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Dedicated to Michel



But, sure, the sky is big, I said;

Miles and miles above my head;

So here upon my back I’ll lie

And look my fill into the sky.

And so I looked, and, after all,

The sky was not so very tall.

The sky, I said, must somewhere stop,

And – sure enough! – I see the top!

The sky, I thought, is not so grand;

I ’most could touch it with my hand!

And reaching up my hand to try,

I screamed to feel it touch the sky.

I screamed, and – lo! – Infinity

Came down and settled over me;

Forced back my scream into my chest,

Bent back my arm upon my breast,

And, pressing of the Undefined

The definition on my mind.

excerpt from “Renascence”

Edna St. Vincent Millay (1892 – 1950)
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Zusammenfassung

In den letzten zwei Jahrzehnten hat die Bedeutung der Geoelektrik in einer Vielzahl

ingenieur- und umweltwissenschaftlicher Fragestellungen zur Untersuchung des ober-

flächennahen Untergrundes stark zugenommen. Der Erfolg der Geoelektrik kann weitest-

gehend auf die Verfügbarkeit (i) moderner Multielektrodeninstrumente, (ii) effizienter

zwei- und dreidimensionaler Inversionsprogramme sowie auf (iii) vor kurzem vorgestellte

neuartige Techniken zur Optimierung von Meßstrategien zurückgeführt werden. Obwohl

die Forschung in den drei genannten Gebieten erstaunliche Fortschritte erzielt hat, gibt

es noch erheblichen Weiterentwicklungsbedarf. Dies ist vor allem an der Tatsache erkenn-

bar, dass trotz des Einsatzes hochmoderner Aufzeichnungs- und Modellierungstechniken

die Messung und Verarbeitung großer geoelektrischer (3D) Datensätze immer noch sehr

anspruchsvoll und aufwendig ist.

Parallele Datenakquisitionen, bei denen zwei Elektroden als Stromquelle beziehungs-

weise -senke dienen und alle übrigen Elektroden Potentialdifferenzen bezüglich einer Re-

ferenzelektrode messen, haben sich als sehr erfolgreiche Option zur Beschleunigung geo-

elektrischer Messungen erwiesen. Aufbauend auf einem zuvor am Institut für Geophysik

an der ETH Zürich entwickelten und konstruierten experimentellen Meßsystem (ETH-

DCMES ) wurde im Rahmen dieser Doktorarbeit ein neues intelligentes Multielektroden-

Meßsystem entwickelt. Dieses ermöglicht im Vergleich zur vorhergehenden Apperatur die

parallele Aufzeichnung geoelektrischer Meßdaten in einer sehr viel effizienteren Art und

Weise. Die dazu notwendigen Modifikationen und Neuentwicklungen betrafen in der

Hauptsache die verwendeten Datenlogger (im Folgenden als “DAUs” bezeichnet). Diese

wurden so modifiziert, dass aufgezeichnete Potenzial-Wellenformen direkt auf ihnen ana-

lysiert werden können. Damit entfällt das zeitaufwendige Übertragen der Wellenformen

von den DAUs über den digitalen Datenbus auf den Feldcomputer. Um den Einsatz des

Meßsystems in schwer zugänglichen Gebieten zu ermöglichen, wurde die zuvor verwende-

te sperrige und schwere Stromquelle (einschliesslich der von ihr benötigten Spannungs-

versorgung) durch eine neu entwickelte, kompakte und batteriegespeiste Stromquelle er-

setzt. Zusätzlich wurden zur allgemeinen Verbesserung der Robustheit und Flexibilität

der Meßapperatur weitere technische Modifikationen umgesetzt. Neben den Verbesse-

rungen an der Hardware wurden die verwendeten Meßprozeduren optimiert sowie eine

flexible und einfach zu verwendende Meßsoftware implementiert. Letztere ermöglicht das
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Ansteuern der Meßapperatur auch von Nicht-Fachleuten.

Innerhalb dieser Arbeit wurde ein neues 2.5D/3D Tomographieprogramm entwickelt,

das im Vergleich zu den in der geoelektrischen Literatur publizierten Algorithmen einige

Neuentwicklungen beinhaltet. Der eingesetzte Vorwärts-Löser basiert auf der Finite-

Element-Technik und verwendet unstrukturierte Gitter, die es erlauben, beliebige Topo-

graphien in der Modellierung zu berücksichtigen. Eine neuartige Technik zur Beseitigung

der in den geoelektrischen Lösungen auftauchenden Singularitäten wurde entwickelt.

Diese basiert auf einer schnellen Multipol-Randelementmethode und ermöglicht die Be-

seitigung der Singularitäten für Modellgeometrien mit signifikanter Topographie. Um die

Unzulänglichkeiten klassischer Randbedingungen zu umgehen und gleichzeitig Artefak-

te, die durch die künstlichen Ränder des Rechengebietes entstehen, zu vermeiden, kamen

sogenannte Infinite Elemente zum Einsatz. Diese erlauben effektiv eine Verschiebung der

Ränder des Rechengebietes ins “Unendliche”, wo der Betrag des Potentials als verschwin-

dend angenommen werden kann. Die Inversions-Prozeduren wurden im Hinblick auf sehr

große Datensätze optimiert. Dies wurde durch eine sequentielle Akkumulierung der Nor-

malengleichung innerhalb der jeweiligen Iterationen des Gauss-Newton Lösers realisiert.

Der einzig limitierende Faktor bezüglich des Hauptspeichergebrauchs während einer Da-

teninversion ist damit die Anzahl der verwendeten Modellparameter. Um eine optimierte

(d.h. auf die Auflösungsfähigkeit des zu invertierenden Datensatzes angepasste) Modell-

parametrisierung zu erhalten, werden die finiten Elemente der Vorwärtsdiskretisierung

in Cluster gruppiert. Zwei verschiedene Algorithmen, die ein derartiges Clustering auf

2D/3D Diskretisierungen erlauben, wurden entwickelt. Die Performanz des tomographi-

schen Inversionsprogramms wurde erfolgreich anhand von synthetischen und gemessenen

2D und 3D Datensätzen getestet.

Neuere in der geoelektrischen Literatur publizierte Weiterentwicklungen in der se-

quentiellen Optimierung von Meßstrategien haben vielversprechende Ergebnisse erbracht.

Es hat sich jedoch herausgestellt, dass die sequentielle Optimierung von Meßstrategien

für geoelektrische Feldstudien mit mehr als 50 Elektroden nicht effizient genug ist. Zudem

benötigen die vorgestellten Verfahren a priori Informationen über die Leitfähigkeitsver-

teilung des Untergrundes und berücksichtigen weder Datenfehler noch die Möglichkeit

moderner Meßapperaturen, Daten parallel aufzuzeichnen. Aus diesen Gründen habe ich

eine neue Optimierungsstrategie entwickelt, die (bezogen auf die lineare Unabhängig-

keit einzelner Meßkonfigurationen zueinander) auf dem Konzept von vollständigen bzw.

Basis- Datensätzen beruht. Aus diesen Basisdatensätzen können durch lineare Super-

position Meßwerte zu beliebigen Elektrodenkonfigurationen synthetisiert werden. Dies

erlaubt die Rekonstruktion sogenannter “umfassender” Datensätze, die verbesserte To-

mographieergebnisse liefern. Notwendig für die vorgestellte Strategie ist lediglich die

Aufzeichnung von Basisdatensätzen, die in der Regel eine recht kleine Anzahl an Mes-

sungen umfassen und daher effizient gemessen werden können. Unter der Annahme einer
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rauschfreien Datenaufzeichnung lassen sich diese Datenrekonstruktionen ohne weiteres

auf sowohl Vier- (“bipole-bipole”) als auch Drei-Punkt (“pole-bipole”) Elektrodenda-

tensätze anwenden. Unter Berücksichtigung realistischer Datenfehler führen rekonstru-

ierte Vier-Punkt Messungen jedoch – wie zu erwarten ist – zu instabilen Ergebnissen,

hervorgerufen durch den Prozess der Superposition, der in diesem Fall bis zu sechs Ein-

zelmessungen umfasst. Im Gegensatz dazu konnte gezeigt werden, dass die Rekonstrukti-

on von umfassenden Drei-Punkt (pole-bipole) Datensätzen aus verrauschten Drei-Punkt

Basisdatensätzen sinnvoll ist, da für eine derartige Rekonstruktion lediglich je zwei Meß-

werte des Basisdatensatzes linear kombiniert werden. Die Zweckmäßigkeit dieser pole-

bipole Datenrekonstruktionen konnte anhand von Tomographie-Ergebnissen basierend

auf synthetischen und gemessenen Datensätzen erwiesen werden.

Zusammengenommen erlauben die instrumentellen Weiterentwicklungen, die neuarti-

gen Modellierungs- und Inversionsalgorithmen sowie die neue Meßstrategie eine schnelle

und effiziente Aufzeichnung und Verarbeitung sehr großer Meßdatensätze. Im Beson-

deren können die für die Meßstrategie verwendeten vollständigen Datensätze mit voll

parallelisierten Meßsystemen (wie die ETH-DCMES-II eines darstellt) sehr effizient auf-

gezeichnet werden. Die aus den Datenrekonstruktionen resultierenden sehr großen Da-

tensätze können mit Hilfe des neuen Tomographieprogramms effektiv invertiert werden.

Es ist vor allem die Kombination der hier vorgestellten Weiterentwicklungen, die einen

konstruktiven Beitrag hin zur routinemäßigen Anwendung großskaliger geoelektrischer

3D-Feldmessungen leistet.





Abstract

Over the past two decades the geoelectric method has played an increasingly important

role in a wide range of engineering and environmental applications related to the char-

acterization of the shallow subsurface. The success of the method can be attributed to

the availability of (i) fast multi-electrode data acquisition systems, (ii) efficient 2D and

3D resistivity inversion programs and (iii) recently proposed novel experimental design

techniques. Remarkable developments in all these three aspects have been reported, but

there is still a need for further improvements – even with state-of-the-art technology it

is still a challenging task to acquire and process large-scale 3D data sets.

A powerful option for speeding up geoelectric data acquisition is that of parallel

measurements, whereby two electrodes act as current source and sink, another elec-

trode is employed as a reference potential and all the remaining electrodes measure the

voltage differences with respect to the reference electrode. Building on an earlier exper-

imental system designed and constructed in the Institute of Geophysics at ETH Zürich

(ETH-DCMES ) a new, smart multi-electrode acquisition system has been developed

(ETH-DCMES-II ) as part of this thesis research. It allows the parallel data collection

task to be performed in a superior and more efficient manner. The most important

modification concerns the individual data acquisition units (“DAUs”). They were mod-

ified such that the voltage waveforms recorded can be analyzed directly on the DAUs,

which avoids the time-consuming download of the voltage waveforms over the serial data

bus to the central computer. To allow the data acquisition system to be employed in

rugged or difficult terrains not accessible by vehicles, the original bulky current source

and its power supply were replaced by a newly developed light-weight and battery-driven

source. Additionally, several other technical improvements have been realized to increase

the overall system robustness and flexibility, as well as to ease the field handling. Be-

sides improving the acquisition hardware, the measurement procedures were optimized.

Finally, versatile and easy-to-use controlling-user software was written, that allows non-

specialists to operate the system. With all these modifications ETH-DCMES-II is now

ready to be employed in large-scale 3D surveys including roll-along strategies.

A new 2.5D/3D tomographic inversion program has been developed that includes
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several significant improvements over the algorithms presented in the recent literature.

My numerical forward modeling scheme is based on a finite element approach using

unstructured domain discretizations, which allows arbitrary topography to be easily

incorporated. A novel singularity removal scheme, based on a multi-pole boundary

element method, was developed that facilitates application of the singularity removal

technique also in the presence of significant topography. To suppress artifacts from the

artificial ground boundaries at the edge of the finite computational mesh, and overcome

the limitations of conventional mixed boundary conditions, an infinite element scheme

was implemented. It effectively places the artificial boundaries at infinity where the

potential can be taken to be zero. The inversion procedure was optimized to allow

very large data sets to be inverted. This was achieved by sequentially accumulating the

normal equations during each iteration of the Gauss-Newton inverse solver. The only

limiting constraint in terms of computer memory is the number of model parameters.

Therefore, two novel clustering algorithms were developed that allow the finite element

blocks to be merged (clustered) into larger inversion blocks without degrading the actual

resolution capabilities of the data. The overall performance of the tomographic inversion

program was successfully tested on synthetic and observed 2D and 3D data sets.

Recent developments reported in the literature of sequential experimental design for

identifying optimized sets of electrode configurations have shown promising results, but

are inadequate for geoelectric experiments involving more than 50 electrodes. Further-

more, available experimental design procedures rely on an à priori subsurface model and

consider neither data errors nor parallelized recording capabilities. I have developed a

new experimental design strategy that is based on complete or basis data sets in terms of

linear independence, from which all other electrode configurations can be reconstructed

by superposition. This yields comprehensive data sets which offer not only some degree

of redundancy but also improved inversion capability. The strategy requires only that

complete data sets be measured (not the comprehensive data set), which are usually

quite small. For noise-free data, this scheme is applicable to both four-point (bipole-

bipole) and three-point (pole-bipole) data sets. In the presence of noise, reconstructing

four-point configurations leads to unstable results, caused by large errors accumulating

during the superposition procedure (involving the algebraic addition of up to 6 basis con-

figurations). By contrast, reconstruction of a comprehensive three-point data set from

an error-contaminated three-point complete data set is successful because it involves

the addition of only two basis configurations. The usefulness of inverting reconstructed

three-point data sets is demonstrated with both synthetic and observed (field) data.

The instrumental developments, the new modeling and inversion procedures and the

novel experimental design approach allow very large data sets to be acquired and pro-

cessed quickly. In particular, the complete data sets required for the new experimental

design scheme can be recorded very efficiently with fully parallelized systems such as
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ETH-DCMES-II. Furthermore, the very large data sets resulting from the reconstruc-

tions can be handled efficiently by the new tomographic inversion program. Combined

application of all these developments is judged to be an important step towards routine

application of large-scale 3D geoelectric field surveys.





Chapter 1

Introduction

Detailed knowledge of the shallow subsurface is critical in a broad range of areas includ-

ing mineral exploration, geotechnical, hydrogeological and environmental investigations.

Among all the geophysical methods, electrical and electromagnetic (EM) techniques are

particularly useful for delineating and characterizing subsurface structures, because the

electrical properties of subsurface soils and rocks vary over a broad range.

Suitable geophysical methods for determining the subsurface resistivity distribution

can be classified by their frequency of operation and by the nature of the source signal.

Active methods utilize controlled sources with frequencies in the range of DC to a few

Hz for direct current resistivity methods (hereafter referred as geoelectrical methods) to

several kilohertz for inductive EM methods, to hundreds of MHz for ground-penetrating

radar. Passive EM methods use fields generated by natural phenomena (e.g. telluric

currents, self potentials) or man-made transmitters (e.g., radiomagnetotellurics).

In geoelectrical methods, DC to low-frequency (< 10 Hz) alternating currents are

injected into the ground through a pair of point electrodes and potential differences

are measured between another pair of electrodes. The resulting potential differences

provide information about the subsurface resistivity structures. Bulk resistivities of

earth materials relevant to environmental investigations can vary over many decades

(Figure 1.1). This is in striking contrast to other physical properties such as seismic

velocities, densities, and relative permittivities, which may vary from a few percent to

a factor of 10 (e.g. Keller and Frischknecht, 1966).

The main conduction mechanism in earth materials is electrolytic, involving ion

transport by dissolved salts distributed through a complex structure of interconnected

pores and fractures. Resistivities of igneous and metamorphic rocks are typically high

and largely depend on their porosity and permeability (i.e. their degree of fracturing).

Sedimentary rocks are usually much more conductive than igneous rocks. Their resis-

tivity is mainly controlled by the amount of water present, the salinity (free ions) of

the water, and the degree of interconnections between the pores. Clay content can also

contribute by providing an additional surface conductivity mechanism. Though often
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ignored in geoelectrical investigations, macroscopic anisotropy of sedimentary rocks may

occur due to small-scale petrophysical variations (e.g. variations in grain size and pore

space geometry) (Anderson et al., 1994).

Figure 1.1 – Typical range of electrical resistivities / conductivities of earth materials (after
Ward, 1990).

Until the late 1980s, geoelectrical imaging techniques suffered from laborious data

collection procedures and highly limited data processing and interpretation schemes.

Geoelectrical surveys were either limited to simple 2D profiling (or areal mappings in

3D) or vertical electrical soundings, using standard electrode arrays. For geoelectrical

profiling, a fixed configuration of injecting and measuring electrodes was moved over

the investigation area. This allowed maps of apparent resistivities to be produced, with

which lateral variations within a certain depth range could be delineated (e.g. Knödel

et al., 1997). The depth range was determined by the fixed electrode spacing used.

Vertical electrical sounding techniques trace back to the pioneering work by Conrad

Schlumberger in 1912 in Europe and, approximately at the same time, by Wenner in the

USA (Schlumberger, 1920; Kunetz, 1966). The method exploits the fact that the depth

of current penetration into the ground is usually proportional to the source electrode



1. Introduction 3

separation (Gish and Rooney, 1925). Varying the current electrode spacing therefore

provides information about changes of resistivities with depth. Interpretation of vertical

sounding data results in one-dimensional (1D) subsurface models (Stefanescu et al., 1930;

Langer, 1933). Prior to the availability of computer based interpretation techniques in

the 1970s (e.g. Gosh, 1971), 1D data interpretations were usually carried out in a trial

and error fashion using model curve matching.

Obtaining 2D or 3D subsurface images by combining mapping and vertical electri-

cal sounding techniques is problematic and often impossible, because of the non-linear

(model-dependent) current flow patterns. In the past, often a few vertical electric sound-

ings were carried out prior to an areal mapping survey to estimate appropriate electrode

spacings (e.g. Zhody et al., 1973), but this did not allow reliable 2D or 3D resistivity

models to be established.

With the rapidly emerging 2D and 3D imaging capabilities of the seismic method

(e.g. Yilmaz, 2001) and because of the instrumental and interpretational limitations

discussed above, the geoelectrical method lost popularity and stagnated until the mid

1980s. This changed drastically with the introduction of two new developments, namely

the introduction of multi-electrode arrays (e.g. Griffiths and Turnbull, 1985; Griffiths

et al., 1990) and the availability of commercial 2D and 3D tomographic inversion algo-

rithms (e.g. Loke and Barker, 1996b,a). These developments largely eliminated the most

severe deficiencies and resulted in a renaissance of the geoelectric method such that it is

today the method of choice for many near-surface (uppermost 100 m) applications (e.g.

Binley et al., 1997; Van et al., 1991; Olivar et al., 1995; Buselli and Lu, 2001; Yaramanci,

2000; Weller et al., 2000; Slater and Reeve, 2002).

1.1 Multi-electrode data acquisition systems

One of the main advantages of the geoelectrical method is the conceptually simple field

equipment required for surveying. Figure 1.2 shows a basic resistivity measurement set-

up, as it was commonly employed prior to the introduction of multi-electrode systems.

The basic equipment consists of a current source (e.g. a battery pack), a sensitive

voltmeter to measure the voltage response of the subsurface, metal stakes (electrodes)

and cables to connect the electrodes to the source and the voltmeter. Instead of a

pure direct current source, like a battery pack, low-frequency square-wave (commutated

DC) or sinusoidal alternating source signals are commonly employed to suppress the

effect of electrode polarizations and natural or artificial SP currents fluctuating in the

subsurface (Christensen, 1989). Typical frequencies are usually in the few Hz range

to avoid electromagnetic coupling of the injecting electrodes with the wires connecting

them to the resistivity instrument. Also, the theory of the resistivity method is based

on direct current and at frequencies above (say) 10 Hz inductive effects would have to
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Figure 1.2 – Basic set-up for DC-resistivity measurements using four electrodes (after Robin-
son and Coruh, 1988).

be taken into account. The voltmeter used to measure the voltage signals must have a

high input impedance (> 10 MΩ) and should be equipped with notch filters for 50Hz

power-line rejection (Knödel et al., 1997). To estimate resistance values, it is necessary

to precisely measure the amplitudes of the source signal injected into the ground.

Manual data acquisition with four metal stakes, as displayed in Figure 1.2, requires

the electrodes to be placed in the ground and moved manually for each consecutive

measurement. This time-consuming and thus expensive approach is impractical for 2D

and 3D field surveys. This motivated the development of multi-electrode systems, with

which many different measurements can be performed in an automated fashion. The

first multi-electrode systems, proposed in the early 1980s, required manual switching of

the electrode configurations (Barker, 1989). Due to the rapidly evolving electronics in-

dustry and inspired by research in medical resistivity imaging, microprocessor-controlled

systems with automatic quality control soon became available (e.g. Dahlin, 1989).

The different systems proposed (see Stummer et al., 2002, for a more extensive discus-

sion) can be subdivided into two main categories – centralized and distributed systems.

Centralized multi-electrode systems employ a central unit that houses most or all of the

system electronics and which may be controlled by an external field computer. Analog

voltage signals measured at groups of electrodes (usually 20 or more) are transmitted

through multi-core cables to the central unit where analog-to-digital conversion takes
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place. The central unit contains a multiplexer and a relay switching component that

allows arbitrary electrode configurations to be measured.

Centralized multi-electrode systems are usually low-cost, robust and easy to han-

dle in the field. However, their heavy and expensive multicore-cables carry source and

measured signals at the same time, which may lead to cross-talk (EM pickup) along

the wires unless adequate shielding is provided. Furthermore, the system is suscepti-

ble to ambient electromagnetic noise due to the overall length of the cables employed.

Though centralized multi-electrode systems are in principle capable of acquiring arbi-

trary electrode-configurations, most systems (and their controlling software) continue

to be based on classical electrode configurations (e.g., Wenner, Schlumberger, etc.). Fi-

nally, the number of channels of centralized systems is generally limited to a few tens,

thereby limiting the acquisition speed in parallel recording mode.

Popular commercial instruments that follow the centralized system design are the

Syscal Switch-24/Switch-48 (Iris Instruments, France), the GeoTom Res/IP (GeoLog-

2000, Germany) and the GMS 125A/150 (GeoSys, Germany). Some systems, for exam-

ple the SAS 4000 Lund (ABEM Instrument AB, Sweden) and the Tomoplex (Campus

Ltd., United Kingdom), provide parallel measurement capabilities through an analog

multiplexer in combination with a single or by a number of parallel A/D converters.

Recently, FlashRes, a fully parallel system that allows swift data acquisition on up to 64

independent channels, was presented by Zhe et al. (2007). It is now being daisy-chained

into several hundred channels.

Distributed systems employ “smart” or active electrodes (see Figure 1.3). These

electrodes are equipped with data acquisition units (“DAUs”) that contain switching

relays and may also contain an A/D converter and a microprocessor. Communication

between the field computer and the DAUs is implemented using a digital data bus. Those

systems with A/D converters and microprocessors in the DAUs allow the measured

voltage signals to be transferred digitally to the central processing unit, thereby reducing

noise-pickup along the cables. An advantage of distributed systems is that they can be

operated with cables including only a few wires, which are less susceptible to cross-talk

(compared with the multi-core cables required for centralized systems). Furthermore,

they offer more flexibility in terms of expandability. Disadvantages, compared with

centralized systems, include the higher costs and their lack of suitability for use in cross-

borehole surveys or borehole-to-surface measurements, because the smart electrodes

cannot be placed in the corrosive and restricted confines of a narrow fluid-filled borehole.

An example of a distributed system without A/D converters in the DAUs is the

RESECS multi-electrode array offered by the German company DMT. A commercially

available fully distributed system with A/D converters and microprocessors in the DAUs

is the SIP-256 system from the “Deutsche Arbeitsgemeinschaft für SIP-Anwendungen”.

It supports up to 256 electrodes and allows acquisition of induced polarization data.
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field computer

smart electrodes

data acquisition system

Figure 1.3 – Basic set-up for DC-resistivity measurements using a modern fully distributed
data acquisition system (modified after Robinson and Coruh, 1988)

However, it lacks the ability to select separately the operational modes of the individual

electrodes. Stummer et al. (2002) presented a fully distributed data acquisition system

(“ETH-DCMES”) with arbitrary switching capabilities and support for parallel data

acquisitions with a very large number of electrodes. The system was designed for 3D

real-time experimental design involving a large number (several hundreds) of surface

electrodes.

Conceptually, the ETH-DCMES system, proposed by Stummer et al. (2002), in-

cluded all the necessary features for efficient 3D data acquisition, but field tests revealed

a number of shortcomings that limited the practicality of the system. In particular, the

serial transfer from the individual DAUs to the central computer slowed down the data

acquisition significantly. Furthermore, the entire system was very bulky and heavy, such

that it was not usable in remote areas. Finally, the system suffered from several minor

technical problems that precluded smooth data acquisition.

1.2 2D and 3D modeling and inversion techniques

The multi-electrode systems proposed in the early 1980s allowed efficient acquisition of

geoelectrical data sets that could be suitable for constraining 2D or even 3D subsurface

structures. This required new data analysis tools that went beyond the qualitative inter-
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Figure 1.4 – Example tomogram result obtained by the first 2D geoelectric inversion approach
reported in the literature (Tripp et al., 1984). The inversion procedure required a pre-defined
model geometry with a few model cells whose resistivity values were varied.

pretation of geoelectrical mapping and curve matching approaches employed for vertical

electrical soundings. For data sets collected along profiles, pseudo-sections (e.g. Hallof,

1957) offered limited 2D interpretation opportunities, but they were clearly inadequate

for investigating complex subsurface structures, as typically found in the uppermost

100m.

With the increasing popularity of digital computers, interactive modeling to fit,

by trial and error, the observed resistivity profiles and soundings were first attempted

with only limited success. What was needed were automatic methods for adjusting the

model parameters. Tomographic inversions were considered as a possible tool for this

purpose. Tripp et al. (1984) developed one of the first non-linear 2D inversion techniques

based on a transmission surface analogy for the forward response (Pelton et al., 1978).

Their inversion procedure required a pre-determined model geometry with a few cells

whose resistivity values were varied during the inversion process to match the measured

and predicted data. The resulting tomograms represented very crude approximations

to the true subsurface resistivity structure (Figure 1.4). Furthermore, a trial-and-error

process was required to find appropriate model geometries. These procedures were time-

consuming, difficult to implement and to apply, and were likely influenced by subjective

judgments.

The first three-dimensional inversion schemes were published by Park and Van (1991);

Ellis and Oldenburg (1994); Zhang et al. (1995). These algorithms received a lot of at-

tention among the specialists, but it was the commercial software packages RES2DINV/

RES3DINV (Loke and Barker, 1996b,a) that made tomographic inversions popular to

a wider audience. To date, there exist several commercial and non-commercial tomo-

graphic inversion codes which allow non-specialists to perform 2D and 3D inversions.

The most recent example is the open source package presented in (Günther et al., 2006)

(see also Figure 1.5).

Since the publication of the early tomographic inversion programs, many significant

technical improvements have been achieved. Most of them are concerned with the nu-
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Figure 1.5 – 3D inversion result from a buried waste site including slag material from steel pro-
duction (from Günther et al., 2006). The dump material is characterized by low resistivities
(blue) and the more resistive material (red) may be indicative for hardpan development.

merical modeling algorithms that are required to predict the geoelectrical response for

a given resistivity model. The majority of the early inversion codes were based on finite

difference modeling algorithms (Dey and Morrison, 1979b,a; Spitzer, 1995; Weller et al.,

1996). These techniques relied on structured grids, which could be computationally

wasteful and made implementation for an arbitrary surface topography very difficult.

Moreover the grid had to be very dense surrounding the source. These disadvantages

could be largely overcome with finite element algorithms as proposed by Coggon (1971);

Pridmore et al. (1981); Sasaki (1994); Zhou and Greenhalgh (2001); Li and Spitzer

(2002); Pain et al. (2002); Günther et al. (2006). Another technique proposed is the

boundary element method that is suitable for a modeling domain with arbitrary topog-

raphy, but with a very simple structure within the domain (Hvozdara and Kaikkonen,

1998; Xu et al., 1998; Ma, 2002; Xu et al., 1998).

Recently, Zhou et al. (2009) presented a novel 2.5D/3D forward solver based on

Gaussian quadrature grids. The method is similar to the spectral element method

(Patera, 1984) but does not require an element mesh. Further, recent developments with

regard to numerical forward modeling of geoelectrical data concern the incorporation of

anisotropy (Herwanger et al., 2004; Pain et al., 2003; Li and Spitzer, 2005; Zhou et al.,

2009; Greenhalgh et al., 2009).

The (numerical) singularity at the current injection point(s) is a problem for which

the finite difference method in particular, and to a lesser extent, the finite element

method suffer. Lowry et al. (1989) and Zhao and Yedlin (1996) proposed singularity

removal techniques, with which this problem could be reduced significantly. However,
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application of this technique required calculation of the electrical potential for a homoge-

nous subsurface model to be known analytically, which is not possible in the presence

of topography.

Another problem that turned out to be problematic concerns the artificial ground

boundaries. They have to be applied for keeping the dimension of the numerical model

finite. Popular choices include Dirichelet or mixed-boundary conditions (Dey and Mor-

rison, 1979a), but their performance has proven to be not optimal when the electrical

potentials were still significant near the artificial ground boundaries.

1.3 Experimental design

The developments of efficient multi-electrode arrays together with advances in model-

ing and inversion techniques have given the geoelectrical method a massive boost in

capability and popularity. However, there was a persistent inadequacy in the method-

ology that prevented the full potential of this geophysical technique from being fully

exploited. Although modern multi-electrode arrays allow arbitrary electrode configura-

tions to be measured, the vast majority of the studies found in the literature employ

only traditional configurations such as Wenner, dipole-dipole, or Schlumberger. These

configurations were originally developed to allow efficient data acquisition with simple

four electrode systems, but it remained unclear if these configurations are optimal in

the sense of the data information content offered to 2D and/or 3D inversion algorithms.

The initial approaches to quantifying the resolving power of electrode configurations

were based on sensitivity studies. Sensitivities describe changes in the geoelectrical

data for a given electrode configuration caused by a small perturbation of the resistivity

model. If the changes of the data are small, this implies that they do not offer significant

information for constraining the perturbed subsurface region. Evjen (1938) studied

analytical sensitivities based on 1D layered models to assess the influence of model

parameters on individual measurements. His research led to the definition of depth

of investigation that was used to judge the vertical resolution of individual electrode

configurations (Roy and Apparao, 1971; Roy, 1972, 1978).

With the advent of 2D and 3D investigations, sensitivity computations for arbi-

trary subsurface structures and arbitrary electrode configurations were required. Barker

(1979) made the first attempt with sensitivity studies in 2D, but only in an approximate

way (it was based on updating from a homogeneous model). McGillivray and Olden-

burg (1990); Spitzer (1998); Zhou and Greenhalgh (1999) and Greenhalgh et al. (2009)

presented efficient schemes for computing general 2.5D and 3D sensitivities. Examples

of sensitivity patterns for different electrode configurations are shown in Figure 1.6.

Large sensitivities are a necessary but not sufficient requirement for obtaining reliable

subsurface images. The individual sensitivity patterns obtained for the various electrode
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Figure 1.6 – Examples of 2D sensitivity distributions of a homogenous half-space for differ-
ent arrays: (a,b) pole-pole; (c,d) pole-dipole; (e,f) dipole-dipole ABMN; (g) asymmetric
Schlumberger; (h) symmetric Schlumberger; (i,j) dipole-dipole AMBN; (k,l) Wenner (mod-
ified after Friedel, 2000)

.

configurations contained in a data set have to complement each other appropriately.

This can be quantified using tools from linear inversion theory, for example the model

resolution matrix (e.g. Menke, 1984). A related measure that is less expensive to be

computed is the depth of investigation index (DOI) as proposed by Oldenburg and Li

(1994).

Studying the properties of individual electrode configurations using sensitivities, and

appraising the quality of the tomographic images using the model resolution matrix or

the DOI provided useful insights into the information content of geoelectrical data, but
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it still remained unclear, if the traditional configuration were optimal, or if better survey

layouts exist.

The first attempt to tackle this problem in geophysics was made by Cherkaeva and

Tripp (1996). They based their approach on earlier work in the biomedical field of

impedance tomography (Gisser et al., 1988). They proposed electrode configurations,

with which optimized current density patterns could be achieved. Other scientists have

made attempts to find optimized survey layouts by only considering the sensitivities

(e.g. Furman et al., 2004).

Following earlier ideas from Barth and Wunsch (1990); Maurer and Boerner (1998);

Curtis (1999) Maurer et al. (2000) proposed statistical experimental design, which pro-

vided a more general framework for identifying optimized survey layouts. The early

implementations of statistical experimental design were based on global optimization

schemes, such as genetic algorithms, but it was realized that this would be computation-

ally prohibitive for realistic geoelectrical applications including several tens of electrodes

and several hundreds of model parameters. Therefore, Stummer et al. (2004) proposed

a sequential design strategy, where suitable electrode configurations were successively

added to an initial data set until the desired model resolution was achieved. An ex-

ample of the performance of this scheme is shown in Figure 1.7. The true resistivity

model is displayed in Figure 1.7a. It is assumed that 30 electrodes with 5 m spacing

are available at the surface. If all possible electrode configurations would be used for a

tomographic inversion (roughly 80,000 measurements), the tomographic image shown in

Figure 1.7b would be obtained. If only Wenner (Figure 1.7c), dipole-dipole (Figure 1.7d)

or both Wenner and dipole-dipole (Figure 1.7e), would be considered, the tomographic

images would be clearly inferior compared with the optimal tomogram in Figure 1.7b.

If suitable electrode configurations would be selected using the algorithm of Stummer

et al. (2004), the tomograms shown in Figures 1.7f to 1.7j would be obtained. Using

the same number of optimized measurements as for the combined Wenner/dipole-dipole

data set (Figure 1.7f) leads already to a superior image (compared with Figure 1.7e).

With roughly 1,000 measurements (Figure 1.7h), the image quality becomes comparable

to Figure 1.7b. Adding further data results only in minor improvements (Figures 1.7i

and 1.7j).

The method of Stummer et al. (2004) received a lot of attention and triggered sev-

eral other studies. For example, Wilkinson et al. (2006) extended and improved the

method of Stummer et al. (2004), and Coscia et al. (2008) adapted the technology for

geoelectrical crosshole applications.

Although the performance of sequential experimental design, as proposed by Stum-

mer et al. (2004); Wilkinson et al. (2006), is impressive, there are several significant

limitations that remain to be resolved. The first problem concerns the number of elec-

trodes available and the resulting large number of possible electrode configurations. The
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Figure 1.7 – Example of sequential experimental design (modified from Stummer et al.,
2004). a) shows the true resistivity model and b) displays the tomogram that would be
obtained using all possible configurations. c) to e) show tomograms obtained with Wenner,
dipole-dipole and Wenner + dipole-dipole configurations. f) to j) show tomograms for the
optimized data sets. Numbers denoted on the tomograms indicate the number of electrode
configurations employed.

latter roughly scales with n4, where n is the number of electrodes (Xu and Noel, 1993).

If n exceeds 50, the algorithms of Stummer et al. (2004); Wilkinson et al. (2006) become

impractical.

A second problem that was not fully addressed by Stummer et al. (2004); Wilkin-

son et al. (2006) concerns the influence of data noise. In their experimental algorithms

they preselected those configurations from the comprehensive data sets, whose geomet-

rical factors were below a given threshold, thus rejecting configurations with likely small

voltages (and hence possibly captured by noise). This ensured that only reliable con-
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figurations were considered during the design stage, but no individual weighting factors

were associated with the different configurations.

Finally, sequential experimental design requires an à priori subsurface resistivity

model for which the model parameter sensitivities are computed. If the true subsurface

structures deviate from the à priori model, non-linear effects may degrade the quality of

experimental design. Stummer et al. (2004) and Wilkinson et al. (2006) demonstrated

for a particular class of models that these non-linear effects are surprisingly small, but

it would be nevertheless advantageous to have a design strategy at hand that is inde-

pendent of our prior subsurface knowledge.

1.4 Motivation and outline of the thesis

As discussed in the preceding subsections, major advances of the geoelectrical method

have occurred during the past few years. State-of-the-art instruments allow acquisi-

tion of large data sets in an almost automated fashion, forward modeling and inversion

algorithms facilitate tomographic inversion analyses of 3D data sets collected in areas

with pronounced topography and complex subsurface structures, and experimental de-

sign techniques have been developed for identifying data sets that provide maximum

subsurface information at minimal costs.

It is the ultimate goal to collect efficiently large 3D data sets that provide maximum

subsurface information and which can be analyzed almost in real time. Despite all the

progress in the recent past, this goal has not yet been achieved. I have identified 3

critical issues, where further research would be particularly beneficial.

1. Acquiring large 3D data sets requires a multi-electrode array that can handle a

large number of electrodes and that is capable of performing fully parallelized mea-

surements. The ETH-DCMES system introduced by Stummer et al. (2002) has the

potential to fulfill these criteria, but it suffers from several technical shortcomings

that need to be improved.

2. In the presence of pronounced topography, the finite element method has been

identified to be the most suitable option for numerical forward modeling of geo-

electrical data. Furthermore, singularity removal has proven to be a very useful

technique for improving the numerical accuracy. Combining finite element mod-

eling and singularity removal in the presence of topography has not yet been

implemented satisfactorily. Furthermore, the performance of the artificial ground

boundary conditions continues to be problematic. Finally, appropriate model pa-

rameterization and inversion of large-scale data sets involving several hundred

thousand measurements is still an extremely challenging task.
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3. Sequential experimental design techniques, as introduced by Stummer et al. (2004)

and further improved by Wilkinson et al. (2006), allowed the information content

of geoelectrical data to be exploited in an optimal fashion, but their algorithms

become impractical, when the numbers of electrodes becomes large. This requires

new strategies to be devised.

In the second chapter of my thesis, I will describe the numerous improvements of

the ETH-DCMES system that were implemented in the course of my project, followed

by a few field examples that demonstrate the superior performance of the new system.

Chapter 3 includes the description of a novel numerical forward modeling algorithm

that combines unstructured (adaptive) mesh finite element modeling and singularity

removal in the presence of topography. Furthermore, I will demonstrate the benefits of

infinite elements, a technique that has not yet been applied in geoelectrical modeling

but is popular in civil and mechanical engineering. Development and implementation of

2.5D and 3D tomographic inversion algorithms are the topic of chapter 4. I will show by

means of synthetic and field data examples that my new algorithm is highly versatile and

capable of inverting swiftly very large data sets on a standard workstation. In chapter

5, I will present a novel experimental design concept that takes advantage of the parallel

recording capabilities of the improved version of ETH-DCMES. Its performance will

be demonstrated with synthetic and field examples. In the concluding chapter I will

summarize the achievements of my project and I will outline fruitful avenues of future

research.



Chapter 2

ETH DCMES II - A new

distributed, smart multi-electrode

resistivity acquisition system

2.1 Introduction

Implementation of experimental design concepts to geoelectric field surveys demands

a sophisticated data acquisition system. Key requirements are (i) software-controlled

selection of arbitrary electrode configurations, (ii) fast parallel scans involving up to

hundreds of simultaneously recording electrodes and (iii) digital recordings of the full

waveform data. The new data acquisition system presented in this chapter is based on

the previously developed fully distributed data acquisition system (“ETH-DCMES”) by

Stummer et al. (2002). In the following, I briefly outline the main features of the ETH-

DCMES and subsequently give details on the technical developments and improvements

that have been incorporated into the new system – ETH-DCMES-II.

ETH-DCMES

At the time the ETH-DCMES was developed, only one of the commercially avail-

able systems, the SIP-256 system from the “Deutsche Arbeitsgemeinschaft für SIP-

Anwendungen” (Schleifer, 2002), was identified as appropriate for implementing key

experimental design aspects. However, it lacked the ability to select separately the op-

erational modes of the individual electrodes. Consequently, it was decided to build a

new data acquisition system to satisfy all scientific and technical requirements (Stum-

mer, 2003).

In general, multi-electrode system designs fall into two main categories – centralized



16 2. ETH DCMES II - A new distributed, smart multi-electrode resistivity acquisition system

DAU

1

DAU

2

DAU

3

DAU

30

DAU

31

DAU

32

DAU

33

DAU

34

DAU

61

DAU

62

DAU

94

DAU

95

DAU

96

DAU

123

DAU

124

DAU

63

DAU

64

DAU

65

DAU

92

DAU

93

24 VDC
Power Supply

Amplifier

#1

#2

#3

#4

DAC-Board

X1

X2

X4

X3

X5

Out

X7

X6

X14

X13

X12

X11

Interface Box

X10

} RS-485

Ports

In

Field Bus Field PC

Uninterruptible
Power
Supply (UPS)

} 220 VAC

Out

to 220 VAC

Generator

Reference Cable

Electrodes

220 VAC In

24 VDC Out

#1

#2

#3

#4

Electrode Cables
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DCMES (after Stummer, 2003). Communication between the daisy-chained data acqui-
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signal and enhanced through a power amplifier are fed into the electrode array through the
interface-box.



2. ETH DCMES II - A new distributed, smart multi-electrode resistivity acquisition system 17

and distributed systems. Extensive examination of system designs available at the time

the ETH-DCMES was developed (2001) revealed that only distributed systems allow

fast parallel data acquisitions with arbitrary electrode configurations to be carried out

(Stummer, 2003). Consequently, the ETH-DCMES was designed to be fully distributed

such that each smart electrode incorporates its own data acquisition unit (DAU, Figure

2.5(a)). An internal switching matrix allows each DAU to be configured either as a

current source, current sink, voltage reference, or measuring device. Signals from the

electrodes are fed into 24 bit AD converters with very high input impedances (> 1 GΩ).

Initial field tests of the ETH-DCMES revealed that the actually achievable resolution

in the presence of ambient electromagnetic noise is about 20 bit. It is primarily limited

by the ambient noise and not by the system itself.

Figure 2.1 shows a schematic layout of the data acquisition system. Communication

between the daisy-chained DAUs and a field notebook computer is handled via a bi-

directional RS-485 data bus and an interface-box (IFB). The RS-485 data bus consists

of four wires within a single cable; a separate coaxial cable carries the reference signal. A

field notebook not only serves as a control unit for the DAUs, but also generates arbitrary

source signals using a digital–to–analog converter. The source signal is enhanced through

a class A power amplifier, routed through the IFB, where a dedicated DAU precisely

determines the input current, which is then fed into the electrode array. The instrument

design of the ETH-DCMES allows parallel recordings to be carried out, where one or

two DAUs are used to inject the source current and all remaining DAUs are measuring

with respect to a single DAU that acts as a reference unit. After data acquisition is

completed, the DAUs connect to the data bus to enable transfer of the acquired voltage

time series. A unique feature of the DAUs are their internal rechargeable batteries, that

allow them to operate independently. The batteries are recharged by a 24 V DC source

concurrently while the data transfer to the field notebook takes place (further technical

details of the system are given in Stummer (2003)). Extensive field tests by Stummer

et al. (2002) and Akeret (2003) revealed several deficiencies of the ETH-DCMES :

• impractical handling of the components (due to their overal weight and size)

• limited expandibility of the system (limited by the number of available PC extension

slots in the employed field computer)

• complicated field handling of the DAUs

• insufficient internal battery capacity of the DAUs

• a high failure rate of the DAUs (due to issues with their internal switching matrix)

• the necessity for manual amplifier gain adjustements
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• an unsatisfactory performance in the parallel recording mode (due to the long time

required to transfer full waveforms back to the field computer)

2.2 Further developments and improvements imple-

mented in the ETH-DCMES-II

2.2.1 A lightweight arbitrary waveform adjustable current source

UPS

Power Amplifier

(a)

27 cm

power

 supply

source

 signal

digital

 signal

(b)

Figure 2.2 – (a) Bulky laboratory amplifier used for the current source in the ETH-DCMES
and (b) the newly developed lightweight battery-driven current source employed in the
ETH-DCMES-II. The laboratory amplifier required power from a generator buffered by a
weighty uninterruptible power supply (UPS). The new current source reduces the overall
weight of the central components from more than 100 kg down to about 15 kg.

Despite an extensive market research effort, no suitable battery-driven current source

could be found at the time the ETH-DCMES was designed (in 1998). Therefore, a bulky

laboratory-standard power amplifier had to be used to amplify the computer-generated

current waveform. The amplifier required power from a 220 V generator supported by

a heavy uninterruptible power supply (see Figure 2.2(a)). The combined weight and

size of these components hindered routine resistivity surveying with the ETH-DCMES.

Furthermore, field surveys in areas not accessible by vehicles where not feasible.

To improve the mobility of the ETH-DCMES, the amplifier was replaced by a newly

developed lightweight, battery-driven source thereby removing the need for the field
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generator and the uninterruptible power supply. As a beneficial side-effect, possible

electromagnetic noise pickup emitted by the field generator is avoided. The new current

source reduces the overall weight of the central components from more than 100 kg down

to about 15 kg (without the batteries).

Figure 2.2(b) shows a picture of the new current source. It consists of a data ac-

quisition board and a power amplifier. The digital source signal generated on the field

notebook is fed via a USB connection into the data acquisition board where digital-to-

analog conversion takes place. A power amplifier located in the source enhances the

signal by a fixed factor of 30. The signal is routed through the interface box into the

electrode array, and applied to the selected current pair (source and sink).

0

target current 

10 20 30 40 50

I 0
[m

A
]

U0 [V ]

20

0

40

60

80

100

Figure 2.3 – Sketch of the princi-
ple used to adjust the source signal
voltage amplitude to a given tar-
get current strength (e.g. 70 mA)
prior to any data acquisition.

The previous laboratory-standard power amplifier offered a precise control over the

current strength injected into the ground. By contrast, the power amplifier employed in

the new current source amplifies a given waveform by a constant factor (30). Therefore,

only the voltage amplitude but not the current strength of the source signal can be

specified. Depending on the earth resistance and the contact resistances at the source

electrodes, current strengths injected into the ground might be difficult to predict. Fur-

thermore, the employed amplifier offers a maximum output current strength of 100 mA.

Inadequate selection of the waveform voltage amplitude might easily lead to clipped

waveform signals, or in very conductive ground, the voltages measured might be too

small. Both situations would render the data acquisition as being unreliable and not

properly exploiting the available dynamic range of the system. Therefore, the optimum

level of the source signal voltage amplitude is estimated prior to any data acquisition

(Figure 2.3). This is done by injecting a gradually increasing DC voltage signal (V0)

through the source electrodes (A and B in Figure 2.3) and simultaneously measuring the

source current strength I0 via the data acquisition board built into the current source.

Once I0 reaches a predefined target value (e.g. 100 mA), the process is stopped and the

obtained voltage amplitude V0 is used as the amplitude for the source waveform in the
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following measurement. This process has been optimized such that the time required to

make this selection (less than 150 ms) is insignificant compared to the time needed for

the subsequent data acquisition.

2.2.2 Improved system expandability

Power  Supply 

(24 VDC)

Data Bus

DAUs 1-31

Data Bus

DAUs 32-62 

Source SignalRS-232 (from PC)

16 cm
Expansion

Connector

Data Bus

DAUs 63-124 

Figure 2.4 – Modified interface-box (“IFB”) of the ETH-DCMES-II. Data transfer from the
daisy-chained DAUs is routed via a bi-directional serial data bus (RS-485) through the IFB
to the operating field computer. The amplified source signal from the current source (Figure
2.2(b)) is send through a dedicated DAU located inside the IFB that precisely determines
the input current before being fed into the electrode array.

Each of the four field data buses connected to the interface-box (Figure 2.1) can

handle a maximum of 31 DAUs for a total of 124 data loggers. The number of deployable

DAUs can be increased by adding additional interface-boxes to the system. However,

the original ETH-DCMES was designed such that for each additional interface-box one

additional multichannel RS-485 interface card needs to be added to the field computer.

Thus the expandability of the ETH-DCMES was effectively limited by the number of

available PC extension slots.

To circumvent this limitation, the interface-box was modified. It now includes a single

RS-232-to–RS-485 converter, that allows the field notebook to communicate via a single

commercial serial port to all four RS-485 channels (see Figure 2.4). Additional RS-485

channels can simply be added to the system through “expander boxes” (connected to

the expansion connector, Figure 2.4). Applied source signals and the data transfer from

the field notebook are automatically routed through to the additional RS-485 channels.

Besides improving on the expandability of the ETH-DCMES, the new interface-box
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allows the previously used bulky laboratory computer to be replaced by a mobile field-

rugged PC that does not require a 220V power supply. Only a standard USB (for the

current source) and serial RS-232 interfaces are required for the field computer to fully

operate the ETH-DCMES-II.

2.2.3 Redesign of the data acquisition units

(a)

8 cm

(b)

Figure 2.5 – Previous (a) and redesigned (b) version of data acquisition units (“DAUs”). The
DAUs were updated to facilitate processing of the measured voltage time-series directly on
the loggers. Additionally, their field handling was optimized by (i) reducing their overall
weight and size, (ii) combining the reference and data bus cables and (iii) providing a simple
“clip”-mechanism that allows them to be connected to the metal electrodes easily.

The DAUs of the ETH-DCMES have been redesigned – Figure 2.5 shows the previous

(a) and the updated DAU (b) for comparison – mainly to facilitate on-board processing

of the acquired voltage waveforms (see also section 2.2.5). This required upgrading the

internal central processing unit and increasing the amount of random access memory

available on the DAUs (from 32 to 256 kb). Furthermore, the operating software on

the DAU has been extended such that exchangeable processing-software modules can

be uploaded and executed during the course of a field campaign.

Extensive field tests of the ETH-DCMES conducted by Akeret (2003) revealed two

main weaknesses of the DAUs, both of which hindered failure-free data acquisitions

over long periods of time: (i) generally inadequate capacity of the internal batteries,

and (ii) unreliable working relays inside the switching matrix of the DAUs. Therefore,

the revised DAUs are equipped with batteries featuring largely increased capacity (600

mAh) and the relays are replaced by bi-stable relays that behave in a much more robust
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fashion under harsh weather and weak power conditions. Field tests proved the fail-safe

operation of the new relays under cold ambient temperatures (a few degrees celsius above

zero) even for long data acquisition times. The capacity of the batteries is sufficient for

at least 9 hours of common field operation, such that recharging can be performed during

the night at the end of each days recording.

Besides these modifications, attention has been paid to simplify the overall field

handling of the DAUs. Their overall size and weight have been reduced and the reference

and data bus cables have been combined into a single four-wire cable. Furthermore, the

updated DAUs feature a “clip-on” mechanism that allows them to be attached to the

metal electrodes easily without the need for an additional cable (Figure 2.5(b)). Each

DAU now features status LEDs that allow the field crew to easily check their status.

2.2.4 Automatic gain control

(a) (b)

Figure 2.6 – (a) Sketch of the automatic gain control employed in the new DAUs. (b) Possible
gain settings for the programmable gain amplifier build into the DAUs’ analog–to–digital
converter. During automatic gain control, the first few samples of the acquired voltage
time-series are scanned in order to properly adjust the gain.

The 24-bit analog–to–digital converter employed in the DAUs of the ETH-DCMES

includes a programmable gain amplifier that allows the selection of one of eight different

amplification settings (fn = 2n for n = 0 . . . 7) such that for a gain of “1” the maximum

input voltage range of a DAU is ± 2.5 V and for a gain of “128” the maximum input

voltage range is ± 19.5 mV, otherwise clipping occurs. Optionally, a voltage divider

(511 to 1) can be placed in front of the ADC input for high voltage signals. Resulting

gain ranges with and without the voltage divider (“HV”) applied are displayed in figure
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2.6(b).

The ETH-DCMES required separate gain measurements that were used to detect

appropriate gain amplification factors for subsequent data acquisition. Besides the long

time required by this, the time gaps between the gain measurements and the actual data

acquisitions can be problematic (Akeret, 2003). A drift in the ground potential due to

ambient electromagnetic noise and capacitive effects can easily lead to inappropriate

gain settings. A too small gain leads to a low effective resolution during the analog–to–

digital conversion, whereas a too large gain may lead to clipped time-series that cannot

be interpreted reliably.

Therefore, the revised version of the DAUs features an automatic gain control where

the first few samples recorded during a data acquisition are scanned to adjust the gain

as outlined in Figure 2.6(a). For each subsequent sample, an optimum gain amplifica-

tion factor is selected. During this process, amplification factors can be reduced but

never increased, i.e. the gain is adjusted to the maximum signal strength (Umax). To

compensate for a possible drift occurring in the ground voltage (see the black dashed

line in Figure 2.6(a)), the gain is adjusted to a multiple of the maximum amplitude Umax

as shown by the horizontal dashed lines in Figure 2.6(a). It is important that a suffi-

cient number of samples are used during the gain control to assure that the maximum

amplitude of the employed waveform has been reached.

2.2.5 Reducing data acquisition time by distributing the data

analysis

The ETH-DCMES allows full-waveforms to be recorded, which is beneficial for research-

related (e.g. induced polarization) studies. However, the required time to transfer

the full-waveforms via the RS-485 data bus to the field computer severely limits the

overall data acquisition speed of the ETH-DCMES. This imposed serious constraints

on the applicability of the ETH-DCMES to large-scale geoelectric field surveys. For

example, the comprehensive data set recorded by Stummer et al. (2002) on four lines,

each involving 30 electrodes (49 500 measurements in total) required thirteen days of

recording with most of the time being spend on transferring the full waveforms to the

field computer. Therefore, the DAUs have been redesigned to allow processing of the

voltage time series directly on the DAUs. Instead of the full waveforms only a few

numbers characterizing the measured voltage waveforms and some error estimates need

to be transferred back to the field notebook.

The new design of the DAUs is flexible in that it allows different data processing

algorithms to be downloaded from the central computer through the data bus to the

individual data loggers. Driver routines have been implemented such that developed

software modules can be exchanged even during the course of a field survey. This offers
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the possibility of using fast data acquisitions with arbitrary source waveforms.

Stummer (2003) employed spectral divisions of voltage and source current signals

within a narrow frequency band around the dominant source frequency to determine volt-

age amplitudes (out of which apparent resistivities can be deduced) from the recorded

full waveforms. While this method proved to be reliable for most of the data acquired by

Stummer (2003), it showed severe limitations when applied to data contaminated with

ambient electromagnetic noise with a strong low-frequency content. Large low-frequency

noise amplitudes may dominate the signal waveform in the frequency domain, such that

the correct amplitude at the source signal frequency cannot be properly recovered.

Akeret (2003) therefore developed a robust method that allowed the low-frequency

noise content of a measured time series to be approximated by a n-th order polyno-

mial (with n typically between three and five). After the estimated noise content is

substracted from the voltage time-series, the correct amplitude at the source signal

frequency can be estimated reliably. This method has been adopted by Capiti (2007)

for developing algorithms for various source waveforms (sine waves, rectangular waves

and linearly swept frequency chirp source signals) ready for deployment on the DAUs.

Corresponding software modules have been developed and tested successfully during a

field-campaign. In the following, I demonstrate this methodology for sinusoidal and

bipolar rectangular source waveforms.

Sinusoidal source waveform

Assuming that a recorded time series yk sampled at time steps tk can be approximated

by

yk = Aω cos(ωtk − φω) + S + Dtk + Bt2k + Ct3k (2.1)

with a known frequency ω and unknown amplitude (Aω) and phase shift (φω). The

unknown parameters S, B, C and D are used to approximate the dc-shift and long-

periodic higher-order noise terms in the recorded signal. Elimination of the non-linearity

due to the unknown phase φω leads to

yk = Aω cos(ωtk)cos(φω) + Aω sin(ωtk)sin(φω) + S + Dtk + Bt2k + Ct3k. (2.2)

Estimating the unknown parameters for a given discrete time series of length n requires

solving the following system of linear equations




y1

y2

...

yn




=




cos(ωt1) sin(ωt1) 1 t31 t21 t1

cos(ωt2) sin(ωt2) 1 t32 t22 t2
...

cos(ωtn) sin(ωtn) 1 t3n t2n tn
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Figure 2.7 – Synthetic (blue) and reconstructed signals (red) for different percentages of added
random noise. The black dashed line represents the fitted low-frequency noise contained in
the signals. For (d) the synthetic signal has been clipped at 30 mV to simulate a gain-range
overflow.

They can be suitably solved by the individual data acquisition units. This is done by

accumulating the corresponding normal equations and then subsequently performing

a Cholesky decomposition (Schwarz and Waldvogel, 2004). Resolved coefficients x1 =

A cos(φω) and x2 = A sin(φω) are used to deduce the unknown amplitude and phase of

the measured signal:

Aω =
√

x2
1 + x2

2, φω = arctan

(
x2

x1

)
. (2.4)

The coefficients x4 to x6 approximate the long-periodic noise contained in the signal (B,

C and D in Equation 2.2), whereas x3 describes its dc-shift (S). In addition to these

coefficients, the DAUs compute a misfit parameter

ξ =
1

Aω

1

n

n∑

k=1

(
yk − ycalc

k

)2
, (2.5)
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which is the quadratic deviation between the measured signal yk and the fitted signal

ycalc
k , the sum normalized by the resolved signal amplitude Aω. A value for ξ larger

than one indicates, that the mean amplitude of the high-frequency noise contained in

the recorded signal exceeds the signal amplitude Aω. The parameter ξ proved to be a

reliable indicator for the quality of the waveform fit. It can be used in an automated

fashion to reject measurements having a too low signal-to-noise ratio.

Figure 2.7 demonstrates the performance of this approach on synthetic sinusoidal

waveforms contaminated with different levels of random noise. The synthetic signal was

generated using Equation 2.2 with the following parameters:

Aω = 20mV φω = 0 S = −8.5mV B = 3mV C = 1.2mV D = 0.5mV

Relative errors of the resolved amplitudes (synthetic signal amplitude is 20 mV) for

10 and 30 percent random noise added are 0.05 and 0.35% (Figures 2.7(a) and Figure

2.7(b)). Even for 60 % random noise, the signal amplitude can be recovered reliably

with a relative error of just 0.1% (Figure 2.7(c)). To demonstrate the robustness of the

data fit, the synthetic signal in Figure 2.7(d) has been clipped at 30 mV in addition to

contaminating it with 30% of random noise. The original signal can, nevertheless, be

reconstructed with a relative error for the signal amplitude of 4.4%. Clipping of recorded

waveform signals may happen during analog-to-digital conversion on the DAUs due to

a gain-range overflow.

Rectangular source waveform

A similar algorithm as the one used for sinusoidal source waveforms can be employed

for rectangular source waveforms. For this purpose, a Fourier series analysis is used to

approximate the recorded time-series yk (sampled at discrete time steps tk) by a series

of sine and cosine functions. As for the sinusoidal waveforms, a polynomial of degree

three is used to approximate the long-periodic noise content in the time-series:

yk =
4 A

π

p∑

q=0

(
cos((2q − 1)l/ω)

2q − 1
sin ((2q − 1)(ωtk − φ))

)
+ S + Bt2k + Ct3k + Dtk (2.6)

Here A and φ are the unknown signal amplitude and phase shift, respectively, ω is the

known source signal fundamental frequency and l is the length of the waveform. Tests

revealed that p = 20 terms for the Fourier decomposition are sufficient to approximate

the waveform with a good accuracy. Fitting a measured time-series of length n to the
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Figure 2.8 – Synthetic (blue) and reconstructed signals (red) for different percentages of added
random noise. The black dashed line represents the fitted low-frequency noise contained in
the signals. For (d) the synthetic signal has been clipped a 30 mV to simulate a gain-range
overflow.

approximation given above requires solving a linear system of equations
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sin ((2q − 1)(ωtk))

)
, (2.7)

whose solution is the unknown amplitude (x1), the dc-shift (x2) and the coefficients of

the polynomial characterizing the long-periodic noise content (x3 to x5). Prior to setting

up the system of linear equations, the acquired time-series is shifted such that the phase
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lag φ vanishes.

Figure 2.8 shows the performance of this algorithm on a synthetic rectangular wave-

form (with an amplitude of 20 mV) contaminated with 10, 30 and 60% random noise,

respectively. The parameters used to generate the synthetic signals are the same as

those used for the sinusoidal signals. In all three cases the long-periodic trend of the

signal (black dashed line in Figures 2.8(a) to 2.8(c)) is accurately reproduced. Relative

solution errors for the resolved signal amplitudes are within reasonable bounds (0.4, 1.5

and 3.6%, respectively) but slightly larger than for the sinusoidal waveforms depicted

in Figure 2.7. The steep (non-smooth) voltage jumps in the rectangular signal impedes

the data fitting process, especially for low signal sampling rates (200 samples per second

have been used here).

2.3 Measurement procedure

The ETH-DCMES-II is highly flexible in that it allows arbitrary serial and parallel

four-, three- or two-point geoelectric data sets to be recorded viz. bipole-bipole, pole-

bipole/bipole-pole and pole-pole electrode configurations. In all cases either the full

waveforms, only a few numbers characterizing the waveforms (see section 2.2.5) or both

are transferred back to the field computer. Within the framework of this thesis, so-

phisticated measurement software has been developed to automate the acquisition of

geoelectric data sets with the ETH-DCMES-II without limiting its versatility. The

measurement software has been optimized for fast data acquisition especially in the par-

allel recording mode. Furthermore, it allows 3D field surveys with roll-along schemes to

be carried out efficiently. Details on the measurement software can be found in Appendix

C.2. In the following, I outline the steps required to perform parallel measurements and

provide details on the performance of the ETH-DCMES-II regarding data acquisition

speed.

Figure 2.9(a) shows a timeline of the measurement procedure for a single parallel

recording (200 samples recorded at a 100 Hz sampling rate). Initially, all DAUs are

configured for the subsequent data acquisition by a broadcast command sent through

the RS-485 data bus. The command contains all required settings, such as the number

of samples to be recorded by each DAU, the sampling frequency and the gain settings for

the analog—to–digital–conversion, to name just a few of the most important parameters.

Subsequently, the DAUs that act as current source/sink and voltage reference electrodes,

respectively, are individually configured for their particular tasks.

At this stage, all DAUs are ready to acquire data. A broadcast command is used

to synchronously trigger the measurement process on all DAUs. Thereupon the DAUs

disconnect from the data bus and set their internal switch-matrix according to their

operational modes. Previous to the actual data acquisition, the source voltage amplitude
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Figure 2.9 – (a) Timeline of the individual steps required for a single parallel recording with
the ETH-DCMES-II. (b) compares the time needed for a single parallel scan with 100 DAUs
in the parallel recording mode with either transferring the full waveforms (i) or only the
pre-processed data (ii) back to the central computer. Case (iii) displays the corresponding
time required for serial data acquisitions (with the ETH-DCMES-II, without full waveform
transfer).

is adjusted (section 2.2.1). Output of the source current waveform is initiated exactly

at the time the DAUs start to acquire data. The first samples acquired by the DAUs

are used to adjust their analog–to–digital converter’s gain as described in section 2.2.4.

After the data acquisition is finished, preprocessing of the measured voltage time-

series is carried out on the DAUs as described in section 2.2.5 and subsequently all DAUs

reconnect to the data bus to enable transfer of the measured data and the preprocessing

results back to the field computer. The time required for the data processing depends

on the number of samples taken. Field tests revealed that for time-series with up to 500
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samples, the data processing takes less than one second.

The data transfer to the central computer takes roughly 260 ms for a single full wave-

form of typical length (200 samples in this case). In contrast, only 30 ms are required to

send back the key waveform parameter results of a pre-processed time-series. The time

savings achieved in doing so (230 ms) is rather small compared to the time required for

the complete acquisition process (≈ 4.5s, see Figure 2.9). However, this time difference

becomes crucial for large field surveys entailing parallel data acquisition of up to several

hundred DAUs as illustrated in Figure 2.9(b). It shows the time required for a single

parallel scan with 100 DAUs. Due to the serial RS-485 data bus employed, measurement

results from the individual DAUs need to be transferred back to the central computer,

one at a time. In the case where the full waveforms from all DAUs are transferred back

to the field notebook (which was required by the original ETH-DCMES ), the acquisition

time would be 29.4 s. This time is reduced down to merely 7.3 s when only the sum-

mary parameters characterising the waveform after pre-processing are sent back. Hence,

by distributing the data analysis, acquisition times with the ETH-DCMES-II could be

reduced to a quarter of the times required previously. It is instructive to compare these

data acquisition times to the time it would take for a series of 100 serial measurements

(i.e. not using the parallel recording mode) – almost seven and a half minutes (Figure

2.9(b)).

Samples ETH-DCMES-II ETH-DCMES Geotom

2D survey ≈ 118.000 ≈ 5.5 hours ≈ 14 hours ≈ 32 hours
3D survey ≈ 250.000 ≈ 7.5 hours ≈ 25 hours ≈ 70 hours

Table 2.1 – Comparison of the recording times actually needed using the ETH-DCMES-II
with the ones that would have been required with the ETH-DCMES and the commercial
data acquisition system Geotom, respectively.

2.4 Field examples

The ETH-DCMES-II has been employed successfully in 2D and 3D resistivity field

surveys conducted across a sealed waste-deposit site located approximately 25 km west

of Zürich close to the village of Stetten (Switzerland). The resistivity investigations

involved a pole-bipole comprehensive data set acquired along a 2D line (50 electrodes)

and pole-bipole data acquired using a 3D roll-along scheme with a total of about 250 000

measurements (462 electrode locations). Tomogragraphic inversions of these data sets

are dealt with in chapter 4. The ETH-DCMES-II system proved to be very reliable

during the field operations despite harsh weather conditions. Continuous resistivity
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recordings during the day were possible without the need for recharging the DAUs’

internal batteries (which was done during the night).

Due to the fast parallel scans offered by the ETH-DCMES-II in combination with the

distributed data analysis, recording of the 3D data set took only ≈ 7.5 hours (exclud-

ing the time required to reposition the electrodes for the employed roll-along scheme).

Recording the same data set with the ETH-DCMES would have taken more than three

times as long (≈ 25 hours, see table 2.1). The gain in acquisition speed due to the

parallel recording mode of the ETH-DCMES-II becomes obvious if we compare these

times to the ≈ 70 hours of recording that would have been necessary for acquiring the

same data set with the commercial Geotom data acquisition system – arguably one of

the best systems available on the market. Table 2.1 also shows the same comparison for

the comprehensive 2D data set comprising ≈ 118,000 measurements. The improvements

in acquisition speed due to the parallel recording mode and the distributed data analysis

are comparable to those for the 3D data set but not as pronounced due to the smaller

number of electrodes employed (48 compared to 82 electrodes).

During the 3D field campaign at the Stetten waste-deposit site, a few parallel scans

have been performed with the full waveforms transferred back to the central computer

to assess the ambient noise conditions and to verify the processing of the time-series

performed by the DAUs. Figure 6.1 shows typical examples of these waveforms. The

recorded time-series are displayed by the blue lines, the red dashed lines are the data

fit that would be performed by the corresponding DAUs and the black lines indicate

the long-periodic voltage drift of the signals (as revealed by the data fit). Time-series

displayed in Figure 6.1 (a), (c)-(d) are typical examples of the waveforms recorded at

the Stetten field site. All waveforms displayed exhibit a large dc-shift and a rather mild

long-periodic drift. The fraction of the high frequency noise which modulates the signal

time-series generally decreases for larger voltage amplitudes (smaller geometry factors)

(compare Figures 6.1 (c), (d) and (e)).

The signal displayed in Figure 6.1(a) possesses a spike-like feature. These spikes or

glitches regularly appear in the waveforms recorded at the Stetten field site. Further-

more, they always appear synchronously in all the waveforms that belong to the same

parallel data scan. Most likely, the noise spikes represent cultural noise in the form of

EM pickup from a sorting machine operating at a gravel pit close to the field location.

Figure 6.1(b) shows the frequency spectrum corresponding to the time-series dis-

played in Figure 6.1(a). As expected, three dominant peaks (indicated by red dashed

lines) are clearly visible at the source signal frequency of 2 Hz, the 16.67 Hz frequency

used for the Swiss railway system and the powerline frequency of 50 Hz, respectively.

The strong signal content in the frequency range between 0 and 2 Hz corresponds to the

strong dc-shift and the voltage drift contained in the signal.

Figures 6.1(e) and (f) show examples of problematic signals. The signal in Figure
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Figure 2.10 – Sample waveforms recorded during the 3D field survey at the Stetten waste-
deposit site (a, c-f) and a typical frequency spectrum (b). The red dashed lines are the
fit estimated by the corresponding DAUs and the black dashed line represents the long-
periodic noise trend. Most of the waveforms recorded are similar to the ones shown in (a),
(c) and (d). (e) and (f) show problematic signals probably related to a too large geometry
factor and a mal-functioning DAU, respectively.
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6.1(e)), which is quite small because of the large geometry factor associated with the

electrode configuration used, is overshadowed by strong high frequency noise. Never-

theless the data fit (red dashed line) performed by the DAU that recorded the signal

seems to resolve the true voltage amplitude with an acceptable accuracy. However, this

waveform would be automatically excluded from the data set due to the large data

misfit parameter ξ = 1.96 returned by the DAU. In contrast, the misfit parameter ξ

for the waveform displayed in Figure 6.1(f) indicates a rather good quality signal. In

this case, a visual inspection of the recorded waveform reveals that the quality of the

signal is rather poor and the corresponding amplitude estimate likely contains a large

relative error. The bad signal quality in this case is probably caused by a poor contact

between the DAU and the metal electrode. Only a few waveforms of this kind were

recorded at the Stetten field site. All of them could be identified by visually comparing

the voltage amplitudes of all measurements of the same parallel scan. This can be done

conveniently with the data acquisition software developed for the ETH-DCMES-II as

demonstrated in Appendix C.2. Based on the recorded full waveforms, we conclude that

judging the quality of voltage recordings based on the data misfit parameter ξ alone

has a serious shortcoming. Potentially too many measurements might be filtered out.

Visual inspection of the data set is required to identify questionable or noisy measure-

ments due to technical issues with the DAUs. Further improvements on the time-series

fitting algorithm might resolve this issue, for example by taking information from all

DAUs involved in a parallel scan into account. Such correlation gain techniques are

widely exploited in multichannel seismic recording.





Chapter 3

Advances in 3D geoelectric forward

solver techniques

Mark Blome, Hansruedi Maurer, and Kersten Schmidt
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3.1 Abstract

Modern geoelectrical data acquisition systems allow large amounts of data to be col-

lected in a short time. Inversions of such data sets require powerful forward solvers

for predicting the electrical potentials. State-of-the-art solvers are typically based on

finite elements. Recent developments in numerical mathematics led to direct matrix

solvers that allow the equation systems arising from such finite element problems to be

solved very efficiently. They are particularly useful for 3D geoelectrical problems, where

many electrodes are involved. Although modern direct matrix solvers include optimized

memory saving strategies, their application to realistic, large-scale 3D problems is still

somewhat limited. Therefore, we present two novel techniques that allow the number of

grid points to be reduced considerably, while maintaining a high solution accuracy. In

the areas surrounding an electrode array we attach infinite elements that continue the

electrical potentials to infinity. This does not only reduce the number of grid points, but

also avoids the artificial Dirichlet or mixed boundary conditions that are well known to

be the cause of numerical inaccuracies. Our second development concerns the singularity

1Blome, M., Maurer, H., and Schmidt, K. (2009). Advances in three-dimensional geoelectric forward
solver techniques. Geophys. J. Int., 176(1), 740–752.
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removal in the presence of significant surface topography. We employ a fast multipole

boundary element method for computing the singular potentials. This renders unnec-

essary mesh refinements near the electrodes, which results in substantial savings of grid

points of up to more than 50%. By means of extensive numerical tests we demonstrate

that combined application of infinite elements and singularity removal allows the num-

ber of grid points to be reduced by a factor of ≈ 6− 10 compared with traditional finite

element methods. This will be key for applying finite elements and direct matrix solver

techniques to realistic 3D inversion problems.

3.2 Introduction
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Figure 3.1 – Comparison of the solution time (a) and memory consumption (b) of a precon-
ditioned conjugate gradient solver (PCG, solver tolerance: 1 · 10−8) and a direct matrix
solver (Pardiso). For the tests the geoelectric problem has been solved with the FEM on a
series of meshes.

The introduction of multi-electrode data acquisition systems during the 1980’s and

1990’s has simplified significantly geoelectrical surveying, such that relatively large data

sets can now be collected with a moderate field effort (Griffiths and Turnbull, 1985;

Stummer et al., 2002). This is certainly an important step towards routine application of

3D surveys, but despite the ever increasing power of computers, realistic 3-D geoelectrical

inversions remain challenging. In particular, the solution of the forward problem, i.e.

predicting electrical potentials using a particular conductivity model, can be a very
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time-consuming task.

During the past few decades much effort has been put into the development of nu-

merical forward solvers. Among the methods used, the finite difference method (FDM)

(Mufti, 1976; Dey and Morrison, 1979a; Wang et al., 2000; Zhao and Yedlin, 1996;

Spitzer, 1995), the finite element method (FEM) (Coggon, 1971; Pridmore et al., 1981;

Li and Spitzer, 2002; Pain et al., 2002; Sasaki, 1994; Zhou and Greenhalgh, 2001) are the

most popular. Other methods proposed include the boundary element method (BEM)

(Hvozdara and Kaikkonen, 1998; Xu et al., 1998; Ma, 2002) and the integral equation

method (IEM) (Lee, 1975; Dieter et al., 1969).

The FDM, first employed for geoelectrics by Mufti (1976) for 2D and by Dey and

Morrison (1979a) for 3D problems, has been the method of choice in the geoelectric

community for a long time due to its easy and flexible implementation.

Unfortunately, finite difference calculations are generally restricted to structured,

orthogonal grids that do not allow local mesh refinements. Only global refinements

with respect to a single spatial coordinate can be implemented. This results in an

unnecessarily large number of grid points. Furthermore, complicated topography cannot

be handled by orthogonal grids, although attempts have been made to circumvent this

limitation (e.g. Loke and Barker, 1996a).

The FEM allows unstructured meshes to be used and is therefore much more flexible.

In particular, complicated topographies can be implemented and the meshes can be

almost arbitrarily coarsened or densified in regions where necessary. For example, Rücker

et al. (2006) presented a 3D geoelectric forward solver based on tetrahedral unstructured

elements that clearly show the advantages of unstructured domain discretizations.

FDM and FEM are attractive options when the subsurface conductivity distribu-

tions are highly heterogeneous. For less complicated subsurface structures, for example,

a layered halfspace with a few simply-shaped inclusions, application of the BEM or IEM

can be advantageous. For example Ma (2002) provided BEM solutions for 3-D inho-

mogeneous bodies buried in a layered earth and Hvozdara and Kaikkonen (1998) used

the BEM to calculate the response of a rectangular prism embedded in a homogeneous

subsurface.

Due to its flexibility with regard to domain discretization and model complexity, the

FEM is in our view currently the most appropriate method for 3D geoelectrical inversion

problems. Its implementation results in a system of equations of the form

Ax = b, (3.1)

where matrix A represents the domain discretization and the conductivity model, vector

x includes the unknown potentials or potential differences and vector b characterizes

the geoelectrical sources. Matrix A is of the size n × n, where n is the number of grid
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points in the finite element mesh. It can be very large (n is typically of the order 104 to

106 or even larger), but it is also extremely sparse.

Such systems of equations can be solved most efficiently with iterative solvers such as

the preconditioned conjugate gradient method (Hestenes, 1952; Spitzer, 1995). During

geoelectrical inversions the forward problem needs to be solved at least ne times, where ne

is the number of electrodes employed. Typical 3D surveys may include several hundred

electrode positions. It is important to note that the finite element equations can easily be

formulated such that only the right hand side b of Equation 3.1 changes for the individual

electrode positions. This motivates application of direct matrix solvers. Here, the matrix

A is factorized in a lower and upper triangular matrix using LU decomposition. Once

the factorization is performed, solutions for multiple right hand side arguments b can

be obtained swiftly by simple back substitutions. Despite this very attractive property,

direct matrix solvers have been applied so far rarely for the solution of FEM problems.

Main reasons for that include the expensive matrix factorization and, more importantly,

the fact that the resulting triangular matrices are generally full, which is prohibitive in

terms of memory requirements for typical FEM problems.

During the past few years, significant new developments in sparse direct matrix solver

techniques emerged (Schenk et al., 2003). Modern implementations are based on matrix

reordering strategies that drastically reduce the memory consumption of the matrix

factors. Still, for large 3D forward problems the memory requirements of direct matrix

solvers can be excessive. Figure 3.1 illustrates advantages and limitations of direct

matrix solvers. We employed the state-of-the-art PARDISO solver (Schenk et al., 2001)

for computing FEM solutions for different grid sizes. A nested dissection reordering

strategy (Karypis and Kumar, 1995) was chosen, which proved to be most efficient for our

purposes. For comparison, we recomputed the solutions with an iterative preconditioned

conjugate gradient solver.

For a single forward solution the direct and iterative solvers show comparable per-

formance, but for the solution including multiple electrode positions, the direct matrix

solver clearly outperforms the iterative algorithm (Figure 3.1(a)).

The superiority of the direct matrix solver comes at the expense of memory usage.

Despite the application of sophisticated matrix reordering strategies, its memory con-

sumption is still about a factor of 10 higher compared with the iterative solver (Figure

3.1(b)). Solutions of 3D FEM problems including more than 106 nodes may thus require

excessive amounts of memory.

In this paper, we present two novel techniques that allow the number of grid points

of FEM meshes to be reduced significantly. These developments thus allow very large

3D geoelectrical forward problems to be solved with direct matrix solvers, which results

in a considerable efficiency improvement of the corresponding inverse problem. The first

technique is devoted to the reduction of nodes that are introduced to move the mesh
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boundaries (open boundaries within the subsurface) sufficiently far away from the model

region of interest. This is achieved with the application of so-called infinite elements

(Astley et al., 1998a). Our second development concerns the mesh refinements near

the electrode positions. Refinements are required to achieve a high solution accuracy

near the singularities of the electrical potentials. Lowry et al. (1989) showed that the

singularities at the electrodes can be removed by splitting the electrical potential in a

singular part that can be computed analytically and a non-singular part that needs to

be determined numerically. Unfortunately, analytical solutions for the singular potential

exist only for special cases such as homogeneous or layered halfspaces without surface

topography. We employ a fast multipole BEM technique (Hackbusch and Nowak, 1989)

that allows the singular potential for a homogeneous halfspace with arbitrary topography

to be computed efficiently.

In the first part of the paper, we briefly review the fundamentals of the geoelectrical

forward problem, the singularity removal technique and the finite element approximation

to the governing partial differential equations. Then, we present the open boundary

handling with infinite elements followed by a description of the fast multipole BEM

technique that we employ for the singularity removal. The performance of these new

developments is demonstrated with a series of numerical experiments. In particular, we

show that the number of grid points can be reduced significantly without degrading the

solution accuracy.

3.3 3D geoelectric forward modelling

3.3.1 Boundary value problem

The geoelectric forward problem is governed by the Poisson equation

∇ · (σ∇U) = −I0δ(|r− rs|) in Ω (3.2)

which results from the equation of continuity for a current strength I0 injected at a

source position rs into a domain Ω with an arbitrary conductivity distribution σ. Here,

we restrict the discussion to single current injection electrodes (pole-pole configuration).

Commonly used 4-point electrode configurations can be obtained by superposition of

pole-pole potentials.

The domain boundary Γ of Ω can be subdivided into a surface part Γs and a subsur-

face part Γg. Since no current can flow into the air, the Neumann boundary condition

∂U

∂n
= 0 on Γs, (3.3)

has to be applied on Γs (n is the outward pointing normal vector on Γs). The ground
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boundary Γg is introduced only for numerical purposes to keep Ω finite. No exact

boundary conditions along Γg exist. Mixed boundary conditions

∂U

∂n
+ βU = 0 on Γg (3.4)

have proved to be a reasonable option for Γg, whereby the factor β has to be chosen to

be β = n · r/|r|2 for electrodes placed on Γs. Vector r represents the distance between

the source electrode and the boundary Γg.

3.3.2 Singularity removal

The solutions of the geoelectric forward problem contain singularities at the source elec-

trode positions due to the δ-function on the right hand side of Equation 3.2. Near these

singularities the electrical potential U varies rapidly. To obtain a numerically stable

solution of Equation 3.2, a very fine spatial sampling around the electrodes is required,

which is computationally inefficient. Lowry et al. (1989) presented an alternative ap-

proach in which the singularities are removed prior to the numerical solution. This is

achieved by splitting the electrical potential U into a singular part Us and a non-singular

part Un: In the absence of significant topography the singular potential can be expressed

by an analytical homogeneous halfspace solution (for surface electrodes)

Us
h =

I0

2πσ0

1

|r − rs|
(3.5)

with σ0 equal to the mean subsurface conductivity, as originally proposed by Lowry

et al. (1989), or, for a more accurate singularity removal, equal to the conductivity at

the source electrode position (Zhao and Yedlin, 1996).

Conceptually, more complex background conductivity models σ0(x, y, z), for which

analytical or numerical solutions to Equation 3.2 exists, may be considered. For ex-

ample, Li and Spitzer (2002) employed horizontally layered earth and vertical contact

conductivity models for evaluating the singular potentials Us.

Formally, the singularity removal is achieved by substituting U = Us + Un on the

left hand side of Equation 3.2, and substituting

∇ · (σ0∇Us) = −I0δ(|r − rs|) (3.6)

on the right hand side of Equation 3.2. Rearranging terms leads to a modified Poisson

equation

∇ · (σ(r)∇Un) = −∇ · ((σ(r) − σ0)∇Us), (3.7)

where the δ-function in the right hand side has vanished. The problem is reduced to
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determining only the non-singular potential field that results from subsurface conduc-

tivities not equal to the background conductivity σ0. Once the non-singular potential

Un is found, Us is added to obtain the total electrical potential U .

When the singularity removal technique is applied, mixed type boundary conditions

for Un are not beneficial, because an approximate expression of the non-singular poten-

tial field is not known along the ground boundaries. Zhao and Yedlin (1996) suggest

application of Dirichlet boundary conditions, i.e. Un should be forced to be zero along

Γg.

3.3.3 Finite element equations

In the finite element method, the domain Ω is subdivided in small subregions, which are

referred to as finite elements. Within each element the unknown potential Un (Equation

3.7) is approximated by a linear combination of so called shape functions αk

Un(x, y, z) =

p∑

k=1

αk(x, y, z)un
k , (3.8)

where P denotes the number of nodes associated with a single element and un
k the

unknown potential values at the nodes. Appropriate approximations for Un should

minimize the integral

∫

Ω

[∇ · (σ(r)∇Un) + ∇ · ((σ(r) − σ0)∇Us)]ωdΩ, (3.9)

where ω is a weighting function. If the weighting functions are chosen to be equal

to the shape functions αk, the Galerkin solution is obtained (Zienkiewicz, 1977). In

order to employ linear shape functions, it is necessary to remove the second derivatives

with respect to the potential Un. This is achieved by applying Green‘s first identity to

Equation 3.9, which results in the weak or variational form

∫

Ω

σ∇Un · ∇ωdΩ−
∫

Γ

σω
∂Un

∂n
dΓ

= −
∫

Ω

∇ · ((σ(r) − σ0)∇Us)ωdΩ. (3.10)

Note that the corresponding expression for the total potential U (Equation 3.2) takes

a similar form, but contains the δ-function under the volume integral on the right side.

After discretization by finite elements, Equation 3.10 leads to a linear system of equa-

tions. Since only the right-hand side of Equation 3.10 includes source electrode depen-

dent terms, the system(s) of linear equations can be suitably solved with direct matrix

solvers.
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3.3.4 Domain discretization

(a) (b)

Figure 3.2 – (a) Model description: 1: Electrode positions, 2: discretized surface topography,
3: optional internal boundaries, 4: inversion region (domain Ωi). (b) The resulting finite
element mesh.

We employ unstructured finite element meshes, which provide an enormous flexibility

with regard to the mesh density inside Ω and the shape of the boundary Γ. In partic-

ular, this facilitates local mesh refinements in critical areas and allows straightforward

implementation of arbitrary complicated surface topography. Figure 3.2 illustrates our

meshing procedure. At first, the mesher is enforced to include nodes at the electrode

positions (see label (1) in Figure 3.2(a)). The surface topography (e.g. measured via

GPS in the field) is then discretized by a triangular mesh (2). Internal boundaries, for

example to represent boreholes, geological layers or conductivity model boundaries can

optionally be defined (3). Inside the computational domain, we choose a tetrahedron-

based discretization. To ensure solution accuracy, a maximum size constraint for all

tetrahedrons is specified in the region Ωi below the electrode array (4). The inner region

Ωi is surrounded by an outer region Ωo, whose extent is defined by the distance R. In our

experience (and in accordance to Rücker et al. (2006)), R should be approximately 5−10

times the size of the largest electrode spacing. Within Ωo the mesh density decreases

towards the model boundaries, whereby the growth rate of the finite elements is con-

trolled by the maximum element aspect-ratio. The larger the ratio, the more elongated

the elements may be, hence the faster the element size can grow towards the boundary.

Besides defining the element growth rate, the aspect-ratio constraint ensures reasonably

well-shaped mesh elements. Badly shaped elements, i.e. having a too large aspect-ratio,

may degrade the solution accuracy (Wang et al., 2000). Figure 3.2(b) shows an example

of a suitably designed mesh.

Once the initial meshing is completed, local refinements can be applied (e.g. close to

the source electrodes) by inserting additional nodes into the mesh. During the remeshing

procedure the maximum aspect-ratio constraint is re-enforced, which automatically leads
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to a local refinement around the additional nodes. Optionally the finite element mesh

can be converted to a second order finite element mesh. This is achieved by adding one

additional node in the middle of each element edge. For our tetrahedron discretization,

this results in ten instead of four nodes per element. Quadratic shape functions are used

to approximate the solution on second order finite elements (see equation 3.38).

3.3.5 Open source FEM libraries

Our modelling algorithms are based on several public domain libraries that we modified

for our purposes. In particular, we employed Triangle (Shewchuk, 1996) for discretiz-

ing the surface topography and the quality mesher Tetgen (Si and Gaertner, 2005) for

performing the volume discretization. The matrix equation assembly routines rely on

the finite element library Libmesh (Kirk et al., 2006) and the resulting equations were

solved with the direct matrix solver Pardiso (Schenk et al., 2001). Furthermore, we used

the FM-BEM classes in the numerical library Concepts (Frauenfelder and Lage, 2002)

for the singularity removal.

3.4 Open boundary handling via infinite elements

(a) (b)

Figure 3.3 – (a) A sample infinite element attached at the ground boundary Γg of a FE mesh.
The infinite elements are constructed by choosing a common pole that defines their radial
direction. The geometry of the infinite elements is defined by projecting rays from the pole
through the triangular boundary faces outwards. The outermost three nodes that lie at
infinity, are not displayed in this figure. (b) In local coordinates the infinite elements are
mapped to a finite extent, where the numerical integration is carried out.

The artificial ground boundaries Γg that appear in the finite element formulation to

the Poisson equation are introduced only to keep the computational domain Ω finite.

This inherently introduces errors in the numerical solution of Equation 3.2. To alleviate
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the problem, the outer domain Ωo must be made very large, but this requires a significant

number of additional elements and nodes, which would increase the computational costs

unnecessarily.

Infinite elements, originally developed in the field of acoustic radiation (Bettes, 1987),

provide a cost-effective and elegant alternative to deal with open boundary problems.

Instead of truncating the domain at a certain distance away from the electrode array,

the outer domain is modelled by infinite elements. We employ the so-called Astley-Leys

elements, originally developed by Astley et al. (1998a) and later refined for an improved

conditioning of the resulting linear system of equations by Dreyer and von Estorff (2003).

The infinite elements are attached to the subsurface boundary Γg as shown in Figure

3.3(a). In contrast to the traditional approach using mixed-type or Dirichlet boundary

conditions, the extent of Ωo can be much smaller, i.e., the distance R in Figure 3.2(a)

needs to be equal to only about half the largest electrodes spacing (compared to a factor

of 5 to 10 for the traditional approach). A single pole inside the FE mesh is chosen at

point rp for all infinite elements to define the infinite elements radial directions (Figure

3.3(a)). We choose rp in the horizontal directions to coincide with the geometric mean

of all source electrode positions because the potential fields decrease radially outwards

from the source electrodes. The vertical location of rp is given by the zero level of the

topography to assure a well-shaped continuation of the finite element domain by the

infinite elements.

The prismatic-shaped infinite elements are made-up of 9 nodes. The first three nodes

coincide with the triangular faces on the boundary Γg (nodes 1,2 and 3 located at ri
1

(i = 1..3)) and the outer three nodes (4,5 and 6) are located at positions ri
2 = ri

1+(ri
1−rp)

as shown in Figure 3.3(a). The last three nodes ri
3 are located at an infinite distance

away from rp in direction of ni = ri
2 − ri

1 and are thus not displayed in Figure 3.3(a).

The infinite extend of the infinite elements in the radial direction allows the potential

field to be approximated up to infinity instead of truncating it at the domain boundaries

Γg.

A coordinate transformation from the global (x, y, z)-coordinate system to the local

(ξ, η, ν)-coordinate system is used to perform the integration necessary to set up the

FEM equations:

ri(ν) =
−2ν

1 − ν
ri
1 +

1 + ν

1 − ν
ri
2. (3.11)

As shown in Figure 3.3, this transformation maps the nodes located at ri = {ri
1, r

i
2,∞·ni}

to the coordinates ν = {−1, 0, 1} in the local (ξ, η, ν)-coordinate system, where the

integration can be carried out efficiently with standard Gaussian quadrature rules.

The infinite elements are endowed with standard finite element linear or second

order shape functions Si in the ξ, η-plane and with special shape functions in the radial

direction (ν) that are based on Jacobi polynomials P
(2,0)
i . The order of the Jacobi
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Figure 3.4 – Non-singular potential field for a prismatic-shaped anomaly embedded in a ho-
mogeneous background. The potential field is accurately continued beyond the boundaries
of the finite element mesh (region Ωo).

polynomials can be chosen between 3 and 14, where higher radial orders will give rise

to additional degrees of freedoms (indicated by the small black dots in Figure 3.3).

In our experience a radial order of 5 yields sufficiently accurate results. Finally, the

approximation of the potential U inside the infinite elements is given by:

U =
∑

i

Uiφ̃i with φ̃i = 1/2Si(ξ, η)(1− ν)P
(2,0)
i (ν). (3.12)

Modified test functions are chosen to improve the conditioning of the resulting equations

(Dreyer and von Estorff, 2003). The resulting element matrices are slightly different to

the ones obtained for conventional finite elements (compare to Equation 3.10):

An
i,j =

∫

Ωn

σn∇φ̃i · (φ̃j∇Dj + Dj∇φ̃j)dΩn. (3.13)

Here φ̃i are the infinite elements shape functions as defined in Equation 3.12 and D(ν) =

((1 − ν)/2)2 are additional radial weights.

In contrast to conventional finite element matrices, the matrices An are asymmetric

(due to the radial weight functions D). Therefore, infinite elements lead to slightly

asymmetric system matrices. Consequently, we choose either a preconditioned quadratic

minimum residual iterative solver or the LU direct solver implemented in Pardiso to

solve the resulting system of equations.

Performance of infinite elements is demonstrated in Figure 3.4, which shows the

non-singular potential field caused by a cuboid-shaped anomaly. The singularity re-
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moval technique leads to sources inside the conductivity anomaly that can physically be

interpreted as charges accumulating along the conductivity contrasts (Mendonca, 2003).

These charges create a potential field with a dipolar character. As shown in Figure 3.4,

the dipolar field is continued properly into the area of the infinite elements. If Dirich-

let boundary conditions would have been applied, the potential lines at Γg would have

been forced to be parallel to the domain boundaries. This unphysical constraint would

certainly have led to errors in the potential field computations.

3.5 Singular potential evaluation using a fast multi-

pole BEM

Γs

(a) (b)

Figure 3.5 – (a) A typical surface mesh used in the BEM (only the inner, i.e. topographic
part is shown here). (b) By moving the ground boundaries to ∞, only the inner part of the
surface Γs needs to be discretized.

As discussed in section 3.3.2, the singularity removal technique allows computation

of electrical potentials without excessive grid refinements around the electrodes, but it

requires the singular potential to be calculated separately. Unfortunately, no analytical

solution exists for homogeneous halfspaces with significant surface topography, but the

principal features of the BEM (Xu et al., 1998; Ma, 2002) make this method very suitable

for this purpose. In the following, we restrict ourselves to surface electrodes, but the

same formulation with minor modifications is applicable to buried electrodes.

3.5.1 Boundary integral equation

When solving the singular potentials with the BEM, the Poisson equation






σ0∇2Us = −I0δ(r − r0) in Ω

∂Us/∂n = 0 on Γs

Us = 0 on Γg

(3.14)

needs to be transformed into a Laplace equation with modified boundary conditions.

Note that the choice of the ground boundary conditions in Equation 3.14 (Dirichlet type
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in this case) is arbitrary, because the BEM allows the artificial ground boundaries to be

eliminated anyway. The transformation to the Laplace equation is achieved by splitting

the singular potential solution Us into a homogeneous part Us
h and an inhomogeneous

part Us
i :

Us = Us
i + Us

h with Us
i (r) =

I0

2πσ0

1

|r − r0|
(3.15)

and solving only for the homogeneous part of the solution under modified boundary

conditions 




σ0∇2Us
h = 0 in Ω

∂Us
h/∂n = −∂Us

i /∂n on Γs

Us
h = −Us

i on Γg.

(3.16)

After the solution Us
h has been found with the BEM, the inhomogeneous solution is

added to yield the total singular potential Us. Due to the linearity of Equation 3.16

with respect to σ0, Us can be estimated for an arbitrary value of σ0 and later scaled to

meet the true conductivity at the source electrode. In this way, the singular potentials

need to be estimated only once prior to an inversion process. In the following discussion

we assume σ0 = 1.

As for the finite element equations we use Galerkin’s criterion to derive the boundary

integral equation corresponding to Equation 3.16:

∫

Ω

∇2Us
h(r)G(r, r′) dΩ = 0 (3.17)

Here G(r, r′) denotes the Green’s function to the Laplace operator ∇2. Applying Green’s

first identity twice yields the boundary integral equation:

∫

Ω

Us
h(r)∇2G(r, r′) dΩ

︸ ︷︷ ︸
k Us

h
(r′)

+

∫

Γ

Us
h(r)

∂G(r, r′)

∂n
dSr

=

∫

Γ

∂Us
h(r)

∂n
G(r, r′) dSr,

{
k = 1 for r′ in Ω

k = 1/2 for r′ on Γ.
(3.18)

In contrast to the FEM approach, where local basis functions are chosen as the

weighting function, full space Green’s functions G(r, r′) are employed in the BEM. Usu-

ally homogeneous subsurface solutions are used, but in general Green’s functions for

arbitrary background conductivity models may be employed, though expressions for

these functions can be hard to find or may not exist at all. Ma (2002), for instance,

demonstrated the use of layered background conductivity models in BEM calculations.

The Green‘s functions are fundamental solutions to the Laplace operator, therefore the
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volume integral in Equation 3.18 reduces to simple function evaluations. Only boundary

integrals remain to be evaluated and consequently only the boundary of the domain Ω

needs to be discretized. The dimensionality of the problem is reduced from 3D to 2D,

resulting in a substantial reduction of the number of unknowns in the equations to be

solved. For evaluation points r′ on Γ Equation 3.18 leads to an integral equation that

relates Us
h on Γ to integral expressions over Γ and therefore can be used to solve for

the singular potentials along the boundary of the domain. Subsequently, by choosing

evaluation points r′ in Ω, Equation 3.18 can be used to evaluate the singular potentials

inside the domain. Mathematical analysis (e.g. Sauter and Schwab, 2004) shows that in

the first case Equation 3.18 is valid for k = 1/2 whereas in the latter case k = 1 results.

The absence of volume integrals in the BEM allows for a very natural handling of

the unbounded domain that occurs during the computation of the singular potentials.

Figure 3.5(b) depicts a sketch of the integration principle. Instead of truncating the

domain at a certain distance away from the source electrodes the ground boundaries

Γg are moved to infinity. As Us
i and therefore Us

h approaches 0 at an infinite distance

away from the source electrode, the boundary integrals along Γg vanish. Along Γs the

integration can be truncated after a certain distance away from the source (≈ 5 − 10

times the largest electrode distance) when ∂Us
h/∂n = −∂Us

i /∂n ≈ 0 and thus only an

inner part of Γs needs to be discretized. Figure 3.5(a) shows an example triangular mesh

used for the BEM (for clarity, the outer part of the mesh is not shown).

To obtain accuracy and stability of the solution we employ a weak formulation of

the boundary integral Equation 3.18:

1

2

∫

Γs

Us
h(r′)φ(r′) dSr′ +

∫

Γs

∫

Γs

Us
h(r)

∂G(r, r′)

∂n
φ(r′) dSr dSr′

=

∫

Γs

∫

Γs

∂Us
h(r′)

∂n
G(r, r′)φ(r′) dSr dSr′. (3.19)

After discretization by unstructured triangular elements with linear shape functions φi,

Equation 3.19 leads to a linear system of equations

Aus
h = Bq (3.20)

with the matrix entries given by

Aij =1/2

∫

Γs

φi(r)φj(r
′) dSr′

+

∫

Γs

∫

Γs

φi(r)
∂G(r, r′)

∂n
φj(r

′) dSr dSr′ (3.21)

Bij =

∫

Γs

∫

Γs

φi(r)G(r, r′)φj(r
′) dSr dSr′, (3.22)
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and the Neumann boundary condition values

qi = ∂Us
h,i/∂ni. (3.23)

Equation 3.20 yields the unknown potential values us
h on the nodes of the surface

mesh. Subsequently, Equation 3.18 needs to be re-evaluated in a second step to obtain

the potential solution inside the volume (i.e. at all nodes of the corresponding FE mesh).

3.5.2 The fast multipole BEM

The BEM matrices A and B in equations 3.21 and 3.22 are fully populated due to

the coupling of the Green’s function G(r, r′). Consequently the computational costs,

memory consumption and solution time, scale as ∼ O(N2) for the BEM while they

scale as ∼ O(M) for the FEM, for which system matrices are usually extremely sparse

(here N and M denote the number of unknowns in the BEM respectively the FEM

equations). This imposes a serious limitation on the applicability of the BEM, because

especially the unfavorable memory consumption may easily render the BEM inefficient

compared to the FEM.

To account for this major drawback of the standard BEM, fast multipole boundary

element methods (FM-BEM) were introduced (Hackbusch and Nowak, 1989). These

methods employ the fast multipole method originally developed by Greengard and

Rokhlin (1987) by expanding the Green’s function G(r, r′) in the far field by a func-

tion series such that the variables r and r′ are separated. With this kernel expansion

the matrix assembly and the solution times are considerably reduced by combining the

effects of Green’s function evaluation points in the far field to so-called multipole mo-

ments. In the near field, i.e. where r and r′ are close-by, standard Green’s function

evaluations are used. Effectively, this scheme leads to an approximation of the fully

populated BEM matrix by a sparse near field matrix and a sum of low-rank far field ap-

proximation matrices. The FM-BEM employs a multilevel scheme to exploit the use of

multipole moments as efficiently as possible. The computational costs for matrix vector

products needed when solving the resulting system of equations with iterative solvers

is reduced from ∼ O(N2) to ∼ O(Nlogα(N)). We employ a variant of the FM-BEM

called Panel Clustering Method implemented by Lage (1995) to solve for the singular

potentials efficiently. Details about the method used can be found in Appendix 3.9.1.
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(a) (b) (c)

Figure 3.6 – (a) Cuboid model (b) Layered block model (c) The mesh size is increased by
moving the subsurface boundaries outwards and increasing the mesh density in the inner
part Ωi

3.6 Numerical tests

3.6.1 Test models

Numerical simulations were carried out for 3 different conductivity models: (i) a homo-

geneous conductivity model, (ii) a model including a single prismatic anomaly within

the homogeneous host rock (Figure 3.6(a)), and (iii) an embedded stack of three layers

(Figure 3.6(b)). All three models included a mound-shaped topography on which 50

electrodes were placed. For each model, we performed calculations on a series of 18

meshes with increasing numbers of unknowns. The mesh size was increased by moving

the ground boundaries outwards and at the same time increasing the mesh density in

the inner part Ωi (Figure 3.6(c)). In the outer part of the mesh Ωo, the increasing mesh

size towards the boundaries was controlled by a maximum aspect ratio constraint as

described in section 3.3.4. The meshes were chosen such that the numbers of unknowns

were roughly equidistant on a logarithmic scale to cover a wide range of problem sizes.

Meshing was performed such that all mesh elements lay entirely within a region of

constant conductivity to avoid model discretization errors.

3.6.2 Potential field calculations

Computations were carried out for each conductivity model, electrode position and

mesh size. Moreover, all computations were performed with both, first and second

order finite elements. The entire suite of these simulations were repeated using (i)

standard FEM with mixed-boundary conditions, (ii) infinite elements, (iii) numerical

singularity removal using FM-BEM and (iv) combined application of infinite elements

and numerical singularity removal. Computations with infinite elements did not require

the outer space Ωo to be meshed (R = 0.2 was chosen such that its boundaries were

sufficiently far away from the conductivity anomalies and the outermost electrodes).

Since the quality mesher employed created already a very efficient grid in Ωo, this saved
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Figure 3.7 – Numerical results of the forward solver for three different conductivity models
and the new forward solver techniques. Each subplot shows the median relative solution
errors (in%) together with the 25 and 75 percentiles (error bars) estimated for a series of
meshes with increasing number of unknowns. Results are displayed for first order (filled
dots) and second order finite element approximations (blank dots). Labels: FEM : std.
FEM calculations, IFEM : std. FEM with infinite elements, NSR: Numerical singularity
removal.
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only 5 to 10% of the unknowns, but it was expected that the properties of the infinite

elements would generally lead to improved accuracy. Computations involving numerical

singularity removal did not require mesh refinements near the electrodes, which led to a

10 to 65% reduction of the unknowns. Finally, combined application of infinite elements

and numerical singularity removal was expected to provide the best ratio of accuracy

and number of unknowns.

Unfortunately, no analytical solution exists for estimating the accuracy of the differ-

ent simulations. Therefore, we compared our results with reference solutions that were

obtained by the finite element forward solver described in Rücker et al. (2006). These

reference solutions were calculated on extremely dense meshes equipped with second-

order shape functions (each including more than 1 million unknowns). Mixed boundary

conditions were applied and a preconditioned conjugate gradient solver with a solver

tolerance of 1 · 10−9 was used.

Initial inspection of the simulation results revealed that the solution accuracy was

comparable for all electrode positions. For the sake of simplicity we therefore restricted

our further analysis to the results obtained with an injection electrode at the top of

the mound shaped topography (vertical arrows in Figure 3.6). Simulation results are

summarized in Figure 3.7. It displays the median errors of all grid points relative to the

corresponding reference solutions as a function of the mesh sizes. Additionally, the 25

and 75 percentiles (error bars) are shown for a robust estimate of the error variability.

We have chosen a target median relative error of 1% as an acceptable solution. This

target value is marked with a solid horizontal line in the panels of Figure 3.7.

Using the standard FEM with mixed boundary condition and the coarsest mesh

(with the least number of unknowns) provided solution accuracies of about 4% (Figures

3.7a to 3.7c), but it required 28 000 grid points for the homogeneous model and a much

larger number of unknowns for the single prism model to approach the target accuracy of

1%. Only solutions involving second order elements yielded acceptable solutions for the

layered block model (Figure 3.7c). Unfortunately, even the coarsest second order mesh

includes already ≈ 100 000 grid points. Further coarsening by reducing the number of

elements would have resulted in discretization errors above the 1% line of acceptance.

Enhanced solutions could be obtained, when the mixed-boundary conditions are

replaced by infinite elements. The target accuracy could be reached with only 17 000

grid points for the homogeneous model (Figure 3.7d) and with 29 000 points for the

single prism model (Figure 3.7e). As for the standard FEM, the first order element

solutions performed unsatisfactorily for the layered block model (Figure 3.7f), and the

computationally more expensive second order elements had to be used for achieving the

accuracy required.

Substantial improvements were observed, when the FM-BEM numerical singularity

removal was applied. For the homogeneous case (Figure 3.7g), the errors were almost
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zero, but it should be noted that this represents only the accuracy of the singular po-

tential computed with the FM-BEM method (the right hand side of Equation 3.7 is

zero for homogeneous models). Numerical singularity removal led to marked improve-

ments for the single prism and layered block models. Only 8 900 and 16 500 grid points,

respectively, were required to achieve the target accuracy (Figures 3.7h and 3.7i). As

expected, combined application of infinite elements and numerical singularity removal

led to further slight improvements of the results (Figure 3.7j to 3.7l).

3.6.3 Pseudosections

5

10

15

le
v
e

l

~14.000 unknowns

FEM(a)

5

10

15

le
v
e

l

IFEM(e)

5

10

15

le
v
e

l

NSR(i)

10 25 50

5

10

15

x [m]

le
v
e

l

NSR+IFEM(m)

~26.000 unknowns

FEM(b)

IFEM(f)

NSR(j)

10 25 50
x [m]

NSR+IFEM(n)

~50.000 unknowns

FEM(c)

IFEM(g)

NSR(k)

10 25 50
x [m]

NSR+IFEM(o)

~140.000 unknowns

FEM(d)

IFEM(h)

NSR(l)

10 25 50
x [m]

NSR+IFEM(p)

Relative solution error [%]

0 2 4

Figure 3.8 – Synthetic Wenner electrode data calculated for the layered block conductivity
model with our new forward solver techniques applied. Each subplot shows the relative
solution error (in %) displayed in the form of the Wenner pseudosections. Results are
shown for four different mesh sizes (column-wise) and our new forward solver techniques
applied (row-wise). Labels: FEM : std. FEM calculations, IFEM : std. FEM with infinite
elements, NSR: Numerical singularity removal.

Electrical potentials computed along the surface are particularly important, because

they are required for predicting measurements with surface electrodes. Therefore, we

inspect the accuracy of these potentials in more detail. For that purpose we construct

Wenner pseudosections by superposing the pole-pole type simulation results discussed

in the previous subsection. From the resulting apparent resistivities, we subtract the
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corresponding values from the reference solutions and compute relative errors. Only

first order finite elements are considered.

Figure 3.8 shows the relative error pseudosections for the different computational

methods and some selected mesh sizes. Only the results for the most challenging layered

block model are displayed. For the conventional FEM calculations (Figures 3.8a-d), large

relative errors occur especially in the first 5 levels of the pseudosection. As the first levels

correspond to short source-receiver distances, these errors are most likely related to the

singularities in the potential solutions. Although a local mesh refinement close to all

source electrodes has been applied, the mesh density is apparently still too coarse for

approximating the electrical potentials with sufficient accuracy. As expected, the errors

decrease for larger meshes (see also Figure 3.7).

Similar error distributions are obtained for the calculations involving infinite elements

(Figures 3.8e to 3.8h), though the errors are slightly smaller for the calculations on the

smallest and the medium sized meshes (Figures 3.8e and 3.8f).

When the singularity removal is applied (Figures 3.8i to 3.8l), the overall error de-

creases noticeably, such that the calculation with 14 000 unknowns (Figure 3.8i) may be

already sufficiently accurate to be used within an inversion algorithm. Note that for the

conventional FEM calculations (with or without infinite elements) the same accuracy

level is not even reached with the largest mesh size (140 000 unknowns). Only minor

improvements (compared with the numerical singularity removal) are observed, when

both infinite elements and numerical singularity removal are applied (Figures 3.8m to

3.8p).

3.7 Conclusions

Efficient inversion procedures for the large amount of data produced by modern geoelec-

trical multi-electrode arrays require appropriate 3D geoelectrical forward solvers. Finite

element techniques are currently the most powerful option. They allow straightforward

implementations of arbitrarily complicated topographies, and they enable application

of unstructured meshes. The latter is in our view the key element for achieving com-

putational efficiency. It has to be made sure that an optimized meshing algorithm is

employed before any other refinements, such as those presented in this contribution,

are envisaged. The literature on meshing algorithms is vast and excellent open source

algorithms are available.

The computationally most expensive part of any finite element solver includes the

solution of a large and sparse system of equations. Recent developments in mathe-

matical research resulted in direct matrix solvers that allow relatively sizeable systems

of equations to be solved. Direct matrix solvers are particularly useful when equation

systems with many right hand side arguments are involved, which is the case for 3D geo-
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electrical inversion problems. Despite substantial improvements in direct matrix solver

techniques, computer memory requirements for realistic 3D problems remain a prob-

lematic issue. Therefore, it is important to minimize the number of unknowns within a

finite element mesh, while maintaining a high solution accuracy.

Replacing the traditional Dirichlet or mixed boundary conditions with infinite ele-

ments is an attractive option to simultaneously improve the solution accuracy and reduce

the number of grid points in a finite element mesh. Truncating or fixing the electrical

potential at the computational boundaries is well known as a significant source of nu-

merical inaccuracies. Infinite elements provide a more physical and thus more accurate

alternative by continuing the electrical potentials to infinity. The subsurface volume

surrounding an electrode layout does not need to be meshed with finite elements, which

additionally results in savings of grid points.

Besides the artificial boundary conditions the surface and subsurface areas near the

electrodes represent the second major cause of numerical problems. Since the electrical

potentials vary rapidly near the current injection points, the finite elements meshes

need to be very dense in these areas, which results in a large number of grid points.

Singularity removal techniques proposed by Lowry et al. (1989) are a powerful option to

alleviate the problem, but they require the singular potential to be computed separately.

So far, this was achieved by considering analytical solutions, but in the presence of

topography this is not possible. We propose application of a fast multipole boundary

element method for computing the singular potentials. This technique includes the

principal advantages of the traditional boundary element method and overcomes some of

their disadvantages, such as their fully populated system matrix. To our knowledge, this

is the first application of the fast multipole boundary element method in geophysics, and

we believe that this technique may be an attractive option for other numerical modeling

problems.

Extensive numerical tests proved the usefulness of infinite elements and numerical

singularity removal using the fast multipole boundary element method. Combined ap-

plication of both techniques allowed the number of grid points to be reduced by a factor

of ≈ 6− 10 compared with standard finite element techniques. This enables application

of direct matrix solvers for realistic 3D geoelectrical inversion problems, which will im-

prove the computational efficiency dramatically. We hope that these new developments

will facilitate 3D inversion problems to be carried out directly in the field in the near

future.
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3.9 Appendix

3.9.1 Panel clustering method

diamσ

dist(σ, s)

diam s

σ s

Γs

Figure 3.9 – Example of two cluster σ and s on a typical 3D surface mesh used for the BEM.
diam(s) or diam(σ) denote the cluster diameters and dist(x, y) denotes the distance of two
clusters towards each other.

As described in section 3.5.1, the boundary integral equation employed for calculating

the singular potentials leads to a linear system of equations Aus
h = Bq with the element

integrals

Aij =1/2

∫

Γs

φi(r)φj(r
′) dSr′

+

∫

Γs

∫

Γs

φi(r)
∂G(r, r′)

∂n
φj(r

′) dSr dSr′ (3.24a)

Bij =

∫

Γs

∫

Γs

φi(r)G(r, r′)φj(r
′) dSr dSr′. (3.24b)

The Green’s function respectively its normal derivative in the double integrals in Equa-

tion 3.24a and 3.24b couple each degree of freedom on the surface mesh located at node

i (position r) to all other degrees of freedoms at nodes j (positions r′) and thereby lead
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to fully populated matrices A and B. This is in contrast to finite element formulations

for which only locally defined shape functions respectively their gradients appear in the

element integrals and hence very sparse system matrices result. As a consequence, the

computational costs, memory consumption and solution time, for conventional BEM

formulations exhibit an unfavorable scaling behavior proportional to ∼ O(N2) where

N is the number of unknowns. In the Panel Clustering Method, whose basic principles

are explained in the following, an approximation of the Green’s function and its normal

derivative is employed to account for this major drawback.

Green’s function approximation on cluster-pairs

local evaluation points ri

distant evaluation points r′j

Γs

(a)

Multipole

Moment local evaluation points ri

distant evaluation points r′j

Γs

(b)

Local Expansion

Multipole

Moment local evaluation points ri

distant evaluation points r′j

ΓsΓs

(c)

Figure 3.10 – Sketch of the basic idea of the multipole method. Three different approaches
of evaluating the Green’s function G(r, r′) for a set of evaluation points ri and r′j on a BEM

surface mesh are shown. (a) leads to an algorithm with computational costs ∼ O(N2)
whereas (c) results to an algorithm whose computational costs scale as ∼ O(N).

The Green’s function that is needed when solving the 3D Poisson equation for the

singular potentials takes the form

G(r, r′) =
1

4πσ0 |r − r′| . (3.25)

It varies rapidly for short r to r′ distances but shows only slight variations for larger

r to r′ distances. Therefore it is beneficial to distinguish between a near field, where

the double integrals in equations 3.24a and 3.24b are evaluated exactly and a far field

where these integrals are approximated. The far field-approximation employed in the

panel clustering method relies on the idea of multipole moments originally developed

by Greengard and Rokhlin (1987). Figure 3.10 depicts a sketch of the underlying basic

idea. In the conventional BEM for each Green’s function source point r the coupling to

all other Green’s function points r′ are evaluated exactly when calculating the double

integrals which yields numerical costs of the order ∼ O(N2) (Figure 3.10(a)). In the

panel clustering method Greens function evaluation points are grouped in the far field
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into clusters such that the combined effect of all Green’s function points r′ belonging to

one cluster are subsumed into multipole moments. Subsequently only the coupling of the

Green’s function source point r to the multipole moment needs to be evaluated (Figure

3.10(b)). The same approximation can be applied locally around the Green’s function

source points to yield an algorithm with numerical costs that scale as ∼ O(N logα(N))

(Figure 3.10(c)). This scheme requires an approximation of the Green’s function on

cluster pairs (s, σ) where the variables r and r′ are separated:

G(r, r′) ≈ G̃(r, r′) =
∑

(~µ,~ν)

K~µ,~ν Φσ(r)Ψs(r
′). (3.26)

Here K~µ,~ν is a k×k-matrix of expansion coefficients defined for the cluster pair (s, σ). Φσ

and Ψs are the expansion functions defined on cluster s respectively cluster σ. Different

Green’s function expansions can be employed, e.g. an expansion into the three spatial

coordinates by Taylor series, or, as is used within this work, a multipole expansion based

on spherical harmonics (see Sauter and Schwab, 2004, for more details).

Whether a pair of basis functions belongs to the far field or to the near field and

hence the degree to which the BEM system matrices are approximated is controlled by

a parameter η:

η dist(σ, s) ≥ max(diam σ, diam s). (3.27)

Here diam σ and diam s are the diameters of the two clusters and dist(σ, s) is their

distance towards each other. For each possible cluster pair (s, σ) a Green’s function

approximation according to Equation 3.26 is employed if Equation 3.27 is valid, oth-

erwise all pairs of basis functions (φi, φj) with φi ∈ σ and φj ∈ s are part of the near

field, i.e. the corresponding matrix entries Aij are calculated exactly. The scheme by

which potential cluster pairs are constructed is outlined in section 3.9.1. By choosing

η carefully the error introduced due to the panel-clustering method can be limited to a

range which is in the order or smaller than the discretization error due to the surface

triangulation. Within this work we use η = 0.5.

Matrix representation and matrix vector multiplication

The Green’s function approximation (Equation 3.26) does not only reduce the compu-

tational costs, but also allows the system matrices A and B to be approximated. This

results in a significant reduction of the overall memory requirements. In the following

we denote all nodes belonging to cluster s with Is and similarly all nodes belonging to

cluster σ with Iσ. While the matrix entries for all elements belonging to the near field

are calculated exactly, all matrix entries Aij for i ∈ Is and j ∈ Iσ can be approximated
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=

Ã

Ãij

near field
entries

Iσ

Is

Lσ K (Rs)⊤

k

k Ns

Figure 3.11 – Sketch of the structure of the approximated system matrix Ã. For all pairs of
basis functions (φi, φj) in the far field, exact near field entries result into Ã whereas for all
pairs of basis functions that are in the far field an approximation is performed on pairs of
clusters. For each cluster pair the corresponding matrix entries Ãij are given by a product
of three matrices Lσ, K and Rs.

by a product of three matrices Lσ, K and (Rs)⊤:

Aij ≈ Ãij :=

∫

Γ

∫

Γ

φi(r) G̃(r, r′) φj(r
′) dSrdS ′

r

=
∑

(~µ,~ν)

Lσ
i,~νK~ν,~µR

s
j,~µ =

(
Lσ · K · (Rs)⊤

)
ij

(3.28)

with

Lσ
i,~ν :=

∫

Γ

φi(r) Ψs(r
′) dSr′, Rs

j,~µ :=

∫

Γ

φj(r) Φσ(r′) dSr.

For simplicity the approximation is demonstrated here only for matrix A. Figure 3.11

shows a sketch of the structure of Ã: The exact near field matrix entries close to the

diagonal of Ã are highlighted together with one matrix block that is approximated by

a Green’s function expansion on a pair of clusters. Note that the nodes indices Iσ and

Is for a cluster pair (σ, s) are in general distributed across the matrix but for simplicity

they are shown in the form of a rectangular block. Each of the approximated matrix

blocks consists of a multiplication of three matrices as in Equation 3.28. If we denote the

number of nodes in the clusters s and σ by Ns respectively Nσ, then the three matrices

have the dimensions Nσ × k, k× k and k×Ns, as shown in Figure 3.11. Here k denotes

the number of expansion coefficients, which are significantly smaller than Nσ and Ns.

The system matrices A and B are not given explicitly in the panel-clustering method

but are defined in terms of the approximation scheme as outlined above. When solving

the BEM equations with iterative matrix solvers, only matrix times vector products are

needed. The panel-clustering method provides a fast way of evaluating these products.

The computational savings become obvious if we look at the matrix-vector multiplication
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of the matrix block Ãij with a vector u:

(Ãu)i =
∑

j∈Is

Ãijuj =
∑

~ν

Lσ
i,~ν

∑

~µ

Kb
~ν,~µ

∑

j∈Is

ujR
s
j,~µ, (3.29)

Clearly this product needs considerably less floating point operations than a full matrix

vector multiplication with the matrix block Aij.

Multilevel scheme

In the previous sections the Green’s function approximation on a single cluster pair was

described and it was outlined that such an approximation results in a significant im-

provement on the performance of the BEM. The question remains, how the set of cluster

pairs can be constructed in an optimal fashion. The panel-clustering method employs a

multilevel scheme in which a hierarchic tree structure of clusters T is generated.

The root of the cluster tree T is constructed by a minimal axis-parallel cuboid that

encloses the entire surface mesh Γs. The root of T consists of all basis functions or nodes

in Γs. Subsequently the cuboid is subdivided in eight congruent cuboids. The nodes of

the surface mesh that are contained in these cuboids form the eight children of the root

of T . This subdivision is repeated recursively for all children until the smallest cluster

consists of a predefined minimum number of nodes.

The resulting cluster tree T is used to construct a set of cluster pairs P far for which

the Green’s function approximation (Equation 3.26) is applied, and a set of cluster pairs

P near for which exact evaluations are used. Equation 3.27 is used to decide whether a

cluster pair belongs to P near or P far.

The process starts with a cluster pair (σ, s) where σ and s are both the root of T , i.e.

both contain all nodes of Γs. If Equation 3.27 is true for (σ, s), which is obviously not the

case for the root clusters, then (σ, s) belongs to P far, otherwise the process is continued

recursively for the children cluster pairs. Thereby, the children cluster pairs of (σ, s) are

all combinations (σ′, s′), where σ′ is one of the children of σ in T and correspondingly

s′ is one of the children of s in T . Cluster pairs (σ, s), for which Equation 3.27 is not

true, will only be appended to P near if they have no children, i.e. if both clusters σ and

s are not further subdivided in T .

Finally each pair of basis functions (φi, φj) (corresponding to a pair of surface mesh

nodes (i, j)) belongs either to the far field P far or to the near field P near. For all

(φi, φj) ∈ P near exact calculations are performed resulting into near field entries Aij as

sketched in Figure 3.11 whereas for all pairs of basis functions (φi, φj) ∈ P far approxi-

mations on cluster pairs are performed as outlined above. Since the expansion functions

Φσ, Ψs in any cluster pair (σ, s) can be written as a combination of functions on the

cells, all operations are performed on triangles and then “raised” to higher levels in
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the cluster tree. Altogether, the panel-clustering method results to a boundary element

implementation for which the computational costs scale as ∼ O(N log5(N)) instead of

the ∼ O(N2) scaling for conventional BEM implementations.

For the singularity removal technique described in section 3.3.2 the singular potentials

may be required not only along the surface Γs, but also inside the volume at all nodes

of the finite element mesh. Once the surface solution is found with the panel-clustering

method, the same technique can be employed for evaluating the volume solution values.

For this purpose, an additional cluster tree Tvol is constructed for the finite element

mesh and the clustering algorithm described above is applied to pairs of clusters (σ, s)

with σ ∈ T and s ∈ Tvol.

3.9.2 2.5D forward approximation
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Figure 3.12 – (a) Implementation of the mixed boundary condition for surface electrodes
(located at ~rs), requires the angle θ between the ground boundaries normal vector ~N and
the vector ~r, that connects the source location to nodes on the boundary Γg, to be known.
(b) For subsurface (i.e. borehole) electrodes an image source located above the surface is
employed for the analytic solution. ~r− and ~r+ denote the vectors connecting points on Γg

to the source and its image source location, respectively.

Even though most subsurface conductivity distributions are 3D in nature, in certain

geological settings a 2D model is a sufficiently good approximation of the true subsurface.

In these cases the much lower computational costs of a 2D compared to a full 3D data

inversion is highly beneficial. Therefore, a so-called 2.5D forward approximation based

on triangular domain discretizations has been implemented.

Even though the conductivity distribution σ(x, z) is assumed to be two-dimensional,

the potential field φ(x, y, z) exhibits 3D characteristics caused by the point source. A

pure 2D modelling of the potential field would require 2D line sources in the strike

direction, which is impossible to realize in field measurements. To account for the

3D source characteristic, a spatial Fourier transformation of the potential U(x, y, z) is
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performed along the strike direction (y):

Û(x, k, z) = 2

∫
∞

0

U(x, y, z) cos(ky) dy (3.30)

As the potential U(x, y, z) is an even function with respect to the strike direction, we em-

ploy a Fourier-Cosine transformation. Applying this transformation to the 3D Poisson

equation (equation 3.2) results into a 2D Helmholtz equation






∇ · (σ∇Uk) + k2σUk = −Iδ(|~r − ~rs|) in Ω

∂Uk/∂n = 0 on Γs

∂Uk/∂n + βUk = 0 on Γg on Γg

, (3.31)

which is solved for a 2D domain Ω limited by a boundary Γ that is subdivided into

a surface (Γs) and a subsurface part (Γg). As for the 3D Poisson equation (section

3.3.1) we apply a Neumann boundary condition along Γs (no current-flow perpendicular

to the surface boundary is allowed) and a mixed boundary condition along the ground

boundary Γg. For the mixed boundary conditions, the potential field along Γg is assumed

to asymptotically behave like the homogeneous half-space solution Uh(k) given in terms

of the modified, zeroth order bessel functions K0:






Ûh(k) =
I

2πσ0
K0(kr) (~rs on Γs)

Ûh(k) =
I

2πσ0
(K0(kr−) + K0(kr+)) (~rs in Ω)

(3.32)

Here σ0 is the homogeneous domain conductivity, k the spatial wavenumber and I

the current source strength for a source located at ~rs. For sources located inside the

domain (e.g. borehole electrodes), an image source located above the surface (see Figure

3.12(b)) is employed for the analytic solution. r− =
√

(x − xs)2 + (z − zs)2 and r+ =√
(x − xs)2 + (z + zs)2 denote the distance of points ~rg = (x, y) on the ground boundary

to the source and its image source, respectively. Inserting the homogeneous subsurface

solution (Equation 3.32) into the expression for the mixed boundary condition (Equation

3.31) yields an expression for the factor β





β = σ0 cos(θ)
kK1(kr)

K0(kr)
(~rs on Γs)

β = σ0
k [K1(kr−) + K1(kr+)]

K0(kr−) + K0(kr+)
(~rs in Ω)

, (3.33)

that is used to implement the mixed boundary conditions for surface and subsurface

electrodes. Here K1 denotes the modified bessel functions of first order. When a direct

matrix solver is used to solve the finite element equations (see section 3.3.3), a geometric
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mean of all source and mirror source electrode positions is used to approximate the

mixed boundary conditions. In this way the system matrix becomes independent of the

source electrode position and therefore only a single matrix decomposition needs to be

performed to compute the solutions for all source electrodes efficiently. After computing

the Fourier transformed solutions for a sufficiently large number of discrete wavenumbers

k, an inverse Fourier transformation is applied to obtain the potential solutions in the

spatial domain:

U(x, 0, z) =
1

π

∫
∞

0

Û(x, k, z)dk (3.34)

The transformed potentials Û(x, k, z), which are proportional to K0(kr) (see Equation

3.32), behave as ∼ −ln(kr) for (kr) → 0 and ∼ e−kr/
√

kr for (kr) → ∞. Therefore,

following the approach of Kemna (2000) and LaBrecque et al. (1996), we split up the

integral into two parts

1

π

∫
∞

0

Û(x, k, z)dk =
1

π

∫ k0

0

Û(x, k, z)dk

︸ ︷︷ ︸
I1

+
1

π

∫
∞

k0

Û(x, k, z)dk

︸ ︷︷ ︸
I2

, (3.35)

and evaluate integral I1 (small wavenumbers) by a Gauss-Legendre quadrature rule and

integral I2 (large wavenumbers) by a Gauss-Laguerre quadrature rule. For I1 the integral

variable is substituted by k′ =
√

k/k0 to overcome the singularity in the integrand for

(kr) → 0; the resulting integral is solved by NG Gaussian quadrature points with abscissa

k′
i and corresponding weights w′

i:

I1 =

∫ 1

0

F (k′)dk′ ≈
NG∑

i=1

w′

iF (k′

i) (3.36)

= π

NG∑

i=1

wiÛ(x, ki, z)

{
ki = k0k

′2
i

wi = 2k0k
′
iw

′
i/π.

Due to the integral range [0,∞) and the ∼ e−kr/
√

kr functional behaviour of the inte-

grand in Integral I2, an NL-point Gauss-Laguerre quadrature rule with abscissa k′
i and

corresponding weights w′
i is used to solve this integral efficiently:

I2 =

∫
∞

0

e−k′

F (k′)dk′ ≈
NL∑

i=1

w′

iF (k′

i) (3.37)

= π

NL∑

i=1

wiÛ(x, ki, z)

{
ki = k0 (k′

i + 1)

wi = k0 ek′

i w′
i/π

The critical wavenumber k0 used to split up the inverse Fourier integral is estimated

as k0 = 1/rmin, where rmin is the minimum distance between any of the employed
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electrode locations. We found that choosing NG = 8 Gauss-Legendre and NL = 4 Gauss-

Laguerre quadrature points yields sufficiently accurate results. Comparisons with a 3D

homogeneous half-space solution for a single surface source electrode and the mixed

boundary conditions applied revealed relative solution accuracies well below 0.1 percent

across the domain.

The same inverse Fourier sampling scheme as outlined here is used to compute the

2.5D sensitivity kernels needed for the inverse algorithm. Note that for this purpose the

Fourier transformed potentials Û(x, k, z) for all employed discrete wavenumbers ki are

required and hence need to be kept in main memory.

3.9.3 Finite-element modeling

1.0

1.0

1.0

0.0

1.0

1.0

0.0

b)a)

Figure 3.13 – Sketch of the local coordinate systems employed during integration of the
finite element equations for a) tetrahedral and b) triangular elements. Gray dots indicate
the locations of the degree of freedoms associated to the individual elements. For second
order approximations, additional degrees of freedom are used (black dots).

The solution to the 2D Helmholtz equation (section 3.9.2) and the 3D Poisson equa-

tion (section 3.3.1), respectively, is approximated using the finite-element method. It

requires subdividing the domain (Ω) and the boundary (Γ) in small sub-domains Ωe and

boundary elements Γe, such that Ω = {Ω1 · · ·ΩNe
} and Γ = Γg ∪ Γs =

{
Γ1 · · ·ΓNg

}
.

Triangular elements are used to discretize the 2D Helmholtz equation and tetrahedral

elements are used for the 3D Poisson equation. Within each element the unknown

potential Un is approximated by a linear combination of first or second order shape

functions φk

Un(x, y, z) =

p∑

k=1

φk(x, y, z)un
k , (3.38)

where p denotes the number of nodes associated with a single element and un
k the un-

known potential values at the nodes. For simplicity, I demonstrate the finite-element

discretization for the 3D modified Poisson equation (Equation 3.7 in section 3.3.2) –
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discretization of the 2D Helmholtz equation follows along the same lines. Starting from

the weak or variational form (see section 3.3.3)

∫

Ω

σ∇Un · ∇ω dΩ

︸ ︷︷ ︸
I1

+

∫

Γ

σω β(r)UndΓ

︸ ︷︷ ︸
I2

= −
∫

Ω

∇ · ((σ(r) − σ0)∇Us)ωdΩ

︸ ︷︷ ︸
I3

, (3.39)

the finite element equations are assembled element-wise into local element matrices Ke

and forcing vectors Fe, which are subsequently inserted into the main equation system.

For finite element e the resulting local element matrix takes the form

Ke
i,j =

Ns∑

i,j=1

(
σe

∫

Ωe

∇φi · ∇φj dΩe

)
+

N ′

s∑

i,j=1

(
σe

∫

Γg
e

β φ′

iφ
′

j dΩe

)
, (3.40)

where the first sum corresponds to the main finite element volume integral (I1 in Equa-

tion 3.39) and the second sum results from the boundary integral I2 that formulates the

mixed boundary conditions. Note that the latter is evaluated only for elements e that

share one or more sides with the ground boundary Γg. Ns and N ′
s are the number of

shape functions φi and φ′
i for domain and boundary elements, respectively. σe is the

constant conductivity of finite element e and β is the mixed boundary condition factor

(Equation 3.4). The element integration in Equation 3.40 is carried out using conven-

tional Nqp and N ′
qp point gaussian quadrature rules with weights wp and the quadrature

point locations qp resulting into the explicit expression for the element matrix Ke:

Ke
i,j =

Ns∑

i,j=1

(
σe

Nqp∑

p=1

Jp wp ∇φi(~qp) · ∇φj(~qp)

)

+

N ′

s∑

i,j=1


σe

N ′

qp∑

p=1

Jp wp β(~qp, ~np) φ′

i(~qp)φ
′

j(~qp)


 (3.41)

Numerical integrations are carried out in local coordinate systems on so-called unit el-

ements. This is common practice in finite element methods because it allows tabulated

quadrature points (~qp) and weights (ωp) to be used irrespective of the individual shape

of the finite elements, thereby greatly accelerating the necessary computations. Analytic

expressions could be employed for the finite element integrals (Kost, 1994). However,

using gaussian quadrature rules allows them to be dicretized in a more general fashion

without a loss in numerical accuracy (Zienkiewicz, 1977). This largely simplifies dis-

cretization of the finite element equations for different cell geometries (e.g. triangular,

tetrahedral and prismatic-shaped cells). Figure 3.13 depicts a sketch of the local coordi-

nate systems used for triangular and tetrahedral elements, respectively. The coordinate
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transformations from the local to the global coordinate system are given by

{
x = x1 + (x2 − x1)ξ + (x3 − x1)η

y = y1 + (y2 − y1)ξ + (y3 − y1)η
(3.42)

for triangular and





x = x1ξ + x2η + x3ν + x4(1 − ξ − η − ν)

y = y1ξ + y2η + y3ν + y4(1 − ξ − η − ν)

z = z1ξ + z2η + z3ν + z4(1 − ξ − η − ν)

(3.43)

for tetrahedral elements.

The discretized expression for the right hand side in Equation 3.39 (I3) takes the

form

~F e
i =

Ns∑

i,j=1

(
(σe − σ0)

Nqp∑

p=1

Jp wp Us(~pj) ∇φi(~qp) · ∇φj(~qp)

)
(3.44)

where Us(~pj) are the pre-calculated singular potentials (estimated either by the bound-

ary element method (section 3.5) or, in the case of flat surface domains, by analytical

homogeneous half-space solutions), that are required at all nodes of each finite element.

σ0 is the conductivity at the source electrode according to the singularity removal tech-

nique. Note that gradients of the singular potentials as they appear in Equation 3.39

are approximated by the gradients of the employed shape functions.



Chapter 4

Inversion of Large-Scale Geoelectric

Data Sets

4.1 Introduction

Modern geoelectrical data acquisition systems, such as the multi-channel measurement

system ETH-DCMES-II described in Chapter 2, allow large amounts of data to be

collected in a short time. This enables large-scale 3D geoelectric field surveys to be

carried out efficiently. Resulting data sets may easily comprise up to several hundred

thousand measurements. Despite the seemingly ever-increasing power of computers, full

3D inversions of these data sets remain challenging and time-consuming tasks. There-

fore, optimized inversion procedures have been developed in the framework of this PhD

project with the following main features:

Large data sets: In many inversion approaches, the size of the data set that can be

inverted is seriously limited by the available main memory. Our inversion approach

allows arbitrarily large data sets to be inverted with the number of employed model

parameter cells as the only limiting factor. Attention has been paid to largely

decouple the number of necessary floating point operations from the size of the

data set, thereby allowing large 3D data sets to be inverted economically.

Optimized model parametrization: A flexible parametrization of the inverse prob-

lem is of key importance to reduce the general ill-posed character associated with

geoelectric data inversions. Conceptually, the parametrization should be adapted

to the resolving power of the data set considered. This also helps to avoid un-

necessary computations, because the computational costs and memory generally

required in inversion algorithms, largely depend on the number of model parame-

ters specified.
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Figure 4.1 – Inversion scheme used for geoelectric data inversions. As a first step, all sin-
gular potential solutions are calculated with the boundary element method. Subsequently,
a parametrization adapted to the geoelectric data set is constructed by clustering finite
element cells of the forward mesh. Within each iteration j, a linearised inverse sub-problem
is solved using the normal equations. Previously the forward solution is obtained with the
finite element method and the sensitivities are computed. Our inversion scheme allows the
forward solutions and the sensitivities to be computed either by a full 3D or by a 2.5D
formulation.

2.5D approximation: In certain geological settings a 2D model is a sufficiently good

approximation of the true subsurface. In these cases, 2.5D modelling can greatly

increase the speed of the inversion process. Our inversion scheme allows the sensi-

tivities as well as the forward problem to be solved either on 2D triangular meshes

(with 3D source characteristics) or on 3D tetrahedral meshes.

Topography: Many target areas for geoelectric measurements are characterized by

pronounced topography. To avoid systematic errors in the forward modeling and

sensitivity computations, the surface topography needs to be incorporated in the

computations (see also Chapter 3). Likewise, the topography needs to be ac-

counted for during the construction of the parameter mesh.
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Unstructured grids: Unstructured computational grids, e.g. based on non-regular

triangular or tetrahedral meshes, have proved to be most efficient in discretizing

the forward problem (e.g. Rücker et al., 2006).

The main elements of our inverse scheme are outlined in Figure 4.1. Initially, an

unstructured domain discretization, comprising either first- or second-order tetrahe-

dral (3D domain) or triangular (2D domain) finite elements, is created. The domain

discretization is constructed such that it accomodates the surface topography. Further-

more, it is adapted to the desired accuracy of the forward solution. In the case that a 3D

forward modeling is required, singular potentials are pre-calculated with the boundary

element method such that only the secondary potentials need to be solved for during

each iteration of the inverse algorithm (see Chapter 3 for details). A model parametriza-

tion optimized to the resolving power of the data set under consideration is created out

of the previously generated domain discretization by grouping finite element cells into

clusters (section 4.2).

Starting with an initial (usually homogeneous) subsurface model ~m0, the inversion

then proceeds in an iterative fashion by locally linearising the forward operator F(~mj)

within each iteration j. The resulting linear sub-problem ~mest
j+1 = G−g(~dobs) is solved

using the normal equations (section 4.5) to obtain an updated model vector ~mj+1. Due

to the general ill-posedness of geoelectric inverse problems, the normal equations need to

be regularized by appropriate à-priori constraints (e.g. smoothing and damping, section

4.4).

Linearizing the forward operator requires knowledge of the partial derivatives Skl =

∂Fk/∂ ~ml referred to as sensitivities, which are previously calculated either based on

the forward solution (section 4.3.1) or by the reciprocity theorem (section 4.3.2). Fur-

thermore, the forward solution ~dsyn
j = F(~mj) obtained using the finite element method

(Chapter 3) is required for estimating the sensitivities and to predict the data residuals

~rj = D(~dobs − F(~mj)) (section 4.5). The inversion process stops, once the rms of the

data residuals falls below a certain specified threshold.

4.2 Model parametrization

To obtain high quality tomographic images of geoelectric data sets requires not only

high quality data and accurate forward and inverse solvers, but also adequate model

parametrizations. This is especially important considering the general ill-posed character

of geoeletric inverse problems. Appropriate model parametrization should be designed

such that (i) grid cell sizes are adequate for the resolving power of the data set to be

inverted and (ii) the grid cells are sufficiently dense such that un-aliased tomogram

images are obtained.
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a) b) c)

= forward cell = parameter cell 

Figure 4.2 – Three different approaches to unstructured model parametrisations: In a) the
forward cells are identical to the parameter cells, whereas in b) the forward mesh is obtained
by element subdivision on the parameter grid. In c) two independent domain parametriza-
tions are used. While the approaches in a) and b) offer ease of implementation, they fail
to meet the (potentially conflicting) demands of adequate forward modeling and parameter
discretizations. Approach c) offers the most flexibility, but entails complications in (among
other things) the sensitivity computations.

The literature on geoelectric data inversions reveals three different approaches to

model parametrizations. Figure 4.2 illustrates these approaches for unstructured domain

discretizations. Due to its relative simplicity, the first and most common approach is to

use the same discretization for the forward solver and the model parametrization (Figure

4.2 a)). Clearly, with such an approach the conflicting demands of adequate forward

and parameter discretizations cannot be met. The requirement for an efficient forward

solver and the general ill-posed character of the inverse equations obviously demand two

different computational grids. The forward grid, which is generally much finer, needs to

be adapted to the desired accuracy of the finite element equations. For example, grid

refinements around the source electrodes can largely help improve the overall forward

solution accuracy whereas increasingly coarse grid cells towards the domain boundaries

are important to keep the computational costs within reasonable bounds. On the other

hand, appropriate parametrizations of the inverse problem depend almost exclusively

on the data set to be inverted. For example, exponentially decreasing sensitivities, as

they commonly occur for geoelectric data sets towards the deeper parts of the domain,

usually require the parameter grid cells to increase in size with depth accordingly.

An appealing approach to unstructured model parametrizations is demonstrated

by (Günther et al., 2006). In their approach, an unstructured mesh is used for the

model parametrization, out of which the forward discretization is obtained by element

subdivision (Figure 4.2 b)). In this approach, the element subdivision should ideally be

done in an adaptive fashion, such that element refinements are only carried out in regions

that require a dense discretization to obtain a high forward solution accuracy. Multigrid

equation solvers can be used on the adaptive forward discretization to significantly speed

up the forward solution. In our view, this approach has one important drawback. It

requires generation of an unstructured mesh - used for the model parametrization - with
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cell sizes across the domain fine-tuned to the resolving power of the data set that is

to be inverted. In our experience, unstructured mesh generation, especially for three-

dimensional domains with pronounced topography, is a complicated process which allows

only minor to moderate influence on the spatial cell size distribution in the resulting

mesh.

A third and final approach would be to use two completely independent domain dis-

cretizations for the forward solver and the inverse approach, respectively. Clearly, this

approach offers the most flexibility. However, two independent discretizations would

require the forward solutions to be interpolated to the inverse grid for the sensitiv-

ity computations, which can easily lead to numerical errors. Additionally, appropriate

means of projecting the model vector from the inversion grid to the forward grid need

to be implemented, which further complicates the whole inverse approach.

Considering the shortcomings of the three approaches described above, we propose

a new way of forming optimized model parametrization out of the forward discretiza-

tion by grouping the forward cells into clusters. This approach provides a maximum of

flexibility for adequately fine-tuning the model parametrization to the individual data

sets under consideration. Yet, it allows for a straightforward computation of the sen-

sitivities (see section 4.3) and uncomplicated predictions of the forward response for

estimated parameter models. The specific algorithm used to cluster the finite elements

is completely decoupled from the remaining parts of the data inversion and hence can

easily be interchanged for maximal adaptibility. In the following sections, I describe two

clustering algorithms suitable for 2D and 3D domain discretizations.

4.2.1 Auxiliary staggered grid method

Staggered grid parametrizations are employed in several inverse schemes (e.g. Loke and

Barker, 1996b; Günther, 2004) due to their straight-forward implementation and un-

complicated adaptability to the resolution of the data set that is inverted. Typically,

they are used in conjunction with a regular, cartesian finite-difference discretization of

the forward operator. Layer thicknesses can vary with depth and cell widths gradu-

ally increase towards the bottom of the domain respecting the cell boundaries of the

underlying forward grid. The flexibility stems from the fact that the geometry can be

parameterized by just a few numbers, e.g. by initial cell sizes for the uppermost grid

layer and vertical and horizontal stretching factors, that define cell size growth rates

with depth. These parameters can easily be inferred from e.g. a homogeneous sensi-

tivity distribution of the data set (Günther, 2004) or by an à-priori resolution analysis

(Friedel, 2003). However, staggered grid parametrizations cannot be used in a straight-

forward fashion if the domain exhibits a pronounced topography. Furthermore, they are

not applicable if the underlying forward mesh is not rectangular.
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Figure 4.3 – Construction of a parameter mesh by the auxiliary staggered grid method. A
coordinate transformation is applied to the original forward mesh (a) in order to obtain a
flat surface domain (b). Subsequently, a staggered grid mesh (c) is used to perform the
clustering (d). Finite elements in (d) belonging to the same cluster are highlighted with
the same colours. A similar algorithm is used for 3D tetrahedral forward discretizations.

Therefore, we propose to combine the effectiveness of staggered grid parametrizations

with the flexibility and improved performance of unstructured forward discretizations.

Figure 4.3 outlines the approach used to construct the parameter mesh. In the first

step, the vertical coordinates rp
z for all forward mesh nodes p (located at ~r p) are linearly

transformed by the relation

rp
z = rp

z −
T (~r p) − z0

T (~r p) − zb

(rp
z − zb) (4.1)

such that a flat surface domain is obtained (Figure 4.3 (a)). Here T (~r p) is a function

returning the (interpolated) vertical coordinate of the topography above node p, zb is

the vertical coordinate of the bottom domain boundary and z0 specifies the vertical co-

ordinate of the resulting flat topography (which is usually equal to zero). Subsequently,

Np clusters (with Np equal to the number of staggered grid cells) are formed, with each

cluster i containing all forward cells Pi = {e1
i , e

2
i , · · · }, whose centroids are located within

the boundaries of staggered grid cell i. Thereby, Ωp, the inner part of the domain Ω,

where the inversion takes place, is parameterized as:

Ω ⊃ ΩP =
{

ΩP
1 ∪ ΩP

2 · · · ∪ ΩP
Np

}
with ΩP

i =
⋃

∀e∈Pi

Ωe (4.2)

In Figure 4.3 (d) a sample parameter grid is visualized by colouring forward cells that
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belong to the same cluster in the same colour. The outer space, i.e. the region beyond the

domain that is covered by surface electrodes, is not displayed in this figure. Nevertheless,

it is included in the parametrization through a couple of large staggered grid cells to

account for outer-space sensitivities (Maurer and Friedel, 2006). The same algorithm

works seamlessly for 3D tetrahedral forward parametrizations. Figure 4.4(a) shows the

inner part of a 3D auxiliary staggered grid mesh and Figure 4.4(b) shows a cross-section

through the resulting parametrization, where tetrahedra belonging to the same cluster

are assigned the same colour.
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Figure 4.4 – (a) A sample 3D auxiliary staggered grid mesh and a vertical cut through the
resulting parametrization (only the inner part of the domain is shown for clarity). Finite
elements belonging to the same cluster are highlighted with the same colours.

Each parameter may represent either a constant resistivity or conductivity value

forming the model vector ~m =
{
m1 · · ·mNp

}
. Often, linear parameters with associated

resistivity or conductivity values tend to overestimate resistive or conductive subsurface

structures during the inversion. Logarithmic parameters are generally preferable, be-

cause they eliminate the subjective choice of either conductivity or resistivity parameters

and automatically enforce positivity on all parameters.

4.2.2 Advancing front cluster algorithm

The Advancing Front Method is a technique commonly used for unstructured mesh

generation (see, for example Frey et al., 1996). In this technique, a mesh is constructed

by progressively adding mesh elements starting at the boundaries of the domain. During

the meshing process, a propagating front - the border between the meshed and the

unmeshed region - continuously moves towards the inner part of the domain until the

meshing is complete.

We adopt this technique to cluster the forward mesh elements starting at the surface

of the domain and progressively continuing downwards towards the bottom of the domain
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Figure 4.5 – Sketch (a) and algorithm (b) describing the advancing front clustering method
to create a parameter mesh by finite element clustering. Clustering begins at the uppermost
part of the domain. Clusters are constructed by selecting an initial element to start with
(red dots in (a)) and successively adding out of all neighbouring elements N the one which
minimizes the radius to area ratio ΦA = (A + ∆Ai)/(V + ∆Vi). A target size for a cluster
is reached when the sum of element weights wi within a cluster exceeds a certain threshold
Wt. Appropriate element weights can be based on data sensitivity or data resolution to
obtain optimized model parametrizations. (c) Shows a sample 2D parameter mesh with
clusters identified by common colours.
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until all finite elements in the domain Ωp, the inner part of the domain Ω where the

inversion takes place, are assigned to one of the parameter cells. Ultimately, this results

in a domain parametrization

Ω ⊃ ΩP =
{

ΩP
1 ∪ ΩP

2 · · · ∪ ΩP
Np

}
with ΩP

i =
⋃

∀e∈Pi

Ωe, (4.3)

where Pi (i = 1 . . .Np) are index sets that contain indices for all of the finite elements of

which the individual parameter cells are composed. Figure 4.5 b) depicts the algorithm

used for the clustering. As a first step, element weights ωi are assigned to all finite

elements. These weights constrain the final size of the individual clusters and thereby

largely determine the optimality of the resulting parametrization. Appropriate element

weights can be based on data sensitivity or data resolution to obtain adequate model

parametrizations.

Each new cluster C starts with a single finite element, as indicated by the red dots in

Figure 4.5 a). As the starting element, we pick the element with the minimum absolute

vertical (z) and horizontal (x) coordinates which is not yet included in another cluster.

In this way, the clustering automatically progresses in horizontal layers downwards from

the surface to the bottom of the domain.

Subsequently, additional finite elements are added to the new cluster until the sum

of the element weights exceeds a previously defined threshold value:
∑

∀j∈C ωj > Wt. At

each step, any of the finite elements adjacent to the boundary of the cluster, to which

we refer to as the neighbouring elements N (C), are potential candidates to be added to

the existing cluster. To assure a reasonable shape for the resulting clusters, we select

out of all neighbouring elements i ∈ N (C) the one which minimizes the radius to area

ratio ΦA = (A + ∆Ai)/(V + ∆Vi). Here V is the area of the cluster C, A denotes its

circumference and ∆Vi and ∆Ai are the area and circumference, respectively, of the

element that is to be potentially added (see Figure 4.5 a)).

During the clustering process, it may happen that holes (i.e. small unclustered

regions) remain inside the domain Ωp. By the end of the clustering process, these holes

are filled by the algorithm with clusters that are neither well-shaped nor of the correct

size according to the element-weights. Therefore, we employ a post-processing step,

in which elements are swapped between clusters to improve the overall quality of the

parametrization. Figure 4.5 c) shows an example model parametrization for the domain

illustrated in Figure 4.5 a). The same algorithm as outlined here has been implemented

and tested on 3D tetrahedral finite element discretizations.
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4.3 Sensitivity calculation

For any non-linear inversion, the partial derivatives of the forward response with respect

to the model parameters (the so-called sensitivities or Fréchet derivatives) are required.

Besides providing the gradient information for the inversion process, spatial sensitivity

distributions provide valuable information about the depth of penetration of certain

geoelectric measurement configurations.

Alongside the forward solution, calculation of the sensitivities is required at each

iteration of the inverse process; it is the most time-consuming part of geoelectric data

inversions. Some authors (e.g. Loke and Barker, 1996a) use an approximate method

described by Broyden (1972) to update the sensitivities at each iteration. However, we

judge that in order to be able to recover deep subsurface features as well (for which

sensitivities can be extremely small) full calculation of the sensitivities during each iter-

ation is indispensable. Spitzer (1998) and McGillivray and Oldenburg (1990) compared

different methods for swiftly calculating the 3D sensitivities for inhomogeneous subsur-

face distributions. Two of the presented methods for sensitivity calculations based on

(i) finite element forward calculations (called the matrix method, Smith and Vozoff,

1984), and (ii) the reciprocity principle (or adjoint method, Geselowitz, 1971), have

been identified as the most efficient for large geoelectric data sets. The implementation

of both methods is outlined in the following section. In both cases we calculate pole-pole

sensitivities

SPP
i,j (~dPP ) =

∂Fi

∂mj

. (4.4)

From these sensitivities any three- or four-point electrode configurations can be formed

by linear combinations or simple algebraic addition. For example, for a bipole-bipole

array:
∂fi

∂mj

= SPP
am,j − SPP

bm,j − SPP
an,j + SPP

bn,j. (4.5)

This is generally more efficient (especially for large data sets) than computing sensitiv-

ities for each electrode configuration separately, because usually the number of possible

non-reciprocal pole-pole configurations Npp = Ne(Ne − 1)/2 (where Ne is the number of

employed electrodes) is much smaller than the number of measured data that are to be

inverted.

Computing the sensitivities for inhomogeneous subsurface models requires the nu-

merically estimated voltage solutions for all source electrodes at all the nodes of the

computational grid. Close to the source electrode locations, the magnitude of the esti-

mated potentials are usually largely overestimated due to the numerically necessary but

physically unrealistic approximation of the injecting electrodes by point (delta function)

sources. Therefore, their absolute values need to be limited to prevent unrealistically

large sensitivities close to the source electrodes from dominating the inverse equations.
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We filter the numerical potentials for each source electrode s using a threshold potential

Us
Max(~rMin), which is an estimate of the potential that would result for a homogeneous

subsurface at a specified distance ~rMin away from the source.

4.3.1 Sensitivities by DC forward calculation (Matrix Method)

During the inversion process, prior to the computation of the sensitivities, the forward

solution is calculated by solving a set of linear equations

K · ~U = ~F . (4.6)

Such a linear equation system can arise from a finite element discretization of the Pois-

son equation. Here K is the finite element stiffness matrix, ~F the discretized forcing

function and ~U contains the unknown potentials. Following the approach by Smith and

Vozoff (1984) and Sasaki (1994), differentiation of Equation 4.6 with respect to the cell

conductivities σe yields

K · ∂~U

∂σe

= −∂K

∂σe

~U (4.7)

because both the stiffness matrix K and the potential vector ~U depend on the conduc-

tivities σe. Equation 4.7 represents an additional forward solution step with a modified

forcing function whose solutions are the unknown sensitivities ∂~U/∂σe for the model

parameter e. Because the conductivity within each finite element cell is constant, the

modified forcing function −∂K/∂σeU can be expressed easily by the local element ma-

trices Ke that are readily available from the forward solution step:

∂Ke

∂σe

=
1

σe

Ke. (4.8)

As there are Ne sets of finite element equations for Ne source electrodes, Ne · Np (with

Np being the number of employed model parameters) additional forward calculations

are required to obtain all pole-pole sensitivity values, which is impractical in terms of

the involved computational costs when traditional equation solvers are employed.

As it was mentioned previously, the finite element equations can easily be formulated

in such a way that K does not depend on the individual source electrode used. In that

case, using state-of-the-art direct sparse matrix solvers, K can be factorized into a

lower and upper triangular matrix using LU decomposition: K = LU. Subsequently,

Equation 4.7 can be solved efficiently for all N · m different forcing functions by simple
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forward and backward substitutions:

yi =
1

Lii

(
bi −

i−1∑

k=1

Li,k yk

)
, xi =

1

Uii

(
yi −

n∑

k=i+1

Ui,k xk

)
(4.9)

Here bi = −
(
∂K/∂σe

~U
)

i
are the entries in the modified forcing function (Equation 4.7)

and xi =
(
∂~U/∂σe

)
i
are the resulting sensitivity values. Available sparse direct matrix

solvers usually assume dense right-hand-side and solution vectors when performing the

forward and backward substitutions. Vector ~b could easily include several hundred thou-

sand entries out of which only a few are non-zero. Additionally, we are only interested in

a few of the values in the solution vector ~x. Re-implementing the forward and backward

substitutions in Equation 4.9 taking the sparsity patterns of the potential and the right

hand side vectors into account can therefore substantially improve the performance of

the sensitivity computations. The necessary optimizations have been implemented in

the sparse direct matrix solver Pardiso (Schenk et al., 2001) in close collaboration with

Dr. Olaf Schenk from the University of Basel.

4.3.2 Sensitivity calculations based on the reciprocity theorem

(Adjoint Method)

3D sensitivity computation

An efficient way of calculating the sensitivities for inhomogeneous subsurface models

is based on the reciprocity principle or adjoint source method. For electromagnetic

inverse problems Geselowitz (1971) derived an analytic expression for the sensitivity of

the impedance Z with respect to a conductivity change δσ within a finite sub-domain

Ωe:

δZ = −δσ

∫

Ωe

∇U(~rs, ~r)

Is

· ∇U(~rp, ~r)

Ip

d3~r, (4.10)

where U(~rs, ~r) is the potential that results from injecting current Is at electrode loca-

tion ~rs and similarly U(~rp, ~r) is the potential caused by injecting current Ip at ~rp (the

adjoint source). The corresponding expression for geoelectric pole-pole sensitivities for

a source electrode located at ~rs and the measuring electrode located at ~rp reads (Zhou

and Greenhalgh, 1999)

∂U(~rc, ~rp)

∂σe

= −Is

∑

∀k∈Pe

[∫

Ωk

(∇G(~rs, ~r) · ∇G(~rp, ~r)) dr

]
, (4.11)

where σe is the conductivity of the model parameter ΩP
e that is formed out of all forward

mesh cells {Ωk | ∀k ∈ Pe} (see section 4.2). It is obvious from the above equation that

the sensitivities for a certain parameter cell are computed by summing up the calculated
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sensitivities of all forward mesh cells which makes up the inversion cell. The gradients

of the Green’s functions G(~rs, ~r) and G(~rp, ~r) are approximated by the gradients of the

finite element shape functions, i.e.

∇G(~rs, ~r) =
Ns∑

i=1

∇φi(~r) U(~rs, ~pi)/Is, (4.12)

where φi (i = 1..Ns) are the finite element shape functions, Is is the current source

strength and U(~rs, ~pi) are the previously computed forward solutions estimated for a

source located at ~rs and evaluated at the finite elements node i.

2.5D sensitivity computation

Computing the pole-pole sensitivities for two-dimensional conductivity distributions

σ(x, z) taking three-dimensional source characteristics into account, requires estimating

the Fourier-transformed Green’s functions Ĝ(~rs, ~r) and Ĝ(~rp, ~r), for the active source

and the adjoint source, respectively, based on the governing 2.5D Helmholtz equation

(see section 3.9.2). The resulting expression for the pole-pole sensitivities takes a similar

form to Equation 4.11 (Zhou and Greenhalgh, 1999):

∂U(~rc, ~rp)

∂σe

= −Is

2
F−1

c

{
∑

kǫCe

[∫

Ωk

(
∇Ĝ(~rs, ~r) · ∇Ĝ(~rp, ~r) + k2

y Ĝ(~rs, ~r)Ĝ(~rp, ~r)
)

d3r

]}
.

(4.13)

Here F−1
c denotes the inverse Fourier transformation with respect to spatial wavenumber

ky required to obtain the sensitivities in the spatial domain. As for the 3D pole-pole

sensitivities, integrals are carried out by summing over the forward mesh cells (triangular

elements in this case) that form the individual inversion parameter cells. Gradients of

the Fourier-transformed Green’s functions are approximated by the shape functions φi(~r)

of the finite elements:

∇Ĝ(~rs, ~r) =

Ns∑

i=1

∇φi(~r) Û(~rs, ~pi)/Is. (4.14)

Note that for the inverse Fourier transformation, we use the same discrete wavenumber

sampling scheme as for the 2.5D forward solution described in section 3.9.2.

4.4 Regularization

Geoelectric inverse problems are usually both non-unique and ill-conditioned, i.e they

are over-determined, under-determined or, which is the most common case, over- and

under-determined at the same time. This is mainly due to the broad range of sensitivities
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spanning several orders of magnitude that typically occur for geoelectric data sets. As

a consequence the model domain is often characterized by regions that are well resolved

and other regions that are very poorly resolved. Regularization constraints are required

to stabilize the solution and to prevent highly oscillatory model fluctuations with unreal-

istically large parameter contrasts to emerge during the inversion. We globally constrain

the model vector ~mi+1 at each iteration of the inversion process by imposing (i) damping

constraints, and (ii) smoothness constraints. Damping constraints require the model to

not deviate too far from the previous (or preferred) model by minimizing the functional

Φd
m = |~mi+1 − ~mi|2. (4.15)

Here ~mi is the model vector from the previous iteration. Smoothness constraints are

applied according to Occam’s Principle to obtain simple models in the sense of spatially

smooth models (deGroot Hedlin and Constable, 1990) by minimizing the functional

Φc
m = |C~mi+1|2, (4.16)

where C is a matrix that contains the first or second order spatial model derivatives.

The damping and smoothness constraints are weighted by regularization parameters α

and β, respectively, that weight the data misfit against the applied constraints for each

inverse sub-problem. The corresponding composit misfit function for iteration i of the

inverse problem takes the form

Φi = Φi
d + α · Φi

md
+ β · Φi

mc
, (4.17)

where Φi
d is the data misfit (see section 4.5). Careful selection of the regularization

parameters is of key importance to obtain reasonable inversion results. Too large values

for α and β would lead to simple model vectors that poorly explain the measured data,

whereas too small values would result in models with unrealistically high resistivity

contrasts, thus potentially over-interpreting noisy data. Conceptually, we seek to find a

model that satisfies the regularization constraints and fits the data to within the data

uncertainty range. For measurements with an assumed uncorrelated Gaussian noise

of zero mean, the expected data misfit is equal to the number of inverted data, i.e

Φd ≈ Nd. Usually, for early iterations in the inversion process the obtained model

vectors are too far away from the true model, such that the criterion Φd ≈ Nd cannot

be met. Therefore, following the approach of Farquharson and Oldenburg (2004) we

employ a “cooling scheme” for the regularization parameters. That is, we start with



4. Inversion of Large-Scale Geoelectric Data sets 81

large values β1 and α1 that are subsequently reduced in each iteration i according to

{
βi = max(c βi−1, c0 β1)

αi = max(c αi−1, c0 α1)
, (4.18)

where 0.01 ≤ c ≤ 0.5 is a regularization reduction parameter. Reduction of the regular-

ization parameters is continued down to target values c0 β1 and c0 α1, where c0 is chosen

such that the criterion Φd ≈ Nd is fulfilled.
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Figure 4.6 – (a) For a simple 2D cartesian grid, there are four adjacent cells to each parameter
cell that are usually equally weighted when computing smoothness constraints. (b) For 2D
parameter grids composed of triangular finite element clusters, smoothness strengths are
weighted by the cumulative length of all triangular edges that two parameter cells have in
common (ωi). Directional smoothing is implemented considering the angles formed between
the vectors ~ri and the cartesian axes (βx

i and βy
i ). ~ri are the vectors connecting the centroids

of adjacent clusters. The same methodology is used for 3D parameter grids consisting of
clustered tetrahedral cells.

The smoothness constraint matrix C in Equation 4.16 that contains the spatial model

derivatives is constructed for a parameter grid made up of a set of finite element clusters

(section 4.2). Appropriate means of obtaining C for such a geometry are required. In

the simplest case of 2D regular cartesian grids (e.g. those in finite-difference schemes),

there are four adjacent cells for each parameter cell (see Figure 4.6(a)). A corresponding

first order smoothness matrix takes the simple form (Günther, 2004)

Ci,j =






1 i = j

0 i 6∈ {N1
j · · ·N4

j }
− 1/4 i ∈ {N1

j · · ·N4
j }

(4.19)

with entries of 1 on the main diagonal corresponding to individual parameter cell in-

dices j and four additional non-zero entries per row, constraining the parameter cell’s
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neighbours N1
j · · ·N4

j .

Figure 4.6(b) depicts a sketch of the principle used to construct appropriate smooth-

ness constraints for parameter grids formed out of clustered finite elements. As a first

step, we compute for each cluster j a list of neighbouring clusters Nj. Neighbours to a

cluster j are defined as those clusters that include at least one finite element that has

a common side with one of the finite elements in the cluster j. Smoothness constraints

for all neighbouring clusters in Nj are weighted according to the cumulative length (or

area) they have in common with the cluster j under consideration. In this way, we avoid

applying too strong smoothness constraints for pairs of clusters that only share a small

portion of their periphery.

Under certain circumstances, direction dependent smoothness constraints can help

to find realistic subsurface models during an inversion process. For example, in many

geological settings it is known à-priori that the subsurface exhibits sharp vertical resis-

tivity contrasts. Therefore, we allow the relative strengths of the smoothness constraints

to be defined separately for all spatial coordinates via parameters 0 ≤ fx, fy, fz ≤ 1,

that define the relative strengths of the vertical and horizontal smoothness constraints.

This is archived by considering for each pair of neighbouring clusters a vector ~ri that

connects their centroids. Smoothness constraints are then weighted by the angles that

~ri form with the cartesian axes. The resulting smoothness constraint matrix C for a 2D

parametrization takes the form

Ci,j =





1 i = j

0 i 6∈ Nj

− ωi [fxcos(α
x
i ) + fycos(α

y
i )] i ∈ Nj.

(4.20)

4.5 Inversion approach

The forward solver described in Chapter 3 allows the prediction of a corresponding data

vector ~dsyn for a certain model vector ~m:

~dsyn = F(~mtrue). (4.21)

Obviously, for geoelectric data inversions, we are interested in the inverse relationship –

i.e. for a set of measurements ~dobs acquired in the field, we seek to find an approximation

of the true subsurface model (~mest) that matches the data: ~mest = F−1(~dobs). Usually,

this is done in an iterative fashion by locally linearising the forward operator around a

model vector ~m0:

F(~m0 + ∆~m) ≈ F(~m0) +
∂F(~m0)

∂ ~m
∆~m = F(~m0) + G∆~m (4.22)
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with the matrix G containing the partial derivatives Gij(~m0) = ∂Fi(~m0)/∂ ~mj , usually

referred to as sensitivities. Within each iteration i of the inversion process a linear

sub-problem
~dobs −F(~mi) = G∆~m (4.23)

needs to be solved in an appropriate sense to minimize the data residuals ~dobs −F(~mi).

Adding G~mi−1 to both sides of Equation 4.23 allows us to solve for the total model

vector ~mi+1 instead of the model update vector ∆~m:

~dobs − F(~mi) + G~mi = G~mi+1. (4.24)

Usually, for each datum dj in ~dobs a measurement uncertainty δj is known either directly

from the measurement process (e.g. it is automatically estimated by the measurement

system) or by a post-experimental error appraisal based on some reasonable assumptions.

These measurement uncertainties are used to weight the data residuals:

D(~dobs − F(~mi)) with D = diag

(
1

δj

)
(4.25)

Here it is assumed that the noise in the measured data is Gaussian and uncorrelated.

Adding damping and smoothing constraints with the regularization parameters α and

β (see section 4.4) results in the combined set of equations:




DG

αC

βI


 ~mi+1 =




D(~dobs − F(~mi)) + DG~mi

0

β ~mi


 (4.26)

which is solved in a least-square-sense. For linear systems of equations of the form

A~x = ~b this is usually accomplished by a pre-multiplication with AT . Applied to

Equation 4.26 this results in the normal inverse equation

(DTGTDG︸ ︷︷ ︸
T2

+ α2CTC + β2I) ~mi+1 (4.27)

= DTGT
[
D(~dobs − F(~mi)) + DG ~mi

]
+ β2 ~mi

= DTGTD (~dobs − ~dcalc)︸ ︷︷ ︸
T1

+DTGTDG︸ ︷︷ ︸
T2

~mi + β2 ~mi
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which can be efficiently solved e.g. by a LU-decomposition. Solving Equation 4.27 for

the model vector ~mj+1 is equivalent to minimizing the combined objective function:

Φ = Φd + α · Φmd
+ β · Φmc

= |D(~dobs − F(~mi))|2 + α · |~mi+1 − ~mi|2 + β · |C~mi+1|2. (4.28)






H






=





 D1G1

T

D2G2

T

. . . DNGN

T 





DT GT

·









































D1G1

D2G2

...

DNGN























































































































DG

=






D1G1







T

·






D1G1






+






D2G2







T

·






D2G2






+ . . . +






DNGN







T

·






DNGN







Figure 4.7 – Simple sketch to outline the method used to assemble the Hessian matrix without
explicitly forming the whole sensitivity matrix G, which, for large data sets, could easily
exhaust the available computer’s main memory.

If the number of data points to be inverted is much larger than the number of

parameter cells (Nd >> Nc), which is usually the case for large-scale geoelectric surveys,

then the amount of memory required to keep the sensitivity matrix G (which is of

dimension Nd × Nc) in the computer’s main memory may be excessive. Solving the

normal inverse equations instead of Equation 4.26 circumvents this limitation, because

the main matrix DTGTDG of the normal equation is of dimension Nc × Nc. However,

the numerical expense of assembling the normal equations is relatively large due to the

involved matrix-matrix products. Furthermore, due to the aforementioned potential

memory limitations, it has to be assured that the sensitivity matrix G is never formed

explicitly during the assembly.

Therefore we employ an efficient technique to assemble the matrix expressions T1

and T2 in Equation 4.27. Writing out the matrix-matrix product in expression T2

(
(DG)TDG

)
ij

=

n∑

r=1

(DG)r,i (DG)r,j =

Np∑

p=1



∑

rǫIp

(DG)r,i (DG)r,j


 , (4.29)

reveals that DTGTDG can be evaluated efficiently by subdividing DG into Np sub-

matrices {D1G1,D2G2, ...,DNp
GNp

} and summing up the matrix-matrix products of

these sub-matrices. Figure 4.7 illustrates this approach. Forming sub-matrices instead
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of evaluating the matrix products on a row-by-row basis allows us to greatly speedup

the computations by the use of highly efficient Level-3 BLAS routines (Dongarra et al.,

1990).

A similar technique is used to form the matrix product necessary to evaluate expres-

sion T1 in equation 4.27:

(
(DG)T (~dobs − ~dcalc)

)

i
=

Np∑

p=1



∑

rǫIp

(DG)r,i

(
~dobs − ~dcalc

)

r


 (4.30)

4.6 Synthetic data examples

In this section, we test and verify our inversion procedures on synthetic 2D and 3D

data sets generated with our finite element forward solver on models with a pronounced

topography.

2D examples

Figure 4.8 shows the tomogram results (resistivity images) obtained for synthetic Wen-

ner, Schlumberger and Summa data sets. The latter is composed of a Wenner, a Schlum-

berger and a Dipole-Dipole data set. All synthetic data sets were generated using the

discretized subsurface model shown in Figure 4.8(a). It consists of a 2.5 m surface layer

with a resistivity of 100 Ωm, a conductive block that grades from 100 Ωm to 10 Ωm in

the center and a 10 000 Ωm highly resistive block. Simulations of all synthetic data sets

are based on a profile with 100 electrodes at 1.2 m spacings with a total line length of 120

m. Forward solutions were performed on a second order finite element mesh comprising

25 000 finite elements. A mixed boundary condition has been employed and 12 discrete

wavenumbers were used for the inverse Fourier sampling.

Inversions were carried out on the model parametrization shown in Figure 4.8(b)

with ≈ 1 600 cells. The tomogram results in Figure 4.8 (c)-(e) were obtained by noise-

free synthetic data whereas the data sets in Figure 4.8 (f)-(h) were contaminated with

Gaussian distributed noise of 1% relative voltage noise and 20 mV constant (absolute)

noise amplitude. Such a noise model is commonly assumed (e.g. Günther, 2004). An

initial regularization parameter of α = β = ν ≈ 0.05 (equal strength for damping and

smoothing) was applied and successively reduced down to a third of its starting value

during the first few iterations.

Inversion results obtained for the three noise-free data sets (4.8 (c)-(e)) resemble the

main features of the synthetic model quite well. The shape and conductivtiy values

of the graded conductive block, the highly resistive block as well as the surface layer

are recovered by the inversion process. However, the shape of the graded block is
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Figure 4.8 – Tomogram results for the subsurface model shown in (a) and synthetic Wenner,
Schlumberger and Summa data sets generated for a profile of 100 electrodes placed at the
surface of the domain at 1.2 m intervals. Results in (c)-(e) were obtained from noise-free
data whereas inverted data sets in (f)-(h) were contaminated with gaussian distributed
noise (1% relative and 20 mV absolute noise amplitude).

somewhat smeared out and its 10 Ωm conductive center is only partially resolved. It is

astonishing to see that all three noise-free data sets (Wenner, Schlumberger, Summa)

perform almost equally well in resolving the synthetic model. We presume that for

deeper conductivity anomalies, more pronounced differences in the tomogram results

would be visible especially between the Summa and the Schlumberger data sets.

The tomogram results for the noise-contaminated Wenner and Summa data sets

(Figures 4.8(f) and 4.8(h)) resemble the tomogram results for the corresponding noise-

free data sets. The Schlumberger data set seems to be much more susceptible to the

influence of noise, because its voltages are much smaller, neither the graded conductive
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block nor the highly resistive block are recovered.

3D example with topography

-80

0

120

Z [m]

Y [m]

-20

-40

 50

X [m] -20  20
 60

 100
 140

 180
 220

(a)

0 50 100 150 200

−60

−40

−20

0

20

Synthetic model

Z [m]

X [m]

100 Ωm

1000 Ωm

10 Ωm

20 Ωm

10 100 1000 10000

ρ [Ωm]

(b)

10 100 1000 10000ρ [Ωm]

Z [m]

X [m]

Y [m]

-20

 50

-80

0

-40

 120
 -20  20  60  100  140  180  220

(c)

Figure 4.9 – 3D tomogram result (c) obtained from synthetic profiling data generated along
15 electrode spreads each including 40 electrodes at 5 m intervals (a). The synthetic data
comprises a combination of Wenner, Schlumberger and a Dipole-Dipole data sets created
on each of the individual profiles. The subsurface model employed consists of a 100 Ωm
surface layer, a 20 Ωm sphere and a 10 Ωm cuboid, both embedded in a homogeneous
1 000 Ωm medium (b). The tomogram result in (c) is clipped at Y = 50 m for visualization
purposes. Furthermore, the bounding boxes of the highly conducting cuboid- and sphere-
shaped anomalies are highlighted.

We demonstrate the 3D capabilities of our inverse approch on a synthetic profiling

data set generated on a sequence of 15 electrode parallel lines each including 40 electrodes

at 5 m intervals. A combination of Wenner, Schlumberger and Dipole-Dipole array

data sets have been constructed on each of the electrode profiles with a total of ≈
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19 000 measurments for the combined data set. All measurement configurations with a

geometry factor larger than 5 000 m have been excluded from the data set. Such high

K values normally imply small voltages and so such data can be easily noise-captured.

Figure 4.9(a) shows the electrode locations employed (blue points) and the undulating

topography of the domain used. A vertical plane cut through the center of the synthetic

subsurface model is shown in Figure 4.9(b). It consists of a 100 Ωm surface layer and two

conductive bodies, a 20 Ωm sphere and a 10 Ωm cuboid, embedded in a homogeneous

1 000 Ωm medium.

The inversion has been carried out with a finite element forward discretization in-

corporating roughly 1.2 million finite elements that were clustered with the auxiliary

staggered grid method to form a model parametrization with 20 000 parameter cells. For-

ward solutions were computed with a first order finite element approximation, a mixed

boundary condition in combination with a mesh largely extended towards the compu-

tational boundaries, and a direct matrix solver. To regularize the inverse equations,

regularization parameters α = β = ν = 0.3 (with equal strengths for the smoothness

and damping constraints) have been used. Both constraints were progressively reduced

during the inversion process down to a third of the original value.

Figure 4.9 shows the inversion result obtained at iteration number 6 for which the

RMS value of the residuals is ≈ 4.7%. The tomogram at Y = 50 m shows the conductiv-

ity distribution within the two resolved conductive features. Clearly, the resistivity and

thickness of the surface layer is accurately reproduced by the inversion process. Also, the

two highly conductive bodies are picked -up quite well by the inversion algorithm, though

their shapes are somewhat smeared out and, especially for the sphere-shaped anomaly,

the resolved resistivity values are slightly over-estimated. The highly resistive anomaly

that appears below the conductive sphere with resistivities in excess of 10 000 Ωm clearly

indicates the maximum resolution depth of the surface data employed. We judge, that

with the synthetic data set used (line length 120 m), resitivity features can only be

resolved down to a depth of 30 m (measured below the surface).

4.7 Application to field data

Buried waste deposit site near Stetten (Switzerland)

To further test and evaluate our inversion procedures, we have analysed data recorded

with the fully distributed data acquisition system ETH-DCMES-II described in Chapter

2. The resistivity data were collected across the well-studied, sealed waste-deposit site

located approximately 25 km west of Zürich close to the village of Stetten (Switzerland)

(Lanz et al., 1996, 1998, 1999; Green et al., 1999). Figure 4.10 shows the location of the

field test site. The resistivity investigations involved the following:
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Figure 4.10 – 2D and 3D geoelectric field surveys have been carried out over a sealed indus-
trial waste deposit site close to the village of Stetten (Switzerland). The red line indicates
the location of the 2D profile and the white dots mark the electrode positions used during
the 3D survey. Extensive previous measurements with various geophysical techniques re-
vealed the borders of shallow surface gravel lenses (regions G1, G2 and G3) and two distinct
waste deposit bodies (regions W1 and W2). High conductivities in excess of 0.1 S/m have
been recorderd with EM-31 measurements below the zones marked in red.

• a pole-bipole comprehensive data set acquired along a 2D line of 50 electrodes

with 3m spacing (red line in Figure 4.10)

• pole-bipole data acquired using a 3D roll-along scheme with a total of about

250,000 measurements recorded on 462 equispaced (5m distance) electrode loca-

tions (white dots in Figure 4.10)

For both data sets, the parallel recording capability of the ETH-DCMES-II was em-

ployed. That is, each single measurement sequence involved first choosing one source and

one reference electrode and then simultaneously acquiring potential readings from all

remaining data acquisition units measured with respect to the single reference electrode.

The landfill contains household and industrial waste that was dumped in aban-

doned gravel/sand pits before being covered by a 0.8m thick layer of soil. The lateral

boundaries of two distinct waste deposit bodies (region W1 and W2 in Figure 4.10) were

recovered through vertical-gradient magnetic and frequency-domain electromagnetic sur-

veying (Lanz et al., 1999). The latter revealed high conductivities in excess of 0.1 S/m
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in some parts of the western waste deposit body (zones highlighted in red, region W1).

Presumably, the western deposit body is mainly filled with industrial waste, whereas

the eastern waste deposit body (region W2) is mainly filled with household garbage and

diverse metallic objects (Lanz et al., 1999). The depth extend of the two waste pits de-

termined from high-resolution refraction seismic data was ≈ 11m (region W1) and ≈ 8m

(region W2), respectively (Lanz et al., 1998). Three distinct gravel lenses (regions G1,

G2 and G3) were delineated in location and aerial extend by electromagnetic surveys,

and the thicknesses delineated by georadar surveys (Lanz, 1998).

Two-dimensional investigation

(i)
(ii) (iii)

(iv)

(v)

a)

b)

Figure 4.11 – Formal model resolution (a) and tomogram result (b) of the 2D comprehensive
pole-bipole data set. Resistivity features in (b) correspond to fluvial gravels and coarse
sands within a gravel lense (i), highly conducting industrial waste (ii) and (iii) and material
originating from the abandoned gravel pit (v). The conductive feature in (iv) most likely
represents an inversion artefact.

Figure 4.11 shows the tomogram result of the comprehensive pole-bipole data set

acquired along a profile of 50 electrodes at 3 m intervals (red line in Figure 4.10). A

homogeneous half-space with resistivity equal to the average of the measured apparent

resistivities (≈ 95 Ωm) was used as the initial input model. For the forward modeling,

we employed a second oder finite element mesh (≈ 30 000 cells) in combination with
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mixed boundary conditions and a direct matrix solver. Twelve discrete wavenumbers

were used for the inverse Fourier sampling.

The parameter mesh used was created by the auxiliary staggered grid method with a

total of ≈ 1 600 cells. To regularize the inverse equations, we used a damping parameter

of ν = 0.65 with equal strengths for the damping and smoothing constraints. The

aforementioned cooling scheme has been applied to reduce the regularization strengths

during the inversion process.

Reverse electrode configurations were purposely included in the comprehensive data

set to asses the overall data quality. Pole-bipole data recordings were performed using

a remote source electrode placed at a distance of roughly 800 m in the south-eastern

direction from the electrode deployment. The comprehensive data set comprises N =

50 · 49 · 48 = 117 600 measurements (including reciprocal recordings). Four out of the 50

employed electrodes were producing unreliable data when acting as reference electrodes;

the corresponding measurements (9 600) were excluded from the data set. Moreover, all

measurements (3 016) with geometric factors larger then 10 000 m and all measurements

with an absolute relative error (computed by the reciprocal measurements) larger than 20

percent (≈ 37 000 readings) were filtered out, resulting in a reduced data set comprising

roughly 65 000 measurements. The overall data quality, as assessed by the reciprocal

recordings, was not as good as expected (judging from previous extensive laboratory

tests (Stummer et al., 2002)). Most likely, the observed large deviations in the reverse

recordings are due to electromagnetic noise induced by a sorting machine operating at

a nearby gravel pit (see Figure 4.10).

As shown in Figure 4.10, the measurement profile crosses a gravel lens (region G1)

and the western waste deposit body (region W1). For convenience, corresponding cross-

ing points are labelled in Figure 4.10 and Figure 4.11. The tomogram result resembles

the known shape of both the gravel lense as well as the waste deposit body. High resis-

tivities in the range 200− 800 Ωm ((i) in Figure 4.11)) correspond to fluvial gravels and

coarse sands inside the gravel lense.

The shallow, highly conducting body (ii) below labelling C-E most likely corresponds

to the industrial waste dumped in the western waste deposit body. Its lateral location

is in good agreement with the waste deposit boundaries (see region W1 in Figure 4.10)

as they were resolved by previous electromagnetic measurements (Lanz et al., 1999).

Furthermore, the depth of the deposit body was delineated to be ≈ 11m, which is

in agreement with our inversion result. Below the labels D-E, the high conductivity

feature (ii) almost reaches up to the surface. At this location, between labels D and

E, the measurement profile crosses the zone highlighted in red in Figure 4.10, where

high conductivities (< 10 Ω m) were revealed by electromagnetic measurements. The

employed method (EM-31 measurements) has a limited penetration depth of 3-6 m

(Lanz et al., 1999). The conducting body (iii), with resistivities in the range of 20 −
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30 Ωm, is probably due to dumped waste within the waste deposit. We interpret the

high resistivities at the surface (regions labelled (v)) as remaining material originating

from the abandoned gravel/sand pit that was used to seal the waste deposit.

It is unclear whether the conductive feature (iv) below the gravel lense is a true

geological feature supported by the measurement data, or whether it is an anomaly

generated during the inversion process. Considering the low resolution at this depth

range (compare to Figure 4.11 a)) and the high resistivities above this feature, we judge

that it is most likely an inversion artefact.

Though the main structures resolved are in good agreement with previous measure-

ments, the 2.5D inversion employed is a rather crude approximation. Considering the

highly heterogeneous material within the waste deposit body and the 3D characteristics

of the gravel lense, it is obvious that the implied assumption of homogeneous conduc-

tivities perpendicular to the electrode deployment is not justified. Results for the 3D

field survey, described in the next section, will give further insight into the reliability of

the results just described.

Three-dimensional investigation

0 25 50 75 100
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remote 

Source

A R1 R2

0

Figure 4.12 – Roll-along scheme employed during the 3D field campaign. Within each step of
the roll-along procedure one electrode line is moved after a complete set of pole-bipole par-
allel measurements have been performed. Each sub-deployment includes 4 × 21 electrodes.
The whole survey included 19 roll-along steps with a total of 462 electrode locations span-
ning a survey area of 100m × 105m.

To obtain a 3D image of the waste-deposit body, a 3D field survey involving 462

equidistantly spaced electrode locations (at 5m intervals) covering a survey area of

100 × 105m has been carried out roughly at the same location where the 2D data

was recorded.

As there is only a limited number of data acquisition units available with the em-

ployed ETH-DCMES-II, we applied 3D roll-along techniques for constructing a series of
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20 individual electrode deployments (Figure 4.12). The roll-along strategy is designed

such that the effort for moving the electrodes is minimized and sufficient 3D coverage is

obtained. The employed procedure starts with a 3D electrode grid of 21× 4 electrodes.

After a pre-defined set of pole-bipole parallel measurements are recorded on this de-

ployment, the first electrode line is moved beyond the last electrode line, i.e. electrode

line one is moved onto the next free electrode locations (see Figure 4.12). Alternatively,

several (e.g. two or three) electrode lines could be moved at once to speed up the data

acquisition. However, in moving one line at a time, we could ensure a dense subsurface

coverage and a sufficient amount of redundant information in the recordings.

On each of the individual electrode deployments, complete pole-bipole data sets were

recorded. These data sets consist of two parallel scans per source electrode A, one with

a reference close to A (R1) and one with a reference at a certain distance away from A

(R2) (see Figure 4.12). The source electrode is successively placed at all N electrode

locations. The resulting data sets (see Chapter 5 for further information)

(i) are complete according to the definition of Xu and Noel (1993), and therefore

potentially contain the full information offered by all pole-bipole configurations

(ii) are noise-robust due to the combination of two reference electrodes per source A

(iii) can be acquired swiftly with 2N parallel scans, thereby fully utilizing the parallel

recording capabilities of the ETH-DCMES-II

Due to the fast parallel scans offered by the ETH-DCMES-II, recording of the individual

data sets only took ≈ 22 minutes resulting in a total recording time for the whole 3D

survey of only ≈ 7.5 hours. Several filtering steps were applied to the recorded data set

prior to the data inversion:

(1) In an initial step, the data sets recorded on the individual electrode deployments

were merged to form one data set. A few data acquisition units were produc-

ing unreasonable results (assessed by visual data inspection); the corresponding

measurements were removed from the data set.

(2) For each combination of a source (A) and a measuring electrode (N), there are

two measurements contained in the data set – the ones acquired with voltage ref-

erence electrode R1 and R2, respectively. In each of these cases, the measurement

that provided the larger signal-to-noise ratio was retained while the other was

rejected from the data set. Roughly 120 000 measurements were removed during

this process.

(3) Roughly 4,000 of the measurements having a geometrical factor larger than 10 000

m were filtered out.
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(4) All measurements, for which the data acquisition units returned a normalized

misfit parameter ξ > 1 were removed from the data set (2,000 data points in total).

The misfit parameter characterizes the quality of the fitting on the individual

voltage waveforms (see Chapter 2 for details).

(5) Due to the employed roll-along procedure, there were ≈ 170,000 recordings in the

data set that were repeated once, and ≈ 12,500 recordings that were repeated

twice. The corresponding measurements were either filtered out, in case their

potential values differed too largely in amplitude, or averaged for increased data

reliability.
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Figure 4.13 – Visualization of the 3D inversion result obtained from the data recorded at
the Stetten field site. Isosurfaces of 200 Ωm and 30 Ωm are used to delineate the gravel
lense and the highly conducting features in the western waste deposit body, respectively.
The highly resistive feature outlined by a 2 000 Ωm isosurface most likely is caused by an
erratic block. Electrode locations (462 in total) are indicated by blue points and the vertical
cut plane denotes the location, where the comprehensive 2D data set has been recorded
(compare to Figure 4.11). The topography slightly dips towards the south-west direction.
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The resulting filtered data set contains roughly 76,000 data points. The data in-

version was performed on a parameter mesh equiped with ≈ 10,000 parameter cells.

Appropriate smoothness and damping constraints have been applied with a regulariza-

tion parameter of α = β = ν = 1.2 . As for the 2D Stetten data set, the regularization

has been reduced down to a fifth of its original values during the first few iterations.

Forward calculations were performed by a first order finite element approximation (≈
350,000 cells) in combination with a mixed boundary condition. The slightly south-west

dipping surface topography, as measured by differential GPS during the field campaign,

has been included in the modeling process.

The main resitivity features of the inversion result are illustrated in Figure 4.13 by

three distinct isosurfaces with resistivities selected based on the 2D tomogram results

in Figure 4.11. A 200 Ωm isosurface outlines the boundary of a resistive feature that

corresponds to fluvial gravels and coarse sands inside the gravel lense (region G1 in

Figure 4.10). Highly conductive features within the waste deposit body (region W1

in Figure 4.10) are clearly resolved by the data inversion as delineated by a 30 Ωm

isosurface.

The origin of the very high resistive feature that appears inside the gravel lense (as

outlined by a 2 000 Ωm isosurface) is unclear. Most likely, it is caused by an erratic

block. Several anomalies interpreted as erratic blocks have been detected at the Stetten

field site by seismic reflection measurements (Lanz et al., 1996). It is interesting to note

that resistivities as large as 2 000 Ωm are also visible in the 2D inversion result shown in

Figure 4.11. The electrode profile on which the 2D data set has been acquired exactly

crosses through the high resistive feature as indicated by the vertical slice in Figure 4.13.

Clearly, the 2.5D approximation employed for the 2D data set fails to reconstruct this

feature – it is strongly smeared out in the horizontal direction – and thereby hinders a

correct interpretation.

Figure 4.14 shows further details of the 3D inversion result in the form of horizontal

slices at five different depths: 0, 3, 10, 20 and 30 m. For ease of comparison the employed

colorbar and the range of resistivities are the same as for the 2D inversion result in Figure

4.11. The lateral boundaries of the gravel lense and the waste deposit body as revealed

by previous electrodmagnetic measurements (Lanz et al., 1999) are overprinted on top

of the first depth slice. The resolved resistivity features as displayed for Z = 0 m are in

good agreement on the lateral boundaries.

The limited extent of the highly resistive feature with resistivities of > 2 000Ωm is

clearly visible with a maximum elongation at Z = −3 m. Some smaller resistive features

(≈ 200 Ωm) appear within the lateral bounds of the waste deposit for Z = 0 m. They

probably originate from left-over material taken from the abandoned gravel/sand pit

in order to seal the waste deposit. Corresponding resistive features are also visible in

the 2D inversion result (zones (i) in Figure 4.11). The highly conducting body with
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G1

W1

Figure 4.14 – Horizontal slices through the Stetten data inversion result showing the resolved
gravel lense and the imaged highly conducting feature within the waste deposit body at
different depths. The lateral boundaries of the gravel lense and the waste deposit body as
revealed by previous electromagnetic measurements (Lanz et al., 1999) are overprinted on
top of the first depth slice for comparison. The red solid line indicates the location of the
2D profile on which the comprehensive data set was acquired.

resistivities in the range of 5 − 30 Ωm, which is most likely caused by industrial waste,

is clearly visible down to a depth of Z = 10 m. Its lateral extent slightly deviates

from the zone where high conductivities (< 10 Ωm) have been acquired by previous

EM-31 measurements (zone outlined in light red in Figure 4.14, (Lanz et al., 1999)).

Considering the 10 years difference between the electromagnetic and the geoelectric

measurements, and taking into account the different seasons over which the data were

recorded (summer versus winter), these deviations are not surprising. Temporal changes

in the conductivity structure of the waste deposit are to be expeted due to the influence

of fluids.

Finally, Figure 4.15 provides a direct comparison between the inversion results ob-

tained from the 2D and the 3D data, respectively, by slicing the 3D inversion result

exactly along the plane where the 2D data set was recorded. This facilitates further

inspection of the validity of the 2.5D approximation employed during inversion of the

2D data set and allows for a rough comparison of the depth resolution of the individual

data sets.

In light of the 3D inversion results shown in Figure 4.13 and Figure 4.14, it is clear
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a)

b)

Figure 4.15 – Comparison of the inversion results of (a) the 2D comprehensive pole-bipole
data set with (b) the 3D data set. (b) was generated by slicing the 3D inversion result
exactly along the plane where the data set in (a) was recorded (see Figure 4.13). The
comparison clearly shows the limitations of the 2.5D approximation employed in (a).

that the implied assumption of homogeneous conductivities perpendicular to the 2D

electrode profile is not justified. Though the lateral extent and the resolved resistivities of

the 2D and 3D inversion results are in fair agreement, the limitation of the 2D inversion

becomes obvious when comparing the features that resemble the gravel lense and the

waste deposit body. The highly resistive structure in Figure 4.15(a) that resembles the

gravel lense is largely smeared out in the horizontal direction and resistvity values are

under-estimated due to the 2.5D approximation. Presumably as a consequence, a highly

conductive feature appears below it, which most likely is an inversion artefact.

Based on the location where the 2D electrode profile crosses the highly conductive

features in the waste deposit (Figure 4.13), we judge the 3D inversion result to be

more reliable and believable. The resolved shape and conductivities in the 3D inversion

result in 4.15(b) are clearly more trustworthy. The depth of the corresponding feature

in Figure 4.15(a) seems to be under-estimated whereas conductivity values seem to be

slightly over-estimated.
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5.1 Abstract

Exploiting the information content offered by geoelectric data in an efficient manner re-

quires careful selection of the electrode configurations to be used. This can be achieved

using sequential experimental design techniques proposed over the past few years. How-

ever, these techniques become impractical when large-scale 2D or 3D experiments have

to be designed. Even if sequential experimental design would be applicable, acquisi-

tion of the resulting data sets would require an unreasonably large effort using tradi-

tional multi-electrode arrays. We present a new, fully parallelized measuring strategy

by which large amounts of data can be acquired swiftly. Furthermore, we introduce a

new experimental design concept that is based on complete data sets in terms of linear

independence. Complete data sets include a relatively small number of basis electrode

configurations, from which any other configuration can be reconstructed by superposi-

tion. The totality of possible configurations is referred to as the comprehensive data set.

We demonstrate the benefits of such reconstructions using eigenvalue analyses for the
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case of noise-free data. In the presence of realistic noise, such reconstructions lead to

unstable results when only four-point (bipole-bipole) configurations are considered. In

contrast, complete three-point (pole-bipole) data sets allow more stable reconstructions.

Moreover, complete pole-bipole data sets can be acquired very efficiently with a fully

parallelized system. Resolution properties of complete pole-bipole data sets are illus-

trated using both noise-free and noisy synthetic data sets. We also show results from a

field survey performed over a buried waste disposal site, which further demonstrates the

usefulness of our approach. Although this paper is restricted to 2D examples, it is trivial

to extend the concept to 3D surveys, where the advantages of parallelized pole-bipole

data acquisition become very significant.

5.2 Introduction

Geoelectric tomography is a powerful technique for imaging the shallow subsurface. Its

usefulness has been proven in a plethora of applications (e.g. Rubin and Hubbard, 2005;

Knödel et al., 1997; Butler, 2005). The success of the method is primarily based on the

availability of multi-electrode systems, with which large amounts of data can be collected

in an efficient manner (e.g. Griffiths and Turnbull, 1985; Griffiths et al., 1990; Stummer

et al., 2002; Zhe et al., 2007). Compared with the competing electromagnetic methods

(e.g. Nabighian, 1987), direct current geoelectric measurements are less susceptible to

ambient noise, they are less affected by the presence of metallic objects and power lines,

and they are superior for resolving resistive targets.

Although electrical resistivity data can be recorded with arbitrary two-point (pole-

pole), three-point (pole-bipole or bipole-pole), and four-point (bipole-bipole) electrode

configurations, the vast majority of recent model-based studies have been concerned

with determining the efficacy of the five standard electrode arrays for use with multi-

electrode systems and 2D and 3D inversion schemes, namely Wenner, Schlumberger,

Dipole-Dipole, Pole-Pole and Pole-Dipole arrays (e.g. Friedel, 1997; Spitzer, 1998; Dahlin

and Loke, 1998; Oldenburg and Li, 1999; Olayinka and Yaramanci, 2000; Dahlin and

Zhou, 2001; Zhou and Greenhalgh, 2002). Consequently, most reported field applications

of 2D imaging have been based on either one or a combination of these traditional arrays.

Note that the term dipole is soemetimes used interchangeably in the literature with the

term “bipole”, but the strict definition of “dipole” requires that the separation between

the electrode pair be small, which is often not the case. So for purposes of generality

and to avoid any confusion we prefer to use the term bipole throughout this paper.

During the past decade or so, several techniques have been proposed for better ex-

ploiting the information content offered by geoelectrical data. Cherkaeva and Tripp

(1996) proposed electrode configurations with which optimized current density patterns

can be achieved. They based their approach on earlier developments in biomedical
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impedance imaging (Isaacson, 1986). Other scientists have made attempts to find opti-

mized survey layouts by simply considering the sensitivities of individual configurations

with respect to small perturbations of the subsurface resistivities (e.g. Furman et al.,

2004).

Following earlier ideas introduced by Barth and Wunsch (1990); Maurer and Boerner

(1998) and Curtis (1999) Maurer et al. (2000) proposed statistical experimental design,

which provided a more general framework for identifying optimized survey layouts. The

early implementations of statistical experimental design were based on global optimiza-

tion schemes, such as genetic algorithms, but it was realized that this would be com-

putationally prohibitive for realistic geoelectric applications involving several tens of

electrodes and several hundreds of model parameters. Therefore, Stummer et al. (2004)

proposed a sequential design strategy, in which suitable electrode configurations were

successively added to an initial data set until the desired model resolution was achieved.

Wilkinson et al. (2006) extended and improved the method of (Stummer et al., 2004),

whereas Coscia et al. (2008) adapted the technology for optimizing electrode placement

in crosshole investigations. Although the performance of sequential experimental design

as proposed by Stummer et al. (2004) and Wilkinson et al. (2006) is impressive, there are

several significant limitations that remain to be overcome. The first problem concerns

the number of electrodes available and the resulting large number of possible electrode

configurations. As discussed by Xu and Noel (1993), an n electrode deployment allows

implementing

n4p
compr = n · (n − 1) · (n − 2) · (n − 3)/8 (5.1)

different and non-reciprocal four-point configurations (two injecting and two measuring

electrodes within the array). A data set that includes all 4-point configurations was

referred to by Stummer et al. (2004) as a comprehensive data set. Of course, many

of these configurations are not independent but can be synthesized (constructed) from

other basis configurations. Using 50 electrodes, a comprehensive data set would comprise

more than 690’000 configurations and with 100 electrodes, there would be more than 11

million configurations. Sequential experimental design would identify a small subset (e.g.

5%) of a comprehensive data set from which most of the subsurface information could

be retrieved. However, even such a “small” subset would be time-consuming to collect

in the field when the number of electrodes is larger than 50. Moreover, the algorithms

proposed by Stummer et al. (2004) and Wilkinson et al. (2006) would require excessive

computing resources for larger electrode arrays. Considering that present and future 3D

deployments may include several hundred electrodes, alternative strategies need to be

considered.

A second problem that was not fully considered by Stummer et al. (2004) and Wilkin-

son et al. (2006) concerns the influence of data noise. In their experimental algorithms
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they pre-selected those configurations from the comprehensive data sets whose geomet-

rical factors were below a given threshold. This ensured that only measurable configu-

rations (i.e. those configurations for which the signal levels are sufficiently strong) were

considered during the design stage, but no individual weighting factors to reflect the

data reliability were associated with the different configurations.

Finally, sequential experimental design requires an à priori subsurface resistivity

model for which the model parameter sensitivities are computed. If the true subsurface

structures deviate significantly from the à priori model, non-linear effects may degrade

the quality of experimental design. Stummer et al. (2004) demonstrated with several

models that these non-linear effects are surprisingly small, but it would be nevertheless

advantageous to have a design strategy that is independent of any prior subsurface

knowledge.

In this paper, we describe an approach that addresses the problems mentioned above.

Our concept is based on the idea of complete (or basis) data sets as described by Xu and

Noel (1993) and Lehmann (1995). A complete data set is defined as a set of electrode

configurations from which any other configuration can be reconstructed by superposi-

tion. After a brief introduction to the theoretical background, we discuss the resolution

properties of complete and comprehensive data sets. Next, we investigate the influence

of noise on the reconstruction of comprehensive data sets out of the complete data sets

and demonstrate that such an endeavor is generally not practical when the underlying

complete data set comprises only four-point configurations. In contrast, we show that

complete data sets involving three-point configurations (e.g. pole-bipole) are theoreti-

cally more amenable for reconstructing comprehensive data sets; such configurations can

be measured very efficiently with state-of-the-art parallel data acquisition systems. We

demonstrate that complete pole-bipole data sets can be suitably combined such that,

even in the presence of realistic noise, excellent tomographic inversion results can be

achieved, which are comparable to those of measured comprehensive data sets. In the

final part of the paper, we present a field example acquired across a buried landfill site

in Switzerland, which confirms the theoretical results.

5.3 Theory

Forward modeling and inversion

Geoelectric data are typically analyzed using tomographic inversion algorithms. They

include a forward solver F that predicts (computes) the electric potential differences
~d pred for a particular resistivity model ~m

~d pred = F(~m), (5.2)
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and a corresponding inverse operator

~m est = F−1(~d obs − ~d pred), (5.3)

which estimates the subsurface resistivities ~m est from the observed data ~d obs. We adopt

the common practice in geoelectric tomography of using logarithms of both the data

and the model parameters (e.g. Tarantola, 1987) to ensure positivity and allow for a

wide range of parameter variations.

Our forward operator F solves the 3D or 2.5D problem using a finite element al-

gorithm as described in (Blome et al., 2009). The subsurface is discretized with an

unstructured mesh of tetrahedrons (3D) or triangles (2.5D). This allows easy incorpora-

tion of surface topography and higher density of (smaller) elements close to the source.

Our Gauss-Newton type inverse operator F−1 can be written as

~m est
i+1 =

(
JTC−1

D J + C−1
M

)−1
JTC−1

D

[(
~d obs − ~d pred

)
+ J~m est

i

]
, (5.4)

where J is the Jacobian matrix, the elements of which are the sensitivities or Fréchet

derivatives, i is the iteration number (~m est
0 is the initial model) and C−1

M is the à priori

model covariance matrix. The latter allows regularization constraints, such as damping

and smoothing, to be applied (Maurer et al., 1998). This has the effect of stabilizing

the inversion in that it allows the pseudo inverse matrix to be calculated. The quantity

C−1
D is the à priori data covariance matrix. This is usually a diagonal matrix whose

entries are the inverses of the squared data error estimates. As such, C−1
D acts as a data

weighting matrix.

An L2 norm misfit objective function is implicit in equation 5.4. The sensitivities

in the Jacobian matrix can be computed rapidly using the explicit expressions pub-

lished by Zhou and Greenhalgh (1999) and Greenhalgh et al. (2009). Furthermore, the

matrix JTC−1
D J and the vector JTC−1

D

[(
~d obs − ~d pred

)
+ J~m est

i

]
in equation 5.4 can be

accumulated sequentially (e.g. Sheen et al., 2006), such that the only limiting factor in

terms of computer memory is the number of model parameters in ~m, which determines

the dimension of JTC−1
D J. This is critical when considering measured or reconstructed

comprehensive data sets, which may include a much larger number of data points than

the number of model parameters.

Measures of data information

Since our geoelectrical tomography algorithm is based on linearized inverse theory (equa-

tions 5.2 to 5.4), we consider corresponding measures for quantifying the benefits (imag-

ing capability) of a particular survey (e.g. Menke, 1984). The choice of a survey layout

governs the structure of the Jacobian matrix J, and close inspection of equation 5.4
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indicates that the reliability of the parameter estimates ~m est depends primarily on our

ability to invert the matrix JTC−1
D J + C−1

M . Without the regularization constraints

in C−1
M , this matrix would likely be singular, such that its determinant would be zero

and its condition number (i.e., ratio of the largest to the smallest eigenvalues) would

be infinite. Since the sensitivities in J represent the information content offered by a

particular survey design, and C−1
M indicates our preconceived ideas on the subsurface

structure (e.g., closeness to initial model or smooth variation of the model resistivities),

it is certainly advisable to maximize the contribution of JTC−1
D J and to minimize the

influence of C−1
M . This can be achieved by choosing electrode configurations such that

the resulting Hessian matrix H = JTC−1
D J has as many non-zero eigenvalues as possible.

Besides the eigenvalues of the Hessian matrix H we also consider the model resolution

matrix R defined as (e.g. Menke, 1984):

R =
(
JTC−1

D J + C−1
M

)−1
JTC−1

D J. (5.5)

It relates the estimated model parameters ~mest to the true model parameters ~mtrue

(~mest ≈ R ~mtrue). Of particular interest are the diagonal elements of R. Values close

to zero indicate poorly resolved model parameters, whereas values close to one indicate

well resolved model parameters.

5.4 Experimental setup

Our approach will be most beneficial for large-scale 3D surveys, but for the sake of

simplicity we demonstrate its performance using a simple 2D setup as shown in Figure

5.1. The true resistivity structure includes two conductive and two resistive blocks.

The acquisition geometry comprises 25 electrodes at 2 m spacing along the ground

surface. For the solution of the forward problem, the subsurface was parameterized

with a fine unstructured triangular mesh. Since our geoelectric data will be unable to

resolve such a large number of resistivity parameters, the forward cells were merged to

1450 larger inversion cells displayed in Figure 5.1(b). More details on the construction

of the inversion cells can be found in Chapter 4.

5.5 Tomographic inversion of complete and compre-

hensive four-point (bipole-bipole) data sets

Following Xu and Noel (1993), an n = 25 electrode array (Figure 5.1) has at most

n4p
complete = n · (n − 3)/2 = 275
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Figure 5.1 – The true synthetic model (a) and model parametrization (b) used to estimate the
eigenvalue spectra of the Hessian matrix shown in Figures 5.2 and 5.6, and the tomogram
results shown in Figures 5.3 and 5.7.

linearly independent four point configurations, whereas a comprehensive data set (all

possibilities) would involve

n4p
compr = n · (n − 1) · (n − 2) · (n − 3)/8 = 37 950

four-point configurations. For comparison, a two-point pole-pole data set would com-

prise

npp = n · (n − 1)/2 = 300

configurations. Initially, we consider noise-free data sets, such that C−1
D is the unit

matrix. To understand the different characteristics of these data sets, we compute the

eigenvalues of the Hessian matrix JTC−1
D J for the complete and comprehensive data sets.

As references, we additionally compute the eigenvalues for the pole-pole and Wenner

data sets, which are popular choices in many investigations. The results are displayed in

Figure 5.2. The normalized eigenvalue spectra reveal that indeed only 275 eigenvalues

are non-zero for both the complete and comprehensive data sets and 300 eigenvalues

are non-zero for the pole-pole data set. The rank of the matrix H (or J) is given by

the number of non-zero eigenvalues and can be related to the number of independent



106 5. Geoelectric experimental design - efficient acquisition and exploitation of complete data sets

0 50 100 150 200 250 300
10

−10

10
−5

10
0

rank(bipole bipole complete) →

rank(pole pole complete) →

lo
g

1
0
 e

ig
e

n
v

a
lu

e
s

Normalized eigenvalue spectra (noise−free conditions)

 

 a)

4P complete 4P compr. Pole Pole Wenner

0 50 100 150

10
−4

10
−2

10
0

damping level

lo
g

1
0
 e

ig
e

n
v

a
lu

e
s

Index

b)

Figure 5.2 – Eigenvalue spectra of the Hessian matrix for four-point (bipole-bipole) configura-
tions, normalized with respect to the dominant eigenvalue. Diagram (a) shows eigenvalues
versus eigenvalue number (index) computed for complete and comprehensive data sets. Di-
agram (b) is an enlargement of the initial portion within the boxed region in diagram (a).
Corresponding eigenvalues for the pole-pole and Wenner data sets are shown for comparison.

measurement configurations. This is why both the complete and comprehensive data

sets have the same number of non-zero eigenvalues. It is interesting to note that the

shapes of the spectra of the complete and comprehensive data sets are quite different.

The implications of the different shapes are best understood, when the regularization

effects are also considered. Regularization essentially flattens the eigenvalue spectra be-

yond a certain threshold level. Depending on the level of data noise, we can set a realistic

threshold, below which no significance would be attached to the eigenvalues. This is in-

dicated schematically by the horizontal solid line in Figure 5.2. The intersections of the

eigenvalue spectra and this horizontal line separate the portions of the resolved model

space (to the left of the intersection) and the unresolved null space (to the right of the

intersection) (Maurer et al., 2009). For geoelectric problems, the horizontal threshold

line is usually well above the smallest non-zero eigenvalue. Since the null space of the

comprehensive data set is significantly smaller than that of the complete (basis) data

set, it is expected that inversion results based on a comprehensive data set are superior.

Figure 5.2 also indicates that a Wenner data set is expected to provide superior imaging

properties than a complete data set, but inferior properties than a comprehensive and
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a pole-pole data set.

Figures 5.3a and 5.3c show the tomographic inversion results for the comprehensive

and complete data sets, respectively. Clearly, the comprehensive data set provides a

superior tomogram. In particular, the deeper resistive block is much better resolved.

Figure 5.3b shows the diagonal elements of the model resolution matrix (equation 5.5).

For better comparison, we have plotted in Figure 5.3d the relative resolution which

is the ratio of the model resolution of the complete noise-free data set to that of the

comprehensive noise-free data set. The relative resolution of the complete data set

degrades with increasing depth, as expected for a surface array resistivity experiment.

Figures 5.3a to 5.3d demonstrate that reconstructing a comprehensive data set out

of a noise-free complete data set leads to a better conditioned inverse problem and thus

to an improved resolution. This is interesting from a theoretical point of view, but the

important question that remains to be answered concerns the applicability of such a

reconstruction in the presence of realistic noise. Geoelectric data are typically contam-

inated with ambient noise of a particular (fixed) voltage level and some instrumental

noise that is usually proportional to the voltage measured. On the basis of our experi-

ence with measured data sets, we have chosen a noise model with 70 mV ambient noise

and 0.1% relative noise. Furthermore, we assumed the injected currents to be 1 A.

With such a noise model, we have contaminated the comprehensive and complete

data sets. Furthermore, we have reconstructed a comprehensive data set out of the

noise-contaminated complete data set. With the knowledge of the noise model we could

establish appropriate data covariance matrices C−1
D for the “measured” comprehensive

and complete data sets. For the reconstructed data set, the matrix C−1
D had to be

computed using the error propagation law (i.e., in forming the linear combination from

among the relevant basis configurations, the absolute errors from all relevant combina-

tions are simply added). Since the reconstruction procedure for bipole-bipole data is a

relatively complicated superposition of up to 6 different basis electrode configurations,

the errors can grow quite substantially. More details on the superposition and error

propagation procedures are described in Appendix 5.12.1.

Inversion results for the noise-contaminated data sets are shown in Figures 5.3e to

5.3j. Compared with the optimal reference solution in Figure 5.3a, the quality of all

tomograms is decreased. The noise-contaminated “fully measured” comprehensive data

set (Figure 5.3e) resolves the shallow blocks quite well, but the deep conductive block

is less well resolved compared with Figure 5.3a. These observations are in accordance

with the relative resolution plot shown in Figure 5.3f, which indicates a considerably

decreased resolution than the noise-free comprehensive data set (Figures 5.3a and 5.3b).

Results from the complete data set shown in Figures 5.3g and 5.3h, are even worse. The

deep conductive block is not visible in the tomogram. Again, this is predicted by the

relative resolution plot in Figure 5.3h.
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Figure 5.3 – Model resolution and inversion results for the 4- point configurations. Diagram
(a) shows the true model and diagram (b) shows the model resolution for the noise-free
comprehensive data sets. Diagrams (c), (e) (g) and (i) show inversion results for the noise-
free complete, noisy “measured” comprehensive, noisy complete and noisy reconstructed
comprehensive data sets, respectively. Diagrams (d), (f), (h) and (j) show the corresponding
relative model resolution plots, where the ratio is taken with respect to the noise-free
comprehensive data set.
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The tomogram computed from the reconstructed comprehensive data set is shown

in Figure 5.3i. A comparison of the relative resolution plots in Figures 5.3f, 5.3h and

5.3j indicates that the quality of this tomogram should lie between those in Figures 5.3a

and 5.3c. This is not the case. Accumulation of errors during the superposition did

not allow reliable tomograms to be obtained. The discrepancy between the predicted

quality of the tomogram in Figure 5.3j and the actual result in Figure 5.3i is most likely

caused by non-linear effects that led the inversion converge in a local minimum.

Our computations have demonstrated that a noise-free comprehensive data set is

more suitable for tomographic inversions than a noise-free complete data set, and that

the reconstruction of a comprehensive data set using a noise-contaminated complete

data set does not provide reliable results.

5.6 Parallel data acquisition of complete three-point

(pole-bipole) data sets
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Figure 5.4 – Voltage distributions for pole-bipole configuration over a homogeneous earth
with the current source at position A. The green curve is the voltage relative to a refer-
ence electrode at position R1, whereas the blue curve is the voltage relative to a reference
electrode at position R2.

A possible option for speeding up the data acquisition would be to simultaneously

record several configurations at once. On the basis of a fully distributed multi-electrode

array described in Stummer et al. (2002), we have developed a new system that is

capable of swiftly performing parallel scans, such that with a n-electrode array n − 3

voltage measurements (two current injecting electrodes, one reference electrode and n−3

measuring electrodes) can be performed simultaneously. More details of the acquisition

system are provided in Appendix 5.12.2.

Parallelizing the acquisition of a complete 4-electrode data set, as proposed by Xu

and Noel (1993), would be quite difficult and would result in an overly large amount

of redundant measurements. In combination with the unfavorable error propagation

properties, described in the previous section and Appendix 5.12.1, this makes complete
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four-point data sets unsuitable for our purposes.

An obvious alternative solution would be to record pole-pole data, from which any

four-point configurations could be reconstructed. Pole-pole configurations are amenable

to parallel recordings. A complete pole-pole data set could be recorded with only n

parallel scans. As discussed in Maurer and Friedel (2006), pole-pole data have favorable

resolution properties, and reconstruction of a comprehensive four-point data set using

noise-free pole-pole data would further increase the quality of the tomograms underneath

the electrode array. However, it is well known that pole-pole data suffer from serious

capacitive and inductive noise problems caused by the long cable that connects the

remote potential electrode. Therefore, they are of limited use in urban areas where high

ambient noise levels may be present.

A better alternative would be to record geoelectric data using pole-bipole config-

urations. Here, only one mobile current electrode (the source) is involved. The other

injecting electrode (the sink) is kept fixed at some remote distance from the array, which

makes the measurements less susceptible to ambient noise because electromagnetic noise

pickup is not an issue on the current lines. Pole-bipole configurations can be rapidly

acquired using a parallel recording system, and a complete pole-bipole data set can be

recorded with only 2n parallel scans. The situation is illustrated in Figure 5.4. Current

is injected at electrode position A, and a reference electrode R1 is chosen. With such a

setup, all the remaining electrodes can measure simultaneously the potential differences

with respect to electrode R1. The resulting voltages (assuming for illustrative purposes a

homogeneous halfspace) are displayed in Figure 5.4 by the green curve. At 4 m distance

from the current source A, the measured potential difference would be zero. In the case

of a heterogeneous subsurface structure, zero potential differences may occur at slightly

different locations. A second set of measurements using another reference electrode R2

is required to avoid very low potential differences (see blue curve in Figure 5.4), that

could be overwhelmed by noise.

The measurements described in Figure 5.4 form a complete data set, such that any

other pole-bipole configurations (i.e., a comprehensive pole-bipole data set) can be re-

constructed. This is illustrated in Figure 5.5. The potential difference between the

electrodes labeled N1 and N2 can be reconstructed from the measured potential differ-

ences between R1 and N1 and R1 and N2. Alternatively, one could add the potential

differences between R2 and N1 and R2 and N2. Since the reconstruction process requires

only adding two measured voltages (not up to six, as in the bipole-bipole case), this is

less susceptible to accumulation of measurement errors.

Practical implementation of the concept described above requires decisions concern-

ing (i) the positioning of the reference electrodes R1 and R2 and (ii) the choice of R1

or R2 for reconstructing a comprehensive pole-bipole data set. To obtain high potential

differences, for electrodes remote from the source we suggest placing electrode R1 close
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Figure 5.5 – Principle of pole-bipole data reconstruction. The electric field generated by a
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to the injecting electrode. The second reference electrode R2 should be placed at some

distance, such that it yields high potential differences at receiver electrodes close to the

source. The choice of either R1 or R2 for reconstructing a comprehensive data set is

governed by the expected reconstruction error (using a prescribed error model). Only

the reconstruction with the reference electrode that leads to the smaller reconstruction

error is retained.

5.7 Tomographic inversion of complete and compre-

hensive pole-bipole data sets

To explore the capabilities and limitations of complete and comprehensive pole-bipole

data sets, similar computations to those described for the four-point configurations were

performed. Figure 5.6 shows the eigenvalue spectra of the Hessian matrices (or equiva-

lently, the squared singular values of the sensitivity matrices) computed for the complete

and comprehensive pole-bipole data sets. The spectra for the comprehensive four-point

and pole-bipole data sets are similar, which indicates that comparable inversion results

can be achieved. The spectrum for the complete pole-bipole data is clearly superior to

the corresponding four-point spectrum in Figure 5.2.

In Figures 5.7a and 5.7b, the tomogram and the corresponding resolution matrix

for an error-free comprehensive pole-bipole data set are shown. As predicted by the

eigenvalue spectra in Figure 5.6, the results are comparable to the error-free “measured”

comprehensive four-point data set (Figures 5.3a and 5.3b). The tomogram and the

relative resolution (with respect to Figure 5.7b) obtained for the noise-free complete

pole-bipole data set are shown in Figures 5.7c and 5.7d. In contrast to the result for the

noise-free complete data set using a four-point configuration (Figures 5.3a and 5.3c), the
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Figure 5.6 – Eigenvalue spectra of the Hessian matrix for three-point (pole-bipole) configura-
tions, normalized with respect to the dominant eigenvalue. Diagram (a) shows eigenvalues
versus eigenvalue number (index) computed for complete and comprehensive data sets. Di-
agram (b) is an enlargement of the initial portion within the boxed region in diagram (a).
Corresponding eigenvalues for the pole-pole data set are shown for comparison.

result for the complete pole-bipole data set is very similar to that of the comprehensive

data set (Figure 5.7a).

By analogy with the results shown in Figure 5.3, the comprehensive and complete

pole-bipole data sets were subsequently contaminated using the same noise model. To-

mograms and relative resolution plots are shown in Figures 5.7e to 5.7j. The tomogram

for the measured noisy comprehensive data set (Figure 5.7e) provides a hint of the deep

conductive block, but its resolution is significantly below that of the noise-free data sets

(Figures 5.7a and 5.7c). The signature of the deep conductive block using the noisy

complete data set is even fainter (Figure 5.7g), but it is still superior to its four-point

counterpart in Figure 5.3g. The reconstructed comprehensive data set resolves the deep

conductive block quite well, but there are also a few artifacts in the shallow part of

the model (Figure 5.7j). They are likely the result of error accumulations during the

reconstruction process.
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Figure 5.7 – Model resolution and inversion results for the three-point configurations. Dia-
gram (a) shows the true model and diagram (b) shows the model resolution for the noise-free
comprehensive data sets. Diagrams (c), (e), (g) and (i) show inversion results for the noise-
free complete, noisy “measured” comprehensive, noisy complete and noisy reconstructed
comprehensive data sets, respectively. Diagrams (d), (f), (h) and (j) show the correspond-
ing relative model resolution plots, where the ratio is taken with respect to the noise-free
comprehensive data set.
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5.8 Case study – Stetten landfill
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Figure 5.8 – Air photo of Stetten landfill resistivity test site. Comprehensive and complete
pole-bipole data sets were recorded along the electrode profile indicated by the red line.
Extensive previous geophysical measurements revealed the borders of shallow gravel lenses
(marked as regions G1, G2 and G3) and two distinct waste deposit bodies (marked as
regions W1 and W2). High conductivities in excess of 0.1 S/m were recorded by EM-31
measurements below the zones marked in red.

Numerical experiments have indicated that parallel recording of complete and com-

prehensive pole-bipole data sets could be powerful options for obtaining optimal sub-

surface images. This has been further investigated at a field test above a former waste

disposal site near Stetten, Switzerland (Green et al., 1999). The landfill contains hetero-

geneous industrial waste that was dumped into a disused gravel pit before being covered

by a 0.8 m layer of soil. Vertical-gradient magnetic and frequency-domain electromag-

netic data were used to define the lateral boundaries of the landfill and the location of

buried metallic objects (Lanz et al., 1999). Tomographic inversions of densely spaced

seismic refraction data allowed the base of the landfill to be delineated over a wide area

(Lanz et al., 1998). Detailed characteristics of the shallow host sediments were provided

by the results of 2D and 3D high-resolution seismic reflection and georadar surveys

(Lanz et al., 1996, 1994; Green et al., 1999), electrical resistivity mapping, and electrical

resistivity sounding (Lanz et al., 1998), and information obtained from several shallow

drillholes (Lanz et al., 1998).
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Figure 5.8 is an annotated areal photograph of the area of investigation,. Regions

marked W1 and W2 indicate the locations of the waste dumps, whereas G1 to G3

indicate the locations of unexploited gravel lenses. Within W1, electromagnetic mea-

surements delineated particularly conductive areas (marked in red, see also (Lanz et al.,

1999)).

Geoelectric data were recorded with the new acquisition system described in Ap-

pendix 5.12.2. Fifty electrodes were placed at 3 m spacing along a profile between

points A and F (see Figure 5.8). A “complete” data set was recorded with 50 x 2 =

100 parallel scans (4,500 configurations). As reference electrodes (see Figures 5.5 and

5.6) we chose one of the electrodes nearest to the injecting electrode and a second one

at a distance from the injecting electrode of 12 m. Data acquisition was completed in

17 minutes. Additionally, we collected a full comprehensive data set involving 50 x 49

= 2450 parallel scans (117,600 configurations), which was completed in about five and

a half hours.

Since the parallel scans performed for the comprehensive data set comprise all possi-

ble combinations of injecting and reference electrodes, we could make use of reciprocity

for checking the data quality. This revealed that the ambient noise level was very high.

Only 4,264 of the 4,800 measurements of the complete data set, and 65,000 out of the

117,600 measurements of the comprehensive data set could be retained for the tomo-

graphic inversions.

Inversion results for the measured comprehensive data set are shown in Figures 5.9a

and 5.9b. The diagonal elements of the resolution matrix displayed in Figure 5.9a

indicate that interpretable structure can be expected down to a depth of about 20 m.

In Figure 5.9b gravel lens G1 is revealed by the shallow orange-yellow coloured zone

towards the left of the section, having relatively high resistivities of 200 - 800 Ωm. The

signature of the waste pit W1 is found between the marker points C and F (Figure 5.6).

The highly conductive feature (≈ 20 - 30 Ωm) depicted in white extends to a depth of

about 10 m. Strictly speaking, the profile intersects the highly conductive area only

between marker points D and E, but its signature is also visible between C and D due

to 3D (out-of-plane) effects, which always influence resitivity measurements (see Figure

5.8). Near point E, there is an isolated resistive feature, which most likely represents a

concrete block dumped into this industrial waste pit.

The tomogram obtained with the complete pole-bipole data set is shown in Figure

5.9c. The main features observed in Figure 5.9a also appear in this tomogram. However,

the conductive feature is somewhat blurred and additional surficial resistive anomalies

are observed between marker points E and F. They are considered to be artifacts. The

resistivities of about 100 Ωm in the poorly resolved areas at the bottom of the tomogram

represent the initial model. This indicates that the complete pole-bipole basis data set

provides no useful information at greater depth. Although the formal resolution for the
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Figure 5.9 – Stetten field site formal model resolution (diagram a) for the comprehensive
pole-bipole data set and tomograms (diagrams b-d) for the recorded comprehensive data set
(diagram b), complete data set (diagram c) and the reconstructed comprehensive data set
(diagram d). The latter was constructed out of the basis electrode configurations underlying
diagram (c).
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comprehensive data set (Figure 5.9a) is also quite low at these depths, it is at least

capable of predicting the average subsurface resistivities.

Inversion results with a reconstructed comprehensive pole-bipole data set (using the

complete data set described in Figure 5.9c) are shown in Figure 5.9d. Within the well-

resolved uppermost 20 m, there is a very good match between the results using the

measured (Figure 5.9b) and the reconstructed (Figure 5.9d) comprehensive data sets,

thereby confirming the usefulness of the reconstruction approach. At greater depth, we

observe some remnants of the initial model, but they are much less pronounced than in

Figure 5.9c.

5.9 Discussion

Our investigations revealed several interesting properties of comprehensive and complete

four-point (bipole-bipole) and three-point (pole-bipole) data sets. The most important

result is that reconstructing a comprehensive pole-bipole data set from a complete pole-

bipole data set is feasible and useful. In combination with a fully parallel data acquisition

system this proved to be very efficient for acquiring a small 2D profile of data across

a buried waste disposal site. The true potential of the approach proposed becomes

evident when considering large 3D deployments that include more than 100 electrodes.

Transferring the measuring strategy from 2D to 3D is straightforward. Two current

injections at each electrode position are required, and the choice of the two reference

electrodes R1 and R2 can be made in a similar manner to that described for the 2D

setup. Likewise, the choice of R1 or R2 for the reconstructions is identical for 2D and

3D deployments.

Determining reliable data weights to form C−1
D is generally important for tomo-

graphic inversions, but it is particularly critical for the reconstruction approach. It

might therefore be advisable to establish an appropriate error model prior (and possi-

bly posterior) to a survey. The ambient noise level (e.g., due to self potentials, telluric

currents, electromagnetic interference, etc) could be determined by means of passive

measurements when no current is injected, and an estimate of the voltage-dependent

error could be identified with repeated measurements using different injection currents.

Alternatively, one could perform reciprocical measurements, by exchanging current and

potential electrodes, for estimating the data errors.

Once a reliable complete data set is acquired, there is considerable flexibility for the

subsequent tomographic inversions. Generally, we recommend reconstructing a compre-

hensive data set, but conceptually it is also possible to reconstruct only partial data

sets. This could be useful, when the noise conditions exhibit high spatial variations.

Another scenario, in which partial reconstructions could be useful, includes experiments

that focus on a particular part of the subsurface. After an initial inversion of the com-
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plete data set, one may concentrate on a subsurface area of particular interest. This

can be achieved by reconstructing only configurations that contribute to illuminating

the area(s) of interest. Identifying such configurations with “posteriori experimental

design” will be a topic of future research.

An important feature of the acquisition strategy proposed is that no à priori as-

sumptions on the subsurface structure are required before the survey. This is a clear

advantage compared to the sequential approaches of Stummer et al. (2004) and Wilkin-

son et al. (2006), which rely on sensitivity patterns computed for a particular resistivity

model.

5.10 Conclusions

Key results of our investigations can be summarized as follows.

1. Sequential experimental design, as proposed recently, is not suitable for designing

large-scale geoelectrical 2D or 3D surveys involving more than 50 electrodes.

2. As an alternative strategy, we propose measuring complete (or basis) data sets from

which comprehensive data sets can be reconstructed by superposition. Complete

data sets are usually quite small and can thus be recorded within a reasonable

time. Comprehensive data sets allow full exploitation of the information content

offered by geoelectrical data.

3. In the absence of noise, complete four-point configuration data sets allow com-

prehensive data sets to be reconstructed. Comparisons of eigenvalue spectra and

model resolution values demonstrate that comprehensive data sets provide signif-

icantly superior tomographic images than complete data sets. In the presence of

realistic noise, reconstruction of comprehensive four-point data sets is not advis-

able, because the errors that accumulate through the reconstruction process may

become unacceptably large.

4. Acquisition of complete pole-bipole data sets and subsequent reconstruction of

comprehensive pole-bipole data is less susceptible to error accumulations. Even

in the presence of realistic noise, excellent results can be achieved. This has been

demonstrated using both synthetic and observed data sets.

5. Complete pole-bipole data sets can be recorded efficiently with parallel data ac-

quisition systems. For an n-electrode array only 2n parallel scans are required.
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5.12 Appendix

5.12.1 Error propagation involved in reconstructing compre-

hensive data sets from complete (basis) data sets

Reconstructing a comprehensive (or any other appropriate) data set from a complete

(basis) data set involves the algebraic addition of measured potential differences

U rec =
N∑

i=1

fiU
compl
i , (5.6)

where U compl
i can be any of the potential readings contained in the complete data set and

fi are linear factors that are either plus or minus one. Obviously such a superposition

is only meaningful for potential differences recorded with the same current injection

strength. Therefore, prior to the reconstruction process, all potential differences in the

basis data set are linearly scaled to a source signal strength of 1A. Uncertainties in the

measurements U compl
i propagate through the reconstructed potential values according to

the error propagation law. This needs to be carefully taken into account when computing

à priori model covariance matrices C−1
M required for inverting reconstructed data sets.

For this purpose, we assume, that the potential readings U compl
i in the basis data set

are contaminated with a certain percentage p of relative noise and a constant noise level

∆Uc yielding absolute potential errors:

∆U compl
i = ∆Uc + p/100 · U compl

i (5.7)

According to the error propagation law, resulting absolute errors for reconstructed po-

tential values U rec (Equation 5.6) are

∆U rec =

N∑

i=1

∣∣∣∣∣
∂U rec

∂U compl
i

∣∣∣∣∣ · |∆U compl
i | =

N∑

i=1

|fi · (∆Uc + p/100 · U compl
i )|, (5.8)

such that the absolute errors from the relevant basis configurations simply add up. Based

on an estimated error model (i.e. appropriate values for p and ∆Uc) a data covariance
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matrix C−1
M can then be obtained from the inverse of the squared relative data errors:

C−1
M = diag

([
U rec

j

∆U rec
j

]2
)

(5.9)

To identify the linear combinations (Equation 5.6) required to reconstruct any four-

point (bipole-bipole) measurement configuration from four-point complete data sets,

either the representation formula introduced by Lehmann (1995) or the approach based

on primary pole-pole data sets by Xu and Noel (1993) can be used. As the representation

formula is relatively complicated to implement and, more importantly, is restricted to

the basis four-point data set described in (Lehmann, 1995), we briefly demonstrate the

approach by Xu and Noel (1993). Given a primary pole-pole data set ~dpp ∈ ℜnpp,

a complete data set ~dbasis ∈ ℜnbasis and an arbitrary data set ~dr ∈ ℜnr that is to be

reconstructed, it is relatively simple to find linear maps A ∈ Rnbasis×npp and B ∈ Rnr×npp

such that

A ~dpp = ~dbasis and B ~dpp = ~dr. (5.10)

Such linear maps are commonly applied during geoelectric data inversions when cal-

culating four-point sensitivities (or forward solutions) from pole-pole sensitivities (or

forward solutions). If the data set in ~dbasis is truly complete, then the linear combina-

tions required to reconstruct ~dr from ~dbasis are given by the linear map

D = B · A−g, (5.11)

where A−g is the generalized inverse of the matrix A. The linear combinations in A

involve the addition of up to six measurements in ~dbasis and therefore lead to large error

accumulations according to Equation 5.8 and consequently to small data weights in the

data covariance matrix C−1
M (Equation 5.9), thereby effectively degrading the resolution

capability of the data set ~dr.

In contrast to the rather complicated process described above, reconstructing any

pole-bipole data set out of the complete pole-bipole data set described in section 5.6 is

straightforward, because it only involves the linear combination of two basis configura-

tions as illustrated in Figure 5.5. More importantly, since for each reconstructed data

point an optimal reference electrode can be selected and since only two basis configura-

tions are added, error accumulations are usually not an issue.
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Figure 5.10 – Schematic layout of the fully distributed data acquisition system
ETH-DCMES-II .

5.12.2 ETH-DCMES-II: a new tool for parallel acquisition of

large geoelectrical data sets

ETH-DCMES-II is an extension of the multi-electrode array ETH-DCMES described

in Stummer et al. (2002). This experimental (non-commercial) system offers several

unique features that are generally useful for fast and reliable acquisition of geoelectrical

data, and particularly suitable for the measuring strategies described in this paper. The

general concept of ETH-DCMES-II is shown in Figure 5.10. Each electrode is equipped

with a Data Acquisition Unit (DAU) that contains switching relays, a 24 bit A/D

converter, a microprocessor, random access memory, serial interfaces and rechargeable

batteries. The individual DAUs are connected by four wires to an interface box (IFB),

which is connected to a standard laptop computer. The current design of the IFB allows

up to 124 DAUs to be hooked up. With some minor modifications it is possible to extend

the system to several IFBs.

Arbitrary current source waveforms (e.g., square wave, sine wave, chirp signal) can be

generated on the computer and fed via a D/A converter into a battery-driven amplifier

that produces up to 300 V and 100 mA. Conceptually, more amplifiers could be serially

connected to increase the maximum voltage. The source current fed into the electrode

array is monitored by a special DAU that is located in the IFB.

Communication between the DAUs and the computer is performed via a serial in-

terface. Each DAU can configure its electrode to act either as current sink or source,

reference or measuring electrode. Typically, current is injected over two electrodes, one

electrode acts as a potential reference, and all other electrodes measure simultaneously

the voltage with respect to the reference. The resulting voltages are digitized at the

measuring DAUs and temporarily stored in the DAUs random access memory.

After completion of a parallel scan, the operator can download all the voltage wave-
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forms to the computer for further analyses in the laboratory (e.g. for extracting induced

polarization parameters). Due to the serial communication, such a download can be

time-consuming. Alternatively, it is possible to simultaneously start data analysis pro-

grams on all DAUs that compute the voltage parameters required for the subsequent to-

mographic inversions (e.g., maximum voltage amplitudes and the associated variances).

The results of the DAU-controlled analyses typically include only a few numbers that

can be transferred swiftly back to the computer. The operator can upload any suitable

data analysis programs to the DAUs. Choice of an appropriate algorithm can even be

made in the field.

The batteries included in the DAUs can be charged at any time (e.g. when the

system is idle). Since the capacity of the batteries allows the system to be operated up

to 12 hours, recharging is typically done overnight.



Chapter 6

Conclusions and Outlook

The overall goal of my thesis was to improve data acquisition and data inversion schemes

such that efficient large-scale 3D geoelectric field surveys become feasible. This required

improvements of (i) the data acquisition hardware, (ii) the numerical forward modelling

and inversion algorithms, and (iii) the experimental design. In the following, I will

summarize the most significant achievements of my thesis work, and I will outline where

I see a need for further research.

6.1 Main achievements

6.1.1 ETH-DCMES-II

The ETH-DCMES data acquisition system presented by Stummer et al. (2002), has been

further developed and improved in several important ways to take full advantage of its

parallel recording capabilities and to improve its robustness, mobility, versatility and

field handling. Besides numerous minor technical improvements, the data acquisition

units (DAUs) were redesigned to allow processing of the voltage time series. As a

consequence, the time-consuming transfer of the recorded voltage waveforms can now be

avoided, which increases substantially the data acquisition speed in the parallel recording

mode. Performance tests conducted during a 3D field survey revealed that in distributing

the data analysis, the recording time could be reduced down to a quarter of the time

previously required. Robust and reliable waveform analysis algorithms for sinusoidal

and rectangular voltage waveforms have been developed and tested with synthetic and

observed data.

The overall handling of the ETH-DCMES has been improved by replacing the bulky

and heavy source (including its power supply) with a newly developed light-weight and

battery-driven current source. Furthermore, the new data acquisition system can now

be controlled with a standard notebook computer. These improvements allow the ETH-

DCMES-II to be employed in rugged terrain not accessible by vehicle.
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6.1.2 Efficient 2.5D/3D numerical modelling and inversion

The solution to the numerical forward modelling problem is the most challenging and

time-consuming part of 3D geoelectric data inversions. Therefore, a large part of my re-

search was devoted to the development of an optimized forward solver, exploiting several

novel techniques. I have employed the finite element method for solving the governing

differential equation using an unstructured domain discretization. This allowed arbi-

trary topography to be incorporated, and the domain discretization to be refined (made

more dense) or coarsened wherever necessary.

Moreover, I addressed two major problems of geoelectric forward modelling, namely

(i) singularities near the source electrodes and (ii) truncation of the computational

domain at the artificial ground boundaries. Traditional approaches for both of these

issues require model discretizations with a large number of grid points. To deal more

efficiently with the source electrode singularities, I employed a novel singularity removal

scheme based on a fast multipole boundary element method. To reduce inaccuracies

caused by the limited computational domain, I employed infinite elements. By means of

extensive numerical tests I demonstrated that the combined application of singularity

removal and infinite elements allows the number of grid points to be reduced by a

factor of ≈ 6-10 compared with traditional finite-element methods. This facilitates the

application of modern sparse direct matrix solvers for realistic 3D inversion problems,

which greatly speeds up the computations.

Despite the seemingly ever increasing power of computers, the inversion of full 3D

geoelectrical data sets remains a challenging and time-consuming task. I have imple-

mented optimized data inversion procedures that are based on solving the normal equa-

tions within each iteration of a Gauss-Newton type minimization. This allows almost

arbitrarily large data sets to be inverted, which is essential for analyzing data sets from

large-scale 3D geoelectric field surveys. The only limiting factor is the number of inver-

sion blocks in the model, which governs the size of the Hessian matrix in the normal

equations.

To keep the size of the Hessian matrix to within manageable limits, special attention

was paid to the parameterization of the inversion blocks. Besides restricting the size

of the Hessian matrix, the inversion block parameterization is also of key importance

to reduce the under-determined component of the inversion problem. Two approaches,

based on clustering of the forward mesh cells, have been implemented. Both allow the

parameterization to be adapted to the resolving power of the data sets involved.

The inversion procedures were tested extensively with synthetic 2D and 3D data sets.

Furthermore, they were applied successfully to large 2D and 3D field data sets recorded

over a buried waste-deposit site in Switzerland.
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6.1.3 Experimental design

Since sequential experimental design, as proposed recently by Stummer et al. (2004)

and Wilkinson et al. (2006), is not practical for designing large-scale 3D geoelectrical

surveys, I have devised a novel recording strategy that is based on complete pole-bipole

data sets (in the sense of Xu and Noel (1993)), from which comprehensive pole-bipole

data sets can be reconstructed.

By means of an eigenanalysis of the Hessian matrix and computing the model resolu-

tion matrices I have demonstrated that such a reconstruction could also be beneficial for

complete four-point data sets, as proposed by Xu and Noel (1993) and Lehmann (1995).

However, in the presence of noise, such four point reconstructions become unstable. In

contrast, pole-bipole reconstructions are shown to be very useful, offering improvements

in resolution and image quality, even in the presence of realistic noise.

Complete pole-bipole data sets can be acquired very efficiently with fully parallelized

systems, such as the ETH-DCMES-II. This was demonstrated during a field experi-

ment over the buried waste disposal site, referred to earlier. Furthermore, comparisons

of tomographic inversions using reconstructed and effectively measured comprehensive

pole-bipole data sets confirmed our theoretical results.

6.2 Areas of future research

6.2.1 Improvements to the ETH-DCMES-II

Ethernet-based data bus

Modern Ethernet-based data buses allow much higher data transfer rates than the RS-

485 data bus currently employed in the ETH-DCMES-II system. Ethernet-based com-

munication would thus allow recorded full waveforms to be transferred back to the

central computer in a small fraction of the time currently required. The data transfer

rate of the RS-485 data bus is limited to 38.5 kBit/s to ensure error-free transfer over

a maximum cable length of 1.2km (Stummer et al., 2002). In contrast, Ethernet data

busses are available that support data transfer rates of either 10, 100 or 1000 MBit/s,

depending on the cable-type used. Only RG-58 coaxial cables, offering a data transfer

rate of 10 MBit/s, support sufficiently large maximum cable lengths (500m). However,

coaxial cables are relatively heavy and delicate to handle. Furthermore, they are not

flexible enough to be coiled up easily. Fiber cables could be used as an alternative. This

would require an Ethernet–to–Fiber media converter attached to the field computer.

Fiber cables feature a maximum cable length of about 40km and very high data trans-

fere rates. But this would require relatively expensive Fiber–to–Ethernet converters

build into each DAU. Furthermore, fiber cable connections are very sensitive and thus
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might easily break.

A better solution would be to employ so-called Ethernet extenders. These lightweight

and inexpensive devices can be connected to a standard 10/100 MBit twisted pair Eth-

ernet connection. They increase the maximum cable length allowed from 100m up to

10km by reducing the maximum transfer rate down to 4.6 MBit/s, which is still 120

times faster than the 38.5 kBit/s offered by the RS-485 data bus. A single twisted pair

of copper cable is sufficient for the data bus connecting the DAUs to the central unit. A

multiport-repeater with four channels could be combined with four Ethernet extenders

to support four data bus cables, each with a maximum cable length of 10km and a data

transfer rate of 4.6 MBit/s. These components could be placed inside the interface-box.

Only a single standard Ethernet connection would be required on the field computer to

communicate with all DAUs.

GPS-based automatic position detection

Accurate determination of the electrode locations occupied during a geoelectric field

campaign is essential for reliable inversions (Zhou and Dahlin, 2003). Usually electrode

positions are measured with handheld differential GPS devices or even measuring tapes,

which is quite error-prone.

Each DAU could be equipped with a GPS chip for automating the positioning.

Integrated GPS chips are nowadays routinely embedded in cell phone devices. They

are small in size (less than 5 by 5 millimetres), low-cost (around ten dollars each) and

have a low power consumption of less than 15mW. The latter is important, considering

the limited battery capacity of the DAUs. A power consumption of less than 15mW

would certainly be acceptable in comparison with the 100mW power consumption of

the DAUs. Each time the DAUs would have to be moved (e.g. during a roll-along

procedure), a broadcast message would be send to all DAUs asking them to acquire

their actual position with their on-board GPS chips. Subsequently the GPS chips could

be deactivated (or put into a sleep mode) to save battery power. A continuously running

GPS base-station placed at a fixed location would be employed to support differential

GPS. Automatic GPS position determination by the DAUs would alleviate the current

laborious field surveying procedure, especially during 3D field campaigns involving a

large number of electrode locations.

Improved waveform analysis algorithms

Generally, the analysis algorithms developed for sinusoidal and rectangular voltage wave-

forms proved to work reliably. However, visual inspection of voltage waveforms revealed

that (i) too many measurements may be filtered out based on the misfit parameter re-

turned by the DAUs, and (ii) questionable measurements caused by technical problems
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Figure 6.1 – Problematic waveform signals recorded during the 3D field survey at the Stetten
waste-deposit site. The signal waveform in diagram (a) is masked by strong high frequency
noise due to a large geometry factor of the electrode configuration used (i.e low voltage
level of signal). Diagram (b) shows a waveform recorded by a mal-functioning DAU. The
red dashed lines indicates the fit estimated by the corresponding DAUs; A is the resolved
signal amplitude and ξ is the data misfit parameter that quantifies the quality of the data
fits.

with the DAUs may not be identified.

Both problems only occurred for a small fraction of the waveforms downloaded for

test purposes. Case (i) usually occurs for voltage waveforms that are overshadowed

by strong high-frequency noise. Figure 6.1(a) shows an example of such a waveform.

Recordings based on these waveforms would be automatically excluded from the data

set due to the large data misfit parameter returned by the DAU.

However, in most of the cases the DAUs were nevertheless able to estimate the voltage

signal amplitude reliably. To resolve this problem, a low-pass filter could be applied

to the recorded voltage waveforms prior to fitting the voltage data to a mathematicl

function appropriate to the current waveform.

Problem (ii) is more severe. The origin of these questionable measurements could not

be clearly identified. Based on the shape of the signals recorded (Figure 6.1(b)), I suspect

that they are caused by a bad contact between the DAUs and the metal stakes. The

redesigned DAUs are equipped with a small metal spring that establishes the electrical

contact between the DAUs and the electrodes. A larger spring or alternatively a second

spring could be attached to improve the electrical coupling.

For improved recognition of questionable signals, information from all DAUs involved

in a parallel scan should be taken into account. Any odd or spurious measurements

would most likely be recognized as outliers in a generally spatially slowly varying volt-

age distribution. Such visual data control is currently implemented in the acquisition

software by mapping the voltage values determined for a single parallel scan – however,

automatic filters should be developed to simplify the process.
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Acquisition of induced polarization data

Induced polarization (IP) measurements are used in several environmental applications,

for example for distinguishing sand from clay and in the mining industry (mainly for

detecting metal sulphides). Measurements are either performed in the time-domain or

in the frequency-domain. Interrupted square-wave source signals are used in the time-

domain, and the IP effect (chargeability) is determined from the decay characteristics of

the voltage waveform. In the frequency-domain, a sequence of harmonically alternating

current waveforms is employed, and the IP effect recognised as a frequency dependence

in the measured voltage (or apparent resistivity).

The ETH-DCMES-II is capable of injecting almost arbitrary source signal waveforms

and voltage recordings with a sampling rate of up to 1KHz. Adaptive waveform analysis

algorithms can be developed and deployed on the DAUs. Therefore, the ETH-DCMES-

II has the ability to acquire induced polarization data, but this option has not yet been

exploited.

IP measurements with the ETH-DCMES-II system (e.g., based on a few sinusoidal

alternating current injections with varying frequencies) would have to include a cross-

correlation of the measured voltage waveforms with the injected current waveforms for

identifying phase-shifts. This would require the current waveforms, acquired with the

DAU located at the interface box to be distributed to all other DAUs. Alternatively,

all voltage waveforms could be downloaded (perhaps using the fast Ethernet option

discussed previously) to the central computer, and the cross-correlations could be per-

formed later in the laboratory.

6.2.2 Future developements on Forward and Inverse Algorithms

Support for subsurface (borehole) electrodes

The inversion of geoelectric data recorded in boreholes is currently not yet fully sup-

ported by my forward and inverse solvers. Both the 2.5D and 3D forward solvers support

singularity removal for subsurface electrodes only in the presence of a flat topography,

where the singular potential can be determined analytically. The boundary element

method, employed for estimating the singular potentials with surface electrodes in the

presence of topography, needs to be extended. This can be accomplished by adapting

the boundary conditions of the Laplace equation employed for determining the singular

potentials (Equation 3.16 in section 3.5). Additionally, the clustering algorithms for

constructing the inversion blocks (section 4.2) would need to be modified slightly.
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Adaptive forward solvers

The finite-element method, as it is currently employed for the forward solver described

in Chapter 3, is based on a fixed set of finite-element basis functions. Mesh refinements

have to be performed during the initial mesh generation process.

Adaptive mesh refinements could be applied for optimizing the finite element meshes.

This is usually implemented using iterative algorithms. After a forward solution has been

computed on an initial (coarse) domain disretization, an appropriate error estimator (see

Ainsworth and Oden, 1997, for an overview of different implementations) is applied to

identify elements that need to be refined. This process is repeated until a sufficiently

accurate solution is obtained. In addition to spatial mesh refinements (“h-refinements”),

the polynomial degree of the finite-element shape functions can be increased or decreased

(“p-refinements”). Adaptive methods should be applied to the non-singular (secondary)

potential fields to avoid excessive refinements due to numerical singularities close to the

source electrodes.

Initial tests using h-refinements have revealed that the iterative process required

to achieve an adaptive forward discretization slows down the overall solution process

severely, but it should be noted that these tests were performed with conventional

preconditioned conjugate gradient equation solvers. Conceptually, multigrid equation

solvers, capable of taking the hierarchical structure of the refined mesh into account,

may give a better performance.

An interesting alternative for solving elliptic differential equations based on adap-

tive wavelet basis functions is described in (Cohen et al., 2001). Barinka et al. (2001)

demonstrated the efficiency of this method for the Poisson and the Helmholtz equations.

Adaptive wavelet techniques employ an iterative approach in which an initial approxi-

mate solution is obtained by using only a few wavelet basis functions. The accuracy of

the solution is then successively improved by introducing additional basis functions.

This method has several advantages compared to the more traditional finite element

and finite difference methods. The expansion of the wavelet basis is purely data driven,

such that additional details are only introduced in those regions where they are required.

Furthermore, adding or removing basis functions does not require the existing domain

discretization to be modified. Finally, wavelet-based algorithms allow inexpensive and

efficient diagonal preconditioners to be applied.

6.2.3 Future developments of data acquisition strategies

The data acquisition and reconstruction scheme proposed in Chapter 5 was discussed

only for 2D data sets. Extending this approach to 3D field surveys is straightforward.

The presented pole-bipole data set can easily be acquired on 3D (aerial) electrode de-

ployments. As for 2D electrode profiles, the source (injecting) electrode is sequentially
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Figure 6.2 – Roll-along scheme employed during the 3D field campaign at the Stetten waste
disposal site. Within each step of the roll-along procedure one electrode line was moved
after a complete set of pole-bipole parallel measurements were taken.

placed on each of the locations within a predefined electrode deployment. For each

source electrode position, two parallel scans with two different reference electrodes are

acquired. The choice of the reference electrodes as well as the subsequent data recon-

struction process can be performed in a similar manner as described in Chapter 5.

Efficient 3D roll-along strategies

A major difference between 2D and 3D data acquisition concerns the way the electrodes

are placed in the field. Covering a large area under investigation with a limited number of

electrodes usually requires roll-along strategies (widely practised in the seismic industry)

to be employed. In order to obtain maximum subsurface information at minimal cost,

suitable deployments of electrodes should be found, such that the effort for moving the

electrodes is minimized and sufficient 3D coverage in the x and y directions (Figure 6.2)

is achieved. For the 3D field campaign at the buried waste disposal site near Stetten

(Chapter 4), the roll-along strategy depicted in Figure 6.2 was employed. For each of

the electrode deployments, complete pole-bipole data sets were acquired. The roll-along

procedure proved to be efficient in terms of the effort required for moving the electrodes.

Moving one electrode line at a time resulted in maximum subsurface coverage. Such data

sets also contain redundant information that can be used for quality control. Moving

two or three lines at once would provide a faster 3D roll-along, but with a less dense

measurement sampling in the y-direction (Figure 6.2 ). It remains to be investigated

whether the expected loss of subsurface information justifies the enhanced acquisition

speed. Conceptually, more complicated roll-along techniques could be employed. For

example, after completion of the measurements on the first electrode deployment, line

1 could be moved further away in the y direction. The only requirement is that the
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procedure can be carried out efficiently. Alternatively, the roll-along procedure could be

repeated in the x-direction. Resolution studies and/or synthetic model studies should

be carried out to gain more insight into the properties of the different roll-along options.

“A-posteriori” experimental design

Comprehensive three-point data sets have been reconstructed for the synthetic and mea-

sured complete data sets presented in Chapter 5. Conceptually, any subset of the com-

prehensive data set could be reconstructed. A future topic of investigation could be to

assess which partial data reconstructions would be most suitable for specified subsur-

face targets. A-posteriori experimental design strategies (i.e. based on the algorithms

presented by Stummer et al. (2004) and Wilkinson et al. (2006)) could be applied to

identify useful reconstructions.

Theoretical aspects of the proposed data reconstruction process

Xu and Noel (1993) and Lehmann (1995) demonstrated that any three- or four-point

configurations can be reconstructed from complete three- or four-point data set by simple

algebraic additions. This raises the question as to how the augmentation of a measured

complete data set by means of data reconstructions influences its capability to resolve

subsurface conductivity structures. From a physical point of view, such a data augmen-

tation is not expected to provide additional information because only linear combina-

tions of measured quantities are supplied (and the rank of the Hessian matrix should

not change). However, from a mathematical point of view, augmenting a data set with

reconstructed measurements can be interpreted as a preconditioning of the Hessian ma-

trix in the normal equation. In Chapter 5, it was demonstrated that improved inversion

results can be obtained by such a process, provided the measured data sets are complete

and error propagation is properly taken into account.

Augmenting a complete data set with reconstructed data yields a sensitivity matrix

G = D · Gc, where Gc is the sensitivity matrix of the measured data set and D is a

matrix that performs simple linear combinations on Gc. A representation of the sparse

matrix D can be obtained in a relatively simple manner for any three- or four-point data

reconstructions as described by Xu and Noel (1993). It would be enlightening to analyze

in detail the properties of the matrix D and its influence on the eigenvalue spectrum of

the Hesssian matrix and the corresponding model resolution matrix. This may not only

provide a better theoretical understanding of the benefits of the reconstruction process,

but may also allow reconstructions to be performed in an optimal manner (e.g. in the

presence of a spatially irregular noise pattern).
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A.1 Summary

We present a new singularity removal technique for 3D finite-element forward calcula-

tions of the geoelectric equations in the presence of significant topography. The tech-

nique, which is based on the Trefftz boundary-element method (TBEM), allows the

singular potential to be calculated numerically and subtracted from the finite-element

equations. A numerical experiment demonstrates that the technique is accurate and

computationally very efficient.

A.2 Introduction

During the past few decades, much effort has been put into the development of numerical

solutions of the 3D geoelectrical forward problem. Many solutions found in the literature

are based on the finite-difference technique of (Dey and Morrison, 1979a). Alternatively,

finite-element solutions that allow the implementation of unstructured meshes have been
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proposed (e.g. Pridmore et al., 1981). This is particularly useful for taking into account

topography effects.

Finite-difference and finite-element calculations suffer from singularities that occur

at the source electrode positions. Lowry et al. (1989) presented a procedure for efficiently

removing these singularities. They subtract an analytical homogeneous halfspace solu-

tion prior to discretization of the governing equations. This technique has been routinely

applied to flat-earth models, but it has its limitations in the presence of significant to-

pography. Here, we show that the singular potential can be estimated numerically in an

efficient manner via the Trefftz method.

A.3 Theory

In 3D geoelectric modeling, the Poisson equation with appropriate boundary conditions

needs to be solved:






∇ · (σ(x, y, z)∇V ) = −Iδ(|~r − ~ri|) in Ω

∂V/∂n = 0 on Γ1

V = f(x, y, z) on Γ2

, (A.1)

where σ(x, y, z) denotes the spatially varying conductivity, ~ri is the current source posi-

tion, I is the current density, and Ω is the domain under consideration with boundary

Γ separated into a surface (Γ1 ) and the ground (Γ2). We derive the finite-element

formulation to equation A.1 by a weighted residual approach

∫

Ω

Rω dΩ =

∫

Ω

[∇ · (σ∇V ) + Iδ(|~r − ~ri|)]ωdΩ = 0, (A.2)

where R is the residual and ω are the weighting functions. After applying Greens inte-

gral theorem to equation A.2, the resulting weak Galerkin formulation can be discretized

using various finite-element types. We use tetrahedral elements with linear form func-

tions. This discretized form leads to a sparse system of linear equations that can be

solved effectively with appropriate numerical methods.

In Lowry et al. (1989)’s singularity removal technique, the potential field in equation

A.1 is separated into an anomalous (Va) and a normal part (Vn), whereby V (x, y, z) =

Va(x, y, z) + Vn(x, y, z). Moving the known normal potential field to the right side in

equation A.1 leads to:

∇ · (σ(x, y, z)∇Va) = −∇ · ((σ(x, y, z) − σ0)∇Vn) within Ω (A.3)

The problem is reduced to determining only the non-singular potential field that

results from the conductivity anomalies. Once the non-singular potential is found, the
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Figure A.1 – (a) A typical surface mesh with the corresponding set of representing sources
used in the TBEM. (b) The integration principle.

singular potential is added to yield the total electrical potential.

In the singularity removal approach of (Lowry et al., 1989), Vn is given by an analyt-

ical solution for a homogeneous halfspace. This may be a poor representation of Vn in

the presence of topography. We seek an alternative method for accurately and swiftly

determining Vn in the presence of significant topographic relief. Our solution is based

on the Trefftz boundary-element method (TBEM; Kita and Kamiya (1995)), which is a

variant of the boundary-element methods (Brebbia, 1978). The solution is approximated

by a superposition of functions u∗
i (~r) that a priori satisfy laplaces equation:






u(~r) = up +
N∑

i=1

aiu
∗

i (~r) = up + ~aT · ~u∗(~r)

q(~r) =
∂u(~r)

∂~n
=

∂up(~r)

∂~n
+

N∑

i=1

ai

∂u∗
i (~r)

∂~n
= qp + ~aT · ~q∗(~r)

, (A.4)

where up is the particular homogeneous halfspace solution to equation A.1. The un-

known parameters ai are determined such that the approximate solution u(~r) and its

normal derivative at the boundary (q(~r)) satisfy the boundary conditions by means of

a weighted-residual approach:

∫

Γ1

(u(~r) − û)ω1 dΓ1 −
∫

Γ2

(q(~r) − q̂)ω2 dΓ2 = 0, (A.5)

where û and q̂ represent the prescribed boundary conditions on Γ1 and Γ2, respectively.

The discretized form of equation A.5 leads to a dense symmetric matrix with only N×N

entries, where N is the number of interpolation functions employed. For complicated

domains (e.g., in the presence of topography), the functions u∗
i (~r) can be constructed by

using so-called representing sources (Mayergoyz et al., 1983). The strategy is depicted

in Figure A.1a. The representing sources are located above the topographic surface at a

certain height ds. For ~ri, the ith representing source location, u∗
i (~r) and q∗i (~r) are given



136 A. Ext. Abstract Near Surface Palermo, 2005

by:

u∗

i (~r) =
ds

|~r − ~ri|
, q∗i (~r) =

∂u∗
i (~r)

∂~n
, (A.6)

The integrations in equation A.5 have to be carried out along the boundary as

shown schematically in Figure (A.1b; Yokoi and Senchez-Sesma (1998)). The surface is

extended virtually to infinity, such that the ground Γ2 is at infinity and hence all integral

contributions along Γ2 in equation A.5 vanish. Thanks to the TBEM, the integration

along Γ1 can be truncated at a moderate distance from the topographic region without

significant loss of accuracy; the singular potential over the flat part of the surface rapidly

approaches the analytical flat-earth solution, which is included in u(~r). To model an

infinitely extended surface over an unbounded domain, it is, therefore, sufficient to

integrate along the inner part of Γ1 (Figure A.1a).

After the unknown coefficients ~aT have been found, the singular potential is available

in a half-analytical form (equation A.4). This makes the TBEM very memory efficient,

since only N coefficients ai need to be saved for each singular potential. As the system

matrix resulting from equation A.5 does not depend on the source location, it needs to

be inverted only once for a given set of electrodes. The remaining operations are simple

backward substitutions.

A.4 Numerical Example

Figure A.2 – Test model. (a) The tetrahedral finite-element mesh representing the conduc-
tivity model and (b) a vertical cut through the conductivity model.

The new singularity removal approach is applied to a simple synthetic model that

includes topography. Figure A.2a shows the finite-element mesh used in the calcula-

tions, whereas Figure A.2b outlines a vertical cut through the conductivity model at

the position indicated by the grey plane in Figure A.2a. It consists of a resistive sphere
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embedded in a more conductive homogeneous domain. A current source is placed close

to the margin of the topographic region.

Figure A.3 – Numerical results for the model shown in Figure A.2 . (a) and (b) show the
singular potential estimated numerically using the TBEM and analytically using a flat-earth
solution, respectively. (c) and (d) show the corresponding finite-element solutions for the
total potential V .

The singular potential computed with the TBEM is displayed in Figure A.3a. For

comparison, the analytical halfspace solution is plotted in Figure A.3b. The boundary

condition at the surface requires the contour lines to be perpendicular to the topography,

which is obviously only the case in Figure A.3a. The total potentials computed using

the singular potentials of Figures A.3a and A.3b are shown in Figures A.3c and A.3d,

respectively. The errors in the singular potential field in Figure A.3b propagate through

to the total potential field, thus polluting the solution (Figure A.3d). In contrast, the

new singularity removal scheme yields physically reasonable results (Figure A.3c); again,
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the contour lines should be perpendicular to the topography.

A.5 Conclusions

We have introduced a novel singularity removal approach based on the Trefftz boundary-

element method. It allows the singularity removal, which has become an indispensable

tool for geoelectric forward solvers, to be used even in the presence of pronounced

topography. Because the solution is a function series, the method can be incorporated

easily into existing finite-element codes. Its high accuracy stems from the fact that

the topographic surface is modeled as an infinitely extended surface over an unbounded

domain. Clearly, the construction of such a model with comparable accuracy using a

finite-element mesh would be a very demanding and time-consuming task.
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B.1 Summary

The introduction of multi-electrode data acquisition systems during the 1980’s and

1990’s has significantly improved the acquisition speed of geoelectrical surveying, such

that relatively large 3-D data sets can now be collected with moderate field effort. How-

ever, despite the seemingly ever increasing power of computers, full 3-D geoelectrical

data inversions remain challenging and time-consuming tasks. We present technical

advances in solving the 3D geolectrical forward problem, which is the computationally

most expensive part of the inversion process. Major problems are typically caused by (i)

singularities near the source electrodes and (ii) truncation of the computational domain

at the model boundaries. Traditional approaches to overcoming these problems require

model discretizations with a large number of grid points. To deal more efficiently with

the source electrode singularities, we employ a novel singularity removal scheme based

on a fast multipole boundary element method, and to cope with inaccuracies due to

the limited computational domain, we use infinite elements. Extensive tests of our new
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forward solver demonstrate that a high degree of accuracy can be achieved with modest

computational grids.

B.2 Introduction

During the past decades much effort has been put into the development of numerical

solutions of the 3D geoelectrical forward problem. Most published solutions are based

on the finite-difference method (Mufti, 1976; Dey and Morrison, 1979a) or the finite-

element method (Coggon, 1971; Pridmore et al., 1981). Our forward solver is based on

the finite-element technique and uses unstructured tetrahedral meshes, thus allowing for

the incorporation of complicated 3-D topographies and varying mesh densities.

B.3 Theory

B.3.1 Finite-element equations

The governing equation for the geoelectric forward problem is given by the Poisson

equation

∇ · (σ∇U) = −I0δ(r − rs) in Ω, (B.1)

which results from the equation of continuity for a current density I0 injected at a

source position rs into a domain Ω with an arbitrary conductivity distribution σ. By

applying appropriate boundary conditions at the surface (Γs) and at the computational

boundaries in the earth (Γg),

∂U

∂n
= 0 on Γs,

∂U

∂n
+ νU = 0 on Γg (B.2)

the electrical potential U at any position r in Ω can be determined using the finite-

element method. A formulation of equation B.1 suitable for the finite element method

can be obtained by applying Galerkins criterion and Green’s first identity:

∫

Ω

σ∇U · ∇ωdΩ −
∫

Γ

σω
∂U

∂n
dΓ = −

∫

Ω

I0δ(r − rs)ωdΩ, (B.3)

where ω represents the shape functions required to approximate U within a finite element

(e.g. Kost (1994)). We discretize the computational domain by unstructured tetrahedral

finite elements using linear or quadratic shape functions to yield a sparse linear system

of equations that can be solved effectively with appropriate numerical methods.
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B.3.2 Singularity removal

The solution of the geoelectric forward problem contains singularities at the source

electrode positions due to the δ-function in equation B.1. Consequently, inaccuracies

that occur close to the source electrode positions could severely distort the inversion

process. An obvious strategy to handle these inaccuracies is to refine the mesh locally

around the source electrode positions. Unfortunately, this greatly increases the number

of unknowns in the forward problem, significantly increasing the computational costs.

Lowry et al. (1989) presented a procedure to remove these singularities by separating

the singular part of the solution (Un) from the non-singular part (Ua): U = Ua + Un.

To account for the singular part of the potential, an analytical homogeneous halfspace

solution with σ0 equal to the conductivity at the source electrode position, is usually

employed. Moving the known singular potential field to the right side, equation B.1

leads to a modified Poisson equation

∇ · (σ(r)∇Ua) = −∇ · ((σ(r) − σ0)∇Un) (B.4)

where the δ-function on the right side has vanished. The problem is reduced to determin-

ing only the non-singular potential field that results from the conductivity anomalies.

This technique has been routinely applied to flat-earth models, but it is not applicable

in the presence of pronounced topography. In this case, an analytical expression for

the singular potential does not exist. It must be computed numerically. Among the

available numerical methods, the boundary element method (BEM) is well suited for

this purpose (see statements concerning equation B.6).

Figure B.1 – (a) A typical surface mesh used in the fast multipole BEM (b) The integration
principle.

To derive the boundary integral equation, we use again Galerkin’s criterion (Sauter

and Schwab, 2004): ∫

Ω

∇ · (σ0∇Uh)ωdΩ = 0, (B.5)

where Uh is the solution of the homogeneous Poisson equation (Laplace equation) and ω
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is the corresponding Green’s function. We solve for (Uh) under the modified boundary

conditions and add the inhomogeneous part Ui (halfspace solution) afterwards to yield

the total singular potential Un. Applying Green’s first identity twice yields the boundary

integral equation ∫

Γ

∂Uh

∂n
ωdΓ −

∫

Γ

Uh

∂ω

∂n
dΓ +

1

2
Uh(r) = 0, (B.6)

which does not contain volume integrals. Only the boundary of the domain Ω needs

to be discretized, resulting in a substantial reduction of the number of unknowns in

the equations to be solved. Furthermore, the absence of volume integrals permits the

underground boundaries Γg to be moved to infinity (see Figure B.1 b). As Uh approaches

0 at infinity, the boundary integrals along Γg vanish. Along the surface boundary (Γs),

the integration can be truncated after a limited distance from the source (i.e. where ∂Uh

∂n

approaches 0) and thus only the inner part of Γs needs to be discretized. Figure B.1 (a)

shows an example triangular mesh used for the BEM.

To evaluate rapidly the singular potentials, we employ a fast multipole BEM (FM-

BEM) developed by Hackbusch and Nowak (1989) and implemented by Lage (1995). In

addition to the standard advantages of the BEM, this implementation has almost the

same beneficial scaling behavior of the computational costs as the FE and FD methods.

B.3.3 Open boundary handling via infinite elements

(a)                     (b) 

Figure B.2 – (a) Cross-section through a 3D FE mesh with infinite elements attached to the
underground boundaries (b) Sketch of a sample infinite element.

When solving for the potential field unbounded domains occur in the geoelectric equa-

tions. Commonly, these unbounded domains are handled by “truncating“ the computa-

tional domain sufficiently far from the injecting electrodes. Mixed type boundary condi-
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tions in combination with decreasing mesh density towards the underground boundaries

has proved to be efficient and reasonably accurate (Rücker et al., 2006). Nevertheless,

a significant fraction of the unknowns in the finite-element equations is only needed to

assure the continuation of the potential field towards the underground boundaries. If

these additional unknowns could be avoided, significant reductions of the overall com-

putational costs could be achieved.

Infinite elements, originally developed in the field of acoustic radiation (Bettes, 1987),

provide a cost-effective and elegant alternative to deal with open boundary problems.

Instead of truncating the domain at certain distances away from the electrodes, a simple

mapping technique allows the outer domain to be modeled by infinite elements that

enable the integration to be carried out to infinity in radial directions. Infinite elements

feature special shape functions that permit the potential to decay in radial direction:

φj = 1/2Si(ξ, η)(1 − ν)P
(2,0)
i (ν), (B.7)

where P
(2,0)
i (ν) are Jacobi polynomials, Si(ξ, η) are conventional linear shape functions

defined in the plane perpendicular to the radial direction and ξ, η and ν are the local

coordinates in the reference element. We employ Astley-Leys elements developed by

Astley et al. (1998b). The infinite elements are attached to the boundary Γg of the FE

mesh (see Figure B.2).

B.4 Numerical example

(a)             (b) 

Figure B.3 – (a) Cuboid and (b) layered block models. The source electrode is located on
top of the topographic relief as indicated by the black arrows.
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Figure B.4 – Median relative solution errors (in %) for a series of meshes with increasing
number of unknowns. For (c) and (d), in which singularity removal has been applied, no
local mesh refinement around the source electrodes was used, and for (b) and (d), in which
infinite elements where used, the outer part of the mesh was not discretized.

Numerical simulations were carried out for 2 different conductivity models that include

a cuboid-shaped anomaly or a stack of three layers (see Figure B.3). Both models are

distinguished by substantial topography. For each model, we performed calculations on a

series of meshes with an increasing number of unknowns. All calculations were compared

to reference solutions that where obtained on extremely dense FE meshes equipped with

second-order shape functions (each requiring more than 1 million unknowns). Figure

B.4 shows the median errors relative to the reference solutions together with the 25 and

75 percentiles (error bars). All calculations where carried out using first-order shape

functions. For the conventional FE calculations (Figure B.4 a), a mixed boundary

condition was used, whereas for the FE calculations with singularity removal (Figure

B.4 c), a dirichlet boundary condition was considered for the non-singular part of the

potential.

For the calculations based on the conventional FEM (see Figure B.4 a), the solution

for the coarsest mesh shows a median relative error of ≈ 4.7% and ≈ 5.5% for the

cuboid and layered models, respectively; with an increasing number of unknowns the

relative error decreases until it reaches a more-or-less stable value of ≈ 1.2 − 1.6% for

≈ 83000−86000 unknowns. The error plot for the FE calculations with infinite elements

(Figure B.4 b) shows quite similar characteristics, but in this case the 1.2−1.6% relative

errors are achieved with a much smaller number of unknowns (i.e. ≈ 29000 − 38000).

The performance of the forward solver is increased substantially when the singularity

removal is activated (Figure B.4 c). For the cuboid model a relative error of < 1.2% is

reached with ≈ 7400 unknowns whereas for the layer model a relative error of < 1.6%

is reached with ≈ 11000 unknowns. Finally, by estimating the singular potentials with
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the FM-BEM and applying the infinite elements to calculate the non-singular potential

part, we gain a further, rather slight increase in the overall solution accuracy (Figure

B.4 d).

B.5 Conclusion

Application of BEM-based singularity removal and infinite elements improves the effi-

ciency of 3D geoelectrical forward modeling substantially. This is primarily due to the

fact that both techniques produce accurate solutions with a relatively small number of

unknowns. This is particularly important, because the computation time required for

solving the finite-element equations scales roughly with the square of the number of

unknowns.

If the number of unknowns can be kept reasonably low, direct matrix solvers become

a very attractive option for solving the finite-element equations. Once the finite-element

system matrix is decomposed, the solutions for a multitude of electrode positions can

be obtained by simple back substitutions. This will further boost the performance of

our forward solver.





Appendix C

ETH-DCMES-II

C.1 Field Set-Up

The following components are required to operate the ETH-DCMES-II during a field

survey:

ETH-DCMES-II

• Interface box (RS-232 cable, power cable, Y-cable for 2 batteries, 2 x 12V batteries)

• Current source (link adapter to interface box, power connector to battery, USB-

cable, 1 x 12V battery)

• N DAUs (N four wire cables, spare DAUs, 2 magnets)

• N metal stakes (2 hammers)

• Field notebook (with Matlab, EconSeries device driver, ETH-DCMES-II device

driver and GeoLog GUI installed)

• Toolbox

Remote source (optional)

• 3-5 remote cables (200m length each)

• 2 metal stakes

• cable connector for remote source DAU

• warning plate and road bridges

Battery charging

• Extension power cord
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• Power supply unit (60V/10A output capability)

• 4 x 12V truck batteries (if main supplies are not available)

• Connecting cable (IFB to power supply)

Previous to any field survey it should be ensured that the internal batteries of all

DAUs that are to be deployed in the field have been charged and that all DAUs are

working properly. Additionally, a few spare DAUs ready for operation should be pre-

pared.

The electrodes (metal stakes) should be placed across the area of interest in such a

way that groups of up to 31 DAUs can be formed and connected to one of the four field

data bus channels of the interface-box. The electrodes should be placed at equidistant

spacing in the X- and Y -directions. The maximum possible spacing is limited by the

length of the four-wire cables (5m) used to interconnect the DAUs. Usually, the DAUs

are pre-configured (i.e. daisy-chained to the four-wire cables) and packed into boxes each

containing 11 or 12 DAUs. Thereby, they can easily be deployed in the field. When

attaching the DAUs to the metal stakes, it is important to make sure that the DAUs are

properly clipped onto the stakes. Otherwise a poor contact between the DAUs and the

metal stakes may result. In the worst case, this might not be detected during contact

resistance measurements resulting in poor quality voltage signals. The first DAU in each

of the four chains needs to be connected to one of the four field bus channel sockets on

the interface-box (denoted X10 to X13 ).

Two 12V batteries connected in parallel are required to power the interface-box via

its power supply socket (X1 ). After power-supply is established, the LCD display on

the interface-box should either display the input voltage or the current drawn by the

connected DAUs (depending on the setting of the display switch). The field computer

needs to be connected to the interface-box by a RS-232 serial link cable. It is important

to firmly screw-in the RS-232 cable to both the field computer and the interface-box. A

loose RS-232 cable connection might lead to problems during the communication to the

DAUs.

The current source must be connected by a four-wire cable to the IFB’s X2 jack. It

requires a 12V DC power supply, by a single 12V battery pack. A universal serial bus

(USB) cable is used to control the current source with the field computer. The current

source should only be switched on shortly before the data acquisition starts due to its

relatively large power consumption even without any signal output. At this stage, the

field computer should be started up and the GeoLog measurement software should be

launched and configured as described in the following.
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C.2 The GeoLog Software - Users Manual

Recoding 3D geoelectric data sets with the highly flexible ETH-DCMES-II data ac-

quisition system requires a sophisticated measurement software. Within the framework

of this thesis such a measurement software has been developed with the aim of au-

tomating the acquisition of geoelectric data sets without limiting the versatility of the

ETH-DCMES-II. The measurement software allows conventional and parallel bipole-

bipole, pole-bipole and pole-pole data sets to be recorded, where either full waveforms

are transferred back to the field laptop or only a few numbers characterizing the recorded

waveforms. Arbitrary source waveforms can be injected and corresponding data analysis

software modules can be uploaded to the individual DAUs. For 3D data acquisitions, a

roll-along strategy has been implemented.

The software comprises two main building blocks: (i) The DCMES-II device driver,

that handles all low-level communication to the DAUs and the current source, and (ii)

the graphical user interface, that is used to setup all necessary parameters for a field

survey, to automate and supervise the measurement process and to handle the acquired

data. Both components have been developed with the following main objectives in mind:

Fast data acquisition The measurement software and especially the device driver is

geared towards fast data acquisitions in parallel measurement mode. This is mainly

achieved by (i) minimizing idle cycles during communication to/from the data

loggers and (ii) distributing the data pre-processing to the individual data loggers.

Data safety The graphical user interface is designed such that recorded data is saved

immediately after it is received from the individual DAUs. Additionally, the DAUs

diagnostics (battery status, operation readiness, etc.) and all the user-applied set-

tings (measurement parameters, electrode deployment configurations) are saved

automatically. In case of abrupt interruption of the software (e.g. due to a mal-

function of the field notebook), the measurement software can be restarted to

continue the measurement where it was interrupted. At most the very last mea-

surement configuration needs to be repeated.

Data control The measurement software allows the recorded measurements including

full waveforms (in case they were recorded) to be inspected while the software

continues acquiring data. This way, possible issues (e.g. regarding the electromag-

netic noise conditions, too low injecting currents or inappropriate gain settings,

can be identified in an early stage during the field campaign.

Robustness against DAU breakdown Especially during long field surveys, it may

happen that one or several data loggers are experiencing problems e.g. due to a

too low battery voltage. Affected data loggers can easily be excluded from the
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measurements or exchanged by available spare data loggers without the need of

re-acquiring already obtained measurements.

3D data acquisition The measurement software allows the definition of 3D roll-along

recording strategies. In each step of the roll-along procedure, the actual positions

of the DAUs are displayed in the graphical user interface to ensure smooth field

operations during the survey.

Measurement Setup

Figure C.1 – Initial start-up window of the GeoLog software. The user is asked to either
create a new project or load-in a project that was previously created.

Once the measurement program has been started in Matlab by

addpath ( genpath ( ’˜/ subvers ion / geo log /GeologGui ’ ) ) ;

MeasGui ;

the user is requested to either create a new measurement project or load-in a project

that was previously generated (Figure C.1). Note that all files related to a certain

measurement project (acquired data, applied measurement configurations, diagnostics

of the DAUs, etc) are stored within a single folder.

Creating a new measurement project requires the user to enter all parameters de-

scribing the electrode deployments that are used during the field campaign (Figure C.2).

For that purpose, a virtual grid of electrodes, on which the 3D roll-along steps are car-

ried out, needs to be specified. The software also supports acquisition of conventional

measurements on 2D electrode deployments. In that case, a single electrode line needs

to be specified and the number of roll-along steps must be set to one. Electrode de-

ployments, referred to as “Layouts” in the software, can be previewed with the “Show”

button.

Clicking “OK” will bring up the device driver dialogue (Figure C.3), that allows ini-

tialization of the communication between the field notebook and the ETH-DCMES-II ’s
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Figure C.2 – Parameters required for 3D roll-long schemes. A virtual grid of electrodes
needs to be defined together with the number of roll-along steps employed in the Y - or
X-directions. For conventional 2D electrode layouts (i.e. geoelectrical profiling), a single
electrode line with the number of roll-along steps set to one needs to be specified.

(a) (b)

Figure C.3 – (a) Device driver dialogue. The folder containing the ETH-DCMES-II device
driver (GeoLogDriver.dll) needs to be specified. Subsequently, after the current source and
the Interface Box are attached to the field notebook, communication to the ETH-DCMES-II
can be initiated with the “Open communication” button (b).

current source and interface-box. The corresponding low-level functionalities are imple-

mented in a C++ device driver (files “GeoLogDriver.dll” and “GeoLogDriver2.h”). After

the folder containing the driver files has been specified and both the interface-box and

the current source have been connected properly to the field notebook, communications

with the ETH-DCMES-II can be initialized by pressing the “Open communication”

button. A successful initialization of communications with the current source and the
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interface-box, respectively, is indicated by the corresponding text-fields turning green

(Figure C.3).

Subsequently, the number of retries for commands to any of the DAUs can be speci-

fied. The default number is two, meaning that if a DAU does not respond within 100ms

or if it was unable to interpret a command (e.g. due to electromagnetic noise along the

communication wire), the corresponding command is resent at most two times before

an error is returned by the device driver. This setting does not apply to broadcast

commands (sent to all DAUs), to which DAUs never respond. To ensure a reliable

field operation, certain broadcast commands necessary to set-up and start parallel mea-

surements, will automatically be repeated n times as specified in the text-field labelled

“Repeat (broadcast)”. The device driver dialogue can be brought up any time later

from within the software’s main window.

1

23

4

5

6

8

7

Figure C.4 – Main panel of the GeoLog software. It allows the definition, acquisition and
inspection of geoelectric data sets defined on any of the specified electrode deployments.

Closing the device driver dialogue with the button “Done” will bring up the main

window of the GeoLog software (C.4). The window is separated in several functional

groups as indicated by the numbers in figure (C.4). It allows the definition, acquisition
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and visual inspection of geoelectric data sets on any of the defined electrode deployments.

The logger display panel at the top of the measurement window (1) reflects the posi-

tions of the DAUs (as they are placed in the field) for any of the electrode deployments

used. On the left side in the logger display panel the DAU responsible for logging the

injected source current (usually DAU number 99, which is located inside the interface-

box) is shown. Furthermore IDs of the remote source and remote reference DAUs (in

case they are employed) are displayed. DAUs in the logger display can be selected e.g.

to obtain information about their diagnostic parameters (battery status, internal tem-

perature, current consumption), to upload customized data analysis software modules

or to exclude them from future measurements (in case they are experiencing problems).

The “Logger arrangements” panel (2) on the right side allows switching the mea-

surement display to one of the defined electrode deployments (this is also possible while

the software is acquiring data). The logger display (1) will update to reflect the actual

arrangement of the DAUs and the data table (3) will show one of the data sets defined on

the selected layout. An arbitrary number of data sets can be defined for each of the log-

ger arrangements. Typically, during a field campaign, a contact resistance measurement

and optionally a few full waveform recordings are conducted on each of the electrode

deployments in addition to the data set that is used in the employed measurement strat-

egy. The left pull-down menu below the data table selects the different data sets and

the right pull-down menu shows detailed status messages (e.g. error messages) for the

measurement currently selected in the data table. Deselecting the checkbox-field in the

first column of the data table marks the corresponding measurement to be re-measured.

All measurements selected in such a way will be repeated automatically the next time a

measurement is started. Before data can be acquired with the ETH-DCMES-II, certain

acquisition parameters must be defined (“Settings”, (4)), the IDs of the DAUs employed

in the field need to be entered (“Edit Logger IDs”, (4)) and the operation readiness of

all DAUs needs to be checked (“Check Loggers”, (4)). Subsequently, a variety of data

sets that are to be acquired can be defined (“Add”, (3)). The individual steps required

are described in the following.

Entering IDs of the DAUs employed

Figure C.5 shows the panel used to enter the IDs of the DAUs in the order as they

are placed in the field. Optionally, the source logger’s ID (which is 99 by default) can

be changed. For pole-bipole acquisitions, a remote source DAU needs to be employed.

The corresponding ID must be entered in the text-field labelled “Remote source logger”.

Similarly, in case pole-pole data sets are to be acquired, the ID of a remote reference

logger needs to be entered. Occasionally, it might be necessary to exclude certain DAUs

from the measurements (e.g. due to a breakdown or due to obstacles in the field).
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Figure C.5 – Graphical user interface that allows the IDs off all DAUs employed in the field
to be entered. Optionally, remote source and remote reference DAU IDs can be provided.

This can be achieved by selecting a DAU in the logger display panel and subsequently

pressing the button “Lock/unlock logger”. Pressing the button “Scan for Loggers” will

automatically scan for DAUs connected to the ETH-DCMES-II with IDs in the range

of 1 − 100. The ID table will subsequently be filled with the IDs of all detected DAUs.

This option may be convenient for lab experiments or to charge the DAUs in the field.

Acquisition parameters

Previous to any data acquisitions, certain acquisition parameters need to be defined.

Figure C.6 shows the dialogue box used to enter these parameters:

Source Settings

• Amplitude [V]: Source waveform amplitude. Selecting “automatic” will estimate

the voltage amplitude automatically previous to each data acquisition based on a

given target current strength.
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Figure C.6 – Acquisition parameter dialog box. Usually, it is sufficient to specify settings
describing the source waveform and defining the number of samples to be acquired by the
DAUs. “Autogain Settings” and “Advanced settings” should be left unchanged in most
cases.

• Frequence: Source signal frequency in [Hz]

• Sample rate: Source signal sampling rate (between 30Hz and 50KHz), usually

about 500Hz.

• Source run time: Defines the length of the source waveform in seconds. In most

cases the “automatic” option should be used for which the length of the source

waveform is automatically adjusted to the number of samples recorded by the

DAUs.

• Waveform: Either sinusoidal, rectangular or linearly swept frequency chirp source

waveforms can be used. Note that the software module currently deployed on the

DAUs only supports analysis of sinusoidal and rectangular source waveforms.

Measure Settings
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• Number of Samples: Number of samples to be acquired by the DAUs (e.g. 200).

• Sample Rate [Hz]: Samples per second to be taken by the DAUs (e.g. 100).

Autogain Settings These settings should only be changed in some rare cases – au-

togain is used by default.

• Number of Autogain Samples: Number of samples to be taken for automatic

gain adjustment on the DAUs.

• Manual Gain: In most cases automatic gain selection is recommended. However,

in certain cases (e.g. for passive ambient noise recordings), it might be necessary

to specify the gain manually.

• AutoGain Level [0..100]: Maximum gain to be used (the default value is 50%)

Advanced Settings These settings should always be left unchanged (“Use automatic

settings”). However, in some rare cases it might be necessary do adjust these

settings.

• Synchro Timeout [s]: Time in seconds for the DAUs to wait after they have

been configured for a measurement before the measurement is actually initiated.

• Standby Timeout [s]: Time in seconds the DAUs will wait after a measurement

is finished before returning to standby mode. Note that the acquired data (and

optionally pre-processing results) need to be transferred back to the operating com-

puter before this time-out runs out. Otherwise previously acquired measurements

will be lost.

• Number of Offset Samples: Number of samples to be acquired by the individual

DAUs before the actual measurement starts (these samples will not be recorded).

Checking the operation readiness of the DAUs

To assure that all employed DAUs are ready to acquire data, their operation readiness

and internal battery condition need to be checked (button “Check Logger” in the main

GeoLog window). Figure C.7 shows the panel used for this purpose. A wakeup-signal

should be sent to all DAUs in a first step to make sure that all DAUs are listening for

commands from the field computer (button “Logger Wakeup”). Pressing “check All”

will require all DAUs to return information about their diagnostics. All DAUs that do

not respond within a certain time (usually 200ms) will be listed in the table as “not

responding”. Furthermore, an error message will appear for all DAUs for which (i) the

internal application is not running or is not ready and (ii) the internal battery voltage is

too low. In the first case, re-uploading the DAUs application should solve the problem
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Figure C.7 – User interface that allows the operation readiness of all employed DAUs to be
checked conveniently.

whereas in the latter case the DAU should be replaced. There are several possible

reasons for a DAU to not respond to commands from the field computer:

• Too low battery voltage

• The DAU might be in standby mode. Usually, the wakeup-signal should bring the

DAU in receiving mode. In case of doubt, it may help to wakeup the DAU manually

by placing a strong magnet close to the front of its casing (the DAUs electronics

board includes a magnet switch). If successful, the DAUs LED will blink upon

start-up to display the DAU’s internal battery voltage.

• The DAU might not be connected properly to the data bus cable.

• The cable connection to the DAU might be damaged. In this case all DAUs attached

to the data bus after the DAU that is not responding are usually not responding as

well.
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• The RS-485 communication chip or any other part of the DAU might be damaged.

The button “Battery status” will illustrate the battery status of all DAUs graphically in

the logger display panel. If DAUs that are experiencing problems are exchanged then the

corresponding IDs need to be updated. This can be done in the lowermost part of the

panel. Alternatively, DAUs can be locked (i.e. excluded from all future measurements)

by selecting them in the logger display panel and clicking “Lock/unlock Logger”.

Defining data sets

Figure C.8 – Panel that allows sets of electrode configurations be added to the measurement
project. Arbitrary pole-pole, pole-bipole and bipole-bipole parallel or sequential data sets
can be defined.

Selecting “add” in the main panel of the GeoLog software (Figure C.4, number (3))

allows a data set that should be acquired to be added to the measurement project (Figure

C.8). Please note that data sets are always added only to the currently selected logger

layout (“Logger arrangements” panel, (2) in Figure C.4). The GeoLog software allows

pole-pole, pole-bipole and bipole-bipole parallel or sequential data sets to be acquired.

In each case, either the full waveform or only the results of waveform pre-processing

on the DAUs can be transferred back to the central computer. After selecting the

appropriate settings, pressing the button “Generate Measurements” will generate the
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requested measurement configurations. They can be previewed simply by clicking on the

individual entries in the list; the logger display panel will highlight the corresponding

DAUs to visualize the configuration.

Before adding the generated data set to the measurement project by clicking “OK”,

a valid data set name needs to be entered in the text-field labelled “Name of Data Set”.

Note that the filename where the recorded data will later be saved to is defined by the

project name, the layout on which the data is recorded and the name the data set is

given. These filenames have the following form:

’<project name>/<data set name> <Layoutnumber>.mat’.

It is also possible to add the selected data set on all electrode layouts at the same

time. This is convenient for roll-along strategies where typically the same data set is

acquired on all electrode deployments. Note that when adding a contact resistance

measurement, the user is asked whether he would like to test the contact resistances for

all electrode locations or only for the ones that where actually moved from the last to the

current electrode deployment. Support for arbitrary data sets can be added to the panel

displayed in Figure C.8 by modifying the Matlab functions “GLAddMeasurements()”

and “GLGenMeasSet()” appropriately.

Data acquisition

Once all necessary configurations are done and all DAUs are ready to acquire data,

acquisition of the selected data set can be started by clicking “Start” in the main window

of the GeoLog software ((5) in Figure C.4). The software will issue a wakeup signal,

check all DAUs and then sequentially acquire data for all the measurement configurations

listed in the data table.

Figure C.9 shows a measurement in progress. The logger display panel (1) displays

graphically the configurations that are currently being acquired. DAUs that returned

data with a too low signal-to-noise ratio during a measurement will be highlighted

in yellow. Detailed error messages for potentially arising problems during the data

acquisition are displayed in the popup-box below the data table (3). Full waveforms

or preprocessed data received from the DAUs can be viewed during the measurement

process by activating the “View DataSet” button (4). The progress bar in the bottom of

the window will show the estimated remaining time until the data acquisition is finished.

Data quality control

Once the acquisition of a data set is finished and the acquisition of the data set to be

acquired next has been initiated, it is recommended to visually check the quality of the

recorded data. Thereby problems with any of the DAUs or too low data quality can be
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1
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Figure C.9 – Main window of the GeoLog software currently acquiring a data set. The
software shows all necessary information required to supervise the measurement process.
Data sets can be inspected visually while the data acquisition is running.

detected at an early stage during the field campaign and appropriate counter-measures

can be taken.

Clicking the button “Browse Data” in the main window of the GeoLog software

will bring up a graphical user interface (Figure C.10) that allows visual inspection of

the acquired data. Recorded potential differences, apparent resistivities, data quality

parameters (among others) can be displayed in a map-style fashion on top of the positions

of the DAUs or in the form of histogram and line plots (see Figure C.10). Clicking

the “<<” and “>>” buttons on the left side of the GUI allows scrolling through the

individual parallel scans. Information for all measurements belonging to a single parallel

scan are displayed in the data table. The displayed data set can be filtered (e.g. by the

geometry factor) or sorted as necessary.
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Figure C.10 – Visual inspection of the acquired data. Recorded potential amplitudes, ap-
parent resistivities, data quality parameters (among others) can be plotted on top of the
positions of the DAUs to detect possible issues with any of the DAUs in an early stage of
the field campaign.

Exporting acquired data sets

Geoelectric data sets recorded with the GeoLog data acquisition software are stored in

Matlab binary files. Besides the full potential waveforms (in case they were recorded)

these files contain additional information including the IDs of the DAUs, data about

the ambient noise characteristics (as returned by the individual DAUs), error codes and

internal book-keeping data required by the GeoLog software. An export GUI (Figure

C.11) is used to process and export these data sets to a format suitable for geoelectric

data inversions.

The export panel allows the user to select the data sets (recorded on the individual

electrode deployments) that should be processed and combined to a single data set

during the export process. Note that contact resistance data sets and data sets for

which only the full waveforms have been recorded cannot be exported. For each of the

individual data sets, a filter can be defined to exclude measurements recorded by certain

DAUs. Furthermore, all measurements can be excluded for which a certain DAU acted as

reference electrode, current source or current sink. This option is useful for eliminating

unreliable measurements recorded by DAUs that experienced technical problems during
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Figure C.11 – Data export dialog of the GeoLog measurement software. It allows all data
sets recorded on the individual electrode deployments to be processed, combined to a single
data file and exported in a format suitable for geoelectric data inversion.

the field survey.

The exported data set will be saved to a Matlab binary file and additionally to a

clear-text file that can be loaded in Matlab by the function “readinv3dfile()” (for fur-

ther processing) or opened with the Matlab GUI “EleDataGui()”. The exported files

are located in the project directory under the filenames:

’<project name>/<project name>[.mat/.txt]’.

Note that all data sets that have been processed during the data export are also saved

(prior to combining them to a single data set) under the following filenames:

’<project name>/<data set name> <Layoutnumber>[.mat/.txt]’.

C.2.1 ETH-DCMES-II device driver

The GeoLog measurement software relies on functionalities implemented in a C++ de-

vice driver. The main building blocks of the device driver, that handles all low-level

communications to the ETH-DCMES-II, are illustrated in Figure C.12. It consists of

the following components:

Source Driver The source driver controls the data acquisition board employed in the

current source. It manages the digital–to–analogue-conversion of the current wave-
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Matlab Gui

ETH DCMES II Device Driver

Measurement 

Queue
Result Queue

Measurement Thread

Commport Driver Source Driver

Interface Box

GLMeasure

Messagehandler

encodes/decodes messages to byte stream

Matlab Interface Routines

Current 

Source

MeasGui

Datafile

Data

Loggers

Figure C.12 – General structure of the GeoLog measurement software. The graphical user
interface is implemented in Matlab whereas for performance and stability reasons all device-
related functionality is implemented as a C++ device driver. The device driver allows
measurements to be performed asynchronously without interfering with the Matlab GUI.
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form generated in Matlab and it controls estimation of source signal voltage am-

plitudes. Furthermore, it monitors the temperature of the power amplifier located

inside the source.

Com-port driver The Com-Port driver controls all low-level communications passing

through the RS-232 serial link of the field computer, i.e. it handles byte streams

send to or received from all DAUs connected to the field data bus.

Message handler All commands send to the DAUs are composed and subsequently

transformed to byte streams by the message handler. Similarly, it decodes all

messages received from the DAUs.

Measurement thread The measurement thread manages the acquisition of geoelec-

tric data sets with the ETH-DCMES-II. All measurements are performed asyn-

chronously in a separate thread to avoid interference with the GeoLog measure-

ment software.

Virtual logger driver The C++ device driver can be compiled in a simulation mode

in which an arbitrary number of DAUs are simulated by the “Virtual logger driver”.

In this way further developments or debugging of the GeoLog software can be

performed without actually employing the ETH-DCMES-II. Synthetic potential

readings (and full waveforms) are generated based on analytical homogenous half-

space solutions.

Matlab interface routines All functionalities implemented in the C++ device driver

are accessible from within Matlab through these interface routines.

C.3 Technical details of the ETH-DCMES-II

Technical details on the ETH-DCMES-II are documented in the following Figures. Fig-

ure C.13 shows the individual steps required to acquire parallel, (serial) four-point and

contact resistance measurements with the ETH-DCMES-II and Figures C.14 to C.18

show electric curcuit diagrams of the Interfacebox and a data acquisition unit, respec-

tively.
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Figure C.13 – Flow diagram of the individual steps required to acquire parallel, (serial) four-
point and contact resistance measurements with the ETH-DCMES-II. The left side shows
the state of the DAUs during the individual steps performed.
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Figure C.14 – Circuit diagram of the interface-box. The interface-box contains the RS-232–
to–RS-485 converter that connects the field notebook to the field data bus. Furthermore,
it includes a DAU to sample the injected source waveform.
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Figure C.15 – Connection scheme of a data acquisition unit (DAU).
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Figure C.16 – IO-section of a data acquisition unit.
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Figure C.17 – Digital section of a data acquisition unit comprising CPU, RAM, clock signal
generator, and RS-485 interface.
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Figure C.18 – Power section of a data acquisition unit comprising precision voltage reference,
automatic battery charging circuit and input switch matix.
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et Cie, Paris.

Schwarz, H. and Waldvogel, J. (2004). Numerische Mathematik (5. Auflage). Teubner

Verlag.

Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and De-

launay Triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational

Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Com-

puter Science, pages 203–222. Springer-Verlag.

Si, H. and Gaertner, K. (2005). Meshing piecewise linear complexes by constrained de-

launay tetrahedralization. Proceedings of the 14th International Meshing Roundtable,

pages 147–163.



180 Bibliography

Slater, L. and Reeve, A. (2002). Investigating peatland stratigraphy and hydrogeology

using integrated electrical geophysics. Geophysics, 76(2), 365–378.

Smith, N. and Vozoff, K. (1984). Two-dimensional DC resistivity inversion for dipole-

dipole data. IEEE Transctions on Geoscience and Remote Sensing, GE-22(1), 21–28.

Spitzer, K. (1995). A 3-d finite-difference algorithm for DC resistivity modelling using

conjugate gradient methods. Geophys. J. Internat., 123(3), 903–914.

Spitzer, K. (1998). The three-dimensional DC sensitivity for surface and subsurface

sources. Geophys. J. Internat., 134, 736–746.

Stefanescu, S., Schlumberger, C., and Schlumberger, M. (1930). Sur la distribution
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