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Abstract

Flow and transport models in porous media have become a very important tool
in groundwater management. To implement these models, spatial distributions
of hydrogeological parameters must be known. Due to scarcity of direct mea-
surements, the parameters are mainly inferred from secondary dependent in-
formation such as head or concentration measurements. The inference of hy-
drogeological parameters from secondary information is referred to as inverse
problem of groundwater modeling. Because of consistent assumptions about
the spatial variability of porous media, inverse methods within the framework
of geostatistics are well suited for estimating the spatial distributions of hydro-
geological parameters in heterogeneous aquifers. In geostatistics, the parameter
field is regarded as a spatial random variable.

Within the geostatistical inverse approaches, the Quasi-Linear Geostatistical In-
verse Approach of Kitanidis [1995] with its modifications appears to be the most
efficient, particularly with respect to required CPU time in quantifying the ex-
pected value of the parameters and their related estimation uncertainty for the
cases with a large number of unknowns. Despite this advantage, a couple of
difficulties of applying this inverse approach remain.

The inverse approach requires evaluation of cross-covariance matrices in the in-
ference. Efficient spectral methods of computing these terms [Nowak et al.,
2003] require regular structured grids and will fail when the domain is dis-
cretized by unstructured grids which may be important for practical applica-
tions. Explicitly computing these matrices is prohibitive for cases with a large
number of unknowns. In this thesis, I parameterize the parameter field using a

xv
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truncated series of base functions efficiently derived from the covariance matrix
by spectral methods. The parameterization of a spatial random field using trun-
cated series is the application of the Karhunen-Loève(KL) expansion [Loève,
1977]. The reduced dimension in the parameterization can reduce the computa-
tional costs in estimating the parameter field. The base functions are continuous
in space and do not distinguish discretization schemes.

I integrate the parameterization with the KL expansion into the inverse approach
and implement this integrated inverse approach using structured and unstruc-
tured grids in synthetic test cases. I compare the inverse approach with the KL
expansion and the inverse approach with the full covariance matrix in which
the FFT method of accelerating evaluation of cross-covariance matrices can be
applied. The computational effort, estimates, and estimation variances are in-
vestigated. Results show that I can obtain a reliable estimate of hydrogeolog-
ical parameters using a limited number of truncated terms. If a high number
of KL terms are needed, the inverse approach with the full covariance matrix
outperforms the inverse approach with the KL expansion. However, for smooth
covariance functions, particularly with large correlation lengths, a few KL terms
are sufficient and the parameterization with the KL expansion becomes more
efficient. This work has been published by Li and Cirpka [2006].

Applicability of the inverse approach in analyzing field data is investigated. In
this thesis, two applications with different spatial dimensions, a two-dimensional
and a three-dimensional inference, are conducted. In the field applications,
the measurements of drawdown during pumping tests and discharge profiles of
flowmeter tests in fully screened wells at the test site Krauthausen, Germany, are
used. For these two estimations, I apply the inverse approach with full covari-
ance matrix on regular grids and accelerate the evaluation of cross-covariance
matrices using the FFT method.

In the two-dimensional analysis, I test the feasibility of the inverse approach
given measurements of pumping tests in estimating the fields of transmissivity
and storativity. To estimate the field of storativity, I have to apply transient data
of drawdown. To avoid high correlation of transient data in a drawdown curve, I
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apply temporal moments of drawdowns [Li et al., 2005] to extract the most im-
portant information of transient curves. The corresponding moment-generating
equations are at steady state, which can be solved much more efficiently than
the transient flow equations.

For the estimated transmissivity, the inverse approach provides estimates show-
ing more spatial variability than the interpolated field of the values obtained by
the conventional type-curve approach. This comes from the consistent assump-
tion of the former approach on the structure of porous media. Structures are
obtained in the regions where the pumping tests were conducted and uncertain-
ties of the estimate are decreased in these regions. However, uncertainties are
still high for the areas far away from well locations. Considering the estimate of
storativity, both approaches obtain a high value of estimated variance, which is
believed unrealistic, because the variability of all terms making up the storativity
is small in space so that the distribution of storativity is presumed to show small
variance. I believe that this is an effect of aliasing. The estimated distribution
of transmissivity is smoother than the real field. The unresolved variablity at
small local scales has a large effect on the simulated first temporal moments,
representing the characteristic time of drawdown, than the zeroth temporal mo-
ments, representing final drawdown. Given a smooth estimate of transmissivity,
the inverse approach attributes the derived variability in first temporal moments
to the variability of storativity. In the estimation, I assumed a two-dimensional
aquifer. The unresolved vertical variability may also be a particular cause for
the unrealistic results. Data quality influences the estimation of parameter fields
and geostatistical parameters. When the measurement error is large, I obtain
increased values of estimated correlation lengths and decreased values of vari-
ances, which smooth the estimated fields of hydrogeological parameters. The
two-dimensional study has been published by Li et al. [2007].

I conduct a three-dimensional estimation of hydrogeological parameters at the
same site to test the performance of the inverse approach with a large num-
ber of unknowns. Due to lack of measurements supporting a three-dimensional
estimation of specific storage coefficient, particularly regarding to the vertical
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direction, the field of specific storage coefficient is not estimated. In the three-
dimensional estimation, I jointly apply the data of pumping and flowmeter tests
to obtain the field of hydraulic conductivity. Measurements of pumping tests re-
flect depth-averaged horizontal features of aquifers, whereas the flowmeter data
contain the relative vertical distributions of hydraulic conductivity. I use final
drawdown measurements of pumping tests and discharge profiles of the flowme-
ter tests as my data for the inversion. By considering discharge profiles, I avoid
converting the relative hydraulic conductivities to absolute values making the
integration of flowmeter data into the analysis of pumping tests consistent.

With about one million of unknowns, the inverse approach used roughly two
days CPU time to finish the estimation of hydraulic conductivity on a standard
personal computer. The results show that three-dimensional structures are ob-
tained in the vicinity of the wells where flowmeter tests were conducted. In the
region where only pumping test data exist, the estimated hydraulic conductiv-
ity becomes vertically uniform. The remaining uncertainty of the estimate de-
creases considerably near the wells for flowmeter tests. The three-dimensional
study has been published by Li et al. [2008].

Overall, with the geostatistical inverse approach using a sufficient number of
measurements with suitable support volumes, I can obtain reliable estimates of
spatial distributions of hydrogeological parameters with reasonable computa-
tional effort. On unstructured grids, the inverse approach with the KL expansion
[Li and Cirpka, 2006] appears to be the most efficient method. On structured
grids, the method using the full covariance matrix can be applied to problems
with up to millions of unknowns on a standard personal computer. In both meth-
ods, a good spatial distribution of the estimated fields is obtained mainly in the
regions where aquifer tests are available. In order to identify all relevant struc-
tures in a formation, about one measurement per correlation length is required.
However, traditional hydraulic investigation techniques such as pumping and
flowmeter tests are costly because they require wells. Efficient data-acquisition
techniques based on geophysical monitoring of hydraulic tests such as electrical
resistivity tomography and a proper integration of these techniques into ground-
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water inverse modeling seem necessary.





Zusammenfassung

Strömungs- und Transportmodelle sind wichtige Werkzeuge in der Bewirtschaf-
tung von Grundwasserressourcen. Zu Ihrer Verwendung muss die räumliche
Verteilung hydrogeologischer Parameter, namentlich der Durchlässigkeit und
des Speicherkoeffizienten, bekannt sein. Weil direkte Messungen dieser Grössen
selten sind, werden sie meistens aus Messungen abhängiger Grössen, wie dem
Grundwasserspiegel oder der Konzentration eines gelösten Stoffes, abgeleitet.
Die Ermittlung der hydrogeologischen Kenngrössen aus sekundärer Information
wird als inverses Problem der Grundwassermodellierung bezeichnet. Inverse
Methoden auf der Grundlage einer geostatistischen Beschreibung des Grund-
wasserleiters sind gut geeignet um die räumliche Verteilung hydrogeologischer
Parameter in heterogenen Grundwasserleitern zu ermitteln, weil die geostatistis-
che Charakterisierung eine konsistente Grundlage für die Beschreibung räumlich
variabler Grössen darstellt. Konzeptionell beruht die Geostatistik auf der An-
nahme, dass das Parameterfeld als räumliche Zufallsvariable betrachtet werden
kann.

Innerhalb der geostatistischen inversen Methoden ist der quasi-lineare geostatis-
tische Ansatz von Kitanidis [1995] - mit verschiedenen Modifikationen - beson-
ders günstig, vor allen Dingen in Bezug auf die rechnerische Effizienz in der Ab-
schätzung des besten Schätzwertes und der damit verbundenen Schätzunsicherheit.
Nichtsdestotrotz verbleiben Schwierigkeiten in der Anwendung der genannten
Methode.

Der gewählte inverse Ansatz erfordert die Berechnung von Kreuz-Kovarianz-
matrizen, die die Korrelation zwischen allen gemessenen Grössen und allen

xxi
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diskretisierten Parametern beschreiben. Effiziente spektrale Methoden zur Berech-
nung dieser Matrizen [Nowak et al., 2003] erfordern die Diskretisierung des Ge-
bietes mittels regelmässiger strukturierter Gitter und können nicht angewendet
werden, wenn das Gebiet durch unstrukturierte Gitter diskretisiert wird, wie dies
in vielen praktischen Anwendungen der Fall ist. Eine explizite Berechnung der
Kreuz-Kovarianz-matrizen ist bei grossskaligen Anwendungen praktisch nicht
möglich. In dieser Dissertationsschrift parametrisiere ich das räumlich kon-
tinuierliche Parameterfeld mittels einer abgebrochenen Reihe von Basisfunk-
tionen, die mit spektralen Methoden aus der Auto-Kovarianzfunktion abgeleitet
werden können. Die Entwicklung ist als Karhunen-Loève-Entwicklung [Loève,
1977] bekannt. Durch Einbettung des Berechnungsgebietes in eine grössere Ein-
heitszelle eines periodischen Gebietes können schnelle Fouriertransformations-
methoden verwendet werden. Ausserdem ist die Form der Basisfunktionen ana-
lytisch vorgegeben. Der Abbruch der Entwicklungsreihe nach Berücksichtigung
aller dominanten Terme kann zu einer Verringerung des Rechenaufwandes führen.
Die Basisfunktionen sind kontinuierliche trigonometrische Funktionen und können
auf beliebigen Gittern abgebildet werden.

Ich habe die Parametrisierung des Parameterfeldes mittels der Karhunen-Loève-
Entwicklung in den genannten inversen Ansatz integriert und implementierte
ein vollständiges inverses Modell für strukturierte und unstrukturierte Gitter.
Ich führte Vergleichsrechnungen anhand synthetischer Testbeispiele durch. Im
Vergleich zum inversen Ansatz unter Verwendung der vollständigen Kovari-
anzfunktion ist der Ansatz unter Anwendung der Karhunen-Loève-Entwicklung
auf strukturierten Gittern etwas aufwändiger, zumindest wenn viele Karhunen-
Loève-Terme berücksichtigt werden müssen. Im Fall glatter Kovarianzfunktio-
nen mit grosser Korrelationslänge kann jedoch die Karhunen-Loève-Entwicklung
nach vergleichsweise wenigen Gliedern abgebrochen werden, sodass die En-
twicklung rechnerische Vorteile bietet. Auf unstruktierten Gittern ist mir keine
effizientere Methode zur Berechnung von Kreuzkovarianztermen bekannt. Diese
Arbeiten wurden von Li and Cirpka [2006] veröffentlicht.

Die vorliegende Dissertationsschrift behandelt inverse Methoden zur Analyse
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von Felddaten. Ich zeige zwei Feldanwendungen mit unterschiedlicher Dimen-
sionalität. In diesen Anwendungen werden Pumpversuche und Flowmeter-Daten
vom Testfeld Krauthausen des Forschungszentrums Jülich ausgewertet. Die
Auswertung der Pumpversuche, die in vollständig verfilterten Brunnen durch-
geführt wurden, erfolgte mit einem zweidimensionalen Modell. Bei Berücksich-
tigung der Flowmeterdaten wechselte ich zu einer dreidimensionalen Betra-
chtung. Im Testfeld wurden 24 Kleinpumpversuche unter Verwendung von
52 Beobachtungsrohren durchgeführt. Dies führte zu 179 Absenkungskurven.
Flowmeter-Messungen lagen für 22 Beobachtungsrohre vor.

In der zweidimensionalen Anwendung versuchte ich aus instationären Pumpver-
suchsdaten die räumliche Verteilung der Transmissivität und des Speicherko-
effizienten zu ermitteln. Da instationäre Daten zeitlich stark korreliert sind,
charakterisierte ich die Absenkungskurven mittels ihrer zeitlichen Momente [Li
et al., 2005]. Die zugehörigen momentengenerierenden Gleichungen entsprechen
stationären Absenkungsgelichungen mit verteiltem Quell-/Senkenterm.

Die Absenkungskurven wurden zum Vergleich mittels des Theiss-Typkurven-
verfahrens ausgewertet. Hierbei ergab sich, dass mit dem inversen Verfahren die
räumliche Variabilität der Transmissivität besser aufgelöst werden konnte. Das
Typkurvenverfahren beruht auf der Annahme eines homogenen Grundwasser-
leiters, was offensichtlich im Widerspruch zu Daten steht, die für unterschiedliche
Kombinationen von Pump- und Beobachtungsbrunnen zu unterschiedlichen Wer-
ten führen. Die inverse Methode ermöglicht es, hydraulische Strukturen in der
Nähe von Beobachtungsrohren zu identifizieren. In diesen Bereichen wird die
Unsicherheit signifikant verringert. In grösserer Entfernung zu den Beobach-
tungsrohren verbleibt die Unsicherheit jedoch auf hohem Niveau. Die ermittel-
ten räumlichen Felder des Speicherkoeffizienten zeigen eine starke räumliche
Variabilität. Diese Variabilität erscheint unrealistisch, weil die Kenngrössen, die
zum Speicherkoeffizienten beitragen (Porosität, Kompressibilität des Wassers
und des Porenraums) nur geringfügig schwanken. Ich vermute, dass die unauf-
gelöste Variabilität der Durchlässigkeit zu einer systematischen Überschätzung
der Variabilität des Speicherkoeffizienten führt. Die Schätzung der geostatistis-
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chen Kenngrössen hängt darüberhinaus stark von der Messgenauigkeit der Ab-
senkung ab. Ein grosser Messfehler führt zu einer grossen geschätzten Korrela-
tionslänge und einer kleinen Varianz und damit zu glatten Feldern der geschätzten
hydrogeologischen Parameter. Die zweidimensionale Studie wurde von [Li et al.,
2007] veröffentlicht.

Die dreidimensionale Anwendung beruht auf denselben Daten wie das zwei-
dimensionale Beispiel. Zusätzlich verwendete ich die vorliegenden Flowmeter-
daten. In dieser Anwendung schätzte ich lediglich die Durchlässigkeitsverteilung
ab, weil keine Messungen vorlagen, die auf die dreidimensionale Verteilung des
spezifischen Speicherkoeffizienten sensitiv wären. Die Flowmeterdaten geben
ein Vertikalprofil der relativen Durchlässigkeit innerhalb des Profiles wieder.
In meinem inversen Algorithmus verwende ich direkt die Durchflussprofile der
Flowmetertests. Es ist also nicht notwendig, die Flowmeterdaten zunächst in ab-
solute Durchlässigkeiten umzuwandeln. Letzteres wäre am Standort auch nicht
möglich, weil tiefenintegrierte direkte Messungen der Durchlässigkeit fehlen.

Das Berechnungsgebiet ist in etwa eine Million Finite Elemente unterteilt. Für
jedes Element schätzte ich die Durchlässigkeit ab. Dies erforderte etwa zwei
Tage Rechenzeit auf einem Personal Computer. Die ermittelte dreidimension-
ale Durchlässigkeitsverteilung zeigt eine gute vertikale Auflösung in der Nähe
von Beobachtungsrohren, in denen Flowmeter-Versuche durchgeführt wurden.
In Gebieten, die von Flowmeter-Brunnen weit entfernt liegen, konnte keine ver-
tikale Differenzierung erreicht werden. Die Schätzvarianz wird in der Nähe der
Flowmeter-Brunnen stark reduziert. Die dreidimensionale Studie wurde von Li
et al. [2008] veröffentlicht.

Zusammenfassend kann festgestellt werden, dass es möglich ist, mit dem geo-
statistischen inversen Ansatz zuverlässige Schätzungen zur Verteilung hydro-
geologischer Kenngrössen vorzunehmen, sofern eine ausreichende Anzahl an
Messungen mit angemessenem Messvolumen vorliegen. Der zugehörige Rechen-
aufwand ist auch für Probleme mit vielen Unbekannten erträglich. Auf unstruk-
turierten Gittern erscheint der Ansatz unter Verwendung der Karhunen-Loève-
Entwicklung [Li and Cirpka, 2006] am effizientesten. Auf regelmässigen struk-
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turierten Gittern können bis zu eine Million Parameter mit der Methode unter
Verwendung der vollen Kovarianzmatrix auf einem Personal Computer ermit-
telt werden. Beide Methoden führen zu einer guten räumlichen Auflösung in
der Nähe von Beobachtungspunkten. Um alle hydraulisch relevanten Strukturen
im Untergrund zu identifizieren muss etwa ein Beobachtungspunkt je Korrela-
tionslänge vorliegen. Hierin liegt eine der wesentlichen Beschränkungen in der
Anwendung hydraulischer Versuche. Die Installation eines Beobachtungsrohres
ist aufwändig und kostspielig, sodass an den meisten Feldstandorten keine ausre-
ichende räumliche Auflösung der hydrogeologischen Parameterfelder durch die
direkte Auswertung hydraulischer Versuche erreicht werden kann. Als effiziente
Alternative zu direkten Beobachtungen könnten geophysikalische Messmetho-
den für das Monitoring hydraulischer Versuche eingesetzt werden. Allerdings
erfordert dies die Entwicklung spezieller Methoden, um diese Messdaten in das
inverse Schema für die Ermittlung hydrogeologischer Grössen zu integrieren.



Chapter 1

Problem Statement

1.1 Hydrogeological Parameters as Spatial Random
Fields

Natural porous media in the subsurface are complex and exhibit significant spa-
tial variability [e.g, Cressie, 1991]. It is common that hydrogeological param-
eters of the subsurface vary by orders of magnitude over short distances [e.g.,
Freeze, 1975; Kitanidis, 1991]. On large regional scales, these parameters ex-
hibit distinct well-defined features. However, on a local scale, they strongly
vary. Figure 1.1 is a graphic illustration of the variability on different scales.

In the literature, there are several approaches of describing the fields of hydro-
geological parameters. The most common approach is zonation [e.g, Carrera
and Neuman, 1986a;b;c]. Within a zone, the parameters are assumed uniform.
The approach by Yeh and Yoon [1981] describes the parameter fields as the
sum of known basic functions with coefficients that need to be calibrated. The
zones and deterministic functions are useful in representing large-scale variabil-
ity. However, they have difficulties in accounting for smaller-scale variability.
It is thus expedient to describe the parameters in a probabilistic fashion [e.g.,
Matheron, 1971; Journel and Huijbregts, 1978; Kitanidis and Vomvoris, 1983;
Dagan, 1989; Cressie, 1991]. The basic idea is that we do not know the de-

1
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tailed information of the subsurface but some statistical properties such as mean
values, the variance and the correlation of hydraulic parameters at two points
as a function of the separation distance. Hence, the theory of geostatistics is
applicable [Matheron, 1971; Journel and Huijbregts, 1978]. In this sense, the
parameters can be regarded as random space variables. Because of their relative
position in space, there exist relations among the random variables.

1.2 Parameter Estimation in Groundwater Model-
ing

In groundwater management, flow and solute transport models in porous me-
dia have become very important tools. These models are applied for predicting
flow patterns and distributions of solute transport. For such purposes, hydroge-
ological parameters such as permeabilities, storativities, and diffusivities must
be known. However, the required hydrogeological parameters are difficult to
obtain. This difficulty is recognized to be a major impediment to wider use of
groundwater models and to their full utilization [e.g., Frind and Pinder, 1973;
Kitanidis and Vomvoris, 1983]. The major reasons of the difficulty are the
scarcity of available direct measurements of the hydrogeological parameters.
Even in the case where one has direct measurements, they reflect conditions at
the points of measurement and cannot be considered representative of regional
conditions [e.g., Freeze, 1972]. In practice, the information about the hydroge-
ological parameters is mainly extracted from secondary dependent information
such as head, or solute concentration measurements.

The inference of hydrogeological parameters from secondary information is nor-
mally accomplished through selecting a set of parameters in such a way that the
measurements of heads, solute concentrations, and other variables describing
the system can be reproduced by the model. This method has widely been ap-
plied as a manual trial-and-error procedure. In the past decades, a large number
of systematic and computerized methods have been proposed [e.g., Neuman and
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Yakowitz, 1979; Kitanidis and Vomvoris, 1983; Yeh and Yoon, 1981; De Marsily
et al., 1984; Yeh, 1986; Carrera and Neuman, 1986a;b;c; Sun, 1994]. The pro-
cess of automated parameter estimation is referred to as the inverse problem of
groundwater modeling. The inverse methods based on concepts of zonation or
deterministic functions cannot provide detailed information of the hydrogeolog-
ical parameters due to the averaging or smoothing processes involved. In con-
trast, inverse methods within the framework of geostatistics appear more suitable
for estimating the spatial distribution of hydraulic parameters in heterogeneous
aquifers [e.g., Kitanidis and Vomvoris, 1983].

1.3 Geostatistical Inverse Models

Since the 1980’s, a variety of inverse models based on geostatistics have been
developed [for reviews see Yeh, 1986; Sun, 1994; Zimmerman et al., 1998].

The goal of these inverse methods is to estimate spatial distributions of hydro-
geological parameters. In theory, the spatial domain can be discretized infinitely
fine while the number of direct or indirect measurements is finite. That is, with-
out introduction of prior knowledge, the inverse problem is ill posed. In geo-
statistical inversion, the prior knowledge is introduced by assuming that the pa-
rameter fields are auto-correlated spatial variables. Kitanidis [1999] has shown
that these so-called Tikhonov methods are formally equivalent to assuming par-
ticular generalized covariance functions in geostatistical inversion. The various
geostatistical methods differ in the implementation of geostatistical regulariza-
tion. In the following, I briefly review a few prominent geostatistical inverse
approaches focusing on their different parameterization of random spatial fields.
However, geostatistical inverse approaches may differ from each other in many
other aspects, such as the techniques of searching optimal values, and the way
how they precede to obtain expected values of hydrogeological parameters and
their related estimation uncertainty.

The Pilot-Point Method of RamaRao et al. [1995] and the method of Sequential
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Figure 1.1: A schematic illustration of porous media at different scales.
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Self-Calibration of Sahuquillo et al. [1992] replace measurements of dependent
quantities by virtual measurements of the independent parameter field itself.
From the latter, the full spatial field is obtained by geostatistical interpolation
(kriging). In this context, the optimization procedure consists of determining the
optimum values of the virtual measurements, in which the number of the vari-
ables to be optimized is much smaller than the total number of unknowns of the
parameters themselves. Both approaches achieve estimates of hydrogeological
parameters by minimizing a least-square objective function. The formulations
of these two approaches are mathematically similar. However, they are concep-
tually different in the way of implementing virtual measurements. The master
locations are used to parameterize the perturbations of hydrogeological param-
eters, and are optimized at once to obtain the field of perturbations. In contrast,
pilot points represent the parameters themselves and are located sequentially by
a automated searching algorithm. After locating each pilot point, the updated
field of hydrogeological parameters is obtained. The Pilot-Point Method of Ra-
maRao et al. [1995] and the method of Sequential Self-Calibration of Gómez-
Hernández et al. [1997] involve conditional Monte-Carlo simulations, that is
generating many possible outcomes or realizations of the solution. The sys-
tem response of each realization meets the measurements within the bounds of
measurement errors. Realizations fulfilling such conditions are denoted as con-
ditional realizations, because they are conditioned on the measurements. The
general properties of the parameter fields are given by the ensemble mean and
the corresponding uncertainty fields by the magnitude of variations.

Representer Methods [Benett, 1992; Valstar et al., 2004] parameterize unknown
hydrogeological parameters by an expansion with a finite series, which de-
pend on unknown functions called representers. The number of representers are
equivalent to the number of measurements, which reduces the computational
costs in the parameter estimation. Representer methods consider generalized
least-square objective function and explicitly account for model errors, which
are assumed to be addictive forcing terms in the flow and transport equations.
The partial differential equations with the forcing terms will serve as constraints
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in the optimization. Minimizing the objective function and considering the con-
straints lead to Euler-Lagrange equations [Valstar et al., 2004], in which the un-
known representers are determined by substituting the unknowns with the finite
expansions. The estimate of the parameter fields with full dimension is obtained
by substituting the representers into the expansions. If the functional relation be-
tween hydrogeological parameters and measurements is linear, the representer
methods are almost identical to cokriging-like inverse approaches. In contrast to
the Pilot-Point Method of RamaRao et al. [1995] and the method of Sequential
Self-Calibration of Sahuquillo et al. [1992], the representer methods [Benett,
1992; Valstar et al., 2004] estimate the expected values and the corresponding
uncertainties in a single simulation.

The Successive Sequential Linear Estimator [Yeh et al., 1996; Zhang and Yeh,
1997; Yeh and Liu, 2000] is based on classical cokriging equations, in which a
parameter at a given location is computed by a linear combination of direct and
indirect measurements. The weights are computed by minimizing the estimation
variance subject to constraints (Best Linear Unbiased Estimator, BLUE). Cok-
riging requires cross-covariance functions that are computed in the Successive
Sequential Linear Estimator by linear uncertainty propagation. In the Successive
Sequential Linear Estimator, the measurements are introduced sequentially, that
is, the unconditional field is conditioned by the first measurement, resulting in a
conditional mean and covariance function acting as prior for conditioning on the
second measurement, resulting in an updated conditional mean and covariance
function, etc.. There are two difficulties of this approach: 1) The prior covari-
ance function from the second measurement onward is non-stationary, loosing
convenient properties of the stationary covariance function commonly assumed
for the unconditional field. 2) Due to linearity, a measurement may be met af-
ter conditioning to this particular measurement but no more after conditioning to
further measurements. Zhu and Yeh [2005] tried to overcome the latter difficulty
by re-adjusting the parameter field to previously used measurements.

The Quasi-Linear Geostatistical Inverse Approach of Kitanidis [1995] and the
Maximum a Posteriori Likelihood Method of McLaughlin and Townley [1996]
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are conceptually similar to the most of the above mentioned methods in the sense
that they rely on linearization of the functional relationship between parame-
ters and measured quantities about the current estimate, and that they maximize
the conditional probability density of the parameters using geostatistical prior
knowledge. In the Maximum a Posteriori Likelihood Method of McLaughlin
and Townley [1996], a system of equations must be solved that is of the order
of the number of discretized parameters plus the number of the trend coeffi-
cients. Kitanidis [1995] makes use of matrix identities so that the system of
equations is only of the order of the number of measurements plus the number
of the trend coefficients. The equations used in the Quasi-Linear Geostatistical
Inverse Approach of Kitanidis [1995] are identical to the function-estimate form
of cokriging using cross-covariance functions obtained by linearization about
the estimate itself. This method becomes identical to the Reprensenter Meth-
ods [Benett, 1992; Valstar et al., 2004] when the cross-covariance functions are
used as representers. In contrast to the Successive Sequential Linear Estimator
[Yeh et al., 1996; Zhang and Yeh, 1997; Yeh and Liu, 2000], all measurements
are introduced at once so that the prior covariance function remains stationary.
Iterations are only needed to update the linearization about the estimate. In addi-
tion to most methods mentioned above, the Quasi-Linear Geostatistical Inverse
Approach includes a step of estimating the geostatistical parameters, such as
variance and correlation lengths, used for the prior covariance function. In the
standard version, the Quasi-Linear Geostatistical Inverse Approach results in a
smooth estimated parameter field meeting the measurements plus an approxi-
mate posterior covariance function. A variant for the generation of conditional
realizations exists as well.

The Stochastic Moment Analysis Method by Hernandez et al. [2006] also results
in a smooth best estimate. The best estimate itself, however, does not necessarily
meet the measurements. Hernandez et al. [2006] account for the effect of the
unresolved variability on the mean behavior of the dependent variable, resulting
in nonlocal up-scaled equations.
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1.4 Selection of Inverse Method

My goal is to estimate hydrogeological parameters in field applications. Such
problems are three-dimensional. In numerical models, a three-dimensional dis-
cretization can easily lead to millions of unknowns. For such large number of
unknowns, a careful selection of computationally efficient approaches becomes
extremely relevant. The Pilot-Point Method of RamaRao et al. [1995] and the
method of Sequential Self-Calibration of Sahuquillo et al. [1992] require a large
number of realizations. The computational effort increases dramatically with the
number of conditional realizations and the number of unknowns. This makes
any approach based on conditional realizations not applicable for my goal.

The Successive Sequential Linear Estimator [Yeh et al., 1996; Zhang and Yeh,
1997; Yeh and Liu, 2000], the Quasi-Linear Geostatistical Inverse Approach by
Kitanidis [1995], the Maximum a Posteriori Likelihood Method of McLaughlin
and Townley [1996], and the recent inverse approach with Stochastic Moment
Analysis Method by Hernandez et al. [2006] involve cokriging-like techniques.
They consider the unknown parameters as a random space function conditioned
on given relevant measurements. They need to handle auto-covariances and
cross-covariances. For large-scale problems, evaluation of these terms becomes
computationally demanding. However, the auto-covariance matrix of a spatial
random variable has Toeplitz structure on regular grids when the parameter field
is statistically at least intrinsic. This structure can be used to optimize the per-
formance of all required matrix operations using the Fast Fourier Transforma-
tion(FFT) method [e.g., Zimmerman, 1998; Nowak et al., 2003]. The methods
of the Successive Sequential Linear Estimator [Yeh et al., 1996; Zhang and Yeh,
1997; Yeh and Liu, 2000] and the Stochastic Moment Analysis Method [Hernan-
dez et al., 2006] update the covariance matrices in their iterative procedure. By
this, the covariance matrix becomes non-stationary. Consequently, the efficient
FFT method cannot be used, making implementation of these two approaches in
my thesis not feasible. In contrast to the Successive Sequential Linear Estimator
[Yeh et al., 1996; Zhang and Yeh, 1997; Yeh and Liu, 2000], the Quasi-Linear
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Geostatistical Inverse Approach [Kitanidis, 1995] and the Maximum a Posteri-
ori Likelihood Method [McLaughlin and Townley, 1996] maintain the structure
of the covariance matrix in the estimation. This indicates that the latter two
approaches can be sped up by spectral methods. Unlike the Quasi-Linear Geo-
statistical Inverse Approach [Kitanidis, 1995], the Maximum a Posteriori Like-
lihood Method [McLaughlin and Townley, 1996] does not take the uncertainty
of the trend coefficients into consideration and under-determines the conditional
variance. The representer methods [Benett, 1992; Valstar et al., 2004] are not
based on Bayes’ theorem, the integration of prior information, which may be
valuable for stabilizing the inverse procedure, may be difficult. All these con-
siderations made me choose the Quasi-Linear Geostatistical Inverse Approach
of Kitanidis [1995] as inverse kernel. For stabilization of the inverse method,
I rely on the Levenberg-Marquardt modification of the original Quasi-Linear
Geostatistical Inverse Approach introduced by Nowak and Cirpka [2004].

In cases of highly variable parameter fields, it may become inappropriate to es-
timate a smooth best estimate meeting the original governing equations. Also
in these cases, the approximative covariance function obtained by the Quasi-
Linear Geostatistical Inverse Approach [Kitanidis, 1995] may become biased.
The most rigorous approach for such cases would be the Stochastic Moment
Analysis Method of [Hernandez et al., 2006], which unfortunately is computa-
tionally very demanding. An alternative would be to apply methods based on
generating conditional realizations. Then, the Pilot-Point Method of RamaRao
et al. [1995] and the method of Sequential Self-Calibration of Sahuquillo et al.
[1992] can be better choices. In the present study, however, I restrict the analysis
to cases with only moderate variability, so that the Quasi-Linear Geostatistical
Inverse Approach [Kitanidis, 1995] becomes applicable.

1.5 Tasks of Thesis

Despite the advances made in the Quasi-Linear Geostatistical Inverse Approach
[Kitanidis, 1995], a couple of difficulties in applying this method remain. To
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cope with these difficulties, I suggest a further extension of this inverse ap-
proach.

Another objective of this thesis is to examine the applicability of the inverse
approach in analyzing field data. Field measurements at test site Krauthausen,
Germany [Vanderborght and Vereecken, 2001; Vereecken et al., 1999; 2000]
are used. In a two-dimensional application, I test the feasibility of the inverse
approach in inferring the fields of transmissivity and storativity. To test the per-
formance of the inverse approach for large-scale problems, I use a resolution of
one million of unknowns in estimating the three-dimensional field of hydraulic
conductivity at the site.

In the following, I summarize the major contributions of my thesis, discussing
background information of the difficulties, the techniques of extension, and spe-
cific aspects in field implementations.

(I) Extending the Quasi-Linear Geostatistical Inverse Approach to unstruc-
tured grids.

To solve field problems, one frequently encounters situations where un-
structured grids are required, e.g. when the grid is locally refined. The ef-
ficient FFT method of computing matrix-matrix products of Nowak et al.
[2003] requires grids to be regular. Facing an unstructured grid with a
large number of elements, I choose an alternative representation of the
spatial parameter fields approximating the fields in reduced dimensions
but still producing reliable estimates. For this purpose, I apply the Karhunen-
Loève(KL) expansion [Loève, 1977; Ghanem and Spanos, 1991]. In Sec-
tion 2.6.3, the KL expansion is reviewed in detail.

In continuous domains, an orthonormal representation of autocorrelated,
multi-Gaussian field is given by the KL expansion. In the KL expansion,
the random spatial variable is parameterized by weighted base functions
derived from its covariance function. The base functions are the eigen-
functions of the covariance function times the square-root of the corre-
sponding eigenvalues. Typically, the series of eigenvalues is sorted in a
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decreasing order and truncated. The approximation by a truncated series
of eigenvalues can potentially reduce the computational cost of estimating
the parameter fields, because the number of dominant eigenvalues may be
much smaller than the number of grid points of the discretized domain.

A particular annoyance in applying the KL expansion to arbitrary domains
lies in the evaluation of the eigenvalues and eigenfunctions. For periodic
covariance functions, the eigenfunctions are known to be sinusoidal, and
the eigenvalues are proportional to the Fourier coefficients of the covari-
ance function. This simplifies the eigen-decomposition dramatically. For
non-periodic covariance functions with stationary increments, the embed-
ding and extracting technique [e.g., Dietrich and Newsam, 1993; Nowak
et al., 2003] can be applied. The reproduction of the covariance function
using continuous trigonometric functions is independent on the discretiza-
tion scheme of the spatial random field. Thus, it allows discretizing the
domain in arbitrary ways, namely by using unstructured grids.

Since the Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995]
maintains the covariance matrix intrinsic, a single step of approximating
the covariance matrix is needed for all stages of the estimation. In this the-
sis, I integrate the parameterization with the KL expansion into the Quasi-
Linear Geostatistical Inverse Approach [Kitanidis, 1995]. I illustrate the
major steps of the integration process in Section 2.10. Detailed aspects,
such as the influence of the number of terms after truncation on the esti-
mate, their uncertainties and the computational costs, are investigated in
synthetic test cases of Chapter 3.

(II) Analyzing hydraulic tomography to obtain fields of transmissivity and
storativity with transient drawdown data

Pumping tests are common techniques for hydrogeological site investiga-
tion. During pumping tests, water is injected or extracted from a produc-
tion well and changes of water level are monitored in the adjacent obser-
vation wells as well as in the production well. Conventional pumping tests
are restricted to a single pumping well. Analysis of these tests provides
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hydraulic properties over a large influence zone [Butler and Liu, 1993;
Gottlieb and Dietrich, 1995]. The obtained transmissivity is a weighted
average and does not provide detailed spatial information. To overcome
the limitations of conventional pumping tests, hydraulic tomography has
been proposed [e.g., Neuman, 1987; Butler and Liu, 1993].

In hydraulic tomography, a series of pumping tests stressing different ver-
tical intervals are performed and the changes of heads or drawdowns are
monitored at multiple observation points. Figure 1.2 illustrates the basic
concept of hydraulic tomography. By changing the pumping wells and

PumpingMonitoring

Pumping

Figure 1.2: Schematic illustrate of the concept of hydraulic tomography. Circles
indicate pumping or monitoring locations.

monitoring the response of the heads at other locations, one obtains mul-
tiple sets of head data.
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Numerical investigations [Bohling, 1993; Gottlieb and Dietrich, 1995;
Zhu and Yeh, 2005; 2006]) and sandbox experiments [Yeh and Liu, 2000;
Liu et al., 2007] have demonstrated that hydraulic tomography may pro-
duce a significantly improved description of the variation of hydraulic pa-
rameters. Straface et al. [2007] analyzed field data of hydraulic tomogra-
phy to estimate transmissivity and storativity. They show that hydraulic
tomography can obtain more information than classical aquifer tests using
the same well fields.

Transient behavior of drawdown curves in a pumping test is determined
by the field of storativity and transmissivity. In contrast, the steady-state
values of drawdown of a pumping test are quantified by the field of trans-
missivity. This indicates that transient data have to be used in order to
estimate the field of storativity.

Hendricks Franssen et al. [1999] jointly estimated the fields of transmis-
sivity and storativity with transient hydraulic head data. They used the
method of Sequential Self-Calibration of Sahuquillo et al. [1992], which
is based on conditional simulation. This method does not rely on cross-
covariance matrices between parameters and measurements and is thus
less affected by increasing the number of measurements in transient ap-
plications than cokriging-like techniques. However, they solved time-
demanding transient partial differential groundwater flow equations in each
realization. When the number of realizations increases, the computa-
tional costs are dramatically rising. Zhu and Yeh [2005] obtained the
field of hydraulic conductivity and specific storage coefficients from tran-
sient heads. The Successive Sequential Linear Estimator [Yeh et al., 1996;
Zhang and Yeh, 1997; Yeh and Liu, 2000] was applied in the latter study.
As mentioned previously, this estimator explictly evaluates the full cross-
covariance matrix and is computationally demanding, especially with a
large number of unknowns.

Zhu and Yeh [2005] showed that only a few measurement points in time
are needed in inverse modeling because the transient heads at a given loca-
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tion are strongly correlated in time. The high temporal correlation of tran-
sient measurements in a drawdown curve leads to ill-conditioned matrices
in the inversion. In addition, it is time-consuming when transient partial
differential equations have to be solved in numerical modeling and it be-
comes highly computationally demanding especially for cases with a large
number of unknowns. In my M.Sc. thesis, I have developed the concept of
temporal moment of drawdown [Li et al., 2005]. Temporal moments rep-
resent the information of transient curves in a condensed form. The major
advantage is that the corresponding moment-generating equations are for-
mally equivalent to steady-state flow equations with distributed sources.
A transient groundwater equation is replaced by a series of steady-state
equations. Solving steady-state flow equations is much more efficient than
transient ones.

Concerning storativity, virtual studies have shown strong fluctuations even
when a uniform field is applied [Meier et al., 1998]. Because the variabil-
ity of all terms making up the storativity is small, it is believed that the
estimated variability of storativity is biased. The biased results may come
from the inconsistent assumption of uniformity of parameter fields. More
consistent assumptions on the structures of porous media may help resolve
the biased problem.

At the test site Krauthausen, Germany, pumping tests in tomographic for-
mat were conducted [Lamertz, 2001]. In Section 4.1, I give a brief de-
scription of the test site and the tests conducted. The field data provide a
good opportunity to test the feasibility of the Quasi-Linear Geostatistical
Inverse Approach in estimating the fields of transmissivity and storativity.
With the enhanced data-acquisition technique of hydraulic tomography
and more consistent assumptions on the structures of aquifers, I expect
to obtain reliable estimates of transmissivity and storativity when apply-
ing the inverse approach to field data. In the inverse estimation, I apply
the concept of temporal moments of drawdown to extract the condensed
information of transient drawdown curves.
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A detailed comparison of conventional approaches and the advanced geo-
statistical inverse approach in analyzing field data is seldom done. In this
thesis, I apply both approaches to the transient tomographic drawdown
data at the test site Krauthausen (see Section 4.2). The conventional anal-
ysis of pumping tests by type-curve methods is based on the assumption of
a homogeneous aquifer. Applying these techniques to pumping test data
from real heterogeneous aquifers leads to estimates of the hydraulic pa-
rameters that depend on the choice of the pumping and observation well
positions. In this thesis, I test whether these values may be viewed as
pseudo-local values of transmissivity and storativity, which can be inter-
polated by kriging. I compare such estimates to those obtained by geosta-
tistical inverse modeling, where heterogeneity is assumed in all stages of
estimation.

Since the geostatistical parameters have to be estimated from measure-
ments as well, the quality of the measurements determines the results of
the estimation. I examine the influence of measurement error on estimat-
ing geostatistical parameters of covariance functions in the inversion. In
contrast to other synthetic studies, I apply field data in the estimation.

(III) Estimating hydraulic conductivity: A three-dimensional implementation

Estimating three-dimensional fields of hydrogeological parameters is still
challenging. In three-dimensional applications with a fine resolution, the
number of unknowns can easily be up to millions. For such large number
of unknowns, the estimation becomes computationally demanding.

Besides large computational costs, the major difficulty lies in the lack of
a sufficient number of measurements with suitable support volumes. Fre-
quently, most available measurements are restricted to particular dimen-
sions and may not be suitable for three-dimensional estimation. A com-
mon solution to such problems is to jointly apply data reflecting different
aspects of the subsurface.

At the test site, pumping tests and flowmeter tests in fully-screened wells
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have been conducted. Flowmeter data contain information about the ver-
tical distribution of hydraulic conductivity, whereas values of drawdown
obtained during pumping tests contain information about horizontal vari-
ations. This indicates that a three-dimensional field of hydraulic conduc-
tivity could be obtained by joint inversion of these two types of data.

In Section 4.3, I attempt to estimate a three-dimensional field of hydraulic
conductivity using the measurements of pumping and flowmeter tests. The
Quasi-Linear Geostatistical Inverse Approach is applied for this estima-
tion. To test the performance of the inverse approach with a large number
of unknowns, I estimate the field of hydraulic conductivity with about one
million of unknowns.

Flowmeter data contain only relative values of hydraulic conductivity. To
obtain absolute values, the depth-averaged values of hydraulic conductiv-
ity at wells need to be known. To achieve these values, one has to rely on
other tests such as slug tests or small-scale pumping tests. The conven-
tional analysis of flowmeter tests will be difficult for wells, for which un-
fortunately extra tests are not available. In some applications, the values
of hydraulic conductivity obtained by flowmeter tests are considered as
direct measurements of local hydraulic conductivity [e.g., Rehfeldt et al.,
1992; Chen et al., 2001]. To my knowledge, the measurements are consid-
ered as independent values in the cited studies. The estimates of hydraulic
conductivity from flowmeter tests, however, are correlated, which needs
to be accounted for in their inference. In my thesis, I use discharge pro-
files of flowmeter tests as my data. By doing this, I do not need to convert
the profiles to absolute hydraulic conductivity. In the Section 4.3.1, I will
show that neither the discharge profiles nor the sensitivities of them with
respect to hydraulic conductivities depend on the depth-average values of
hydraulic conductivity. In my estimation, I fully consider the correlation
between the measurements of flowmeter tests. Using the discharge pro-
files and considering the correlations make the integration of flowmeter
data in the joint analysis consistent.



Chapter 2

Methods

In this chapter, I provide the governing equations of groundwater flow and illus-
trate the tools of estimating hydrogeological parameters given hydraulic mea-
surements.

In Section 2.1, the groundwater flow equations are presented as well as the con-
cept of temporal moments of drawdown and their related moment-generating
equations.

In Section 2.2, I summarize Bayes’ theorem, which is the base of my inver-
sion methods. Section 2.3 reviews the geostatistical description of spatial ran-
dom variables, discussing the concepts of stationarity, intrinsic, and covariance
functions. Section 2.4 discusses the assumed statistical distributions of the hy-
drogeological parameters. In Section 2.5, I show the Toeplitz-like structure of
covariance matrices on regular grids. The special structure of Toeplitz matri-
ces is directly linked to a possible spectral representation of covariance matrices
covered in Section 2.6. The important applications of the spectral representation
are discussed in the corresponding subsections of Section 2.6, including gener-
ating auto-correlated fields [Dietrich and Newsam, 1993], the spectral method
of computing large matrix-matrix products[Nowak et al., 2003], and a func-
tional parameterization of a spatial random field by the Karhunen-Loève expan-
sion(KL) [Li and Cirpka, 2006].

17
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Section 2.7 contains the major formulations of the Quasi-Linear Geostatistical
Inverse Approach [Kitanidis, 1995]. Section 2.8 covers the modified Levenberg-
Marquardt Algorithm by Nowak and Cirpka [2004] for stabilizing this inverse
approach. Geostatistical parameters have to be estimated from measurements as
well. In Section 2.9, I discuss the restricted maximum likelihood method [Ki-
tanidis, 1995] of estimating geostatistical parameters. In Section 2.10, I integrate
the parameterization by the KL expansion into the Quasi-Linear Geostatistical
Inverse Approach [Kitanidis, 1995] making the inverse approach also applica-
ble on unstructured grids with a large number of unknowns. The sensitivities
of measurements with respect to hydrogeological parameters are required in the
inference. Section 2.11 covers the efficient computation of sensitivity matrices
with the adjoint-state method [Sun and Yeh, 1990]. Some typical patterns of
sensitivity functions are illustrated.

2.1 Governing Equations

In this section, I present groundwater flow equations and demonstrate how tran-
sient data from pumping tests relate to the temporal moments of drawdown in
a pumping test with unit-pulse extraction. The latter equations have been pub-
lished for the first time in Li et al. [2005].

2.1.1 Groundwater Flow Equations

Three-Dimensional Flow

I consider three-dimensional flow in groundwater. The hydraulic heads h [m]

meet the following partial differential equation:

S0
∂h

∂t
−∇ · (K∇h) = W, (2.1)
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in which the coefficients S0 [1/m] and K [m/s] are the specific storage coeffi-
cient and hydraulic conductivity, respectively, and W [1/s] denotes an internal
volumetric source/sink term.

Pumping tests are frequently conducted for characterizing aquifers. With a
pumping rate Q [m3/s] at location xw [m], the groundwater flow equation be-
comes:

S0
∂h

∂t
−∇ · (K∇h) = W −Qδ(x− xw), (2.2)

subject to the initial and boundary conditions:

h = h0 at t = t0, (2.3)

h = hDiri on ΓDiri∀t, (2.4)

−n · (K∇h) = qNeu on ΓNeu∀t, (2.5)

where δ(x− xw) [1/m3] is the Dirac delta function, xw [m] is the location of
the pumping well, h0 [m] is the field of hydraulic heads before pumping, t [s] is
time, t0 [s] is the time at which pumping starts, ΓDiri and ΓNeu denote Dirichlet
and Neumann boundaries, hDiri [m] stands for the fixed-head values at Dirich-
let boundaries, qNeu [m/s] is the normal flux component at Neuman boundaries,
and n [−] is the unit vector normal to the boundaries. Since my studies are
mainly about pumping tests, I will focus on groundwater flow equations of
pumping tests in the later descriptions.

The field of h0 [m] before pumping meets the following equation:

S0
∂h0

∂t
−∇ · (K∇h0) = W, (2.6)

subject to the boundary conditions:
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h0 = hDiri on ΓDiri∀t, (2.7)

−n · (K∇h0) = qNeu on ΓNeu∀t. (2.8)

Frequently the hydraulic head h [m] is replaced by drawdown s [m]:

s = h0 − h. (2.9)

Under the condition that the only changing boundary condition is that related to
pumping, I can subtract Eq. (2.2) from Eq.(2.6), consider the boundary condi-
tions, and obtain the partial differential equation for drawdowns in a pumping
test:

S0
∂s

∂t
−∇ · (K∇s) = Q(t)δ(x− xw), (2.10)

with the initial and boundary conditions:

s = 0 at t = t0, (2.11)

s = 0 on ΓDiri∀t, (2.12)

−n · (K∇s) = 0 on ΓNeu∀t. (2.13)

In practice, one conducts a pumping test either by extracting water with a rate
Q(t) over a finite period of time, or by pumping with a constant rate Q un-
til steady state is reached. Due to the linearity of Eq. (2.10), the drawdown
sQ(x, t) for an arbitrary pumping regime Q(t) can be computed from the draw-
down sδ(x, t) [s/m2], valid for instantaneous extraction of a unit volume, by
convolution:

sQ(x, t) =

∫ t

0
sδ(x, t− τ)Q(τ)dτ. (2.14)
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For the case of continuous extraction, i.e., Q(t) = Q, I consider the steady-state
drawdown s∞(x) = Q

∫∞
0 sδ(x, τ)dτ , and the deviation from the steady-state

drawdown ∆h(x, t) = s∞(x)− s(x, t) = Q
∫∞

t sδ(x, τ)dτ .

Two-Dimensional Flow in Confined Aquifers

For two-dimensional regional applications in confined aquifers, S0 becomes the
depth-integrated storativity S [−] and K transmissivity T [m2/s]. I consider
drawdown as my target variable. Then, the depth-integrated groundwater flow
equation becomes:

S
∂s

∂t
−∇ · (T∇s) = Qδ(x− xw), (2.15)

where δ(x − xw) [1/m2] denotes the two-dimensional Dirac function. The cor-
responding boundary conditions are:

s = 0 at t = t0, (2.16)

s = 0 on ΓDiri∀t, (2.17)

−n · (T∇s) = 0 on ΓNeu∀t. (2.18)

Two-Dimensional Flow in Unconfined Aquifers

In contrast to confined aquifers, the water thickness in unconfined aquifers de-
pends on the hydraulic head h. I consider that the porosity is much larger than
storage coefficients. Thus, the depth-integrated groundwater flow equation for
unconfined aquifers becomes:

ne
∂h

∂t
−∇ · (K̄(h− zbot)∇h

)
= W −Qδ(x− xw), (2.19)
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in which ne [−] is the porosity of the porous media, K̄ [m/s] is the depth-
averaged hydraulic conductivity, and zbot [m] is the vertical position of the aquifer
bottom. The corresponding boundary conditions are:

h = h0 at t = t0, (2.20)

h = hDiri on ΓDiri∀t, (2.21)

−n · (K∇h) = qNeu on ΓNeu∀t. (2.22)

2.1.2 Temporal Moments of Drawdown

The transient behavior of the drawdown s(x, t) can be characterized by its tem-
poral moments. The k-th moment mk(s(x))

[
msk+1

]
is defined by:

mk(s(x)) =

∫ ∞

0
tks(x, t)dt. (2.23)

Here, I consider the zeroth moment m0(s(x)) and the first moment m1(s(x)).
In Li et al. [2005], I have demonstrated that the zeroth and first temporal mo-
ments can provide sufficient information about the transient curves of draw-
down in estimating hydrogeological parameters. For a unit-pulse extraction, the
zeroth moment corresponds to the steady-state drawdown of a corresponding
pumping test with continuous extraction, whereas the normalized first moment
m1(s(x))/m0(s(x)) is a characteristic time of drawdown.

The moments of the unit-pulse response sδ(x, t) are related to those of the draw-
down sQ(x, t) due to extraction Q(t) over a time period by:
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m0(sδ(x)) =
m0(sQ(x))

m0(Q)
, (2.24)

m1(sδ(x))

m0(sδ(x))
=
m1(sQ(x))

m0(sQ(x))
− m1(Q)

m0(Q)
, (2.25)

whereas the moments of sδ(x, t) can be computed from quantities of continuous
extraction by:

m0(sδ(x)) =
s∞(x)

Q
, (2.26)

m1(sδ(x))

m0(sδ(x))
=
m0(∆h(x))

s∞(x)
. (2.27)

In Figure 2.1, zeroth moments are marked as shaded areas, and characteristic
times m1/m0 by vertical lines. For the cases of a pulse-like extraction and an
extraction over a time period, the characteristic times are the centers of gravity
of the shaded areas.

Due to the identities given above, it is clear that the zeroth and first moments for
unit-pulse extraction, m0(sδ(x)) and m1(sδ(x)), can be computed for any type
of pumping regime occurring in practical applications.

2.1.3 Moment-Generating Equations

Harvey and Gorelick [1995b] derived moment-generating equations for the trans-
port of sorbing solutes using the Laplace transform of the transport equation.
Here, I derive the moment-generating equations for drawdown sδ due to unit-
pulse extraction, without applying the Laplace transformation. In order to com-
pute the k-th moment, I multiply Eq. (2.10) with tk, integrate over time, apply
rules of partial integration to the term with the time derivative, and consider the
initial condition, Eq. (2.20). For Q(t) = δ(t), I arrive at:
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Figure 2.1: Transient drawdown in a pumping test as function of time for vari-
ous regimes of extraction.

−∇ · (K∇mk) = δk0δ(x− xw) + kS0mk−1. (2.28)

Here, δk0 is the Kronecker delta, which is unity for k = 0 and zero otherwise.
The boundary conditions are obtained by multiplying Eqs. (2.12) and (2.13)
with tk and integrating over time:
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mk = 0 on ΓDiri∀t, (2.29)

n · ∇mk = 0 on ΓNeu∀t. (2.30)

The equation generating the zeroth moment m0(sδ(x)), Eq. (2.28) with k = 0,
is a steady-state groundwater flow equation with an extraction rate of unity at the
well location. It does not depend on the specific storage coefficient S0. Because
I consider the normalized case of a unit pulse, m0(sδ(x)) neither depends on
the pumping rate. By contrast, the moment-generating equations for the higher-
order moments mk>0(sδ(x)), Eq. (2.28) with k > 0, are steady-state flow equa-
tions with a distributed rather than a point-like source. The distributed source
term is proportional to the next lower-order moment mk−1(sδ(x)) and the stor-
age coefficient S0(x). Therefore, the zeroth moment m0(sδ(x)) can be used to
infer the distribution of hydraulic conductivity K(x), whereas at least the zeroth
and first moments, m0(sδ(x)) and m1(sδ(x)), are needed to jointly estimate the
specific storage coefficient S0(x).

By applying moment-generating equations, I transfer the transient groundwa-
ter flow problem into a steady-state framework. In this thesis, I use the two
most important and characteristic temporal moments, i.e., the zeroth and first
moments, to characterize drawdown curves. For given parameter distributions,
they are computed by solving two elliptic equations. In comparison to solving
for transient hydraulic heads in multiple time steps, one thus drastically reduces
the computational costs.

The concept of temporal moments of concentration has successfully been ap-
plied to hydrogeological inverse problems by Harvey and Gorelick [1995a],
James et al. [1997], Cirpka and Kitanidis [2000], and Nowak and Cirpka [2006].
In Li et al. [2005], I could demonstrate the applicability to drawdown. In Sec-
tion 4.2, I show an application to field data, which has been published in Li et al.
[2007]. This approach has also been taken up by Zhu and Yeh [2006].
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2.2 Bayes’ Theorem

Since the derivation of my inverse approach is based on Bayes’ theorem [e.g.,
Mood et al., 1963], I give the major formulations of the theorem in this sec-
tion. The major reason of choosing Bayes’ theorem is that it is the basic law
of information processing, describing how additional information improves the
statistical characterization of the parameter field [e.g., Rubin, 2003, chapter 2].

Bayes’ theorem is based on the definition of conditional probabilities [e.g., Mood
et al., 1963]:

p(A|B) =
p(A,B)

p(B)
, (2.31)

in which p(A|B) is the probability density for event A to occur, conditioned
on the occurrence of event B, p(A,B) denotes the joint probability density of
the two events A and B, and p(B) stands for the probability density of event B
regardless of event A. An alternative expression of Eq. (2.31) can be obtained
by considering P (A|B)p(B) = p(B|A)p(A):

p(A|B) =
p(B|A)p(A)

p(B)
, (2.32)

where p(A) is the probability density of event A regardless of event B and
p(B|A) is the probability density for eventB to occur, conditioned on the occur-
rence of event A. In Bayesian terminology, p(A) is the prior probability density
of A before considering any occurrence and p(A|B) is the posterior probabil-
ity density of A after accounting for the influence of the additional information
from B. In most statistical textbooks, Eq. (2.32) is denoted Bayes’ theorem, in
other textbooks Eq. (2.31).
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2.3 Geostatistical Description of Spatial Random
Parameters

Hydrogeological parameters are distributed in space. On a regional scale, these
parameters have a relatively regular structure that may be described determin-
istically [Kitanidis and Vomvoris, 1983]. However, on small local scales these
parameter can strongly vary [Kitanidis and Vomvoris, 1983]. Field measure-
ments have shown that hydraulic conductivity can vary over several orders in
the same aquifer [e.g., Freeze, 1975]. The large uncertainty about the spatial
distribution of hydrogeological parameters has led us to consider a stochastic ap-
proach [Matheron, 1971; Journel and Huijbregts, 1978; Kitanidis and Vomvoris,
1983; Dagan, 1989; Cressie, 1991; Gómez-Hernández and Wen, 1998] rather
than conventional zonation concept or a deterministic model.

The concept of geostatistics was introduced by Matheron [1971], and has been
refined ever since [e.g., Cressie, 1991]. The basic idea is to regard the parameters
as autocorrelated spatial random variables. A useful and practical way of char-
acterizing spatial random variables Y (x) is by their first two statistical moments:
the expected value E[Y (x)] and the auto-covariance function RY ′Y ′|θ(x1,x2).

Y (x) = Y ′(x) +

nβ∑
i

Xi(x)βi, (2.33)

E[Y (x)] =

nβ∑
i

Xi(x)βi(x), (2.34)

RY ′Y ′(x1,x2) = E[Y ′(x1)⊗ Y ′(x2)], (2.35)

in which Y (x) stands for the random spatial variables, Xi(x) denotes a deter-
ministic base function, βi(x) is the corresponding trend coefficient, nβ is the
number of trend coefficients, Y ′(x) is the random fluctuation about the deter-
ministic trend, andRY ′Y ′(x1,x2) is the covariance function quantifying the vari-
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ability and correlation between points x1 and x2. For RY ′Y ′(x1,x2), one usually
applies a parametric model, depending on the two locations x1 and x2 and a
set of nθ geostatistical parameters θ, such as the variance and one or multiple
correlation lengths. In the later descriptions, I use the variable RY ′Y ′|θ(x1,x2)

to represent the covariance function RY ′Y ′(x1,x2). By doing this, I explicitely
state that the RY ′Y ′|θ(x1,x2) requires knowledge of geostatistical parameters.

In the framework of second-moment characterization, a random field is called
second-order stationary when the expected value of the parameter is constant
over the domain and the covariance is a function of the separation distance h be-
tween two points of consideration only, but is independent of the actual locations
[e.g., Kitanidis and Vomvoris, 1983]:

RY ′Y ′|θ(x1,x2) = RY ′Y ′|θ(x1 − x2) = RY ′Y ′|θ(h). (2.36)

The value of the covariance function for a distance of zero is the variance, quan-
tifying the overall magnitude of variability:

σ2
Y = Var(Y ) = RY ′Y ′|θ(0). (2.37)

The applicability of RY ′Y ′|θ(h) requires that the mean value is known. To be
more general, an alternative measure is the semi-variogram γ(h) defined by:

γ(h) =
1

2
Var [Y (x + h)− Y (x))] =

1

2
E

[
(Y (x + h)− Y (x))2

]
, (2.38)

where γ(h) again depends on the vector h and not the actual locations. The
formulations of γ(h) and RY ′Y ′|θ(h) are similar. However, the latter implicitly
excludes cases with infinite variance or media with unknown mean. A distribu-
tion characterized by a variogram γ(h) is referred to as intrinsic. It can be shown
that second-order stationarity implies the intrinsic hypothesis, but the converse
is not true. In case of second-order stationarity, the following identity holds:
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RY ′Y ′|θ(h) = RY ′Y ′|θ(0)− γ(h). (2.39)

Figure 2.2 shows the relation between the semi-variogram and covariance func-
tions for a second-order stationary spatial field.

h

σ2

 

 
covariance
variogram

Figure 2.2: One-dimensional illustration of covariance function and semi-
variogram of a second-order stationary spatial random variable. σ2 is the vari-
ance and h the separation distance.
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2.4 Prior Distribution

The mathematical description of a random variable is its distribution or density
function. The common convenient assumption of the distribution is a (multi)Gaussian
model. I consider a discretized domain with n discrete values. The expression
of Y (x) becomes:

Y = Y′ + Xβ, (2.40)

in which Y is the n×1 vector of discrete Y (x) values, n is the number of points
where Y (x) is considered, X is the n× nβ matrix of discretized base functions,
β is the nβ × 1 vector of the trend coefficients, and Y′ is the n × 1 vector of
fluctuations of Y about the trends. The vector Y can be aggregated when fields
of different hydraulic parameters are to be estimated. Then, in (multi)Gaussian
models, the fluctuations and the trend coefficients are expressed as:

p(Y′|θ) ∝ exp

(
−1

2
Y′TR−1

Y′Y′|θY
′
)
, (2.41)

p(β) ∝ exp

(
−1

2
(β − β∗)TR−1

ββ(β − β∗)
)
, (2.42)

in which RY′Y′|θ is the n×n discrete covariance matrix given θ, β∗ is the nβ×1

vector of prior values of the trend coefficients β, and Rββ is the nβ × nβ prior
covariance matrix of β. p(Y′|θ) and p(β) are also known as prior distributions
of the hydrogeological parameters before considering any measurements.

By assuming a (multi)Gaussian model, the probability density function is fully
characterized by its mean and covariance. [e.g., Kitanidis and Vomvoris, 1983;
Gómez-Hernández and Wen, 1998]. Field data have revealed that the proba-
bility density functions of hydrogeological parameters are approximately log-
normal [Freeze, 1975]. In the latter descriptions, without special notation, Y

refers to log-parameters. (Multi)Gaussian models are practical and widely ap-
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plied. However, this does not imply that all hydrogeological parameters show
(multi)Gaussian distributions. For example, parameters with channeling struc-
tures are non-Gaussian distributed. For such cases, special techniques like mul-
tiple point geostatistics [e.g., Strebelle, 2002], have to be applied.

2.5 Structure of Covariance Matrices

In numerical models, the domain is discretized into cells or elements. The
second-order stationary hydrogeological parameters become a number n of dis-
crete values. On a regular equispaced grid, the covariance matrix of the param-
eter field shows symmetric Toeplitz structure. In later sections, I will show that
this special structure is linked to a spectral representation. This spectral analy-
sis can be applied to efficiently generate auto-correlated fields given covariance
functions [Dietrich and Newsam, 1993] and to accelerate the computation of
cross-covariance matrices [Nowak et al., 2003].

A Toeplitz matrix is an n × n matrix Tn = [tk,j k, j = 0, 1, . . . , n − 1] where
tk,j = tk−j. A symmetric Teoplitz matrix has the form:

Tn =




t0 t1 . . . tn−1

t1 t0 . . . tn−2
... ... . . . ...

tn−1 tn−2 . . . t0


 , (2.43)

in which each descending diagonal from left to right is constant. To construct
the (k + 1)-th row of the Toeplitz matrix, one shifts the k-th row to the right by
one element, and fills the leading empty position with the k-th element of the
series t1 . . . tn−1.

Figure 2.3a) is a graphic illustration of the Toeplitz-like covariance matrix for
one-dimensional applications, in which the covariance matrix is a simple Toeplitz
matrix as shown in Eq. (2.43). The covariance matrix becomes a symmetric
level-d block Toeplitz matrix for higher d-dimensional applications, in which
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Figure 2.3: Graphic illustration of Toeplitz-like covariance matrices for one-,
two- and three-dimensional applications on regular grids. Here, the variance for
all cases is unity.

the elements ti are replaced by Ti. Figure 2.3b) and 2.3c) show the structures of
two- and three-dimensional cases, respectively.

When the covariance function of a random field is periodic, the corresponding
covariance matrix becomes circulant. An n×n circulant matrix has the structure:

C =




c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
... ... . . . ...
c1 c2 . . . c0


 . (2.44)

To construct the k+1-th row of the circulant matrix, one shifts the k-th row to the
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right by one element, and fills the leading empty position with the last element
of the k-th row. In case of a symmetric circulant matrix, cn−i must equal ci.

2.6 Spectral Methods in Geostatistics

Considering a discrete field of a spatial random variable with n unknowns, the
dimension of the auto-covariance matrix of the unknowns is n×n. For a two- or
three-dimensional application with a fine resolution, the number of discrete val-
ues can easily be up to the order of millions. For a large number of unknowns,
storing the covariance matrix and performing matrix operations become compu-
tationally prohibitive without supercomputers. However, the special structure of
Toeplitz-like matrices can be exploited to reduce the costs of storage and com-
putational effort [e.g., Gray, 1972; Zimmerman, 1998; Barnett, 1990; Dietrich
and Newsam, 1993]. This mathematical merit becomes even more convenient
if matrices are circulant, because the evaluation of a circulant matrix is directly
linked to efficient spectral methods [e.g., Barnett, 1990; Dietrich and Newsam,
1993].

A circulant matrix C can be decomposed as [e.g., Barnett, 1990, p. 252]:

C = FHΛF, (2.45)

in which F is the normalized Fourier matrix, FH is the Hermitian matrix of
F, and Λ is a diagonal matrix containing eigenvalues of C. Since a circulant
matrix is fully determined by its first column or row, it can be shown that the
eigenvalues are defined as the Fourier Transform of the first column of the cir-
culant matrix [e.g., Dietrich and Newsam, 1993], which can be computed by
Fast Fourier Transformation(FFT) in O(n log n) operations:

λ = F(C1), (2.46)

in which λ is an n × 1 vector of eigenvalues, F(·) stands for the Fourier trans-
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form, and C1 denotes the first column of the circulant matrix C.

It is worth noting that the evaluation of a circulant matrix does not require stor-
ing the entire matrix, only the first column or row is needed. This convenient
property highly reduces the computational costs in evaluating the relevant matrix
operations.

The spectral representation of circulant matrices has become an important tool
in generating autocorrelated random spatial fields with known covariance func-
tion [Dietrich and Newsam, 1993], and accelerating the computation of cross-
covariance matrices [Nowak et al., 2003]. In later sections, I will show that the
spectral analysis of covariance functions can help efficiently define a functional
parameterization of a spatial random field by the Karhunen-Loève expansion
[Loève, 1977; Ghanem and Spanos, 1991]. This parameterization is useful in
approximating the spatial random field with a reduced dimension and allows
different schemes of discretization.

2.6.1 Generation of Autocorrelated Fields

Autocorrelated fields are realizations of random processes characterized by their
mean and covariance functions. Realizations are very useful, for example, to
quantify uncertainty of dependent quantifies using Monte Carlo simulations of
flow and solute transport problems in groundwater system [e.g., Delhomme,
1979; Dagan, 1982]. In such simulations, a large number of equally likely real-
izations of the hydrogeological parameters are generated. All realizations share
the statistical characterization of spatial variability. The flow and transport equa-
tions are numerically solved. The resulting probability distributions of the out-
put variables can be sampled.

When a covariance function is periodic and stationary, Dietrich and Newsam
[1993] have shown that realizations of a random field on regular grids can be
generated using the Fast Fourier Transformation(FFT):



2.6. Spectral Representation 35

Algorithm 2.1 Generating realizations via Fast Fourier Transformation
1: Define the covariance function C1 related to a single point in a periodic one-

or multi-dimensional domain.
2: Compute the (multi-)dimensional FFT of C1 resulting in S̃ and take

element-wise the square root
√

S̃.
3: Generate a d-th order tensor E = E1 + JE∈ with E1 and E2 being d-th

order tensors of independent real random variable drawn from a Gaussian
distribution with mean zero and unit variance. E1 and E2 have the same
dimension with S̃. J is the imaginary number.

4: Multiply each entry of E with the corresponding entry of
√

S̃ yielding a
d-th order tensor r̃.

5: Compute the (multi-)dimensional inverse FFT of r̃ yielding R.

The real and imaginary part of R are two independent realizations of the station-
ary random spatial field with a periodic covariance function. In Algorithm 2.1,
d stands for the dimension of the spatial field. That is, in one-dimensional ap-
plications, C1, S̃, r̃, and R are vectors; in two-dimensional cases, they become
matrices, etc.

Under normal circumstances, the covariance matrix is not circulant due to a
non-periodic covariance function. For such cases, the embedding and extract-
ing technique can be applied [e.g., Dietrich and Newsam, 1993; Nowak et al.,
2003]. Figure 2.4 visualizes the periodic embedding of a spatial variable. The
finite domain Ω′ is interpreted as a sub-domain of a larger unit cell Ω belong-
ing to an infinite periodic domain. In order to maintain the statistical properties
of Ω′ in the embedding process, the mean and the covariance function for all
separate distances that are observable in Ω′ must be identical for Ω. Figure 2.4
shows the random field itself. The corresponding covariance function is sym-
metric and periodic in all spatial dimensions. Figure 2.5 shows a non-periodic
and a periodic covariance function for one-dimensional applications. A periodic
covariance function can be obtained in most cases by simply mirroring its corre-
sponding finite covariance function. A detailed graphical description of periodic
embedding is given by Dietrich and Newsam [1993] and Nowak et al. [2003].
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The generation of realizations is then conducted on the larger periodic domain.
With the obtained results, one can extract the entries from the periodic domain
to achieve the entries for the finite domain.

Ω Ω

Ω Ω

Ω′

Figure 2.4: Finite domain Ω′ embedded in a large unit cell Ω of a periodic do-
main. Four unit cells are shown to visualize periodicity.

2.6.2 Computation of Cross-Covariance Matrices

The spectral representation of a covariance matrix can also be applied for the
computation of cross-covariance matrices [Nowak et al., 2003]. The cross-
covariance matrices are required in cokriging-like inverse methods. For large-
scale problems, the direct evaluation of these terms is computationally demand-
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Figure 2.5: Finite and periodic function.

ing. Exploiting the spectral representation of covariance matrices, one can effi-
ciently compute the cross-covariance matrices.

Here, I take the computation of the cross-covariance matrices between hydroge-
ological parameters Y (x) and hydraulic heads h(x) as an example to illustrate
the idea. The cross-covariance of two random variables is commonly defined as:

RY ′(x1)h′(x2) = E
[(
Y (x1)− Ȳ (x1)

) (
h(x2)− h̄(x2)

)]
. (2.47)

As approximation, the cross-covariance of dependent variables may be derived
from linearization of the functional relationship between the two variables. Tak-
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ing second-order stationarity into consideration, one can derive the cross-covariance
with the form:

RY ′(x1)h′(x2) =

∫
RY ′(x1)Y ′(ξ)

∂h(x2)

∂Y (ξ)
dξ,

=

∫
RY ′Y ′(x1 − ξ)

∂h(x2)

∂Y (ξ)
dξ, (2.48)

in which ∂h(x2)
∂Y (ξ) is the sensitivity of the dependent quantity h(x2) on Y (ξ). Eq.

(2.48) is a convolution type of operation. In the Fourier domain, the convolution
becomes a multiplication of the Fourier transforms of the corresponding func-
tions. For some frequently applied models of the covariance function, analytical
expressions of their Fourier transformation exist. With the Fourier Transforma-
tion of the linearized functional relationship between the heads and the hydro-
geological parameters, one can obtain the cross-covariance function by inverse
Fourier transformation of the function-multiplication in the Fourier domain.

In a discrete domain with n elements, Eq. (2.48) becomes a matrix-matrix prod-
uct:

RY′h′ = RY′Y′HT , (2.49)

in which RY′h′ is the n ×m cross-covariance matrix, RY′Y′ is the n × n auto-
covariance matrix of Y′, H is the m×n sensitivity matrix, and m is the number
of dependent states.

According to Dietrich and Newsam [1993] and Nowak et al. [2003], the matrix-
vector product of circulant matrix C with a vector u can be computed as

Cu = FHΛFu,

= F−1 (F(C1) ◦ F(u)) , (2.50)
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in which F stands for the Fourier Transform, F−1 is the inverse Fourier Trans-
form, C1 is the first column of C, and ◦ denotes element-wise multiplication of
two tensors.

When the covariance matrix RY′Y′ is circulant, Eq. (2.50) can directly be ap-
plied to the product of RY′Y′HT by considering H column by column. However,
if RY′Y′ is not circulant, one can embed the corresponding covariance function
in a bigger periodic domain as illustrated in Section 2.6.1. To make the dimen-
sion matching, one has to pad zeros to the columns in H. The matrix-vector
product can be perform on the larger domain. From the obtained result, one
extracts the parts corresponding to the original domain [Dietrich and Newsam,
1993; Nowak et al., 2003].

2.6.3 Parameterization of a Spatial Random Field with the
Karhunen-Loève Expansion1

The efficient spectral approach of Nowak et al. [2003] of computing cross-
covariance matrices requires the grids to be regular and is no more suitable on
unstructured grids as they may result from local refinements. Apparently, com-
puting a full cross-covariance matrix on unstructured grids with a large number
of unknonws becomes computationally extremely demanding.

In this section, I exploit a parameterization approximating the parameter field
with a reduced dimension. I parameterize the spatial random field by weighted
base functions derived from the covariance function. The base functions are
eigenfunctions of the covariance function times the square root of the corre-
sponding eigenvalues. This orthonormal representation of auto-correlated ran-
dom fields with eigenvalues and eigenfunctions is also known as the Karhunen-
Loève(KL) expansion [Loève, 1977; Ghanem and Spanos, 1991]. Typically,
the series of eigenvalues is sorted in a decreasing order and truncated. In the
inversion procedure discussed in Section 2.10, the estimation of the param-

1The considerations presented in this section have been published in Li et al. [2007].
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eter field becomes estimating the weights of the base functions. The cross-
covariance matrix between hydrogeological parameters and dependent variables
can be approximated by the cross-correlation between the weights of the base
functions and the dependent variables. The number of truncated terms is nor-
mally much smaller than the number of grid points of the discretized domain.
Consequently, the dimension of the cross-covariance matrix between the weights
of the base functions and the dependent variables is much smaller than the full
cross-covariance matrix without approximation. The approximation by a trun-
cated series of eigenvalues can potentially reduce the computational cost of es-
timating the parameter field.

The base functions in the parameterization using the KL expansion can be achieved
with efficient spectral methods [Li and Cirpka, 2006]. For a periodic covariance
function, the eigenvalues are defined by the Fourier transform of the covariance
function, and the eigenfunctions are known to be sinusoidal. For a non-periodic
covariance function with stationary increment, the embedding and extracting
techniques [Dietrich and Newsam, 1993; Nowak et al., 2003] can be imple-
mented (see Section 2.6.1). The reproduction of the covariance functions in
continuous trigonometric functions is independent of discretization schemes.

In the following, I briefly illustrate the parameterization using the KL expansion.
Considering a discretized form of the continuous random space function Y ′(x), I
represent Y ′(x) as an n×1 vector Y′ and the covariance functionRY ′Y ′|θ(x1,x2)

as an n× n matrix RY′Y′|θ. The expected value of Y′ is a zero vector.

Since the covariance matrix RY′Y′ is symmetric positive definite, the eigen-
decomposition leads to:

E [Y′ ⊗Y′] = RY′Y′|θ = WΛWT = WΛ1/2Λ1/2WT , (2.51)

in which W is the n × n matrix of normalized eigenvectors of RY′Y′|θ, Λ is
the n×n diagonal matrix of real nonnegative eigenvalues, and Λ1/2 denotes the
n×n diagonal matrix containing the square roots of the eigenvalues. Introducing
an n × n identity matrix I into the multiplication of matrices does not change
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the results. Therefore,

E [Y′ ⊗Y′] = WΛ1/2IΛ1/2WT . (2.52)

Now I consider an n × 1 vector ζ of uncorrelated standard Gaussian random
variables with zero mean and variance of unity:

E[ζ] = 0, (2.53)

E[ζ ⊗ ζ] = I, (2.54)

p(ζ) ∝ exp
(
−1

2
ζTζ

)
. (2.55)

Substituting Eq. (2.54) into Eq. (2.52), I obtain:

E [Y′ ⊗Y′] = E
[
(WΛ1/2ζ)⊗ (WΛ1/2ζ)

]
. (2.56)

From the proceeding equation, I can derive:

Y′ = WΛ1/2ζ, (2.57)

in which WΛ1/2 is a deterministic matrix mapping the vector ζ of orthonormal
random variables to the vector Y′ of correlated log-conductivity fluctuations

At the limit of an infinitesimally fine resolution, Y′ becomes again the continu-
ous function Y ′(x), W becomes a set of continuous eigenfunctions wi(x), ζ a
set of random variables ηi, and Eq. (2.57) becomes an infinite series:

Y ′(x) =
∞∑
i=1

λ
1/2
i wi(x)ηi. (2.58)

The contribution of a particular eigenfunction wi(x) depends on the size of its
eigenvalue λi. In the KL expansion, I sort the contributions by λi in a descending
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order and truncate the series after N terms:

Y ′(x) ≈
N∑

i=1

λ
1/2
i wi(x)ηi =

N∑
i=1

fi(x)ηi, (2.59)

with fi(x) = λ
1/2
i wi(x). N is the total number of dominant eigenvalues. The ap-

proximation can potentially reduce the computational effort of estimating Y ′(x),
because the number N of dominant terms may be much smaller than the typical
number n of the elements when Y ′(x) is discretized.

In general, eigenvalues and eigenvectors of the covariance functionRY ′Y ′|θ(x1,x2)

can be evaluated by solving the Fredholm equation [e.g., Zhang and Lu, 2004]:

∫

V

RY ′Y ′|θ(x1,x2)w(x1)dx1 = λw(x2). (2.60)

Typically, Eq. (2.60) has to be solved numerically. This algorithm can be com-
putationally demanding because it requires performing a large number of inte-
grations. However, if the random space variable is periodic, the eigenfunctions
of the covariance function are known a priori. In the following, Rp(x) denotes
the covariance function in a periodic domain. In the two-dimensional case, the
eigenfunctions are:

wc
i,j(x) =





cos
((

ix1

L1
+
jx2

L2

)
2π

)
if i 6= 0 or j 6= 0,

0 if i = 0 and j = 0,

ws
i,j(x) = sin

((
ix1

L1
+
jx2

L2

)
2π

)
, (2.61)

where i
L1
, j

L2
are the spatial frequencies in the x1 and x2 direction, respectively,

L1 and L2 are the dimensions of the unit cell in each direction, wc
i,j denotes the

contributions of cosine-functions and ws
i,j stands for the contribution of sine-

functions. Correspondingly, Y ′(x) can be expressed as:
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Y ′(x) ≈
N/2∑

k=1

λk→i,j

(
wk→i,j(x)ηc

k→i,j + wk→i,j(x)ηs
k→i,j

)
, (2.62)

in which the subscript k → i, j denotes the index mapping of the k-th dom-
inant eigenvalue to the frequency indices i and j. Thus, λk→i,j stands for the
k-th dominant eigenvalue, and wk→i,j and ηk→i,j are the corresponding eigen-
functions and weights. λi,j is determined from the Fourier series of the periodic
covariance function [Dietrich and Newsam, 1993]:

λi,j =

{
2Si,j if j 6= 0,

Si,j if j = 0.
(2.63)

with

Si,j =
1

Ap

∫
Rp(x)exp

(
−2πJ

(
ix1

L1
+
jx2

L2

))
dx, (2.64)

in which Si,j is the coefficient of the Fourier series of Rp(x) corresponding to
indices i and j which range from −∞ to +∞, J is the imaginary number, and
Ap is the area of the unit cell.

Rp(x) is an even symmetric function, which implies that:

S−i,−j = Si,j. (2.65)

This indicates that there is no need to consider Si,j for negative values of j
explicitely. These negative contributions are compensated by the factor of 2

in Eq. (2.63). The proceeding formulations can be easily extended to three
dimensions.

In the following, I denote Rhf
p the covariance function of the high frequency

terms neglected by the truncation in the KL expansion in a periodic domain.
The Fourier coefficients Si,j can be used to compute the covariance matrix Rhf

p :
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Rhf
p =

+∞∑
i,j=−∞

δk9i,jSi,jexp
(

2πJ
(
ix1

L1
+
jx2

L2

))
, (2.66)

in which δk9i,j is unity when λi,j is not in the set of theN dominant eigenvalues,
and zero otherwise.

Random spatial variables which are not periodic can be embedded into periodic
ones following the procedure presented in Section 2.6.1 as illustrated in Figure
2.4. In order to compute the eigenvalues, I compute the covariance function for
a single point in the embedding domain. The periodic base functions fi(x) are
defined over the entire embedding domain, but I need to evaluate them only in
the finite domain Ω′.

The advantage of this approach is twofold. First, the eigenfunctions are analyt-
ically defined in the periodic domain; the eigenvalues can efficiently be com-
puted by Fast Fourier Transformation. Second, the approach allows different
discretization schemes in the original domain.

2.7 Formulation of the Quasi-Linear Geostatistical
Inverse Approach

In this section, I review the major steps of the Quasi-Linear Geostatistical In-
verse Approach [Kitanidis, 1995]. This inverse approach applies cokriging-like
technique to infer the hydrogeological parameters from measurements. The out-
comes of the inverse approach are the most likely estimate of the parameter
fields and its corresponding uncertainty.

Here, I assume that the geostatistical parameters are known. Figure 2.6 summa-
rizes the major steps of the inverse approach. In most applications, the geostatis-
tical parameters have to estimated from measurements as well, which I discuss
in the Section 2.9.

The `× 1 vector of measurements Zm relates to Y via a function Z(Y):
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Figure 2.6: Graphic illustration of the procedures in the quasi-linear geostatis-
tical inverse approach of Kitanidis [1995].
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Zm = Z(Y) + r, (2.67)

in which ` is the number of measurements, and r is the `× 1 vector of measure-
ment errors with zero mean and `× ` covariance matrix RZZ. I consider that the
measurements follow a (multi)Gaussian distribution:

p(Zm|Y) = p(Zm|Y′,β)

∝ exp

(
−1

2
(Zm − Z(Y′,β))TR−1

ZZ (Zm − Z (Y′,β))

)
, (2.68)

in which Z(·) is the simulated model output.

Applying Bayes’ theorem as discussed in Section 2.2, I obtain the conditional
distribution p(Y′,β|Zm,θ), given the measurements Zm and the geostatistical
parameters θ:

p(Y′,β|Zm,θ) =
p(Zm|Y′,β)p(Y′|θ)p(β)

p(Zm|θ)
, (2.69)

in which p(Zm|θ) is a scalar constant for a given set of measurements Zm that
does not depend on Y. Substituting Eqs. (2.41), (2.42), and (2.68) into Eq.
(2.69), I obtain:

p(Y′,β|Zm,θ) ∝ exp

(
− 1

2
Y′TR−1

Y′Y′|θY
′ − 1

2
(β − β∗)TR−1

ββ(β − β∗)

− 1

2
(Zm − Z(Y′,β))TR−1

ZZ(Zm − Z(Y′,β))

)
.

In the Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995], the pa-
rameter fields are identified by maximizing the conditional probability density
p(Y′,β|Zm,θ) or minimizing the value of doubled negative logarithm:
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L(Y′,β|Zm,θ) = Y′TR−1
Y′Y′|θY

′ + (β − β∗)TR−1
ββ(β − β∗)

+(Zm − Z(Y′,β))TR−1
ZZ(Zm − Z(Y′,β)) + const., (2.70)

where const. includes all terms that do not depend on Y.

For most applications, the functional relationship Z(Y) between the measure-
ments Zm and the parameter Y is nonlinear. For such cases, one may apply a
successive linearization about the last estimate Ŷk:

Zm − Z(Y) ≈ Zm − Z(Ŷk) + Hk(Y − Ŷk), (2.71)

in which k stands for the iteration step and Hk is the `× n sensitivity matrix of
the measurements with respect to the logarithms of hydraulic parameters about
the last estimate Ŷk:

Hk =
∂Z

∂YT

∣∣∣∣
Y=Ŷk

. (2.72)

Now I introduce an `× 1 vector Z0 of ”corrected measurements”:

Z0 = Zm − Z(Ŷk) + HkŶk. (2.73)

Then the objective function of Eq. (2.70) becomes:

L(Y′,β|Zm,θ) = Y′TR−1
Y′Y′|θY

′ + (β − β∗)TR−1
ββ(β − β∗)

+(Z0 −HkYk)
TR−1

ZZ(Z0 −HkYk) + const.. (2.74)

After some reformulation, it can be shown that Ŷ, the most likely estimate of Y,
is iteratively identified by solving the following equations until defined criteria
of convergence are reached [Kitanidis, 1995] :
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Ŷk+1 = Xβ̂k+1 + RY′Y′HT
k ξ̂k+1, (2.75)

in which β̂k+1 and ξ̂k+1 are computed by:

[
HkRY′Y′|θHT

k + RZZ HkX

XTHT
k −R−1

ββ

][
ξ̂k+1

β̂k+1

]
=

[
Zm − Z(Yk) + HkYk

−R−1
βββ∗

]
.

(2.76)
The lower bound of the conditional covariance matrix RYY|Z of the parameter
Y is defined as:

RYY|Z ≥ RY′Y′|θ

−
[

HRY′Y′|θ
XT

]T [
RZZ + HRY′Y′|θHT HX

XTHT −R−1
ββ

]−1 [
HRY′Y′|θ

XT

]
.

(2.77)

Because Z0 and Hk depend on the current estimate, an iterative approach is
needed in which Z0 and Hk are updated in each iteration [Kitanidis, 1995].
On regular structured grids, I can accelerate the multiplication of the cross-
covariance HRY′Y′|θ using the spectral method of Nowak [2004] as discussed in
Section 2.6.2. When the functional relation between the measurements and the
hydrogeological parameters is linear, a single estimation step is sufficient and
the estimation of the conditional covariance using Eq. (2.77) becomes exact.
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2.8 Modified Levenberg-Marquardt Algorithm for
the Quasi-Linear Geostatistical Inverse Approach

Since the Quasi-Linear Geostatistical Inverse Approach of Kitanidis [1995] is
based on the Gauss-Newton technique [e.g., Press et al., 1992, chapter 9], over-
shooting of the parameters from one iteration to the next may occur for highly
nonlinear cases. I stabilize this approach by the modified Levenberg-Marquardt
method of Nowak and Cirpka [2004], which suppresses oscillations by modi-
fying the diagonal entries of the left-hand side matrix in Eq. (2.76). In this
modified algorithm, the right hand-side of Eq. (2.76) is split into an innovative
and a projecting part:

[
Zm − Z(Yk) + HkYk

−R−1
βββ∗

]
=

[
Zm − Z(Yk)

−R−1
ββ(β∗ − β̂k)

]

︸ ︷︷ ︸
innovative

+

[
HkYk

−R−1
βββ̂k

]

︸ ︷︷ ︸
projecting

. (2.78)

The current estimate of the parameter field is now defined as:

Ŷk+1 = X(β̂pr + β̂in) + RY′Y′HT
k (ξ̂pr + ξ̂in), (2.79)

in which the subindex pr stands for the projecting part and in is the innovative
contribution.

Introducing a Levenberg-Marquardt parameter µ, one computes the values of
β̂pr, β̂in, ξ̂in, and ξ̂pr by:

[
HkRY′Y′|θHT

k + µRZZ HkX

XTHT
k −(1 + µ)R−1

ββ

][
ξ̂in

β̂in

]
=

[
Zm − Z(Yk)

−R−1
ββ(β∗ − β̂k)

]

[
HkRY′Y′|θHT

k − τRZZ HkX

XTHT
k −(1 + µ)R−1

ββ

][
ξ̂pr

β̂pr

]
=

[
HkYk

−(1 + µ)R−1
βββ̂k

]
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where τ = 1− (1 + µ)−γ and γ is a fine-tune variable.

The modified algorithm is implemented as the following in algorithm 2.2. De-
fine an initial guess Y0 = Xβ∗ and an initial value for µ > 0:

Algorithm 2.2 Implementation of the modified Levenberg-Marquardt algorithm
1: Compute Hk unless the change of the parameter fields is negligible.
2: Solve the Eq. (2.79).
3: Compute the value of the objective function (Eq. (2.74)).
4: If the values of Eq. (2.74) does not improve, increase µ and repeat comput-

ing Eq. (2.79), and the value of the objective function.
5: Otherwise, decrease the value of µ and continue.
6: Increase k by one and repeat until defined convergence criteria are met.

By introducing the projecting and innovative parts, one can separately control
these two parts. Through decreasing RZZ in the projecting part, deterioration
is suppressed ensuring a good reproduction of the simulated measurements in
the projecting part; by increasing RZZ in innovative part, one can prevent over-
shooting in this part. Nowak and Cirpka [2004] have shown that the Levenberg-
Marquardt parameter µ controls the step size. The innovative part becomes zeros
when µ approaches ∞ and the projecting part is identical to the previous esti-
mate. By choosing a proper γ > 0, the computation can be fine-tuned; for large
values of γ, the algorithm becomes more aggressive in suppressing the deterio-
ration of the projecting part.

2.9 Estimation of Geostatistical Parameters

In the previous description of the Quasi-Linear Geostatistical Inverse Approach
[Kitanidis, 1995], I have assumed that the geostatistical parameters of the co-
variance function are known. In many applications, these parameters have to be
estimated from measurements as well. The most prominent approaches include
variogram-fitting and optimization of the geostatistical parameters [e.g., Kitani-
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dis, 1995]. Variogram-fitting requires direct measurements of the hydraulic pa-
rameters with different separation distances. In contrast, the optimization tech-
nique by Kitanidis [1995], the restricted maximum likelihood method, can uti-
lize both direct measurements and secondary data. This makes the restricted
maximum likelihood method more preferable than the variogram-fitting tech-
nique, because most data available belong to secondary information.

The restricted maximum likelihood method of Kitanidis [1995] optimizes the set
of geostatistical parameters θ by maximizing the conditional probability den-
sity p(θ|Zm) of the geostatistical parameters θ given measurements Zm. In the
framework of Bayes’ theorem, p(θ|Zm) is given by:

p(θ|Zm) =
p(Zm|θ)p(θ)

p(Zm)
=
p(Zm|Y′,β)p(Y′|θ)p(β)p(θ)

p(Y′,β|Zm,θ)p(Zm)
, (2.80)

in which p(Zm) is a scalar, which does not depend on θ.

I assume that the prior probability density function p(θ) of θ is multi-Gaussian:

p(θ) =
1√

(2π)nθdet(Rθθ)
exp

(
−1

2
(θ − θ∗)TR−1

θθ (θ − θ∗)
)
, (2.81)

in which θ∗ is the nθ × 1 vector of the prior mean of θ, and Rθθ is the nθ × nθ

prior covariance matrix. Assuming that linearization about the most likely value
of Y is permissible, it can be shown that p(θ|Zm) is identical to [Kitanidis,
1995]:

p(θ|Zm) =

√
det(Ξ)

det(Rθθ)

· exp
(
−1

2
(Z0 −HXβ∗)TΞ(Z0 −HXβ∗) −1

2
(θ − θ∗)TR−1

θθ (θ − θ∗)
)
,

(2.82)

where Ξ is defined as:
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Ξ = (Σ + HXRββX
THT ))−1 =

Σ−1 −Σ−1HX(R−1
ββ + XTHTΣ−1HX)−1XTHTΣ−1, (2.83)

with

Σ = RZZ + HRY′Y′|θHT . (2.84)

The optimal set of θ maximizes p(θ|Zm) or minimizes the value of its doubled
negative logarithm L(θ|Zm):

L(θ|Zm) = −ln(det(Ξ)) + (Z0 −HXβ∗)TΞ(Z0 −HXβ∗)

+(θ − θ∗)TR−1
θθ (θ − θ∗) + const., (2.85)

where all terms that do not depend on θ are included in the constant. In case of
diffuse prior knowledge about θ, the third term in Eq. (2.85) disappears. Finally,
the conditional covariance matrix of θ is approximated by:

Rθθ|Z ≈
(

E
[
∂2L(θ|Zm)

∂θ ⊗ ∂θ

])−1

, (2.86)

which is determined at the most likely value.

Because of the underlying non-linearity of the functional relation between the
measurements and hydrogeological parameters, the estimate of geostatistical
parameters depends on the estimate of the hydrogeological parameters. Thus,
an iterative procedure is needed in which the hydrogeological parameters and
the geostatistical parameters are estimated in an alternating manner [Kitanidis,
1995]. Figure 1.1 illustrates the alternating procedure of parameter estimation.
Since conditional realizations are not needed, the restricted maximum likeli-
hood method is computationally efficient, which makes this approach attractive.
However, due to linearization and ignorance of high-order terms, this approach
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works well only for cases with a small variance, and it may produce biased re-
sults when the variance is high.

2.10 Inference with Karhunen-Loève Expansion

The procedure outlined in this section has been published in Li and Cirpka
[2006].

In the simulation of field applications, it may become necessary to use an irreg-
ular geometry of the domain or to refine the grid in areas of particular interest.
For such cases, the efficient spectral method for computing cross-covariance
matrices [Nowak et al., 2003] will fail. In Section 2.6.3, I have shown the pa-
rameterization of a spatial random field by the Karhunen-Loève (KL) expansion
[Loève, 1977], which uses a reduced dimension and can be discretized by any
fashion. In the following, I integrate the parameterization with the KL expansion
into the Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995], making
the inverse approach also applicable to unstructured grids with a large number
of unknowns.

In the framework of the KL expansion [Loève, 1977], the fluctuations Y ′(x) can
be approximated as (see Section 2.6.3):

Y ′(x) =
N∑

i=1

fi(x)ηi, (2.87)

where fi(x) is the i-th continuous base function, N is the total dominant number
of eigenvalues, and ηi is a weight drawn from a standard normal distribution.
The weights ηi of all contributions are uncorrelated.

In a discretized domain with n values Y′, the KL approximation of Y′ is:

Y′ = Fζ + Y′
hf ≈ Fζ, (2.88)
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in which F is the n×N matrix of the selected discretized base functions fi(x),
ζ is the N × 1 random vector of the truncated contributions ηi, and Y′

hf is the
n× 1 vector of high frequency terms that have been neglected by the truncation
of the KL expansion. The distribution of Y′

hf is Gaussian with zero mean and
covariance Rhf

Y′Y′|θ:

E[Y′
hf(x)] = 0, (2.89)

E[Y′
hf(x + h)Y′

hf(x)] = Rhf
Y′Y′|θ(h). (2.90)

The distribution of ζ is Gaussian with zero mean and identity covariance matrix:

p(ζ) ∝ exp
(
−1

2
ζTζ

)
. (2.91)

Correspondingly, Y, the discretized form of Y (x), is approximated by the fol-
lowing sum of matrix-vector products involving the trend parameters β and the
random parameter vector ζ:

Y ≈ Xβ + Fζ. (2.92)

I can rewrite Eq. (2.92) in a more condensed form:

Y ≈ Xeb, (2.93)

with

Xe =
[

X F
]
, (2.94)

b =

[
β

ζ

]
. (2.95)
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As β and ζ are uncorrelated parameters, the covariance matrix of b becomes:

Rbb =

[
Rββ 0

0 I

]
, (2.96)

where I is an N ×N identity matrix. The inverse of Rbb is:

R−1
bb =

[
R−1

ββ 0

0 I

]
. (2.97)

In the limiting case that the prior knowledge about the trend coefficients β is
diffuse, R−1

ββ is a zero matrix. The n× (nβ +N) matrix Xe can be interpreted as
extended set of discretized base functions for which prior knowledge about the
coefficients exists.

Now the measurements Zm relates to Y via a function Z(b):

Zm = Z(b) + r. (2.98)

The conditional distribution p(Y′,β|Zm,θ) of the parameters Y, given the mea-
surements Zm and geostatistical parameters θ, can be expressed by the condi-
tional distribution of p (b|Zm,θ) of the parameters b. I consider that the prior
distribution of the parameter vector b is multi-Gaussian:

p(b|θ) =
1√

(2π)nβ+Ndet(Rbb)
exp

(
−1

2
(b− b∗)TR−1

bb(b− b∗)
)
, (2.99)

Applying Bayes’ theorem, I obtain the posterior distribution of b by:
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p (b|Zm,θ) =
1√

(2π)`+nβ+Ndet(RZZ)det(Rbb)
·

exp
(
− 1

2
(Zm − Z(b))T R−1

ZZ (Zm − Z(b))− 1

2
(b− b∗)TR−1

bb(b− b∗)
)
.

The expression in the exponential leads to the negative doubled conditional log-
probability density function L (b|Zm,θ) of the parameters given the measure-
ments:

L (b|Zm,θ) = (Zm − Z(b))T R−1
ZZ (Zm − Z(b))

+(b− b∗)TR−1
bb(b− b∗) + const. (2.100)

The best estimate of b is the most likely value, which minimizes L (b|Zm,θ).

Finding the minimum of L (b|Zm,θ) essentially is a quadratic optimization
problem, affected by the non-linearity of Z(b), for which several solution strate-
gies exist. The most prominent ones in the current context are the conjugate gra-
dient method [Hestenes and Stiefel, 1952] and the Gauss-Newton method [e.g.,
Press et al., 1992, chapter 9], both with several modifications. Here I apply
the Gauss-Newton method, because it provides not only the best estimate, but
also an approximation of the conditional covariance matrix. The Gauss-Newton
method is based on successive linearization about the last estimate b̂k:

Z(b) ≈ Z(b̂k) + Jk(b− b̂k), (2.101)

in which Jk is the Jacobian matrix derived about the last estimate b̂k:

Jk =
∂Z

∂bT

∣∣∣∣
b=b̂k

. (2.102)

The Jacobian matrix J can be approximated by:
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Jk =
∂Z

∂bT
≈ ∂Z

∂YT

∂Y

∂bT
= HXe, (2.103)

in which ∂Z/∂YT is the sensitivity matrix H of model outcomes at measure-
ment locations with respect to log-conductivity. The matrix H can efficiently be
computed via the adjoint-state method [Sun and Yeh, 1990].

The residual Zm − Z(b) becomes:

Zm − Z(b) ≈ Zm − Z(b̂k) + Jkb̂k − Jkb,

= Z0 − Jkb, (2.104)

with the modified measurement vector Z0:

Z0 = Zm − Z(b̂k) + Jkb̂k. (2.105)

Then, the corresponding objective function of Eq. (2.100) becomes:

L (b|Zm,θ) =
(
Z0 − Jkb

)T
R−1

ZZ

(
Z0 − Jkb

)

+(b− b∗)TR−1
bb(b− b∗) + const. (2.106)

The minimum of L (b|Zm,θ) is found by setting the partial derivatives of the
proceeding objective function with respect to the unknown parameters to a zero
vector:

∂L (b|Zm,θ)

∂b
= JT

k R−1
ZZ

(
Z0 − Jkb)

)−R−1
bb(b− b∗) = 0, (2.107)

which leads to an iterative procedure. Based on the k-th iteration, I compute the
Jacobian matrix Jk and the modified measurement vector Z0

k. Then b is updated
by solving:
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(
JT

k R−1
ZZJk + R−1

bb

)
b̂k+1 = JT

k R−1
ZZZ

0
k + R−1

bbb
∗. (2.108)

I repeat the procedure until a convergence criterion is met.

With the final estimate of the extended set of trend coefficients b̂, I can obtain
the most likely estimate Ŷ of the original parameter field:

Ŷ = Xeb̂. (2.109)

A lower bound of the conditional covariance matrix is given by:

RYY|Z ≥ XeRbb|ZXT
e + Rhf

Y′Y′, (2.110)

in which Rbb|Z is the (p + N) × (p + N) conditional covariance matrix of the
estimated parameters b:

Rbb|Z =
(
JT

k R−1
ZZJk + R−1

bb

)−1
. (2.111)

The Gauss-Newton method performs best when the functional relation between
the unknown parameters and dependent quantities is almost linear. In the limit of
a linear system, the optimum is found by a single iteration. In highly non-linear
cases, the Gauss-Newton method may converge only when the initial estimate
is very close to the optimal set of parameters. To stabilize the method, I can
apply the Levenberg-Marquardt method [Levenberg, 1944; Marquardt, 1963;
Carrera and Neuman, 1986a;b;c; Nowak and Cirpka, 2004], which suppresses
oscillations by amplifying the diagonal entries of the left-hand side matrix in Eq.
(2.108).

Here, I have summarized only the procedure of integrating the KL expansion
into the Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995]. Simi-
larly, the corresponding estimation of geostatistical parameters can also be per-
formed in the framework of the KL expansion. Since the formulations are very
close to the one I demonstrated in Section 2.9. I do not repeat the procedure.
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For detailed steps, see Li and Cirpka [2006].

2.11 Evaluation of Sensitivities

In the quasi-linear geostatistical approach of inverse modeling, I repeatedly need
to evaluate the sensitivity matrix H, i.e., the matrix of partial derivatives of all
measured quantities with respect to all parameters. A multi-dimensional domain
may be discretized into O(n) ≈ 104 − 106 elements. Thus, the computational
effort of direct numerical differentiation would be prohibitive. A more efficient
approach of computing sensitivities is the continuous adjoint-state method, de-
rived by Sun and Yeh [1990].

Analyzing pumping tests is one of my focuses. For illustrating the major steps
of the adjoint-state method [Sun and Yeh, 1990], I take a two-dimensional case
of estimating transmissivity T (x) and storativity S(x) given measurements of
zeroth and first temporal moments of drawdown, m0(sδ(x)) and m1(sδ(x)) as
an example. The procedure in three-dimensional applications is identical to the
following two-dimensional one. However, the corresponding hydrogeological
parameters become hydraulic conductivities K and specific storage coefficients
S0.

I consider a particular step in the iteration procedure with the current estimates
of T̂ (x) and Ŝ(x) First, I solve for the current estimates of the zeroth and the
first temporal moments, m̂0(sδ(x)) and m̂1(sδ(x)), Subsequently, I solve for a
set of adjoint-state equations for each measurement. In the following, x` denotes
the measurement location, k ∈ [0, 1] is the index for the type of measurement,
whereas ψ1 and ψ0 are the adjoint states of the first and zeroth moment, meeting
the adjoint-state equations:

−∇ · (T̂∇ψ1) = δk1δ(x− x`), (2.112)

−∇ · (T̂∇ψ0) = δk0δ(x− x`) + Ŝψ1, (2.113)
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subject to the boundary conditions:

ψi = 0 on ΓDiri, (2.114)

n · ∇ψi = 0 on ΓNeu, (2.115)

for both i = 0 and i = 1.

Subsequently, the sensitivity densities of the k-th moment measured at x` with
respect to the log-transmissivity lnT (x) and log-storativity lnS(x) at location
x are computed by:

∂mk(x`)

∂ lnT (x)
= −∇ψ0(x) · (T̂ (x)∇m̂0(x))−∇ψ1(x) · (T̂ (x)∇m̂1(x)),

(2.116)
∂m1(x`)

∂ lnS(x)
= ψ1(x)Ŝ(x)m̂0(x). (2.117)

Figure 2.7 shows some typical patterns of the sensitivity of zeroth and first tem-
poral moments.

Since I consider the parameters to be uniform within elements, the sensitivity
densities in Eqs. (2.116 & 2.117) need to be integrated over the volume of
the respective element. In summary, I arrive at the following procedure for the
computation of sensitivities in algorithm 2.3:



2.11. Evaluation of Sensitivities 61

A: ∂ m
0
/∂ lnT

x

y

B: ∂ m
1
/∂ lnT

x

y

C: ∂ m
1
/∂ lnS

x

y

Figure 2.7: Graphic illustration of sensitivities of zeroth and first temporal mo-
ment of drawdown with respect to hydrogeological parameters. a) is the sen-
sitivity of zeroth temporal moment with respect to log-transmissivity; b) the
sensitivity of first temporal moment with respect to log-transmissivity; c) the
sensitivity of first temporal moment with respect to log-storativity. The black
square indicates the pumping location and the cross is the location of one moni-
toring well.
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Algorithm 2.3 Computation of sensitivities using adjoint-state method
1: In case of a measurement of the zeroth temporal moment or steady-state

drawdown, ψ1 is zero throughout the domain. A single adjoint pde of ψ0,
Eq. (2.113), needs to be solved. This equation is identical to a steady-state
groundwater flow equation with a point-like extraction at the observation
point. A measurement of m0(sδ(x)) is insensitive to storativity, whereas
its sensitivity with respect to log-transmissivity can be computed for each
element by integrating Eq. (2.116) over the element.

2: In case of a measurement of the first temporal moment, both adjoint-state
variables, ψ1 and ψ0, must be computed. First, one solves for ψ1 by Eq.
(2.112), which is a steady-state groundwater flow equation with a point-like
extraction at the observation point. Subsequently, one solves for ψ0 by Eq.
(2.113). This is a steady-state groundwater flow equation with a distributed
source term. The sensitivities with respect to log-transmissivity and log-
storativity can be computed for each element by integrating Eqs. (2.116 &
2.117) over the element.



Chapter 3

Performance Tests of
Inference with
Karhunen-Loève Expansion

In Section 2.6.3 of Chapter 2, I have shown that the parameterization by the
Karhunen-Loève(KL) expansion [Loève, 1977; Ghanem and Spanos, 1991] uses
a reduced dimension and has the potential to make the parameter estimation
efficient. Since the parameterization does not distinguish grids, both structured
and unstructured grids can be applied. In section 2.10, I have integrated the
parameterization of a random spatial field with the KL expansion into the Quasi-
Linear Geostatistical Inverse Approach [Kitanidis, 1995].

In this chapter, I test the performance of the Quasi-Linear Geostatistical Inverse
Approach with the KL expansion1. I perform several case studies using syn-
thetic data. Here, the hydraulic conductivity is estimated in a two-dimensional
unconfined aquifer. I choose an irregular domain with known recharge as the
study site.

First, I implement the inverse approach on a regular grid. Computational efforts,
estimates and the corresponding estimation variances are compared between the

1This work has been published by Li and Cirpka [2006]
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inverse method using the KL expansion and that relying on the full prior covari-
ance matrix. Subsequently, I apply the inverse method with the KL expansion to
a domain discretized by an unstructured grid. The difference of the estimations
on structured and unstructured grids are compared.

3.1 Field Setup

As indicated by Figure 3.1, the domain has a polygonal, non-rectangular shape.
Table 3.1 lists all parameters of the test cases. Fixed-head boundary conditions
are assumed on the bottom of the field, whereas no-flow conditions are attributed
to all other sides of the polygon.

I generate fields of log-conductivity Y = ln(K) and log-recharge Z = ln(W )

using the spectral method by Dietrich and Newsam [1993]) as described in Sec-
tion 2.6.1. I use the isotropic non-separable exponential covariance function for
the fluctuations of both ln(K) and ln(W ), together with a uniform, but uncertain
mean. The values of the geostatistical parameters are given in Table 3.1. Here,
β∗Y and β∗Z are the uncertain prior mean values for ln(K) and ln(W ), respec-
tively, whereas σ2

βY
and σ2

βZ
quantify the uncertainties of βY and βZ . The terms

σ2
Y and σ2

Z stand for the variances of the ln(K) and ln(W ) fluctuations about
their mean values. λ refers to the correlation length. For the topography of the
aquifer bottom, I use a parabolic function with its minimum around the center
of the domain.

Figures 3.2a, 3.2b, and 3.2f show the fields of the generated hydrogeological
parameters and the bottom topography, respectively. The locations of 15 mea-
surement points are marked by stars. The pumping well is indicated by a square.
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Figure 3.1: Polygonal domain used in the example calculations of the geosta-
tistical inference with the KL expansion.

3.2 Estimation on a Regular Grid

In this section, I evaluate the performance of the inverse method with the KL
expansion on a regular grid. Computational efforts, estimates, and the corre-
sponding estimation variances are compared to the geostatistical inverse method
using the full prior covariance matrix.

I discretize the virtual rectangular embedding domain by a regular grid and ex-
tract the elements falling into the non-rectangular study domain. The number of
nodes and elements of the regularly discretized field are given in Table 3.1

Based on the true hydraulic parameters and bottom topography, I solve the
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Table 3.1: Geometric parameters, pumping conditions, and geostatistical pa-
rameters of log-transmissivity and log-recharge for all test cases of the inversion
with the KL expansion; parameters of discretization for the test case on a regular
grid.

Geometric Parameters
L1 Embedding domain length 1000m
L2 Embedding domain width 1000m

Pumping Conditions
Q Pumping Rate 4× 10−3m3/s
x1,w Well Coordinate 600m
x2,w Well Coordinate 600m

Geostatistical Parameters
σ2

Y Prior variance of ln(K) [K in m/s] 1
Actual variance of ln(K) 0.76

σ2
Z Prior variance of ln(N )[N in m3/m2] 1

Actual variance of ln(N ) 0.70
β∗Y Prior mean value of ln(K) [K in m/s] −6
β∗Z Prior mean value of ln(N ) [N in m3/m2] −20
σ2

βY
Prior variance of β∗Y 1

σ2
βZ

Prior variance of β∗Z 1

λY Correlation length for ln(T ) 200m
λZ Correlation length for ln(N ) 200m

Measurement Error
σ2

s Variance of drawdown measurement 25× 10−6m2

Regular Discretization
∆x1 Grid spacing in x1 6.67m
∆x2 Grid spacing in x2 6.67m

Number of nodes in the domain 18612
Number of elements in the domain 18315

steady-state equation Eq. 2.19 (the transient term disappears) using the Finite
Element Method with bilinear elements. Figure 3.2c displays the true hydraulic
heads. Measurements of the heads are taken at the locations marked by stars
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Figure 3.2: Hypothetical test case. a) True distribution of log-conductivity (K
in m/s); b) known distribution of log-recharge (N in m3/s); c) true distribution
of hydraulic heads; d) estimated log-conductivity field using 400 KL terms on a
rectangular grid; e) associated estimation variance; f) bottom topography. Stars:
locations of head measurements; square: location of pumping well.

in Figure 3.2 . Artifical uncorrelated measurement errors with zero mean and a
standard deviation of 5mm are added to the recorded values. This measurement
error corresponds to 1.7% of the range of head values in the domain.

With the artificially generated measurement vector Zm, I infer the distribution of
ln(K) using the two inverse methods. The continuous adjoint-state method [Sun
and Yeh, 1990] was applied for the calculation of sensitivities. The recharge field
is assumed to be known. To stabilize my inverse approaches, I use the modified
Levenberg-Marquardt algorithm of Nowak and Cirpka [2004]. The estimates
using the inverse method with the KL expansion depend on the number of KL
terms, whereas the method considering the full prior covariance matrix employs
the whole prior information. Thus, I assume that the estimate using the method
with the full prior covariance matrix is more accurate, and the latter estimation
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will serve as the reference case for later comparisons. Figures 3.2d and 3.2e dis-
play an example of the estimate and estimation variance obtained by the inverse
method with the KL expansion using 400 KL terms. Since the estimate and es-
timation variance of the inverse method with the full prior covariance matrix are
very similar to the ones of the inverse method with the KL expansion, I do not
show separate plots for each inverse method used.

Figure 3.3a shows the computational effort of the reference case and the com-
putational costs of the method with the KL expansion using different numbers
of KL terms. The CPU time is normalized by the number of nodes. The nor-
malized CPU time of the reference case is included in Table 3.2. The horizontal
line in Figure 3.3a is the computational effort of the reference case, and the stars
indicate the computational costs of the estimation using the KL expansion. As
is quite obvious, the method with the full prior covariance matrix outperforms
the method with the KL expansion for almost any number of KL terms. Both
methods are based on periodic embedding of the covariance function. Because
the domain is regularly discretized, the matrix multiplications involving the full
prior covariance matrix in the first approach can be done in the spectral do-
main using FFT for the transformation [Nowak et al., 2003]. These techniques
are extremely efficient as they make optimal use of the structural properties of
the covariance matrix. The method using the KL expansion is more general
and exploits periodic properties only in the evaluation of the eigenvalues. For
the chosen exponential covariance function, which requires a high number of
KL terms, it is slightly less competitive on a structured grid than the reference
method. Using the KL expansion, in general, the computational effort increases
with increasing number of KL terms. The dimensions of the matrix F and vec-
tor ζ expand when more KL terms are added. Therefore, more time is needed
for matrix evaluations. However, when the number of KL terms is not suffi-
cient to catch the major features of the covariance function, the computational
cost can also be high, because more iteration steps are needed in the estimation
procedure.

To quantify the deviation between the estimates using the inverse method with
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the KL expansion and the estimate of the reference case, I compute the normal-
ized root mean square error (NRMSE) defined as:

NRMSE =

√√√√1

n

n∑
i=1

(pfull
i − pKL

i )2

σ2
i

, (3.1)

where pi is the log-conductivity in element i, the index full stands for the es-
timate of the method with full prior covariance matrix, the index KL denotes
the estimate of the method with the KL expansion, and σ2

i is the prior variance.
Both inverse methods quantify the uncertainty of the estimates also by the esti-
mation variances. To evaluate the difference between the estimation variances
of the different methods, I introduce a normalized difference (ND):

ND =
1

n

n∑
i=1

|σ2
c,full,i − (σ2

c,KL,i + σ2
hf,i)|

σ2
i

, (3.2)

in which σ2
c,full and σ2

c,KL are the estimation variances of the reference case
and the method with the KL expansion, respectively, σ2

hf stands for the high-
frequency uncertainty introduced by the truncation, σ2

i is the prior variance, and
| · | stands for the absolute value. Figures 3.3b and 3.3c graphically illustrate
NRMSE and ND as function of the number of KL terms. Both the differences
of the estimated fields and the estimation variances indicate that one can obtain
a good estimate using a limited number of KL terms. In my example, about 400

KL terms are sufficient.

Since I know the true hydraulic conductivity field in our particular application,
I can quantify the deviation of the estimates from reality by another normalized
root mean square error (NRMSE0):

NRMSE0 =

√√√√1

n

n∑
i=1

(ptrue
i − pest

i )2

σ2
i

, (3.3)

where the index true denotes the true hydraulic conductivity, and est refers to
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Figure 3.3: Performance of the Karhunen-Loève expansion. a) Computational
effort of the inverse method with the KL expansion (stars) as function of the
number of KL terms. Dotted line: effort for the inverse method using the full
prior covariance matrix. b) Normalized difference of the estimates, NRMSE,
according to Eq. (3.1). c) Normalized difference of the estimation variance, ND,
according to Eq. (3.2). d) Normalized difference of the estimates, NRMSE0,
according to Eq. (3.3).
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the estimates. Table 3.2 contains NRMSR0 of the reference case. Figure 3.3d
shows NRMSE0 of the reference case and the method with the KL expansion
using different numbers of KL terms. The horizontal line in this sub-figure is
the difference between the true field and the estimate of the reference case, and
the stars show that differences between the true parameters and the estimates
with the KL expansion.

Figure 3.4 shows the estimation variance of the elements of the parameter vector
ζ for the case in which 1600 KL terms are used. The entries of ζ are sorted by
the size of the eigenvalues. The prior variance of each entry of ζ is unity. Figure
3.4 shows the remaining uncertainty after conditioning of ζ on the measure-
ments. The figure shows that the reduction of uncertainty is not significant for
KL terms contributing to the covariance function only to a minor extent, which
is expressed by a high KL index. This indicates that increasing the number of
KL terms, after a certain level is reached, will not help improving the quality
of the estimate. In my example, truncating the series after about 400 KL terms
will not introduce significant error. In addition, the computational costs at these
stages are comparable to the computational efforts of the reference case.

The validity of the estimate can statistically be tested by considering the or-
thonormal residuals [Kitanidis, 1995]. The sum of the squared orthonormal
residuals should follow the χ2 distribution. All relevant parameters and results
are included in Table 3.2. The mean value of the orthonormal residuals is almost
zero, which is the expected value. For the given degree of freedom, 15, the sum
of the squared orthonormal residuals, 18.11, corresponds to a χ2-probability of
74%, which lies well in the 95% confidence interval. This indicates that the
model agrees with the data.

3.3 Estimation on an Unstructured Grid

In this section, I use an unstructured grid with triangular elements when I esti-
mate the hydraulic parameters using the Quasi-Linear Geostatistical Inverse Ap-
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Figure 3.4: Estimation variance of the entries of the weight vector ζ using 1600
KL terms, sorted by their eigenvalues.

proach [Kitanidis, 1995] with the KL expansion. The parameterization does not
distinguish between different discretization schemes. This implies that I should
obtain essentially the same estimate on the triangular grid as on the structured
grid if the number of KL terms is identical.

I use the same polygonal field, locations of monitoring and pumping wells, and
pumping rate as defined in Section 3.1. For the generation of the triangular grid,
the pde toolbox of Matlab is used. The actual number of nodes and elements
are listed in Table 3.2. Except for a slight geometric mismatch, the true ln(K)

and ln(N) and the topography of the aquifer bottom are identical to those used
in Section 3.2.
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Table 3.2: Performance results for the reference case and orthonormal residuals
(Section 3.2) and estimation on unstructured grids (Section 3.3)

Section 3.2: Performance Results of the Reference Case
CPU time per node 0.0084
NRMSE0 of the reference case according to Eq. (3.3) 0.7090

Section 3.2: Orthonormal Residuals (Regular Grid)
Degree of freedom 15
Mean value of the orthonormal residuals −0.001
Cumulative probability (χ2 distribution) 0.74
Sum of squares of the orthonormal residuals 18.11

Section 3.3: Estimation on Unstructured Grids
Number of nodes 14209
Number of elements 28069
NRMSE∗ according to Eq. (3.4) 0.12
ND∗ according to Eq. (3.5) 0.0046
CPU time per node 0.0290
CPU time per element 0.0147

I solve the true hydraulic fields using the Finite Element Method with linear
shape functions. The measurements are taken by the same procedure as in Sec-
tion 3.2. With the artifical measurements, I infer the log-conductivity distribu-
tion via the inverse method with the KL expansion accelerated by the continu-
ous adjoint-state method [Sun and Yeh, 1990] and stabilized by the Levenberg-
Marquardt algorithm of Nowak and Cirpka [2004]. In this estimation, 400 KL
terms are used.

To make the estimates of different discretization schemes more comparable, I
map the results obtained on the triangular grid onto the rectangular grid used
in subsection 3.2. Then I compare the mapped results with the estimate on the
rectangular grid. To quantify the differences, I define a normalized root mean
square error NRMSE∗:
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NRMSE∗ =

√√√√1

n

n∑

i=1

(pmapped
i − prec

i )2

σ2,mapped
c,i

, (3.4)

where n is the number of elements of the rectangular grid, pmapped
i denotes the

estimate of the triangular grid mapped onto the rectangular one, prec
i is the es-

timate on the rectangular grid, and σ2,mapped
c,i stands for the mapped estimation

variance computed for the triangular grid. For the difference of the estimation
variances, I introduce a normalized difference ND∗ with respect to the prior
variance:

ND∗ =
1

n

n∑

i=1

|σ2,mapped
c,i − σ2,rec

c,i |
σ2

i

, (3.5)

in which σ2,rec
c,i is the estimation variance on the rectangular grid, and σ2

i denotes
the prior variance. Here prec

i and σrec
c,i are the results of estimation with 400

KL terms on the rectangular grid. The resulting NRMSE∗ and ND∗ are given
in Table 3.2. These two numbers include the error introduced by the mapping.
Both normalized differences indicate that the estimate on the triangular grid is
very close to the estimate on the rectangular grid.

Table 3.2 contains the computational effort for the inverse method on the un-
structured grid. The computational costs per node are roughly three times the
computational costs of the test case with 400 KL terms on the regular grid. For
rectangular grids, I have efficient methods to set up the system of equations. For
unstructured grids, by contrast, I have to perform this task element by element.
Therefore, the setup will cost more CPU time. Moreover, although the number
of nodes of the unstructured grid is close to the number of nodes on the regular
grid, the number of elements is about 1.5 times higher. For storing and multipli-
cation of matrices involving element-related properties, such as F, I expect that
the computational time will increase by this factor.
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3.4 Summary

I have successfully applied the Quasi-Linear Geostatistical Inverse Approach for
the identification of the spatial log conductivity distribution from measurements
of heads using the Karhunen-Loève expansion (KL) as parameterization of the
log conductivity fluctuations.

In previous studies on uncertainty propagation using the KL expansion [Ghanem,
1998; Zhang and Lu, 2004], a rather smaller number of KL terms were used. In
our inverse modeling study, between 200 and 400 terms were needed to achieve
estimates that are of similar quality to those obtained by using the full prior co-
variance matrix. Since the inverse approach with the KL expansion does not
distinguish grids, the results on the unstructured grid are very close to the ones
on the structured grid. In my case study, the inverse method applying the KL
expansion has been outperformed slightly by the method using the full prior co-
variance function in conjunction with spectral methods for the computation of
cross-covariance matrices [Nowak et al., 2003]. This is because of a high num-
ber of KL terms. A particular reason for this high number is that I have chosen an
exponential covariance function to describe the spatial correlation of log conduc-
tivity. This function expresses variations on all scales and its Fourier transform
is known to decay only slowly with increasing frequency. For smoother covari-
ance functions, particularly with large correlation lengths, the parameterization
by the KL expansion will be more efficient. For such cases, fewer eigenvalues
are dominating and the KL expansion can be truncated after fewer terms. For
unstructured grids, inverse modeling based on the parameterization by the KL
expansion appears to be the most efficient approach.

The KL expansion requires that the log-conductivity field is (multi)Gaussian.
Also, the spectral derivation of the base functions demands a stationary covari-
ance function, or at least a non-stationary function that can be traced back to a
stationary counterpart [Cirpka and Nowak, 2004].

Extending the inverse approach to three dimensions is straightforward. The KL
expansion is applicable in three dimensions and periodic embedding can be used
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as well. Then, the three-dimensional groundwater-flow equation rather than the
two-dimensional equation is used.



Chapter 4

Applications to Field Data

In this Chapter, I implement the Quasi-Linear Geostatistical Inverse Approach
[Kitanidis, 1995] to field data. I conduct both a two-dimensional and a three-
dimensional inference. Field data obtained at the test site Krauthausen, Germany
[Vanderborght and Vereecken, 2001; Vereecken et al., 1999; 2000] are used.

Section 4.1 covers the descriptions of the test field and the tests at Krauthausen,
Germany. The two- and three-dimensional inferences of the hydrogeological
parameters are included in Section 4.2 and 4.3, respectively.

4.1 Field and Test Descriptions

This section describes the test field and the tests at Krauthausen, Germany: First,
I will give a brief description of the test site at Krauthausen. Then, the small-
scale pumping tests and flowmeter tests at the test site will be described.

4.1.1 Field Description

The Krauthausen test site is located in the southern part of the Lower Rhine
Embayment, Germany [Vanderborght and Vereecken, 2001; Vereecken et al.,
1999; 2000]. It has an extension of 200m×70m. All studies at the test site have

77
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focused on the uppermost aquifer with a thickness of approximately 10m. This
aquifer is part of a flood plain, consisting mainly of gravel and sand sediments.
The site is equipped with 73 monitoring wells (approximately 5 cm in diameter)
and a single well with approximately 17.5 cm diameter used as pumping well in
a large-scale pumping test. Figure 4.1 shows a plan view of the test site and the
location of the wells.
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Figure 4.1: Dimension of the field and well locations of the test site
Krauthausen. Crosses indicate the location of wells used for pumping tests and
circles for flowmeter tests.

4.1.2 Description of Pumping Tests

From March to August 2000, a series of small-scale pumping tests with a dis-
charge rate of 2m3/h were conducted at 29 different pumping wells at the test
site [Lamertz, 2001]. For each pumping test, approximately 10 wells adjacent
to the production wells were used as observation wells. Well locations are
marked by crosses in Figure 4.1. The distances of pumping and observation
wells range from 1.63m to 130.91m. Both the pumping and observation wells
were equipped with automatic loggers of hydraulic head with a resolution of
1mm to measure and store the head changes at time intervals of 10 seconds.
The pumping continued for 2 hours.
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The small-scale pumping tests were performed in a two-dimensional hydraulic
tomographic format. Although this two-dimensional setup is different from the
three-dimensional description in Figure 1.2 as suggested by Neuman [1987],
Butler and Liu [1993] and Gottlieb and Dietrich [1995], the two-dimensional
hydraulic tomography still follows the same philosophy, namely, one stresses an
aquifer at different locations and in the meantime observes the response of the
aquifer at adjacent wells. By doing this, one obtains a series of measurements
reflecting features of the aquifer at different locations.

The drawdowns during the small-scale pumping tests were considerably smaller
than the thickness of the aquifer. In addition, I analyze the values of storativity
for each pumping test using Theis’ [1936] method, resulting in values ranging
from 2.5 × 10−4 to 0.017, which indicates confined conditions. Hence, it is
permissible to analyze the pumping tests under confined conditions.

4.1.3 Description of Flowmeter Tests

To facilitate later descriptions, I briefly illustrate the setup of a flowmeter test
in Figure 4.2. Here, b [m] refers to the aquifer saturated thickness; z0 [m] stands
for the reference level of the borehole bottom; and h [m] the height above the
bottom. Extraction of water with a rate Qp [m3/s] is conducted until steady
state is reached. Then, the vertical flow rate Q(h) [m3/s] within the borehole is
measured by the flowmeter as a function of depth. The cumulative flow Q(h) at
height z0 + h can be expressed as:

Q(h) =
∑

i

∆Qi, (4.1)

in which ∆Qi [m
3/s] is the induced flow at increment i within the total range of

z0 to z0 + h. The relation between the horizontal hydraulic conductivity Ki and
the induced flow ∆Qi without ambient flow in a borehole can be quantified by
Javandel and Witherspoon [1969]:
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Figure 4.2: Typical setup of a flowmeter test and a graphic illustration of the
data. (a) is the normalized cumulative discharge profile and (b) is the profile of
relative hydraulic conductivity.

ηi =
Ki

K̄
=

∆Qib

Qp∆zi
, (4.2)

with

K̄ =

∑
(Ki∆zi)

b
, (4.3)

whereKi is the hydraulic conductivity of the i-th increment in the direct vicinity
of the borehole, K̄ is the depth-averaged value of hydraulic conductivity over
the depth of the borehole, and ∆zi is the thickness of the i-th measurement
increment. I graphically illustrate the profiles of normalized discharges Q(h)

and the relative hydraulic conductivities in Figures 4.2a and 4.2b.

In August 1994, flowmeter tests were conducted in 21 suitable wells [Möller,
2003]. The circles in Figure 4.1 indicate the well locations. In the field, a
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pumping rate Qp of 1.5m3/h was applied. A flowmeter was used to measure
and record the flow rate Qi in the wells as a function of depth. The vertical
resolution of the measurements was 10 cm.

4.2 Two-Dimensional Estimation

In this section, I test the feasibility of the Quasi-Linear Geostatistical Inverse
Approach [Kitanidis, 1995] in estimating the fields of transmissivity and stora-
tivity where consistent assumptions about the spatial variability of the subsur-
face are used2.

When applying Jacob’s method to transient drawdown data, Meier et al. [1998]
have shown that the estimate of storativity in a heterogeneous aquifer strongly
fluctuates even when a uniform field of storativity is applied in the true for-
ward simulation. Because the variability of all terms making up the storativity
is small, it is believed that the estimated variability of storativity is biased. The
biased results may come from the inconsistent assumption of uniformity of pa-
rameter fields. In this section, I examine the estimate of storativities with field
data in the framework of geostatistics where more consistent assumptions are
applied.

Here, I apply the transient drawdown data of tomographic pumping tests at the
test site Krauthausen, Germany [Vanderborght and Vereecken, 2001; Vereecken
et al., 1999; 2000]. Since the pumping tests were conducted in fully screened
wells, the measurements contain only depth-averaged properties of aquifers.
Correspondingly, the outcomes of the estimation, the most likely estimates and
their related uncertainties, are also depth-averaged.

The estimation of storativities requires transient drawdown data. Considering
full transient drawdown curves in geostatistical inversing is still computation-
ally challenging. However, temporal moments of drawdown by Li et al. [2005]
condense transient curves and their related moment-generating equations are

2This two-dimensional estimation has been published by Li et al. [2007]
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steady state. Taking temporal moments rather than full drawdown curves drasti-
cally reduces the computational effort in the inference. For the two-dimensional
estimation, I use the two most important temporal moments of drawdown, the
zeroth and first temporal moments, as my data.

I compare the inversed results with the kriged field of the values obtained by
the conventional type-curve method. The conventional analysis of pumping
tests consists of fitting analytical solution of the flow equation to the measured
time curves of drawdown [Theis, 1936]. The estimated transmissivity and stora-
tivity values represent apparent parameters, because of the mismatch between
real formation and underlying assumptions of analytical solutions. By repeating
the curve-fitting technique for all series of pumping tests at different locations,
I obtain a set of values of transmissivity and storativity. Then, I interpolate
these local values, producing a continuous image of the hydrogeological pa-
rameters. Through the comparison, I identify whether these values obtained by
conventional methods may be viewed as pseudo-local values of transmissivity
and storativity.

As mentioned in Section 2.9, geostatistical parameters of covariance functions
such as the variance and the correlation lengths have to be estimated from mea-
surements as well. The quality of measurements influences the corresponding
estimates. I examine the influence of measurement errors on estimating geosta-
tistical parameters.

I precede this section as follows: First, I explain the process of data preparation
in which the analysis by the type-curve approach and the computation of tem-
poral moments will be presented. Next, I discuss the numerical implementation
and results of the estimation. I compare the kriged fields with the ones from
geostatistical inversion. Then, I discuss the influence of measurement error on
the estimation of geostatistical parameters.
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4.2.1 Data Preparation

In this section, I discuss the procedures of data preparation for the conven-
tional type-curve method and the geostatistical inverse approach. Here, the two-
dimensional groundwater flow equation Eq. (2.15) under confined conditions
and the corresponding boundary conditions are used to describe to distribution
of drawdown.

4.2.1.1 Analysis by Theis’ Approach

I use Theis’ [1936] approach to estimate the log-transmissivity(lnT ) and log-
storativity(lnS) from each transient drawdown curve of the small-scale pumping
tests. I obtain the optimal values of lnT and lnS by minimizing the following
objective function L:

L =
(s− se)

T (s− se)

σ2
s

, (4.4)

where s is the measured drawdown, σs is the epistemic error of drawdown, and
se is the model output defined by:

se(r, t) =
Q(t)

4πT
Ei

(
r2S

4Tt

)
, (4.5)

in which r is the distance between the production and monitoring wells and Ei(·)
is the exponential integral function.

The epistemic error σ2
s of drawdown is assumed uncorrelated and identical for

all measurements. σ2
s includes random and systematic contributions. In most

circumstances, σ2
s is not known and need to be estimated. If σ2

s reflects the real
uncertainty of the drawdown measurements, the value of L should statistically
follow a χ2 distribution with nf degree of freedom, where nf is the number of
observations minus the number of estimated parameters. The proper value of σ2

s

is determined by enforcing L to meet its expected value.
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The estimation covariance matrix Qc of the estimated lnT and lnS is approxi-
mated by the inverse Hessian matrix at the optimal set of the parameters U:

Qc =

[
σ2

lnT ClnT lnS

ClnT lnS σ2
lnS

]
≈

(
∂2L

∂U⊗ ∂U

)−1

, (4.6)

where U is the vector containing the two variables lnT and lnS, σ2
lnT and σ2

lnS

are the estimation variances of the parameter of lnT and lnS, respectively, and
ClnT lnS denotes the cross-covariance between lnT and lnS.

I obtain a pair of lnT and lnS values for each drawdown curve. At a location
which has been used either as observation point or pumping well in multiple
pumping tests, I compute a weighted average from all parameters obtained at
this location, resulting in a single pair of lnT and lnS values:

wi =
1√

σlnT,i × σlnS,i
, for i = 1 · · ·n`, (4.7)

ŨlnT =
1∑`

i=1wi

∑̀
i=1

wiUlnT,i, (4.8)

ŨlnS =
1∑`

i=1wi

∑̀

i=1

wiUlnS,i, (4.9)

where wi is the weight, n` is the number of pairs of lnT and lnS at this location,
and ŨlnT and ŨlnS is the weighted average of UlnT and UlnS of the estimated
lnT and lnS, respectively. I consider these weighted averages as pseudo-local
measurements in kriging.

The associated measurement error is comprised of the weighted average of the
parameter uncertainty in fitting Theis’ solution to the single drawdown curves
and the variability of the parameter estimates among the different tests:



4.2. Two-Dimensional Estimation 85

σ̃2
lnT =

n`∑n`

i=1wi
+

1∑n`

i=1wi − 1

n∑̀
i=1

wi

(
UlnT,i − ŪlnT

)2
, (4.10)

σ̃2
lnS =

n`∑n`

i=1wi
+

1∑n`

i=1wi − 1

n∑̀

i=1

wi

(
UlnS,i − ŪlnS

)2
, (4.11)

C̃lnT lnS =
n`∑n`

i=1
1

ClnT lnS,i

+
1∑n`

i=1wi − 1

·
n∑̀
i=1

wi

(
UlnT,i − ŪlnT

) (
UlnS,i − ŪlnS

)
, (4.12)

where σ̃2
lnT and σ̃2

lnS are the weighted estimation variances of the estimated pa-
rameter lnT and lnS, respectively, ŪlnT is the arithmetic mean of the estimated
lnT at this location, ŪlnS stands for the arithmetic mean of the estimated lnS,
and C̃lnT lnS is the weighted cross-covariance between lnT and lnS. In most
cases, the latter contribution dominates the computed measurement error. σ̃2

lnT ,
σ̃2

lnS and C̃lnT lnS compose the term RZZ of Eq. (2.74):

RZZ = 


σ̃2
ln T,1 0 0 C̃ln T ln S,1 0 0

0 . . . 0 0 . . . 0

0 0 σ̃2
ln T,m 0 0 C̃ln T ln S,m

C̃ln T ln S,1 0 0 σ̃2
ln S,1 0 0

0 . . . 0 0 . . . 0

0 0 C̃ln T ln S,m 0 0 σ̃2
ln S,m




, (4.13)

in which m is the number of the measurement locations.
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4.2.1.2 Computation of Temporal Moments

As has been shown in Section 2.1, the temporal moments of drawdown for a
unit-pulse extraction can be derived from measurements of drawdown observed
during continuous pumping. Because the head measurements fluctuated, I ob-
tain more stable estimates of the moments by fitting a parametric function to the
observations. The maxentropic semi-infinite distribution for given zeroth and
first temporal moments is the exponential one [Gibbs, 1902]. Like Bakker et al.
[2007], I use the latter expression to parameterize the drawdown for pulse-like
extraction. This results in the following expression for continuous pumping:

se = Qm0

(
1− exp

(
−m0

m1
t

))
, (4.14)

wherem0 andm1 denote the zeroth and first temporal moments for pulse-like ex-
traction, respectively. The optimal pair of temporal moments are determined by
minimizing the weighted difference between the observed and simulated draw-
down curves. The corresponding objective function is similar to Eq. (4.4). The
estimation covariance matrix of m0 and m1 is given by the inverse Hessian ma-
trix of the objective function at the optimal point.

At late times, when the exponential part in Eq. (4.14) approaches zero, the dif-
ference between s and se is dominated by the difference between s and Qm0.
Qm0 is equivalent to the final drawdown. Statistically, Qm0 is determined by
averaging the measured values of drawdown at late times. According to the
statistical formulation, the uncertainty of the estimated final drawdown is de-
fined as the ratio between the squared measurement error of drawdown and the
number of the measured drawdown data used. The uncertainty decreases with
increasing number of measurement points. However, this uncertainty of the final
drawdown does not reflect the real measuring process, for which an accuracy be-
yond the resolution of the device is impossible. To account for such non-random
effects, I add an additional measurement error σs∆

to the estimated uncertainty
of the final drawdown. This additional measurement error of final drawdown
propagates to the estimation variances of the zeroth and first temporal moments
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and the cross-variance between the estimated m0 and m1:

σ̃2
m0

= σ2
m0

+

(
σs∆

Q

)2

, (4.15)

σ̃2
m1

= σ2
m1

+

(
m1

m0

)2

·
(
σs∆

Q

)2

, (4.16)

C̃m0m1
= Cm0m1

+
m1

m0
·
(
σs∆

Q

)2

, (4.17)

where σ̃2
m0

and σ̃2
m0

are the total uncertainties of the determined m0 and m1

values, respectively, and C̃m0m1
is the cross-variance between m0 and m1. σ2

m0
,

σ2
m1

, and Cm0m1
are computed from the inverse Hessian matrix of the objective

function at the optimal point. In most cases, the contribution of σs∆
dominates

the total uncertainties. σ̃2
m0

, σ̃2
m0

and C̃m0m1
are the terms in RZZ of Eq. (2.74):

RZZ = 


σ̃2
m0,1 0 0 C̃m0m1,1 0 0

0 . . . 0 0 . . . 0

0 0 σ̃2
m0,nm

0 0 C̃m0m1,nm

C̃m0m1,1 0 0 σ̃2
m1,1 0 0

0 . . . 0 0 . . . 0

0 0 C̃m0m1,nm
0 0 σ̃2

m1,nm




, (4.18)

in which nm is the number of moment pairs.

The error σs∆
is not necessary for the previous approach where Theis’ method

is used to estimate lnT and lnS, because Theis’ approach does not rely on
measurements of final drawdown.
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4.2.2 Kriging of Pseudo-Local Values

Using the pseudo-local values of lnT and lnS obtained from type-curve analy-
sis, I can estimate the geostatistical parameters of the covariance functions fol-
lowing the restricted maximum likelihood method of Kitanidis [1995] as de-
scribed in Section 2.9. The field dimension and resolution are listed in Table
4.1. Here, a structured regular grid is applied.

Here, I assume diffuse prior knowledge of the geostatistical parameters. The
prior knowledge of the trend coefficients β is given in Table 4.1. To avoid neg-
ative values in the estimates of σ̇2

ln T , σ̇2
ln S, and λ, I estimate the logarithms of

these parameters. Correspondingly, the uncertainties of these parameters are
quantified by the factor of variation (FV), which is the exponential of the stan-
dard deviation of the log-parameter. Concerning Ċln T ln S, I estimate its related
correlation coefficient rln T ln S:

rln T ln S =
Ċln T ln S

σln Tσln S
. (4.19)

To guarantee that rln T ln S remains within the range between −1 and 1, I apply
the error function as transformation between an auxiliary variable µ, ranging
between −∞ and ∞, and rln T ln S, and estimate µ:

rln T ln S = erf(µ). (4.20)

Applying the restricted maximum likelihood method, I obtain the geostatistical
parameters and their corresponding uncertainties, which are listed in Table 4.1.

With the estimated geostatistical parameters, I estimate lnT and lnS on a regu-
lar grid. In interpolation by kriging, I consider local measurements of lnT and
lnS. The functional relation Z(Y) between the measurements and parameters
Y becomes linear and can be expressed as:

Z(Y) = HY, (4.21)
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where H is a 2n` × 2n extraction matrix with a single unit element per line.
Then, the objective function of Eq. (2.74) becomes:

L(Y|Z,θ) = Y′TR−1
Y′Y′|θY

′ + (β − β∗)TR−1
ββ(β − β∗)

+ (Z−HY)T R−1
ZZ (Z−HY) + const., (4.22)

Since I want to estimate the fields of both transmissivity and storativity, Y

becomes an aggregated vector containing the discrete values of transmissivity
and storativity. Correspondingly, RY′Y′|θ of the prior covariance matrix con-
sists of four blocks representing the discretized auto-covariance functions of
log-transmissivity and log-storativity as well as the discretized cross-covariance
function:

RY′Y′|θ =

[
Rln T ln T |θ Rln T ln S|θ
RT

ln T ln S|θ Rln S ln S|θ

]
, (4.23)

in which Rln T ln T |θ is the auto-covariance matrix of lnT for given geostatis-
tical parameters θ, Rln S ln S|θ denotes the auto-covariance matrix of lnS, and
Rln T ln S|θ is the cross-covariance matrix of lnT and lnS.

The optimal values of the hydraulic parameter field is identified by applying
Eqs. (2.75 & 4.22). Since the functional relation between the data and the
hydraulic parameters is linear, only a single iteration step is needed and the
posterior covariance matrix RYY|Z becomes exact. It may be worth noting that
the simple structure of H does not require computing matrix-matrix products
explicitly. HRY′Y′|θHT is the autocovariance matrix of Y evaluated only for
the elements of Y for which measurements exist. Also, because the relationship
between measurements and estimated parameters is linear, the most likely value
Ŷ is identical to the expected value of the conditional distribution. Figure 4.3
shows the fields of lnT and lnS and their corresponding standard deviations of
estimation.
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The estimated prior variance of lnT is very small, namely 0.01, indicating an al-
most uniform distribution of transmissivity. In comparison, the estimated prior
variance of lnS is higher, namely 0.24. As listed in Table 4.1, the total vari-
ances of measurements of lnT and lnS are fairly small, while the associated
”measurement” errors are relatively large. As explained in Section 4.2.1, the
pseudo-local values are obtained by averaging all measurements in which a par-
ticular well is involved either as pumping well in one test or monitoring well
in another test. Obviously, the variability between measurements, involving the
same points, is larger than the variability between the averages obtained at dif-
ferent points. Thus, using the results of type-curve analysis as point-like values
is not permitted.

The relatively large estimated variance of lnS and small variance of lnT in
my study reflects the findings of other studies [Meier et al., 1998; Sánchez-Vila
et al., 1999; Leven and Dietrich, 2006], which were based on numerical simu-
lations only. In these studies, a small variability of lnT and high variability of
lnS were found by type-curve analysis despite using uniform storativity values
in the simulations. In general, the variance of storativity in natural systems is
thought to be relatively small [e.g., Freeze, 1975; Meier et al., 1998]. Under
confined conditions, compressibilities of rock, water, and the pore space deter-
mine the storativity. The contributions of the rock and water compressibilities
are considered to be small at all local scales [e.g., Meier et al., 1998]. Un-
der phreatic conditions, the storativity becomes the porosity, which varies only
within a small range [e.g., Meier et al., 1998; Vesselinov et al., 2001a;b]. That
is, I believe that the estimate of the variance of lnS is biased. The bias may
be caused by the inconsistent assumption of homogeneity in the conventional
pumping-test analysis. It is worth analyzing whether the bias disappears when I
apply the geostatistical inverse approach, in which the hydraulic parameter fields
are assumed spatially variable in all stages of the estimation procedure.
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Figure 4.3: Interpolated fields of lnT , lnS and their corresponding standard
derivations of estimation using the values of conventional type-curve approach
as pseudo-local values. Circles are the well locations of pumping tests.

4.2.3 Quasi-Linear Geostatistical Inversion of Temporal Mo-
ments

In contrast to Section 4.2.2 of this Chapter, I cannot directly derive the geosta-
tistical parameters θ from the computed measurements of m0 and m1, because
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the functional relation between the temporal moments and hydraulic parameters
is nonlinear. The estimation of geostatistical parameters depends on the current
estimates of lnT and lnS. I have to start with the estimation of lnT and lnS.
To do that, I need initial values of related geostatistical parameters. For the ini-
tial value of the correlation length, I take the values estimated in Section 4.2.2.
Because I expect more variations in the estimate of lnT with the geostatistical
inverse approach, I take unity as the initial value of the prior variance σ̇2

ln T , a
much higher value than the one estimated from the pseudo-local values in Sec-
tion 4.2.2. As the initial value of the prior variance of lnS, I take the value
estimated in Section 4.2.2.

I use the same grid resolution as in Section 4.2.2. To reduce the influence of
boundary conditions, I enlarge the domain on each side by 50 meters. Zero
drawdown is assumed on the boundaries of the enlarged domain. Following
the approaches described in Section 2.7 of Chapter 2, I start the quasi-linear
geostatistical inversion of temporal moments with the large-scale pumping test,
and use the resulting estimates as the initial guess for analyzing the small-scale
pumping tests. The simulated moments of the inverse approached are solved
by the corresponding moment-generating equation Eq. (2.28). Here, the Finite
Element method with bilinear elements were applied to find the solutions of the
partial differential equations. I account for the small-scale pumping tests in a
sequential way, beginning with a single small-scale pumping test. Once the op-
timal parameter set is obtained, I add new pumping-test data to the inversion and
estimate the hydraulic parameters using the data of all pumping tests accounted
for at the current stage. The estimate from the previous sequential step serve as
initial guess for the following estimation. I keep adding new pumping tests until
all available tests are used. This successive addition of new measurements stabi-
lizes the inverse procedure. The approach differs from the sequential successive
linear estimator (SSLE) developed by Yeh et al. [1996] in the way how informa-
tion is propagated from one sequential step to the next. While Yeh et al. [1996]
take the estimate and approximated conditional covariance matrix as prior mean
and covariance in the next step, I consider the previous estimate only as initial
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guess. As prior values, I always start from the unconditional distribution, which
I then condition on all data accounted for so far. This approach has the advan-
tage that I do not have to perform expensive matrix-matrix multiplications of
conditional covariance matrices.

After obtaining the most likely distribution of lnT and lnS for all pumping
tests based on the initial guess of θ, I start alternating the estimation of the
geostatistical and hydraulic parameters. In the alternating procedure, I use only
the measurements of temporal moments of the small-scale pumping tests.

It is worth mentioning that the inversion with the Karhunen-Loève(KL) expan-
sion is not applied in the estimations with the measurements of temporal mo-
ments of drawdown. Here, I use the geostatistical inversion with the full prior
covariance matrix. The major consideration is that the exponential form of the
correlation function needs a large number of KL terms in the KL expansion. The
performance analysis in Chapter 3 shows that the inversion with the KL expan-
sion is outperformed by the inference with the full prior covariance matrix for
such cases.

4.2.3.1 Impact of Measurement Error on the Estimation of Geostatistical
Parameters

The measurement error σs∆
of Eqs.(4.15)-(4.17) influences the spatial variabil-

ity of the estimated hydraulic parameter fields. In the following, I take the es-
timation of the geostatistical parameters as an example to illustrate this influ-
ence. Following the sequential and alternating inversion procedure described
in Section 2.9, I estimate σ̇2

ln T , σ̇2
ln S and λ. Figure 4.4(a) shows the resulting

correlation length λ as function of different values of σs∆
. With increasing mea-

surement error, I obtain an increasing value of λ, which smoothes the estimates
of hydraulic parameters. The estimation of the correlation length is more vul-
nerable to the change of measurement error than the ones of the prior variances.
For the measurement errors used, the estimated prior variances do not show sig-
nificant changes. Therefore, I do not show the estimation results of σ̇ln T and
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σ̇ln S. Meanwhile, I calculate the values of the objective function according to
Eq. (2.70), which decreases with increasing σs∆

. The latter is to be expected be-
cause increasing σs∆

implies that I trust the measurements less, and therefore an
identical misfit between measured and simulated moments results in a smaller
value of the objective function.

The influence of the measurement error on the estimation of prior variances
becomes clear if I fix the correlation length λ. I take the estimated correlation
length in Section 4.2.2 as fixed value of λ. Figure 4.4(b) displays the resulting
σ̇2

ln T and σ̇2
ln S as function of the different values of σs∆

. The prior variances
decrease when σs∆

increases, which smoothes the estimated fields of hydraulic
parameters.

If the measurement error reflects the real uncertainty of the model, the value
of the objective function should follow a χ2 distribution with 2nm degrees of
freedom, where nm is the number of temporal moment pairs. In our current
studies, I have 169 pairs of measurements of temporal moments. In general
the 95% confidence interval is used, which implies an interval between 320.11

and 390.82 for our case studies. Since large measurement error will smooth the
estimated fields, it is preferable to choose a small measurement error within all
acceptable ones. In the following, I have chosen 1.15mm as our measurement
error σs∆

.

In the illustrated examples in Figure 4.4, the estimated values of the prior vari-
ance of lnS are larger than the estimated values of the prior variance of lnT .
As I have discussed previously, the variance of lnS in natural confined system
is thought to be small [e.g., Meier et al., 1998]. That is, I believe that the esti-
mated variability of lnS is biased, like in the conventional pumping test analysis.
Although the geostatistical inverse approach is consistent in the sense that the
estimated variability of the hydraulic parameters is accounted for in all stages
of the estimation procedure, the results of the storativity distribution appear not
very reliable.
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Figure 4.4: Influence of the measurement error on the inversion results. The
horizontal axes are the measurement error used in the inverse procedure. A:
estimation of geostatistical parameters with varying correlation length; A1: in-
fluence on the estimated correlation length; A2: influence on the value of objec-
tive function. B: estimation of geostatistical parameters with fixed correlation
length; B1: influence on the estimated prior variance of lnT ; B2: influence on
the estimated prior variance of lnS.

4.2.3.2 Estimation with Uniform Storativity

Presuming that the variance of lnS is relatively small in nature, I now restrict
the analysis to the case of a uniform value of storativity. Then, the prior vari-
ance of storativity and the cross-correlation between lnT and lnS become zeros.
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To make the estimate of lnT more comparable with that in Section 4.2.2, I fix
the correlation length using the value estimated from the pseudo-local values.
Following the procedure as described previously, I estimate the spatial lnT dis-
tribution and, as remaining geostatistical parameter, its prior variance σ̇2

ln T given
a uniform field of lnS. The mean values of lnS and lnT are estimated as well.

As listed in Table 4.1, the estimated prior variance σ̇2
ln T of lnT for a uniform

value of lnS is 1.57, and S is 0.006. These values are for a measurement error
σs∆

of 1.15mm. Figure 4.5 shows the estimate of lnT -field and the correspond-
ing standard deviation of estimation. In sub-figure 4.5-C, I plot the kriged lnT

field of Section 4.2.2 in the same color scale as for the lnT distribution estimated
in this section. Applying the geostatistical inverse approach, the estimated lnT

field reveals more structure than interpolating the results of the pseudo-local
values obtained by type-curve analysis. The estimated prior variance σ̇2

ln T is
much higher than the one from the pseudo-local values. The improvement in
revealing the structure of the lnT field is caused by the consistent assumption
of heterogeneity in the geostatistical inverse approach.

The validity of the estimated fields is tested by analyzing the orthonormal resid-
uals [Kitanidis, 1991]. If the model is correct, the sum of squares of orthonormal
residuals of the measurements follows a χ2 distribution. In my application, this
value is 380.02, which is within the 95% confidence interval [320.11− 390.82].

4.2.4 Comparison of Estimates

In this section, I compare the results from kriging of pseudo-local values (Sec-
tion 4.2.2) to those from geostatistical inversion (Section 4.2.3.2). The estimated
average properties, the variations of the estimated fields, and the uncertainties
of the estimations are investigated.

I compute the mean values of the estimated fields of lnT and lnS from krig-
ing and inversion. Table 4.1 lists these values. The mean values of lnT and lnS

obtained by the conventional approach are almost identical to the ones of geosta-
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Figure 4.5: A: the most likely estimate of lnT from geostatistical inversion of
the two-dimensional application; B: corresponding standard deviations of esti-
mation; C: kriged lnT field based on pseudo-local values. Crosses are the well
locations of all available pumping tests. The color scales for the two lnT fields
are identical.

tistical inversion. That is, in my application conventional type-curve analysis of
pumping tests leads to reliable estimates of the average properties. This is some-
how consistent with the underlying assumption of uniformity in the type-curve
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analysis.

I calculate the variances of the estimated lnT field for both kriged and inversed
results. Table 4.1 lists the resulting variances. The variance of the resolved
inversed lnT field is higher than the one obtained by kriging. Again, this is con-
sistent with the underlying conceptual assumptions. In geostatistical inversion, I
assume that lnT varies in space, and I try to resolve the fraction of heterogene-
ity that can unambiguously be identified from the data. In type-curve analysis,
I start with the assumption of uniformity, but obtain results varying with the
combination of pumping and monitoring wells, which is similar to the results of
cross-hole pneumatic injection tests of Illman and Neuman [2003].

I may examine the estimated lnT values at the points of head measurements.
Figure 4.6 shows a comparison of these values for the two types of analysis. The
circles stand for the values obtained by geostatistical inversion. The error bars
indicate the most likely estimate of lnT of the geostatistical inversion plus and
minus one corresponding standard deviation of the estimate. The crosses denote
the pseudo-local values obtained by the conventional method. With very few
exceptions, the calculated pseudo-local values are within the acceptable confi-
dence interval.

To quantify the difference between the two lnT fields throughout the domain, I
compute a normalized root mean square error (NRMSE):

NRMSE =

√√√√ 1

ne

ne∑
i=1

(pinv
i − pkri

i )2

σ2
ln T,c

, (4.24)

where pi is the estimated lnT value in element i, the index inv stands for the
estimate of inversion, the index kri for that of interpolated pseudo-local values,
and σ2

ln T,c is the estimation variance of lnT in the inverse method. The value
0.5984 of NRMSE indicates that the values from the conventional approach can
produce reasonable fields of hydraulic parameters, although most of the spatial
variability is missing.



4.2. Two-Dimensional Estimation 99

5 10 15 20 25 30 35 40 45 50
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
ln

T
 [T

 in
 m

2 /s
]

 

 
geostatistical inversion
conventional method

Figure 4.6: lnT at locations of head measurements. Circles indicate the esti-
mated lnT values of the geostatistical inverse approach. Error bars correspond
to ± one standard deviation of estimation. Crosses stand for the calculated
pseudo-local values of lnT obtained from the conventional method.

4.2.5 Summary

In this section, I have applied the geostatistical inverse approach to estimate
the fields of transmissivity and storativity. The tomographic pumping tests con-
ducted at the test site Krauthausen, Germany were used. In the inversion, I
successively added new measurements to stabilize the inverse procedure. The
inversed results were compared to the kriged fields of the values obtained by the
conventional type-curve method.

Concerning the estimate of transmissivity lnT , the geostatistical inverse ap-
proach obtains more structures in the estimated lnT field than the conventional
approach and the variance of the resolved lnT field in the inversion is higher
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than their counterparts using the conventional approach. The results show that
the conventional approach provides good estimates of the mean hydraulic pa-
rameters, but fails to reproduce the spatial variability of the information. This
indicates that kriging lnT values obtained by type-curve analysis may be accept-
able in cases where detailed knowledge about the variability of the parameter
fields is not required.

Regarding storativity, both approaches show a high value of estimated variance.
In both estimations, I do not have prior information of the corresponding geo-
statistical parameters and they are purely inferred from measurements. Because
variability of all terms making up storativity is small, the estimated high vari-
ance of storativity is conjectured to be biased. The measurements are not in-
formative with respect to the estimation of the prior variance of storativity. I
believe that this is an effect of aliasing. The estimated distribution of transmis-
sivity is smoother than the real field. The unresolved variablity, particular at
small scales, has a large effect on the simulated first temporal moments, repre-
senting the characteristic time of drawdown, than the zeroth temporal moments,
representing final drawdown. Given a smooth estimate of transmissivity, the
inverse approach attributes the derived variability in first temporal moments to
the variability of storativity. In the estimation, I assumed a two-dimensional
aquifer. The unresolved vertical variability may also be a particular cause for
the unrealistic results. Dealing with field data, I cannot exclude that conceptual
uncertainties (e.g. regarding the validity of treating the system as a confined
formation) may contribute to biased results.

It may be worth noting that - to my knowledge - no reliable information about
the variability of storativity exists. Meier et al. [1998] among others conjec-
tured that the variability should be small because of the small variability of the
quantities making up storativity. Experimental data on the variability of lnS,
however, hardly exists. For the cases where experimental data of storativity are
available, such as the joint estimation of Hendricks Franssen et al. [1999], the
amount of measurements storativity is limited and cannot be representative for
the whole field.
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In this study, I have exclusively analyzed pumping test data, trying to estimate
both hydraulic parameter fields and corresponding geostatistical parameters. I
could show that the estimation of the geostatistical parameters depends on the
uncertainty of the measured data. If I trust the measurements less, I obtain a
larger correlation length and small variances, which smooth the estimated fields.

4.3 Three-Dimensional Estimation

In the two-dimensional field application in Section 4.2, a high variance of stora-
tivity is obtained and the high variance is believed to be biased. Although the
two-dimensional assumption is consistent with data obtained in fully screened
wells, the unresolved vertical variability may be a particular cause for the pre-
sumed bias in estimating the variability of storativity. Considering a three-
dimensional inversion may help to reduce the aliasing effect.

Estimating three-dimensional structures requires that dependent supporting mea-
surements, or at least joint data of different types of data, reflect three-dimensional
information of aquifers. To my knowledge, the reliable estimation of storativity
is mainly based on pumping tests. The pumping tests at the test site Krauthausen
were conducted in fully screened wells. The measurements are depth-averaged
and reflect only horizontal depth-averaged features of aquifers. This implies that
the measurements of pumping tests, without considering other data containing
vertical distribution of specific storage coefficient, are not suitable for estimat-
ing a three-dimensional field of specific storage coefficient. Although flowmeter
data contain vertical distributions of aquifer features, these measurements reflect
only the properties of hydraulic conductivity and do not contain vertical infor-
mation of specific storage coefficient. Based on these considerations, I decide
to only estimate a three-dimensional field of hydraulic conductivity by jointly
considering the data of pumping and flowmeter tests. With this decision, I am
no more able to test the hypothesis that a three-dimensional inversion may re-
duce the aliasing effect in estimating storativity. But it is still valuable to test
the performance of the inverse approach in three-dimensional setup with a large
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Table 4.1: Field and grid information of the two-dimensional application, prior
and posterior information of hydraulic parameter fields in Section 4.2.2 and
4.2.3.2, and the results of comparison in Section 4.2.4.

Variable Description Value
Field Domain and Grid Information

L1 Domain width [m] 70
L2 Domain length [m] 200
∆x1 Grid spacing in x1 [m] 0.5
∆x2 Grid spacing in x2 [m] 0.5

Prior information about the mean of the fields
β∗ln T Prior mean of trend coeff. of lnT -3.8
σ2

βln T
Uncertainty of β∗ln T 5.3

β∗ln S Prior mean of trend coeff. of lnS -6.0
σ2

βln S
Uncertainty of β∗ln S 5.3
Results of curve-fitting in Section 4.2.2

σ2
ln T,m Variance of calculated lnT at wells 0.0349
σ2

ln S,m Variance of calculated lnS at wells 0.6590
σ̄ln T Mean measurement error of lnT 0.3288
σ̄ln S Mean measurement error of lnS 0.9498

Estimated geostatistical parameters in Section 4.2.2

σ̇2
ln T

Estimated prior variance
of lnT in Sec. 4.2.2

0.01

FVσ̇2
ln T

Factor of variation of σ̇2
ln T 2.2

σ̇2
ln S

Estimated prior variance
of lnS in Sec. 4.2.2

0.24

FVσ̇2
ln S

Factor of variation of σ̇2
ln S 1.62

Ċln T ln S
Estimated prior cross-corr. coeff.
between lnT and lnS

0.35

RĊln T ln S
Estimation variance of Ċln T ln S 0.49

λ
Correlation length
of covariance function [m]

5.21

FVλ Factor of variation of λ 2.46
χ2

rn
Sum of squares of orthonormal residuals rn in Sec. 4.2.3.1

χ2
rn

λ estimated sδ = 1.15mm 577.49
χ2

rn
λfixed sδ = 1.15mm 403.13

Results in Section 4.2.3.2
σ̇2

ln T Estimated prior variance of lnT 1.57
FVσ̇2

ln T
Factor of variation of σ̇2

ln T 0.14
L Value of objective function (Eq. 2.74) 380.04
χ2

rn
Sum of squares of rn 380.02
Results of Comparison in Section 4.2.4

Tg
Geom. mean of est. lnT (Sec. 4.2.2) -3.61
Geom. mean of est. lnT (Sec. 4.2.3.2) -3.65

Sg
Geom. mean of est. lnS (Sec. 4.2.2) -5.81
Geom. mean of est. lnS (Sec. 4.2.3.2) -5.12

σ2
ln T,c

Variance of est. lnT (Sec. 4.2.2) 0.0004
Variance of est. lnT (Sec. 4.2.3.2) 0.26

NRMSE Normalized root mean
square error (Eq. 4.24)

0.5984



4.3. Three-Dimensional Estimation 103

number of unknowns. In the three-dimensional estimation of hydraulic conduc-
tivity3, I discretize the domain with about one million of unknowns. By doing
such a performance test on large scales, potential problems can be identified,
which could be used for improving the inverse approach in other applications.

Flowmeter data contain only relative values of hydraulic conductivity. In con-
ventional analysis of flowmeter tests, the relative values must be converted to
absolute ones [Javandel and Witherspoon, 1969]. For such purpose, the depth-
averaged values of hydraulic conductivity at wells need to be known. To achieve
these values, one has to rely on other tests such as slug tests or small-scale pump-
ing tests. However, the converting will be difficult for wells, for which unfor-
tunately extra tests are not available. If a measurement of the depth-averaged
hydraulic conductivity at a particular well is missing, one may try to estimate it
from values obtained nearby, e.g., from slug tests in different wells [e.g., Chen
et al., 2001]. These estimated average values are then used to convert the relative
hydraulic conductivities to absolute values.

Fienen et al. [2004] analyzed flowmeter tests using a geostatistical inverse method.
Similar to conventional approaches, they need depth-averaged values of K at
well locations. The depth-averaged values were considered as a known prior in
the inference, which is an inconsistent requirement, because the mean value it-
self should be an outcome of the inversion. In some applications of geostatistical
inversion, hydraulic conductivity values obtained by flowmeter tests are consid-
ered as direct measurements of local hydraulic conductivity [e.g., Rehfeldt et al.,
1992; Chen et al., 2001]. To the best of my knowledge, these measurements are
considered as independent values in the cited studies. The K estimates derived
from flowmeter tests, however, are correlated, which needs to be accounted for
in conditioning. In my thesis, I use discharge profiles of flowmeter tests as my
data. By doing this, I do not need to convert the profiles to absolute hydraulic
conductivity. Since the flowmeter data in a well are correlated, I fully consider
their correlation in the inversion.

I organize this section as follows: First I demonstrate the concept of discharge

3This three-dimensional estimation study has been published by Li et al. [2008]
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ratios. I will illustrate that discharge ratios and their sensitivities with respect
to log hydraulic conductivity do not depend on the depth-average values at the
well locations. Next, I show the numerical implementation and results. Here, I
discuss the detailed inference procedure and present the final estimate and the
corresponding estimation variance.

4.3.1 Discharge Ratios as Data of Flowmeter Tests

In this section, I introduce discharge ratios for flowmeter data and derive their
sensitivities with respect to log hydraulic conductivity.

In the following, the ratio ηi (Eq. (4.2)) of the measured discharge in the i-th
increment to the total discharge is denoted as discharge ratio. The vector of
discharge ratios η does not explicitly depend on the depth-averaged value of
hydraulic conductivity at the well location. Per flowmeter test, one vector η

of discharge ratios is observed. Because η is a function of the differences of
discharge rates between increments, the elements of η are correlated. I have to
consider the correlation when defining the measurement error for η.

For a particular flowmeter test, the sensitivity Hij of the discharge ratio ηi with
respect to the logarithm of hydraulic conductivity in cell j is zero everywhere
except for the locations in the direct vicinity of the borehole where the test is
conducted. I derive the corresponding Hij based on Eq. (4.2) and (4.3):

Hij =
∂ηi

∂ lnKj
,

=

∂Ki

∂ ln Kj
K̄ −Ki

∂K̄
∂ ln Kj

K̄2 ,

=
δijKiK̄ −Ki

∂K̄
∂Kj

Kj

K̄2 ,

= δijηi − ηi
∆zj

b
ηj, i, j = 1...mη, (4.25)



4.3. Three-Dimensional Estimation 105

in which δij is the Dirac delta function, which is one if i = j and zero other-
wise. As shown, the sensitivity of η with respect to the logarithm of hydraulic
conductivity is not a function of the absolute hydraulic conductivity at the well
location.

I compute the measurement error σ2
ηi

of ηi through error propagation:

σ2
ηi

=
σ2

Qi
+ σ2

Qi−1

Q2
p

+
η2

i

Q2
p

σ2
Qp
, (4.26)

in which σ2
Qi

is the variance ofQ-measurements at the i-th increment, σ2
Qp

stands
for the variance of the total discharge measurement, and I assume that the mea-
surement errors between Qi and Qi−1 are not correlated. The cross-correlation
between the data of η is given by:

Cηiηj
=
ηiηj

Q2
p

σ2
Qp
− σ2

Qi

Q2
p

δj,i+1 −
σ2

Qi−1

Q2
p

δj,i−1. (4.27)

For my joint analysis, Z is an aggregated vector:

Z =
[

s η
]T

, (4.28)

in which s denotes the measurements of steady-state drawdown of the small-
scale pumping tests. In the inference, I compute the simulated drawdowns and
their adjoint-state variables using the Finite Element Method on a regular grid.
Based on the current hydraulic conductivity field, model outputs of the discharge
ratios are simulated through Eqs. (4.2) and (4.3). The matrix of measurement
error RZZ is made of:

RZZ =

[
Rss 0

0 Rηη

]
, (4.29)

in which Rss is the matrix of measurement error of drawdowns and Rηη of
discharge ratios. I compute Rηη using Eqs.(4.26) and (4.27). Here, matrix H is
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an aggregated matrix as well:

H =

[
Hs

Hη

]
, (4.30)

where Hs denotes the sensitivity matrix of drawdown with respect to log-hydraulic
conductivity and Hη the sensitivity matrix of discharge ratios given by Eq.
(4.25).

4.3.2 Numerical Implementation and Results

I discretize the field on an orthogonal structured grid. The field dimensions and
grid spacing used in the model are listed in Table 4.2. From the two-dimensional
field study and preliminary investigation of the flowmeter data, I obtain the geo-
statistical parameters (Table 4.2) of log conductivity at the site. These param-
eters indicate that the field of hydraulic conductivity shows moderate hetero-
geneity with a string horizontal to vertical anisotropy. State variables such as
drawdown are simulated using the Finite Element Method. Here, the steady-
state groundwater flow equation (Eq. (2.10) but without the storage term) with
short-cut boundaries at wells were applied. The sensitivities of drawdown with
respect to log conductivity are computed by the efficient adjoint-state method
[Sun and Yeh, 1990]. In principle, one prefers to use grids allowing regional
refinements around wells for pumping tests, rather than a regular grid. However,
for unstructured grids, the efficient FFT methods for the evaluation of the covari-
ance matrix [Nowak et al., 2003] will fail. For my application with 1.1 millions
of unknowns, the evaluation of the covariance matrix on unstructured grids is
computationally prohibitive. Although the application of the Karhunen-Loève
expansion to approximate the covariance function enables using an unstructured
grid with a large number of unknowns, previous two-dimensional studies (Chap-
ter 3) have shown that the results on a regular grid are very close to the values
on an unstructured one [Li and Cirpka, 2006]. Based on these considerations, I
apply a regular grid for my inverse model.
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Table 4.2: Geometric and geostatistical parameters used in the joint inversion
Variable Description Value

Field Domain and Grid Information
L1 Domain width [m] 70
L2 Domain length [m] 200
L3 Domain length [m] 8
∆x1 Grid spacing in x1 [m] 1
∆x2 Grid spacing in x2 [m] 1
∆x3 Grid spacing in x3 [m] 0.1

Geostatistical Parameters
σ2 prior variance of log10K [K in m/s] 0.32
β∗ prior mean of log10K [K in m/s] -2.8
λ1 correlation length in x1 direction [m] 5.3
λ2 correlation length in x2 direction [m] 5.3
λ3 correlation length in x3 direction[m] 0.23

Since I use drawdown in my inversion, the influence of ambient flow is elimi-
nated. In small-scale pumping tests, I did not observe signals of drawdown on
the horizontal edges of the field, because the field dimension is much larger than
the radius of influence of the small-scale pumping tests. Based on these obser-
vations, I apply zero-drawdown boundary conditions on the boundaries forming
vertical faces and no-flux boundary conditions on the top and bottom of the
aquifer. The drawdown during the small-scale pumping tests was considerably
smaller than the water-saturated thickness of the aquifer. Hence, it is permissible
to analyze the steady-state pumping data assuming confined conditions.

In a flowmeter test, the sensitivity of incremental flux Qi with respect to log-
hydraulic conductivity is focused and decreases dramatically with increasing
distance from the measurement location. The sensitivity approximately scales
with 1/r2, where r is the distance to the measurement location. If near-well
anomalies are not in the direct vicinity of the operating well, they hardly influ-
ence the flowmeter measurements. In this model, I apply a resolution of one
meter in the horizontal directions. One single column of elements at the well
location could capture most information of the flowmeter tests.
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In my inverse procedure, I account for the small-scale pumping tests and flowme-
ter tests in a sequential way. Like the procedure in the two-dimensional estima-
tion of Section 4.2, I begin with a single small-scale pumping test and all the
flowmeter tests. Once optimal values of hydraulic conductivity are obtained, I
add further pumping-test data to the joint inversion, using the estimate from the
previous step as initial guess for the following estimate. In each of these steps,
all flowmeter data and an increasing number of pumping-test data are jointly
inverted. I repeatedly add pumping-test data until all are used. In total, 175
measurements of drawdown and 808 observations of flowmeter data are consid-
ered.

The CPU time to estimate the approximately 1.1 million log-conductivity val-
ues was around 50 hours on a 3GHz dual core PC operating under Linux. Fig-
ure 4.7 displays the resulting fields of log-conductivity and its posterior uncer-
tainty. Here, I select three vertical cross-sections cutting through wells. Figure
4.7a shows log-hydraulic conductivity after joint inversion of pumping-test and
flowmeter data. The contour lines on the bottom describe the distribution of
depth-averaged values. Figure 4.7b shows the standard deviation of estimation.
Again, the contour lines display the corresponding depth-averaged values. In
Figure 4.7, the gray vertical lines and the crosses indicate the locations of wells
used for pumping tests. And the black vertical lines and the circles are the well
locations in flowmeter tests.

In Figure 4.7a, one clearly sees that the three-dimensional structure of hydraulic
conductivity can only be revealed in the vicinity of wells where flowmeter tests
were performed. In regions where only pumping test data exist, the estimated
log-conductivity field becomes vertically uniform. Figure 4.7b shows that the re-
maining uncertainty of the estimated log-hydraulic conductivity field decreases
considerably near the wells used for flowmeter tests. That is, by adding flowme-
ter data to the inversion of pumping tests, the remaining uncertainty of hydraulic
conductivity is reduced while vertical resolution is gained. I examine the vari-
ability of the obtained hydraulic conductivity near the wells used in flowmeter
tests. For this purpose, I compute the variance of log10K for all elements that
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Figure 4.7: Results of joint geostatistical inversion of flowmeter and pumping-
test data. Sub-figure a) is the estimate of log10K with joint data of flowmeter
and pumping tests; sub-figure b) displays the standard deviation of estimation of
log10K with joint data. Vertical black solid lines and the circles are the locations
of the wells in flowmeter tests; and the vertical gray lines and the crosses indicate
the positions of the wells used in multiple pumping tests. Contour lines display
the corresponding depth-averaged values.

are less than one correlation length away from such wells. The resulting vari-
ance is 0.06, which is considerably higher than 0.03, the variance of the entire
estimated field. This confirms that resolution in the inversion is gained by adding
flowmeter data to the pumping-test data.

In Figure 4.8, I plot the fields of depth-averaged log-conductivities inferred from
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joint inversion of flowmeter and pumping-test data in comparison to the estimate
derived from drawdown only. The patterns of depth-averaged log-conductivity
are almost identical in both cases. Figure 4.8c displays the difference of the
two fields. The root mean square of the difference between the two fields is
0.086, indicating that the drawdown data provide a good estimate of the depth-
averaged properties. In my test case, flowmeter data affect almost only verti-
cal fluctuations of log-conductivity in the inversion. These vertical fluctuations
in turn hardly affect the simulated drawdown in the fully penetrated wells, so
that, in my application, the depth-averaged conductivity could be inferred from
pumping-test data alone.

The validity of the estimate can be statistically tested by considering the or-
thonormal residuals [Kitanidis, 1991]. The sum of the squared orthonormal
residuals should follow a χ2 distribution with nm degrees of freedom, where nm

is the number of measurements. For my test, the sum is 1056 which is within the
95% confidence interval for statistical validation, however, does not guarantee
that the obtained estimate is sufficient for detailed predictive modeling. As is
seen in Figure 4.7a, the three-dimensional structure of the subsurface is revealed
only in the direct vicinity of wells used in flowmeter tests. Eliminating a flowme-
ter test from my data base would result in an estimate lacking vertical resolution
at the corresponding well. Because the associated estimation variance would
also increase, measured flowmeter data at a well not included in the estimation
would most likely remain within the predicted uncertainty bounds. That is, sta-
tistical cross-validation is possible, but there are no redundant measurements.
Any estimate with a reduced data set will result in deteriorated identification of
subsurface structure. This makes validation beyond statistical tests difficult. At
the field site, tracer tests have been performed. These data could be used for
additional verification. A detailed analysis, whether the number of flowmeter
tests performed at the site is already sufficient to predict the tracer test, however,
is beyond the scope of the present study.



4.3. Three-Dimensional Estimation 111

length[m]

w
idth[m

]

a) Depth−averages of log
10

K: joint data

−2.9−2.9

−2.8

−2
.7

−2.8

−2.7

−2.6

−2.5−2
.6

−
2.

7

−
2.8

−2
.9 −2.8

−2
.8

−2.9 −3 −3
.1

−
3.2

−3

−2.9

−2.9 −2.9−3

−
3.1 −3 −3.1

0 50 100 150 200
0

50

length[m]

w
idth[m

]

b) Depth−averages of log
10

K: only drawdown

−2.9

−2.9

−2.8

−2.7

−2.6

−2.5−2
.6

−2
.7−

2.8

−2
.4

−2
.9

−2.9 −
3

−3
.1

−3
.2

−3.1

−3
−2.9

−2.8
−2.7

−2.8

−2
.7

−2.9−3
−3.1 −3 −2.9

0 50 100 150 200
0

50

length[m]

w
idth[m

]
c) Difference of the two fields above

−0.02

0

−0.02

−
0.02

−0
.0

4

−
0.

04 −
0.06

−0.08

0

00

0 50 100 150 200
0

50

Figure 4.8: Fields of depth-averaged log10K with joint data and with drawdown
data only. Sub-figure a) shows the depth-averaged values of log10K with joint
data; sub-figure b) depth-averaged log10K with drawdown data only; sub-figure
c) the difference of the two depth-averaged fields.
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4.3.3 Summary

I have applied the Quasi-Linear Geostatistical Inverse Approach to estimate a
three-dimensional field of hydraulic conductivities with about one million un-
knowns. With the help of efficient spectral methods of computing large matrix-
matrix products and adjoint-state method of computing sensitivity matrices, I
obtained the three-dimensional estimate on a personal computer within two
days.

The most likely estimate of three-dimensional hydraulic conductivity is obtained
by joint inversion of flowmeter and pumping-test data. By integrating flowme-
ter data to pumping-test analysis, I overcome the disadvantage of providing only
depth-averaged aquifer properties when pumping tests are performed using fully
screened wells. The resulting estimate shows a significant improvement in iden-
tifying three-dimensional structures, especially for the regions where flowmeter
tests are available. The uncertainties of the estimates in these regions are signif-
icantly decreased. However, for the regions where only pumping tests are avail-
able, the estimates become vertically uniform and the uncertainties are high. The
inversion of pure drawdown data lacks vertical resolution, but provides a good
estimate of the depth-averaged hydraulic conductivity.



Chapter 5

Conclusions and Outlook

5.1 Main Findings

Using the Karhunen-Loève(KL) expansion as parameterization of the spatial
log-conductivity fluctuations, I have derived, implemented and successfully ap-
plied a geostatistical inverse method for the identification of the spatial log-
conductivity distribution from measurements of heads. By periodic embedding,
I have made spectral methods accessible to the derivation of the base functions
used in the approach. These base functions are continuous in space and can be
discretized by any type of grids. Although the numerical derivation of the base
functions employs spectral operations, I am not restricted to regular grids in the
discretization of the domain. Test cases have shown that the inverse approach
with a limited number of KL terms can produce almost identical estimate with
the inverse approach applying the full covariance matrix. The inverse approach
with the KL expansion appears to be the most efficient method on unstructured
grids.

I have implemented the geostatistical inverse approach in estimating two-dimen-
sional fields of transmissivity and storativity with transient drawdown data and
inferring a three-dimensional field of hydraulic conductivity given measure-
ments of pumping tests and flowmeter data. For the two-dimensional imple-
mentation, I have compared the inversed results with the values obtained by

113
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the conventional type-curve approach. Results show that the geometric means
of transmissivity and storativity by both approaches are almost identical. Re-
garding the estimate of transmissivity, due to more consistent assumptions of
the geostatistical inverse approach about the variablity of aquifers, the inversed
fields show more variations than the interpolated fields that are interpolated by
the values obtained from the conventional type-curve approach. The conven-
tional approach may provide acceptable estimates when detailed variablity of
aquifers is not required. Structures obtained in the inversion are focused in the
regions where wells are used for pumping tests. Uncertainties of the estimate
are reduced in the areas around wells. With respect to the estimate of stora-
tivity, both approaches show unrealistic high value of estimated variance. My
estimates are smooth. The unresolved variabilities at small scales may be the
major cause of this biased result. In my estimation, the aquifer is assumed two-
dimensional. This assumption is consistent with data obtained in fully screened
wells. The unresolved vertical variability, however, may also be one cause for
the presumed bias in estimating the variance of storativity.

Estimating a three-dimensional field of specific storage coefficient requires nec-
essary measurements that can provide relevant three-dimensional information.
Unfortunately, the drawdown measurements at the test site are depth averaged.
Without jointly considering other measurements, which contain vertical distri-
butions of specific storage coefficient, the depth-averaged transient drawdown
are not suitable for inferring a three-dimensional field of storage coefficient.
Based on these considerations, I did not estimate the field of specific storage co-
efficient in the three-dimensional implementation, but focused on the estimation
of hydraulic conductivity.

In the three-dimensional estimation with about one million parameters, I obtain
the three-dimen- sional estimate of hydraulic conductivity and its conditional
uncertainty on a standard personal computer within about two days. This perfor-
mance is made possible mainly by applying the spectral methods of computing
large matrix-matrix products and convenient adjoint-state method of comput-
ing sensitivity matrices. I overcome the disadvantage of providing only depth-
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averaged aquifer properties when pumping tests are performed in fully screened
wells. The vertical distributions of hydraulic conductivity are obtained by con-
sidering flowmeter data. The resulting estimate shows a significant improvement
of identifying three-dimensional structures in the vicinity of the wells used for
flowmeter tests. The corresponding uncertainties of the estimate are decreased
at the well locations of flowmeter tests. In contrast, in the regions where only
pumping tests were conducted, the estimated field becomes vertically uniform.
Flowmeter data are related to local hydraulic conductivity values. Thus, in geo-
statistical inverse models, flowmeter data lead to modifications of the estimated
conductivity field up to the distance about one correlation length.

For estimating hydraulic conductivity, transient data of drawdown are not re-
quired; the conductivity field is inferred from final steady-state drawdown alone.
Transient head measurements would be required in the estimate of specific stor-
age coefficient. Although the flowmeter tests contain information only about
hydraulic conductivities, the measured data have the potential to improve the es-
timate of specific storage coefficient, because the transient drawdown depends
on both hydraulic conductivity and specific storage coefficient. Any improve-
ment in estimating hydraulic conductivity will reduce the chance of aliasing
unresolved conductivity to storativity, thus leading to more reliable estimate of
specific storage coefficient.

5.2 Recommendations

The efficient spectral methods for computing cross-covariance matrices are re-
stricted to regular structured grids and not applicable for unstructured grids. In
contrast, parameterization with the KL expansion does not distinguish differ-
ent discretization schemes. With equivalent numbers of nodes and elements on
structured regular grids, the inverse approach with the full covariance matrix
outperforms the one with the KL expansion. Since computational effort is one
of the major concerns in numerical implementations, one has to make a deci-
sion based on the needs of particular cases. I recommend that a performance
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analysis can be conducted before implementation. Questions, such as whether
the estimate is sensitive to different discretization schemes and grid resolutions,
can be answered. The basic principle is that one should apply sufficient fine
resolution in numerical studies. With defined grid resolution, one could select
regular grids and the inverse approach with the full covariance matrix if the es-
timate is not sensitive to different grids. But if estimates need grid refinement,
namely if they are very sensitive to local grid resolution, one should estimate
the fields using the inverse approach with the KL expansion. The parameteriza-
tion by the KL expansion is highly recommendable for the cases with a smooth
covariance function, particularly with large correlation lengths. For such cases,
the KL expansion can be truncated after a few terms.

Obtaining reliable estimates of hydrogeological parameters depends not only on
a proper inference approach, but also an efficient data-acquisition technique. In
the two- and three-dimensional field applications, structures are obtained only
in the regions where wells are available. Uncertainties in the regions that are
far from the testing wells are high. To identify the spatial structure of the fields,
about one measurement per correlation length is required. Traditional hydraulic
tests, such as pumping and flowmeter tests, are expensive due to high costs
in constructing wells. Other efficient data-acquisition techniques seem neces-
sary. To obtain measurements in a wide range, the recent developed direct-push
techniques such as permeameter tests [Butler et al., 2007] can be applied. The
measurements of such direct-push tests are very useful for three-dimensional pa-
rameter estimation. Because the technique can quickly be performed in a large
area at different depths, one can obtain a large number of measurements within
a manageable time. In addition, the cost of direct-push is comparably lower
than that of constructing conventional wells. As alternative to direct hydraulic
observations, one may make use of non-intrusive geophysical monitoring tech-
niques such as electrical resistivity tomography (ERT) applied during salt-tracer
tests [Binley et al., 1996; 2002; Slater et al., 2000; Kemna et al., 2002; Van-
derborght et al., 2005; Singha and Gorelick, 2005]. It is mandatory, however,
that these data are analyzed under full consideration of underlying laws of flow
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and transport. Sequential inversion, in which geophysical data have been used
for imaging, and these image were subsequently analyzed in hydrogeological
context, has failed [Singha and Gorelick, 2005].

The restricted maximum likelihood method by Kitanidis [1995]) of estimating
geostatistical parameters such as the variance and the correlation lengths of co-
variance functions works well only for cases with a small variance. The resulting
values of geostatistical parameters for cases with a high variance may be biased.
To obtain right geostatistical parameters when the variance is high, one needs to
work with conditional realizations that show similar variations as the true fields.
For this purpose, the Expectation Maximization(EM) [Dempster et al., 1977] al-
gorithm is suitable. The EM algorithm generates a set of conditional realizations
of the hydrogeological parameters given measurements and a current estimate of
geostatistical parameters. Then, the conditional realizations are used to optimize
the values of geostatistical parameters. With updated geostatistical parameters,
a new set of conditional realizations are generated. This procedure continues
until the changes of geostatistical parameters are sufficient small.

Various methods of generating conditional realizations exist. The most promi-
nent methods include the approach based on Cholesky decomposition of the con-
ditional covariance matrix [Harvey and Gorelick, 1995a], the method of small-
est modification of unconditional realizations [Kitanidis, 1995], the Pilot-Point
Method of RamaRao et al. [1995], and the method of Sequential Self-Calibration
of Sahuquillo et al. [1992]. Due to its simplicity, the approach with Cholesky de-
composition is recommendable when the dimension of the covariance matrix is
low. However, when the dimension is high, one has to rely on other approaches.
In the method of smallest modification of unconditional realizations, an uncon-
ditional realization is corrected by smooth functions, so that measurements are
met [Kitanidis, 1995]. This method leads to equations formally identical to the
ones of the Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995], im-
plying that the accelerating and stabilizing techniques of the latter approach can
directly be applied to generate conditional realizations. The computational cost
of a conditional realization is equivalent to finding the most likely estimate of the
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latter approach. Since this approach is theoretically rigorous, it is highly recom-
mendable. Because of computational efficiency, the Pilot-Point Method of Ra-
maRao et al. [1995] and the method of Sequential Self-Calibration of Sahuquillo
et al. [1992] can be good choices.

The most likely estimate of the inverse approach is smooth. When the functional
relationship between the measurements and the parameters is linear, this esti-
mate is identical to the mean of conditional realizations. However, for cases with
strong nonlinearity, the most likely estimate differs from the conditional mean.
In such cases, one may rely on other methods such as the generation of con-
ditional realizations discussed above or inverse approaches with high-order ap-
proximations like the Stochastic Moment Analysis Method by Hernandez et al.
[2006], which are computationally more demanding than the Quasi-Linear Geo-
statistical Inverse Approach [Kitanidis, 1995].

The Quasi-Linear Geostatistical Inverse Approach [Kitanidis, 1995] is exclu-
sively tested using Matlab on normal personal computers. It will be of great
interest to perform the inverse method also on parallel computers using other
advanced computer languages. This may be relevant for large regional ground-
water models. It will be very useful to identify the feasibility of the inverse
approach for such problems where the topographic setup of the subsurface and
interaction with surface water models need to be considered.

The presented inverse approach is a mathematical model that requires strong
knowledge of statistics and numerics. The code comes without a user-friendly
interface. This implies that the model is used only by a small group of re-
searchers, but not by consultants, regulators or other water-resource managers.
To extend the applicability of the model, one needs to encapsulate the inferring
kernel in such a way that the users can interact with the kernel but do not need
to know the mathematical details. The users eventually obtain their estimates
by providing the corresponding field setup and available measurements. The
outcomes are easily readable maps of the estimate of the subsurface and the
corresponding uncertainty as well.
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5.3 Concluding Remarks

With the Quasi-Linear Geostatistical Inverse Approach and its modifications,
one can obtain reliable estimates of spatial distributions of hydrogeological pa-
rameters on large scales with a reasonable computational effort if a sufficient
number of measurements with required support volumes are provided.

5.4 Future Research

In the three-dimensional estimation, I did not estimate the field of specific stor-
age coefficient due to lack of measurements with suitable support volumes. The
hypothesis that a three-dimensional inversion may reduce the aliasing effect in
estimating storativity has not been tested. In order to verify this presumption,
one may conduct a virtual three-dimensional inversion with synthetic data, in
which the fields of hydraulic conductivity and specific storage coefficient are
generated using the spectral method of Dietrich and Newsam [1993] and hy-
draulic aquifer tests are numerically performed as the test cases in Chapter 3.
Since one has perfect knowledge on the setups of the fields including bound-
ary conditions, the potential causes of erroneous model setup can be eliminated.
In such three-dimensional estimation, one can systematically investigate the ef-
fect of increased resolved variability of estimated hydrogeological parameters
on estimation of geostatistical parameters. By doing this, the hypothesis that
the unresolved variabilities may be the major cause of obtaining a high value of
estimated storativity can be tested.

Other measurements, such as geophysical/geochemical data and solute concen-
tration, are important indicators of groundwater and aquifer properties. Integrat-
ing these data in the inversion can help improve the descriptions of the subsur-
face. This may also be a research topic of extending the inverse approach.
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