 1942/18096 1942/10167

�!�% � � �&� � � � ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
�� � �&' � ����� ����� � �&�0. � ��&' ���"� � !�. ���	��'  ��#$�&.������ � � � �&' � ���0.*� � � � '�� � �

�
� � ������%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 73.66 85.11 9319/22374 19042/22374

houses 30.40 65.73 3516/23492 15442/23492
roads 66.20 34.35 25178/19582 6726/19582
trees 47.14 43.02 11463/22562 9707/22562
grass 76.56 79.86 11694/17784 14203/17784
field 1 63.70 47.35 24365/26372 12486/26372
field 2 80.90 89.27 8225/18096 16154/18096



146 Appendix C - Classification results

Cameron decomposition terms (single-pixel averaging window) - Parall. classifica-
tion test:

• Overall accuracy = (37208/150262) 24.76%

• Kappa coefficient = 0.13

��!�% � � ��� � ��� ����� + # # �&!�'� � � � + # # �&�� � � . !�� ��� � ��� !	� � ��� � � ����� � !��	!�� � ��# � !��0� � ��#$!	� � �&'�� ��� � �����
�� �&�(. � /��' �	��� ��!�. ��� �&' ���# �&.���� � � �$� �&' � ���(.*� ��� � '�� � �

�
��� �����%�!�� � � �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 17.98 92.03 4225/23492 4225/4591
roads 0.00 0.00 0/19582 0/0
trees 50.50 55.84 11394/22562 11394/20404
grass 0.00 0.00 0/17784 0/0
field 1 14.22 22.05 3750/26372 3750/17008
field 2 98.58 16.56 17839/18096 17839/107703

��!�% � � �&��� � � ����./.�� �(� � ��' !�'� ��./� �(� � ��' ���(� �&� ��� �$� . !�� ��� � ��� !	� � ��� � � ���"� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' ����� ��!�. ���	�&' ���# �&.���� � � �$� ��' � ���0. � � � � '�� � �

�
��� �����%�!�� � � � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 7.97 82.02 366/23492 19267/23492
roads 0.00 100.00 0/19582 19582/19582
trees 44.16 49.50 9010/22562 11168/22562
grass 0.00 100.00 0/17784 17784/17784
field 1 77.95 85.78 13258/26372 22622/26372
field 2 83.44 1.42 89864/18096 257/18096
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Cameron decomposition terms (15×15-pixel averaging window) - Max. Lik. classi-
fication test:

• Overall accuracy = (114752/150262) 76.37%

• Kappa coefficient = 0.72

�!�% � � �&� � � � ������+ # # � !�'� � � � + # # � ����� � . !�� �� �	��� !��$� �� � � �	��� �/! �"� ��� 
 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' ����� ��!�. ���	�&' ���# �&.���� � � �$� ��' � ���0.*� �

15×15 �
��� ���� ! ����	!��&� '"� � � '���"� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 53.02 64.33 11863/22374 11863/18442

houses 76.85 96.16 18054/23492 18054/18775
roads 88.58 73.41 17345/19582 17345/23626
trees 98.43 80.33 22207/22562 22207/27645
grass 79.91 68.26 14211/17784 14211/20819
field 1 85.02 90.92 22421/26372 22421/24661
field 2 47.81 53.09 8651/18096 8651/16294

�!�% � � �&��� ��� ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
 � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ��!�. ���	�&' ��#$�&.������ � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 35.67 46.98 6579/22374 10511/22374

houses 3.84 23.15 721/23492 5438/23492
roads 26.59 11.42 6281/19582 2237/19582
trees 19.67 1.57 5438/22562 355/22562
grass 31.74 20.09 6608/17784 3573/17784
field 1 9.08 14.98 2240/26372 3951/26372
field 2 46.91 52.19 7643/18096 9445/18096
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Cameron decomposition terms (15×15-pixel averaging window) - Min. Dist. classi-
fication test:

• Overall accuracy = (107212/150262) 71.35%

• Kappa coefficient = 0.66

��!�% � � �&������� ����� +�# #�� !�'� � � �&+ # #�� ����� � . !�� �� � ��� !�� � ��� � � ����� ��� ' � � � � �$� #	� !��0� � ��#$!��$� ��' � ��� �
�"��� � �&�(. � ��&' �	��� ��!�. ��� �&' ���# �&.���� � � �$� �&' � ���(.*� �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 43.62 65.13 9760/22374 9760/14986

houses 63.06 100.00 14814/23492 14814/14814
roads 89.08 69.41 17444/19582 17444/25132
trees 100.00 72.23 22562/22562 22562/31237
grass 56.92 63.44 10122/17784 10122/15955
field 1 85.83 91.34 22636/26372 22636/24783
field 2 54.56 42.28 9874/18096 9874/23355

��!�% � � ��� � ��� ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ��� � ����� � �&�0. �  ��' �	��� ��!�. ��� �&' ���#$��.���� � � � � �&' � ���(.*� �

15×15 �
��� ����� ! �����	! �&� '�� �/� '

� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 34.87 56.38 5226/22374 12614/22374

houses 0.00 36.94 0/23492 8678/23492
roads 30.59 10.92 7688/19582 2138/19582
trees 27.77 0.00 8675/22562 0/22562
grass 36.56 43.08 5833/17784 7662/17784
field 1 8.66 14.17 2147/26372 3736/26372
field 2 57.72 45.44 13481/18096 8222/18096
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Cameron decomposition terms (15×15-pixel averaging window) - Parall. classifica-
tion test:

• Overall accuracy = (79486/150262) 52.9%

• Kappa coefficient = 0.45

�!�% � � �&� � ��� � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' ����� ��!�. ���	�&' ���# �&.���� � � �$� ��' � ���0.*� �

15×15 �
��� ���� ! ����	!��&� '"� � � '���"� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 71.72 98.83 16849/23492 16849/17048
roads 20.02 99.97 3920/19582 3920/3921
trees 99.53 79.02 22457/22562 22457/28419
grass 0.00 0.00 0/17784 0/58
field 1 70.14 95.54 18498/26372 18498/19361
field 2 98.15 21.99 17762/18096 17762/80774

�!�% � � �&� ��� � � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' ����� ��!�. ���	�&' ��#$�&.������ � � � �&' � ���0.*� �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 1.17 28.28 199/23492 6643/23492
roads 0.03 79.98 1/19582 15662/19582
trees 20.98 0.47 5962/22562 105/22562
grass 100.00 100.00 58/17784 17784/17784
field 1 4.46 29.86 863/26372 7874/26372
field 2 78.01 1.85 63012/18096 334/18096
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C.4 Entropy/α parameters

H and α (3×3-pixel averaging window) - Max. Lik. classification test:

• Overall accuracy = (43921/150262) 29.23%

• Kappa coefficient = 0.17

��!�% � � ��� ��
�� ����� + # # � !�'  � � � + # # � ����� � . !�� �����	��� !��$� �� � � �	��� �/! ��� ��� 
 ��# � !�(� � ��# !�� � �&' � ��� � �����
�� �&�(. � /��' �	���

H
!�'�

α
��!�� !�. ��� ��� � �

3×3 �
��� ����� ! �����	! �&� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 72.72 22.56 16271/22374 16271/72108

houses 31.52 47.84 7404/23492 7404/15475
roads 2.29 14.52 448/19582 448/3085
trees 65.03 48.93 14672/22562 14672/29985
grass 12.43 18.11 2210/17784 2210/12205
field 1 0.03 33.33 8/26372 8/24
field 2 16.07 16.73 2908/18096 2908/17380

��!�% � � �&� � � � � �&.�./� �0� � �&' !�'� ��.�� �0� � �&' ���(� �&�"��� �$� . !	� ���&� ��� !	� � ��� � � ���"� �/! �"� ��� 
�� #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' �����

H
!�'�

α
��!��	!�. ��� ��� � �

3×3 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 77.44 27.28 55837/22374 6103/22374

houses 52.16 68.48 8071/23492 16088/23492
roads 85.48 97.71 2637/19582 19134/19582
trees 51.07 34.97 15313/22562 7890/22562
grass 81.89 87.57 9995/17784 15574/17784
field 1 66.67 99.97 16/26372 26364/26372
field 2 83.27 83.93 14472/18096 15188/18096
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H and α (3×3-pixel averaging window) - Min. Dist. classification test:

• Overall accuracy = (36284/150262) 24.15%

• Kappa coefficient = 0.11

�!�% � � �&� � ��� � ���&+ # # ��!�'� � � �&+ # # ���� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� '���� � ��� � #	� !��0� � ��#$!	� � �&' � ��� �
����� � �&�0. � /��' �	���

H
!�'�

α
��!�� !�. ��� ��� � �

3×3 �
� � ����� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 50.14 19.21 11219/22374 11219/58401

houses 4.43 11.04 1040/23492 1040/9423
roads 1.68 17.80 328/19582 328/1843
trees 73.02 43.08 16474/22562 16474/38237
grass 0.75 14.10 133/17784 133/943
field 1 7.90 19.97 2084/26372 2084/10435
field 2 27.66 16.16 5006/18096 5006/30980

�!�% � � �&� ��� � ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
�� � �&' � ����� ����� � �&�0. � ��&' ���"�

H
!�'�

α
�"!��	!�. �	� ��� � �

3×3 �
��� ����� ! ����	!��&� '"� � � '���"� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 80.79 49.86 47182/22374 11155/22374

houses 88.96 95.57 8383/23492 22452/23492
roads 82.20 98.32 1515/19582 19254/19582
trees 56.92 26.98 21763/22562 6088/22562
grass 85.90 99.25 810/17784 17651/17784
field 1 80.03 92.10 8351/26372 24288/26372
field 2 83.84 72.34 25974/18096 13090/18096
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H and α (3×3-pixel averaging window) - Parall. classification test:

• Overall accuracy = (21587/150262) 14.37%

• Kappa coefficient = 0.025

��!�% � � ��� � ��� ����� + # # �&!�'� � � � + # # �&�� � � . !�� ��� � ��� !	� � ��� � � ����� � !��	!�� � ��# � !��0� � ��#$!	� � �&'�� ��� � �����
�� �&�(. � /��' �	���

H
!�'�

α
��!�� !�. ��� ��� � �

3×3 �
��� ����� ! �����	! �&� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 9.55 97.10 2243/23492 2243/2310
roads 0.00 0.00 0/19582 0/0
trees 4.96 64.09 1119/22562 1119/1746
grass 0.51 7.34 90/17784 90/1226
field 1 0.79 10.11 209/26372 209/2067
field 2 99.06 12.55 17926/18096 17926/142884

��!�% � � �&� � ��� ����./.�� �(� � ��' !�'� ��./� �(� � ��' ���(� �&� ��� �$� . !�� ��� � ��� !	� � ��� � � ���"� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' �����

H
!�'�

α
��!��	!�. ��� ��� � �

3×3 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 2.90 90.45 67/23492 21249/23492
roads 0.00 100.00 0/19582 19582/19582
trees 35.91 95.04 627/22562 21443/22562
grass 92.66 99.49 1136/17784 17694/17784
field 1 89.89 99.21 1858/26372 26163/26372
field 2 87.45 0.94 124958/18096 170/18096
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H and α (15×15-pixel averaging window) - Max. Lik. classification test:

• Overall accuracy = (90539/150262) 60.25%

• Kappa coefficient = 0.54

�!�% � � �&� �	��� ������+ # # � !�'� � � � + # # � ����� � . !�� �� �	��� !��$� �� � � �	��� �/! �"� ��� 
 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' �����

H
!�'�

α
��!��	!�. ��� ��� � �

15×15 �
��� ���� ! ����	!��&� '"� � � '���"� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 70.46 67.88 15765/22374 15765/23224

houses 67.99 89.97 15972/23492 15972/17752
roads 36.77 34.78 7200/19582 7200/20702
trees 93.37 91.97 21067/22562 21067/22906
grass 71.51 48.68 12717/17784 12717/26122
field 1 12.08 60.73 3187/26372 3187/5248
field 2 80.85 42.65 14631/18096 14631/34308

�!�% � � �&� �	� � ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
 � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' �����

H
!�'�

α
�"!��	!�. �	� ��� � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 32.12 29.54 7459/22374 6609/22374

houses 10.03 32.01 1780/23492 7520/23492
roads 65.22 63.23 13502/19582 12382/19582
trees 8.03 6.63 1839/22562 1495/22562
grass 51.32 28.49 13405/17784 5067/17784
field 1 39.27 87.92 2061/26372 23185/26372
field 2 57.35 19.15 19677/18096 3465/18096
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H and α (15×15-pixel averaging window) - Min. Dist. classification test:

• Overall accuracy = (68067/150262) 45.3%

• Kappa coefficient = 0.36

��!�% � � �&� ����� ����� +�# #�� !�'� � � �&+ # #�� ����� � . !�� �� � ��� !�� � ��� � � ����� ��� ' � � � � �$� #	� !��0� � ��#$!��$� ��' � ��� �
�"��� � �&�(. � ��&' �	���

H
!�'�

α
��!�� !�. ��� ��� � �

15×15 �
� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 58.86 35.29 13170/22374 13170/37319

houses 57.00 66.34 13391/23492 13391/20184
roads 30.61 25.59 5995/19582 5995/23431
trees 90.05 89.11 20318/22562 20318/22801
grass 47.79 39.33 8499/17784 8499/21607
field 1 14.78 26.02 3897/26372 3897/14975
field 2 15.46 28.12 2797/18096 2797/9945

��!�% � � ��� ����� ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ����� ����� � �&�0. � ��&' �����

H
!�'�

α
��!��	!�. ��� ��� � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 64.71 41.14 24149/22374 9204/22374

houses 33.66 43.00 6793/23492 10101/23492
roads 74.41 69.39 17436/19582 13587/19582
trees 10.89 9.95 2483/22562 2244/22562
grass 60.67 52.21 13108/17784 9285/17784
field 1 73.98 85.22 11078/26372 22475/26372
field 2 71.88 84.54 7148/18096 15299/18096
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H and α (15×15-pixel averaging window) - Parall. classification test:

• Overall accuracy = (38289/150262) 25.48%

• Kappa coefficient = 0.136

�!�% � � �&� � 
� � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' �����

H
!�'�

α
��!��	!�. ��� ��� � �

15×15 �
��� ���� ! ����	!��&� '"� � � '���"� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 47.54 95.91 11167/23492 11167/11643
roads 0.00 0.00 0/19582 0/0
trees 32.47 99.84 7326/22562 7326/7338
grass 0.50 5.05 89/17784 89/1762
field 1 6.59 5.03 1737/26372 1737/34560
field 2 99.30 18.95 17970/18096 17970/94844

�!�% � � �&� � � � � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' �����

H
!�'�

α
�"!��	!�. �	� ��� � �

15×15 �
��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 4.09 52.46 476/23492 12325/23492
roads 0.00 100.00 0/19582 19582/19582
trees 0.16 67.53 12/22562 15236/22562
grass 94.95 99.50 1673/17784 17695/17784
field 1 94.97 93.41 32823/26372 24635/26372
field 2 81.05 0.70 76874/18096 126/18096
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H , α and A (3×3-pixel averaging window) - Max. Lik. classification test:

• Overall accuracy = (44656/150262) 29.72%

• Kappa coefficient = 0.18

��!�% � � ��� � ��� ����� + # # � !�'  � � � + # # � ����� � . !�� �����	��� !��$� �� � � �	��� �/! ��� ��� 
 ��# � !�(� � ��# !�� � �&' � ��� � �����
�� �&�(. � /��' �	���

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 64.24 23.78 14374/22374 14374/60450

houses 31.53 53.90 7408/23492 7408/13745
roads 5.18 17.41 1014/19582 1014/5825
trees 64.60 47.96 14574/22562 14574/30386
grass 17.04 18.68 3030/17784 3030/16224
field 1 0.33 22.37 87/26372 87/389
field 2 23.04 17.94 4169/18096 4169/23243

��!�% � � �&� � � � � �&.�./� �0� � �&' !�'� ��.�� �0� � �&' ���(� �&�"��� �$� . !	� ���&� ��� !	� � ��� � � ���"� �/! �"� ��� 
�� #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' �����

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

��� ���� ! ����	!��&� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 76.22 35.76 46076/22374 8000/22374

houses 46.10 68.47 6337/23492 16084/23492
roads 82.59 94.82 4811/19582 18568/19582
trees 52.04 35.40 15812/22562 7988/22562
grass 81.32 82.96 13194/17784 14754/17784
field 1 77.63 99.67 302/26372 26285/26372
field 2 82.06 76.96 19074/18096 13927/18096
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H , α and A (3×3-pixel averaging window) - Min. Dist. classification test:

• Overall accuracy = (36388/150262) 24.22%

• Kappa coefficient = 0.11

�!�% � � �&� � � � � ���&+ # # ��!�'� � � �&+ # # ���� �$� . !�� ��� �	��� !��$� �� � � ���"� ��� '���� � ��� � #	� !��0� � ��#$!	� � �&' � ��� �
����� � �&�0. � /��' �	���

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

��� ���� ! ����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 50.27 19.31 11248/22374 11248/58252

houses 4.40 11.18 1034/23492 1034/9246
roads 1.86 18.32 364/19582 364/1987
trees 73.02 43.08 16474/22562 16474/38237
grass 0.98 15.73 174/17784 174/1106
field 1 7.92 19.98 2088/26372 2088/10451
field 2 27.66 16.16 5006/18096 5006/30983

�!�% � � �&� � ��� ����.�./� �(� � ��'/!�'���&.�� �(� � �&'/���(� �&� ����� � . !�� ��� �	��� !��$� �� � � �	��� ��� '�� � � ��� ��#	� !��0� � ��#$!
�� � �&' � ����� ����� � �&�0. � ��&' ���"�

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 80.69 49.73 47004/22374 11126/22374

houses 88.82 95.60 8212/23492 22458/23492
roads 81.68 98.14 1623/19582 19218/19582
trees 56.92 26.98 21763/22562 6088/22562
grass 84.27 99.02 932/17784 17610/17784
field 1 80.02 92.08 8363/26372 24284/26372
field 2 83.84 72.34 25977/18096 13090/18096
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H , α and A (3×3-pixel averaging window) - Parall. classification test:

• Overall accuracy = (21587/150262) 14.37%

• Kappa coefficient = 0.025

��!�% � � ��� ����� ����� + # # �&!�'� � � � + # # �&�� � � . !�� ��� � ��� !	� � ��� � � ����� � !��	!�� � ��# � !��0� � ��#$!	� � �&'�� ��� � �����
�� �&�(. � /��' �	���

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

� � ���� ! �����	! ��� '�� �/� '����� �(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 9.55 97.10 2243/23492 2243/2310
roads 0.00 0.00 0/19582 0/0
trees 4.96 64.09 1119/22562 1119/1746
grass 0.51 7.34 90/17784 90/1226
field 1 0.79 10.11 209/26372 209/2067
field 2 99.06 12.55 17926/18096 17926/142884

��!�% � � �&� �	� � ����./.�� �(� � ��' !�'� ��./� �(� � ��' ���(� �&� ��� �$� . !�� ��� � ��� !	� � ��� � � ���"� � !��	!�� � � #	� !��(� � � #$!��$� �&'
� ����� ����� � �&�0. � ��&' �����

H
�
α

!�'�
A

��!��	!�. ��� ��� � �
3×3 �

��� ���� ! ����	!��&� '�� �/� '����� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 2.90 90.45 67/23492 21249/23492
roads 0.00 100.00 0/19582 19582/19582
trees 35.91 95.04 627/22562 21443/22562
grass 92.66 99.49 1136/17784 17694/17784
field 1 89.89 99.21 1858/26372 26163/26372
field 2 87.45 0.94 124958/18096 170/18096
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H , α and A (15×15-pixel averaging window) - Max. Lik. classification test:

• Overall accuracy = (96312/150262) 64.1%

• Kappa coefficient = 0.58

�!�% � � �&� �	��� ������+ # # � !�'� � � � + # # � ����� � . !�� �� �	��� !��$� �� � � �	��� �/! �"� ��� 
 ��# � !�(� � ��# !�� � �&' � ����� �����
�� �&�0. � ��&' �����

H
�
α

!�'�
A

�"!��	!�. �	� ��� � �
15×15 �

��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 83.36 65.99 18650/22374 18650/28263

houses 71.08 88.85 16698/23492 16698/18794
roads 39.25 37.03 7686/19582 7686/20755
trees 97.53 96.90 22005/22562 22005/22709
grass 64.08 51.57 11396/17784 11396/22100
field 1 21.55 67.59 5682/26372 5682/8407
field 2 78.44 48.56 14195/18096 14195/29234

�!�% � � �&� � � � ���&.�.�� �0� � �&'-!�'� �&.�� �0� � �&'-���(� �&�"����� � . !	� ���&� ��� !�� � ��� � � ���"� �/! �"� ��� 
 � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' �����

H
�
α

!�'�
A

��!��	!�. �	� ��� � �
15×15 �

��� ����� ! ����� ! �&� '�� �/� ' ���� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 34.01 16.64 9613/22374 3724/22374

houses 11.15 28.92 2096/23492 6794/23492
roads 62.97 60.75 13069/19582 11896/19582
trees 3.10 2.47 704/22562 557/22562
grass 48.43 35.92 10704/17784 6388/17784
field 1 32.41 78.45 2725/26372 20690/26372
field 2 51.44 21.56 15039/18096 3901/18096
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H , α and A (15×15-pixel averaging window) - Min. Dist. classification test:

• Overall accuracy = (68086/150262) 45.31%

• Kappa coefficient = 0.36

��!�% � � �&� � 
� ����� +�# #�� !�'� � � �&+ # #�� ����� � . !�� �� � ��� !�� � ��� � � ����� ��� ' � � � � �$� #	� !��0� � ��#$!��$� ��' � ��� �
�"��� � �&�(. � ��&' �	���

H
�
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!�'�
A

��!�� !�. ��� ��� � �
15×15 �

��� ���� ! ����	! ��� '�� �/� '���"���(�

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 58.92 35.34 13182/22374 13182/37305

houses 57.00 66.34 13391/23492 13391/20184
roads 30.60 25.57 5992/19582 5992/23431
trees 90.06 89.12 20319/22562 20319/22800
grass 47.79 39.33 8499/17784 8499/21608
field 1 14.78 26.04 3898/26372 3898/14972
field 2 15.50 28.16 2805/18096 2805/9962

��!�% � � ��� � � � ����./.�� �(� � �&'�!�'���&.�� �(� � �&'/���0�	��� ����� � . !	� ��� �	��� !��$� ��� � � ���"� � � '�� � � ��� ��#	� !��(� � ��# !
��$� ��' � ����� ����� � �&�0. � ��&' �����

H
�
α

!�'�
A

�"!��	!�. �	� ��� � �
15×15 �

��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 64.66 41.08 24123/22374 9192/22374

houses 33.66 43.00 6793/23492 10101/23492
roads 74.43 69.40 17439/19582 13590/19582
trees 10.88 9.94 2481/22562 2243/22562
grass 60.67 52.21 13109/17784 9285/17784
field 1 73.96 85.22 11074/26372 22474/26372
field 2 71.84 84.50 7157/18096 15291/18096
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H , α and A (15×15-pixel averaging window) - Parall. classification test:

• Overall accuracy = (38637/150262) 25.71%

• Kappa coefficient = 0.137

�!�% � � �&� � ��� � ����+ # #���!�'� � � ��+ # #��&�� �$� . !�� ��� � ��� !�� � ��� � � ���"� ��!�� !�� � ��# � !�(� � ��# !�� � �&'�� ����� �����
�� �&�0. � ��&' �����
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�
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�"!��	!�. �	� ��� � �
15×15 �

��� ����� ! ����� ! �&� '�� �/� '� ��� � �

Class Pr. Acc. (%) Us. Acc. (%) Pr. Acc. (pixels) Us. Acc. (pixels)
water 0.00 0.00 0/22374 0/0

houses 47.59 92.55 11179/23492 11179/12079
roads 0.00 0.00 0/19582 0/0
trees 32.40 99.84 7310/22562 7310/7322
grass 2.40 15.97 427/17784 427/2673
field 1 6.67 4.62 1758/26372 1758/38048
field 2 99.27 19.95 17963/18096 17963/90025

�!�% � � �&� � � � � �&.�./� �0� � �&' !�'���&.�� �0� � �&'/���(� �&� ����� � . !	� ��� � ��� !�� � ��� � � �	��� � !��	!�� � � #	� !��0� � ��#$!��$� ��'
� ����� ����� � �&�0. � ��&' �����
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A

��!��	!�. �	� ��� � �
15×15 �

��� ����� ! ����� ! �&� '�� �/� ' ���� �(�

Class Comm. (%) Om. (%) Comm. (pixels) Om. (pixels)
water 0.00 100.00 0/22374 22374/22374

houses 7.45 52.41 900/23492 12313/23492
roads 0.00 100.00 0/19582 19582/19582
trees 0.16 67.60 12/22562 15252/22562
grass 84.03 97.60 2246/17784 17357/17784
field 1 95.38 93.33 36290/26372 24614/26372
field 2 80.05 0.73 72062/18096 133/18096
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