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Abstract

The Chinamora Batholith (Zimbabwe) frequently is stated as a type-locality for the

emplacement mechanism of ballooning, however its emplacement mechanism is still

the subject of an ongoing discussion. It has therefore been chosen for a thorough

study of its structural features, magnetic fabric, age data and geochemical signature

to test the different emplacement models. The Chinamora Batholith is a composite

batholith comprising numerous lithologies ranging from dioritic to granitic which may

be grouped into the marginal gneissic granites, the equigranular granites and the

central porphyritic granite. This division reflects the timing of intrusion and is

confirmed by the performed age dating. Structural analyzes of the gneissic granites

revealed a different intensity of deformation and allowed the establishment of sub

units in the gneissic granites into the southern, western and northern gneisses. While

the southern gneisses show a strong solid-state deformation overprinting the

magmatic fabric the western and northern gneisses only show a weak solid-state

overprint of their magmatic fabric. The close spatial relationship of the southern

gneisses with the Umwindsi Shear Zone suggests a deformation due to progressive

movement along the shear zone. This movement has not affected the other gneissic

units which hence show less distinct solid-state deformations. The equigranular

granites in the west of the batholith only show very weak solid-state deformations.

The gneissic granites and the equigranular granites ascended and emplaced syn-

tectonically during a roughly N-S directed regional stress field. This is confirmed by

their magnetic fabric derived from measurements of the anisotropy of the magnetic

susceptibility (AMS) that shows a stable E-W oriented magnetic lineation. The

magnetic foliation in most of the units trends margin parallel and usually dips away

from the batholith center. The porphyritic granite revealed magmatic to sub-magmatic

fabrics, only occasionally solid-state deformational features can be observed which

confirms its post-tectonic emplacement. Magnetic fabric elements show a stable

WNW-ESE trend indicating a different mode of emplacement than the gneissic

granites.

The AMS measurements have been tested using high field analyzes (HFA) and

theoretical calculations for their significance and their reliability concerning the

orientations of the magnetic axes and the calculated anisotropy parameters. These

tests revealed that the magnetic properties of most of the samples are influenced by

ferrimagnetic minerals. This mainly affects the anisotropy parameters. Orientations of



the main paramagnetic and ferrimagnetic axes are subparallel. Geochemical

analyzes of the different units revealed a linear relationship from the older gneissic

granites to the younger porphyritic granite pointing to a close petrogenetic

relationship. The granitoids of the Chinamora Batholith probably all derived from the

same granitic source. Furthermore, five different geometries that can be associated

with the different emplacement mechanisms have been modeled using thermal

calculations. These seem to reject emplacement mechanisms like ballooning,

diapirism or the emplacement as a set of smaller diapirs for the gneissic granites.

Based on the above described analyzes two different emplacement models are

proposed for the granitoid rocks of the Chinamora Batholith. While the porphyritic

granite ist emplaced as a laccolith the gneissic and equigranular granites probably

have been emplaced as a blistering diapir, however, a comparatively thin magma

chamber fed by dyke-like conduits can not completely be ruled out.

Kurzfassung

Der  Chinamora Batholith (Simbabwe) wird immer wieder als eine der Typ-Lokalitäten

für den Platznahmemechanismus des Ballooning zitiert, trotzdem wird der

Platznahmemechanismus dieses Batholithen immer noch kontrovers diskutiert.

Daher wurde dieser Batholith für die Durchführung einer genauen Untersuchung

mittels struktureller, magnetischer und geochemischer Analysen sowie

Altersdatierungen ausgewählt.

Der Chinamora Batholith setzt sich aus den verschiedensten Lithologien (granitisch

bis dioritisch) zusammen, kann jedoch in die randnahen, vergneisten Granite, die

equigranularen Granite und den zentralen, porphyritischen Granit unterteilt werden.

Diese Unterteilung spiegelt auch die bei den Altersdatierungen festgestellte

Altersabfolge (von alt zu jung) wider. Strukturelle Untersuchungen der vergneisten

Granite zeigte eine unterschiedliche Deformationsintensität und erlaubte die weitere

Unterteilung in die südlichen, westlichen und nördlichen vergneisten Granite.

Während die südlichen Granite eine teilweise deutliche solid-state-Überprägung des

magmatischen Gefüges zeigen ist dies in den westlichen und nördlichen vergneisten

Graniten sehr viel weniger ausgeprägt. Der enge räumliche Zusammenhang

zwischen den südlichen Gneisen und der Umwindsi Shear Zone deutet auf eine

Deformation der südlichen Gneise durch progressive Bewegungen entlang der



Scher-Zone während der Platznahme hin. Diese Bewegung erfaßte die westlichen

und nördlichen Gneise jedoch nicht. Die equigranularen Gneise am Westrand des

Chinamora Batholithen zeigen nur eine sehr schwache Überprägung der

magmatischen Strukturen, dennoch werden sowohl diese als auch die vergneisten

Granite als syn-intrusiva eingestuft. Ein ungefähr N-S gerichtetes, regionales stress-

Feld regelte während der Platznahme das strukturelle Inventar in eben dieser

Richtung ein. Dies wird durch die Messung der Anisotropie der Magnetischen

Suszeptibilität (AMS) bestätigt, die eine gleichmäßige E-W Ausrichtung der

magnetischen Lineare zeigt. Die magnetische Foliation streicht ungefähr

Randparallel, die Einfallsrichtung ist gewöhnlich vom Zentrum des Batholithen weg

gerichtet.

Der zentrale porphyritische Granit zeigt bevorzugt ein magmatisches bis

submagmatisches Gefüge, nur selten kann ein solid-state Gefüge beobachtet

werden. Die magnetische Lineation sowie die magnetische Foliation streichen WNW-

ESE was auf einen unterschiedlichen Platznahmemechanismus im Vergleich zu den

vergneisten und equigranularen Graniten deutet.

Die AMS Messungen wurden mittels der Hoch-Feld Analyse (HFA) sowie

theoretischer Modellierungen auf Ihre Aussagekraft hin überprüft. Es zeigte sich, das

zwar die Orientierung der magnetischen Hauptachsen der Para- und Ferrimagnetika

übereinstimmen, die errechneten Anisotropieparameter weichen jedoch deutlich

voneinander ab und werden hauptsächlich von ferrimagnetischen Eigenschaften

dominiert. Diese sollten daher nur bedingt in die Interpretation des

Platznahmemechanismus einfließen.

Geochemische Analysen der unterschiedlichen Einheiten zeigten einen linearen

Zusammenhang der älteren vergneisten Granite mit dem jungen porphyritischen

Granit. Dieser petrogenetische Zusammenhang läßt sich am besten mit einer

Genese aus der selben, granitoiden Quelle erklären.

Zusätzlich wurden geothermische Modellierungen unterschiedlicher Geometrien

durchgeführt, die im Zusammenhang mit den unterschiedlichen

Platznahmemechanismen entstehen können. Diese Modellierungen zeigten, dass

eine Platznahme der vergneisten und equigranularen Granite durch Ballooning,

Diapirismus oder als mehrere kleine Diapire unwahrscheinlich ist.

Die oben beschriebenen Analysen zeigen, dass sowohl das strukturelle und

magnetische Inventar als auch die geochemischen Analysen der equigranularen und

vergneisten Granite durch eine diapirartige Platznahme (blistering diapir) erklärt



werden kann. Allerdings ist eine Magmamenförderung durch Dykes in eine relative

dünne Magmenkammer nicht vollständig auszuschließen. Das strukturelle sowie

magnetische Inventar des porphyritischen Granits deutet auf eine Platznahme als

Lakkolith hin.
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Standard abbreviations and nomenclature

SGG = Southern Gneissic Granites

WGG = Western Gneissic Granites

NGG = Northern Gneissic Granites

NGG mar = Marginal area of the northern gneissic granites

NGG mid = Central part of the northern gneissic granites (Musana Communal Land)

EQG = Equigranular Granites

PG = Porphyritic Granite

OG = Old Gneisses (possible basement, only stated in geochemistry chapter,

belongs to the gneissic granites)

The term ferrimagnetic or ferrimagnetic minerals in this work is used in the sense of

“senso lato” if not stated otherwise.

Mainly in chapter 2 the prefix meta has been dropped for the description of the

different rocks of the greenstone belts although they show a metamorphic overprint.
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1. Introduction

One of the most important questions in the geology of granitoids sounds quiet

simple but it is yet very hard to answer: How have these sometimes very large

granitoid bodies been emplaced? Definitely no open space exists in the crust

where magma is able to agglomerate but this seems to be the lowest common

denominator that “state-of-the-art” geologist all over the world are willing to accept.

Generally, five different models of emplacement have been proposed and these

are shortly described in the next chapter (chapter 1.1). However, it is often hard to

distinguish between the emplacement mechanisms since some of them (e.g.

ballooning and diapirism) show great similarities in their internal structure and field

evidences. Nevertheless it is very important to analyze the structural features of

the investigated granitoids including the microscopic textures and fabric. The

internal fabric of the granitoids helps e.g. to decipher magmatic flow from tectonic

induced fabric and it is now a common method, next to the microscopic analyzes

(see chapter 4), to analyze textural features using magnetic measurements like

the Anisotropy of Magnetic Susceptibility (AMS, see chapter 5). However, the

correctness of the AMS measurements must be tested with different measurement

methods (e.g. High Field Analyzes, HFA, chapter 7) or theoretical calculations

(calculation of a theoretical AMS tensor from microscopic texture analyzes,

chapter 9) when reasonable amounts of ore minerals are present in the rock and

this again is not generally performed. It is generally accepted that the form of the

granitoid body should be significantly different between the different mechanisms

but outcrops in the field usually only give insight in a horizontal direction, rarely a

3D view of the granitoids is exposed. New techniques (e.g. Bouger analyzes) allow

a calculation of the form of the granitoid body at depth when a reasonable density

contrast exists but these techniques usually require a great amount of instrumental

and logistical effort and hence are not always applicable. Seismic profiles may

also be useful as indicators for the shape of the granitoid body at depth but again

require a large effort to obtain. It will be shown in chapter 10 that thermal modeling

of different geometries of the pluton or batholith may give an insight on the shape

of the batholith at depth as well when the modeled temperatures are compared

with calculated temperatures from metamorphic assemblages. Still, these

techniques are far from being commonly used. Age dating, as performed in
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chapter 10, may solve the problem of age coherences and in case that completely

different ages for the internal lithologies are obtained may help to understand the

timing of emplacement. Geochemical analysations were performed to throw light

on possible differences in the magma source(s) (see chapter 3) since major and

trace element distributions are able to support or reject a given theory of the origin

of magma at depth. In addition to the analysation of the granitoids data from the

surrounding host-rocks may be used in the interpretation of the emplacement

mechanism (see chapter 2). Depending on the emplacement mechanism the

surrounding host rock is deformed in a way which is typical, yet not unique, for a

specific type of emplacement (see chapter 1.1).

The measurement methods and analyzes stated above were performed at one of

the so-called type-localities that is frequently used to exemplary demonstrate an

emplacement mechanism. This work analyzes the emplacement mechanism of the

Chinamora Batholith in the Archean Zimbabwe Craton. Numerous authors have

contributed to the existing data of this batholith (see chapter 1.2), still the

emplacement mechanism is the subject of an ongoing discussion.

While the usage of only one or a few of the above stated methods leaves a

speculative element in the resulting interpretation the merging of all the different

aspects and results of all of these methods is able to characterize the

emplacement mechanism much better and more extensive.

1.1 Emplacement mechanisms of plutons

Five different mechanisms have been proposed for the emplacement of plutons

and batholiths:

- Stoping

- Regional tectonic processes

- Diapirism

- Ballooning

- Dyking

During stoping, blocks from the enveloping country rocks break off and sink

through the magma chamber until either the magma crystallizes, the floor of the

chamber or a point is reached where the magma has the same density as the
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block. This mechanism is unlikely to produce enough space for the final

emplacement of the magma since it only describes a transfer of material in the

magma chamber itself. The xenolith will require the exact amount of space in the

magma chamber as it has made by breaking off from e.g. the roof of the magma

chamber. Hence stoping can not make sufficient space for a magma chamber to

emplace, it rather is a mechanism to produce an ascent path for the magma or

assists other space-making processes since it only moves material inside the

magma chamber itself.

Regional tectonic processes may play an important role in the space making

process for ascending magmas because this describes a mechanism that moves

material with respect to a far field reference frame. The movement may, for

example, form a pull-apart basin with magma filling the actual pull-apart structure

(Paterson, 1996).

For the recognition of a diapir or a ballooning pluton the position of structures in

the granitoid body is of importance since structures in and around the intrusion are

different depending on the position (see Fig. 1.1). For example near the roof of a

diapir a shallow, outward dipping foliation in the enveloping rocks is expected

while near the equator of the body a nearly vertical dip of foliation should develop

(Clemens et al., 1997; see Fig. 1.1). In the following section the structures of these

bodies will be described from the roof of the intrusion down to the floor region.

Pluton diapirism describes both, ascent and emplacement of the pluton. Per

definition a diapir is a roughly tear drop-shaped body which has to rise at least one

body diameter before its final emplacement (Paterson & Vernon, 1995). This

ascent is usually described as forceful because the overlying strata are broken up

to give way to the ascending magma. This ascent mechanism produces some

unique structures in the diapir itself as well as in the surrounding country rocks. As

postulated by Clemens et al. (1997) or Bateman (1984), within the roof-area a

radial, gently outward dipping lineation should occur. In the enveloping rocks,

narrow shear zones develop during intrusion that dip gently away from the

intrusion center. Near the equator of the diapir the enveloping rocks are deformed

in a way to produce structures pointing to an upward movement of the magma

(steep lineations, prolate strain ellipsoids) and steeply inclined to even vertical

shear zones should develop showing diapir-up shear sense in the contact area

(Clemens et al., 1997). Prolate strain ellipsoids develop near the contact area
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where the viscosity contrast with the enveloping rocks is more effective than in the

center of the pluton. Therefore a strain gradient towards the center of the diapir

should develop (Clemens et al., 1997, Bateman, 1984). Near the diapir floor a

zone of high-temperature shearing with steep inward dip may develop, enveloping

layered rocks should be deformed to build rim-synclines (Clemens et al., 1997). An

example of a diapir is the Tenpeak pluton in the north American Cordillera Miller &

Paterson, 1999). Structures in the enveloping rocks (fold-axes and subhorizontal

mineral lineation) swing to a down-dip orientation near the contact area indicating

downward flow of the host rocks during upward movement of the magma. In the

granitoid body itself, pluton-side-up indicators support diapiric ascent and

emplacement of the pluton (Miller & Paterson, 1999).

A ballooning granitoid body is inflated at the point of its origin and should not show

any signs of upward movement (Paterson, 1996). The formation of the (large)

magma chamber is explained by ascent of a liquid crystal mush up to a level of

neutral buoyancy which is the final site of emplacement. The balloon is gradually

expanded with ongoing magma injection. Therefore, the enveloping rocks should

show signs of pure flattening strain with finite strain ellipsoids paralleling the outer

margin of the pluton at any level of the pluton (Ramsay, 1989). This implies

vertical oblate strain ellipsoids in the equator area of the balloon and gently

outward dipping, oblate strain ellipsoids in the roof area. In the balloon itself a

concentric, margin parallel foliation should develop that decreases in intensity

towards the center of the pluton (Clemens et al., 1997, Holder, 1981). A radial

lineation may be developed near the center of the intrusion pointing towards the

contact area which displays the direction of inflation (Clemens et al., 1997). One of

the best known examples for a ballooning pluton is the Ardara pluton in the

northwest of Ireland (Siegesmund & Becker, 2000; Molyneux & Hutton, 1999;

Holder, 1981; Pitcher & Berger, 1972). Structures in the enveloping sediments

(e.g. tightening of folds, thrusting, stacking) point to radial expansion of the pluton;

the concentric foliation in the pluton shows a decreasing distinctness towards the

center and a strain gradient has been measured that decreases from the outside

of the pluton towards the center. All these are features which can clearly be

explained by emplacement of the pluton through ballooning. A continuum exists

between the definition of diapiric and ballooning emplacement of granitoid magma.

If magma ascends half of its body diameter it is per definition neither a diapir
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(should rise at least one body diameter) nor a balloon (should not rise at all).

Furthermore, structural markers in a granitoid body as well as in the enveloping

rocks can show great conformities (folding/stacking of sediments; concentric,

margin parallel foliation etc.) if the emplacement mechanism is in between a true

balloon and a true diapir. In this work the mere descriptive terms ballooning and

diapirism will be used pointing to a true balloon or a true diapir respectively.

Results that can not clearly be assigned to one of these mechanisms will be

marked.

Fig. 1.1: Emplacement of granitoid bodies and their related structures. a) ballooning pluton. 1) Zone
of structural and thermal weakness below the magma body; 2 and 4) Through the expansion of the
nearly circular body sedimentary structures are folded; 3) Spherical expansion of the magmatic
body can lead to a decreasing distinctness of magmatic structures towards the center of the pluton.
The center of the pluton is usually isotropic; 5) The outer rim may show a zone of high temperature
solid state deformation when replenishing of the magma chamber is pulsed; 6) Measured strain
ellipses show a gradual increase of oblateness towards the contact area.
b) diapiric emplacement (taken from Clemens et al., 1997) 1) Tail of the diapir reaches deep into
the crust; 2) Surrounding rocks and sediments are deflected upwards due to the destructive
upward movement of the magma; 3) A steep lineation may develop in the center of the pluton; 4)
Sediments in the contact area show a margin parallel foliation and a radial lineation indicating of-
the-dome sliding of strata; 5) A lineation pointing away from the center of the intrusion may be
developed related to magmatic flow fabric; 6) The outer rim of the intrusion may show a zone of
extensively deformed rocks of both, granitoid and surrounding rocks; 7) Measured strain ellipses
indicate flattening strain as well as upward movement of the magma (prolate strain ellipsoids).

a) b)
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Dyking emplacement of magma more describes the ascent of magma than the

actual emplacement. During dyking, magma ascends via open cracks or fractures

(Paterson, 1996) into the area of final emplacement with the main driving force for

the magma being buoyancy. The final emplacement of the pluton is either as a

dyke, a sill or a laccolith (see Fig. 1.2). A common feature of this emplacement

mechanism is the great lateral extent versus limited thickness of the finally

constructed body. The driving force of magma is usually its buoyancy;

overpressuring of magma may also occur but needs a constant open pathway

between the overpressured source and final site of the dyke (Paterson, 1996).

Fig. 1.2: Laccolith-like emplacement of magma fed
by a dyke-like conduit. 1) Feeder dyke; 2)
Surrounding rocks are only deformed in the contact
area of laccolithic bodies and more than one
laccolith may form from the same feeder dyke; 3)
Surrounding rocks outside the direct contact area
remain undisturbed; 4) Laccolithic bodies may form
from a set of magma pulses giving rise to a layered,
sheet-like intrusion; 5) Rocks on top of the intrusion
may be lifted; 6) Due to the uplift of the surrounding
rocks a central graben may form.

Fracture propagation and therefore magma ascent during dyking may stop or

change direction at the level of neutral buoyancy, if a very ductile zone is

intersected, stress barriers (e.g. large horizontal compressive stresses) are

encountered or a free slipping surface is reached (Paterson, 1996). A well known

feature of (small) natural dykes is the marked absence of contact metamorphic

zones. This indicates that the cooling rate is fast which in turn implies a fast

magma ascent rate necessary to keep the ascent path open for further magma

injection (Cory, 1998, Paterson, 1996). During ascent, Marsh (1982) predicts that



xenoliths are carried up with the ascending magma since they do not have enough

time to settle or sink down to lower levels of the dyke.

Experiments performed by Roman-Berdiel et al. (1995) on the laccolith-like

emplacement of magmas showed a linear relationship between the shape

(thickness) of the intrusion and the thickness of the overburden (which can be

correlated with the intrusion depth) (see. Fig. 1.3). According to the amount of

intruded material they found a fluent transition between sill-like forms of the

intrusion to a lens-shaped laccolith and finally a bell-shaped laccolith.
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1.2 Former work on the Chinamora Batholith

In the last 50 years different workers have investigated or reinvestigated the

structural patterns, geochemistry and age relationships of the Chinamora Batholith

and the enveloping greenstone belts. The first publication came from MacGregor

(1951) who developed his theory of ”gregarious batholiths” in this area. In this

theory the relationship between plutons and surrounding greenstone belts is

explained by a poly-phase deformation and diapiric intrusion of granitoid batholiths

into the more dense greenstone sequences. More recent work was done by

Snowden and coworkers (Snowden & Bickle, 1976, Snowden & Snowden, 1979 &

1981 and Snowden 1984).

Fig. 1.4: Lithologies of the Chinamora Batholith and trace of proposed axial planes according to
Snowden & Bickle (1976). Since the folds extend into the surrounding greenstone belts and other
granitoids the actual folding mechanism can not be related to the ascent and emplacement of
magma.

Based on an extensive re-mapping of the Chinamora Batholith and the study of

deformational successions (determined from veins of porphyritic granite intruding

large xenoliths of greenstones) Snowden & Bickle (1976) divided the Chinamora

Batholith into 23 different granitoid lithologies that have been grouped into old

gneisses, gneissic granites and late granites (see Fig. 1.4). Snowden & Bickle

(1976) proposed a complex deformation history for the granitoid rocks leading to
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interference folding around north-east (F2) and later west-north-west (F3) striking

axial planes (see Fig. 1.4). According to their work this intense deformation would

lead to the observed dome-and-basin configuration due to the competence

contrast of granitoid rocks and greenstone material. They claimed that the

observed deformation occurred after the intrusion of the youngest granites. Hence,

this interference folding does not explain the actual ascent mechanism of the

granitoid rocks but rather concentrates on tectonic events after their emplacement.

Snowden & Snowden (1979) give several arguments for the central porphyritic

granite being sheet like: (i) nowhere is the porphyritic granite exposed below an

elevation of 1100m, (ii) the inclusions of greenstone belt material and gneissic

granites that exhibit a foliation oblique to the phenocryst alignment in the

porphyritic granite only occur below a certain elevation, (iii) many valleys in the

outcrop area of the porphyritic granite are entirely underlain by gneissic granites

and various greenstone belt inclusions and (iv) the observed interference fold

pattern could not have been produced in a granite extending indefinitely at depth.

According to their age relationships, xenolith abundances and grain size the old

gneisses and the gneissic granites are interpreted to represent multiple small-

scale intrusions rather than one large diapiric intrusion. Based on this assumption

Snowden & Snowden (1979) conclude that the deformation in the greenstone belts

can not solely result from the intrusion of the granitoid rocks but that another

mechanism of deformation (interference folding, Snowden & Bickle, 1976) has

added to the deformation arising from ascent and emplacement of the granitoid

rocks and therefore plays an important role in the formation of the granite-

greenstone terrain. Caused by this external, directed stress the conspicuous

microcline alignment in the porphyritic granite occurred during shearing of the

crystal mush. Four directions of nearly vertical fracture systems were recognized

by Snowden & Snowden (1979) with the principal directions of 15°, 115°, 160° and

50°. The fracture set with principal directions of 15° is related to the formation of

the Great Dyke, some 70 km west of the batholith, while the remaining three sets

are related to the F3 folding. From this field evidence they conclude that the simple

model of gregarious batholiths can not be applied to the Chinamora Batholith.

Their model sees the ascent of a granitoid crystal mush through fractures into the

upper crust followed by the ascent of the central porphyritic granite. During

emplacement of the sheet-like, porphyritic granite externally induced stress leads
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to the observed folding around F2 and F3 fold axes which are coeval with the

formation of the fracture system of the Great Dyke to the west and therefore rather

reflect a regional than an emplacement induced ”short-range” stress field. Based

on geochemical studies and former structural observations, Snowden & Snowden

(1981) established a model for the intrusion history and the development of the

observed granite-greenstone terrain in the area of the Chinamora Batholith. As a

first stage in the evolution of the Chinamora igneous suite, major mantle

perturbations caused extensive addition of magma from the mantle to the crust.

Part of this magma was erupted and contributed to the formation of the greenstone

sequence. The remaining magma in the magma chamber fractionated and

produced the first of the gneissic granites. Partial melting of sialic crustal rocks

occurred and contaminated the magma, giving rise to the tonalite and trondhjemite

plutons that intruded the earlier erupted volcanic sequence. Addition of magma

and raising of the thermal gradient caused regional metamorphism which in turn

lead to dehydrating reactions and an increase in pH2O. The higher fluid content

may have given rise to the ascent and emplacement of the gneissic granites. The

fact that large amounts of fluids have been generated is, according to Snowden &

Snowden (1981), also indicated by the explosive nature of the volcanic sequence

surrounding the granitoid rocks. The late granites (mainly porphyritic granite) were

intruded at a later stage triggered by a second thermal event.

Ramsay (1989) divided the granitoid rocks of the Chinamora Batholith into 4

different units: (i) tonalite, (ii) granodiorite, (iii) central adamellite and (iv) western

adamellite (see Fig. 1.5).  The intrusion sequence was established according to

structural relationships from xenoliths and along contact areas of the different

intrusions from i-iv. In his study, Ramsay (1989) mainly refers to strain

measurements of 2D exposed xenoliths assuming X:Z = Y:Z. From these

measurements Ramsay (1989) calculated the ellipticity of the finite strain

ellipsoids. The resulting oblate strain ellipsoids (see Fig. 1.5) showed moderate to

high strains in the tonalite, low to moderate stains in the adamellite and low strains

in the western adamellite (granodiorite is not explicitly stated in the publication but

according to a strain variation map shows low strains only). From these strain

measurements and the general absence of linear fabrics he concludes a

ballooning inflation of the Chinamora Batholith since an ”...upward flow of magma
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against fixed walls would produce ellipsoids more in accord with simple shear...”

(Ramsay, 1989).

Fig. 1.5: Ramsay (1989) divided the Chinamora Batholith into the shown rock suites. From the
performed strain measurements he concluded a ballooning emplacement of the Chinamora
Batholith.

As a result of the intrusion of the central adamellite the already consolidated

tonalitic skin and the adjacent granodiorite were stretched. This stretching has

caused the formation of ductile shear zones that are common in the outer parts of

the batholith but scarce in the central adamellite. According to Ramsay (1989)

these shear zones reflect the maximum extension due to inflation of the already

consolidated outer parts of the batholith.

Jelsma (1993) investigated structures, metamorphic conditions and geochemistry

in the surrounding greenstone belt and the northern margin of the Chinamora

Batholith and reinvestigated the strain measurements performed by Ramsay

(1989). He found a radial, gently dipping lineation in the surrounding greenstone

belts and kinematics indicating off-the-dome sliding of the strata. Foliation planes

in the surrounding greenstones dip away from the batholith center. The overall

form of the greenstone succession is estimated as a tri-cuspate synform with

younger sediments towards the center of the syncline. Strain measurements in the

contact area of the greenstone belt revealed strain-types of triaxial flattening;

strain measurements inside the batholith were largely adopted from Ramsay

(1989; see Fig. 1.5). On the basis of these strain measurements and the observed
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fabric in the contact area Jelsma (1993) proposed a diapiric rise of the magma

rather than a ballooning of the magma chamber.

The different strain type results from Ramsay (1989) and Jelsma (1993) led to a

somewhat contrary interpretation of the emplacement mechanism of the

Chinamora Batholith. While Jelsma (1993) calculated strain ellipsoids originated

from triaxial flattening Ramsay (1989) measured ellipsoids indicative for pure

flattening strain. These contrasting measurements are explained by Jelsma (1993)

by a combination of diapirism and ballooning of the pluton. Ramsay (1989) stated

a small amount of diapirism in his model of the emplacement mechanism of the

Chinamora Batholith without further explanations.

The fact that the deformation of greenstone belts mainly is related to the

emplacement of granitoid batholiths is a generally accepted model, at least for the

area of the Chinamora Batholith (Blenkinsop et al., 1997). The amount of

batholiths wrapped around by greenstone belts in the Zimbabwe craton and their

comparable ages suggests that the origin and ascent of the granitoid magmas has

been triggered by some large-scale event during the formation of the Zimbabwe

craton (Blenkinsop et al., 1997). Still the formation of the craton is not yet well

constrained.
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2. Geology and evolution of the Zimbabwe Craton

The evolution of Archean cratons still is subject of an ongoing discussion.

Amongst others, Wilson (1979), Ramsay (1989) and Jelsma et al. (1993)

interpreted the greenstone belts of the Zimbabwe Craton (see Fig. 2.1) as rift-

related sequences deposited on continental crust with deformation of the strata

caused by the diapiric or ballooning emplacement of granitoid rock suites. Another

way of producing archean crust is through horizontal accretion of terranes

involving remnant oceanic crust or island-arc material that amalgamated with

continental fragments during subduction (Kusky & Kidd, 1992). Prominent

examples for this type of formation are the Superior Province and the Kaapvaal

Craton (Card, 1990; deWit, 1982).

The Archean Zimbabwe Craton shows numerous elliptical granitic bodies which

are surrounded by greenstone belts (see MacGregor, 1951). The different ages of

the lithologies point to a crustal evolution which came to a halt 2.6 Ga ago

(Jelsma, 1993). The different events during the crustal evolution include crustal

growth, volcanism, emplacement of granitoid intrusions and deformation and

metamorphism of the existing rocks (Jelsma et al., 1993). In the following, some of

the main events and their rocks are shortly described.

The Tokwe Segment in the south of Zimbabwe probably reflects the first major

event that contributed to crustal evolution. This 3.5 Ga old rock formation mainly

consists of tonalitic to granodioritic gneisses and closely folded remains of a

greenstone belt (Sebakwian Group; Wilson, 1979). Wilson (1979) interpreted this

segment as an independent terrain. Detrital zircons that have been dated at 3.8

Ga in gneissic tonalites and granodiorites and at 2.7 Ga in sediments (Dodson et

al., 1988) give evidence of the existence of sialic crust before the formation of the

Tokwe Segment.

Most of the present remains of late Archean greenstone belts have been assigned

to the second event that is also characterized by the ascent of tonalitic to

granodioritic magma (e.g. Wilson, 1979; Taylor et al., 1991). The greenstone belts

of this event have been divided into a lower and upper greenstone sequence, the

latter sequence has been subdivided into an eastern and western succession

(Wilson, 1979). Both show a basal sequence of sediments that are overlain by

basalts but the further development of the western and eastern succession is
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different (Jelsma et al., 1993). While the western succession shows a bimodal

series of mafic to felsic volcanics capped by andesites the eastern succession is

sedimentary in nature with intercalations of tholeiitic basalts (Baldock, 1991). The

calc-alcaline, volcanic rocks of the western succession can not be observed in the

eastern succession. The upper greenstones are overlain by the Shamvaian Group

comprising clastic sediments (Balodock, 1991; Jelsma, 1993).

Fig. 2.1: Overview of the regional geology of the Zimbabwe Craton. See text for explanations

During the late Archean huge granitoid complexes were formed which can be

divided on the basis of their age coherence into 3 different units: (i) Chingezi suite
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(approx. 2.9 – 2.8 Ga), (ii) Sesombi suite (2.65 – 2.6 Ga) and (iii) Chilimanzi suite

(approx. 2.6 Ga) (Baldock & Evans, 1988; Taylor et al., 1991).

By far the most important Proterozoic intrusion is the Great Dyke (approx. 2590

Ma, Mukasa et al., 1998) and the numerous dykes and sills of the Mashonaland

Igneous events (approx. 1.9 Ga; Wilson et al., 1987). The intrusion of the 600 km

long Great Dyke gives evidence that the craton was stabilized at the time of

intrusion (fractures can only propagate in rigid mediums). Other dykes are of

Proterozoic or Phanerozoic age such as the Karoo swarm (200 – 170 Ma). This

dyke event is probably linked to the break-up of Gondwana Land (Wilson et al.,

1987).

The Archean Limpopo belt separates the Zimbabwe and Kaapvaal cratons. The

orogenic phase of this belt occurred between 2.7 – 2.6 Ga (Wilson, 1979). The

Limpopo belt is divided into a north and south marginal zone and a central zone

(see Fig. 2.1). The marginal zones comprise gneisses, granulites and granites

while the central zone mainly comprises supracrustal units (Beitbridge complex)

(Cox et al., 1965; Mason, 1973).

In the following section, the different rock types of the Chinamora Batholith and the

surrounding greenstone belts are described.

2.1 The Harare Shamva greenstone belt

The late Archean (2.75 – 2.65 Ga) Harare-Shamva greenstone belt is wrapped

around the Chinamora Batholith and frames part of other neighboring batholiths as

well (Chiweshe, Madziwa, Murehwa, Harare and Zvimba batholiths). The

greenstones are part of the western succession of the Upper Greenstones in the

Archean Zimbabwe craton. The basal Bulawayan Group is 6-10 km thick and is

overlain by the approx. 2 km thick Shamvaian Group (e.g. Jelsma & Dirks, 2000).

Both groups have been divided into several formations which are described below.

2.1.1 Upper Bulawayan Group

The basal formation of the Upper Bulawayan Group is the Iron Mask Formation,

which structurally overlies the granitoid rocks of the Chinamora Batholith. The Iron

Mask Formation comprises (rhyo)dacites and interbanded horizons of andesites
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(Baldock, 1991). Layers of banded iron stone and iron-bearing quartzite, arenite,

wacke, chert, marbles and mafic rocks are also intercalated. According to Jelsma

(1993) conglomerate horizons in the Iron Mask Formation contain pebbles ranging

in composition from tonalite to granodiorite without any granitoids with gneissic

fabrics. This implies that the pre-greenstone granitoids were not affected by any

deformation before the deposition of the greenstone sequences.

The northern and western parts of the Chinamora Batholith are in direct contact to

the Iron Mask Formation, in the southern and eastern parts outcrops of this

formation are scarce. Xenoliths from the Iron Mask Formation are common with

the largest being the Inyauri remnant in the south-central part of the batholith. The

contact between the granitoid gneisses and the Iron Mask Formation usually dips

moderately away from the contact area and shows right-way-up younging

directions, maximum structural thickness of the Iron Mask Formation is about 6 km

(Jelsma, 1993; Baldock, 1991).

The Iron Mask Formation is overlain by the Arcturus Formation. It comprises a

thick volcanic pile with pillowed and massive tholeiitic basalt flows (Clay, 1978).

Intercalated with the volcanics are horizons of banded iron formations, iron-

bearing quartzite and marbles (Baldock, 1991).

In the Harare area of the Chinamora Batholith the Arcturus Formation is overlain

by graphitic argillites (Mt. Hampden Formation), felsic volcanics and volcanoclastic

sediments (Passaford Formation) (Jelsma, 1993; Baldock, 1991; Clay, 1978). In

the northern part of the Harare-Shamva greenstone belt this formation does not

occur but tholeiitic basalts that are similar to the Arcturus Formation have been

recognized by Jelsma (1993). These basalts are associated with different

structural markers and hence have not been correlated with the Arcturus

Formation. This formation is termed the Mungari Formation which includes the

Maparu Formation (Baldock, 1991).

2.1.2 Shamvaian Group

The lithologies of the Upper Bulawayan Group are unconformably overlain by

siliciclastic sediments of the Shamvaian Group (Jelsma, 1993). The contact
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between the Upper Bulawayan Group and the Shamvaian Group is an angular

unconformity and usually tectonically disturbed (Jelsma, 1993).

The lower part of the Shamvaian Group is characterized by a polymict

conglomerat horizon with pebbles and boulders of granitoid composition. This unit

grades into an intercalation of coarse to massive arenites and conglomerates

(Jelsma et al., 1993).

2.2 Structures and deformation in the Harare-Shamva greenstone belt

Deformation in the Harare-Shamva greenstone belt has been assigned by Jelsma

et al. (1993), Dirks & Jelsma (1998a+b) and Jelsma & Dirks (2000) to different

deformational events termed D1 to D3. These different events gave the Harare-

Shamva Greenstone belt a tricuspate synform with the youngest sediments in the

middle of the syncline (see Fig. 2.2).

Fig. 2.2: The ascent and emplacement of the Chinamora Batholith has folded the overlying
sediments into a tricuspate synform. Younging directions from the contact area towards the center
of the syncline are typical. Next to the internal folding and thrusting the last event was an off-the-
dome-sliding of the strata from the ascending batholith (taken from Dirks & Jelsma 1998a).

Structures of theses events are described below.

D1

The earliest deformation resulted in a pervasive, layer-parallel schistosity (S1). A

mineral lineation (L1, see Fig. 2.3) is developed, shallowly plunging to the W or E

(Jelsma et al., 1993). D1 affects all greenstone lithologies and is related to the

tectonic stacking of the greenstone sequences. Therefore, this deformational
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event must have taken place before the intrusion of the large batholiths (Jelsma &

Dirks, 2000).

D2

Around the Chinamora Batholith the most prominent characteristic of the D2 event

is a marginal S2 foliation and L2 mineral lineation that overprints S1/L1 structures

and plunges steeply away from the contact with the batholith. A shear zone along

the margin of the batholith with a shear foliation (S2) which is subparallel to S1 and

the granite-greenstone contact can frequently be observed in the Iron Mask

Formation (Jelsma et al., 1993). S2 dips at moderate angles (20-60°) and contains

a mineral lineation (L2) defined by micas, hornblendes and quartz-feldspar rods

(see Fig. 2.3, Dirks & Jelsma, 1998a) that plunge away from the center of the

batholith (Dirks & Jelsma, 1998a+b; Jelsma et al., 1993). Folds indicating an off-

the-dome-vergence, porphyroclasts with asymmetrically recrystallized tails and

SC-fabrics indicate an off-the-dome sliding of the strata during uplift of the

batholith (Jelsma, 1993). These structures are therefore related to the ascent and

emplacement of the Chinamora Batholith. This is confirmed by a decreasing

distinctness of the fabric away from the contact area. Furthermore, Jelsma (1993)

measured triaxial flattening strains and high strain intensities in the contact area of

the Harare-Shamva Greenstone Belt with the Chinamora Batholith that he related

to the ascent and lateral extension of the rising granitoids during D2.

Fig. 2.3: Structural pattern from the different deformational events in the Chinamora Batholith. L2
lineation dips away from the contact area while L1 and S1 roughly parallels the batholith margin
(modified from Dirks & Jelsma, 1998a).

48

45

45

60

Table of content
Iron Mask Formation

Arcturus Formation
Shamvaian Supergroup

Porphyritic Granite

Gneissic Granites

Dolerites

N

0km                  10km

Fabric from
deformational
events



19

D3

The schistose D1 shear zones have been reactivated as near-horizontal faults

producing slickenlines and striations with small amounts of mainly sinistral

displacements. This faulting was accompanied by brecciation of the competent

units such as tectonically disturbed banded iron formations (Jelsma & Dirks, 2000;

Dirks & Jelsma, 1998a).

2.3 Chinamora Batholith

As stated earlier the above described successions surround the granitoid rocks of

the Chinamora Batholith. This composite batholith has a roughly ellipsoidal shape

and can be

divided into numerous different small-scale lithologies (see Snowden & Bickle,

1976; Snowden & Snowden, 1979; Fig. 1.4). In this work these lithologies have

been grouped, based on their age coherence and structural patterns, into the

southern, western and northern gneissic granites, the porphyritic granite and the

equigranular granites (see Fig. 2.4).

Fig. 2.4: Chinamora Batholith with its main lithologies. The marginal gneissic granites usually are
strongly deformed while the central porphyritic granite shows nearly no internal deformation.
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According to Jelsma (1993) the syn-tectonic gneissic granites can be grouped into

the Wedza cycle which are granitoids named after the Wedza type locality

showing a compositional variation ranging from early tonalite-trondhjemite to later

granodiorite and granite. The equigranular granites and porphyritic granite show

strong similarities with the Chilimanzi granites in the southern part of the

Zimbabwe craton that are potassic and characterized by a low mafic mineral

content (Jelsma, 1993). The possible basement gneisses, as described by

Snowden (1976), in the erosional windows of the porphyritic granite have been

assigned to the gneissic granites. Only in the south-eastern part of the batholith in

the area of the Umwindsi Shear Zone are these basement gneisses visible. A

detailed description of the different lithologies and their structures is given in

chapter 4.

2.4 Age data of the Chinamora Batholith

Age data of the different lithologies of the Chinamora Batholith is limited. Baldock

& Evans (1988) dated banded gneisses from the western margin of the Murhewa

Batholith (east of the Chinamora Batholith) at 2865 ± 135 Ma (Rb/Sr, whole rock)

and gneissic granites of the eastern margin of the Chinamora Batholith at 2680 ±

102 (Rb/Sr, whole rock). Jelsma et al. (1996) dated these gneisses at 2667 ± 4 Ma

(U-Pb, zircons). Internal granodiorites and tonalites in the greenstones related with

the equigranular granites have been dated at 2664 ± 15 Ma (Mazowe), 2649 ± 6

Ma (Bindura) and 2618 ± 6 Ma (Glendale) (Jelsma et al., 1996), host rocks to the

granodiorites of the Mazowe area have been dated at 2643 ± 8 Ma (should be

older than the internal granodiorites, date from Wilson et al., 1995). For the

porphyritic granite in the center of the batholith an age of 2601 ± 14 Ma was dated

from Jelsma (1993). From these age data it is apparent that the gneissic granites

in the Chinamora Batholith are the oldest rocks followed from the equigranular

granites and finally the porphyritic granite. However, some of the age data is not

well constrained due to e.g. contrasting dating of host-rocks and internal intrusions

(see Becker et al., 2000).
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3. Geochemistry

Geochemical analyzes on some selected samples from the Chinamora Batholith

have been performed to characterize possible sources of the granitoids and their

genesis. Furthermore, the geochemical analyzes were used to classify the

different samples and hence the different lithologies of the batholith according to

different geochemical signatures. The samples chosen for the geochemical

analyzation were taken in different units throughout the Chinamora Batholith. The

element content of the samples was analyzed using an inductively coupled plasma

mass spectrometer (ICP-MS). A second analyzes was performed using the

technique of fluorescent x-ray analyzes (RFA) to gain information about elements

that can only poorly be measured with the ICP-MS.

3.1 Classification of analyzed rocks

 The analyzed samples of the Chinamora batholith may be characterized

according to their (Na2O + K2O)- and their SiO2 content (TAS-Diagram of Cox et

al., 1979) which is to a large extend consistent with the Streckeisen Diagram

(QAPF). Most of the samples plot in the granite field, where some of the samples

may be characterized as alkali granites and some as granites (see Fig. 3.1). Only

a few samples plot in the diorite field. The samples cluster near the

subalcaline/alcaline boundary.

Fig. 3.1: TAS-diagram of Cox et al. (1979)
used for the classification of the analyzed
rock samples. Numbers are related to rock
classification as follows:
1-Nepheline-syenite; 2-Syenite; 3-Syenite;
4-Syenite-diorite; 5-Gabbro;      6-Gabbro;
7-Diorite; 8-Quartz-diorite (Granodiorite); 9-
Granite; 10-Alkali granite. Solid line
represents subalcaline/alcaline boundary.

On the trivariate plot of FeO(tot)-(Na2O+K2O)-MgO the samples plot close to the

calc-alkaline trend (see Fig. 3.2) and follow the trondhjemitic trend of Barker & Arth

(1976).
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Fig. 3.2: Samples classified according to their
FeO-(Na2O+K2O)-MgO. Th = tholeiitic, Ca =
calc-alkaline, Al = alkaline (Martin 1994). The
Tdh line corresponds to the differentiation trend
of the standard trondhjemitic suite from
Southwest Finland (Barker & Arth, 1976).
Samples plot in the calc-alkaline field on the
trondhjemitic trend.

This change in composition from a trondhjemitic to a calc-alkaline trend has been

assigned by Martin (1993) to the general changes of granitoids in composition with

time with granitoids of 2.5 Ga and older following a trondhjemitic trend and

granitoids younger than 2.5 Ga following a calc-alkaline trend.

According to Feng & Kerrich (1992) synvolcanic, syntectonic and late tectonic

granitoids are distinguishable according to their variations in CaO/(Na2O+K2O) vs.

SiO2 (see Fig. 3.3). While most of the gneissic granites clearly plot in the range of

the syntectonic series (TGGM) the samples derived from the porphyritic granite all

plot in the field of the late tectonic series (SMG). This division clearly reflects the

age relationships of the analyzed samples with the gneissic granites being older

than the porphyritic granites.

Fig. 3.3: Major element plot
showing the classification of the
investigated rock types as mainly
syn- to late tectonic (Feng &
Kerrich, 1992).0
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3.1.1 Harker plots of major elements

In Fig. 3.4 the major elements are presented in terms of weight percentages of the
oxides versus the weight percentage of SiO2. Most of these Harker plots show a
linear trend with decreasing weight percentages of oxides versus increasing SiO2

content. Al2O3 and Na2O only show a weak linear, negative correlation with SiO2.
The porphyritic granite usually has a high SiO2 content and only low amounts of
the respective oxides, only the K2O-content of the porphyritic granites is much
higher in comparison to the gneisses. The elevated K2O-content can be explained
with the very high content of K-feldspar megacrysts present in the porphyritic
granite while in the gneisses only small amounts of K-bearing minerals are
present. The linear trends shown by the gneisses on the TiO2-, Fe2O3-, P2O5- and
MgO versus SiO2 graphs reflects a fractionation process suggesting an evolution
of the samples from the same source rather than to an origination from different
sources. Jelsma (1993) assigns these linear trends to the control of titanite,
ilmenite or magnetite, plagioclase, apatite and a mafic mineral (hornblende) in a
crystal fractionation process. However, as Rollinson (1993) points out, it is not
always possible to distinguish between the processes of fractional crystallization
and partial melting. Only when the processes take place under different physical
conditions they may be distinguished but such a scenario is not likely in the
evolution of the magmas of the Chinamora Batholith.
The distribution of the major elements shows significant similarities (as well as
differences) with partial melting experiments performed by Beard & Lofgren
(1991), Rapp et al. (1991), Rushmer (1991), Winther & Newton (1991) and Wyllie
& Wolf (1997) on amphibolite, garnet-amphibolite and eclogite. The experimental
liquids all possess uniformly high Al2O3-contents of ~15% and Na2O-contents of
~4%. Nevertheless a marked difference exists in the K2O-content where the
analyzed rock samples have contents of 1-4% in comparison with the low K2O-
contents of ~1% in the experimental liquids. Other differences exists in the TiO2

contents of the experimental liquids which are generally higher in TiO2 than the
analyzed rock samples from the Chinamora Batholith.
Despite the above described similarities it seems to be unlikely that the analyzed
rock samples derived from partial melting of amphibolite or eclogite. This scenario
is questionable due to the low SiO2-content of amphibolites and the high Si2O- and
the low K2O-content of the analyzed samples. It seems more likely that generation
of these melts occurred by batch melting of a granitoid source. This is confirmed
by the frequent occurrence of garnet in the gneissic granites which has not been
observed in the experimentally derived melts from an amphibolite source.
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Fig. 3.4: Harker plot of major elements
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3.1.2 Harker plots of trace elements

Trace element correlations with SiO2 (see Fig. 3.5) show much more complex

patterns than do the major elements. The large ion lithophile elements (LILE) Cs,

Rb, Ba, Pb, Sr and Eu show a weak negative correlation with SiO2. The porphyritic

granite samples are enriched in Rb and Pb. The high field strength elements

(HFSE) Nb, Ce, Zr, Hf, U and Th generally tend to be incompatible in mafic

igneous rocks (Feng & Kerrich, 1991). It is therefore not surprising that the more

evolved porphyritic granite is enriched with respect to the gneissic granites in most

of these elements (Hf, Ce, U, Th). The gneissic granites show a negative

correlation of the respective elements with SiO2. Zr, Hf and Nb seem to be only

weakly correlated with SiO2, in Hf a clustering of values is apparent while in Zr and

Nb weak negative correlations are obvious. In general, the porphyritic granite is,

compared to the gneissic granites, enriched in elements with a small ionic radius

(>1.6*10-10m) and elements with a high ionic charge (>4), namely these are the

trace elements Rb and La, Ce, Pr, Nd, Sm, Gd, Hf, Pb, Th and U (LILE and HFSE

respectively).

Europium anomalies (negative) are chiefly controlled by feldspars as Eu is

compatible in plagioclase and K-feldspar and to a lesser extent in hornblende,

sphene and garnet (see partition coefficients in Table 3.1). According to this, the

gneissic granites show weakly positive Eu anomalies while the porphyritic granite

exhibits strong negative Eu anomalies.

As Rollinson (1993) points out, the distribution and percentage even of accessory

minerals in the rocks may influence the content of trace elements in the rock

samples if their mineral/melt partition coefficients are high for the accessories but

low for major rock forming minerals. Therefore, the different analyzed rock

samples here can easily be recognized on the basis of the ratio of Yb/Gd (see Fig.

3.6). Partition coefficients for Yb and Gd are given in Table 3.1. The southern

gneissic granites with their high garnet, biotite and hornblende content exhibit the

highest values for Yb and can be discriminated against the other gneissic granites

which show varying contents of biotites and hornblendes while the porphyritic

granite only exhibits biotite, zircon, apatite and probably small amounts of sphene.
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Fig. 3.5: Harker plots of trace elements.
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Fig. 3.5: continued
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Fig. 3.5: continued
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Table 3.1: KD’s for different trace elements that control their distribution between mineral and melt.

Element Plagioclas

e

k-fsp Garnet Biotite Hornblende Zircon Sphene Magnetite Quartz Apatite

Rb 0.041 0.34 0.009 2.24 0.014 0.041

Sr 4.4 3.87 0.015 0.447 0.022

Ba 0.308 6.12 0.017 9.7 0.044 0.022

K 0.1 0.2 0.081 0.013

Cs 0.105 0.195 3 3.15 0.029

Pb 0.972 2.473 0.767

Y 0.1 35 0.03 6 2 40

Ti 0.05 1.2 7 12.5 0.038 0.1

Zr 0.1 0.03 1.2 1.197 4 0.8 0.1

Hf 0.148 0.033 3.3 0.703 3193.5 0.03 0.73

Nb 0.06 6.367 4 6.3 2.5 0.1

Ta 0.035 0.01 1.567 47.5 16.5 0.008

Th 0.048 0.023 0.997 76.8 0.009

U 0.093 0.048 0.773 340.5 0.025

La 0.38 0.08 0.39 5.713 16.9 4 0.015

Ce 0.27 0.044 0.35 4.357 1.52 16.75 0.014 34.7

Pr

Nd 0.21 0.025 0.53 2.56 4.26 13.3 0.016 57.1

Sm 0.013 0.018 2.66 2.117 7.77 14.4 21 0.014 62.8

Eu 2.15 1.13 1.5 2.02 5.14 16 0.056 30.4

Gd 0.097 0.011 10.5 10 12 56.3

Tb 0.025 11.9 1.957 37 0.017

Dy 0.064 0.006 28.6 1.72 13 101.5 0.015 50.7

Ho 28.05 19

Er 0.055 0.006 42.8 12 135 37.2

Tm

Yb 0.049 0.012 39.9 1.473 8.38 527 0.017 23.9

Lu 0.046 0.006 29.6 1.617 5.5 641.5 10 0.014 20.2

Fig. 3.6: Ratio of Yb/Gd (in
ppm) showing a linear
relationship of the gneisses
except for the southern
gneisses that have an
elevated content in Yb due to
the frequent occurrence of
garnet.
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According to MacCaskie (1984) covariance plots are useful indicators to identify

different petrogenetic processes in the formation of related magmas. Feng &

Kerrich (1992) effectively use covariance plots of Rb/Sr versus Rb/Ba to

distinguish between different fractionation processes and AFCs (assimilation of

wall rocks during fractional crystallization) in the genetic process of evolving

Archean TTG’s. As can be seen from Fig. 3.7 the analyzed samples of the

Chinamora Batholith clearly define a linear trend indicating a close petrogenetic

relationship in the evolution of the gneissic- and porphyritic granites. The samples

from the porphyritic granite reflect the evolved nature of the magma and therefore

show higher Rb/Sr and Rb/Ba ratios than the gneissic granites.

Fig. 3.7: Rb/Sr versus Rb/Ba

The frequently observed hiatus between the trace element content of the gneissic

granites and the porphyritic granite does not necessarily point to a different source

for these two units. The linear relationship of major as well as trace elements can

be achieved if K-feldspar is concentrated in the remaining melt. In addition, to

account for the high U, Th, Hf and Pb content of the porphyritic granite an

accessory mineral must be present that shows high KD’s for these elements

without significantly changing the major element composition.

3.1.3 Normalized diagrams (Spider plots)

Despite the processes that may have changed the element distribution in the
analyzed rock samples, element abundance diagrams are useful to demonstrate
trends in large databases and may be used to compare the source and evolution
of rocks.  In Fig. 3.8 the MORB (Mid-Ocean Ridge Basalts)-normalized trace
elements of the respective units are plotted. It can be seen that the different
gneisses show comparable trends, only the element abundance differs to a wider
extend.
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Fig. 3.8: Spider plots of trace elements normed to MORB (mid ocean ridge basalt).
All are highly enriched in most (Rb, Cs, Ba, Pb) of the large ion lithophile elements (LILE), the light
REE are only slightly enriched while the heavy REE are slightly depleted.
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Furthermore, they are highly enriched in Th and U. In general, the gneissic

granites are enriched in incompatible elements.

According to Hall (1993), during partial melting the initial melts will be enriched in

these trace elements due to their low distribution coefficient for the solid phase of

the source material. The porphyritic granite shows much higher abundances for

some light REE (La, Ce, Pr, Nd and Sm) than the gneisses with a marked negative

Eu-anomaly. Hf, Ta, W, Pb, Th and U are enriched in the porphyritic granite,

especially Th and U have much higher concentrations in the porphyritic granite

than in the gneissic granites.

3.2 Conclusions

Two modes of origin are applicable for the TGGM series with this type of major

and trace element signature: either melting of a granitic or an amphibolitic source

(Feng & Kerrich, 1992; Arth & Hanson, 1975M; Condie, 1981 + 1986 or

Drummond & Defant, 1990). Due to the high SiO2-content of the analyzed samples

the latter seems to be questionable. The origin of the porphyritic granite is

ambiguous, according to Goodwin (1991) the late tectonic series may have

originated from partial melting of the residuum left from the TGGM series.

The pronounced linear relationship of the gneissic granites and the porphyritic

granite seems to point to a close petrogenetic relationship of the syntectonic and

the late tectonic series with the late tectonic series originating from fractional

crystallization of k-feldspar and an accessory mineral with a high Kd for the

elements Hf, Ta, W, Pb, Th and U without changing the major element content of

the melt significantly. This is confirmed by Fig. 3.9 where normative An-Ab-Or is

plotted in a trivariant diagram according to O’Connor (1965).
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Fig. 3.9: Normative An-Ab-Or diagram according to O’Connor (1965). Circles are data from this
work, squares are from Snowden (1976) and diamonds are from Jelsma (1993). Gr = granite; Tdh
= trondhjemite; Gd = granodiorite and To = tonalite.

The samples define a trend from largely undifferentiated granite to more

differentiated tonalite which is typical for a fractionation of the melt (pers. com.

Foley, 2000). Based on this it seems most likely that the lithologies originated from

the same granitic source and were fractionated during the process of (batch?)

melting.
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4. Petrography and fabrics of the Chinamora Batholith

After evaluating the possible sources and origin of the different lithologies a

thorough analyzes of their field appearance and microstructures is performed to

gain insight in the age coherence, timing of deformation (e.g. magmatic,

submagmatic and solid state) and possibly the deformation mechanism itself. The

different lithologies have been grouped into the gneissic granites (include the

possible basement gneisses, see below), the equigranular granites and the

porphyritic granite, their field appearance, modal composition and microstructures

are described below.

4.1 Field observations and petrography

4.1.1 Gneissic granites

The gneissic granites in the marginal areas and the erosional windows of the

Chinamora Batholith may be differentiated according to their amount of

deformation into the southern, northern and western gneissic granites. They all

show different intensities of their internal deformations and are hence described

separately.

4.1.1.1 Southern gneissic granites

Field observations of the southern gneissic granites revealed numerous small

scale shear zones (Plate 1D). The shear zones often cut xenoliths with offsets of a

few centimeters (Plate 1A). Kinematic indicators in these small scale shear zones

show sinistral as well as dextral movements and therefore probably originated

from emplacement mechanisms rather than by movement along the Umwindsi

Shear Zone (Jelsma pers. communication; Ramsay, 1989) that parallels the

southern margin of the batholith. Strongly elongated xenoliths are abundant in the

southern gneisses. Usually only 2D views of the xenoliths are available. Where a

3D view is possible they show strongly oblate forms and are flattened in the

foliation plane (Plate 1B). Foliation is usually defined by small biotite flakes that

form only weakly or unconnected layers and sometimes anastomose around
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feldspars (Plate 2 and 3). Feldspar megacrysts usually show a strong preferred

alignment (Plate 3A), folded pegmatites are abundant and are frequently refolded

(Plate1C).

Hand specimen all show a very high content of hornblendes and biotites giving the

rocks a dark grey appearance. The well developed foliation plane (Plate 2) in most

of the samples is defined by biotites and/or hornblendes. Feldspars are oriented in

the foliation plane and sometimes appear to define augen gneisses, however, this

texture is only weakly developed. Biotites of the southern gneisses are much

smaller than biotites in the other suites, they hardly exceed ~0.5 cm in diameter.

Shear zones can be observed in some of the samples indicating a sinistral as well

as dextral sense of shear. These shear zones sometimes crosscut large feldspars

(Plate 3A) and hence must have been active after crystallization of the melt.

Lineations in the southern gneisses are defined by weakly aligned feldspars.

The southern gneissic contain quartz, plagioclase, K-feldspar, hornblendes and

biotite as their main constituencies (see Table 4.1 for modal analyzes) and

magnetite, titanite, zircon, apatite and garnet as accessories. The Streckeisen-

diagram is shown in Fig. 4.1. Most of the samples plot in the granodiorite-field, still

some of the samples plot as monzogranites or tonalites. Baldock (1991) found the

same modal composition in his study.

Fig. 4.1: Streckeisen diagram of the samples in the southern gneissic granites.
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Table 4.1: Modal composition calculated from geochemical analyses for the southern gneissic
granites.

4.1.1.2 Western gneissic granites

In the western gneissic granites internal fabric mainly is defined by large biotite

flakes (~2 cm) that define a well developed foliation (Plate 4). Feldspars are small

and oriented in the foliation plane. In some samples hornblendes seem to define a

weak SC-fabric indicating a dextral sense of shear. Generally, grain size is much

coarser than in most of the southern gneissic granites. The massive occurrence of

feldspars gives these rocks a light grey to white color, some ore minerals are

embedded in the rocks that are easily recognized due to their small, brownish

corona that probably originated during weathering (Plate 4A).

Fig. 4.2: Streckeisen diagram for
the samples in the western gneissic
granites.

CH 11 CH 18 CH 19 CH 21A CH 21B JB 210
quartz (%) 23 21 15 23 28 23
K-feldspar (%) 13 11 0 19 26 17
plagioclase (%) 45 48 40 43 32 45
hornblende (%) 9 11 28 6 0 3
biotite (%) 10 10 18 9 14 12

JB 211 JB 212 JB 213 JB 214A JB 214B JB 216
quartz (%) 24 33 15 33 29 28
K-feldspar (%) 20 13 22 5 18 14
plagioclase (%) 43 45 37 50 49 44
hornblende (%) 3 0 19 0 2 0
biotite (%) 10 12 7 12 2 14
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The western gneissic granites contain quartz, plagioclase, K-feldspar and biotite

as the main constituencies. In most of the samples the hornblende content is fairly

high and must be seen as a major phase as well. Accessories are magnetite,

apatite and zircons. The modal content of the samples differs widely depending on

the lithology (see Table 4.2 and Fig. 4.2), in the Streckeisen-diagram the samples

plot in the granodiorite and tonalite field (see Fig. 4.2).

Table 4.2: Modal composition calculated from the geochemical measurements.

4.1.1.3 Northern gneissic granites

The northern gneissic granites can be divided into the central granodiorite

(Musana Communal Land, see Fig. 4.3) and the marginal gneissic granodiorite

and granite. The central granodiorite shows a weak foliation defined by small

biotite flakes (Plate 5) while other samples in the same area are isotropic and do

not show any macroscopically visible internal fabric. These samples are

comparable to samples from the porphyritic granite but they lack the common

occurrence of large feldspar phenocrysts. Ore minerals can frequently be

recognized due to their brownish corona (Plate 5A + B). Grain size usually is small

although some large quartz grains can be observed.

Outcrops in the marginal northern gneissic granites usually show small grains of

feldspars and biotites defining a strong foliation. Folding of pegmatites is common

but in contrast to the southern gneisses refolding of veins can only rarely be

observed. These two subunits (sample JB200 and JB202 are from the Musana

Communal Land) in the northern gneissic granites can not be distinguished

according to their modal content (see Table 4.3, Fig. 4.4).
Table 4.3: Modal composition calculated from geochemical analyses.

CH 16A JB 217B JB 108 JB 217A
quartz (%) 37 18 29 21
K-feldspar (%) 8 0 14 5
plagioclase (%) 41 40 48 37
hornblende (%) 0 20 2 11
biotite (%) 14 22 8 25

CH 23 JB 77 JB 200 JB 202 JB 215
quartz (%) 36 37 34 33 31
K-feldspar (%) 0 3 18 18 15
plagioclase (%) 52 48 41 41 44
hornblende (%) 1 3 0 1 1
biotite (%) 11 10 7 8 9



38

Fig. 4.3: Location of the Musana Communal Land area

Fig. 4.4: Streckeisen diagram of the
samples in the northern gneissic
granites.

Their main constituencies are quartz, K-feldspar (although some samples show a

very low K-feldspar content), plagioclase, biotite and minor hornblende,

accessories include magnetite, haematite, zircon, apatite, titanite and sphene.

4.1.2 Equigranular granites

The equigranular granites in the western portion of the Chinamora Batholith range

in composition from tonalite/trondhjemite to monzogranite, the majority of the
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samples can be described as quartz-rich granodiorites (Snowden & Snowden,

1979). They contain less than 5% of mafic minerals and do not show any feldspar

megacrysts. The poor outcrop situation in this area complicates a precise analyzes

of the rocks, outcrops in the equigranular granites are usually highly altered and

fresh samples were scarce. The equigranular granites can be subdivided into a

fine grained (Valeria/Surtic) and a coarse grained (Mazowe granodiorite) unit (e.g.

Baldock, 1991). Both contain 29% quartz, 11% K-feldspar, 44% plagioclase, 2%

hornblendes and 14% biotite as their main constituencies (Snowden & Snowden,

1979). Only one sample has been analyzed geochemically, it plots in the field of

granodiorites in the Streckeisen diagram.

4.1.3 Porphyritic granite

The porphyritic granite in the center of the batholith (see Fig. 2.4) has an areal

extend of approx. 600 km2 and represents the largest unit in the Chinamora

Batholith. Outcrops usually occur as nearly horizontal surfaces (see Plate 6A),

however, the porphyritic granite includes the typical whaleback-domes that can be

observed in most of the area and includes the Ngomakurira which, with its

elevation of 1655 m, is the highest hill in the area (see Plate 6D). The porphyritic

granite can only be observed above an elevation of ~1200 m. This suggests that

the porphyritic granite has a convex form being at a higher elevation in the center

than at the margins. In the various outcrops the most prominent characteristic of

the porphyritic granite is the large size of feldspar phenocrysts. They reach 5cm in

length, sometimes more, and are usually well aligned (Plate 6B + C). Grain size of

the other minerals is diverge, usually quartz and biotites are very small. Small

scale shear zones in the porphyritic granite are rare and can only be observed

near the southern margin where the porphyritic granite abuts on the gneissic

granites (Plate 6C). The shear zones probably were formed during crystallization

since feldspar grains are dragged into the shear zone, although they could have

developed in the solid state as well when the rocks behaved plastically. The shear

zones indicate a sinistral or dextral sense of shear. Recognition of foliations or

lineations in the outcrops can be difficult due to the lack of suitable surfaces (Plate

6A). The hand specimen show the well alignment of feldspar megacrysts

throughout the porphyritic granite (Plate 7). The central porphyritic granite mainly
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contains quartz (27%), plagioclase (34%), K-feldspar (31%) and biotite (5%), in

some samples a hornblende content of up to 2% has been calculated from

geochemical analyzes (see Table 4.4). In the Streckeisen diagram the samples all

plot in the field of monzogranites (see Fig. 4.5).

Fig. 4.5: Streckeisen diagram of the samples in the porphyritic granite.

Table 4.4: Modal composition of the porphyritic granite calculated from geochemical analyses.

CH 10 JB 206 JB 207 JB 208 JB 209
quartz (%) 27 30 27 35 30
K-feldspar (%) 31 32 32 26 27
plagioclase (%) 34 31 35 32 36
hornblende (%) 2 0 0 1 0
biotite (%) 5 6 7 7 6

Qtz

PlagK-fsp

90

60

20

Granite

Grano-
diorite

Syenite Monzonite DioriteMonzo-
diorite

Kf-
Syenite

Tonalite

Kf
-g

ra
ni

te

5

Syeno-
granite Monzo-

granite



41

A

B

C D
Plate 1: A - Xenolith crosscut and offset by a small shear zone. B - Flattened xenoliths
in the southern gneissic granites are oriented in the foliation plane. C - Small, refolded 
pegmatite veins in the southern gneissic granites. D - Small scale shear zone in the 
southern gneissic granites. Xenoliths are cross cut and offset along these shear zones.
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Plate 2: Hand specimen of sample JB309 (southern gneissic granites) showing 
strong alignment of biotites. A - Cut parallel to lineation and perpendicular to
foliation. B -Cut parallel to foliation and  lineation. C - Cut perpendicular to 
foliation and lineation. Note the osciallation of biotites around feldspars 
(arrows in C).
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Plate 3: Hand specimen of sample JB308 (southern gneissic granites).
A - Plane cut parallel to lineation, perpendicular to foliation. Arrow points
to offset of feldspar at a small shear zone. B -  Plane cut parallel to foliation
and lineation. C - Cut perpendicular to foliation and lineation.
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A

B

C
Plate 4: Sample JB296 of the western gneissic granites. A - Plane cut
parallel to lineation and perpendicular to foliation. Note the change in the 
orientation of foliation (solid white lines). Ore minerals are easily 
recognizable due to their brownish corona (white arrows). B - Cut parallel
to foliation and lineation. C - Cut perpendicular to foliation and lineation.
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A

B

C D

Plate 5: A - Typical outcrop situation in the Chinamora Batholith (here porphyritic granite).
Outcrops usually occur as flat lying plates. B - Well aligned feldspar phenocrysts in the 
porhyritic granite. Xenoliths are oriented in the foliation plane. C - Small scale shear zone 
in the porphyritic granite near the margin to the southern gneissic granites. D - Whaleback 
domes in the porphyritic granite, front of the photo shows part of the southern gneissic 
granites.
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4.2 Microstructures

Microscopic analyzes have been performed on two sets of thin sections, one was

cut according to the sample coordinates of the magnetic measurements while the

other thin sections were cut parallel or perpendicular to the macroscopic foliation.

4.2.1 Gneissic granites

The division of the gneissic granites into the southern, western and northern

gneissic granites is used for the microscopic analyzes as well, these three units

are hence described separately.

4.2.1.1 Southern gneissic granites

Quartz in the southern gneissic granites usually occurs as small grains with highly

irregular grain boundaries representing a consertal texture and frequently shows

strong undulose extinction or even chessboard patterns (Plate 8E). Bulging of

quartz at quartz/quartz or quartz/feldspar boundaries is common.

Plagioclase usually occurs as large grains with euhedral to subhedral shapes.

Twin lamellas of the frequent polysynthetic twinning are sometimes slightly bend

or offset at intracrystalline fractures (Plate 8F + D). Deformation lamellas, fractures

and cracks healed with quartz or feldspar are abundant.

K-feldspar in the southern gneissic granites occurs as euhedral to subhedral

grains that frequently show exsolution lamellas of albite (microcline with

microperthitic texture, Plate 8A). Zoning in feldspars is common, where grains are

sericitized the sericitization reflects the zoning. Myrmekites can frequently be

observed around feldspars.

The abundant sub- to euhedral biotites in the southern gneissic granites occur in a

wide variety of grain sizes and resemble the typical birds-eye structures.

Hornblendes occur as cluster of small, euhedral grains that do not show any signs

of twinning or as larger, euhedral to subhedral grains. The larger hornblendes

frequently show the typical central, lamellar twinning parallel [001] (Plate 9A).

The accessory minerals such as magnetite, titanite, zircon, apatite or garnet are

common throughout the southern gneissic granites. Subhedral magnetite usually
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occurs in association with biotites and probably derived due to martitization (Plate

9E). Titanites, zircons and apatite are scarce and can be observed as isolated,

euhedral to subhedral grains. Garnet grains have anhedral, rounded shapes and

usually are cracked or broken up into smaller fragments (Plate 8C).

Analyzes of the microstructures revealed numerous structures pointing to a solid-

state overprint of the magmatic fabric. The microperthitic texture observed in

microclines and their weak alignment is frequently used as an indicator for

deformation in the magmatic state (e.g. Roig & Faure, 1998, Paterson et al. 1989).

However, the transition between magmatic to submagmatic or solid-state fabrics is

dependent on the amount of melt. If the melt percentage falls below a certain level

crystals are no longer able to rotate without interacting with each other which

increases the viscosity of magma rapidly by several orders of magnitudes.

Estimates for this critical melt percentage usually range between 10-30%

(McBirney & Murase, 1984; van der Molen & Paterson, 1978). If this critical melt

percentage is exceeded, strain is completely accommodated by movement of the

melt and rafting of crystals in suspension (magmatic flow; Hibbard, 1987). The

frequent occurrences of microcracks in feldspars healed with quartz therefore

point to a submagmatic origin (Bouchez et al., 1992) since these cracks must have

developed from grain interaction. Sometimes exsolution lamellae (e.g. albite) in

feldspars are offset along these microcracks which is indicative for a later solid-

state origin of the cracks. The high internal strain frequently observed in feldspars

indicated by offsets of twin lamellae along intercrystalline cracks and deformation

twins confirms the solid-state overprint. The genesis of myrmekites is ambiguous

since they may crystallize directly from H2O-rich melts or may develop by solid-

state deformation or even metamorphism (Godin, 1994; Paterson et al. 1989). The

chessboard patterns in quartz and their elongated subgrains parallel to the

chessboard patterns point to a deformation in the submagmatic state (Lonka et al.,

1998). These subgrains have developed due to grain boundary migration. This

process occurs when dislocations are free to climb from one lattice plane to

another and when dislocations are continuously added to subgrain boundaries

(Passchier & Trouw, 1996). Some quartz grains show grain boundary migration

recrystallization which was observed by Means & Park (1994) at any melt fraction

as long as an interface of two grains of the same phase is present. The process of

grain boundary migration leads to a reduction of dislocation density of grains in
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deformed crystals (Passchier & Trouw, 1996). The local displacement of atoms to

fit the lattice of a neighbouring crystal with a lower dislocation density counterparts

processes that cause distortion of the crystal lattice and depends on relative

parameters of deformation such as temperature and strain (Passchier & Trouw,

1996). However, it is unlikely that a crystal shows internal dislocations of atoms

without some kind of interaction with a stress field during crystallization. This may

be a regional stress field as well as a local stress field from interaction with other

crystals. The process of shifting of grain boundaries due to dislocation climb

(bulging) can frequently be observed at quartz/quartz contacts, sometimes bulging

of quartz into feldspar grains occurs. Some shear zones are developed where

quartz shows dynamic recrystallization of grains in the shear zone while grains

outside the shear zone do only show weak solid-state fabrics such as bending of

twin lamellae in feldspars or deformation lamellae in feldspars (Miller & Paterson,

1994). Biotites and hornblendes usually form a weak foliation plane in the rocks.

Only in some samples a strong biotite foliation is developed. Samples taken near

the Umwindsi shear zone show weak SC-fabrics indicating a sinistral sense of

shear with hornblendes defining the C-plane (Plate 10). SC-fabrics in magmatic

rocks may be assigned to a deformation in the submagmatic as well as in the

solid-state (Paterson et al., 1989). However, the observed structures seem to

display a transition from magmatic flow fabrics (alignment of feldspars) that have

been overprinted in the submagmatic (?myrmekites?, chessboard-patterns in

quartz, elongated subgrains in quartz parallel to chessboard patterns) and solid-

state (shear zones with dynamic recrystallization, offset of twin lamellas,

exsolution of albite in feldspars, occurrence of microcline, bent twin lamellae in

plagioclase, deformation lamellae in plagioclase). Furthermore it is obvious from

the hand specimen as well as from thin sections and field observations that the

amount of deformation seems to decrease towards the batholith center. This has

been observed by Jelsma (1993) as well.

4.2.1.2 Western gneissic granites

Quartz in the western gneissic granites occurs as subhedral to anhedral, small,

elongated grains showing only weak undulose extinction but no signs of subgrain

formation or chessboard patterns. Only in samples with a low hornblende content
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quartz may form larger grains with strong undulose extinction, subgrain

boundaries and chessboard patterns.

Plagioclases are abundant and show the typical polysynthetic twinning. Twin

lamellas are sometimes offset along intracrystalline cracks, deformation twins are

scarce.

K-feldspars usually show a patchy, irregular zoning (Plate 9B). Fractures and

cracks in feldspars are commonly healed with quartz or feldspar (Plate 9C).

Hornblende usually occurs as both, very small well aligned, untwinned grains and

as large, twinned grains. The large hornblendes sometimes have a rough arrow

form with a trail of smaller hornblendes starting at the tip of the hornblende grain

(Plate 11).

The microstructures in the western gneissic granites point to a magmatic

(alignment of zoned feldspars) to submagmatic (chessboard pattern, microcracks)

development of the fabric with minor solid-state overprint (offset of twin lamellae,

deformation twins). No shear zones have been observed and the observed solid-

state deformations mainly affected large feldspar grains. The division between

magmatic, submagmatic and solid-state deformation is usually drawn according to

the amount of melt present (see chapter 4.2.1.1). In terms of temperature the

division between magmatic and submagmatic state for leucogranites is only a

temperature difference of 4°C while for tonalites it is in the range of 63°C (Bouchez

et al., 1992). For other granitoid rocks this division lies in between these two end

members. These small temperature differences may be passed very fast by the

cooling magma, therefore submagmatic fabrics may be hard to distinguish from

high temperature solid-state deformational fabrics.

4.2.1.3 Northern gneissic granites

Microscopical analyzes in the marginal areas of the northern gneissic granites

revealed chessboard patterns in quartz, bulging at quartz/quartz or quartz/feldspar

boundaries is common. Strongly elongate quartz grains defining a lineation can be

observed in some of the samples (Plate 12).

The anhedral to subhedral K-feldspar grains show undulose extinction, plagioclase

resembles bend twin lamellas (Plate 8B) and deformation twins, their grain size is

large and they usually are anhedral to subhedral.
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In the central part of the northern gneissic granites (Musana Communal Land

area) quartz grains are much smaller. Inclusions in feldspars are scarce and

microcline appears as very small sized grains with highly irregular grain

boundaries.

Hornblende in the northern gneissic granites is scarce, biotites are abundant and

much larger than in the southern gneissic granites. Small muscovite grains can

frequently be observed neighboring biotites.

The observed microstructures in the marginal areas of the northern gneissic

granites revealed  indications for submagmatic deformation (chessboard patterns

in quartz) and indicators for a solid-state overprint of the fabric (feldspar grains

showing undulose extinction, bending of twin lamellae and deformation twins).

Especially the undulose extinction in feldspars is indicative for a high internal strain

and can only occur during solid-state deformation (Paterson et al. 1989). In the

central part of the northern gneissic granites (Musana Communal Land area) no

solid-state deformation can be observed.

The microscopic fabric in the outer parts of the northern gneisses shows the same

deformational features as the southern gneisses, only the inner part (Musana

Communal Land) appears to be less deformed (Plate 13), hand specimen are

nearly isotropic.

4.2.2 Equigranular granites

In the equigranular granites, quartz usually shows undulose extinction and

subgrains are frequently developed. Inclusions in quartz are small rutile-needles

(no preferred orientation), K-feldspars and less common biotites also occur. The

quartz grain boundaries show strong bulging with smaller lobes at quartz/quartz

boundaries than at quartz/feldspar boundaries.

Plagioclases are nearly always serictized (Plate 14). The typical, polysynthetic

twinning of plagioclase is well developed, lamellas are only slightly bend and no

deformation lamellas can be observed.

Orthoclases make up the largest grains in the granodiorites (Plate 14B)

resembling narrow albite lamellas forming a braided pattern in the orthoclase host.

Poikilitic inclusions in orthoclase can frequently be observed, usually k-feldspars or
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plagioclases are included. Microcracks in feldspars, usually filled with quartz, and

tiling of feldspars can be observed, zonation of feldspars is scarce.

Biotite occurs as cumulates of numerous single grains and possibly represent

early crystallizations in the melt. Larger biotite grains are scarce, usually strongly

altered and are frequently replaced by secondary magnetite.

The fine grained variety of the equigranular granites (Valeria/Surtic) is strongly

altered (massive occurrence of epidote in anhedral feldspars). Some wide cracks

filled with epidote and hornblendes point to a deformation in the solid state (Plate

14). Feldspars next to the cracks usually show slight deformational patterns such

as bend twin-lamellas. Next to the differing grain size the two varieties may be

distinguished according to the frequent occurrence of microcline and the low

content of orthoclases and biotites in the fine grained granodiorite.

From their internal fabric the equigranular granites can be compared to the

western gneissic granites, most microscopic fabric elements are indicative of a

transition between submagmatic (microcracks, subgrains in quartz, tiling of

feldspars) origin to a solid-state overprint (bend twin lamellae, cracks, exsolution in

feldspars) of the fabric. However, the frequent occurrence of shear zones in the

equigranular granites clearly points to a later solid-stage deformation of the

granitoids.

4.2.3 Porphyritic granite

Quartz in the porphyritic granite shows beginning of subgrain development, the

typical chessboard patterns are scarce. Grain boundaries are lobate indicating

bulging, especially at quartz/quartz boundaries. Exsolution of quartz in feldspars is

abundant.

Microcracks in feldspars are usually healed with quartz or feldspars showing a

preferred elongated shape towards the center of the crack (Plate 9D).

Distinguishing between quartz and feldspars in the cracks with microscopic

analyzes only is difficult, most of the cracks are probably healed with feldspar due

to solution of the host grain. Feldspar grains usually show a strong preferred

alignment (see Plate 15), some of the feldspars show poikilitic inclusions (Plate

15A). Biotites usually are replaced by magnetites to a degree that only in the

marginal part of the grain biotite may be identified.
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Melt segregation is a common phenomenon, especially in the north of the

porphyritic granite at intergranular cracks in the phenocrysts. In zones with

increased melt segregation no deformation patterns can be observed in the

phenocrysts (except for microcracks in feldspars) as well as in the surrounding

matrix. The porphyritic granite shows no signs of a solid-state overprint of the

fabric. The observed microscopic fabric seems to be due to magmatic flow

(alignment of phenocrysts) or interaction of rotating grains in the submagmatic

state (chessboard patterns, healed microcracks, ?myrmekites?).
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Plate 6: A - Exsolution of albite in microcline (southern gneissic granites, Foto is 0.06 mm wide). B - 

C -  D - 
Offset of twin lamellae at intragranular cracks in plagioclase (southern gneissic granites, photo is 
0.04 mm wide). E - Large quartz grain showing typical chessboard patterns (southern gneissic granites,
photo is 0.04 mm wide). F - Strong bend twin lamellae in plagioclase (southern gneissic granites, Foto is
0.15 mm wide).

Slightly bend twin lamellae in plagioclase of the northern gneissic granites (photo is 0.15 mm wide).
Rounded, cracked garnet grains in the southern gneissic granites (photo is 0.4 mm wide).
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Plate 7: A- Hornblende grains in the western gneissic granites, large grains show typical twinning,
smaller grains appear as untwinned cluster (photo is 0.15 mm wide). B - Irregular, patchy zoning of
feldspar in the northern gneissic granites (photo is 0.06 mm wide). C - Microcracks in feldfspar healed
with quartz (western gneissic granites, photo is 0.15 mm wide). D -  

E - Replacement of biotite (southern
gneissic granites) by magnetite. Magnetite grains are in contact to each other provoking an interaction 
of their magnetic properties (photo is 0.4 mm wide). F - 

 

Microcrack in feldspar, filling 
shows oriented growth (porphyritic granite, Foto is 0.4 mm wide). 

Microcrack in microcline in the northern 
gneissic granites (photo is 0.15 mm wide).
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Plate 8: Sample JB305 from the southern gneissic granites (photos are 1.7 cm 
wide). A - Cut parallel to lineation and perpendicular to foliation, a weak SC-
fabric is developed with hornblende defining the C-plane. B -  Cut parallel to 
foliation and lineation. C - Cut perpendicular to foliation and lineation.
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Plate 9: Sample from the western gneissic granites (JB134). 
A SC-fabric is developed, large plagioclase phenocrysts
and hornblendes are oriented in a matrix consiting of mainly 
quartz and small hornblende grains. Thin sections were cut
according to the magnetic fabric. A - Cut parallel to magnetic
foliation. B - Cut perpendicular to magnetic lineation and
magnetic foliation. C - Cut parallel to magnetic lineation. White
arrow points to possible mantled porphyroclust.Photos are 1.7 cm
wide.
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Plate 10: Sample JB71 from the marginal northern gneissic granites
(photos are 1.7 cm wide). A - Cut parallel to lineation, perpendicular to
foliation. Strongly elongate quartz grains define the lineation (compare
Fig. 4.11, quartz textures of the sample). B - Cut perpendicular to 
lineation and foliation. C - Cut parallel to foliation and lineation.
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Plate 11: Typical sample from the equigranular granites (JB146).
Feldspars are strongly sericitized, small shear zones can be observed.
A - Cut parallel to lineation, perpendicular to foliation. B - Cut parallel
to foliation, perpendicular to lineation. White arrow points in direction 
of crack. C - Cut perpendicular to lineation and foliation. 
Photos are 1.7 cm wide.
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Plate 12: Three different samples from the porphyritic granite
(A - JB273, B - JB220, C - JB218). All show a weak alignment of 
feldspar phenocrysts, solid state deformations are scarce. Photos
are 1.7 cm wide. 
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4.3 Macroscopic rock fabric

The macroscopic foliation has been measured in the field where possible,

lineations were not detected in the field. The macroscopic foliation of the gneissic

granites shows a stable trend to parallel the outer margins of the pluton. Internal

lithological boundaries are frequently crosscut. The dip is moderate, ranging

between 40° and 60° dipping away from the batholith center (see Fig. 4.6 and Fig.

4.7). Only in the northern gneissic granites in the Musana Communal Land area

foliation seems to be randomly oriented. Foliation planes outside the Musana

Communal Land area are parallel to the outer margin of the batholith and the inner

lithological contact.

Fig. 4.6: Macroscopic foliation in the Chinamora Batholith.

In the equigranular granites in the west of the Chinamora Batholith only few

outcrops were found where a measurement of the macroscopic foliation was

possible. Still, the few measurements showed a tendency to parallel the outer

margin of the pluton with dips ranging from 30° to 50° away from the batholith

center (see Fig. 4.6). Foliation planes in the porphyritic granite trend WNW-ESE
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with a preferred dip to the SW. Only in some areas near the contact with other

lithologies the strike is margin parallel.

Fig. 4.8: Schmidt net projection (lower hemisphere) of the
macroscopic foliation of the a) gneissic granites (n=41) and
b) porphyritic granite (n=71).

The angle of dip is usually moderate, ranging between 30° and 50° (see Fig. 4.6

and Fig. 4.7). Only at the northern margin of the porphyritic granite the foliation

dips to the NE. The preferred WNW-ESE orientation of the foliation provokes that

contacts to the gneissic granites as well as the erosional windows in the

porphyritic granite are cross cut. Foliation planes near the Inyauri Xenolith in the

porphyritic granite cross cut the xenolith and seem not to be deflected.

4.4 Texture analyzes

Texture analyzes have been performed using a U-stage on biotites, hornblendes

and quartz of the different lithologies in the Chinamora Batholith. The resulting

measurements were rotated into the geographical orientations and are presented

as pole figure plots (Schmidt net, lower hemisphere). Density plots were calculated

using the algorithm of Adam (1989).

4.4.1 Biotite textures

Biotite (001)-poles have been measured in samples of the different lithologies in

the Chinamora Batholith. In total 14 samples have been measured for the gneissic

granites, one for the equigranular granites and five for the porphyritic granite (see

Fig. 4.8). The orientation of the maximum densities of (001)-poles depends on the

sampling location, all the measured samples of the gneissic granites showed a

roughly margin parallel orientation of the basal planes of biotites. The orientation

patterns of the mica (001)-poles usually reflect point maxima or show the tendency

to form partial girdles indicative for a rotation of biotite flakes around a preferred

N N

a)                             b)
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axis. The calculated densities of the mica (001)-poles reflects the different

intensities of deformation observed in the microstructural analyzes.

Fig. 4.8: Textures from biotite U-stage measurements. Solid line represents macroscopic foliation,
grey shading indicates highest calculated density, grey symbols represent orientation of
Eigenvectors (square = e1, diamond = e2, circle = e3).
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Fig. 4.8: continued

The distinctness of the mica orientation is highest in the southern gneissic granites

while most of the western gneissic granites show less distinct orientation patterns.

In the northern gneissic granites two different sets can be distinguished, one in the

Musana Communal Land area where the orientation pattern is less distinct (JB204

and JB56, see Fig. 4.8) and one in the marginal areas of the northern gneissic

granites where the distinctness of the orientation patterns is high (sample JB44,

JB51 and JB71, see Fig. 4.8).

In the equigranular granites only one sample was measured, the resulting pole

figure is presented in Fig. 4.8. The distribution of mica (001) poles roughly reflects

margin parallel orientation of the macroscopic foliation of this sample.

U-stage measurements in the central porphyritic granite revealed weak point

maxima for most of the samples with a tendency to form partial girdles. Samples in

the center of the batholith do not show consistency with any stable trend (some
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are margin parallel, some show a preferred subhorizontal E-W trend of biotite

orientations). The Eigenvectors and Eigenvalues can be used to describe the best-

fit ellipsoid for the respective biotite measurements. The Eigenvalues can be used

to calculate a shape parameter (Ttex) of the texture (see e.g. Jelinek, 1981;

Ullemeyer, 1992). For samples with a weak texture neutral or even prolate shapes

were calculated from the texture measurements (e.g. JB204, Ttex=-0.236; JB116,

Ttex= 0.027, JB99, Ttex= 0.045) while calculations for samples with a distinct texture

resulted in oblate shapes (e.g. JB309, Ttex= 0.572, JB71, Ttex=0.651). The prolate

shapes have as well been observed by Siegesmund et al. (1995) in samples

where biotites were randomly oriented or oscillated around a preferred axis.

4.4.2 Hornblende textures

From two samples the orientation pattern of hornblendes were determined, mainly

for the theoretical calculations of the AMS tensor (see chapter 9). The

measurements were performed using the algorithm described e.g. by Cumbest

(1990). This method uses the principal axes of the optical indicatrix and a fiducal

marker such as cleavage to determine the orientation of the crystallographic axes.

Only two indicatrix axes and the cleavage must be measured, the third optical and

hence crystallographic axis can be calculated.

Both measured hornblende textures resemble typical textures in magmatic or

metamorphic rocks (Berger, 1995) with a point maximum or weak girdle

distribution of [100] normal to the foliation. As expected the sample from the

southern gneissic granite resembles a more distinct texture of the different axes

and hence a more distinct orientation pattern of hornblendes than the

measurements of the western gneissic granites (see Fig. 4.9).
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Fig. 4.9: Hornblende textures from U-stage measurements. Sample 305 is from the southern
gneissic granites, sample 134 from the western gneissic granites.

4.4.3 Quartz textures

In total five different samples have been measured, one for each of the different

units within the Chinamora Batholith (see Fig. 4.10). From the northern gneissic

granites a sample from outside the Musana Communal Land area has been

chosen (sample JB71, see Fig. 4.10) since the samples from the Musana

Communal Land are isotropic or nearly isotropic. Sample JB71 shows a very

strong orientation pattern of the quartz c-axis with a subhorizontal N-S orientation

which is parallel to the outer margin of the batholith and the inner boundary of the

Musana Communal Land area. The quartz texture from the southern gneissic

granites (sample JB305) shows a double maxima, a typical feature for quartz

deformed in or nearby shear zones at higher temperatures (Riekels & Baker,

1977; Ramsay & Graham, 1970).
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Fig. 4.11: Pole figures of quartz textures obtained from U-stage measurements.

The measurements of the western gneissic granites (sample JB134) and the

equigranular granites (sample JB146) only exhibit a random distribution of the

crystallographic c-axes.

Measurements of the orientation patterns of quartz c-axes of the porphyritic

granite (sample JB20) revealed a very weak, irregularly occupied crossed girdle.

This has been assigned by Tullis et al. (1973) to a preferred basal glide at higher

temperatures. However, since the fabric is only very weakly developed its

interpretation is ambiguous.

4.5 Conclusions

The microscopic analyzes showed that a division of the different units of the

Chinamora Batholith according to their amount of deformation can be drawn. The

southern gneissic granites show the highest deformational features in the solid

state while the other gneissic granites only show a weak overprint of magmatic to

submagmatic features in the solid state. The microstructures observed in the
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equigranular granites are comparable to those of the western gneissic granites.

The northern gneissic granites shows two distinct units, the central Musana

Communal Land area resembles isotropic or nearly isotropic rocks while the

marginal areas of the northern gneissic granites shows a moderately to strongly

developed fabric. This can be explained by two pulses of magma with the magma

pulse now forming the Musana Communal Land being slightly younger than the

marginal northern gneisses. The second magma pulse pushed the first pulse

outwards producing the observed fabric. The central porphyritic granite shows no

solid state overprint of the magmatic or submagmatic fabric. The macroscopic

foliation in the granitoid rocks of the Chinamora Batholith is margin parallel in the

gneissic granites and, except for the Musana Communal Land area, cross cuts

internal lithological boundaries. This indicates an at least nearly coeval

emplacement of the different lithologies in the different gneissic granites.

Macroscopic fabric in the porphyritic granite shows a stable trend that can not

solely be related to the emplacement mechanism. The orientations of the

whaleback domes  in the porphyritic granite has been mapped using a SPOT

(Système Pour l’Observation de la Terre) satellite image, they preferably are

orientated in a WNW-ESE direction and probably eroded controlled by the

orientation of the fracture network. This preferred orientation is subparallel to the

macroscopic foliation. Some major fault zones can be recognized very well, they

usually are pathways for rivers draining the area. Their strike is very consistent,

either NNW-SSE or WNW-ESE. No other linear features are recognizable in the

SPOT-image due to the extensive use of the area for farming. Only the northern

gneissic granites and the porphyritic granite can be distinguished from the other

units.

The biotite texture analyzes performed on samples from the southern gneisses

showed that they all display a strong preferred alignment of biotite 001-poles. In

the western and northern gneissic granites deformation was less distinct and

hence the developed fabrics show a less distinct orientation pattern. Only some

samples in the marginal areas of the northern gneissic granites exhibited a well-

defined fabric which can be drawn back to the later intrusion of the granitoids in

the Musana area. The orientation of biotite fabric in the analyzed samples does

not reflect any common emplacement mechanism. Biotite foliation is not always

parallel to the outer margin of the batholith or to internal lithological boundaries.
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Given the observed structural patterns in the different gneissic granites it seems

obvious that the different lithologies resemble different plutons that intruded during

a distinct tectonic setting over a more or less longer period of time. During the time

span of intrusions either the orientation of the regional stress-field has changed

slightly or the different lithologies behaved different due to rheological differences

and/or a changing amount of coupling between stress-field and intrusions (e.g.

intruding into the “shadow” of earlier intrusions) giving rise to the observed

different fabrics. The southern gneisses have obviously suffered additional

deformation as can be concluded from the more pronounced solid-state

deformation, the subhorizontal orientations of biotites and the double maxima of

the measured quartz texture. Orientations of the biotites in the porphyritic granite

indicate a different textural genesis.
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5. Methodology of magnetic measurements

From the drill cores taken in the field measurement cylinders have been prepared

for the measurement of different magnetic properties. This includes the

measurement of the Anisotropy of the Magnetic Susceptibility (AMS), High Field

Analyses (HFA) as well as measurements with the Curie-balance. The basic

background of the magnetic rock properties and their origin is described below

before analyzing the measurement results.

5.1  Magnetic properties and their origin

Since the magnetic properties derive in part from the spin of electrons around the

nucleus of atoms any substance has magnetic properties (if temperature T>0 K),

no matter how weak they are. If an external magnetic field is applied to a

substance a magnetization is produced which characterizes the magnetic

properties of the substance. If the magnetization is directed into the opposite

direction compared to the applied field the substance has diamagnetic properties

(Tarling & Hrouda, 1993; see Fig. 5.1). The magnetization in the opposite direction

is lost as soon as the external field is removed. Most common rock forming

minerals with diamagnetic properties are quartz and feldspars. The susceptibility

of diamagnetic substances is by definition negative due to their opposite

orientation of magnetization vectors with respect to the externally applied field.

Since the bulk susceptibility of diamagnetic minerals is very low they usually are

neglected in magnetic measurements if paramagnetic and/or (anti)ferri(o)magnetic

minerals are present. All other natural substances are paramagnetic, the

magnetization has the same direction as the applied external field (Tarling &

Hrouda, 1993; see Fig. 5.1). Most common rock-forming paramagnetic minerals

are biotite and hornblendes. A few substances have a very strong magnetization

and may not loose their magnetization after the external field is removed. These

substances are called ferrimagnetic. Ferrimagnetic substances are subdivided into

ferromagnetic, antiferromagnetic and ferrimagnetic (senso stricto) substances

(Tarling & Hrouda, 1993). This division of ferrimagnetic properties depends on the

coupling of electron spins. Ferrimagnetism is superimposed on paramagnetic

behavior, if the coupling of electron spins is destroyed by e.g. heating above a

specific temperature (called Curie-temperature for ferri(o)magnetic substances or
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Néel-temperature for antiferromagnetic substances) ferrimagnetic substances

behave paramagnetic (Tarling & Hrouda, 1993). If the alignment of electron spins

forces all magnetic vectors to point into the same direction the resulting

magnetism is called ferromagnetism (see Fig. 5.1). If the electron spins of two or

more neighboring atoms are coupled they form so called lattices which have a

specific direction of magnetization. If two neighboring lattices show opposite

directions of magnetization the substance is called antiferromagnetic (see Fig.

5.1). If the lattices show opposing directions of magnetization but not of the same

strength the substance is called ferrimagnetic (s.s.; Tarling & Hrouda, 1993; see

Fig. 5.1).

Fig. 5.1: Magnetic properties in external fields (black arrow outside boxes). Light arrow at the side
of the boxes indicates orientation and strength of the resulting magnetic field induced by the
measured sample (modified from Tarling & Hrouda, 1993).

5.2 Magnetic properties of minerals

Since the alignment of atoms in the crystal structure of euhedral minerals is not

uniform in all directions minerals display a more or less pronounced anisotropic

magnetic behavior. This is expressed in the three principal axes k1, k2 and k3

where k1 is the axis with the strongest magnetization and k3 with the weakest

magnetization while k2 represents an intermediate magnetization (Tarling &

Hrouda, 1993). These three axes are perpendicular to each other and represent

the so called magnetic ellipsoid which frequently is used to demonstrate the

magnetic anisotropy of minerals (and rocks, see chapter 5.3). The orientation of

the different magnetic axes of diamagnetic and paramagnetic minerals is

controlled by the orientation of the respective crystallographic axes of the minerals

(crystal anisotropy; Tarling & Hrouda, 1993). Since diamagnetic minerals usually

are neglected in the interpretation of magnetic data of granitoid rocks they will not

be discussed any further. The most important paramagnetic minerals in granitic

rocks concerning the magnetic behavior are biotites and hornblendes. In biotite k3

is oriented parallel to the crystallographic c-axis (normal to basal plane of biotite)

a) Diamagnetic              b) Paramagnetic         c) Ferromagnetic         d) Ferrimagnetic          e) Antiferromagnetic



71

while k1 and k2 are oriented in the basal plane (Zapletal, 1990; Ballet & Coey,

1982, see Fig. 5.2).

In hornblende, k1 is oriented parallel to the crystallographic b-axis while k2 and k3

are oriented parallel to the crystallographic c- and a*-axis respectively (Friedrich,

1994; see Fig. 5.2).
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Fig. 5.2: Orientation of the main magnetic axes and the respective crystallographic axes in the
most important minerals of granitoid rocks. While biotite and hornblende show a crystal anisotropic
behavior of the magnetic properties, magnetite has a shape anisotropic behavior. Therefore, the
orientation of the respective magnetic axes may change according to its grain shape.

In case of cubic minerals (mainly ore minerals) the magnetic mineral anisotropy is

controlled by the grain shape (Tarling & Hrouda, 1993). k1 is oriented parallel to

the axes of the longest grain diameter, k2 to the intermediate and k3 to the axis

with the shortest diameter (Archanjo et al., 1995). One prominent example for this

is the ferrimagnetic (s.s.) magnetite (see Fig. 5.2) which frequently is observed in

granitoid rocks. The shape anisotropy only occurs in minerals of the

titanomagnetite series (magnetite, haematite, rutile etc.; Damm, 1980; Tarling &

Hrouda, 1993).

5.3 Magnetic rock properties

Most magnetic measurement methods give the magnetic properties for the whole

rock and not for the contended minerals. The rock magnetization is the summed

contribution of all minerals in the rock. The bulk susceptibility of this summed

contribution can be calculated using equation [1].
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Kbulk= Vd * Kd + Vp * Kd + Vf * Kf  [1]

where Kbulk is the bulk susceptibility, V(d,p,f) is the volume (percentage) of

diamagnetic, paramagnetic and (anti)ferri(o)magnetic minerals and K(d,p,f) is the

bulk susceptibility of the specific minerals (Hrouda, 1982).

The magnetic anisotropy of a rock depends on the orientation of the mineral

anisotropy in the rock. If the mineral anisotropies are oriented in a way that the

different magnetic axes are constructive (e.g. strong alignment of minerals) the

rock sample will show an anisotropic magnetic behavior as well. If the mineral

anisotropies are oriented destructive (e.g. minerals are randomly distributed) the

rock will be magnetically isotropic. For an interpretation of the observed magnetic

anisotropy it is therefore important to analyze the minerals contributing to the

magnetic properties of the rock. The magnetic anisotropy of a whole rock sample

is characterized in the same way as the anisotropy of minerals using k1, k2 and k3.

If, for example, next to diamagnetic minerals only paramagnetic biotite contributes

to the magnetic properties of the whole rock the summed contribution of all biotites

is measured. Therefore, the orientation of the magnetic axes k1, k2 and k3 reflect

the summed orientation of the biotites.

If more than one paramagnetic phase contributes to the whole rock magnetic

anisotropy the resulting orientation of k1, k2 and k3 is a mixture of all contributing

phases. Even if only small amounts of ferri(o)magnetic minerals are presented in

the analyzed rock sample the ferri(o)magnetic properties usually control the

magnetic anisotropy of the whole rock sample. In this case the obtained

orientations of k1, k2 and k3 of the whole rock sample represent a mixture of every

contributing paramagnetic phase and every contributing ferri(o)magnetic phase in

the rock. Due to the complex origin these orientations are not yet interpretable but

have to be separated into their contributing paramagnetic and ferri(o)magnetic

properties (see chapter 5.4.2 for details).

5.4 Measurements of magnetic fabric

The measurement of magnetic fabric of rocks is a frequently used method to

obtain structural data on rocks which appear to be macroscopically isotropic. As

for most measurement methods, the actual measurement is simple but to be able
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to interpret the results from the measurement, understanding of the actual

measured values is crucial. Therefore the following chapters will describe the used

methods and the obtained values, their calculation and their meaning shortly.

5.4.1 Measurement of the AMS

The AMS measurement is based on the induced change of an applied magnetic

field ( H
!

) through the magnetic properties of the sample. The strength of the

induced magnetization ( M
!

) can be correlated with the applied field ( H
!

) by the

susceptibility ( k ) which is a constant of proportionality (e.g. Tarling & Hrouda,

1993). The equation to calculate the magnetic properties can be simplified to:

H
Mk = [2]

with the susceptibility k (dimensionless, in SI units), M is the magnetic dipole

moment per unit volume (in Am-1) and H  the applied magnetic field strength (in

Am-1). k , a second rank tensor, can be visualized as an ellipsoid (see Fig. 5.3)

where the three orthogonal main axes of the ellipsoid are calculated from the

eigenvalues and eigenvectors of the tensor matrix with the susceptibilities k11, k22

and k33.

Fig. 5.3: Tensor from AMS measurements
visualized by an ellipsoid with the eigenvalues
(k11, k22 and k33) of the tensor matrix as the
main ellipsoid axes (modified from Siegesmund
et al., 1995).

From these susceptibilities, other parameters can be calculated to characterize the

magnetic rock properties. Frequently used are the bulk susceptibility (kbulk), the

corrected degree of anisotropy (P’), the shape (T) of the magnetic ellipsoid, the

linear degree of anisotropy (L) and the planar degree of anisotropy (F).

k33

k22

magneticlineation

k11

magneticfoliation
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The degree or magnitude of anisotropy (P’) reflects the ratio of k1 (k11) to k3 (k33)

(see equation [3]). A value of 1 for P’ is calculated when k1 = k2 = k3, the magnetic

ellipsoid is represented by a sphere. The higher the differences of the

susceptibility of the respective magnetic axes, the higher the degree of anisotropy

(Jelinek, 1981).

P’=exp lnk)22(lnklnk)22(lnklnk)22(lnk 321 −+−+−   [3]

with k=
3

lnlnln 321 kkk ++ [4]

The shape-factor (T) of the magnetic ellipsoid ranges between –1 and 1. In case of

T=-1 the resulting magnetic ellipsoid has a perfect prolate shape (cigar shaped)

and k1>>k2 ≥  k3. If T=1 the magnetic ellipsoid has a perfect oblate shape (pan cake

shape) and k1 ≥ k2>>k3. For  –0.05<T<0.05 the samples show a neutral (spherical)

magnetic ellipsoid. T is calculated according to equation [5] (Hrouda, 1982).

T= 1
)/kkln(
)/k2ln(k

31

31 −






 [5]

The linear degree of anisotropy (L, Balsley & Buddington, 1960) as well as the

planar degree of anisotropy (F, Stacey et al., 1960) are ratios of the main

ellipsoidal axes.

L=
2

1

k
k  (linear anisotropy) [6]

and

 F=
3

2

k
k (planar anisotropy) [7]

The degree of linear and planar anisotropy are calculated according to equations

[6] and [7] respectively and are used to demonstrate the distinctness of a preferred

shape (T) of the magnetic ellipsoid. If a sample shows a high degree of planar

anisotropy the degree of linear anisotropy is low and the shape of the magnetic

ellipsoid (T) exhibits positive (oblate) values. In case of a high degree of linear
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anisotropy the degree of planar anisotropy is low and the shape of the magnetic

ellipsoid (T) exhibits negative values (compare Fig. 5.4).

Another shape parameter (U) is used here to compare the AMS measurements

with the HFA. U ranges between –1 and 1 and is indirectly comparable to T since

both parameters characterize the shape of the magnetic ellipsoid and hence its

eccentricity. However, T is calculated from the second rank tensor while U is

calculated using the deviatoric part of the second rank tensor, therefore the actual

values of T and U are not comparable (Jelinek, 1977). U can be calculated using

equation [8] (from Jelinek, 1977):

U=
31

312 k-k-2k
kk −

[8]

All the parameters described above are calculated from ratios of the different main

magnetic axes and can therefore be correlated with each other (see Fig. 5.4).

Fig. 5.4: Correlation between the different
magnetic parameters of the AMS
measurements. For example a strongly
oblate magnetic ellipsoid induces high
degrees of anisotropy (P‘), high planar
anisotropies (F) and low degrees of linear
anisotropies (L) (modified from Jelinek,
1981 and Borradaile & Craig, 1987).

From Fig. 5.4 it becomes clear that increasing ratios of L and F (or vice versa)

cause increasing values of P’ and increasing T (0 to 1) in case of F>L or

decreasing T (0 to –1) in case of L>F.

A perfect spherical rock sample would be needed to obtain exact measurements

of the anisotropic magnetic rock properties. Since the production of these spheres

is complicated, cylinders with a defined ratio of diameter to height are used

(diameter/height = 1/0.87) which approximate the attributes of a sphere best
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(Scriba & Heller, 1978). Cylinders with diameters of 25 mm and 40 mm are

commonly used and can be measured with the standard AMS equipment. For this

work a KappaBridge KLY 2 was used. A so called pick-up unit generates the

external magnetic field (300 Am-1, ~0.4 mT) that is disturbed by the rock sample.

By comparing the disturbed magnetic field in the pick-up unit with an undisturbed

reference coil in the KappaBridge the change of the magnetic field can be

measured. For the complete analyses of the AMS tensor 15 orientations must be

measured (see Fig. 5.5; Jelinek, 1977). The KappaBridge has a high accuracy

(about 4*10-8 SI), measurement errors are low because of the double

determination of most of the measurement directions (the tensor matrix consist of

only 9 elements). The overdefinition of the tensor gives way to a calculation of

errors for each measurement that allows a first control of the measured values

from a mathematical point of view.

Fig. 5.5: Measurement directions and
orientation of the sample cylinder.
1. –X/Y 6. –Y/Z 11. X/-Z
2. X/Y 7. Y/Z 12. X/Z
3. X 8. Y 13. Z
4. X/-Y 9. Y/-Z 14. –X/Z
5. –X/-Y 10. –Y/-Z 15. –X/-Z

(modified from Juckenack, 1990)

5.4.2 HFA

The biggest disadvantage of the AMS measurements is that the results do not

distinguish between paramagnetic and ferrimagnetic minerals. If high bulk

susceptibilities and/or high degrees of anisotropies point to a high amount of ore-

minerals in the rock sample it is important to know the orientation of both phases

separately. This separation can be performed using a torque magnetometer. A

sample is exposed to a high magnetic field (usually magnetic fields of 0.5 T up to

1.8 T are used, see Bergmüller et al., 1994 and Bergmüller & Heller, 1995) and the

torque that is induced in the sample due to the applied external field is measured.

If a purely paramagnetic sample is measured the transferred torque increases

linearly with the increasing magnetic field (see Fig. 5.6, curve a; Lowrie, 1989).

The torque of a purely ferrimagnetic sample would increase very fast up to the
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saturation magnetization after which it shows no further increase of the transferred

torque (see Fig. 5.6, curve b; Lowrie, 1989). If a sample with a mixture of both is

measured the measurements will show a combination of paramagnetic and

ferrimagnetic properties (see Fig. 5.6 Curve a+b; Lowrie, 1989). If the torque of a

sample is measured above the saturation magnetization at two fields the

difference between the torque in these two fields can be directly correlated to the

magnetic properties of the paramagnetic phase in the sample. The allotment of

paramagnetic and ferrimagnetic properties to the torque of the sample can be

calculated using the AMS tensor and the ratio of paramagnetic and ferrimagnetic

properties at high magnetic fields (Hrouda & Jelinek, 1990).

Fig. 5.6: Measurement of the HFA.
Curve a: linear increase of transferred
torque of the paramagnetic minerals.
Curve b: fast increase of transferred
torque up to the saturation
magnetization of ferrimagnetic minerals,
higher magnetic fields do not influence
the transferred torque. Curve a+b is a
mixture of both curves, because of the
observed parallelism of a+b and a in
high magnetic fields the separation of
ferrimagnetic and paramagnetic
properties can be performed (modified
from Lowrie, 1989).

The separation of the different magnetic properties of a sample was performed

using the SEPANG-program written by Jelinek and Hrouda (AGICO Inc., Brno;

Hrouda & Jelinek, 1990). This program uses the results from two measurements

with different applied external fields and the normed tensor components of the

AMS measurements. From these parameters different factors and orientations of

the separated properties are calculated.

Most important results are the orientation of the main axes of the magnetic

ellipsoid of the paramagnetic and ferrimagnetic properties of the rock. In addition,

the form of the different magnetic ellipsoids (U) is calculated from the deviatoric
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parts of the measured tensor. Next to these parameters three factors are given

that specify the ratios of different axes of the measured properties (Hrouda &

Jelinek, 1990). These ratios are:

)k(k
)k(k

l
2f1f

2p1p

−
−

= [9]

)k(k
)k(k

f
3f2f
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−
−
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)k(k
)k(k

p
3f1f

3p1p

−
−

= [11]

with k1p(f) being the longest axes of the paramagnetic (ferrimagnetic) ellipsoid, k2p(f)

being the intermediate axes of the paramagnetic (ferrimagnetic) ellipsoid and k3p(f)

being the shortest axes of the paramagnetic (ferrimagnetic) ellipsoid. Values >1 in

equation [9]-[11] point to a more pronounced fabric of the paramagnetic properties

with respect to the ferrimagnetic properties. Values <1 point to a more pronounced

ferrimagnetic fabric with respect to the paramagnetic fabric. Very high or low

values of l or f do not necessarily reflect a strong mineral fabric. If, for example, the

ferrimagnetic minerals are euhedral and not aligned in a way that their magnetic

properties interact, they do not show any fabric at all (k1≈k2≈k3) and calculated

values for the divisor reaches values close to 0. In this case, even if the

paramagnetic minerals show only slight linear or planar fabrics ratios of l or f may

reach very high values. Furthermore, neither l, f nor p is suitable for a verification

of a domination of one property over the other. This has to be verified through a

comparison of measured HFA values with measured AMS values of the sample

(Hrouda & Jelinek, 1990).

5.4.3 Curie-balance

The Curie-balance can be used for a qualitative characterization of the

ferrimagnetic ore content of the samples. Small quantities of the rock are

powdered, only ~150 mg are needed for the measurement. The powder is heated

in an applied external magnetic field of 0.55 T in temperatures up to 700° C.
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Temperature is raised stepwise by 20° Cmin-1. The induced magnetic field is

measured (mass magnetization [Am2kg-1]) with respect to the temperature. Above

a specific temperature (Curie- or Néel-temperature) the ore-minerals loose their

ferrimagnetic properties, at this point the induced magnetic field is close to zero.

After a temperature of 700° C is reached the sample is cooled to room

temperature in steps of 20° Cmin-1. During the cooling the sample regains its

ferrimagnetic properties, both, heating and cooling traces of the curve are

important for the recognition of the ore content. According to the trace of the curve

and the temperature at the point of the lowest induced magnetic field the

contained ore minerals can be determined (e.g. Orlicky, 1990; Dekkers, 1988). In

the case that more than one ore mineral is present in the sample the curve will

show a mixture of the specific mineral curves (see Fig. 5.7 for examples of specific

minerals). If only very low amounts of ore minerals are present in the sample a

linear dependence of temperature to magnetization is measured and no

information can be gained on the ore content of the sample.

Fig. 5.7: a) Thermomagnetic curves for a) mixture of monokline and hexagonal pyrrothite (Dekkers,
1988), b) magnetite (Orlicky, 1990), c) haematite (Orlicky, 1990) and d) mixture of all three curves.
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6. Low field magnetic measurements (AMS and Curie-balance)

The AMS measurement results of the different rock groups are described below.

As stated earlier the possible basement (according to Snowden, 1976) has been

included with the gneissic granites.

6.1 Gneissic granites

The gneissic granites near the margins of the batholith and in the erosional

windows of the porphyritic granite show bulk susceptibilities ranging between

18*10-6 SI and 8500*10-6 SI averaging at 1670*10-6 SI (see Fig. 6.1). Only a weak

correlation between the location of the investigated samples and the bulk

susceptibility can be drawn. The bulk susceptibility of the northern and western

gneisses averages at 2099*10-6 SI and 1375*10-6 SI, respectively, while the

southern gneisses show bulk susceptibilities of 1893*10-6 SI. The degree of

anisotropy of the gneissic granites ranges between 1.011 and 2 averaging at 1.12

(see Fig. 6.1). According to Rochette (1987) and Hrouda (1982) the height of the

degree of anisotropy does not point to a domination of ferrimagnetic minerals over

the paramagnetic minerals, still the high bulk susceptibilities imply at least for

some samples a domination of ferrimagnetic over paramagnetic properties. The

degree of anisotropy is higher at the southern margin near the Umwindsi Shear

Zone (averaging at 1.2) than in the north (averaging at 1.15) or west (averaging at

1.1) of the batholith (see Fig. 6.1). The shape of the magnetic ellipsoids (T) of the

respective measurements is highly irregular, however, the southern gneissic

granites seem to cluster in the weak oblate and prolate field while the northern and

western gneissic granites show clusters in the oblate field (see Fig. 6.1). The

degree of linear and planar anisotropy in the samples follows the degree of

anisotropy and the shape of the magnetic ellipsoids. In the southern gneisses the

degree of linear anisotropy (L=1.094) is slightly higher than the corresponding

degree of planar anisotropy (F=1.089) while in the northern (L=1.068, F=1.084)

and western (L=1.045, F=1.047) gneisses the degree of planar anisotropy is

slightly increased with respect to the degree of linear anisotropy. Therefore, for the

majority of the measured samples in the southern gneisses a preferred linear
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magnetic anisotropy must be assumed while samples in the northern and western

gneisses show a preferred planar magnetic anisotropy.

Fig. 6.1: Magnetic fabric of the gneissic granites. The results of the measurements have been
divided into the southern gneisses (a-b, g-h), the northern gneisses (c-d, i-j) and the western
gneisses (e-f, k-l). In m and n the different gneisses have been analyzed as a whole. Orientations
of magnetic lineations (g, i, k) and foliations (h, j, l) are slightly rotated in the different gneisses, this
probably is due to small changes in the tectonic environment during their emplacement. The
southern gneissic granites have additionally been deformed during movement along the Umwindsi
Shear Zone.
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The orientation of the magnetic lineation in the gneissic granites can be divided

into a southern, northern and western domain as well. While in the southern

gneissic granites the magnetic lineation parallels the Umwindsi Shear Zone, in the

northern and western gneissic granites the magnetic lineation strikes E-W with

preferred flat lying, east plunging magnetic lineations in the north and preferably

west plunging, subhorizontal magnetic lineation in the west (see Fig. 6.1 and 6.3).

The magnetic foliation of the gneissic granites does not show a comparable

pronounced division. The northern gneissic granites show steeply inclined

magnetic foliations plunging away from the batholith center. In the area of the

Musana Communal Land the magnetic foliation near the eastern margin parallels

internal boundaries while in the center and the western margin the magnetic

foliation is margin parallel cross cutting internal boundaries with shallow to

moderate dips. The western gneisses show steeply to moderately inclined, margin

parallel magnetic foliations. The southern gneissic granites show nearly horizontal

to nearly vertical inclined magnetic foliations with a roughly E-W strike (see Fig.

6.2), some of the samples show a margin parallel foliation.
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Fig. 6.2: Magnetic foliation in the Chinamora batholith. The gneissic granites and the equigranular
granites show a preferred margin parallel strike of the magnetic foliation, internal lithological
boundaries are crosscut. The porphyritic granite shows a preferred SE-NW strike.

The map view of the magnetic lineations (see Fig. 6.3) reveals a tendency to

crosscut lithological boundaries in the gneissic granites. The northern gneissic
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granites exhibit a radial magnetic lineation around the granodiorite core (Musana

Communal Land) in the tonalitic to granodioritic gneisses. This is evidence for the

diapiric emplacement of the Musana Communal Land area into the host rocks. In

the other northern gneisses the magnetic lineation has a preferred E-W strike and

roughly parallels the outer margin of the batholith. Internal boundaries are crosscut

which is common in the western gneisses as well. The magnetic lineations in this

area show the same E-W strike. The southern portion of the gneissic granites

shows a magnetic lineation subparallel to the Umwindsi Shear Zone (see Fig. 6.3).

Fig. 6.3: Map of the magnetic lineations in the Chinamora Batholith. Lineations trend EW
throughout the batholith with shallowly plunging angles. Note that the plunge of the lineation in the
northeastern granites is mainly to the E while in the western granites magnetic lineation preferably
plunge to the west. The gneissic granites in the northeast show fabrics indicative of a small diapiric
pluton intruded into the gneissic granites.

6.2 Equigranular granites

The equigranular granites in the west of the batholith revealed bulk susceptibilities

ranging from 70*10-6 SI to 6000*10-6 SI (see Fig. 6.4). Only three samples exceed

this range of bulk susceptibilities. They average at 1550*10-6 SI when the three

highly susceptible samples are not taken into account. The degree of anisotropy
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averages at 1.05. No correlation can be established between the degree of

anisotropy, the bulk susceptibility and the sample location in the batholith. The

shape of the magnetic ellipsoids in the equigranular granites concentrates in the

moderate oblate field (see Fig. 6.4). The degree of linear and planar anisotropies

of the samples has a random distribution, no preferred location in the equigranular

granites with oblate or prolate shapes is apparent.

Fig. 6.4: AMS measurements for the equigranular granites. a) Samples show moderate bulk
susceptibilities and low degrees of anisotropy. b) Most of the samples have moderate oblate
shapes of their magnetic ellipsoids indicating a better defined magnetic foliation than magnetic
lineation. c) The magnetic lineation preferably plunges to the NW at moderate angles. d) The
magnetic foliation seems to build an incomplete girdle indicating a preferred margin parallel strike.

The magnetic lineation of the samples shows a broad maximum in the pole figure,

they preferably plunge to the northwest and are moderately inclined (see Fig. 6.4).

The magnetic foliation shows an incomplete girdle distribution in the pole figure. If

sample density was higher they probably would form a complete girdle indicating a

preferred margin parallel strike with dip-directions pointing away from the batholith

center (see Fig. 6.4 and 6.2). Crosscutting of internal lithological boundaries is

common in the equigranular granites, magnetic lineations tend to lie perpendicular

to the outer margin of the batholith and hence follow the preferred E-W strike

(compare Fig. 6.3).
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6.3 Porphyritic granite

The bulk susceptibility of the samples differs to a greater extent with values as low

as 16*10-6 SI up to 8303*10-6 SI (see Fig. 6.5). The average of the samples lies at

2754*10-6 SI. Therefore, most of the samples show a domination of ferrimagnetic

properties over the paramagnetic properties of the samples (Rochette, 1987). The

distribution of the samples with low or high bulk susceptibilities does not show any

regular zoning or distribution pattern in the porphyritic granite. The degree of

anisotropy for the samples ranges between 1.008 and 1.6 throughout the

porphyritic granite averaging at 1.14 (see Fig. 6.5). According to this the degree of

anisotropy for most of the samples is well defined pointing to a distinct magnetic

fabric of the samples.

Fig. 6.5: Magnetic fabric of the porphyritic granite. a) The bulk susceptibility as a function of the
degree of anisotropy is widely scattered. Only a weak trend of increasing degrees of anisotropies
with increasing bulk susceptibility is apparent. The shape of the magnetic ellipsoid (b) is also
inconsistent. c) The magnetic lineation in the porphyritic granite has a narrow point maximum
indicating flat lying (subhorizontal) magnetic lineations with an ENE-WSW strike. d) The poles to
the magnetic foliation define a girdle in the pole figure, however, the majority of the foliation planes
are nearly horizontal.

The degree of anisotropy tends to be higher near the Umwindsi Shear Zone in the

south. The observed values again point to a domination of ferrimagnetic properties

over the paramagnetic properties of the samples (Rochette, 1987; Hrouda, 1982).

The shape of the magnetic ellipsoids of the samples again shows great differences

in their values. They range from nearly perfectly oblate to nearly perfectly prolate,
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still the majority of the samples exhibits values that concentrate in the field of

neutral to moderately oblate or prolate samples (-0.5<T<0.5). Again no clear

correlation of the shapes of the magnetic ellipsoids according to their position in

the porphyritic granite can be established. The degree of linear and planar

anisotropy seems to have a random distribution throughout the porphyritic granite.

The distinctness of linear and planar fabrics changes from locality to locality and

sometimes even within the same locality in different measured cylinders of the

same core. This must be ascribed to the influence of the ferrimagnetic properties

of the ore minerals rather than to a different orientation of the paramagnetic

properties. Possibly this can be assigned to the interaction of ferrimagnetic

minerals (magnetite). Gregoire et al. (1995) observed a change in the orientation

of the magnetic properties when the spacing between two grains of magnetite is

less than twice the grain diameter. The bulk susceptibility of the measured

samples was raised 8% while the degree of anisotropy increased about 40%. If the

spacing was less than one grain diameter the magnetic axes k1 and k2 were

exchanged leading to a change from prolate to oblate shapes of the magnetic

ellipsoids in the AMS measurements.

Because of the observed influence of ferrimagnetic properties over the

paramagnetic properties of the samples the most important magnetic values are

the orientations of the main axes of the magnetic ellipsoid. While the other

parameters are definitely influenced by the ore minerals it will be shown in chapter

7 (High Field Analyses) that the orientation of the paramagnetic and ferrimagnetic

properties is comparable.

The magnetic lineation of the porphyritic granite shows a very stable ENE-WSW-

trend while the magnetic foliation shows a weak, N-S oriented girdle distribution of

the sample (see Fig. 6.3). From Fig. 6.3 it can be seen that the magnetic lineation

of the samples in the porphyritic granite has a very stable trend in the northern part

of the porphyritic granite while in the southwest strike-directions are vague but

seem to follow a general ENE-WSW trend. No deflection of the linear fabric at the

gneissic inlayers or the Inyauri Xenolith is apparent emphasizing that in fact the

porphyritic granite is overlying the gneissic granites rather than being emplaced

into it. Furthermore, the magnetic lineation does not show any signs of bending

into concordance with the Umwindsi Shear Zone in the south.
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6.4. Curie-balance results

Measurement results of different samples from the Chinamora Batholith all

showed magnetite as the main ore content. This is indicated by a temperature of

578°C at the lowest point of magnetization in the curves (see Fig. 6.6). The

horizontal deflection to ~630°C indicates minor amounts of hematite in the

samples. Only in sample JB89 small amounts of pyrrothite were measured as

indicated by the slight increase of the induced magnetic field at temperatures of

430°C and 500°C.

The results described above show that mainly magnetite and to a smaller extent

haematite is responsible for the high  bulk susceptibilities of the analyzed samples.

Minor amounts of other ore minerals are present but their content is to small to be

measured (compare chapter 4).

Fig. 6.6: Curie balance results for some selected samples. Most of the samples showed magnetite
as the main ore mineral with minor amounts of haematite included. Only sample JB89 showed very
low amounts of pyrrothite in addition.

6.5 Results

The magnetic fabric of the different lithologies of the Chinamora Batholith shows
highly irregular degrees of anisotropy and shapes of the magnetic ellipsoids. Only
a weakly pronounced clustering of prolate ellipsoids in the southern gneissic
granites and of oblate ellipsoids in the northern and western gneissic granites is
apparent. While the equigranular granites show preferred, moderately oblate
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magnetic ellipsoids the porphyritic granite does not show any preferred shape of
the magnetic ellipsoids. The bulk susceptibility of the samples ranges between
values as low as 10*10-6 SI units to values well above 5000*10-6 SI. High bulk
susceptibilities are correlated with increased degrees of anisotropies, this must be
assigned to the ferrimagnetic content of the samples. According to Gregoire et al.
(1995) the degree of anisotropy is increased about 40% when interacting
magnetite grains are present in the sample. The measured parameters are
randomly distributed throughout the batholith, none of the analyzed lithologies
shows areas of a preferred shape of the magnetic ellipsoid, degree of anisotropy
or bulk susceptibility. Even measurement cylinders cut from the same core
sometimes show completely different magnetic properties. This can not be
explained in terms of a different tectonic or cooling history but rather must be
assigned to the ferrimagnetic content of the samples. However, the orientation of
the magnetic foliation and lineation is consistent in the different lithologies. The
southern gneissic granites revealed magnetic lineations subparallel to the
Umwindsi Shear zone and hence probably are related to a progressive movement
of the shear zone. The orientation of the magnetic lineation in the western and
northern gneissic granites uniformly trends E-W with a preferred easterly plunge in
the northern gneisses and a preferred westerly plunge in the western gneissic
granites, the equigranular granites and the porphyritic granite show preferred ENE
or ENE-WSW plunging magnetic lineations respectively. This orientation of
lineations was also found in the greenstone belts throughout the northern parts of
the Zimbabwe Craton (Shamva, Dindi, Makaha; see Jelsma 1993; Dirks & Jelsma
1998a; Jelsma & Dirks 2000 or Becker et al. 2000). According to Jelsma & Dirks
(2000) this direction represents the direction of transport during the D1

deformational event. In the northern gneissic granites in the Musana Communal
Land area magnetic lineations point radially outwards of the granitic to
granodioritic core. This must be related to a diapiric rise of the core into the host
rock (compare Fig. 1.1). This is confirmed by the magnetic foliation that parallels
the internal boundaries of the granitic core. Magnetic foliation in the other gneissic
granites, outside the Musana Communal Land area and in the equigranular
granites generally tends to parallel the batholith margin and seems to crosscut
lithological boundaries. Magnetic foliation tends to dip away from the batholith
center with moderate inclinations. The porphyritic granite revealed moderately
inclined foliations that crosscut internal boundaries to the Inyauri Xenolith and the
erosional windows to the gneissic granites.
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7. High field analyzes (HFA)

26 samples from different locations within the batholith have been chosen for the

HFA. The samples all represent a broad range of bulk susceptibilities with values

between 100*10-6 and 7500*10-6 SI. The presented values of l, f and p (see

chapter 5.4.2) are NOT capable to differentiate the dominant magnetic properties

but rather state the domination of paramagnetic or ferrimagnetic anisotropy in the

sample.

7.1 Energy density

The energy density of the samples is calculated from the HFA measurements and

indicates the dominant magnetic property in the rock. In Fig. 7.1 the logarithmic

ratio of the energy density of paramagnetic and ferrimagnetic minerals is plotted

versus the bulk susceptibility of the samples. The resulting curve shows a

correlation between the dominant magnetic property versus the bulk susceptibility

obtained from the AMS measurements. From Fig. 7.1 it is obvious that the higher

the bulk susceptibility, the more pronounced is the domination of ferrimagnetic

minerals. Samples with bulk susceptibilities below 1000*10-6 SI usually have ratios

of para- over ferrimagnetic energy densities higher than 1 although some

exceptions do occur. Samples with bulk susceptibilities >1000*10-6 SI are

controlled by the ferrimagnetic minerals and show ratios lower than 1. With higher

bulk susceptibilities the ratio seems to vary within the range of 0.1 – 0.3.

Fig. 7.1: Energy density (log)
versus bulk susceptibility of the
HFA samples. Except for two
samples a strong trend is
obvious with an increasing
domination of ferrimagnetic
minerals with increasing bulk
susceptibility. Samples from
the different lithological units
can not be differentiated
according to their amount of
ferrimagnetic minerals.

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

kbulk*10-6 SI

en
er

. d
en

s.
 (p

ar
a)

 / 
en

er
g.

 d
en

s 
(fe

rri
)

SGG

NGG

WGG

EQG

PG



90

7.2 Southern gneissic granites

For the southern gneissic granites, samples 42a, x1 and 128bII were chosen for

the measurements. The samples show bulk susceptibilities of 530-, 595- and

1670*10-6 SI units, respectively. The AMS measurements revealed a weakly

oblate magnetic ellipsoid (T=0.15; U=0.117) and a high degree of anisotropy (P’ =

1.144) for sample 42a, a moderately oblate magnetic ellipsoid (T=0.409; U=0.38)

and a high degree of anisotropy (P’ = 1.148) for sample x1 and a weakly oblate

magnetic ellipsoid (T=0.274; U=0.258) and a low degree of anisotropy (P’ = 1.072)

for sample 128bII (see Fig. 7.2). The orientation of the main magnetic axes from

the different magnetic measurements is shown in Fig. 7.3.

Fig. 7.2: Comparison of the form-parameters U
of the different measurements (AMS and
HFA).

The different samples show a different behavior concerning the interaction of

paramagnetic and ferrimagnetic properties.

Fig. 7.3: Comparison of the orientation of the different axes of the magnetic ellipsoid from different
measurements of magnetic properties. The orientation of the ferrimagnetic axes usually shows a
perfect correlation with the axes of the AMS measurement indicating a domination of the
ferrimagnetic properties. The orientation of the paramagnetic axes seems to be rotated with
respect to the AMS measurement.
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In sample 42a the magnetic properties of the rocks seems to be controlled by the

ferrimagnetic properties since the shape of the magnetic ellipsoid of the AMS

measurements and the ferrimagnetic properties exhibit the same values (see Fig.

7.2). In sample x1 the different properties seem to be interacting slightly

destructive while in sample 128bII the interaction of the magnetic properties

seems to be constructive (see Fig. 7.2). This observation, however, is not

confirmed by the orientation of the main axes of the respective magnetic ellipsoids

(see Fig. 7.3), where a destructive orientation of the paramagnetic axes to the

nearly perfectly matching AMS and ferrimagnetic axes can be observed.  In

sample 42a the axes of the ferrimagnetic ellipsoid perfectly match those of the

AMS ellipsoid while the axes of the paramagnetic ellipsoid are rotated. In sample

x1 small differences in the orientation of the ferrimagnetic and AMS axes and the

rotation of paramagnetic axes contribute to the bulk magnetic properties of the

rock sample. In samples 42a and 128bII the ferrimagnetic fabric is much better

defined than the paramagnetic fabric. In sample x1 the paramagnetic fabric is

much better defined than the ferrimagnetic fabric (see Fig. 7.4).

Fig. 7.4: Diagram of the l, f and p parameters of the
respective samples. While in sample 42a the ferrimagnetic
fabric is much better developed than the paramagnetic
fabric, for sample 128bII only a slightly more pronounced
ferrimagnetic than paramagnetic fabric was calculated. In
sample x1 the paramagnetic fabric is better developed than
the ferrimagnetic fabric. However, the samples do show a
pronounced planar fabric which is confirmed by the
measured form of the respective ellipsoids.

This is confirmed by the pronounced oblate shape of the paramagnetic ellipsoid

and the accompanying high value of P’. Furthermore, f (see equation [10], chapter

5.4.2) reflects the oblate magnetic ellipsoid as well while l (see equation [9],

chapter 5.4.2) is smaller by a factor of ~2.6 (f=6.355, l=2.46, see Fig. 7.4).

7.3 Northern gneissic granites

Seven samples have been chosen from the northern gneissic granites ranging in

their bulk susceptibilities from 500 to 4600*10-6 SI. While the AMS measurements
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revealed uniformly high T values for most of the samples (T=0.3 – 0.8), sample

63d (T=0.051) and 48c (T=-0.073) show neutral or nearly neutral values (see Fig.

7.5). The orientation of the respective magnetic axes exhibits a parallelism of the

axes for most of the samples, only in samples 56aII and 44a there is no perfect

alignment of the respective magnetic axes (see Fig. 7.6).  In sample 63d the

paramagnetic axes are slightly shifted with respect to the other axes.

Fig. 7.5: Comparison of the form-parameter U of the northern gneissic granites.

The ferrimagnetic and AMS-axes of sample 63d show a good concordance in k1

and k2, only k3 of the measurement shows small differences in its orientation.

Since the axes of the same measurements have to be perpendicular with respect

to each other this probably reflects a measurement error. In samples 56aII and

44a the ferrimagnetic and AMS axes are perfectly aligned, the paramagnetic axes

k1 and k2 seem to have interchanged in comparison to the ferrimagnetic or AMS

axes.

Fig. 7.6: Comparison of the
orientation of the different main
magnetic axes of the different
measurement methods. It is
confirmed by the respective
orientations that in most of the
measured samples the ferrimagnetic
minerals do not necessarily dominate
the orientation of the magnetic
ellipsoid. For example sample 53a
points to a contribution of both,
paramagnetic and ferrimagnetic
properties to the orientation of the
AMS ellipsoid.
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Sample 53a shows a domination of paramagnetic properties over the bulk

magnetic properties of the sample (see Fig. 7.5). This is also indicated by the

orientation of the AMS axes between the respective paramagnetic and

ferrimagnetic axes. Furthermore, the magnetic properties show a more distinct

paramagnetic fabric than ferrimagnetic fabric (l=3.144, f=7.517, see Fig. 7.7). This

is confirmed by the highly oblate form of  the paramagnetic ellipsoid (Upara=0.59,

Uferri=0.03). The same holds true for sample 48c, still, as can be deduced from the

shape of the respective magnetic ellipsoids, the ferrimagnetic properties dominate

the paramagnetic properties.

Fig. 7.7: l, f and p parameters
of the samples. In most
samples the ferrimagnetic
anisotropies are better
developed, only sample 53a
shows a more distinct
paramagnetic fabric. Samples
57a and 48c show nearly
equally developed fabric
anisotropies.

7.4 Western gneissic granites

The six selected samples for  the western gneissic granites (140aI, 133d, 116bI,

108bII, 125aII and 123b) show oblate (140aI, 116bI and 125aII) as well as prolate

(133d, 108bII and 123b) magnetic ellipsoids (see Fig. 7.8).

Fig. 7.8: Comparison of the U-parameters for the western gneissic granites. Again only a weak
correlation between the AMS measurements and the paramagnetic properties of the HFA
measurements is obvious pointing to a domination of the ferrimagnetic properties over the
paramagnetic properties for most of the samples.
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The distinctness of the ellipsoids is moderate with U-values in the range of –0.4

and 0.4. The orientations of the respective axes of the different measurements do

not show a pronounced concordance of axes, but rather seem to be only loosely

connected to each other (see Fig. 7.9). Sample 116bI shows a marked alignment

of the paramagnetic axes with the AMS axes indicating a domination of

paramagnetic properties of the sample. The other samples either show a

correlation between the ferrimagnetic axes and the AMS axes (125aII, 133d and

108b) or the axes are rotated or interchanged (140aI, 125a and 123b).

Fig. 7.9: The correlation of the orientation of the magnetic axes for most of the samples is weak. A
mixture of ferrimagnetic and paramagnetic properties is responsible for the orientation of the AMS
ellipsoid. Only sample 108bII shows a pronounced domination of the ferrimagnetic properties over
the paramagnetic properties indicated by the perfect alignment of the respective magnetic axes.

The ratios of l and f reflect the above stated observations (see Fig. 7.10). For

sample 116bI unusually high values were calculated (l=124, f= 87, see Fig. 7.10).

Together with the low bulk susceptibility and the orientation of the respective

magnetic axes only very small amounts of ferrimagnetic minerals seem to be

present in the sample. This is confirmed by the low degree of bulk susceptibility

(133*10-6 SI) . The other samples of the western gneissic granites with their

destructive and constructive alignment of magnetic axes are characterized by a

more distinct fabric of the ferrimagnetic minerals present than that of the

paramagnetic minerals.
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Fig. 7.10: l, f and p parameters
of the samples. Only in sample
116bI the paramagnetic
anisotropy is more pronounced
than the ferrimagnetic
anisotropy.

7.5 Equigranular granite

Only two samples were used from the granitoids of the equigranular granites

(146aII and 136c). Sample 136c has a bulk susceptibility of 133*10-6 SI while

sample 146aII has a bulk susceptibility of ~2000*10-6 SI. For sample 136c, the low

susceptibility points to a control of the paramagnetic properties over the bulk rock

properties. The magnetic ellipsoid shows a neutral shape of the paramagnetic

ellipsoid and a pronounced prolate shape of the ferrimagnetic ellipsoid. However,

the AMS measurements revealed a moderately oblate magnetic ellipsoid (see Fig.

7.11).

Fig. 7.11: U-parameters for the samples of the
equigranular granites.

The orientation of the different axes show a concordance between the

paramagnetic and the ferrimagnetic axes for sample 136c, still the AMS axes are

rotated (see Fig. 7.12). This might reflect the occurrence of other ore minerals in

the sample whose magnetic properties control the orientation of the AMS that can

not be measured during the separation process due to its ferromagnetic or

antiferromagnetic behavior. This is confirmed by the contrasting values of the

respective shapes of the magnetic ellipsoids. Sample 146aII again shows a good

concordance between the ferrimagnetic and AMS axes (see Fig. 7.12), and a
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constructive connection of the paramagnetic and ferrimagnetic properties (see Fig.

7.11).

The magnetic fabric of sample 146aII has l- and f-values of ~1 (see Fig. 7.13). The

shape of the magnetic ellipsoid from the AMS measurements suggests a

domination of the ferrimagnetic over the paramagnetic properties of the sample.

Sample 136c shows equally evolved planar fabrics (f=0.868), the linear fabric of

the ferrimagnetic minerals seems to be far better defined (see Fig. 7.13) which is

reflected in the shape-parameters (Upara=-0.02, Uferri=-0.87).

Fig. 7.12: Orientations of the main
magnetic axes for the equigranular
granites. Sample 146a shows a good
correlation of the ferrimagnetic axes with
the AMS ellipsoid while sample 136c only
shows a weak correlation.

Fig. 7.13: l, f and p parameters of the different samples. In
sample 146aII the para- and ferrimagnetic anisotropies are
equally developed while in sample 136c the ferrimagnetic
linear anisotropy is much better developed than the
paramagnetic anisotropy.

7.6 Porphyritic granite

Seven samples were chosen for the separation using the HFA with bulk

susceptibilities ranging between 175*10-6 SI and 2055*10-6 SI, the shape of the

respective magnetic ellipsoids ranges between oblate and prolate, no neutral

samples were separated. Most of the samples show a domination of the

ferrimagnetic properties over the paramagnetic properties. From the U-values a

constructive superposition of the para- and ferrimagnetic axes can be inferred for
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sample 74c (see Fig. 7.14). The orientation of the axes points to an addition of

properties since the AMS-axes are oriented as a geometric mean between the

ferrimagnetic and paramagnetic axes (see Fig. 7.15). The other samples show all

kinds of interaction (constructive or destructive) and the axes are rotated or

interchanged (see Fig. 7.15).

Fig. 7.14: U-parameters of the different samples.

Most of the samples show a domination of the ferrimagnetic over the

paramagnetic properties which is confirmed by the moderate to high bulk

susceptibilities of the samples.

Fig. 7.15: Orientation of the main
magnetic axes. Usually a good
correlation between the ferrimagnetic
ellipsoids and the AMS ellipsoids is
found. Sample 74c shows an
interaction of paramagnetic and
ferrimagnetic axes leading to the
measured AMS ellipsoid.
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Fig. 7.16: l, f and p parameters
of the samples.

From their l-, f- and p-ratios most of the samples show more pronounced

ferrimagnetic fabrics than paramagnetic fabrics (see Fig. 7.16). Only samples 96a

and 74c have dominating paramagnetic linear anisotropies, in sample 24c (p is

exactly 1) both anisotropies from both contributing phases are equally developed.

7.7 Implications of HF-analyzes

The magnetic properties of the majority of the samples are controlled by

ferrimagnetic minerals, sample 136c of the equigranular granites is controlled by

another mineral (probably (anti)ferromagnetic) that can not be separated using the

applied calculations. However, even if the bulk magnetic properties of the samples

are controlled by the ferrimagnetic fraction of the sample the paramagnetic

properties usually are parallel or subparallel to the ferrimagnetic properties. Some

of the samples with high bulk susceptibilities show a destructive correlation

between the respective main magnetic axes (paramagnetic axes are interchanged

or rotated with respect to the ferrimagnetic axes). They are controlled solely by the

ferrimagnetic minerals and their orientation of AMS-ellipsoid axes reflects the

orientation of the main magnetic axes derived from ferrimagnetic minerals.

Nevertheless, the parameters calculated (U-parameter) for the ferrimagnetic and

paramagnetic ellipsoids are comparable. The question arises how this difference

between samples with high bulk susceptibilities may be explained. This

phenomenon is not restricted to specific lithological units, grain sizes or ages

which rejects the explanation through different origin or emplacement history of the

units. Furthermore, the distribution of these samples is not restricted to certain

areas in the batholith or in the different units in the batholith so no different tectonic

modification of the samples can be assumed. Whether the different magnetic axes
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correlate constructively, destructively or are rotated with respect to other axes

seems to depend on the distribution of ferrimagnetic minerals in the samples.

Where ferrimagnetic minerals are aligned in such a way that their magnetic

properties may interact, a disturbed distribution of the ferrimagnetic axes is an

explanation (Gregoire et al., 1995). The orientation of the magnetic ellipsoids

obtained from AMS measurements depends on whether the samples are

dominated by ferrimagnetic minerals (then the AMS-axes correlate with the

ferrimagnetic ellipsoid) or whether they are controlled by the paramagnetic

minerals in the sample (then the AMS-axes correlate with the paramagnetic

ellipsoid). This is confirmed by the ratio of energy densities. Samples with a ratio

>1 (controlled by paramagnetic minerals) always show a subparallel distribution of

magnetic axes while samples with interchanged or rotated magnetic axes all show

ratios <1. The inverted conclusion that all samples with ratios of energy densities

<1 show rotated or interchanged axes does not hold true as it depends on the

distribution of ferrimagnetic minerals in the samples.

Since the rotation of axes is restricted to samples with high bulk susceptibilities it

may be a calculation error during the separation of the ferri- and paramagnetic

properties. When only small amounts of paramagnetic minerals are present in the

rock (e.g. in the porphyritic granite) that furthermore are nearly isotropic (k1~k2~k3)

it may be possible that axes with comparable susceptibilities (e.g. in biotites with

k1~k2>k3) are swapped. This would as well explain the observed exchange in

orientations of paramagnetic axes with respect to the AMS measurements and the

ferrimagnetic axes. This is confirmed by the observation that in samples where the

shape of the paramagnetic ellipsoid is prolate, the paramagnetic k1-axis matches

with k1 of the AMS measurements while k2 and k3 (paramagnetic) may be

exchanged. In samples where the paramagnetic ellipsoid shows an oblate shape

of the magnetic ellipsoid k3 (paramagnetic) and k3 (AMS) are subparallel to each

other while k1 and k2 (paramagnetic) may be exchanged with respect to the AMS

measurements. Finally, samples where the shape of the paramagnetic ellipsoid is

neutral all three paramagnetic axes (k1, k2 and k3) may be exchanged or even

rotated with respect to the AMS axes. According to this the orientation of the

different paramagnetic axes are correlated with the respective AMS axes even if

the magnetic rock properties are dominated by the ferrimagnetic properties. If only

low amounts of paramagnetic minerals are present in the sample at least the axis
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corresponding to the preferred shape of the magnetic ellipsoid (k1 if –1<U<0 or k3

if 0<U<1) are subparallel. It may be possible that in this case the exchanged axes

(k2 and k3 or k1and k2 respectively) are subparallel to the corresponding AMS axes

even if they are calculated otherwise.

However, from the l, f and p values of the samples it appears that in samples that

show a domination of ferrimagnetic over paramagnetic properties, the degrees of

linear and planar anisotropy as well as the magnitude of anisotropy are controlled

by the ferrimagnetic minerals. Hence these values from the AMS measurements

do not reflect the distinctness and degree of the magnetic fabric of the biotites

and/or hornblendes and should therefore not be used for the interpretation of the

paramagnetic mineral fabric.
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8. Calculating theoretical bulk susceptibilities

Two different methods were used to calculate a theoretical bulk susceptibility of

the samples. In one set of calculations the modal content of the samples was used

while in the second set the FeO, Fe2O3 and MnO content was used.

8.1 Calculations using the modal content of the samples

Calculations of theoretical bulk susceptibilities can be performed using the modal

content of the samples by simply adding the different mineral susceptibilities

according to their percentage content (see equation [1], chapter 5.3). Since no

ferrimagnetic minerals were calculated from the geochemical analyzes the

calculated susceptibility only matches the measured susceptibility if no

ferrimagnetic minerals are present in the sample. It has been shown by

Siegesmund & Becker (2000) that in case of a difference between the calculated

and measured susceptibility the difference must be assigned to the ferrimagnetic

minerals. For samples with a reasonable hornblende content two different

susceptibilities were used for the calculation (see Table 8.1 for mineral

susceptibilities), one set with a highly and one with a less susceptible hornblende.

Table 8.1: Mineral susceptibilities and anisotropy values of the different main magnetic axes used
for the calculations. Data for magnetite grains was calculated (Angenheister & Soffel, 1972) from
metamorphic and granitic rocks, since the susceptibility of magnetite is shape preferred only the
bulk susceptibility should be used. Data from (1) Borradaile et al. (1987); (2) Friedrich (1994); (3)
Angenheister & Soffel (1972); (4) Hrouda (1986)

Ref. kbulk (*10-6 SI) k1 k2 k3 P Remark
s

Biotite 1 1180 1.098 1.095 0.832 1.32 kx � <c>
ky � <c>
kz || <c>

Hornblende
(high hbl)

2 1306 1.037 1.023 0.94 1.1 kx  || <b>
ky || <c>
kz || <a>

Hornblende
(low hbl)

2 425 1.066 1.036 0.898 1.19 kx  || <b>
ky || <c>
kz || <a>

Magnetite 3 ~600000 1.108 0.964 0.936 1.18 mean
Quartz 4 -13.4 isotropic
Plagioclase 1 -2.7 isotropic
K-feldspar 4 -12 isotropic

Results of the calculations are presented in Table 8.2. Calculations resulted for

nearly all of the samples in bulk susceptibilities that are too low, an influence of



102

ferrimagnetic minerals must be assumed for most of the samples. The influence of

ferrimagnetic minerals on the bulk susceptibility is confirmed by the marked

difference in the actually measured values. While the arithmetic mean of the bulk

susceptibilities of the different units was calculated to values well above 1000*10-6

SI, the lowest measurement of samples is usually well below 100*10-6 SI. If a

specific magnetite content is added to the calculated values to match the

arithmetic mean of actually measured values, the magnetite content of the

different units is calculated to 0.27% for the southern gneissic granites, 0.33% for

the northern gneissic granites and 0.18% for the western gneissic granites.

Calculations for the equigranular granites resulted in 0.24% of magnetite while the

porphyritic granite should contain 0.45%. These amounts were calculated using a

magnetite with a bulk susceptibility of 600000*10-6 SI (see Table 8.1).

Table 8.2: Results of the calculations of the theoretical bulk susceptibility based on the average
mineral content of the samples. Since more than one measurement core has been measured the
arithmetic mean and the lowest measurement value obtained during AMS measurements is given.

high hbl
kbulk

low hbl
kbulk

AMS (calculated
average) kbulk

AMS (lowest
measuremen
t) kbulk

VGS 200.482*10-6

SI
147.622*10-6

SI
1839*10-6 SI 134*10-6 SI

VGW 298.348*10-6

SI
236.678*10-6

SI
1375*10-6 SI 47*10-6 SI

VGN 110.895*10-6

SI
2098*10-6 SI 66*10-6 SI

EQG 184.926*10-6

SI
167.306*10-6

SI
1656*10-6 SI 70*10-6 SI

PG 74.089*10-6 SI 2753*10-6 SI 16*10-6 SI

8.2 Calculations using the FeO, Fe2O3 and MnO content of the sampels

Calculation of a theoretical bulk susceptibility can be performed using geochemical

analyzes (Gleizes et al., 1993). If the weight percentage of FeO, Fe2O3 and MnO

are added according to equation [12] (from Gleizes et al., 1993), the results should

match the measured bulk susceptibility of the sample obtained from AMS.

Klc=kdia + kpara + kaf [12]

with

kpara= d(2.52t + 3.34t’ + 3.38t’’)(T/T-PT)  [13]
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t, t’ and t’’ are the weight percentages of Fe2+, Fe3+ and Mn2+ respectively, d is the

density of the rock and T (in Kelvin) temperature. PT (in Kelvin) is the Curie-

temperature of the paramagnetic minerals and has been assumed to be 15 K

(Gleizes et al., 1993). Kdia is assigned a value of –1.4*10-5 SI which is the

diamagnetic susceptibility of quartz, kaf, the ferrimagnetic content of the samples,

is assumed to be zero.

If the calculated bulk susceptibility is higher than the measured ones the difference

must completely be assigned to the occurrence of ferri(o)magnetic minerals since

these minerals are not used in the calculations (Gleizes et al., 1993; Rochette et

al., 1992).

For eight samples the theoretical bulk susceptibility has been calculated, a

(log/log) comparison of the calculations with the measured values is presented in

Fig. 8.1.

Fig. 8.1: Comparison between calculated and
measured bulk susceptibilities. Most of the
calculations resulted in far lower bulk
susceptibilities than were measured for the
sample. kcalc are the calculated values and kbulk
are the actual AMS measurements.

Most of the samples showed much higher measured bulk susceptibilities than

calculated ones, an influence of ferri(o)magnetic minerals is obvious. Only for one

sample a ratio of ~1 was calculated indicating that only paramagnetic and

diamagnetic minerals are present in the sample.
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9. Modeling of magnetic fabric

The U-stage data from biotites and hornblendes (see chapter 4.4) was used to

calculate a theoretical AMS tensor. From this tensor some fundamental ratios can

be calculated concerning the magnetic properties of the specimen and are

compared to the actual measured ones obtained from AMS measurements. In

case that the AMS is solely controlled by paramagnetic minerals the calculated

values should exactly match the measured values. If differences occur other,

probably ferrimagnetic minerals must contribute to the magnetic properties of the

specimen as well. The modeling takes into account the textures of biotites and

hornblendes, other major rock forming minerals such as quartz or feldspars were

included in the calculation but due to their diamagnetic properties only have very

low magnetic properties and hence have been treated as isotropic constituencies.

For the anisotropic minerals biotite and hornblende the tensor was calculated by

calculating texture coefficients from the measured pole figures. A detailed

description on the theoretical background is given in Siegesmund et al. (1995).

The usefullness to test the significance of the AMS measurements with this

method has been shown by Siegesmund & Becker (2000), they demonstrated an

increasing ferrimagnetic content towards the marginal areas in the Ardara pluton

(northern Ireland).

The orientation of the main magnetic axes in biotite is well known, k3 parallels the

crystallographic c-axis, k1 and k2 are oriented in the basal plane (see Fig. 5.2,

chapter 5.2), the resulting magnetic ellipsoid has a nearly perfect oblate shape

(Zapletal, 1990). The anisotropy of biotites in the basal plane is low (k1/k2=1.097,

Borradaile et al. 1987), the degree of anisotropy for a single crystal reaches values

of P=1.3. Hornblendes show a somewhat unexpected behavior concerning the

orientation of the magnetic axes, k1 is oriented parallel to the crystallographic b-

axis (010), k2 parallels the crystallographic c-axis (001) and k3 parallels the

crystallographic a*-axis (100) (Friedrich, 1994; see Fig. 5.2). Therefore, if a

preferred mineral orientation of hornblendes is measured in AMS measurements

the resulting orientation of k1 is orthogonal to the crystallographic mineral lineation.

However, the resulting magnetic ellipsoid of a single crystal measurement shows

an oblate ellipsoid as well (Friedrich, 1994). Hornblendes show a wide range of

magnetic properties according to their Fe-content. This has been taken into

account by using a very low and a very high susceptible hornblende for the
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calculations (see Table 8.1 for values). The mineral content of the different

lithologies has been calculated from geochemical measurements without

distributing Fe2+ and Fe3+ into minerals like magnetite, sphene or apatite which

have ferrimagnetic properties. Due to the shape anisotropy of theses minerals no

general parameters with respect to their axial ratios can be used for the

calculations. This disregard leads to a slightly raised biotite and hornblende

content in the modal composition of the rocks. In Fig. 9.1 it is exemplary shown for

sample JB305 how the different textures were used to calculate a theoretical rock

texture.

Fig. 9.1: Calculation of the theoretical rock texture using textures obtained from U-stage
measurements. The hornblende textures of the different crystallographic axes are used to calculate
a resulting texture, biotite is treated alike. From these resulting textures and the mineral content of
the isotropic minerals in the rock a  theoretical rock texture is calculated from which the theoretical
AMS-tensor can be obtained. The resulting theoretical rock texture matches the biotite texture
since the hornblende content of the sample is lower than the biotite content.
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9.1 Southern gneissic granites

The modal composition of the southern gneissic granites was estimated, using

geochemical data, to 24% quartz, 15% K-feldspar, 44% plagioclase, 11% biotite

and 6% hornblende. Only one hornblende texture was measured from thin

sections (sample JB305), this texture was rotated in a way to match the orientation

of the basal plane of biotites and the magnetic orientations of k1 and k3 for the

calculations with the other samples of the southern gneissic granite suite. For the

calculations with a high and a low susceptible hornblende the same textures with

different susceptibilities were used. None of the calculations produced matching

values for P’ and T and the AMS values (see Fig. 9.2). However, this was not

expected due to the high bulk susceptibility of the samples. While the highly

susceptible samples (JB309, 2564*10-6 SI and JB261, 2885*10-6 SI) show great

differences in the shape of the ellipsoids (T) and the degree of anisotropy, the less

susceptible samples (JB305, 540*10-6 SI and JB308, 280*10-6 SI) only show

smaller differences (see Fig. 9.2) when compared to the AMS measurements.

Fig. 9.2: Calculated and measured values for the degree of anisotropy (P’) and the shape of the
magnetic ellipsoids (T). While sample JB308 shows a good correlation between the measured and
calculated values the other samples show greater differences related to their amount of
ferrimagnetic minerals (which was not used in the calculations). calc = calculated whole rock
properties with highly susceptible hornblende, 100% bt = hypothetical rock containing 100% biotite
only,  100% hbl = hypothetical rock containing 100% hornblende with a high mineral susceptibility,
AMS = actually measured values obtained from the AMS, calc2 = calculated whole rock properties
with less susceptible hornblende, 100% hbl2 = hypothetical rock containing 100% hornblende with
a low mineral susceptibility only.
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The calculations with the less susceptible hornblende resulted in a higher degree

of anisotropy than the whole rock calculation. This must be assigned to the well

developed texture of the respective biotite measurements that, due to their higher

susceptibility, dominate the paramagnetic properties of the samples in case of a

less susceptible hornblende. The shape of the calculated magnetic ellipsoid does

not change due to the susceptibility of the hornblende which either points to a

subparallel orientation of the respective magnetic axes of hornblende and biotite or

to a domination of the biotite texture over the shape of the calculated magnetic

ellipsoids in both calculations. Nevertheless, from these calculations it is obvious

that a ferrimagnetic phase is responsible for the measured degree of anisotropy

and the shape of the magnetic ellipsoids in the AMS measurements.

9.2 Northern gneissic granites

The modal mineral content of the northern gneissic granites was calculated to 35%

quartz, 10% K-feldspar, 45% plagioclase and 10% biotite. Four samples have

been chosen for the calculations, three samples are located near the outer margin

(JB71, JB51, JB44) and one sample (JB204) was taken in the center of the

northern gneisses. The AMS measurements showed that sample JB71 has a very

low bulk susceptibility of ~85*10-6 SI, the calculations show a good concordance

with the measured values (see Fig. 9.3).

Fig. 9.3: Calculated degree of anisotropy and shape of the magnetic ellipsoid for the northern
gneissic granites. Only sample JB71 shows a good correlation of the calculated and measured
values. calc = calculated whole rock, 100% bt = hypothetical rock containing 100% biotite only,
AMS = actually measured values obtained from the AMS.

JB71

-1

-0.5

0

0.5

1

1 1.1 1.2 1.3 1.4 1.5
P'

T

calc
100% bt
AMS

JB51

-1

-0.5

0

0.5

1

1 1.1 1.2 1.3 1.4 1.5
P'

T

calc
100% bt
AMS

JB204

-1

-0.5

0

0.5

1

1 1.1 1.2 1.3 1.4 1.5
P'

T

calc
100% bt
AMS

JB44

-1

-0.5

0

0.5

1

1 1.1 1.2 1.3 1.4 1.5
P'

T

calc
100% bt
AMS



108

The other three samples with their higher volume susceptibility (JB51~141*10-6 SI,

JB44~540*10-6 SI, JB204~4598*10-6 SI) show greater differences resembling their

higher content of ferrimagnetic minerals.

Again the highly susceptible sample JB204 shows a great difference in the degree

of anisotropy, the difference in the shape of the magnetic ellipsoid seems not to be

related to the height of the bulk susceptibility and hence on the amount of

ferrimagnetic minerals.

9.3 Western gneissic granites

The modal content of the western gneisses was estimated to 27% quartz, 6% K-

feldspar, 42% plagioclase, 18% biotite and 7% hornblende. Calculation of the two

specimen was performed using one rotated hornblende texture (originally

measured from sample JB134). Both samples (JB134~264*10-6 SI  and

JB296~780*10-6 SI) show a good concordance of the calculated and the measured

values (see Fig. 9.4). The degree of anisotropy of sample JB296 is again

controlled by the biotite content, a less susceptible hornblende results in a higher

degree of anisotropy.

Fig. 9.4: Calculated values for the western gneissic granites. Both samples show a good
concordance with the AMS measurements. calc = calculated whole rock properties with highly
susceptible hornblende, 100% bt = hypothetical rock containing 100% biotite only,  100% hbl =
hypothetical rock containing 100% hornblende with a high mineral susceptibility, AMS = actually
measured values obtained from the AMS, calc2 = calculated whole rock properties with less
susceptible hornblende, 100% hbl2 = hypothetical rock containing 100% hornblende with a low
mineral susceptibility only.
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corresponding AMS measurements resembling the high content in ferrimagnetic

minerals (see. Fig. 9.5). The calculated whole rock values are in good

concordance with the calculated values for a hypothetical rock containing 100%

biotite which is not surprising since biotite was the only anisotropic phase used for

the calculations. Most of the AMS-measurements show only slightly higher

degrees of anisotropy (P’) but a completely different shape of the magnetic

ellipsoid (T). Usually an oblate magnetic ellipsoid is calculated contrasting the

preferred prolate ellipsoid of the AMS measurements. Only sample JB46 shows a

prolate ellipsoid for the calculated values indicating a random orientation of biotites

(Siegesmund et al. 1995). For sample JB261 the degree of anisotropy was

calculated to 1.102 and 1.091 for the whole rock and the 100% biotite calculation,

respectively, while the AMS measurements revealed a degree of anisotropy of

1.495. The high value of the AMS probably must be assigned to the interaction of

ferrimagnetic minerals indicating a high content of ferrimagnetic minerals in the

sample.

Fig. 9.5: Comparison of the calculated with the actually measured values. The samples show no
correlation with the AMS measurements when only the paramagnetic minerals are taken into
account for the calculations. calc = calculated whole rock properties, 100% bt = hypothetical rock
containing 100% biotite only, AMS = actual values obtained from AMS measurements.
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9.5 Results

While the orientation of the main magnetic axes can not be calculated using the

above described procedure the basic parameters P’ and T may be modeled and

compared to the actual AMS measurements. Calculation of these parameters

revealed that it is not only the samples with a very high susceptibility that have a

reasonable content of ferrimagnetic minerals that contribute to their overall

magnetic properties, but that less susceptible samples can, but must not

necessarily have, a contribution of the ferrimagnetic minerals to the AMS

measurements as well. The hornblende content only plays a minor role in the

overall magnetic properties. Calculations with a highly susceptible hornblende

showed lesser degrees of anisotropy than calculations with a less susceptible

hornblende. This must solely be attributed to the interplay of biotite and

hornblende since no other anisotropic minerals have been calculated. Siegesmund

& Becker (2000) have observed a comparable change of the degree of anisotropy

with varying hornblende and biotite contents in the sample. Moreover, they

observed a switch from prolate to oblate magnetic ellipsoids during the calculation

when biotites are only weakly or randomly distributed while the hornblende texture

resembles a typical granitic distribution according to Berger (1995).

Based on these calculations and on the separation of para- and ferrimagnetic

properties of the samples (see chapter 7) it is obvious, that the anisotropy

parameters measured during the AMS measurements (e.g. degree of anisotropy,

shape of the magnetic ellipsoid) are clearly controlled by the ferrimagnetic

minerals in case of ferrimagnetic properties dominating paramagnetic properties.

Therefore, the anisotropy parameters of the AMS measurements should be used

with caution. Nevertheless it has been shown in chapter 7 that the orientation of

the respective magnetic axes of the paramagnetic minerals in most cases are

subparallel to the ferrimagnetic axes even if the ferrimagnetic properties dominate

the magnetic properties of the sample.
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10. Geological significance of structure, magnetic- and rock fabric

The different methods used to resolve the internal fabric of the different lithologies

of the Chinamora Batholith all resulted in the same constrains, the gneissic

granites and the equigranular granites both suffered solid-state deformation. The

gneissic granites show different intensities of deformation, the southern gneissic

granites show the strongest deformation while the western and northern gneissic

granites are less deformed. The porphyritic granite in the center of the batholith

only shows a weak solid-state overprint of the fabric, it basically resembles

structures pointing to a magmatic flow fabric. This is confirmed by the microscopic

analyzes as well as by the measured intensities of quartz, biotite and hornblende

textures. The parameters obtained from AMS measurements, that reflect the

anisotropy of the magnetic fabric and hence should give evidence on the

distinctness of the magnetic fabric have been shown to be controlled by the ore

content of the samples and therefore do not reflect the distinctness of the

orientation of paramagnetic minerals like biotite or hornblendes. This is confirmed

by the calculations of theoretic bulk susceptibilities where the calculated values

(without the ferrimagnetic fraction) always showed lower values of the bulk

susceptibility than the actually measured bulk susceptibilities. However, the

separation of the paramagnetic and ferrimagnetic anisotropies showed that, for

most samples, the orientation of the paramagnetic axes mimics the orientation of

the ferrimagnetic axes, orientation distributions obtained from AMS measurements

can hence be used as an indicator for the orientation of the magnetic lineation and

foliation which is subparallel to the measured macroscopic foliation obtained from

field measurements. The gneissic and equigranular granites and the porphyritic

granite show differences in these orientations. While the gneissic granites and

equigranular granite show a margin parallel foliation that cross cut internal

lithologies the magnetic and macroscopic foliation planes in the porphyritic granite

have a very stable WNW-ESE trend. The different intensities of deformation and

the different orientation of foliations and lineations calls for a two stage

development of the Chinamora Batholith, first the intrusion of the gneissic granites

and after a yet unconstrained time span the intrusion of the porphyritic granite. The

equigranular granites either emplaced nearly coeval with or shortly after the

gneissic granites but at any rate before the porphyritic granite. Otherwise its
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internal fabric should be comparable to the porphyritic granite and not to the fabric

in the gneissic granites. The remaining question is the timing of the different

intrusions.

10.1 Age data

The temporal relationship between the different intrusions of the Chinamora

Batholith and the surrounding greenstone belt can not be deciphered on the basis

of structural observations alone. Therefore, different age dating techniques have

been used on different minerals to get reliable age data for the different rock types.

For this purpose, zircons, apatites and hornblendes were separates from 2 kg

samples using successive density and magnetic separation techniques. The

resulting rock powder was improved by hand picking of minerals.

Zircons and apatites were analyzed using a U-Pb multizircon TIMS (thermal

ionization solid source mass spectrometry). The ratio of U to its daughter isotope

Pb is a measure of the age of the sample but caution must be applied in

interpreting U/Pb ratios since most U-bearing minerals contain small amounts of

Pb when they first crystallize. Discrimination between naturally included Pb and

the daughter isotope Pb is easily done since natural lead also contains the isotope
204Pb which is not radiogenic. This can be used as a measure for the original lead

contamination (Hall, 1993). The measurement results are plotted as conventional
206Pb/238U and 207Pb/235U concordia diagrams that help to interpret discordant

ages. According to Ludwig & Stuckless (1978), when applied to granites the upper

concordia intersection corresponds to the time of zircon growth (emplacement and

crystallization of the granitoid body) while the lower concordia intersection is

interpreted as an episode of recrystallization. However, samples may represent

much older ages than estimated for emplacement from other methods. This

maybe due to the frequently observed preservation of old zircons carried up by the

magma from its source contaminating the samples (e.g. Bickford et al., 1981).

Methods of loss of Pb during thermal events in zircons include metamorphism,

weathering and other processes, however, zircon is quite robust concerning the

complete resetting at high temperatures and usually keeps at least a partial record

of all thermal events (Mezger & Krogstad, 1997; Aleinikoff et al., 1989).



113

The 40Ar/39Ar dating of hornblendes was performed using a mass spectrometer

(VG-3600©). The preparation of the hornblendes was done following the technique

described by York et al. (1981) and Layer et al. (1987). The Ar/Ar age dating

method is a refinement of the K/Ar dating method. The sample is subjected to a

neutron flux which converts 39K into 39Ar, the ratio of 40Ar/39Ar is then measured by

mass spectrometry with 39Ar being the measure of the amount of undecayed

potassium (Hall, 1993). This method is frequently used to specify the duration and

frequency of magmatic events because the step-wise heating of the samples,

while constantly measuring the 39Ar/40Ar ratio, gives valuable information on argon

held in the crystal structures with different retentivity and thus gives more

information on the thermal history of the samples than could be obtained from the

bulk 40K/39Ar ratio alone (Hall, 1993). According to Philpotts (1990) access argon is

fused during the first steps of heating giving these heating steps a younger age

than the actual calculated age while loss of argon results in older ages for the first

steps of heating. Only if the calculated age of a few heating steps remains

constant, the age can be considered reliable.

10.1.1 U-Pb dating of Zircons

10.1.1.1 Sample description

The sample description (this chapter and chapter 10.1.2.1) was adopted from

Siegesmund et al. (in prep.).

CH3

This sample was taken from the western gneissic granites from a massive,

homogeneous leucogranodiorite. Main constituents are quartz, alkali feldspars and

plagioclase with accessory biotite, apatite, magnetite and hypidiomorphic, red to

colorless zircons. The zircons are partly well rounded and exhibit etched, deeply

corroded crystal surfaces under the REM. Magmatic oscillatory zoning with widely

spaced zones can frequently be observed with metamict, rounded cores.



114

CH4

CH4 also was taken from the western gneissic granites and resembles a

granodioritic lithology. Quartz, plagioclase, microcline and perthite as well as minor

hornblendes, biotite, muscovite and sericite are the main phases next to accessory

epidote, allanite, zircon, apatite and titanite. The whitish to reddish zircons are

metamict, their shape varies greatly from prismatic to short prismatic and

ideomorphic to well rounded. Again REM analyzes showed deeply corroded

crystal surfaces with cracks radial and parallel to zones of growth. Oscillatory

zoning is weakly developed and widely spaced documenting the rapid growth

during crystallization.

CH13b

This sample was taken from a layer-parallel, boudinaged pegmatite within a

hornblende schist from the eastern margin of the Chinamora Batholith (Umwindsi

Shear Zone). The pegmatite contains quartz, microcline perthite and plagioclase

as well as minor biotite and hornblende. Secondary chlorite, sericite and

accessory apatite, zircon and magnetite occur. Four size fractions of apatite have

been analyzed with the transparent colorless grains varying from rounded

xenomorphic crystals to long prismatic, needle shaped specimen. No inclusions or

zoning was apparent.

10.1.1.2 Results

The dating of two zircon samples (CH3, CH4) and the apatites of sample CH13b

resulted in three differing lines on the concordia diagram (see Fig. 10.1) with

discordant ages for every sample.
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Fig. 10.1: Discordant age data
obtained from zircon (CH3 and
CH4) and apatite (CH13b). Lower
intercept ages do not point to a
meaningful geological event, upper
intercept ages are influenced by
lead loss probably due to
metamorphic overprint (CH3 and
CH4). Apatite seems to resemble a
more undisturbed age as indicated
by clustering of points at the upper
interception with concordia. (Fig.
from Siegesmund et al., in prep.)

Age data for the three samples is in the range of 2619 +28/-24 Ma and 2501 +50-

43 Ma, a time span of more than 100 Ma is measured between the samples for the

upper age while the lower intersection is between 63 and 555 Ma enclosing a time

span of nearly 500 Ma.

The lower intercept ages seem not to be related to any reasonable geological

event. The great variation in obtained ages points to one or more thermal events

during which the zircons lost more Pb than U (Mezger & Krogstad, 1997). Tilton

(1960) compared U-Pb zircon data from different archean cratons and observed

that they defined lower intercepts with concordia of ~ 600 Ma. Since there is no

world wide event affecting all Archean cratons at this time Tilton (1960) suggested

constant, temperature independent Pb loss for this discordance pattern. Based on

similar observations Goldich & Mudrey (1972) suggested  exhumation as a result

of a decreased confining pressure for the constant lead loss which would imply a

geological significance for the lower intercept age. However, it has been shown by

other authors (e.g. Corfu et al., 1985; Dunning et al., 1990 or Mortensen, 1993)

that zircons from magmatic rocks that have not been affected by later thermal

events lose Pb more readily than other minerals in the same sample (e.g. titanite

or monazite). This observation supports the idea that Pb loss must not necessarily

be related to a geological event hence giving meaningless ages for the lower

intercept age.

In igneous rocks with a simple history, zircons generally plot close to the upper

intercept with concordia while zircons influenced by metamorphism show a
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characteristic array near the lower intercept with the concordia (Mezger &

Krogstad, 1997). Metamict zircons that recrystallized during medium to high grade

metamorphism usually show strong discordances  and plot near the middle of the

calculated discordia (see Fig. 10.2).

Fig. 10.2: Clustering of points and their position to interceptions with concordia can be used to infer
the reliability of measurements (Mezger & Krogstad, 1997).

According to this the measured samples form the Chinamora Batholith show a

meaningless lower intercept age due to constant, temperature independent lead

loss. Sample CH13b may represent a less disturbed sample plotting near the

upper intercept with the concordia while samples CH3 and CH4 represent

metamict samples that suffered lead loss. The measured high U concentrations

(see chapter 3) in some of the samples probably has speeded up lead loss by

damaging the crystal lattice through radioactive decay.

10.1.2 Ar/Ar dating of hornblendes

10.1.2.1 Sample description

Several samples have been collected for age dating in a hornblende schist from

the Inyauri remnant within the Chinamora Batholith (CH8b, CH9b, CH10b) and a

sample (CH13a) from the Umwindsi area.

CH8b

CH8b was taken in an amphibole xenolith from the central part of the porphyritic

granite with a very high hornblende content (40%) and minor brown biotite (10%).
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Plagioclase and accessory titanite, epidote, quartz and zircon are also regular

components.

CH9b, CH10b

These samples were taken from a hornblende-biotite schist in the central part of

the porphyritic granite (Inyauri remnant). CH9b contains 20% hornblende, 20%

green biotite, plagioclase, clinozoisite and accessory quartz and titanite. CH10b is

similar but shows lower amounts of biotite (10%) and hornblende (5%).

CH13a

This sample was taken near the Umwindsi Shear Zone and contains high amounts

of hornblende (55%), saussuritized plagioclase and accessory biotite, apatite,

epidote and opaques. Some biotites show retrogradation to chlorite and

hornblendes sometimes show marginal replacement to actinolite.

10.1.2.2 Results

The Ar-Ar data are shown as cumulative 39Ar emission spectra against age (Fig.

10.3). A composite plateau age for sample CH8b (multi grain) is 2523 ± 11 Ma,

individual ages of the different runs are 2507 ±11 Ma, 2516 ± 10 Ma and 2543 ±

10 Ma while one run showed a less well defined plateau giving younger ages than

the other runs, indicating an alteration of the sample. Single grain dating for

sample CH9b revealed an age of 2564 ± 16 Ma while multi-grain runs showed a

stairstep-up spectrum from 1000 Ma up to the single grain hornblende age. The

weak plateau giving an age of 2240 Ma probably indicates a mixture of  different

ages. Two single grain runs for sample CH10b have been carried out giving well

defined flat age spectra and plateaus of 2538 ± 10 Ma and 2546 ± 12 Ma,

respectively. A third sample showed evidence of alteration resulting in a lower age

of 1350 Ma and an upper age of 2240 Ma. Sample CH13a shows well defined

plateaus giving an age of 2481 ± 11 Ma, 2513 ± 64 Ma and 2514 ± 11 Ma,

respectively, for the three runs (single grain).
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The time span covered by the 40Ar/39Ar ages of 41 Ma from hornblendes in the

central porphyritic granite may be explained by the thermal resetting and slow

cooling below the closure temperature of hornblendes after the intrusion of the

porphyritic granite at ~2601 Ma (age from Jelsma et al., 1996).

Fig. 10.3: Age data for 40Ar/39Ar age determination of hornblendes (Fig. from Siegesmund et al., in
prep.).

10.2 Thermal constraints from isotope geochemistry

The methods used for age dating all give valuable information on the thermal

conditions of the minerals at the measured time. Generally, hornblendes have a

closing temperature of approx. 580° C – 480° C which depends on the cooling rate

(Harrison, 1981).  For the U-Pb system closing temperatures for apatites were

estimated at 580° C – 540° C (vonBlanckenburg, 1992; Cherniack et al., 1991),

the closing temperature for zircons is estimated at 450° C, however, for pristine

zircons the closure temperature is estimated much higher in the range of 700-900°

C (Mezger & Krogstad, 1997). Even temperatures of 950° C were shown not to be

sufficient to reset the zircons completely (e.g. Williams, 1992). According to the

great gap in the closing temperature of zircons and the observed discordant data

of zircon U-Pb measurements it seems not too reliable to use the obtained data.

The apatite data suggest that a maximum temperature of 580° C was reached at

2619 +28/-24 Ma in the western gneissic granites. Hornblende data suggests that

temperatures of 580° C – 480° C were reached between 2523 and 2564 Ma in the
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porphyritic granite. This indicates that the metamorphic temperatures reached in

the gneissic granites during the intrusion of the porphyritic granite at 2601 Ma (age

from Jelsma et al., 1996) was not enough to reset the apatite U-Pb system but

may have sufficiently reset the U-Pb system of hornblende from samples CH8b,

CH9b and CH10b.

The obtained ages give a time span of ~60 Ma between the cooling of the gneissic

granites below ~580° C and the cooling of the porphyritic granite below 580° C.

This temperature is usually seen as indicative for a remaining melt fraction below

10% (Bouchez et al., 1992).

The obtained ages for the porphyritic granite point to an intrusion at 2601 Ma (age

from Jelsma et al., 1996) and a crystallization at 2523 – 2564 Ma, leaving a time

span of approx. 50 Ma for the intrusion and crystallization of the porphyritic

granite.

10.3 Thermodynamic modeling

The thermal modeling of different geometries has been performed to compare the

maximum reached temperatures in the contact area of the intrusion with calculated

temperatures from metamorphic mineral assemblages. Only if the temperatures of

a modeled geometry are sufficient to produce the calculated metamorphic

temperatures in the host rocks the geometry may be a reasonable model of the

shape of the intrusion. Furthermore, it may be tested whether the estimated time

of cooling below specific temperatures obtained from age dating is adhered to

during modeling.

The modeling was performed using the program SHEMAT from the BGR

(Hanover). The program can be used to model thermodynamic processes as well

as fluid-flow under different chemical conditions for a given time period. Little is

known about fluids and their chemical content in the Archean, a model including

these variables would be rather complex and most of the variables would at best

be a good approximation, most of the parameters would have been poorly

constrained. Therefore, only the thermodynamic modeling over a given period of

time without any influence derived from fluid flow was performed. The

thermodynamic variables in the Archean like temperature gradient at depth, basal

heat flow and radiogenic heat production have been analyzed by different authors

(e.g. Pollack, 1997; Goodwin, 1991; Rudnick et al., 1998). Variables like thermal
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capacity of minerals or rocks have not changed during time so „state of the art“

values may be used. Five different geometries have been modeled that maybe

assigned, according to the used geometry, to different emplacement mechanism

(ballooning, diapirism, intrusion as a comparatively thin body and the

emplacement of the gneisses as a few smaller intrusions independent from each

other or as a pulsed intrusion). The values used for the displayed models are

given in table 10.1.

Table 10.1: Values used for the thermal modeling of the Chinamora batholith

Thermal matrix properties:
Density [kg/m3]
Heat capacity [J/kgK] 1000
Thermal conductivity [W/mK] 2.5
Radiogenic heat production
[W/m3]

0.9E-6

Initial temperature [°C] Temp. gradient
Thickness of crust [km] 40

Thermal properties of
greenstones:
Density [kg/m3]
Heat capacity [J/kgK] 1000
Thermal conductivity [W/mK] 2.85
Radiogenic heat production
[W/m3]

0.3E-6

Initial temperature [°C] Temp. gradient

Thermal properties of granitoids:
Density [kg/m3]
Heat capacity [J/kgK] 1000
Thermal conductivity [W/mK] 2.5
Radiogenic heat production
[W/m3]

2.2E-6

Initial temperature [°C] 750

10.3.1 Radiogenic heat production

The radiogenic heat production was estimated according to the half-lives of the

most abundant heat producing isotopes 40K, 238U, 235U and 232Th. The estimates

range from as high as 6 times the present day heat production rate at the

beginning of the Archean to values of 1.6 times the present day value at the end of

the Archean time interval (Pollack, 1997). The used value of 0.9*10-6 Wm-3 is

approx. two times the present day value and takes into account the dominating

Na-rich tonalite-trondhjemite-suites in the area of the Chinamora Batholith with

their comparatively low contents of K, U and Th. The greenstone belts were
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assigned a value of about 0.3*10-6 Wm-3. The chosen values therefore should be

good estimations of the archean radiogenic heat production rate in the modeled

area. One of the restrictions of the program SHEMAT is that the higher radiogenic

heat production in the magma chamber compared to the surrounding basement

does not decrease with ongoing time. This has the effect that in simulations, until a

steady state is reached, the initial form of the batholith with its increased

radiogenic heat production is preserved which results in an elevated geothermal

gradient below and above the site of intrusion.

10.3.2 Thickness of the crust and geothermal gradients

The thickness of the Archean crust was estimated, amongst others, by Goodwin

(1991) according to evidences from metamorphic and experimental studies at

about 40 km after 3 Ga. The eruption of high-magnesian komatiites restricted to

the Archean implies mantle temperatures greater than 1650°C (which is the

estimated eruption temperature of these komatiites, see Richter, 1985). Given the

present day radiogenic heat production and the present day mantle temperature a

secular cooling in the order of 100° C/Ga is required to reach present day mantle

temperatures (Richter, 1985). From these bounding parameters the geothermal

gradients can be calculated (see Richter (1985) for details) leading to a

temperature of 600-800° C at 40 km depth. Similar values can be observed today

in active orogenic areas (Boak & Dymek, 1982). According to Philpotts (1990) the

geothermal gradient decreases non-linearly with depth. This decrease of the

thermal gradient can not be simulated, a nearly linear thermal gradient must be

used in the program SHEMAT resulting in somewhat lower temperatures in the

initial temperature field in the upper crust than the actual values during the

Archean.

A set of models has been calculated to obtain reasonable temperature gradients

for the background temperature (geothermal gradient) of the models. For this

reason a steady-state simulation has been performed where only the framing

variables have been set. These include basal heat flow, radiogenic heat

production, thermal capacity and a fixed temperature for the upper boundary. The

program SHEMAT calculated the thermal gradients produced by these framing

variables (see Fig. 10.4). The resulting geothermal gradients are in good
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concordance with values obtained from the literature (see e.g. Guillou et al., 1994;

Sclater et al., 1981 or Richter, 1985). These temperature gradients were used for

the actual modeling of the different geometries. As stated earlier the program used

is capable to calculate very complex models, that is, if parameters for different

rock properties are available.

Fig. 10.4 Calculated geothermal
gradient used for the modeling of
geometries.

Furthermore, the influence of thermally sealing (isolatory) layers (like komatiites) in

the greenstone belts was not taken into account. It may be possible that e.g.

komatiites with their reduced thermal capacity induce temperature reflections and

hence may provoke elevated temperatures below. In the presented models only

basic thermal criteria have been used to keep the models as simple as possible.

This means for example that the thermal conductivity of rock samples was

estimated as a “bulk” thermal conductivity without taking into account its

anisotropy depending on the geological situation (e.g. layering of greenstone belts,

foliated internal granitoids etc.).

10.3.3 Basal heat flow

The heat flux of the upper boundary layer during the Archean (mean surface heat

flow) was estimated around 41 mWm-2 (Rudnick et al., 1998). The thickness of the

crust, the mean surface heat production rate and the basal heat flow can be

correlated according to equation [14] (Lachenbruch, 1968; Saltus & Lachenbruch,

1991)

q0=qr+A0*D [14]
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with q0 as the upper heat flux, qr as the reduced heat flow (basal heat flow), A0 as

the mean surface heat production rate and D as the depth of qr (in this case the

thickness of the crust).

Different values for q0 and A0 have been used, the basal heat flow was averaged

at 0.025 Wm-2, this value was recorded by Guillou et al. (1994), Sclater et al.

(1981) or Richter (1985) for a reduced average heat flow for the boundary

between the continental crust and the upper mantle as well.

10.3.4 Metamorphic conditions around the Chinamora Batholith

The thermal modeling of the intrusion of the Chinamora Batholith has the aim to

compare modeled thermal isograds with actually observed isograds from

metamorphic conditions in the field. The metamorphic conditions in Archean

granite-greenstone environments typically show a low pressure – high temperature

metamorphic pattern. The Harare-Shamva area has been analyzed by Jelsma

(1993) on the basis of mineralogical and petrological data. He divided the

greenstone belts into three metamorphic zones: (i) low grade metamorphic zones

of greenschist-facies conditions, (ii) medium-grade metamorphic zones of low- to

medium grade amphibolit-facies and (iii) a high grade metamorphic zone of upper

amphibolite-facies. The low grade metamorphic zone is characterized by the

occurrence of white mica and chlorite in the metasedimentary and felsic

metavolcanic rocks. The medium-grade metamorphic zone is bound by the biotite

and garnet isograds and are characterized by the presence of white mica, biotite,

andalusite, chloritoid, staurolite, cordierite and garnet. The high-grade

metamorphic rocks contain in addition to other metamorphic minerals sillimanite,

andalusite, hornblende, clinopyroxene and garnet. The highest metamorphic

zones are found in the contact-area with the granitoid rocks of the Chinamora

Batholith, with increasing distance from the intrusion margin the maximum

temperatures during metamorphism decrease (Jelsma, 1993). The average

reached temperatures were calculated by Jelsma (1993) to lie around 450-500° C

for rocks in the low-metamorphic zones (approx. 5 km distance from contact area)

increasing to 550 ± 25° C in the medium metamorphic zones (1-5 km distance

from the contact) reaching up to 600 ± 25° C in the contact area of the greenstone

belt with the granitoid rocks of the Chinamora Batholith. The depths of the different
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zones was estimated to 1.5–2 kbar for the low-, 2.7 ± 0.5 kbar for the medium and

3.3 ± 1 kbar for the high grade metamorphic zone which corresponds to depths of

5-7 km, 9-11 km and 12-15 km, respectively.  These depths, at least for the

medium- and high-grade metamorphic zones, are greater than the estimated

stratigraphic thickness of the greenstone belt of approx. 10km. This discrepancy

can be explained by the observed snyclinal/anticlinal shape of the greenstone

belts adjacent to the intrusion. As stated earlier the greenstone belts have a

synformal shape around the batholith.

Fig. 10.5: Difference between actual and calculated
thickness of greenstone pile.

From Fig. 10.5 it is apparent that the estimated thickness from the stratigraphic

succession of the greenstone belt does not necessarily reflect the actual vertical

extent of the greenstones in the crust and hence the depth of intrusion but rather

gives a minimum depth of intrusion of the Chinamora Batholith. The estimated

pressure of the different metamorphic zones largely reflects the different

thicknesses of the successions of the greenstone pile.

Besides the general analyzes of the thermal environment of the different modeled

geometries the maximum reached temperatures in the models near the intrusions

are compared to the calculated metamorphic zones in the field.

A common feature of the different geometries is the relatively flat top of the

intrusions which is based on field evidence. The porphyritic granite is a thin sheet

on top of the gneissic granites with an elevation of +300 m compared to the

gneissic granites. Since the porphyritic granite (Chilimanzi-type) is much younger

than the gneisses the top of the gneisses must have been extremely flat before the

emplacement of the porphyritic granite.
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10.3.5 Thick geometry

From simple geometric analyzes it is apparent that if a balloon is the final

geometry of the Chinamora Batholith it would have expanded to a depth of 40 km

or more. Furthermore, the present day erosional level of the batholith must be

somewhere near the top of the intrusion since the surrounding greenstone belts

overlap the marginal areas of the batholith. Therefore the actual outcrop area of

the batholith is not its largest diameter. Depending on this the resulting spherical

intrusion would have definitely reached the upper mantle. This is highly unlikely

because it would have opened a source of nearly infinite new magma, taken into

account the cooling rate of such large magmatic bodies that would possibly result

in a complete melting of the crust.

Fig. 10.6: Thermal modeling of a thick magma body that may be associated with ballooning. See
text for explanations.

Therefore, the shape of the balloon probably would have been more or less lens-

shaped with an unknown thickness. The modeled geometry that may correspond

to the final shape of a ballooning or diapiric emplacement has a horizontal

diameter of 35 km and a vertical extent of 20 km. The total cooling time (time until

0

10

20

40
20 60

0

10

20

40
20 60

0

10

20

40
20 60

[km]

[km]

[km]

[km]

[km]

[km]

100000a

300000a

500000a

500°C

300°C

700°C

500°C

500°C

300°C

300°C

700°C

700°C

0

10

20

40
20 60

0

10

20

40
20 60

[km]

[km]

[km]

[km]

1 Ma

5Ma

500°C

500°C

300°C

300°C

700°C

700°C

0

100 200 300 400 500 600 700 800 [°C]



126

a steady-state situation is reached) of this geometry was estimated to be about ~7-

8 Ma which is far less than stated by other authors (e.g. Dirks & Jelsma (1998a)

still have temperatures of 570° C at a distance of 3 km from the contact area after

15 Ma when the surrounding country rock had initial temperatures of 400° C).

Temperature gradients at the top of the intrusion are very steep and lie in the

range of 100° C/1.5 km (in vertical direction). Fig. 10.6 shows that after 0.1 Ma of

cooling temperatures in the contact area (at 10 km depth) range between 500-

600° C while at a horizontal distance of 3 km temperatures are as low as 300° C.

Ongoing cooling of the main intrusive body affects the isotherms in a way that they

become more and more domal shaped with lower temperatures on top of the

intrusion as during the first time span but higher temperatures in the horizontal

distance. After 0.5 Ma of cooling temperatures in the contact area of the intrusion

(again at 10 km depth) have dropped to approx. 400° C while at a distance of 3 km

temperatures have risen to ~400° C. After 1 Ma of cooling the domal shaped

isotherms lower and the temperatures at the top of the intrusion as well as in the

horizontal distances decrease. Still, even after 1 Ma of cooling temperatures at 40

km depth are increased above 800° C which would probably result in the

generation of new melt and a constant replenishing of the magma chamber (Wyllie

et al., 1997).

10.3.6  Domal shaped geometry

A diapiric emplacement of the Chinamora Batholith includes a very large magmatic

body ascending through the crust to the site of final emplacement. This ascent of a

comparatively hot body through the crust will probably result in elevated

temperatures below the final site of emplacement. The actual ascent of the body

can not be simulated since the program SHEMAT is not capable to simulate an

upward moving body, therefore the elevated temperatures below the geometry

used for the modeling were included in the initial temperature field. The diameter

of the domal shaped geometry is set to approx. 35 km, the vertical extent is

simulated to 16 km. The difference to the thick geometry is (i) the thickness of the

modeled geometry and (ii) the elevated temperatures below the intrusive body.

The thickness of the modeled geometry seems to play a minor role concerning the
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cooling history if elevated temperatures in comparison to the thick geometry are

assumed. The cooling history of both geometries are comparable.

Fig. 10.7: Model of a domal shaped geometry with elevated temperatures below the intrusion. See
text for explanations.

If beneath the domal shaped geometry a “normal” temperature is assumed the

cooling is faster than with elevated temperatures leading to smaller thermal

gradients and hence to lower temperatures in horizontal distances to the contact

area. The elevated temperatures below the intrusion lead to higher temperatures

of up to 750-800° C at depths of 35-40 km after 0.5 Ma of cooling (see Fig. 10.7).

Even temperatures above 800° C are reached at depths of 35-37 km after 0.75 Ma

which again may result in the formation of new melt (Wyllie et al., 1997).

10.3.7 Thin sheet geometry

Another geometry has been simulated with a diameter of the comparatively thin

sheet of 35 km and a thickness of 10 km only. This geometry may correspond to

the shape of a blistering diapir but a magma chamber reflecting this shape may as

well be fed by dyke-like conduits. The reduced thickness seems to be necessary

to prevent the 800° C isotherm from being raised significantly which would result in
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temperatures capable of producing new magma at a depths of 40 km (~11 kb).

Peak temperatures in a (horizontal) distance from the contact area of 5 km at a

depth of 10 km reach ~350°-400° C after 0.5 Ma of cooling, at 3 km distance they

reach approx. 450°-500° C.

Fig. 10.8: Modeling of a thin sheet, see text for explanation.

Temperatures in the contact area reach 550 to 600° C at the beginning of the

simulation but temperatures in this area decrease below 500° C relatively early

(see Fig. 10.8). This matches the temperatures obtained from the thick and the

domal shaped geometries. The temperatures below the intrusion at a depth of 30

km or more are only slightly changed, the 700° C and 800° C isotherms are raised

slightly.

 10.3.8 Small scale intrusion geometry

Another possibility for the final emplacement of the Chinamora Batholith is the

ascent of more than one magmatic body. These magmatic bodies would have

thicknesses far less than the modeled thick or domal shaped geometries and

might even ascend during a longer time span. Modeled here are five

equidimensional intrusions, each with a diameter of 7 km and a depth of approx. 5

km. To keep the model simple they all intrude during a very close time span of a

few hundred years. The resulting isotherms differ from the other models.
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The 500° C isotherm is not affected until cooling of 0.15 Ma where it is slightly

raised, however the 600° C isotherm does not show any influence from the

intrusions (see Fig. 10.9). The overall temperatures at a horizontal distance of 3

km away from the contact area after 0.5 Ma is in the range of 300° C while 5 km

away from the contact area (both in 10 km depth) they do not exceed 250° C.

Directly in the contact area temperatures still may reach 600° C but only for a very

short time span at the beginning of the emplacement.

Fig. 10.9: Modeling of the small scale intrusions. See text for explanations.

Another possibility for small scale intrusions is a pulsed intrusion where the

different pulses do not intrude coeval.  The modeling includes three different

pulses, the first pulse intrudes in the center, the second pulse to the right of the

first and the third pulse to the left of the first magma body. Between each pulse 0.1

Ma of cooling was modeled. Since no evidence exists about the timing of the

different intrusions of the gneissic granites the time between the different pulses

was taken randomly. The modeling showed that this type of intrusion is not

sufficient to produce the observed temperatures in the surrounding host rock (see

Fig. 10.10), however, modeling resulted in a completely different cooling history

than did the coeval intrusions. Cooling is much slower and even after 5 Ma

significantly raised isotherms exist at depth.
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Fig. 10.10: Modeling of a pulsed intrusion

10.3.9 Conclusions from thermal modeling

The different modeled geometries show, that any emplacement mechanism

resulting in a thick geometry is unlikely since the isotherms at 40 km depth would

be high enough to produce new melt which would lead to constant replenishing of

the magma chamber. Since the thick and the domal shaped geometries only differ

from each other in their shape and temperature at depth this applies to both

modeled geometries and hence to both associated emplacement mechanisms.

From the simulated geometries it can be deduced that the isotherms in the upper

part of the intrusion are not significantly changed until the intrusion reaches a

thickness between 9 and 5 km. If the intrusion thickness is >= 10 km the isotherms

in the upper part are comparable, only in the lower parts of the intrusion between

20 and 40 km the thickness of the intrusion is of importance. The thicker the

intrusive body, the higher are the isotherms of 800° and even 900°C. At a

thickness of the intrusion of 20 km the 800° C isotherm reaches depths of approx.

35 km. Given the fact that the estimated crustal thickness during the Archean may

have been well below the modeled 40 km the 800° or even the 900°C isotherm
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would have reached depths of only 25-20 km which definitely would have resulted

in the formation of new magma.

The small intrusive bodies modeled (pulsed intrusion of small scale geometries)

were not able to produce the observed temperatures deduced from metamorphic

mineral assemblages. Their peak temperatures at a distance of 3 km away from

the contact only reached 300° - 400° C. The simulation that best fits the field

observations without raising the high-temperature isotherms unrealistically is the

model of the thin sheet that may be associated with the emplacement of the body

through dyking or to a blistering diapir. The temperatures reached with this

geometry during the simulations are in good concordance to the observed

metamorphic temperatures.

10.4 Constrains from age dating and thermodynamic modeling

The age dating of the granitoid rocks of the Chinamora Batholith has shown that

the estimated time span of intrusion of the porphyritic granite is approx. 50 Ma.

From field observations (e.g. erosional windows, orientation of foliation) and the

performed measurements (magnetic foliation and lineation) the estimated shape of

the porphyritic granite is that of a thin sheet. From the performed thermodynamic

modeling it is obvious, that the time span of intrusion of 50 Ma is more than long

enough for the porphyritic granite to intrude, emplace and cool down to

temperatures of approx. 500° C. If even the modeled thin sheet with a thickness of

10 km cools down to temperatures of 500° C after 5 Ma the porphyritic granite,

which probably was even thinner, needs even less time to cool. For the gneissic

granites and the equigranular granites no data is available for the time of intrusion

and hence no comparison of the cooling history with the modeled geometries is

possible.
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11. Summary and discussion

Based on the fabric, age coherence and structural relationships the different

lithologies have been based into i) the gneissic granites, ii) the equigranular

granites and iii) the porphyritic granite (where i is the oldest and iii the youngest

unit respectively). The erosional windows in the porphyritic granite that have been

assigned by Snowden (1976), Snowden & Bickle (1976) and Snowden & Snowden

(1979, 1981) to the possible basement have been assigned in this work to the

gneissic granites as well. They do show the same macroscopic, microscopic and

magnetic fabric as the gneissic granites, their lithology is comparable to the

gneissic granites. The only occurrence of possible basement is near the batholith

margin in the Umwindsi Shear Zone in the south-west of the batholith.

The gneissic granites in the marginal areas of the Chinamora Batholith can be

divided into the southern, northern and western gneissic granites. These units

show differences concerning their microscopic and magnetic fabric. While the

southern gneissic granites revealed a strong solid-state overprint of the magmatic

fabric that must be assigned to movement along the Umwindsi Shear Zone the

northern and western gneissic granites do not show such a strong overprint of

their magmatic fabric. Moreover, the magnetic fabric in the southern gneisses

shows preferred sub-horizontal dip of the respective magnetic lineation while the

magnetic foliation in this area generally has a steep to even vertical plunge. The

magnetic lineation is oriented subparallel to the Umwindsi Shear Zone. Away from

the Umwindsi Shear zone towards the contact area of the southern gneisses with

the porphyritic granite the macroscopic as well as magnetic foliation parallels the

outer margin of the pluton. In the western and the northern gneissic granites the

macroscopic as well as magnetic fabric usually parallels the outer contact area,

microscopic fabric only revealed a small amount of solid-state deformation. An

exception to the margin parallel trend occurs in the northern gneissic granites in

the Musana Communal Land area. This area showed nearly isotropic rocks with a

very weak macroscopic foliation trending E-W while the magnetic lineation has a

preferred radial orientation pointing away from the center of this area. Outside the

Musana Communal Land the magnetic and macroscopic foliation parallels this

inner boundary while the magnetic lineation points towards the outer margin of the

batholith.
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Geochemical analyzations of the gneissic granites showed a variable content of

both, major and trace elements in the different lithologies. However, a linear

relationship of the analyzed rocks from the lesser evolved southern gneissic

granites to the more evolved western and northern gneisses is obvious.

The determined age data of the gneissic granites is diverse, dating of zircons

resulted in three discordant ages ranging between 2.5 and 2.62 Ga. According to

Tilton (1960) the lower intercept age ranging between 63 and 555 Ma can not be

related to any world wide event and must be related to a constant, temperature

independent Pb-loss during time. This has been confirmed by Mezger & Krogstad

(1997). Ar/Ar dating of hornblende gave plateau ages of ~2.5 Ga for the gneissic

granites. Moreover, the dated hornblendes and zircons revealed different ages for

the different lithologies.

Finally, the modeling of the different intrusion geometries of the gneissic granites

gave evidence that the isotherms in the crust are raised significantly when

modeling a large magmatic body associated with a diapir or balloon. During

modeling of a set of small magmatic bodies (coeval emplacement or pulsed

intrusion) the metamorphic temperatures calculated from Jelsma (1993) were not

reached and hence this model as well is unlikely. The geometry that matches the

metamorphic temperatures without raising the lower isotherms unrealistically is

that of a relatively thin body (<15km) extending in horizontal direction.

The above described results of the different measurements seem to reject a

ballooning emplacement mechanism as was proposed by Ramsay (1989) for the

Chinamora Batholith. In addition, from a simply geometric point of view a balloon

usually is described as a roughly spherical body, transferred to the Chinamora

Batholith with its diameter of approx. 30 km and its estimated depth of

emplacement (10 – 12 km; Jelsma et al., 1993) a depth of at least 40 km would be

reached which is more than the estimated thickness of the archean Zimbabwean

crust (30 – 35 km; Blenkinsop et al., 1997) and therefore this geometry is highly

unlikely. Only a flattened shape of the balloon (or diapir) could be used as an

estimation of the final shape of emplacement. Jelsma (1993) measured strain

ellipses in the surrounding greenstone belt host rocks and found finite strain

ellipsoids that must be assigned to triaxial flatting strain which is not likely during a

ballooning batholith. Furthermore, the observed geometry of the greenstone belt

as described by Dirks & Jelsma (1998, a + b), Jelsma (1993), Jelsma et al. (1993)
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and Jelsma & Dirks (2000) resembling a tricuspate synform seems to point to an

upward deflection of the successions which is typical for a diapiric rise of magma

(Clemens et al., 1997). However, this upward deflection of the greenstones may

be assigned to any mechanism that either lets magma forcefully ascend to its final

site of emplacement or inflates the magma chamber at its site of emplacement and

hence pushes the overburden upward. Dyking may be a reasonable mechanism of

emplacement for the Chinamora Batholith since it could produce the most likely

geometry observed in the thermal modeling. Petford et al. (1993) or Pitcher &

Berger (1972) have shown that even very large batholiths can be constructed by

dyking through continuous or intermittent feeding of the magma chamber. The

latter seems to be a good model for the formation of the Chinamora Batholith. This

model of emplacement could also explain the geochemical analyzes since the

intermittent feeding would leave enough time for the deep seated magma chamber

to evolve by fractional crystallization. Partial (?batch?) melting of the crust at depth

would be another explanation that may produce the observed lithologies when

magma ascends through dyking. Since more than one dyke at a time may be

responsible for the magma ascend (Petford et al., 1993; Paterson, 1996; Cory,

1998) the resulting small plutons may have ascended independently from each

other. It is cogitable that this simultaneous ascend and emplacement must

thermally be treated in the same way such as one large yet, compared to its lateral

extend, thin magmatic body. It has been shown for the Papoose Flat pluton that a

translation of wall rocks in the kilometer scale is possible for the estimated

overburden of 6.4 – 9.6 km (Morgan et al., 1998).

Some of the observations are not conform with the dyking model. According to

Marsh (1982) due to the fast ascend velocity during dyking xenoliths should be

carried up with the magma and should be visible in the field. Since the present

outcrop must be in the roof area of the batholith xenoliths must not necessarily be

present.

Another possible way of emplacement of the different lithologies of the Chinamora

Batholith is that of a blistering diapir making up the composite batholith. This

model describes the ascend of a diapir that expands outward and pushes the

overburden upward (Sylvester, 1978).

Both of these models would largely explain the observed features of the gneissic

granites and the surrounding host rocks of the Chinamora Batholith. The observed
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magnetic and macroscopic fabric in the gneissic granites remains to a certain

degree inexplicable. While the dip and plunge of the fabric in the southern gneissic

granites is related to movement of the Umwindsi Shear zone the distinct E-W trend

of the magnetic lineation in the other gneissic granites can not be assigned to this

movement or solely be explained by the emplacement mechanism. Interestingly,

the same orientation of lineations have been found by Jelsma & Dirks (2000) in the

surrounding greenstone belts as well as in other greenstone belts in the northern

Zimbabwe Craton (Dindi and Makaha). This must be taken as evidence that this

orientation is not related to the emplacement of the granitoid bodies but must be

related to some far-field regional tectonic stress field. Since this orientation of the

fabric is consistent in the equigranular granites, the implications of this orientation

will hence be discussed later in this chapter.

The equigranular granites in the west of the batholith basically resemble the same

fabric as the northern and western gneissic granites. Their magnetic lineation

trends E-W while their magnetic and macroscopic foliation is margin parallel in the

contact area to the greenstone belts. The geochemical analyzes of this unit

revealed a more evolved granitic composition than that of the gneissic granites.

This is confirmed by the age of this unit since it is regarded as being younger than

the gneissic granites but older than the porphyritic granite (e.g. Baldock, 1991;

Jelsma, 1993 or Jelsma & Dirks, 2000). Due to the comparable internal

macroscopic and magnetic fabric to the gneissic granites it seems obvious that

this setting reflects the same ascend and emplacement mechanism as the fabric in

the gneissic granites.

The preferred E-W orientation of the magnetic lineation in both, the gneissic

granites and the equigranular granites points to an origination due to a far field

tectonic event. According to the model of Jelsma & Dirks (2000) on the formation

of the archean Zimbabwe Craton this lineation reflects the transport direction

during the first deformational event (D1). Jelsma & Dirks (1998b) proposed

horizontal accretion of juvenile crust during D1 which led to the stabilization of the

Zimbabwe craton, the deformation associated with the emplacement of the

granitoids (D2) may be coeval with D1. According to their model the stacking of

relatively hot, juvenile crustal fragments would have resulted in a strongly

disturbed geothermal gradient. Following D1 this crustal geothermal gradient was

restored to an equilibrium leading to extensive partial melting of large parts of the
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crust and hence give a source to the observed batholiths. This model is rejected

by Ridley et al. (1998) and Blenkinsop (1998) due to the proposed long time span

during stacking of the crust and beginning of melting (20 – 50 Ma; Jelsma & Dirks,

1998b). However, the observed preferred alignment of magnetic lineations in the

Chinamora Batholith and the similar orientation of macroscopic lineations in the

surrounding Harare-Shamva greenstone belt and other greenstone belts in

northern Zimbabwe cannot be explained solely by the ascending and emplacing

granitoid bodies in the northern Zimbabwe Craton but rather reflects a syn-tectonic

emplacement of these units. A comparable setting was observed for the Papoose

Flat pluton from Sylvester et al. (1978) who postulated a perpendicular orientation

of strain to the wall rocks during the inflation of the pluton but found orientations of

the fabric subparallel to regional fabric as well. They assigned this readjustment of

internal fabric to an overprint during the waning stages of pluton emplacement

where the internal strain is overprinted by a regional stress field.

The porphyritic granite in the center of the batholith is the youngest lithological unit

in the Chinamora Batholith, Jelsma (1993) compared the porphyritic granite with

the Chilimanzi type granites in the Zimbabwe Craton. The age data is confirmed

by their evolved geochemical signature. The occurrence of erosional windows to

the underlying gneisses in the porphyritic granite and the numerous small

occurrences of porphyritic granite on the southern gneissic granites points to a thin

sheet rather than a thick body extending vertically to depth (e.g. Baldock, 1991;

Jelsma, 1993). Furthermore, the Inyauri Xenolith in the porphyritic granite has

been interpreted as a Xenolith inside the porphyritic granite, but from field

evidences it must be seen as a xenolith in the gneissic granites. This is confirmed

by the magnetic and macroscopic foliation that seems not to be reflected from the

Inyauri Xenolith. The magnetic lineation and foliation in the porphyritic granite

tends E-W in the southern part and turns to a preferred ENE-WSW orientation in

the northern part. The macroscopic foliation is subparallel to the magnetic foliation.

This fabric and field relationships from the erosional windows are best explained

with a laccolith-like emplacement of the porphyritic granite that has the overall

form of a NNW-verging laccolith with moderate inclinations of the foliation in the

south and steep inclinations in the northwest (Becker et al., 2000). The geographic

extension of the porphyritic granite is consistent with experiments performed by

Roman-Berdiel et al. (1995) who found a linear relationship of the thickness of the
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laccolith, the diameter of the intrusion and the thickness of the overburden. If this

linear relationship is extrapolated and applied to the actual diameter of the

Chinamora Batholith the estimated thickness of the overburden is approx. 12 km

which is consistent with estimates from Jelsma et al. (1993) concerning the

intrusion depth. The thickness of the laccolith should not exceed approx. 3 km

(Roman-Berdiel et al., 1995). Recently, Blenkinsop et al. (1999) described folding

of schlieren, pegmatite layers and sub-phase contacts in the porphyritic granite as

a product of syn-magmatic folding with wave-lengths of several meters. The

orientation of their fold-axes is subparallel to the orientations of the measured

magnetic lineations. The measured magnetic as well as macroscopic foliation

does not support large-scale folding because of the stable moderate inclination

throughout most of the batholith but it may be quite possible that this folding

represents local folding during e.g. magmatic welling.
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Appendix I

Sample location
(Coordinates given in UTM-Grid)

JB1 0331700-8056625 JB49 0325164-8073021
JB2 0331559-8053335 JB50 0323624-8072598
JB3 0328743-8053468 JB51 033285-806855
JB4 0326091-8053983 JB52 03316-80677
JB5 0325605-8053018 JB53 03300-80713
JB6 0324709-805620 JB54 0326593-8072663
JB7 0329639-8057290 JB55 0329101-8071208
JB8 0331992-8058276 JB56 0329980-8072414
JB9 0331726-8059715 JB57 0328690-8074876
JB10 0336182-8060511 JB58 0322913-8074653
JB11 0326070-8059566 JB59 0322654-8075648
JB12 0325857-8061393 JB60 0326724-8075956
JB13 0325456-8062377 JB60 0318505-8078098
JB14 0324017-8063045 JB62 0320693-8079155
JB15 0322172-8066462 JB63 0324205-8079310
JB16 0319857-8065345 JB64 0317839-8079048
JB17 0318722-8064956 JB65 03284-80788
JB18 0317591-8063683 JB66 0321758-8076996
JB19 0316015-8061932 JB67 0318873-8076325
JB20 0316375-8058831 JB68 0317052-8075918
JB21 0317249-8060815 JB69 0320697-8075129
JB22 0311697-8059374 JB70 0331246-8075172
JB23 0309567-8061865 JB71 0332526-8072355
JB24 0312706-8057349 JB72 0329686-8062925
JB25 0315413-8053895 JB73 0315571-8079650
JB26 0318098-8051655 JB74 0310103-8077539
JB27 0316046-8056040 JB75 0306266-8074778
JB28 0320541-8053743 JB76 0326270-8063795
JB29 0313689-8054109 JB77 0326963-8064311
JB30 0322656-8056303 JB78 0325514-8065109
JB31 0322471-8056207 JB79 0316363-8065599
JB32 0322643-8062732 JB80 0317292-8065941
JB33 0320656-8060417 JB81 0304223-8073070
JB34 0321101-8056795 JB82 030465-806975
JB35 0320425-8058078 JB83 0307631-8070489
JB36 0305604-8052477 JB84 0309622-8071888
JB37 0302949-8056485 JB85 0310350-8074650
JB38 0316016-8048107 JB86 0311343-8072353
JB39 0320215-8045844 JB87 0314225-8071798
JB40 0322663-8047418 JB88 0317952-8068476
JB41 0325092-8050167 JB89 0316157-8069548
JB42 0322084-8050111 JB90 0318275-8071655
JB43 0321194-8072006 JB91 0317300-8073319
JB44 0321195-8073411 JB92 0316001-8070952
JB45 0322397-8069711 JB93 0313754-8075492
JB46 0321798-8068060 JB94 0316056-8075562
JB47 0325713-8069136 JB95 0313878-8077157
JB48 0326433-8070503 JB96 0309252-8068813
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JB97 0310713-8067082 JB149 0295464-8052665
JB98 0311020-8067882 JB150 0298454-8055530
JB99 0309671-8063331 JB151 0298774-8055875
JB100 0308540-8064701 JB152 0299154-8054850
JB101 0305385-8068212 JB153 0296870-8054384
JB102 0304917-8065718 JB154 0294819-8053696
JB103 0306323-8065849 JB155 0301237-8051741
JB104 0303247-8062704 JB156 0300429-8053051
JB105 0305034-8063368 JB157 0302781-8052047
JB106 0306354-8060331 JB200 0326529-8072805
JB107 0307661-8057734 JB201 0326874-8072125
JB108 0302097-8051674 JB202 0327224-8067133
JB109 0292500-8052900 JB203 0326915-8064287
JB110 0293600-8051500 JB204 0324877-8073857
JB111 0306555-8054170 JB205 0326637-8075322
JB112 0308373-8053793 JB206 03128-80567
JB113 0310705-8054116 JB207 0315668-8053269
JB114 0310502-8056941 JB208 0322756-8056430
JB115 0306195-8058224 JB209 0323904-8063083
JB116 0305645-8059974 JB210 0336182-8060011
JB117 0304290-8058968 JB211 03387-80592
JB118 0302926-8055717 JB212 0333-80521
JB119 0302952-8054038 JB213 0329208-8048079
JB120 0300507-8056408 JB214 03249-80497
JB121 0301441-8062176 JB215 0322312-8059456
JB122 0300685-8060247 JB216 0316570-8046909
JB123 0300600-8059743 JB217 02977-80507
JB124 0301291-8058384 JB218 0303-80557
JB125 0298039-805756 JB219A 0303952-8070804
JB126 0296636-8058854 JB219b 0321309-8072192
JB127 0305596-8051193 JB220a 0322252-8069500
JB128 0305860-8045122 JB220b 0318772-8064955
JB129 0306736-8041433 JB221 0318650-8064775
JB130 0289735-8051710 JB222 0316853-8063895
JB131 0297041-8066051 JB223 0313267-8061514
JB132 0297271-8065647 JB224 03112-80634
JB133 0297508-8066610 JB225 0309605-8062091
JB134 0298722-8065295 JB226 0308855-8058858
JB135 0289364-8061017 JB227 0306768-8056815
JB136 0290858-8061934 JB228 0302097-8051674
JB137 0291119-8063047 JB229 0303641-8063004
JB138 0292713-8061300 JB230 0304243-8051845
JB139 0296193-8060112 JB231 0305084-8052223
JB140 0294787-8059325 JB232 0305868-8052701
JB141 0291295-8060157 JB233 0302375-8055707
JB142 0294533-8062448 JB234 0301088-8056474
JB143 0296429-8063437 JB235 0309012-8052130
JB144 0289800-8060000 JB236 0309054-8051818
JB145 0294136-8057136 JB237 0310000-8048653
JB146 0292900-8056735 JB238 0310580-804889
JB147 0291500-8054758 JB239 0308824-805665
JB148 0292855-8054558 JB240 0311037-8058403
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JB241 0313741-8054124 JB288 0309390-8068829
JB242 0316721-8050413 JB289 0310580-8067075
JB243 0319716-8052927 JB290 0305242-8068967
JB244 0320650-8056746 JB291 0289469-8060964
JB245 0322344-8054610 JB292 0290822-8061855
JB246 0326106-8059548 JB293 0292682-8061064
JB247 0324844-8063963 JB294 0289853-8060450
JB248 0326257-8063802 JB295 0289737-8060885
JB249 0325517-8065098 JB296 0303665-8072879
JB250 0322419-8069692 JB297 0305207-8068294
JB251 0322412-8062948 JB298 0303285-8062723
JB308 03388-80593 JB299 0310287-8072844
JB309 03249-80497 JB300 0313643-8075542
JB310 0320952-8061937 JB301 0314275-8071875
JB311 0316456-8059619 JB302 0314650-8071154
JB312 0316306-805816 JB303 0319742-8052174
JB252 0322601-8061310 JB304 0328666-8053420
JB253 0325282-8059165 JB305 0326118-8047513
JB254 0327682-8058806 JB306 0319344-8049058
JB255 0331781-8059864 JB307 033875-805928
JB256 0335678-8060447
JB257 0335620-8060518 x1 03387-80592
JB258 0332347-8060761
JB259 0332604-8057330
JB260 0332260-8057041
JB261 0330975-8054154
JB262 0331713-8053497
JB263 0332067-8052835
JB264 0331302-8051237
JB265 0315336-8048960
JB266 0313678-8048389
JB267 0310603-8052364
JB268 0326210-8078930
JB269 0321710-8077045
JB270 0321542-8076397
JB271 0315660-8079619
JB272 0308790-8078057
JB273 0306448-8074705
JB274 0304263-8073123
JB275 030567-8071793
JB276 0307600-8070474
JB277 0309484-8071940
JB278 0309412-8071493
JB279 0311409-8072253
JB280 0313479-8075235
JB281 0315102-8076310
JB282 0317925-8076214
JB283 0314084-8072241
JB284 0314694-8071137
JB285 0316027-8070981
JB286 0317941-8071279
JB287 0317394-8067734
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Appendix II
Orientation in

AMS-
data

geographic system

Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
x1 332/17 594.36 1.041 1.099 1.148 0.409 0.38 58/4 266/86 148/2
x3 340/7 588.82 1.006 1.11 1.133 0.886 0.88 89/36 250/52 352/9
x4 306/3 1225.18 1.15 1.402 1.634 0.415 0.313 214/35 32/55 123/1
x5 232/4 2857.66 1.127 1.269 1.44 0.332 0.251 228/52 35/37 130/6
x6I 338/4 7301.56 1.21 1.513 1.856 0.369 0.234 217/55 18/33 114/9
x6II 338/4 1626.39 1.078 1.18 1.28 0.375 0.322 214/48 38/42 306/2
x6III 338/4 1212.28 1.073 1.211 1.311 0.46 0.408 210/24 16/66 118/5
x9BI 70/22 2774.82 1.23 1.108 1.371 -0.34 -0.407 68/17 164/18 297/65
x9II 64/21 4685.06 1.351 1.043 1.453 -0.753 -0.788 41/15 139/25 283/60
x10I 48/22 3353.35 1.279 1.077 1.398 -0.537 -0.592 36/14 140/45 294/42
x10II 48/22 4848.15 1.241 1.11 1.386 -0.35 -0.419 40/16 131/2 228/74
x11B 68/30 3516.04 1.277 1.092 1.411 -0.471 -0.534 68/28 161/7 264/62
jb1a 132/6 470.49 1.085 1.032 1.124 -0.446 -0.469 79/3 170/4 311/85
jb1c 128/5 442.52 1.073 1.041 1.118 -0.275 -0.3 82/2 351/29 177/61
jb2b 54/9 3341.58 1.557 1.286 2.02 -0.276 -0.429 285/3 16/10 180/79

jb3aA 86/5 919.29 1.05 1.057 1.11 0.067 0.041 81/13 172/3 275/77
jb3bA 142/12 1145.49 1.045 1.11 1.165 0.406 0.375 123/17 216/10 334/70
jb3bB 136/10 914.92 1.062 1.07 1.136 0.056 0.024 110/10 20/4 269/80
jb4aA 157/32 707.24 1.117 1.05 1.177 -0.39 -0.424 78/4 294/85 168/3
jb4aB 156/30 899.9 1.145 1.069 1.228 -0.339 -0.383 76/3 175/73 345/17
jb4bB 248/77 600.93 1.11 1.065 1.184 -0.25 -0.288 277/5 85/85 187/1
jb4bA 249/72 929.06 1.13 1.052 1.194 -0.415 -0.45 101/7 242/81 11/6
jb4cC 171/74 2270.8 1.09 1.148 1.253 0.232 0.179 64/3 326/69 155/21
jb4bC 244/75 640.06 1.1 1.021 1.132 -0.649 -0.666 96/13 342/59 193/27
jb4cAI 174/70 3430.11 1.089 1.125 1.227 0.161 0.111 236/15 10/68 142/15
jb4cAII 174/70 3048.98 1.098 1.167 1.284 0.246 0.188 238/12 358/66 144/20
jb4cB 169/75 3285.24 1.099 1.146 1.261 0.181 0.125 53/24 285/54 155/25
jb5aC 146/25 399.73 1.053 1.039 1.095 -0.143 -0.165 294/24 50/44 185/36
jb5bA 48/27 6240.78 1.138 1.08 1.233 -0.254 -0.302 260/3 350/9 148/81
jb5bC 52/24 4357.11 1.042 1.07 1.116 0.245 0.219 300/9 35/31 196/57
jb6aAI 15/47 5684 1.05 1.108 1.166 0.356 0.322 99/4 8/14 206/75
jb6aAII 15/47 4885.85 1.06 1.08 1.145 0.143 0.109 99/6 5/30 199/59
jb6aAIII 15/47 5037.44 1.076 1.05 1.131 -0.199 -0.229 109/1 18/34 200/56
jb6aB 16/50 5132.77 1.078 1.032 1.116 -0.405 -0.428 286/16 19/12 146/70
jb6bA 268/40 5642.12 1.056 1.062 1.121 0.049 0.021 313/6 44/13 198/76
jb6bBI 272/39 4781.15 1.051 1.079 1.135 0.212 0.182 310/2 40/9 209/81
jb6bBII 272/39 4434.91 1.071 1.028 1.105 -0.423 -0.442 143/1 53/5 243/85
jb7aA 36/10 4398.08 1.121 1.117 1.252 -0.017 -0.073 223/3 121/77 313/13
jb7aBI 29/10 4088.49 1.123 1.136 1.276 0.044 -0.016 234/8 114/74 326/13
jb7aBII 29/10 3094.05 1.133 1.081 1.227 -0.23 -0.278 235/7 132/61 329/28
jb7aC 30/5 4288.58 1.155 1.131 1.307 -0.08 -0.146 234/13 102/71 327/14
jb8aAI 16/4 4784.26 1.262 1.216 1.535 -0.087 -0.192 108/12 2/54 206/34
jb8aAII 16/4 3499.88 1.241 1.209 1.5 -0.065 -0.165 105/12 358/55 203/33
jb8aBI 313/6 50.28 1.141 1.232 1.41 0.226 0.144 250/41 46/47 149/12
jb8aBII 313/6 639.45 1.027 1.129 1.17 0.644 0.622 333/47 85/19 190/36
jb8aBIII 313/6 1061.94 1.046 1.2 1.272 0.606 0.569 101/14 349/55 199/31
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb8aBIV 313/6 117.13 1.082 1.071 1.159 -0.067 -0.103 310/46 84/34 192/25
jb8aCI 347/7 1512.3 1.158 1.215 1.408 0.139 0.055 110/13 5/49 211/38
jb8aCII 347/7 1202.54 1.078 1.09 1.175 0.068 0.027 119/4 218/65 27/24
jb8aCIII 347/7 48.65 1.082 1.059 1.146 -0.156 -0.189 64/9 334/5 216/80
jb8aCIV 347/7 589.62 1.08 1.169 1.267 0.34 0.288 117/16 233/57 18/28
jb9bA 216/86 2851.16 1.179 1.067 1.266 -0.437 -0.483 100/7 9/12 219/76
jb9bB 220/87 2929.25 1.184 1.056 1.262 -0.511 -0.551 283/2 13/10 182/80
jb9bCI 220/83 2073.97 1.077 1.146 1.237 0.296 0.247 85/6 354/3 234/83
jb9bCII 220/83 3203.84 1.207 1.087 1.32 -0.387 -0.443 95/9 186/4 297/80
jb9bD 214/84 2646.72 1.173 1.07 1.263 -0.402 -0.449 99/1 9/4 204/86
jb11aB 314/5 1198.14 1.131 1.06 1.203 -0.359 -0.398 59/5 326/36 156/53
jb11aCI 294/5 956.94 1.121 1.148 1.288 0.096 0.033 255/4 348/39 160/51
jb11aCII 294/5 1361.99 1.114 1.104 1.23 -0.041 -0.093 257/7 353/40 159/49

jb12b 242/2 326.3 1.007 1.059 1.073 0.794 0.788 60/20 322/22 188/60
jb12c 185/6 1799.47 1.17 1.008 1.204 -0.909 -0.916 273/1 181/54 4/36

jb13aA 96/25 2625.14 1.165 1.034 1.22 -0.641 -0.668 258/7 164/31 0/58
jb13aB 85/27 2915.22 1.184 1.039 1.247 -0.631 -0.661 81/2 172/14 341/76
jb13aC 94/29 2370.61 1.138 1.055 1.208 -0.412 -0.45 83/5 180/56 350/34
jb13aD 78/24 2081.83 1.191 1.043 1.259 -0.609 -0.642 89/7 193/61 355/28
jb14aAII 296/86 2936.84 1.139 1.036 1.19 -0.573 -0.6 293/1 203/32 24/58
jb14aA 296/86 2331.79 1.143 1.057 1.215 -0.415 -0.453 298/4 208/2 92/86
jb14aB 304/83 2861.31 1.138 1.018 1.174 -0.759 -0.774 300/8 199/54 35/35
jb14c 313/80 2521.51 1.16 1.041 1.219 -0.575 -0.606 313/7 220/24 58/65

jb16aAI 158/85 1236.72 1.027 1.044 1.072 0.23 0.213 25/30 137/33 263/42
jb16aAII 158/85 1652.44 1.022 1.064 1.091 0.48 0.464 22/25 129/31 261/48
jb16aAIII 158/85 1705.52 1.018 1.087 1.114 0.647 0.632 43/29 144/19 263/54
jb16aBI 162/83 1012.8 1.032 1.026 1.059 -0.112 -0.126 37/13 138/39 292/48
jb16aBII 162/83 872.03 1.01 1.041 1.055 0.606 0.598 65/35 160/7 259/54
jb16aBIII 162/83 763.75 1.049 1.017 1.07 -0.469 -0.481 349/4 86/57 256/32
jb16aBIV 162/83 1249.74 1.04 1.024 1.066 -0.255 -0.27 2/4 96/50 269/40

jb17a 334/7 2450.18 1.056 1.038 1.096 -0.191 -0.213 107/6 198/10 345/78
jb17bI 278/1 2855.02 1.135 1.023 1.174 -0.697 -0.715 129/2 221/44 38/46
jb17bII 278/1 2369.38 1.052 1.046 1.101 -0.056 -0.08 118/10 209/4 320/80
jb17c 269/1 1873.4 1.051 1.043 1.096 -0.083 -0.106 113/4 204/14 7/76
JB17d 288/5 1859.41 1.05 1.044 1.097 -0.066 -0.089 122/3 213/14 20/75
jb18a 90/6 975.85 1.057 1.036 1.096 -0.219 -0.24 101/13 204/45 358/42
jb18b 44/4 682.32 1.061 1.008 1.076 -0.754 -0.761 95/11 262/79 4/2
jb18c 110/6 1139.58 1.053 1.041 1.097 -0.123 -0.146 110/17 214/38 2/47
jb18d 271/5 1169.05 1.06 1.032 1.095 -0.302 -0.322 102/20 214/46 356/38
jb19a 72/17 287.26 1.004 1.02 1.026 0.655 0.652 21/54 124/9 220/34
jb19b 78/19 879.16 1.067 1.051 1.122 -0.137 -0.165 121/33 9/30 247/43
jb19c 84/19 1331.8 1.037 1.055 1.094 0.191 0.169 119/24 24/11 272/64
jb19d 52/5 2558.65 1.054 1.034 1.091 -0.222 -0.243 109/19 205/19 337/63
jb20a 106/6 1117.05 1.11 1.092 1.212 -0.082 -0.129 272/12 174/31 20/56
jb20b 130/6 237.88 1.021 1.054 1.079 0.434 0.419 266/2 359/52 175/38
jb20b 130/6 237.49 1.035 1.045 1.082 0.127 0.108 86/1 355/39 178/51
jb20c 152/7 119.68 1.018 1.012 1.03 -0.198 -0.205 171/58 341/32 74/5
jb20d 134/8 1690.86 1.046 1.172 1.238 0.559 0.523 259/9 167/11 29/76
jb21a 220/1 2341.64 1.07 1.054 1.128 -0.122 -0.152 290/10 21/5 137/78
jb21b 281/1 3386.26 1.076 1.023 1.106 -0.521 -0.539 107/6 17/4 251/83
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jb21c 341/1 2980.89 1.07 1.033 1.108 -0.352 -0.374 104/7 194/7 328/80
jb21d 35/5 4131.92 1.093 1.046 1.146 -0.33 -0.359 107/0 17/7 199/83
jb21e 70/4 3519.71 1.07 1.035 1.109 -0.322 -0.345 117/6 23/35 215/55
jb22a 144/10 2425.28 1.05 1.111 1.171 0.367 0.333 42/41 213/49 309/5
jb22b 126/6 2919.47 1.058 1.048 1.109 -0.097 -0.123 83/36 196/28 313/41
jb22c 144/6 7856.8 1.027 1.076 1.109 0.464 0.444 63/9 154/6 277/79
jb22d 136/10 8303.94 1.026 1.144 1.188 0.675 0.653 247/3 156/26 342/64
jb22e 134/11 6121.22 1.055 1.041 1.099 -0.143 -0.166 71/29 188/38 315/38
jb23a 18/2 6006.66 1.079 1.079 1.165 0.002 -0.036 263/7 3/55 169/34
jb23b 114/3 4968.14 1.104 1.05 1.163 -0.336 -0.369 89/2 326/87 180/3
jb23c 16/3 4246.81 1.073 1.081 1.159 0.048 0.011 260/3 356/65 169/25
jb23dI 50/3 3624.84 1.072 1.075 1.153 0.022 -0.014 88/2 343/80 178/9
jb23dII 21/2 4783.7 1.082 1.079 1.168 -0.021 -0.06 60/7 313/68 152/21
jb23eI 64/4 5257.77 1.094 1.053 1.153 -0.271 -0.303 268/10 9/47 169/42
jb23eII 64/4 4001.46 1.044 1.104 1.156 0.392 0.361 269/5 16/72 177/17
jb23eIII 64/4 4470.1 1.049 1.072 1.125 0.178 0.15 272/8 28/72 179/16
jb23fI 53/4 3613.16 1.056 1.081 1.142 0.174 0.142 273/26 67/61 178/11
jb23fII 53/4 5712.18 1.074 1.059 1.138 -0.111 -0.142 274/18 44/64 178/19
jb24a 44/1 86.12 1.001 1.013 1.016 0.833 0.832 127/33 352/47 234/24
jb24b 198/6 2655.16 1.01 1.02 1.031 0.343 0.337 118/40 311/49 214/6
jb24c 174/11 941.75 1.003 1.016 1.021 0.696 0.694 97/49 274/41 5/2
jb24d 21/2 252.11 1.004 1.013 1.018 0.533 0.53 82/65 271/25 179/3
jb24e 221/6 1797.02 1.015 1.011 1.027 -0.179 -0.185 264/3 173/23 0/66
jb25bI 196/5 1187.72 1.053 1.048 1.104 -0.046 -0.071 51/21 158/37 297/46
jb25bII 196/5 1164.27 1.123 1.033 1.169 -0.564 -0.589 66/40 270/47 167/12
jb25bIII 196/5 572.83 1.076 1.088 1.172 0.069 0.029 280/6 29/72 188/17
jb25d 306/5 31573.45 1.145 1.048 1.208 -0.483 -0.517 105/25 243/58 5/19
jb25e 86/2 56781.46 1.17 1.034 1.226 -0.645 -0.673 116/15 359/59 213/26
jb26a 37/12 527.7 1.038 1.061 1.103 0.226 0.203 122/56 272/30 11/14
jb26c 25/3 439.61 1.013 1.087 1.111 0.724 0.713 132/62 258/17 355/21
jb27a 73/6 1635.52 1.02 1.069 1.095 0.54 0.524 80/1 170/2 323/88
jb27b 97/2 2018.7 1.042 1.02 1.063 -0.356 -0.369 72/17 172/28 314/56
jb28a 268/4 1871.71 1.011 1.07 1.088 0.727 0.718 271/10 5/22 157/66
jb28b 220/2 1891.01 1.022 1.031 1.053 0.164 0.152 271/34 29/34 150/37
jb28c 274/2 4596.04 1.063 1.056 1.123 -0.055 -0.084 12/34 107/8 209/55
jb28d 267/5 2065.11 1.031 1.031 1.063 0.006 -0.009 9/27 230/56 109/19
jb28e 288/6 2550.52 1.007 1.095 1.116 0.853 0.846 254/28 353/17 110/57
jb29a 41/1 552.14 1.055 1.055 1.026 -0.061 -0.074 104/21 214/41 354/41
jb29b 174/2 705.25 1.023 1.038 1.063 0.242 0.228 104/21 239/61 6/19
jb29c 307/7 1885.83 1.047 1.028 1.077 -0.242 -0.259 105/11 216/62 10/26
jb30aI 108/31 30669.53 1.113 1.108 1.026 -0.494 -0.513 324/28 55/2 149/61
jb30aII 108/31 30290.34 1.287 1.287 1.15 0.111 0.048 329/32 228/18 114/52
jb30b 114/33 4226.34 1.067 1.013 1.087 -0.665 -0.676 298/11 29/4 139/78
jb30d 124/16 4943.08 1.013 1.014 1.028 0.033 0.026 20/0 110/52 289/38
jb31a 274/4 1129.68 1.031 1.057 1.091 0.297 0.277 31/60 210/30 300/1
jb31c 324/6 534.85 1.042 1.029 1.072 -0.181 -0.198 16/46 283/3 190/43
jb31d 271/4 464.86 1.011 1.027 1.039 0.437 0.43 275/18 18/34 162/50
jb31d 271/4 366.84 1.02 1.023 1.044 0.079 0.068 268/8 8/51 172/38
jb32a 116/3 153.46 1.037 1.037 1.024 0.295 0.286 293/6 202/5 75/82
jb32b 36/2 68.3 1.042 1.042 1.02 -0.03 -0.04 100/7 0/55 194/35
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jb32c 322/2 131.03 1.018 1.053 1.075 0.486 0.473 330/0 240/36 60/54
jb33a 159/2 4965.7 1.066 1.107 1.182 0.227 0.187 275/22 146/58 15/22
jb33b 258/7 1921.23 1.061 1.101 1.17 0.235 0.198 294/4 35/71 203/18
jb33c 217/2 236.6 1.057 1.013 1.076 -0.615 -0.626 103/16 352/52 204/34
jb34a 79/6 307.57 1.023 1.03 1.054 0.136 0.123 272/6 4/19 164/70
jb34c 223/6 1553.88 1.01 1.162 1.197 0.871 0.861 37/3 307/4 162/85
jb35a 224/7 2625.22 1.045 1.155 1.218 0.534 0.5 108/20 334/63 205/18
jb35b 192/2 1402.6 1.071 1.046 1.121 -0.202 -0.229 99/22 265/68 7/5
jb35c 39/4 940.49 1.044 1.054 1.101 0.096 0.072 106/38 295/51 199/4
jb36a 32/2 2610.6 1.083 1.018 1.11 -0.632 -0.646 91/12 186/21 332/65

jb37aAI 96/7 1494.02 1.126 1.167 1.316 0.13 0.063 290/3 189/75 20/14
jb37aAII 96/7 1248.43 1.05 1.033 1.085 -0.211 -0.231 89/21 282/69 181/4
jb37aAIII 96/7 1247.25 1.081 1.06 1.146 -0.147 -0.18 278/10 160/70 11/18
jb37aBI 100/6 711.94 1.043 1.039 1.084 -0.048 -0.068 62/14 321/35 170/52
jb37aBII 100/6 581.98 1.095 1.006 1.115 -0.875 -0.88 93/4 228/84 3/4
jb37aBIII 96/7 1402.71 1.049 1.068 1.121 0.163 0.135 134/11 225/5 340/77
jb37aCI 286/85 1185.84 1.064 1.018 1.087 -0.554 -0.568 186/70 297/7 29/18
jb37aCI 106/5 1185.84 1.064 1.018 1.087 -0.554 -0.568 266/3 162/77 357/12
jb37aCII 106/5 982.88 1.065 1.049 1.117 -0.142 -0.169 273/2 181/39 5/51
jb37aD 104/6 1098.1 1.029 1.031 1.061 0.046 0.032 70/2 160/12 329/78
jb37aDI 104/6 929.22 1.048 1.06 1.112 0.109 0.082 84/19 297/67 179/11
jb38a 164/6 8728.79 1.224 1.015 1.274 -0.865 -0.878 89/10 191/49 351/39
jb38b 160/5 6261 1.167 1.101 1.288 -0.234 -0.292 106/2 198/51 14/38
jb38c 162/6 1303.74 1.107 1.096 1.214 -0.05 -0.098 224/15 122/37 332/49
jb38d 327/6 4348.12 1.327 1.326 1.173 0.131 0.061 298/2 194/81 28/8
jb39a 136/4 355.9 1.051 1.054 1.108 0.028 0.002 280/8 12/16 165/72
jb39cI 228/2 134.27 1.048 1.06 1.111 0.112 0.086 208/42 311/14 55/45
jb40a 242/9 238.92 1.016 1.029 1.046 0.28 0.27 262/23 158/30 23/51
jb40bI 165/5 194.94 1.03 1.004 1.037 -0.748 -0.752 246/29 109/53 348/21
jb40bII 165/5 174.47 1.015 1.016 1.03 0.034 0.026 248/34 31/50 145/19
jb40c 334/7 296.3 1.04 1.014 1.057 -0.467 -0.478 85/21 306/63 181/16
jb41a 208/2 1854.74 1.089 1.04 1.135 -0.367 -0.394 97/2 273/88 7/0
jb41c 26/7 2061.63 1.064 1.012 1.083 -0.687 -0.697 259/2 168/13 356/77
jb42a 188/1 530.45 1.059 1.08 1.144 0.15 0.117 189/0 99/30 280/60
jb42b 154/4 2138.23 1.086 1.046 1.137 -0.296 -0.324 84/18 314/63 180/19
jb42c 309/4 1746.33 1.038 1.065 1.106 0.26 0.236 286/84 84/6 175/2
jb42d 256/6 2634.5 1.128 1.064 1.204 -0.323 -0.363 68/11 320/58 164/29
jb43a 192/2 849.91 1.128 1.02 1.165 -0.715 -0.732 266/17 156/48 9/37
jb43b 269/4 907.69 1.042 1.045 1.088 0.034 0.013 301/16 200/32 53/53
jb43c 180/10 232.68 1.014 1.07 1.091 0.663 0.651 278/51 98/39 188/0
jb44a 35/3 4598.33 1.012 1.146 1.179 0.838 0.827 333/53 83/14 182/33
jb44c 32/5 7470.51 1.031 1.084 1.122 0.451 0.428 337/7 71/28 234/61
jb44d 96/4 132.63 1.024 1.052 1.079 0.375 0.359 8/37 192/53 99/2
jb45a 353/4 1999.62 1.039 1.022 1.062 -0.27 -0.283 306/11 216/1 123/79
jb45b 278/4 1942.43 1.042 1.01 1.056 -0.608 -0.616 302/13 204/32 50/55
jb45d 238/2 1543.97 1.038 1.022 1.061 -0.264 -0.277 118/2 28/20 213/69
jb45e 157/3 2028.82 1.035 1.048 1.085 0.151 0.131 272/11 11/40 170/48
jb46a 329/2 2286.41 1.024 1.126 1.165 0.667 0.647 111/17 8/36 221/49
jb46b 149/1 2055.13 1.072 1.009 1.09 -0.778 -0.786 99/16 7/6 257/73
jb46d 225/6 1818.26 1.041 1.049 1.092 0.083 0.061 105/15 11/15 238/69
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jb47aI 326/6 153.09 1.015 1.035 1.052 0.407 0.397 161/6 343/84 251/0
jb47aII 326/6 182.66 1.017 1.024 1.042 0.156 0.146 343/10 104/72 250/15
jb47cI 298/7 121.99 1.06 1.059 1.038 0.302 0.289 8/11 245/71 101/16
jb47cII 298/7 137.86 1.06 1.058 1.016 -0.431 -0.443 10/2 277/64 101/26
jb47d 280/8 118.52 1.06 1.039 1.101 -0.207 -0.23 1/15 240/63 97/22
jb47e 280/8 154.85 1.044 1 1.051 -0.992 -0.992 349/6 258/7 119/80
jb48a 159/1 2072.7 1.006 1.032 1.041 0.658 0.653 30/39 126/7 224/50
jb48b 331/1 951.2 1.067 1.082 1.156 0.095 0.059 360/1 91/40 269/50
jb48c 238/2 686.44 1.094 1.094 1.043 -0.073 -0.095 355/5 261/34 92/56
jb48d 166/4 4507.11 1.17 1.17 1.094 0.141 0.102 163/32 306/52 61/18
jb49aI 150/2 731.93 1.054 1.129 1.195 0.392 0.355 57/31 320/11 213/56
jb49aII 150/2 851.96 1.203 1.195 1.14 0.465 0.429 281/5 13/25 182/64
jb49bI 278/10 474.12 1.441 1.397 1.343 0.764 0.728 207/8 300/22 99/67
jb49bII 278/10 581.28 1.451 1.404 1.352 0.779 0.744 226/13 322/23 109/63
jb49d 281/1 171.34 1.022 1.028 1.051 0.123 0.111 211/2 309/73 120/16
jb49d 281/1 148.94 1.018 1.044 1.064 0.421 0.409 216/3 314/68 125/22
jb50a 328/6 2215.7 1.077 1.104 1.19 0.145 0.102 77/22 306/58 176/22
jb50a 328/6 2566.75 1.283 1.271 1.194 0.481 0.434 256/5 1/72 164/17
jb50b 1/4 2352.82 1.117 1.098 1.227 -0.086 -0.136 52/36 275/45 160/22
jb50b 1/4 86.94 1.082 1.081 1.053 0.318 0.301 257/39 27/38 142/28
jb50c 348/7 4140.03 1.178 1.16 1.143 0.793 0.779 76/42 318/27 206/36
jb51a 126/9 92.9 1.114 1.109 1.081 0.496 0.476 49/47 205/40 306/12
jb51c 220/0 140.78 1.016 1.114 1.145 0.742 0.728 91/48 227/33 333/23
jb51d 32/2 118.99 1.025 1.134 1.175 0.669 0.647 89/67 221/16 316/16
jb52a 212/3 27269.81 1.155 1.112 1.286 -0.154 -0.215 105/34 264/55 8/10
jb52b 66/2 16674.04 1.14 1.08 1.234 -0.262 -0.31 112/50 258/35 1/17
jb52c 14/5 28334.76 1.187 1.12 1.331 -0.204 -0.271 107/37 248/46 1/21
jb53a 20/6 511.06 1.202 1.199 1.125 0.296 0.254 90/29 350/17 233/55
jb53b 310/10 1074.07 1.034 1.225 1.291 0.717 0.688 82/30 347/9 242/58
jb53c 296/3 215.5 1.022 1.065 1.093 0.482 0.466 78/32 346/3 252/58
jb53d 293/6 240.48 1.039 1.16 1.219 0.591 0.56 72/47 164/2 256/43
jb54a 124/3 1297.52 1.039 1.146 1.201 0.56 0.529 347/13 82/17 222/68
jb54c 35/10 1236.63 1.049 1.14 1.203 0.466 0.43 358/16 97/28 242/57
jb54d 178/10 836.61 1.044 1.123 1.178 0.457 0.425 5/10 96/8 227/77
jb55a 229/7 106.28 1.027 1.081 1.114 0.49 0.47 347/17 79/6 188/72
jb55b 358/11 34.92 1.011 1.011 1.022 -0.024 -0.03 135/9 241/60 41/28
jb55c 309/2 26.46 1.012 1.076 1.096 0.726 0.716 161/6 70/13 274/75
jb55dI 267/2 32.61 1.01 1.048 1.063 0.644 0.636 157/11 248/5 2/78
jb55dII 267/2 48.75 1.126 1.119 1.093 0.574 0.555 303/2 213/5 54/85
jb56aI 48/8 1353.62 1.096 1.119 1.227 0.101 0.05 108/13 9/34 215/53
jb56aII 48/8 1245.18 1.375 1.36 1.254 0.471 0.41 100/19 7/7 258/70
jb56b 342/32 344.79 1.253 1.238 1.184 0.586 0.55 45/23 294/40 157/41
jb57a 149/2 1411.28 1.043 1.132 1.188 0.491 0.459 44/19 312/5 209/70
jb57c 85/3 2770.55 1.075 1.171 1.264 0.373 0.323 65/30 318/27 193/48
jb57d 308/2 1377 1.071 1.107 1.187 0.193 0.152 29/19 120/3 219/70
jb57e 70/0 1108.05 1.079 1.127 1.217 0.224 0.177 209/17 299/1 31/73
jb58a 81/5 1174.52 1.026 1.04 1.067 0.215 0.199 44/38 291/27 176/40
jb58b 81/6 451.38 1.035 1.049 1.086 0.158 0.138 288/53 109/37 19/1
jb58c 120/5 275.15 1.035 1.078 1.119 0.37 0.346 259/0 350/52 169/38
jb58d 21/1 334.47 1.014 1.139 1.173 0.803 0.79 90/32 307/52 192/18
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb59a 250/7 632.02 1.098 1.014 1.124 -0.736 -0.748 53/9 145/16 294/72
jb59a 244/1 1515.98 1.115 1.114 1.242 -0.002 -0.056 28/14 235/75 119/7
jb59c 38/7 4301.14 1.029 1.054 1.086 0.296 0.277 261/86 94/4 4/1
jb60a 330/3 193.16 1.05 1.08 1.135 0.225 0.195 35/8 303/14 154/74
jb60b 286/5 1671.96 1.024 1.071 1.1 0.49 0.473 163/27 57/29 288/48
jb60d 220/0 344.51 1.055 1.142 1.211 0.422 0.383 184/4 93/17 287/72
jb61a 1/12 469.56 1.131 1.1 1.244 -0.129 -0.182 276/7 15/52 181/38
jb61b 47/2 155.8 1.106 1.078 1.193 -0.15 -0.193 272/1 2/24 180/66
jb61c 46/2 518.65 1.072 1.15 1.237 0.334 0.287 96/12 341/63 191/24
jb61dI 10/2 358.56 1.466 1.456 1.133 -0.337 -0.418 87/40 204/28 318/37
jb61dII 10/2 218.32 1.098 1.101 1.209 0.016 -0.031 266/39 34/38 149/29
jb62a 29/4 1996.73 1.095 1.095 1.2 0.001 -0.045 135/62 278/23 14/15
jb62b 319/3 3369.04 1.069 1.151 1.236 0.355 0.309 119/52 283/37 19/8
jb62c 40/3 2094.67 1.151 1.099 1.267 -0.195 -0.251 105/39 290/51 197/2
jb62d 56/5 4165.62 1.136 1.084 1.233 -0.226 -0.275 102/53 279/37 10/1
jb63a 25/3 817.16 1.047 1.089 1.143 0.296 0.266 59/29 310/30 184/46
jb63b 140/3 671.01 1.052 1.053 1.108 0.017 -0.009 240/29 126/36 359/40
jb63c 328/2 718.07 1.048 1.087 1.141 0.278 0.248 58/21 310/39 169/43
jb63d 21/6 509.73 1.035 1.039 1.076 0.051 0.033 60/35 284/45 168/24
jb64a 192/4 3113.3 1.083 1.12 1.214 0.174 0.127 86/18 333/52 188/33
jb64b 52/17 1114.87 1.11 1.041 1.162 -0.444 -0.473 92/21 295/67 186/8
jb64c 285/6 1842.38 1.054 1.075 1.134 0.157 0.127 83/0 352/75 173/15
jb65a 135/3 3700.41 1.077 1.14 1.231 0.276 0.228 55/16 317/28 171/58
jb65b 173/2 4076.6 1.094 1.132 1.24 0.162 0.11 60/19 317/34 174/50
jb65c 209/2 4634.03 1.088 1.152 1.256 0.255 0.202 65/12 326/37 170/51
jb65d 48/16 2946.72 1.062 1.104 1.174 0.242 0.205 47/33 299/25 180/46
jb66a 264/4 2035.03 1.078 1.081 1.165 0.022 -0.016 54/17 318/21 180/62
jb66e 189/0 220.63 1.024 1.035 1.06 0.179 0.165 49/30 318/2 225/60
jb66f 230/4 604.25 1.062 1.047 1.112 -0.131 -0.157 38/26 300/15 184/59
jb67a 348/19 3618.39 1.116 1.017 1.147 -0.738 -0.752 273/2 14/82 182/8
jb67b 352/24 3853.87 1.052 1.088 1.147 0.252 0.22 275/11 34/68 182/18
jb67d 357/23 65.98 1.046 1.091 1.144 0.319 0.289 100/15 267/74 9/3
jb68aa 96/5 3024.42 1.103 1.047 1.159 -0.358 -0.389 104/17 333/65 199/18
jb68b 157/6 2975.92 1.082 1.039 1.127 -0.344 -0.37 102/5 4/59 194/31
jb68c 73/6 2122.81 1.101 1.029 1.14 -0.544 -0.566 107/6 9/52 202/38
jb68d 134/7 2749.56 1.018 1.056 1.079 0.504 0.491 96/13 314/74 188/10
jb69b 206/7 996.39 1.061 1.036 1.101 -0.251 -0.273 53/20 146/10 261/68
jb69c 185/7 671.86 1.082 1.012 1.104 -0.734 -0.744 206/12 305/35 100/53
jb70b 76/4 2223.07 1.151 1.365 1.588 0.377 0.278 73/29 334/16 219/56
jb70b 101/3 2238.43 1.241 1.328 1.651 0.134 0.011 58/26 323/10 214/62
jb70c 83/5 1790.61 1.548 1.517 1.379 0.541 0.465 54/40 319/5 224/50
jb71a 7/3 84.87 1.022 1.195 1.245 0.783 0.763 44/42 313/1 221/48
jb71c 9/9 418.53 1.067 1.12 1.197 0.274 0.232 93/40 334/29 220/36
jb71d 321/3 1521 1.148 1.255 1.446 0.244 0.157 80/40 339/12 235/47
jb72a 189/7 18435.22 1.175 1.169 1.374 -0.016 -0.096 109/4 202/41 15/49
jb72b 196/8 21254.01 1.296 1.23 1.595 -0.113 -0.226 115/15 209/12 336/70
jb72c 163/10 23158.54 1.135 1.121 1.272 -0.052 -0.112 118/6 28/0 297/84
jb73a 307/7 2614.62 1.016 1.084 1.109 0.67 0.657 58/23 311/34 175/47
jb73b 343/18 77.17 1.021 1.048 1.071 0.39 0.375 50/20 251/69 143/7
jb73b 343/18 4792.74 1.054 1.156 1.228 0.467 0.428 62/31 297/43 173/31
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb73c 340/8 2480.28 1.023 1.115 1.152 0.651 0.631 51/39 295/29 179/37
jb74c 71/10 175.64 1.015 1.067 1.088 0.634 0.622 266/30 46/53 164/20
jb74d 162/5 107.58 1.038 1.053 1.093 0.164 0.142 251/8 138/70 344/18
jb75a 100/20 285.35 1.031 1.069 1.105 0.373 0.352 89/6 351/53 183/36
jb75b 94/27 257.52 1.051 1.044 1.097 -0.074 -0.097 93/19 248/69 360/8
jb75c 105/13 16.22 1.023 1.033 1.057 0.174 0.161 266/41 74/48 171/6
jb75dI 109/11 229.55 1.1 1.023 1.133 -0.616 -0.634 94/20 241/66 360/12
jb75dII 109/11 345.42 1.01 1.087 1.108 0.784 0.774 327/76 84/7 176/12
jb76a 160/7 1899.55 1.058 1.059 1.12 0.01 -0.019 124/3 32/26 221/64
jb76b 167/8 1723.97 1.07 1.03 1.105 -0.394 -0.414 113/14 12/39 219/48
jb76c 183/14 2233.82 1.049 1.071 1.125 0.177 0.148 131/9 37/26 238/62
jb76d 173/4 2568.81 1.038 1.077 1.121 0.332 0.307 102/9 9/13 226/74

jb76dIII 173/4 238.01 1.029 1.035 1.065 0.089 0.073 137/13 39/34 244/53
jb76e 192/10 2040.19 1.07 1.067 1.142 -0.021 -0.055 116/7 23/21 225/68
jb77a 13/5 1497.26 1.122 1.085 1.218 -0.17 -0.217 115/3 206/13 13/77
jb77b 20/6 132.16 1.028 1.02 1.049 -0.173 -0.184 241/18 142/27 0/57
jb77c 41/5 145.55 1.034 1.013 1.048 -0.454 -0.463 234/14 142/10 17/72
jb77d 349/5 1835.36 1.033 1.227 1.293 0.726 0.698 30/15 121/3 223/74
jb78a 42/8 1822.02 1.064 1.05 1.117 -0.119 -0.146 99/14 8/2 270/76
jb78b 44/10 1443.84 1.034 1.058 1.095 0.263 0.242 111/16 18/12 253/70
jb78cI 40/5 1823.04 1.061 1.071 1.136 0.075 0.043 98/20 5/9 250/68
jb78cII 40/5 1977.13 1.022 1.084 1.114 0.58 0.562 113/17 15/24 235/60
jb78d 37/5 1958.54 1.035 1.075 1.115 0.357 0.334 124/7 32/16 237/73
jb79a 41/5 4235.41 1.096 1.052 1.156 -0.293 -0.325 71/28 174/22 296/53
jb79b 14/5 5172.2 1.089 1.063 1.158 -0.164 -0.2 105/22 202/15 323/62
jb79c 61/4 4158.75 1.087 1.096 1.191 0.045 0.002 108/33 209/16 321/53
jb79d 35/6 3317.7 1.104 1.07 1.183 -0.187 -0.227 99/25 200/22 327/56
jb80a 73/0 2623.91 1.072 1.023 1.101 -0.51 -0.527 291/9 28/41 191/48
jb80b 47/5 3838.34 1.079 1.039 1.123 -0.332 -0.357 124/4 218/37 29/53
jb80d 20/5 3632.13 1.1 1.029 1.138 -0.543 -0.564 130/10 228/36 27/52
jb81a 319/5 377.81 1.019 1.064 1.088 0.538 0.524 262/45 46/39 152/19
jb81b 326/9 453.15 1.038 1.036 1.075 -0.022 -0.04 341/39 244/9 143/49
jb81c 333/9 417.41 1.031 1.039 1.071 0.111 0.094 26/41 189/48 289/8
jb81d 327/8 518.78 1.017 1.005 1.024 -0.536 -0.54 345/39 95/23 207/42
jb81e 328/8 741.87 1.02 1.047 1.07 0.398 0.384 307/37 50/17 160/48
jb82a 211/8 1037.57 1.044 1.061 1.108 0.154 0.129 48/10 148/44 308/44
jb82b 200/8 1025.13 1.007 1.119 1.143 0.878 0.871 108/0 198/22 18/68
jb82c 181/9 552.28 1.141 1.157 1.32 0.052 -0.017 253/77 78/13 348/1
jb82d 181/6 1011.37 1.008 1.053 1.067 0.749 0.742 240/37 139/14 32/49
jb83a 196/10 648.57 1.102 1.007 1.124 -0.863 -0.869 114/11 215/43 13/44
jb83b 197/6 392.47 1.069 1.016 1.091 -0.615 -0.628 114/1 206/68 24/22
jb83c 208/11 303.22 1.025 1.061 1.09 0.403 0.385 128/6 224/48 32/41
jb83d 192/9 531.43 1.007 1.064 1.078 0.808 0.802 139/15 285/72 46/10
jb84a 215/10 645.47 1.036 1.059 1.098 0.242 0.221 58/15 314/42 163/44
jb84b 250/7 331.5 1.036 1.067 1.106 0.295 0.272 95/43 271/47 3/2
jb84c 244/14 225.11 1.019 1.025 1.044 0.132 0.122 305/37 116/53 212/4
jb84dI 252/10 205.53 1.016 1.006 1.023 -0.425 -0.429 225/74 77/14 345/8
jb84dII 252/10 214.53 1.023 1.018 1.042 -0.1 -0.11 117/4 212/48 23/42
jb85a 188/7 584.97 1.022 1.083 1.113 0.57 0.552 63/53 299/24 195/27
jb85b 189/10 403.19 1.025 1.028 1.053 0.049 0.036 74/20 237/69 342/6
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb85c 228/9 973.39 1.056 1.021 1.081 -0.45 -0.465 70/31 312/38 187/37
jb85d 229/6 681.51 1.063 1.033 1.1 -0.312 -0.333 262/0 352/58 171/32
jb86aI 202/5 494.44 1.024 1.026 1.05 0.044 0.032 92/6 183/9 330/79
jb86aII 202/5 510.87 1.03 1.013 1.044 -0.396 -0.404 94/12 186/7 306/76
jb86c 233/4 709.54 1.068 1.015 1.089 -0.639 -0.651 92/17 183/3 283/73
jb86c 233/4 381.26 1.015 1.023 1.039 0.204 0.195 141/13 50/5 298/76
jb86d 144/3 132.54 1.006 1.036 1.046 0.69 0.685 352/18 222/64 88/19
jb87aI 353/3 1586.51 1.055 1.087 1.148 0.219 0.186 297/9 34/36 195/52
jb87aII 353/3 2751.08 1.16 1.077 1.255 -0.332 -0.381 281/6 191/3 72/83
jb87bI 26/4 1837.39 1.044 1.018 1.065 -0.415 -0.427 270/4 10/64 178/26
jb87c 40/4 1452.73 1.011 1.057 1.074 0.658 0.649 297/13 28/0 118/77
jb87d 36/7 2562.1 1.015 1.035 1.051 0.393 0.383 261/17 356/14 123/68
jb88a 240/8 2088.56 1.051 1.045 1.098 -0.065 -0.088 272/9 8/32 169/56
jb88b 242/16 1735.35 1.043 1.025 1.07 -0.26 -0.276 286/15 186/31 38/54
jb88cI 226/15 1926.1 1.059 1.035 1.097 -0.248 -0.269 124/1 33/18 216/72
jb88cII 226/15 2093.3 1.06 1.047 1.11 -0.125 -0.15 296/1 26/11 198/79
jb88d 228/16 2171.79 1.077 1.01 1.096 -0.774 -0.782 261/7 356/36 161/53
jb89a 14/14 3296.56 1.07 1.083 1.16 0.084 0.047 103/21 194/2 289/69
jb89b 38/11 2117.3 1.071 1.091 1.169 0.118 0.079 106/19 198/7 307/70
jb89bII 38/11 1347.77 1.04 1.004 1.049 -0.801 -0.805 90/27 341/32 211/46
jb89c 20/12 4860.02 1.074 1.129 1.215 0.259 0.214 90/21 181/2 276/69
jb89d 297/3 1577.27 1.061 1.087 1.154 0.174 0.139 89/11 356/13 219/73
jb90aI 198/3 1877.69 1.032 1.051 1.085 0.22 0.201 287/3 180/79 18/10
jb90aII 198/3 1757.92 1.032 1.042 1.076 0.129 0.111 114/6 227/75 22/14
jb90bI 224/5 2259.02 1.064 1.022 1.09 -0.481 -0.497 84/13 316/70 177/15
jb90bII 224/5 2582.04 1.054 1.024 1.082 -0.374 -0.39 95/5 190/39 359/50
jb90c 75/4 2016.71 1.056 1.017 1.077 -0.532 -0.544 277/2 15/79 187/11
jb90d 54/3 1340.89 1.065 1.016 1.087 -0.596 -0.609 98/7 2/39 196/50
jb91aI 229/4 2525.25 1.114 1.095 1.22 -0.09 -0.139 263/51 70/38 165/6
jb91aII 229/4 3706.17 1.129 1.12 1.265 -0.034 -0.093 292/74 124/16 33/3
jb91bI 228/5 4002.95 1.274 1.085 1.401 -0.495 -0.554 279/9 40/74 187/14
jb91bII 228/5 5078.1 1.107 1.089 1.206 -0.086 -0.133 89/10 299/79 180/6
jb91c 244/4 4791.99 1.048 1.076 1.128 0.22 0.192 93/12 284/77 183/2
jb91d 261/6 6361.87 1.16 1.081 1.258 -0.314 -0.364 100/31 288/58 193/4
jb92a 343/4 2862.43 1.041 1.112 1.163 0.455 0.426 81/6 171/6 309/81
jb92b 344/3 10773.95 1.057 1.123 1.191 0.35 0.312 95/8 191/33 353/56
jb92c 338/6 2494.91 1.058 1.051 1.112 -0.067 -0.094 93/14 192/31 341/55
jb92d 335/5 2509.96 1.066 1.067 1.138 0.008 -0.024 84/10 179/25 334/63
jb93a 40/5 2527.99 1.081 1.085 1.173 0.022 -0.018 130/19 19/46 236/37
jb93b 324/6 2953.07 1.049 1.114 1.173 0.383 0.349 73/25 282/62 169/12
jb93c 68/9 2106.45 1.072 1.051 1.126 -0.167 -0.196 95/35 315/48 200/21
jb93d 72/8 1279.9 1.072 1.073 1.15 0.004 -0.031 74/40 297/41 185/23
jb94aI 3/5 67.96 1.043 1.024 1.069 -0.27 -0.285 85/19 301/67 179/13
jb94aII 3/5 85.01 1.04 1.018 1.06 -0.388 -0.4 79/8 335/58 174/30
jb94b 1/4 74.37 1.031 1.047 1.08 0.196 0.178 75/17 293/69 169/12
jb94c 120/4 111.75 1.122 1.077 1.21 -0.22 -0.265 80/21 334/35 194/47
jb95a 182/2 1091.95 1.013 1.085 1.108 0.719 0.708 306/12 46/39 202/48
jb95b 295/6 714.1 1.035 1.063 1.102 0.289 0.267 322/16 61/26 203/59
jb95c 26/6 705.71 1.06 1.079 1.143 0.131 0.098 339/22 80/26 214/55
jb95dI 28/6 734.48 1.04 1.095 1.143 0.401 0.374 307/22 47/23 179/57
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb95dII 28/6 587.53 1.023 1.09 1.121 0.588 0.57 71/39 325/18 216/45
jb96a 225/7 193.9 1.015 1.005 1.021 -0.468 -0.472 249/78 140/4 49/11
jb96b 171/2 496.11 1.017 1.044 1.063 0.442 0.43 70/16 337/11 214/71
jb96c 224/6 485.33 1.06 1.018 1.083 -0.54 -0.553 82/7 342/58 176/32
jb97a 265/7 2898.02 1.209 1.01 1.253 -0.897 -0.907 115/8 21/23 222/65
jb97b 257/6 4213.01 1.057 1.072 1.133 0.111 0.08 125/9 31/28 232/60
jb97c 281/10 2245.88 1.066 1.03 1.1 -0.361 -0.382 142/17 48/11 286/70
jb97d 281/10 1910.42 1.065 1.023 1.093 -0.463 -0.48 134/8 39/30 238/59
jb98aI 303/5 2074.33 1.06 1.033 1.096 -0.289 -0.309 90/13 359/5 248/76
jb98aII 303/5 1408.33 1.044 1.056 1.102 0.119 0.095 122/11 31/8 266/76
jb98bI 321/4 1693.36 1.069 1.045 1.118 -0.202 -0.228 77/13 345/10 219/73
jb98bII 321/4 1505.74 1.075 1.019 1.1 -0.586 -0.6 71/10 162/7 289/78
jb98c 20/1 1497.22 1.06 1.054 1.118 -0.048 -0.075 93/15 360/13 230/70
jb99aI 304/9 1093.15 1.071 1.02 1.098 -0.553 -0.569 87/5 356/14 195/75
jb99aII 304/9 1575.71 1.068 1.012 1.087 -0.701 -0.711 80/12 338/43 183/45
jb99c 356/2 4414.52 1.086 1.015 1.11 -0.689 -0.701 103/1 193/35 12/55
jb99d 13/0 4038.79 1.089 1.021 1.119 -0.61 -0.627 284/4 15/12 179/77

jb100aI 350/6 451.66 1.004 1.065 1.078 0.881 0.877 212/25 113/18 351/59
jb100aII 350/6 500.64 1.01 1.07 1.088 0.751 0.742 109/17 208/25 349/58
jb100bI 324/5 275.79 1.004 1.054 1.066 0.851 0.847 265/3 172/41 359/49
jb100bII 324/5 314.84 1.011 1.06 1.077 0.691 0.682 139/27 241/22 4/54
jb100c 176/7 256.71 1.003 1.067 1.08 0.906 0.903 98/3 190/31 2/58
jb100d 322/7 452.24 1.004 1.062 1.074 0.87 0.866 163/36 263/13 10/51
jb101a 76/7 310.19 1.018 1.027 1.046 0.188 0.177 282/0 192/41 12/49
jb101b 8/13 337.41 1.023 1.025 1.048 0.059 0.047 288/8 189/46 26/43
jb101cI 348/6 332.97 1.018 1.031 1.05 0.247 0.236 117/12 220/47 16/41
jb101cII 348/6 321.14 1.032 1.019 1.053 -0.243 -0.255 278/4 186/28 16/61
jb101dI 188/3 277.94 1.017 1.026 1.044 0.202 0.192 272/9 170/52 9/36
jb101dII 188/3 303.71 1.024 1.019 1.044 -0.13 -0.14 280/5 184/48 14/41
jb103a 4/24 637.96 1.063 1.009 1.079 -0.733 -0.742 121/18 273/70 28/9
jb103bI 344/13 36.94 1.009 1.012 1.021 0.135 0.13 78/0 237/90 348/0
jb103bII 344/13 39.97 1.011 1.011 1.022 -0.011 -0.016 242/24 58/66 151/1
jb103c 348/25 28.12 1.003 1.034 1.041 0.822 0.819 251/1 161/38 343/52
jb103d 356/23 403.21 1.032 1.012 1.045 -0.464 -0.472 81/10 345/33 186/55
jb104a 332/4 680.74 1.023 1.012 1.036 -0.312 -0.32 254/40 62/49 159/6
jb104b 162/1 1109.54 1.034 1.012 1.048 -0.48 -0.489 251/25 89/64 344/7
jb104c 345/3 884.89 1.024 1.014 1.038 -0.259 -0.268 272/32 7/8 110/57
jb104d 125/2 423.57 1.02 1.02 1.04 -0.007 -0.016 84/65 215/17 311/18
jb105a 56/7 18.02 1.03 1.05 1.082 0.242 0.224 260/69 86/21 355/2
jb105b 18/6 28.98 1.012 1.009 1.022 -0.13 -0.135 256/67 71/23 162/2
jb105c 208/7 3110.85 1.016 1.092 1.118 0.696 0.683 249/6 4/76 158/12
jb106a 245/2 3403.63 1.142 1.051 1.208 -0.454 -0.49 89/31 192/20 309/52
jb106b 202/3 3508.91 1.062 1.103 1.173 0.238 0.201 75/31 181/25 303/49
jb106c 254/3 1833.61 1.067 1.053 1.124 -0.11 -0.139 92/31 202/30 326/44
jb106d 74/2 1793.16 1.04 1.038 1.079 -0.025 -0.044 269/36 28/34 147/37
jb107a 215/2 2734.21 1.051 1.074 1.13 0.18 0.15 66/9 334/7 206/79
jb107b 230/0 10644.27 1.089 1.185 1.297 0.329 0.272 88/1 178/5 344/85
jb107c 229/6 2319.88 1.066 1.056 1.126 -0.082 -0.112 98/0 188/12 8/78
jb108b 344/4 1098.16 1.086 1.019 1.113 -0.636 -0.651 214/3 121/42 308/48
jb108bI 344/4 1342.22 1.077 1.051 1.133 -0.203 -0.233 289/9 112/81 19/0
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb108bII 344/4 1274.75 1.093 1.036 1.137 -0.427 -0.452 286/6 54/79 195/8
jb108c 104/3 622.32 1.027 1.037 1.065 0.165 0.149 114/2 212/76 23/13
jb108d 350/2 476.93 1.035 1.008 1.046 -0.63 -0.636 284/32 152/47 31/25
jb109a 215/10 1017.98 1.001 1.06 1.071 0.979 0.978 298/6 191/70 30/19
jb109b 196/13 1017.98 1.09 1.026 1.124 -0.539 -0.559 279/25 145/57 19/21
jb109c 241/7 1043 1.041 1.029 1.072 -0.178 -0.195 286/33 145/50 30/19
jb110a 336/4 424.98 1.074 1.057 1.135 -0.123 -0.154 286/57 40/15 139/29
jb110b 308/5 100.57 1.005 1.01 1.015 0.336 0.333 113/12 329/75 205/8
jb110d 15/3 155.22 1.016 1.013 1.03 -0.11 -0.117 243/11 334/4 85/78
jb111a 313/11 3883.92 1.008 1.092 1.112 0.829 0.822 57/7 150/22 310/66
jb111aI 314/10 5034.93 1.026 1.088 1.122 0.528 0.508 60/11 153/18 298/69
jb111b 353/9 3718.49 1.009 1.095 1.117 0.814 0.805 68/13 162/16 303/69
jb111c 318/10 5754.97 1.007 1.096 1.116 0.861 0.855 77/14 171/16 308/69

jb111dII 314/10 4309 1.034 1.075 1.114 0.365 0.342 58/16 152/14 281/69
jb112b 190/2 690.69 1.033 1.069 1.106 0.346 0.324 290/15 185/43 34/43
jb112cI 302/3 515.4 1.019 1.059 1.083 0.498 0.484 220/9 125/27 326/61
jb112cII 302/3 478.2 1.019 1.055 1.078 0.487 0.474 62/18 162/28 304/55
jb112d 56/6 476.97 1.023 1.029 1.052 0.119 0.106 267/2 176/19 3/71
jb113a 284/11 419.06 1.118 1.115 1.034 -0.393 -0.416 112/36 234/36 353/34
jb113b 204/3 337.22 1.076 1.076 1.03 -0.177 -0.195 98/12 2/24 212/62
jb113c 184/5 955.21 1.052 1.035 1.089 -0.187 -0.207 90/1 181/54 359/36
jb114a 344/4 829.39 1.075 1.039 1.119 -0.303 -0.328 295/27 121/63 26/3
jb114b 320/5 791.67 1.032 1.023 1.057 -0.161 -0.174 94/11 194/39 351/49
jb114cI 299/5 854.82 1.028 1.052 1.083 0.3 0.282 85/4 179/41 350/49
jb114cII 299/5 714.44 1.06 1.042 1.105 -0.164 -0.188 271/2 179/54 3/36
jb114d 292/6 2410.23 1.144 1.024 1.186 -0.704 -0.723 108/19 314/69 201/8
jb114f 7/7 1571.38 1.106 1.013 1.133 -0.775 -0.786 276/8 172/61 10/27
jb115aI 253/3 4100.62 1.029 1.077 1.112 0.443 0.422 274/2 183/28 7/62
jb115aII 253/3 4382.42 1.064 1.07 1.139 0.045 0.012 265/17 163/35 16/50
jb115b 142/4 4369.61 1.051 1.061 1.115 0.087 0.06 282/7 187/36 21/54
jb115c 299/2 4283.45 1.081 1.079 1.167 -0.015 -0.054 279/9 184/29 25/60
jb115d 126/0 4174.94 1.04 1.055 1.098 0.163 0.14 262/4 168/49 355/41
jb116aI 292/5 146.93 1.033 1.044 1.079 0.135 0.116 260/7 169/6 42/81
jb116aII 292/5 139.7 1.032 1.032 1.065 -0.012 -0.027 253/8 163/1 69/82
jb116bI 320/4 133.57 1.021 1.047 1.071 0.382 0.367 275/6 184/6 51/81
jb116bII 320/4 138.32 1.031 1.045 1.078 0.173 0.155 263/7 173/3 58/82
jb116c 302/8 137.9 1.045 1.047 1.094 0.026 0.004 260/10 170/1 72/80
jb116d 325/7 135.37 1.028 1.049 1.079 0.266 0.248 255/9 164/8 33/78
jb117a 274/4 95.5 1.033 1.017 1.051 -0.301 -0.312 257/4 141/81 348/8
jb117b 234/1 47.76 1.104 1.096 1.081 0.706 0.694 260/16 161/30 14/55
jb117c 225/3 246.17 1.063 1.09 1.16 0.168 0.132 266/14 26/64 171/21
jb117d 0/6 140.73 1.054 1.052 1.108 -0.021 -0.047 92/11 195/50 353/38
jb118a 129/4 357.04 1.067 1.025 1.097 -0.442 -0.46 110/5 203/29 12/60
jb118b 79/15 860.06 1.106 1.045 1.16 -0.396 -0.426 95/12 188/16 330/70
jb118c 77/16 661.36 1.069 1.047 1.12 -0.181 -0.208 87/11 181/17 325/70
jb118d 118/14 433.84 1.062 1.028 1.094 -0.379 -0.398 101/3 8/44 194/46
jb119a 236/9 74.35 1.004 1.021 1.027 0.653 0.649 287/0 196/80 17/10
jb119bI 214/12 96.55 1.013 1.032 1.046 0.427 0.418 297/17 91/71 205/8
jb119bII 214/12 92.83 1.018 1.033 1.052 0.293 0.282 296/30 107/60 204/4
jb119c 220/2 90.49 1.01 1.032 1.045 0.515 0.507 289/39 115/51 22/3
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb119dI 229/5 82.19 1.021 1.014 1.035 -0.208 -0.217 307/29 148/59 42/9
jb119dII 229/5 58.04 1.035 1.033 1.008 -0.508 -0.514 303/26 188/40 56/38
jb120a 335/3 173.41 1.016 1.029 1.046 0.29 0.28 301/42 48/17 154/43
jb120b 338/5 185.99 1.008 1.012 1.021 0.171 0.166 321/29 221/17 104/55
jb120c 120/3 177.32 1.012 1.025 1.038 0.331 0.323 136/42 46/0 316/48
jb120d 277/5 185.64 1.019 1.016 1.036 -0.071 -0.079 328/36 227/15 118/50
jb121aI 162/1 127167.51 1.039 1.019 1.059 -0.339 -0.351 155/4 247/35 60/55
jb121aII 162/1 110748.17 1.045 1.022 1.069 -0.341 -0.355 336/2 244/47 68/43
jb121bI 334/2 115897.63 1.056 1.022 1.082 -0.436 -0.452 149/2 240/36 56/54
jb121bII 334/2 131833.8 1.052 1.013 1.069 -0.582 -0.593 151/4 244/40 55/50
jb121c 292/3 125846.53 1.058 1.018 1.081 -0.52 -0.534 155/3 248/55 63/34
jb121d 277/3 126087.98 1.055 1.012 1.073 -0.627 -0.637 332/0 242/55 62/35
jb122aI 276/2 43763.59 1.039 1.022 1.063 -0.273 -0.287 233/17 333/31 118/54
jb122aII 276/2 44084.29 1.034 1.027 1.062 -0.104 -0.119 223/15 324/36 114/50
jb122bI 84/3 39929.65 1.028 1.018 1.047 -0.227 -0.238 221/3 313/41 128/49
jb122bII 84/3 43259.98 1.02 1.023 1.043 0.061 0.05 222/4 316/38 127/51
jb122c 166/0 43176.95 1.025 1.027 1.053 0.045 0.032 295/5 202/26 35/63
jb123a 330/15 1576.34 1.049 1.027 1.078 -0.289 -0.306 276/30 32/37 159/38
jb123b 309/15 1935.46 1.07 1.03 1.105 -0.384 -0.405 242/20 5/57 142/25
jb123c 314/15 3741.48 1.062 1.006 1.076 -0.829 -0.834 263/29 9/27 133/49
jb124a 80/5 70.73 1.087 1.022 1.118 -0.59 -0.607 344/7 239/63 78/26
jb124b 155/0 174.98 1.041 1.065 1.11 0.214 0.189 271/30 42/48 165/25
jb124cI 57/5 91.25 1.03 1.079 1.115 0.434 0.412 260/8 1/53 164/36
jb124cII 57/5 73.26 1.033 1.011 1.046 -0.51 -0.518 95/1 5/24 188/66
jb124dI 36/5 142.16 1.059 1.058 1.022 -0.23 -0.243 84/9 179/30 339/58
jb124dII 36/5 145.5 1.065 1.062 1.011 -0.623 -0.632 290/6 23/27 189/62
jb125aI 269/2 181.03 1.009 1.008 1.017 -0.084 -0.089 227/57 73/30 337/12
jb125aII 269/2 1668.05 1.042 1.126 1.181 0.484 0.453 217/14 71/73 309/9
jb125aIII 269/2 666.98 1.046 1.081 1.133 0.268 0.239 40/18 230/72 131/3
jb125c 224/6 229.8 1.021 1.01 1.032 -0.343 -0.35 69/17 170/31 314/53
jb125d 2/3 405.01 1.037 1.024 1.062 -0.216 -0.23 287/56 160/22 59/25
jb125d 2/3 202.18 1.007 1.015 1.022 0.383 0.378 234/43 14/40 123/21
jb126aI 54/6 79712.76 1.021 1.048 1.072 0.387 0.373 254/14 162/7 47/74
jb126aII 54/6 87882.68 1.034 1.027 1.062 -0.118 -0.132 261/16 164/21 25/64
jb126cI 54/6 80110.19 1.036 1.037 1.074 0.003 -0.015 277/13 186/4 81/76
jb126cII 54/6 85688.91 1.028 1.022 1.051 -0.113 -0.126 270/7 174/42 8/47
jb127a 136/5 2724.97 1.014 1.051 1.069 0.561 0.551 124/6 216/22 21/67
jb127b 116/4 2584.47 1.057 1.029 1.09 -0.312 -0.331 293/4 200/43 27/47
jb127c 127/5 1530.95 1.015 1.037 1.053 0.427 0.417 285/3 193/22 23/68
jb127d 168/9 559.42 1.008 1.016 1.024 0.33 0.325 113/12 224/60 17/27
jb128a 29/4 2274.34 1.027 1.024 1.052 -0.05 -0.063 48/57 303/9 207/31
jb128bI 19/5 1305.43 1.025 1.019 1.045 -0.132 -0.143 43/58 145/8 240/31
jb128bII 19/5 1670.59 1.025 1.045 1.072 0.274 0.258 349/54 155/35 250/7
jb128bIII 19/5 1550.58 1.018 1.056 1.078 0.519 0.506 15/49 132/21 236/33
jb128cI 322/5 2287.23 1.058 1.056 1.117 -0.017 -0.044 32/50 127/4 220/40
jb128cII 322/5 1672.77 1.005 1.042 1.052 0.773 0.769 44/43 300/15 195/44
jb128d 12/6 1075.91 1.025 1.021 1.047 -0.07 -0.081 30/53 294/5 200/36
jb129aI 113/5 147.77 1.015 1.034 1.051 0.375 0.365 61/39 296/35 181/32
jb129aII 113/5 148.23 1.004 1.028 1.035 0.725 0.721 21/51 286/4 192/39
jb129bI 348/4 545.99 1.018 1.055 1.076 0.5 0.486 88/10 343/57 184/31
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb129bII 348/4 501.02 1.011 1.053 1.07 0.652 0.643 276/8 20/60 182/29
jb130aI 354/6 2018.8 1.017 1.016 1.033 -0.039 -0.047 139/1 47/52 230/38
jb130aII 354/6 1852.23 1.035 1.018 1.055 -0.328 -0.34 109/6 16/21 214/68
jb130bI 333/11 3779.21 1.054 1.015 1.073 -0.555 -0.567 280/19 188/7 77/70
jb130bII 333/11 4946.16 1.071 1.018 1.096 -0.583 -0.597 283/14 142/72 16/11
jb130c 349/14 2461.87 1.018 1.045 1.066 0.41 0.397 263/19 166/20 33/62
jb130e 346/17 3291.06 1.031 1.049 1.083 0.223 0.204 275/13 181/18 38/68
jb131a 86/3 7055.89 1.145 1.125 1.289 -0.071 -0.134 277/43 104/47 10/4
jb131b 142/5 4808.72 1.139 1.079 1.232 -0.26 -0.308 282/38 119/51 18/9
jb132aI 283/5 3221.22 1.033 1.109 1.152 0.524 0.499 267/33 70/55 172/8
jb132aII 283/5 2793.64 1.062 1.082 1.15 0.137 0.103 269/47 65/40 165/12
jb132bI 254/3 2805.22 1.036 1.093 1.136 0.428 0.402 269/45 61/41 164/14
jb132bII 254/3 3325.77 1.055 1.086 1.147 0.217 0.184 271/54 63/33 162/13
jb132c 307/3 3488.59 1.052 1.086 1.145 0.237 0.205 268/37 64/50 169/12
jb132d 271/3 3654.81 1.047 1.087 1.14 0.287 0.257 268/66 54/20 149/12
jb133a 230/5 4996.01 1.044 1.048 1.094 0.044 0.022 245/10 81/79 336/3
jb133bI 234/5 6238.88 1.109 1.035 1.155 -0.498 -0.524 256/4 5/79 165/11
jb133bII 234/5 6010.16 1.127 1.089 1.229 -0.166 -0.216 241/16 72/74 332/3
jb133bIII 234/5 6698.76 1.032 1.059 1.095 0.289 0.268 242/5 97/84 332/3
jb133c 210/5 8979.72 1.063 1.064 1.131 0.007 -0.024 242/7 119/77 333/11
jb133d 192/3 7468.1 1.08 1.037 1.122 -0.363 -0.387 246/8 31/80 155/6
jb134aI 1/10 405.17 1.012 1.028 1.041 0.412 0.404 262/4 155/76 353/13
jb134aII 1/10 437.25 1.015 1.018 1.033 0.099 0.091 260/13 29/70 166/15
jb134b 18/13 340.45 1.02 1.012 1.033 -0.252 -0.26 265/4 98/86 355/1
jb134c 4/11 263.91 1.014 1.02 1.035 0.175 0.167 283/7 24/55 188/34
jb135aI 217/8 84.68 1.007 1.017 1.025 0.391 0.385 260/41 21/30 134/34
jb135aII 217/8 74.86 1.004 1.011 1.015 0.49 0.488 237/78 65/11 335/2
jb135bI 101/5 73.77 1.012 1.023 1.036 0.313 0.305 276/46 35/25 143/34
jb135bII 101/5 79.32 1.004 1.014 1.019 0.591 0.588 46/29 285/44 157/33
jb135c 222/4 78.02 1.015 1.007 1.023 -0.337 -0.342 296/61 80/24 177/15
jb135d 298/3 70.16 1.01 1.014 1.024 0.168 0.162 285/39 78/48 184/14
jb136a 328/7 128.42 1.017 1.019 1.036 0.058 0.05 270/56 109/32 13/9
jb136b 309/13 111.81 1.016 1.008 1.025 -0.331 -0.336 277/61 148/19 50/21
jb136c 326/6 133.17 1.017 1.025 1.042 0.188 0.178 66/64 191/16 287/20
jb136d 3/3 127.86 1.008 1.02 1.029 0.4 0.394 309/26 167/58 48/17
jb137aI 334/13 144.11 1.012 1.007 1.019 -0.298 -0.302 260/21 100/67 353/7
jb137aII 334/13 115.63 1.018 1.01 1.028 -0.291 -0.297 285/40 56/39 170/27
jb137bI 337/12 118.86 1.017 1.012 1.03 -0.162 -0.169 281/22 46/55 179/26
jb137bII 337/12 115.99 1.009 1.018 1.027 0.358 0.353 274/16 51/69 180/14
jb137c 330/14 126.44 1.016 1.007 1.024 -0.378 -0.383 281/30 31/31 157/44
jb137d 355/14 106.24 1.009 1.019 1.029 0.37 0.364 294/42 101/47 199/7
jb138aI 150/3 866.82 1.037 1.058 1.099 0.213 0.19 206/1 296/40 115/50
jb138aII 150/3 1075.01 1.074 1.025 1.105 -0.484 -0.502 7/58 211/30 115/11
jb138bI 195/7 1016.2 1.018 1.038 1.057 0.359 0.347 352/46 238/21 131/37
jb138bI 195/7 982 1.016 1.041 1.059 0.442 0.43 352/46 240/20 133/37
jb138bII 195/7 886.7 1.019 1.013 1.032 -0.181 -0.188 318/52 209/15 108/34
jb138c 350/6 399.57 1.024 1.022 1.046 -0.038 -0.049 5/63 253/11 157/25
jb138d 248/3 607.4 1.037 1.017 1.056 -0.355 -0.366 322/48 231/0 141/42
jb139a 113/6 1087.33 1.008 1.045 1.058 0.691 0.685 349/59 210/24 111/18
jb139b 135/3 1351.66 1.022 1.043 1.068 0.315 0.301 348/73 230/8 138/15



161

Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb139cI 351/3 1095.35 1.012 1.061 1.079 0.667 0.657 2/61 217/24 120/14
jb139cII 351/3 910.12 1.007 1.045 1.057 0.74 0.734 207/2 305/78 117/12
jb139dI 329/6 2554.02 1.013 1.016 1.029 0.096 0.089 244/10 118/74 336/13
jb139dII 329/6 2755.93 1.019 1.038 1.059 0.325 0.312 44/22 231/67 135/2
jb140aI 346/6 1602.22 1.037 1.051 1.09 0.155 0.133 237/15 342/45 134/42
jb140aII 346/6 848.04 1.032 1.032 1.065 -0.006 -0.022 229/22 350/51 125/30
jb140b 354/6 721.92 1.015 1.026 1.041 0.273 0.264 218/9 319/53 121/36
jb140c 44/5 944.75 1.031 1.037 1.07 0.091 0.075 225/26 341/42 113/36
jb140d 354/5 1251.56 1.021 1.044 1.067 0.36 0.346 219/13 321/41 115/47
jb140d 354/5 1437.19 1.026 1.062 1.092 0.411 0.393 229/22 342/44 120/38
jb141a 275/6 86.24 1.008 1.004 1.013 -0.33 -0.333 24/77 270/6 179/12

jb141bII 290/6 85.97 1.013 1.036 1.051 0.472 0.462 76/75 292/12 200/9
jb141cI 110/4 96.29 1.01 1.002 1.014 -0.609 -0.611 293/60 159/22 61/20
jb141cII 110/4 84.42 1.006 1.006 1.012 0.012 0.009 254/14 16/64 158/21
jb141d 66/10 89.21 1.006 1.009 1.015 0.185 0.181 254/42 85/48 349/6
jb141e 76/8 106.25 1.01 1.005 1.015 -0.331 -0.334 315/82 208/2 118/8
jb142a 29/7 3908.32 1.02 1.011 1.032 -0.277 -0.284 18/39 274/16 167/46
jb142bI 25/7 3423.71 1.024 1.004 1.031 -0.707 -0.711 344/25 94/35 227/44
jb142bII 25/7 4513.26 1.015 1.05 1.068 0.536 0.525 304/31 38/5 137/59
jb142bIII 25/7 4458.07 1.008 1.033 1.044 0.592 0.586 329/53 66/5 160/37
jb142c 30/7 3919.94 1.032 1.03 1.063 -0.021 -0.036 331/39 230/14 125/48
jb142d 3/4 4525.67 1.038 1.018 1.058 -0.357 -0.369 271/23 19/36 156/46
jb143a 47/6 740.25 1.028 1.03 1.059 0.044 0.03 287/9 30/55 191/34
jb143bI 2/5 1374.03 1.026 1.047 1.075 0.291 0.274 359/43 258/12 156/44
jb143bII 2/5 1696.88 1.019 1.047 1.068 0.424 0.411 267/22 13/34 151/47
jb143c 49/4 1033.91 1.005 1.071 1.086 0.854 0.849 36/11 298/35 141/52
jb143d 53/5 1542.12 1.035 1.035 1.071 0.001 -0.016 294/42 40/17 146/43
jb144a 84/2 112.04 1.011 1.01 1.021 -0.047 -0.052 271/50 110/38 12/9
jb144b 130/2 99.25 1.005 1.007 1.012 0.218 0.215 209/21 304/12 63/66
jb144cII 131/6 105.14 1.008 1.015 1.023 0.277 0.272 276/47 97/43 7/1
jb144dI 100/7 104.26 1.003 1.009 1.013 0.448 0.445 112/49 241/28 346/27
jb144dII 100/7 107.58 1.009 1.015 1.024 0.252 0.247 301/46 36/5 130/44
jb145aI 297/2 389.86 1.016 1.089 1.115 0.681 0.668 119/64 294/26 25/2
jb145aII 297/2 212.92 1.012 1.036 1.051 0.484 0.475 211/73 109/4 18/17
jb145bI 234/6 121.21 1.027 1.049 1.079 0.291 0.273 220/62 315/3 47/28
jb145bII 234/6 128.13 1.015 1.035 1.052 0.383 0.372 275/61 120/27 25/11
jb145c 234/2 147.9 1.04 1.008 1.052 -0.666 -0.673 265/62 74/28 166/4
jb145d 260/4 354.34 1.007 1.059 1.073 0.785 0.779 236/76 110/8 19/11
jb146aI 2/2 1845.41 1.005 1.006 1.012 0.084 0.082 313/21 217/14 95/65
jb146aII 2/2 1968.28 1.004 1.005 1.009 0.078 0.076 304/32 210/7 110/57
jb146bI 10/1 3525.3 1.006 1.014 1.02 0.424 0.42 295/14 39/44 192/42
jb146bII 10/1 2872.65 1.006 1.001 1.007 -0.682 -0.683 319/15 56/25 201/60
jb146c 356/7 2865.78 1.008 1.006 1.014 -0.195 -0.198 312/5 42/9 192/80
jb146d 331/4 8112.63 1.01 1.007 1.017 -0.159 -0.163 315/16 221/14 90/68
jb147aI 351/9 77087.43 1.044 1.006 1.055 -0.775 -0.779 0/3 262/68 91/22
jb147aII 351/9 82657.55 1.04 1.013 1.056 -0.518 -0.528 183/5 92/4 325/83
jb147bI 98/5 79098.27 1.055 1.013 1.073 -0.612 -0.622 49/9 315/24 158/64
jb147bII 98/5 79510.38 1.044 1.014 1.062 -0.511 -0.522 37/12 277/68 131/19
jb148a 48/9 1792.55 1.018 1.036 1.055 0.319 0.307 286/17 30/37 176/48
jb148c 90/3 2091.04 1.018 1.026 1.045 0.172 0.161 285/23 23/19 150/60
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb148dI 74/3 2783.55 1.009 1.027 1.038 0.509 0.502 301/14 34/12 164/71
jb148dII 74/3 2354.47 1.007 1.025 1.035 0.553 0.548 318/17 50/7 161/72
jb148dIII 74/3 2288.74 1.017 1.029 1.046 0.256 0.245 302/24 43/24 172/56
jb149aI 173/7 1834.78 1.055 1.023 1.082 -0.413 -0.429 295/17 181/53 36/31
jb149aII 173/7 3547.11 1.036 1.069 1.11 0.306 0.282 297/31 137/57 33/9
jb149bI 168/10 2524.2 1.031 1.047 1.08 0.194 0.175 281/41 149/38 36/26
jb149bII 168/10 5111.96 1.102 1.039 1.15 -0.432 -0.46 292/23 31/21 159/58
jb149c 179/7 3126.71 1.04 1.071 1.114 0.275 0.25 310/28 170/56 50/18
jb149d 186/8 3846.69 1.063 1.06 1.127 -0.018 -0.048 285/33 127/55 22/10
jb150aI 128/5 208.99 1.013 1.015 1.028 0.083 0.076 280/5 11/12 169/77
jb150aII 128/5 247.05 1.015 1.037 1.054 0.407 0.396 110/1 19/42 202/48
jb150b 48/4 1428.91 1.085 1.14 1.239 0.233 0.183 324/33 60/9 163/56
jb150c 84/2 412.83 1.036 1.031 1.068 -0.07 -0.087 289/43 28/10 129/45
jb150d 87/2 456.14 1.036 1.027 1.064 -0.151 -0.166 285/39 185/11 82/49
jb151a 354/3 788.49 1.048 1.043 1.092 -0.054 -0.076 121/74 290/16 21/3
jb151aI 354/3 1609.74 1.191 1.117 1.333 -0.227 -0.293 145/65 313/24 45/5
jb151aII 354/3 714.93 1.015 1.052 1.071 0.537 0.525 138/49 281/35 24/19
jb151bI 334/3 630.75 1.031 1.03 1.061 -0.017 -0.032 123/52 344/31 242/20
jb151bII 334/3 609.35 1.1 1.025 1.135 -0.592 -0.611 209/77 102/4 11/13
jb151c 330/6 1371.21 1.042 1.118 1.171 0.456 0.426 162/70 260/3 351/20
jb151d 313/6 821.28 1.063 1.033 1.099 -0.309 -0.33 136/84 291/5 21/2
jb152aI 296/2 642.44 1.043 1.016 1.061 -0.459 -0.47 310/42 171/40 61/22
jb152aII 296/2 438.03 1.031 1.012 1.045 -0.45 -0.458 55/0 324/74 145/16
jb152bI 147/3 238.87 1.076 1.044 1.125 -0.257 -0.284 243/16 147/20 8/64
jb152bII 147/3 244.21 1.017 1.01 1.027 -0.245 -0.252 286/12 193/15 55/71
jb152cI 242/2 336.69 1.045 1.046 1.093 0.016 -0.006 257/51 16/21 119/31
jb152cII 242/2 392.38 1.036 1.034 1.071 -0.032 -0.05 262/40 93/50 357/5
jb153aI 6/2 156 1.024 1.023 1.048 -0.031 -0.043 280/67 136/19 42/13
jb153aII 6/2 168.11 1.026 1.029 1.056 0.06 0.046 82/76 196/6 287/13
jb153bI 28/3 74.62 1.003 1.012 1.015 0.618 0.616 326/17 220/42 73/43
jb153c 342/3 234.87 1.043 1.013 1.059 -0.543 -0.552 317/54 224/2 132/36
jb153d 126/0 52.81 1.009 1.007 1.016 -0.077 -0.081 313/21 201/44 61/39
jb154aI 44/4 3412.42 1.033 1.044 1.079 0.14 0.121 319/49 78/23 183/32
jb154aII 44/4 3564.75 1.034 1.053 1.09 0.219 0.199 320/51 68/14 168/36
jb154b 200/8 4655.35 1.029 1.045 1.076 0.218 0.2 338/45 100/28 210/32
jb154cI 109/2 3658.05 1.023 1.043 1.068 0.292 0.277 323/31 89/44 212/30
jb154cII 109/2 2855.92 1.018 1.046 1.067 0.434 0.421 15/66 285/0 194/24
jb154cIII 109/2 2890.03 1.027 1.052 1.082 0.319 0.302 324/50 96/29 201/24
jb154dI 97/4 5224.95 1.057 1.008 1.071 -0.75 -0.757 340/61 140/27 235/8
jb154dII 97/4 3408.4 1.011 1.055 1.071 0.672 0.663 332/26 99/52 228/26
jb154dIII 97/4 4307.16 1.012 1.088 1.11 0.751 0.74 118/14 352/67 212/18
jb155aI 321/5 134.27 1.029 1.058 1.09 0.333 0.314 66/30 171/24 293/50
jb155aII 321/5 134.77 1.023 1.062 1.089 0.45 0.433 69/31 173/22 292/50
jb155bII 23/7 133.31 1.02 1.062 1.086 0.511 0.496 68/26 170/22 295/55
jb155c 340/4 125.88 1.027 1.061 1.092 0.378 0.36 61/29 163/20 283/54
jb155d 48/2 134.7 1.021 1.065 1.091 0.512 0.497 60/27 161/20 282/55
jb156bI 82/2 1808.86 1.158 1.031 1.209 -0.659 -0.684 89/14 348/38 195/49
jb156bII 82/2 1074.11 1.161 1.024 1.207 -0.724 -0.744 97/10 347/62 192/26
jb156c 46/2 1123.59 1.143 1.034 1.194 -0.603 -0.629 101/8 6/33 203/56
jb156d 16/3 3020.97 1.128 1.082 1.222 -0.212 -0.26 101/4 252/86 11/2



163

Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb157a 342/4 1194.26 1.056 1.107 1.171 0.301 0.265 302/47 115/42 209/4
jb157bI 14/1 1204.95 1.086 1.027 1.121 -0.514 -0.534 222/69 116/6 24/20
jb157bII 14/1 1062.97 1.079 1.069 1.154 -0.066 -0.101 48/64 278/17 182/18
jb157c 2/4 1105.12 1.018 1.103 1.132 0.695 0.68 288/38 102/51 195/3
jb157d 24/4 1223.83 1.031 1.103 1.144 0.523 0.499 273/27 128/58 11/16
jb201a 168/2 1725.42 1.044 1.116 1.172 0.434 0.403 20/75 117/2 207/15
jb201b 141/5 372.14 1.041 1.078 1.125 0.305 0.278 168/4 78/2 324/86
jb204 90/1 415.03 1.039 1.031 1.071 -0.111 -0.128 80/4 347/34 176/56
jb204b 90/1 539.57 1.075 1.023 1.105 -0.529 -0.546 61/38 178/31 295/37
jb204c 90/1 581.76 1.052 1.031 1.086 -0.244 -0.263 91/27 340/36 209/42
jb205 302/7 445.68 1.075 1.078 1.159 0.015 -0.022 15/15 106/3 206/75
jb205b 302/7 1230.62 1.015 1.025 1.04 0.259 0.249 144/7 239/36 44/53
jb207 274/75 3695.37 1.177 1.017 1.22 -0.814 -0.828 133/5 231/57 40/32
jb207b 274/75 3940.38 1.123 1.057 1.191 -0.361 -0.392 126/5 31/40 221/50
jb207c 274/75 4827.55 1.178 1.067 1.266 -0.433 -0.479 133/1 42/22 225/68
jb210 282/80 4498.77 1.45 1.111 1.651 -0.558 -0.636 242/12 339/30 134/57
jb210a 282/80 3521.91 1.228 1.068 1.326 -0.517 -0.565 238/10 329/7 96/78
jb210b 282/80 2503.46 1.272 1.075 1.389 -0.537 -0.591 235/5 325/8 115/81
jb212A 127/3 3446.17 1.183 1.515 1.824 0.424 0.3 252/29 132/42 4/34
jb212B 135/4 2060.69 1.203 1.382 1.673 0.274 0.154 235/38 116/31 360/36
jb212c 149/5 814.11 1.077 1.134 1.223 0.259 0.212 270/43 150/28 39/34
jb213 208/32 105.19 1.024 1.011 1.036 -0.367 -0.375 291/1 200/39 23/51
jb213a 208/32 254.05 1.02 1.026 1.047 0.128 0.117 113/7 218/65 20/24
jb218 92/25 1189.98 1.139 1.052 1.205 -0.435 -0.471 145/11 354/77 236/6
jb218b 92/25 1593.7 1.158 1.052 1.227 -0.484 -0.521 150/16 49/33 262/52
jb220 92/25 1668.33 1.049 1.06 1.112 0.103 0.077 146/19 271/60 48/23
jb220b 92/25 2358.27 1.106 1.078 1.192 -0.146 -0.189 317/0 226/68 47/22
jb257 333/4 2008.25 1.182 1.134 1.342 -0.142 -0.213 261/26 134/52 5/26
jb257a 340/2 2058.4 1.116 1.114 1.243 -0.01 -0.065 75/62 288/24 192/14
jb257b 358/2 2028.65 1.227 1.122 1.382 -0.281 -0.354 263/24 149/42 13/38
jb257c 334/1 2112.63 1.159 1.165 1.35 0.019 -0.056 265/34 137/43 17/29
jb258A 152/1 3699.67 1.255 1.103 1.396 -0.399 -0.465 98/7 194/34 358/55
jb258B 154/2 3728.7 1.254 1.133 1.427 -0.29 -0.368 95/6 189/32 355/57
jb258c 179/2 4439.81 1.259 1.059 1.356 -0.599 -0.644 111/6 211/60 18/30
jb258cb 179/2 3044.2 1.187 1.073 1.283 -0.419 -0.468 107/1 198/42 16/48
jb259a 42/2 3660.5 1.143 1.042 1.2 -0.532 -0.563 268/3 359/19 170/71
jb259B 46/0 2642.01 1.178 1.025 1.227 -0.742 -0.763 270/8 0/5 123/80
jb260A 348/1 5551.13 1.161 1.231 1.432 0.163 0.075 275/1 6/40 185/50
jb260B 284/1 5512.06 1.242 1.206 1.498 -0.072 -0.173 85/10 347/40 186/49
jb260c 111/0 2632.06 1.061 1.08 1.147 0.129 0.096 281/4 17/52 188/37
jb261 346/18 2488.89 1.115 1.099 1.225 -0.072 -0.122 332/4 242/9 85/81

jb261A 338/13 4575.07 1.172 1.21 1.419 0.094 0.007 284/9 15/8 145/78
jb261b 346/18 2097.78 1.12 1.072 1.202 -0.24 -0.283 332/2 242/13 69/77
jb261B 346/4 3520.25 1.153 1.255 1.452 0.229 0.141 277/8 9/13 157/74
jb261c 346/18 1747.28 1.103 1.114 1.228 0.049 -0.003 322/5 230/17 67/72
jb273 129/24 55.54 1.05 1.016 1.07 -0.511 -0.523 315/7 45/6 176/80
jb273b 129/24 72.41 1.044 1.077 1.126 0.261 0.234 315/28 76/44 205/33
jb273c 129/24 99.43 1.102 1.051 1.162 -0.322 -0.355 119/18 219/29 1/55
jb296 350/44 779.85 1.014 1.097 1.122 0.746 0.734 307/19 44/19 174/62
jb304 54/24 2330.74 1.075 1.162 1.255 0.351 0.301 115/5 24/9 231/80
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Sample Orient. Susc.*10-6 SI L F P´ T U K1 K2 K3
jb304b 54/24 1775.8 1.065 1.094 1.167 0.177 0.14 121/9 212/4 327/80
jb304c 54/24 1857.9 1.098 1.113 1.223 0.067 0.016 133/11 223/0 315/79
jb304d 54/24 1201.48 1.112 1.045 1.167 -0.418 -0.449 130/7 221/4 342/82
jb305a 205/16 560.09 1.036 1.089 1.133 0.414 0.389 121/19 251/62 24/20
jb305b 205/16 524.88 1.041 1.074 1.121 0.278 0.252 122/24 255/57 22/21
jb305c 205/16 532.07 1.039 1.08 1.125 0.333 0.307 120/18 244/60 22/24
jb306 4/6 4072.84 1.095 1.076 1.179 -0.111 -0.151 288/13 35/52 189/35
jb306b 4/6 6759.13 1.083 1.103 1.195 0.099 0.055 287/6 30/64 194/25
jb306c 4/6 4752.16 1.084 1.09 1.182 0.036 -0.006 286/10 32/58 190/30
jb306d 4/6 4566.98 1.089 1.078 1.174 -0.066 -0.106 292/10 30/38 190/50
jb308 161/10 280.15 1.074 1.014 1.096 -0.67 -0.682 24/16 120/20 258/64
jb308b 161/10 254.83 1.013 1.023 1.036 0.271 0.263 225/28 110/37 341/40
jb308c 161/10 289.38 1.057 1.035 1.095 -0.235 -0.256 251/4 140/78 342/11
jb309a 209/1 3420.68 1.229 1.17 1.441 -0.135 -0.223 316/16 219/25 76/60
jb309b 209/1 1767.65 1.193 1.208 1.441 0.034 -0.058 320/17 221/26 79/58
jb309c 209/1 2504.41 1.238 1.133 1.408 -0.262 -0.34 322/14 224/28 76/58
jb310 296/1 5534.93 1.083 1.096 1.187 0.074 0.031 324/14 60/23 204/62
jb310b 296/1 6846.85 1.101 1.09 1.201 -0.056 -0.101 319/16 54/18 189/66
jb310c 296/1 6507.17 1.103 1.088 1.201 -0.077 -0.123 317/17 55/24 195/60
jb310d 296/1 5239.51 1.091 1.088 1.186 -0.016 -0.059 321/17 58/22 196/62
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Appendix III

HFA-data Orientation of respective axes (P=para, F= ferri)
Geographic system

Sample Upara Uferri eDens.para eDens.ferri
[J/M3]

PK1 PK2 PK3 FK1 FK2 FK3

JB28d 0.32 -0.01 0.1270 1.1200 242/35 356/32 117/40 10/27 229/56 109/18
JB146aII 0.48 0.05 0.1410 0.1540 350/25 243/31 111/47 303/32 210/6 110/57

JB136c -0.02 -0.87 0.0003 8.2800 67/11 158/08 284/76 70/07 164/34 331/55
JB99aI -0.42 -0.57 0.3260 1.2000 094/04 003/06 218/83 087/05 355/14 195/75
JB96a -0.77 -0.12 0.3910 0.0551 226/04 133/27 325/63 269/81 138/05 047/07
JB74c 0.18 0.52 1.7800 0.1370 270/03 005/66 178/23 272/59 51/24 149/18
JB46b -0.36 -0.11 0.2670 2.0800 185/00 15/1 169/89 103/4 301/86 194/2
JB25bI -0.56 -0.05 0.3910 1.4100 42/28 285/40 155/37 51/21 158/37 297/45
JB24c 0.51 0.76 0.3310 0.3220 129/22 348/62 226/16 96/48 271/42 3/2

JB8aBIII 0.64 0.57 0.0001 2.8100 291/9 34/54 195/34 101/14 349/55 200/31
JB19b -0.37 -0.14 0.4870 1.2700 163/37 63/13 318/50 119/32 7/30 245/43
JB44a -0.06 0.81 1.9000 8.4900 92/12 317/74 184/11 335/54 83/13 182/33

JB56aII 0.01 0.38 0.9970 4.5500 357/7 91/33 255/56 99/19 7/7 258/70
JB73a 0.50 0.66 0.7500 3.3200 76/13 335/42 179/45 57/23 310/33 175/48
JB63d -0.25 0.04 0.1210 0.4450 88/30 327/42 201/33 059/35 284/46 187/24
JB57a 0.54 0.45 2.0100 2.7900 44/21 314/1 222/70 43/19 312/5 209/70
JB53a 0.59 0.03 5.1700 0.8440 81/34 346/9 242/55 092/26 350/22 226/55
JB48c 0.01 -0.12 1.1600 0.7840 344/8 249/32 86/56 356/5 263/34 93/55
JB42a -0.16 0.12 0.0484 0.7700 369/49 148/34 252/21 9/0 99/30 280/60

x1 0.72 0.09 4.3100 0.7880 56/37 234/54 325/1 240/1 345/85 149/5
JB128bII 0.16 0.2 0.7610 1.2300 172/57 327/31 65/12 380/53 154/36 249/8
JB140aI -0.07 0.12 0.6030 1.3600 148/34 257/27 19/45 272/18 163/44 18/41
JB133d -0.16 -0.03 1.4800 9.0400 254/23 130/52 356/27 72/9 292/77 163/9
JB116bI 0.14 0.04 4.4300 0.0450 269/8 359/0 90/82 156/78 356/7 266/8
JB108bII -0.86 -0.45 0.6810 2.1800 281/37 20/11 124/50 287/5 48/79 196/9
JB125aII 0.02 0.26 0.7480 3.2800 59/27 199/56 318/18 39/17 234/73 131/5
JB123b -0.36 -0.4 0.3160 2.5600 261/29 87/61 353/2 213/12 4/57 142/25
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Appendix IV

Geochemistry (major elements)

Sample %SiO2 %TiO2 %Al2O3 %Fe2O3 %MnO %MgO %CaO %Na2O %K2O %P2O5 %LOI %TOTAL
CH 10 73.07 0.14 13.59 1.59 0.06 0.47 1.07 3.89 5.73 0.03 0.46 100.12
CH 11 68.12 0.48 14.60 3.24 0.10 2.35 2.88 4.74 3.16 0.18 0.59 100.44

CH 16A 73.29 0.32 13.84 2.52 0.07 0.85 2.07 3.45 2.59 0.07 1.01 100.10
CH 18 67.40 0.53 14.81 3.34 0.09 2.54 3.04 5.01 2.93 0.19 0.55 100.43
CH 19 59.14 0.77 13.98 7.53 0.12 5.58 6.18 4.29 1.86 0.26 0.51 100.22

CH 21A 68.78 0.40 14.81 2.62 0.07 1.55 2.53 4.23 4.05 0.13 0.56 99.73
CH 21B 70.16 0.41 14.26 3.06 0.07 1.38 1.54 3.12 5.67 0.24 0.57 100.49

CH 23 73.20 0.34 13.68 2.97 0.07 0.77 2.75 5.07 1.21 0.09 0.30 100.47
JB 77 73.68 0.31 12.66 2.64 0.06 0.59 2.54 4.66 1.28 0.08 0.36 98.85

JB 108 72.17 0.29 14.39 2.10 0.07 0.56 2.17 4.83 3.09 0.08 0.24 99.98
JB 109 69.94 0.51 14.18 3.68 0.08 1.18 2.45 4.47 3.35 0.19 0.47 100.51
JB 200 74.24 0.22 13.79 1.68 0.07 0.44 1.65 4.04 3.92 0.06 0.23 100.36
JB 202 73.67 0.24 13.67 1.94 0.08 0.51 1.91 4.12 3.74 0.06 0.38 100.32
JB 206 73.74 0.19 13.50 1.23 0.06 0.12 0.84 3.15 6.03 0.03 0.18 99.06
JB 207 71.90 0.23 14.55 1.88 0.05 0.29 1.12 3.64 6.17 0.04 0.47 100.34
JB 209 73.83 0.20 13.83 1.55 0.05 0.26 1.26 3.88 5.28 0.03 0.19 100.38
JB 210 67.45 0.43 15.89 3.13 0.08 1.48 3.01 4.16 4.07 0.14 0.51 100.35
JB 211 69.42 0.32 14.99 2.31 0.08 1.15 2.12 4.21 4.21 0.11 0.88 99.81
JB 212 72.26 0.26 14.79 2.48 0.08 0.55 2.01 4.17 3.41 0.07 0.30 100.38
JB 213 65.14 0.49 13.82 3.47 0.12 2.66 3.16 4.35 4.47 0.16 0.99 98.83

JB 214A 72.07 0.32 14.24 2.91 0.08 0.81 2.64 4.82 1.94 0.10 0.16 100.09
JB 214B 74.04 0.13 14.56 0.83 0.05 0.37 1.94 5.00 3.41 0.04 0.14 100.50

JB 215 72.58 0.27 14.08 2.24 0.07 0.76 2.06 4.31 3.37 0.08 0.27 100.10
JB 216 70.46 0.38 14.39 3.54 0.08 0.78 2.01 4.58 3.84 0.08 0.18 100.33
JB 208 75.47 0.24 12.43 1.77 0.04 0.38 1.01 3.58 5.05 0.06 0.36 100.39

JB 217A 59.53 0.45 16.38 5.97 0.10 4.91 5.22 2.10 3.03 0.13 2.00 99.82
JB 217B 58.84 0.78 14.80 7.47 0.11 5.42 6.29 3.46 1.83 0.25 0.91 100.16
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Appendix V

Geochemistry
(Isotopes)

Isotopes CH 10 CH 11 CH 16A CH-18 CH 19 CH-21A CH 21B CH23
Sc 3.715 7.295 26.674 7.277 6.831 5.669 8.299 16.689
Rb 344.048 238.297 74.390 201.391 182.190 116.165 175.928 69.344
Sr 157.771 323.526 473.324 308.272 488.398 74.657 278.889 470.085
Y 11.771 11.764 20.577 9.445 10.618 14.647 18.269 18.160

Zr 148.025 150.619 207.344 124.565 175.119 145.640 127.493 208.230
Nb 6.164 8.508 8.771 9.933 8.320 6.909 5.071 5.597
Mo 0.655 0.411 0.516 0.386 0.364 0.867 0.676 0.558
Cs 2.954 5.617 8.096 4.232 4.807 1.276 2.176 6.996
Ba 690.825 607.592 696.414 566.795 1037.962 480.818 2248.014 680.110
La 50.515 49.125 42.777 50.525 50.384 42.448 72.374 38.274
Ce 110.392 82.619 97.799 88.798 104.395 72.561 140.671 81.346
Pr 11.272 8.806 10.802 9.073 9.585 7.388 13.149 9.885
Nd 40.154 30.173 43.392 30.799 35.276 25.030 48.538 38.224
Sm 6.576 4.409 7.706 4.425 4.878 4.398 6.633 6.632
Eu 0.779 1.251 1.924 1.262 1.727 0.955 2.850 1.763
Gd 5.316 2.871 4.299 2.482 3.542 2.680 5.718 3.854
Tb 0.540 0.371 0.755 0.378 0.405 0.457 0.634 0.647
Dy 2.703 2.023 4.033 1.773 2.088 2.413 3.672 3.415
Ho 0.411 0.371 0.772 0.320 0.378 0.498 0.660 0.672
Er 0.809 1.046 2.640 0.953 1.027 1.494 1.497 1.828

Tm 0.122 0.174 0.314 0.129 0.158 0.235 0.234 0.277
Yb 0.839 1.262 1.883 0.839 1.112 1.579 1.693 1.713
Lu 0.129 0.182 0.293 0.138 0.156 0.264 0.223 0.258
Hf 5.581 4.200 5.490 3.497 4.943 4.908 3.621 5.496
Ta 14.221 16.919 0.046 -0.227 1.249 0.098 1.398 1.058
W 1.151 2.257 1.034 0.702 0.238 0.229 1.143 0.459
Pb 51.503 26.552 7.378 25.938 37.398 29.573 46.211 6.729
Th 108.678 23.702 8.877 24.323 31.619 32.760 41.748 9.275
U 15.807 2.215 2.478 3.172 9.612 4.728 3.611 2.019

SiO2 73.334 68.222 73.978 67.481 59.312 69.356 70.223 73.090

Number CH 10 CH 11 CH 16A CH 18 CH 19 CH 21A CH 21B CH 23
ppm Cu 2 7
ppm Zn 27 58 53 52 41 27 37 52

(Eu/Eu*)N 0.429 1.146 1.089 1.240 1.354 0.906 1.507 1.136
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Isotopes JB-77 JB-108 JB 109 JB 200 JB 202 JB 206 JB 207 JB 208
Sc 5.356 2.281 6.274 2.481 2.402 2.863 4.449 4.433
Rb 104.376 162.286 98.252 211.258 214.535 240.880 305.999 307.876
Sr 125.869 187.023 187.341 99.866 95.214 43.408 82.986 75.924
Y 9.770 4.705 20.488 10.498 11.658 5.373 11.518 23.182

Zr 172.909 126.280 186.412 128.850 120.638 96.136 186.036 151.232
Nb 12.215 7.061 14.921 5.473 7.392 2.704 5.417 8.844
Mo 0.876 1.407 0.453 0.279 0.585 0.242 0.664 0.116
Cs 9.430 6.332 2.084 3.963 6.165 4.149 4.770 2.566
Ba 142.004 616.720 706.620 707.723 730.513 247.257 443.283 461.548
La 11.355 26.967 37.553 31.058 32.508 37.611 72.648 49.438
Ce 20.174 43.673 72.226 52.666 59.908 84.740 162.485 104.151
Pr 2.224 4.100 7.095 4.658 5.141 8.483 15.162 10.449
Nd 8.186 13.384 26.351 15.672 18.282 30.375 54.446 37.113
Sm 1.950 2.125 5.312 2.512 3.180 4.692 7.699 6.457
Eu 0.591 0.973 1.566 0.972 0.986 0.466 0.754 0.676
Gd 1.539 1.319 3.609 2.255 2.892 3.294 5.564 6.335
Tb 0.300 0.195 0.680 0.302 0.403 0.302 0.583 0.800
Dy 1.754 0.937 4.001 1.850 2.354 1.292 2.916 4.808
Ho 0.337 0.160 0.774 0.349 0.420 0.186 0.448 0.828
Er 0.938 0.458 2.534 0.849 1.140 0.440 1.032 1.632

Tm 0.135 0.067 0.319 0.143 0.184 0.067 0.135 0.249
Yb 0.859 0.378 1.863 1.035 1.296 0.430 0.864 1.695
Lu 0.141 0.054 0.308 0.152 0.185 0.074 0.130 0.219
Hf 4.235 3.481 5.202 3.965 3.735 3.480 6.546 5.456
Ta -0.118 0.041 -0.228 9.900 3.102 -0.465 1.354 4.324
W 0.865 0.504 0.492 0.663 7.473 0.443 1.375 0.731
Pb 15.667 19.366 19.108 25.996 28.640 45.251 55.903 46.085
Th 6.844 12.073 15.723 31.940 30.191 43.836 108.677 69.511
U 1.500 2.904 2.930 6.800 3.648 9.660 24.318 16.793

SiO2 74.802 72.351 69.919 74.158 73.714 74.568 71.994 75.447

Number JB 77 JB 108 JB 109 JB 200 JB 202 JB 206 JB 207 JB 208
ppm Cu 2 4
ppm Zn 49 38 51 26 32 22 30 35

(Eu/Eu*)N 1.111 1.893 1.165 1.330 1.059 0.386 0.375 0.344
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Isotopes JB 210 JB 211 JB 212 JB 213 JB-214A JB 214B JB 215 JB 216 JB 217A
Sc 6.453 4.945 2.129 9.343 6.114 0.250 3.825 8.158 12.906
Rb 164.417 179.386 158.039 221.060 99.803 155.898 145.664 129.589 3347.623
Sr 478.051 391.245 88.911 306.121 122.298 60.772 125.446 118.187 410.348
Y 12.078 18.426 13.851 26.122 9.761 10.760 7.414 41.536 9.322

Zr 184.727 108.727 131.347 118.679 185.158 77.110 142.689 209.716 60.731
Nb 8.720 9.247 15.424 14.050 16.195 4.584 10.588 10.276 2.234
Mo 0.922 0.558 0.740 0.401 0.432 0.392 0.659 0.608 0.277
Cs 4.339 1.853 2.777 4.194 4.505 1.977 0.625 4.319 1442.485
Ba 943.971 883.316 565.124 655.355 93.150 111.831 438.678 890.629 470.025
La 48.156 36.889 28.861 31.373 10.372 40.274 25.097 22.137 10.416
Ce 99.300 72.173 51.895 66.369 18.513 79.842 49.084 39.771 18.919
Pr 9.644 7.664 4.834 7.069 1.986 7.813 4.231 5.428 2.236
Nd 36.034 28.503 17.358 27.633 7.302 28.517 15.148 24.222 9.838
Sm 5.322 4.726 3.648 4.991 1.888 6.141 2.942 6.427 2.142
Eu 1.782 1.405 0.957 1.219 0.564 0.506 0.945 1.658 1.039
Gd 3.949 3.992 2.603 5.035 1.449 3.387 1.793 5.117 1.953
Tb 0.451 0.503 0.517 0.713 0.284 0.567 0.298 1.118 0.287
Dy 2.475 3.249 2.856 4.826 1.696 2.755 1.581 6.768 1.626
Ho 0.430 0.604 0.494 0.889 0.333 0.444 0.290 1.468 0.346
Er 1.067 1.437 1.555 2.115 0.939 1.449 1.068 4.640 0.922

Tm 0.167 0.253 0.167 0.375 0.132 0.138 0.098 0.621 0.137
Yb 1.263 2.106 0.908 2.814 0.855 0.754 0.508 3.480 0.937
Lu 0.182 0.243 0.160 0.322 0.136 0.122 0.085 0.552 0.142
Hf 5.227 3.242 3.913 3.397 4.648 3.706 4.195 5.782 1.748
Ta 1.780 17.933 -0.464 4.986 -0.089 0.031 0.099 -0.073 0.193
W 0.342 0.961 0.278 0.327 0.342 0.620 0.809 1.674 1.492
Pb 32.769 32.611 39.376 32.981 14.796 46.628 33.874 28.144 5.205
Th 28.985 29.262 22.771 19.592 4.698 44.715 18.081 12.013 3.216
U 6.023 5.630 6.561 4.434 1.312 13.242 2.161 1.968 0.664

SiO2 67.558 70.178 72.202 66.578 72.120 73.767 72.711 70.361 60.857

Number JB 210 JB 211 JB 212 JB 213 JB 214A JB 214B JB 215 JB 216 JB 217A
ppm Cu 32
ppm Zn 41 35 53 51 44 18 40 63 82

(Eu/Eu*)N 1.266 1.054 1.012 0.792 1.112 0.362 1.341 0.942 1.655
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