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Summary

This work presents different geostatistical estimation methods

for double sampling schemes as they are used in combined forest

inventories. The objective is to provide efficient estimates

for spatial means of given quantities on the basis of a small

sample of exact but expensive observations, e.g. the terre-

strial plots, and on a large and inexpensive sample of related

auxiliary Information, usually of qualitative nature, e.g. the

aerial photographs. The motivation for using geostatistical
procedures is that classical sampling theory techniques are

often of little value for small area estimations within global
surveys; this topic is of growing importance in forest

inventory.
The proposed Solutions (kriging with errors, mixed, double and

universal kriging) are straightforward, if a prediction model

given a priori can be used to predict the exact values with the

auxiliary Information. If the prediction model is based on the

actual data set, the estimation of the residual spatial covari¬

ance is a non-trivial task: it can be performed by least square

or restricted maximum likelihood procedures; the latter being
more efficient under strong spatial correlation.

The best procedure, in terms of simplicity, efficiency and

reliability, is double kriging, which adds up the kriging point
and variance estimates of predictions and residuals.

A combined forest inventory, completed by a füll census,

illustrates the techniques and gives a first empirical
Validation. It was found that the geostatistical techniques are

all essentially equivalent with respect to point estimation,
whereas mixed kriging and kriging with errors tend to

underestimate the expected mean square error, in contrast to

double and universal kriging. For local estimation, double and

universal kriging performed much better than the classical

design-based techniques (with respect to empirical bias and

Standard error), whereas for global estimation all the point
estimates are equivalent and the geostatistical Standard errors

remain slightly smaller.
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Resum6

Ce travail presente plusieurs techniques d'estimation geosta-
tistiques dans le cadre des echantillonnage ä deux phases, tels
qu'on les utilise pour les inventaires forestiers. Le but est

d'obtenir des estimateurs efficaces des moyennes spatiales de
diverses grandeurs sur la base d'un petit echantillon d'obser-
vations exactes mais coüteuses, e.g. les placettes terrestres,
et d'un grand echantillon peu coüteux d'observations auxili-
aires afferentes, e.g. les photos aeriennes. Le recours ä la

geostatistique est motive par le fait que les techniques clas-
siques sont de peu d'utilite pour les estimations locales sur

la base de sondages ä vocation globale, une question d'actua-
lite croissante pour 1'inventaire forestier.
Les Solutions proposees (krigeages avec erreur, krigeages
double et universel) sont simples si l'on dispose d'un modele
donne a priori pour la prediction des donnees exactes sur la
base de 1'Information auxiliaire. En revanche, si le modele de
prediction est estime avec les donnees memes du sondage, 1'es¬
timation de la covariance spatiale residuelle est une täche
difficile: on peut l'effectuer par des techniques de moindres
carres ou de maximum de vraisemblance restreint, ce qui est
plus efficace dans le cas de forte correlation spatiale.
En terme de simplicite, efficacite et sürete, le krigeage

double s'avere comme la meilleure technique; eile consiste ä
additionner les estimateurs de krigeage des predictions et des
residus, de meme pour les variances.
Un inventaire forestier complete par un prelevement exhaustif
illustre les methodes et donne une premiere Validation. II
s'avere que les methodes geostatistiques proposees sont

superieures, en terme de biais et d'erreur Standard, aux

methodes classiques, et ce tout particulierement pour
1'estimation locale.
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Zusammenfassung

Die Arbeit stellt verschiedene geostatistische Schätzver¬

fahren für zweiphasige Stichprobenerhebungen vor, wie sie im

Rahmen kombinierter Forstinventuren verwendet werden. Das Ziel

ist die Herleitung effizienter Schätzungen der räumlichen

Mittelwerte bestimmter Grössen. Verknüpft wird eine kleine

Stichprobe exakter, teurer Beobachtungen (z.B. terrestrische

Proben) mit einer grossen, billigen Stichprobe aus Hilfsbe¬

obachtungen, meistens qualitativer Natur (z.B. Luftbildproben).
Der Grund für die Verwendung der Geostatistik liegt darin, dass

im Rahmen von Erhebungen auf globaler Ebene die klassischen

Verfahren für lokale Schätzprobleme nur bedingt brauchbar sind.

Diese Problematik gewinnt immer mehr an Bedeutung in der Forst¬

inventur .

Die vorgeschlagenen Schätzverfahren (Kriging mit Fehlern,

Doppel- und Universal-Kriging) sind einfach einzusetzen, sofern

man a priori über ein Modell verfügt, welches mittels der

Hifsbeobachtungen Prognosen für die exakten Beobachtungen
liefert. Hingegen entstehen mathematische Schwierigkeiten für

die Schätzung der residuellen räumlichen Kovarianz, falls das

Modell mit den erhobenen Daten ängepasst werden muss; die

residuelle Kovarianz kann dann mit Verfahren der kleinsten

Quadrate oder des eingeschränkten Maximum Likelihood geschätzt
werden, wobei letzteres bei stärkerer räumlicher Korrelation

effizienter ist.

In bezug auf Einfachheit, Effizienz und Zuverlässigkeit
schneidet das Doppel-Kriging Verfahren am besten ab; es besteht

aus getrenntemKriging der Modellprognosen und der Residuen mit

anschliessender Addition beider Schätzwerte und Fehlerva¬

rianzen.

Eine kombinierte Forstinventur, ergänzt durch eine Voller¬

hebung, illustriert die Verfahren und erlaubt eine erste

Validierung. Es stellt sich heraus, dass die geostatistischen
Verfahren den klassischen überlegen sind, sowohl hinsichtlich

des Bias als auch der Fehlervarianz, vor allem für lokale

Schätzprobleme.



Seite Leer /
Blank leaf

- —.... ¦¦-.¦—- II—.. i in-......¦ -...— i' ———-



1 Introduction

This work has been accepted as a habilitation thesis (Habi¬

litationsschrift) by the Swiss Federal Institute of Technology,

Zürich, on the recommendation of professors P. Bachmann, R.

Schlaepfer, H.R. Künsch and M. Maignan. It is part of the

project no 3 "Optimization of Inventory Techniques" of the

Swiss SANASILVA research program, Phase II (1988-1993),

directed by the author.

The primary objective was to adapt and test geostatistical
techniques in the context of combined forest inventories, i.e.

inventories using Information coming from different sources, at

the enterprise level before using them at regional or national

levels. The motivation was threefold:

(1)

Geostatistical techniques have been widely and successfully
used in other fiels of natural ressource assessment, prima-
rily mining and petrology, but rarely in forestry.

(2)
The growing importance of remote sensing and geographical
Information Systems, which provide a large amount of cheap
auxiliary Information, calls for a development of efficient

geostatistical techniques combining this Information with

terrestrial data, to provide alternatives to the classical

designed-based regression estimates.

(3)

There is an increasing demand from local authorities to use

regional or national inventory data for local purposes, a

task generally problematic in the classical framework.

This work gives a self-contained presentation of the required
geostatistical concepts and techniques at an intermediate

mathematical level. The mathematical appendix investigates the

asymptotic properties of the estimates of the spatial corre-

lation. The aspects specific to double sampling entail many new

results.



It is written primarily for statistically oriented forest in-

ventorists, but should also be of interest to other scientists,
particularly in soil science.

A detailed case study illustrates the theoretical developments
on the basis of a data set of unmatched quality to date; it is

hoped that the astounding accuracy of the geostatistical proce¬

dures will motivate forest inventorists to include them in

their tool-kit. Those still unimpressed by mean square error

and bias might be convinced by Mark Twain's Statement:

"If all you have got is a hammer, then everything looks like a

nail".



2 Historical background

By and large, forest inventory methodology rests upon clas¬

sical sampling theory, that is upon the randomization principle
and the design-based approach (D. Mandallaz, 1991) . The major
objection to this has been known nearly from the origin:
inventories are performed in their overwhelming majo-rity with

systematic grids, whereas the errors are estimated under assum-

ptions of a different type (i.e. essentially that more than one

randomization is available); as a result, point estimation is

legitimate but not error estimation. Of course, ad hoc proce¬

dures have been proposed, and occasional works have drawn

attention to other approaches, such as the model-dependent
inference, but without much impact. Fortunately, empirical
evidence suggests that the Situation is generally not dangerous
from a practical point of view, even if efficiency is lost. The

issue is simple: either the forest is a fixed entity and the

inventory needs more than one randomization to allow for infe¬

rence, or the inventory sample is fixed and the actual forest

must be viewed as the unique realization of a stochastic

process with some properties (implying a spatial stationarity
of some kind) to allow for Statistical inference. Matern's work

on spatial Variation (B. Matern, 1960) was the first signifi-
cant contribution to this stochastic approach in forest inven¬

tory, followed by Giudicelli et al (1972). The general theo-

retical breakthrough is due to G. Matheron (1962, 1963, 1965,

1970), who introduced the concept of regionalized variables and

gave a sound mathematical foundation to a fairly empirical
estimation technique ( i.e. kriging, first proposed by D.G

Krige in his 1951 MSc thesis; see N. Cressie, 1990, for an

historical review).
From 1960 onwards, the development of geostatistical tech¬

niques (a rather misleading but populär word: Statistical esti¬

mation for spatial stochastic processes is really what it is

about, but obviously unmarketable! ) has been soaring, parti-
cularly under the impulse of G. Matheron and his school, (pri¬
märily in mining, petrology, geology but also oceanography,
meteorology, hydrology and soil science). The first and so far

most significant contributions to forest inventory are due to



D. Guibal (1973) and P. Marbeau (1976) who applied kriging to

terrestrial forest inventory. P. Duplat and G. Peyrotte (1981),

F. Houiller (1986) are further important, though more general
references, whereas H. Ramirez-Maldonado (1988) is essentially
descriptive. J. Bouchon (1979) used geostatistics for surface

area estimation and structural analysis of forest stand; A.

Jost (1993) compared, under systematic sampling, the classical

error estimates with their geostatistical counterparts.
The reasons for the paucity of concrete geostatistical results

in forest inventory are various:

(1)- The mathematical difficulty and the esoterism of the

matter, with a scattered and not always easily accessible

literature.

(2)- The lack of affordable Software.

(3)- Doubts about the final cost-benefits ratios.

(4)- Inadequacies in the theory due to particularities of

forest inventory.
(5)- The complexity of the sampling schemes, particularly in

.

•

combined forest inventories.

(6)- Last not least, a touch of "not invented here Syndrome".

The latter seems also to affect geostatisticians disdaining
sampling theory (de Gruijter, ter Braak, 1990)



3 Formulationof the problem

3.1 Terrestrial Forest Inventory

We consider a forest area VcÄ2 and a finite population P of

JV trees whose centres are at the points u(eVc.R2. The popu¬

lation P of interest does not, in practice, include all the

trees, but only part of them (nearly always a subset of trees

with diameter at breast height, dbh, larger than a threshold

value determined by the inventorist). Scalar numerical vari¬
ables Y}k\k= l,2...p are assigned to each tree in P. They can

be either a set of binary 0-1 codes of nominal characteristics

(i.e. species, State of health, or just any sub-population), or

quantitative measurements (diameter, basal area, timber volume
etc ), assumed to be error free. The trivial variable Yt =1

simply counts the number of trees. The objectives of forest

inventory, in the restricted sense, are the estimation of

quantities of the form:

/ y(fc)
MV„J U,6V0 *vo

(3.1)

for arbitrary domain V0 <zV ,X[V0) denoting the surface area (in

ha) . From now, on the index (fc) will be omitted whenever no

confusion occurs.

In this work, we shall use the infinite population approach (D.

Mandallaz, 1991), which offers many mathematical advantages
over the classical finite framework. Most of the inventory
schemes used in practice can be described in terms of a

function defined on R2 by
(3.2)

where dtsD is a variable which, in the design-based approach,
determines, for a given value of x - u,, the inclusion proba-

bility of the i-th tree; D can be fairly general, for instance
a cartesian product of sets, but usually d, is simply the diam¬

eter and D a bounded interval (for details see Mandallaz,
1991) . The function <|>(u,d) is positive and must satisfy the

condition:



(3.3)

J(|>(u,d)du = l VdeD
R2

In most applications (|)(u,d) depends, for a given d, only on \u\,
but the formalism can cope with far more complex situations,
e.g. the structure of <)) could depend also on the species.
In practice <)>(u,d)*0 when u lies in a bounded set depending on

d so that the sum defining z{x) extends only over trees in a

neighbourhood of x. For instance

ty(u,d)= (ltr2)~l if |w|<r,0 otherwise.

yields the simple circular plot technique, whereas
/ j \— 1

ty(u,d)= sin2— if \u\< r ,0 otherwise.
I, 4 ) 2 2sin%

gives the famous angle count technique with angle (X (de Vries,
1986).
One has the fundamental property

(3.4)
jz[x)dx= ]Ty( = Jz(x)dx for some AdV0
R2 u,eV0 A

Neglecting or adjusting for boundary effects at the forest

edge, one can write (D. Mandallaz, 1991):

(3.5)

\z(x)dx = £r(
We emphasize the fact that 3.2 is far more general than a

Standard regularization with kernel methods.

Thus, the summation over a finite population of trees is equi¬
valent to the Integration of a regionalized variable (in the

sense of G. Matheron, 1970) over a domain of the plane. Note

that the function is defined pointwise and that the support of
the function <{> will never occur explicitly in the calculations

thereafter. This allows for absolute generality and simplicity,
at a negligible price (no sampling fraction correction in the
case where §(u,d) only depends on \u\, D. Mandallaz, 1991) .

The formulation given here differs therefore from previous work

(P. Marbeau, 1976; P. Duplat and G. Peyrotte, 1981) .

In the classical design-based approach, z[x) is the realiza-

tion of a random variable because one draws the point x accor-

ding to some random mechanism, whereas in the geostatistical



approach z[x) is considered as the realization of a stochastic

process Z{x) at the point X. The case where the function z(x)
is estimated by some random sampling mechanism at the point X,

as for instance in Poisson or Probability Proportional to Size

(PPS) Sampling (D. Mandallaz, 1991), will be briefly considered

for one-phase sampling in section 5.2 (Kriging with sampling
errors).

3.2 Auxiliary Information

The terrestrial inventory yields for a finite number of points
x, xes2, the value z[x). The costs c(x) of observing z{x) are

generally a complicated function of X and z(x), and are nearly

always a substantial part of the overall inventory cost. For

this reason, forest inventorists have been using other cheaper
sources of Information for a long time. This auxiliary Infor¬

mation must be correlated with z(x); it can be based on remote

sensing, previous inventories, thematic maps (describing geo-

logical or stand structure for instance), and is available at

points xes1; in most instances s2<zs1. We shall assume that the

auxiliary Information can adequately be described by a p-dimen-
sional vector A{x) e Rp. In practice, most components of A{x)
are 0-1 variables, coding purely qualitative Information.

This primarily qualitative Information is transformed, by
means of a prediction model, into a quantitative regionalized
variable z[x) directly related to z{x), so that the following

decomposition holds:

(3.6)

z(x) = z{x) + e[x)
where z(x) is the prediction and e[x) is the residual at x. The

predictioncan be written, fairly generally, as:

(3.7)
z(x) = f{A{x),$)

where / is a function defining the model and ß is a vector of

Parameters. In the linear case, one has:

(3.8)

£(jc) = F(*)»ß $,F(x)eRq



We shall assume, for the time being that ß is given. Of

course, in practice, the model /(.,.) and the Parameters will

often have to be built and estimated from the data

{A{x),zM,xes2}
This has been the source of great theoretical and practical
difficulties: circular procedures, bias, over-optimistic fit of

the model (M. Armstrong, 1984). The theory of intrinsic random

function of order k, IRF-k, (G. Matheron, 1973), provides a

correct Solution when the A(x) are polynomial in the coordi-

nates. A major result of this work is the adaptation of the

IRF-k philosophy to arbitrary A(x), a conditio sine qua non in

forest inventory; sections 9.2 and 9.3 give a mathematically
rigorous answer to this problem, whereas section 5.6 outlines

the main points from a practical point of view.

However, the assumption that /(.,.) and ß are given is perfectly

justified when they are external to the inventory, for ins¬

tance, if they rest upon large and independent inventories,

'expert judgement or more frequently on yield tables. In such a

case, double kriging (section 5.5) is a perfectly legitimate
and elegant procedure; kriging with errors and mixed kriging
(sections 5.2 and 5.3) are further and simpler alternatives,
which are satisfactory for point estimation but which tend to

underestimate the error because of mathematical inconsistencies

or approximations.

3.3 Combined Forest Inventory

Combined forest inventory can be mathematically described in

the following geostatistical framework:

The realization of a stochastic process Z{x) is observed at rij
points xeSjCV. These observations z[x) can be interpreted as

the crude predictions of another stochastic process Z[x) re-

sulting from the ground inventory, whose realization z[x) is

observed at n2 points xes2; the points in s2 are a subset of

the points in ^»i.e. s2cj,.
The problem is to estimate quantities of the form:



(3.9)

z(V0) = —\— \z{x)dx for some V0 c V

or ratios thereof, on the basis of the data

[z{x),x e s2;z{x),x e sj
S2 is always finite, whereas Sj may in some instances be a

domain of the plane.
The integral in (3.9) is the realization of a stochastic inte¬

gral. As a random variable, this integral must be interpreted
as the limit, in the mean square sense, of a Riemanian sum.

This limit exists if the covariance function B{x,y) = E{Z{x)Z{y)}
is continuous on the diagonal x = y (see I. Guikman, A. Skoro-

hod, 1980, chapter 5). It must be emphasized that the auxiliary

Information A{x), and consequently z[x), is viewed as the

realization of a stochastic process when n^<^, and as a

deterministic function when nY=<*> (like in the model-dependent

approach, D. Mandallaz, 1991 or in Universal Kriging, see

section 5.6 below). Likewise, the relation (3.6) actually

defines the residual process, so that the prediction model is

not, at this stage, assumed to be "true".

The above formulation differs slightly (more in its Inter¬

pretation than in the mathematical tools required) from the

Standard geostatistical context. The reason for this is due to

a shift of emphasis towards efficient use of auxiliary Infor¬

mation; the question of stationarity of the underlying pro-

cesses being only a side aspect of the problem, even if techni-

cally important.

3.4 Other applications

In other fields of application, the function z(x) is generally

given by the problem at hand (e.g. density of metals, oil, wa¬

ter or solar energy etc.) and does not have to be constructed

first as in forest inventory; the only requirement being that

fz(x)dx must be a meaningful physical quantity. In forestry,
v

the "field" V" (i.e. the forest area) is generally well defined

and must be explicitly taken into account by means of sets of

polygons. In other applications, the field V is often not
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known beforehand. The concept of auxiliary Information should

be straightforward in any particular Situation. In most

instances, the function z[x) is not directly observable, but
only a regularization thereof, i.e. a function zp{x) defined by

zp{x) = jz{x+ y)p{y)dy with p(y)>0 and Jp[x)dx= 1

Neglecting boundary effects one has

jzp{x)dx = jz{x)dx
V V

(this equality is exact for V = R2 )

Therefore, all the concepts and results given below for z[x)
can be transposed mutatis mutandis to zp{x). In some instances,
the explicit knowledge of the relation between z[x) and zp[x)
can offer a slight improvement (convolution or deconvolution of

variograms), a topic we shall not deal with.
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4 Variograms and cross-variograms

Statistical inference for the spatial processes Z(x), Z(x),e(x)

is not possible without further assumptions, as only one reali¬

zation is available. These assumptions require essentially some

form of stationarity, either of the processes themselves or of

derived quantities. Following G. Matheron (197 0) we shall

assume that the processes are intrinsic, i.e.:

(4.1)

E{Z(x+ h)-Z(x)}= 0 \fx,h, and similarly for Z(x),e(x)
(4.2)

E{Z(x+h)-Z(x)f=var{Z(x+ h)-Z{x)} = 2yz(h) \/x,h
and similarly for yt >YE •

The functions y {h) are called semi-variograms, for short vario¬

grams thereafter. Note that y[h) = y{-h).
Sometimes a more general definition is used, by allowing a

E{Z(x+ h)-Z(x)}= m(h), independent of X. The drift m{h) is linear

in h; if m{h) is known, it can be assumed to be zero by

subtracting it.

Though the intrinsic hypothesis does not require finite expec-

tation and variance for the process itself but only for its

increments, we shall always assume this to be the case (it is

per definition in practice); the main advantage of the intrin¬

sic hypothesis is that it requires the stationarity in mean and

variance of the increments only: for instance, the brownian

motion is intrinsic but not stationary (non-constant variance)

Variograms satisfy the following conditions (Matheron, 1970)

(4.3)

(1) y(0) = 0

Y(h)(2) lim-^-V = 0
h->- h

(3) XX.-A.jYUr-*;)^ Vn'Vjc"x;' Provided that XX.=0-
r=i w

and allow for a straightforward calculation of the variance

according to:

(4.4)
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(4.4) is valid for all authorized linear combinations,i.e.
satisfying the constraint 2^X,=0.
This can be seen by noting first that for any xo

( » \
var XMZOO-ZUJ) =var 5>.-z<*.-)

( » A

Vi=iV«=i

and second that

cov{Z(jc!) - Z(x0),Z(x2) - Z(x0)} = y(*i ) + Y(*2)"Y(*i - *2) •

If y{h) is continuous at the origin, the process is continuous

in the mean square sense, otherwise the discontinuity at the

origin, i.e. ca =y{0+)-y{0)>0 is called the nugget effect and

implies an irregulär behaviour.
The variogram is called isotropic if y(^) = Y(|^|)' otherwise

anisotropic.

If the underlying process itself is second order stationary,
i.e.

(4.5)
E{Z(x)}= m
cov{Z(x+h), Z(x)} = C{h)

then

(4.6)

Y(h) = C(0)-C(h)

If limC(/i)= 0 then C(0) = y(°°) is called the sill. The smallest
A->~

vector r0 for which y(ro(l+e))= C(0) for any e>0 is called the

ränge in the direction r0 .

If Zl(x) .ZjOc) are two' intrinsic processes, the cross-variogram

yZj>Zj[h) is defined by

(4.7)
2 Yz,>Z2 (*)= covfe(x+h)-Zl(x),Z2(x+h)-Z2(*)}

(A.G. Journel, C. Huijbregts, 1978)

Sometimes an alternative definition is used, namely:
2Iz,.z, (*) = var(Zi(x+h)- Z2(je)}

(I. Clark et al, 1989; N. Cressie 1991), so that caution is

required.
In general Yz,,^(h) * Yz,.z2 (_h) • However, because of the decompo-

sition Z(x) = Z(x) + e(x), we have:
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yz{h) = yz{h) +yE(h) + 2yzJh)
and therefore:

If ZUj^eUj) are uncorrelated Vxp^, then:

yz,ih) = yE(h) = yz,{-h)

(4.8)

(4.9)

(4.10)

Let us briefly discuss the important but sometimes confusing
concept of nugget effect C„ = Y(0+)-y(0) > 0 • Mathematically, this

cannot happen for L2-continous processes. Note that by constru-

ction, each realization z(x) of Z(x) is piecewise constant (over

cells of a tremendously complex tesselation of the plane deter-

mined by the relative position of all trees), the set of dis-

continuities having zero Lebesgue measure. On the other hand,

one should recall that averaging a bi-dimensional white noise

over a circle, no matter how small, yields a continuous vario¬

gram (I. Gelfand, N. Vilenkine, 1964), likewise for a Poisson

marked point process (P. Marbeau, 1976; D. Stoyan et al, 1987;

E. Tomppo, 1986) . Therefore, the only way for a nugget effect

to occur is by the presence of measurement or sampling errors;

for instance, if z(x) is itself estimated at x by some sampling

technique (like PPS sampling, D. Mandallaz, 1991), a Situation

we shall deal with in section 5.2. Thus, in principle, the

random process Z[x) .has a continous variogram. However, in

applications, ad hoc variograms with a nugget effect will be

occasionally used, simply to reflect our numerical ignorance
with respect to the behaviour of the process at the microscale,
because observations are available only for points lying at a

given minimal distance from each other. This is determined by
the inventory scheme. The value of this pseudo nugget effect is

often inversely proportional to the surface area of the support

(in R2) of the sampling function ty (for a Poisson-type forest

this follows directly from P. Marbeau, 1976 and G. Matheron,

1970) . For a better intuitive understanding, it is useful to

note that in one dimension, the variogram of the Brownian

motion is a linear function, i.e. y(fl) = otj/i|.
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For future use, we note the important formula (extension
variance of V2 to VJ)

(4.11)
Let z(V) = \z(x)dx, then

vai{z(Vl)-z(V2)} =

-Yz(K'M)-Yz(^2'^2)+2Yz(M'^2) ' in obvious notation.

Indeed, the difference is an authorized linear combination

since both integrals can be approximated by discrete sums (with
constant weights summing up to 1), for which 4.4 can be applied
and then the limit taken. Similarly, one has:

(4.12)
If X^«=1 then

varJXX,Z(x,)-^JZ[x)dx\=

-J,Khyz^l-xJ)-^^j\yz{x-y)dMy+ 2^Xi^-^jyz{xl-y)dy
:=-£ä.,Xjyz(jc(-xj)-yz(V:V)+ 2£X(yzU(.V)

Various parametric variogram modeis are available (see A. G.

Journel, C. Huijbregts, 1978, for a review). The following are

frequently used, in particular in the case study.

i) Linear model, valid in Rd ,d>l
(4.13)

y(h) = c2\h\
unbounded variogram, in R induced by the Brownian motion.

ii) Spherical model, valid in Rd ,d<3
(4.14)

<r ,
= a2 otherwise.

.11 is CT2 and the ränge T .

from averaging a white noise over spheres of radius T/n.
The sill is CT2 and the ränge T . This variogram results
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iii) Exponential variogram, valid in Rd ,d<3
(4.15)

y[h) = aMl-exp(J±r
a

The sill is a2, the ränge is infinite, though in practice
it is defined to be 3a.

iv) Circular variogram, valid in R ,d<2
(4.16)

y(h) =c<
n

(

ar cos:?hw-k ))
, for \h\<r

Y(/t) =a\ for |Ä|>r
This variogram results from averaging a white noise over a

circle of radius ^ •

v) Pure nugget effect

(4.17)
Y(0) = 0, y(h) = a2 for |ä|>0

Given p variograms Yf(h)» one can define a further variogram by

setting:
(4.18)

Y(h) = XY.(W
4=1

Finally, an anisotropic variogram is geometrically anisotropic
if

(4.19)
y[h) = y0{\Ah\)

where y0{h) is a valid one-dimensional variogram and A is a

regulär [d,d) matrix.
In practice, the underlying variograms y[h) have to be estim-

ated from the data, a problem we now briefly discuss. Cross-

variograms can be dealt with in a similar way. Under the in¬

trinsic assumption, a natural and non-parametric estimator

based on the methods of moments, due to Matheron (1962), is to

set:

(4.20)

2(zU()-z(x,))2
Yl J \N{h)\
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where Af(/0 = {(*,•. *,-):|*i -x} =h\ and \N(h)\ is the number of pairs in

N(h).
In most instances, because of the positions of the sample
points, only smoothed versions of (4.20) are available, namely:

(4.21)

y{hl) = average\(z{xt) - z(x,))2 :(*,,*,) e N{h),h € T(h()j
where Tih^ is some specified tolerance region around h( .

Tolerance regions should be as small as possible to retain

spatial resolution, yet large enough to ensure stability of the

estimates (say at least 60 pairs).
It is better to directly estimate the variogram rather than the

corresponding autocorrelation function and the relation (4.6),
(N. Cressie, 1991). There exist more sophisticated estimation

procedures, e.g. based on moving-windows or relying on robust

techniques. If the process is gaussian, results for the exact

distribution of y[h) are available (see N. Cressie, 1991, for a

review and further references).
After the empirical variogram y{h) has been obtained via (4.21)

or otherwise, one has still to fit a model to it (i.e. to

choose a valid variogram and to estimate its parameters like

sill and ränge). Again, several methods are possible, among

others non-linear weighted least Squares (for a review see N.

Cressie, 1991). In this work, we primarily used the techniques
implemented in the softare BLUEPACK (essentially interactive

"fitting by eye" procedures) and the least square technique
described in section 5.6.

If the intrinsic assumption does not hold, then y{h) does not,

in general, estimate y{h). For instance, y[h) will show a qua-

dratic behaviour if there is a linear drift in Z[x), a useful

fact for graphical inspection. The estimation of the variogram
of the residual process e(x) can be a source of concern when

the drift-model is fitted simultaneously: vario-grams based

directly on the empirical residuals can be seriou-sly biased,

especially for large lags h (G. Matheron, 1970; J.P. Chiles,
1977; N. Cressie, 1991). This problem actually led G. Matheron

to develop, for polynomial drifts, the theory of intrinsic
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random functions of order k , IRF-k for short (G. Matheron,

1973) .

We shall present in sections 5.6, 9.1, 9.2 modified least

Squares and maximum likelihood techniques to solve this problem
for arbitrary drifts, as they occur in forest inventory. Like

the IRF-k, these methods filter out the drifts before estima-

ting the residual covariance. They give consistent estimates

under fairly general conditions, do not require prior smoothing
as (4.21), but are more difficult to implement numerically.

Obviously, they can also be used in the stationary case.
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5 EstimationTechniques

Assuming that the underlying variograms and cross-variograms
are known or have been adequately modelled, it remains to esti¬

mate the quantity

We shall now discuss this problem under the assumption that the

uncertainties with respect to the variograms can be neglected.
The impact of variogram estimation on point and variance esti¬

mation is extremely difficult to assess (P. Diamond, M. Arm¬

strong,1984; D.L Zimmermann, N. Cressie, 1992).

5.1 Ordinary Kriging

Ordinary Kriging yields the Best Linear Unbiased Estimate

(BLUE) of

(5.1)

z(V°)=T7^lz(x)dx 'V°cVMVJVe

on the basis of the terrestrial inventory data only, i.e.

z(xt) ,x,es2. For convenience we shall write indifferently

ies2 or x, € s2 thereafter.

One looks therefore for an estimate of the form

(5.2)

ies2

satisfying the following conditions:

e(z*(Vo)-Z(Vo)) =0, i.e. unbiasedness.

e(z*(V0)-Z(V0)) =minimum.

The first condition also requires that the error z (V0)-z(V0) is

an authorized linear combination, which implies 2^Xt=l.
Using the expression (4.12) for the variance and the Lagrange's

technique of optimization under constraint, one must minimize

the function

L{X^iss2) = -^XiXJyz{xl-xJ)-yz(V0,VJ+ 2jjXiyz(xl,VJ-2J^Xl-l
uj t \ t J

This leads immediately to the well known kriging equations:
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(5.3)

£Xdz(x, -Xj) + \l=^z (Xj, V0)

i.e. a linear System of n2 + l equations with n2+l unknowns we

shall always assume to be regulär (this is not the case if for

example the same point occurs twice). Using (4.12) and (5.3),

the expected mean square error (MSE) is found to be

(5.4)

E{z*(V0)-Z(V0)}2=^Xiyz(xi,V0)-yz(V0,V0) + Vi
i

If V0={x0} (i.e. one considers punctual estimation) and if

x„es2, then it is readily verified that z (x0) = z(x0). In this

sense, kriging is an exact interpolator. Punctual kriging is

hardly ever relevant in forest inventory. Variograms with a

nugget effect lead to a mathematical inconsistency (frequently
overlooked) because punctual kriging cannot be considered, in

this case, as the limit of domain kriging when the domain

shrinks to a point. Indeed, with a pure nugget effect, it is

readily seen from (5.3-5.4) that the MSE is o2+a2/n2 for a

point, and C2/n2 for any true domain (X^n^1 in both cases) .

The correct Interpretation of this paradox is, again, that a

nugget effect is a coarse numerical approximation of the true

underlying variogram short ränge behaviour and is valid as long
as this ränge is negligible with respect to the size of the

domain. In applications, s2 is often reduced to a so called

kriging neighbourhood U c V ,V0czU, by simply restricting

S2 to S2r\U; (5.3) and (5.4) remaining valid with s2 nUin

place of S2.
To illustrate ordinary kriging and compare it with classical

sampling, let us consider a process whose variogram is the sum

of a spherical variogram of ränge r and sill G2 and of a pure

nugget effect co. Suppose further that all pairs of data points
satisfy x,-Xj >r and that all points x( are at least at a dis-

tance r from the boundary of the forest area V. Then, using

polar co-ordinates, it is easily verified that

Furthermore, as a first approximation,
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yz(V,V) = yz(xt,V) Vx( (up to 0
7ir

5X(V)^
It turns out that the X,, must be constant and therefore equal

,-ito n ; the Lagrange's multiplier is given by

n n

f _ 2
¦¦ ~z"(V)-z(V)i¦B

,5W),
In other words, the ordinary kriging estimate is the sample
mean, and its variance decreases as rC1 up to a correction term

for finite sampling. To be more explicit, suppose that co = 0

and that sampling is performed with circular plots of radius

T/2 and surface area CL (i.e. disJoint plots have independent

Z(x) ), then

Av>=IXz<,,) , „z*(V)= Sl{i-(-«2Ül
as compared with

o. f an }
1-

X(V)

5X(V) \

given by the sampling theory for a finite population of disks;
note that a2,G2S do not have exactly the same meaning.
It is commonly said that geostatistics is useless as soon as

the distance between the points exceeds the ränge of the spa¬
tial correlation. This is true for the point estimate, but not

for the variance. More generally, it is wrong that the siz.e of

the kriging neighbourhood is essentially determined by the

variogram ränge, since the Xt depend primarily on the inverse
of the kriging matrix Yz(*i ~xj) (e-9- with a pure nugget effect

of zero ränge the kriging neighborhood is in principle infi¬

nite) .

In some rare instances, the true mean of the stationary pro¬

cess is known and can be assumed to be zero by subtraction. In

such a case, the constraint 5jÄ,(=1 can ^e iqnored and 5.3-5.4
i

remain valid with U=0, leading to the so called simple kri¬

ging procedure (G. Matheron, 1970).

Finally, it is often instructive to have the linear variogram
in mind. In one dimension and without nugget effect, this cor-

responds to the Brownian motion. In this case, kriging at a

point xo amounts to perform a linear interpolation between the

left and right neighbours of x0, (the other points playing no

role) : this property is called the screen effect and is no

longer valid in the presence of a nugget effect. This is often



21

an aid for the Interpretation of the kriging weights Xt.
However, it is in general difficult to have an intuitive in-

sight into the behaviour of the kriging weights in arbitrary
situations (J. Rivoirard, 1984).
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5.2 Kriging with sampling or measurement errors

In some instances one does not, or cannot, directly observe the

process Z(x), but only a randomly disturbed version thereof;

i.e. one observes S(xt) with

(5.5)

SU,) = Z(x,.)+5(jc,) , for x, € s

8(X;) denoting the random disturbance.

The decomposition (5.5) is useful when z(x,) is estimated at xt

by some second stage sampling procedure at the tree level, s(xt)
being usually a generalized Horwitz-Thompson estimate of z(*,)
(see D. Mandallaz, 1991, p.32, for the theory, and E. Kaufmann,

1992, for an application thereof to the Swiss National Forest

Inventory). In this context the following assumptions are

meaningful:
(5.6)

i) Z(x) is second order stationary
ii) Es{b(xi)\Z(xj),xjes} = 0

iiia) Vars(5(xi)\Z(xj),xjes)= c2(Z(xi),xl), Ez(a2(Z(xi),xi)= c2(xi)
iiib) o2(Z(jc.),*F)=o2(Z(*r)), £z(o2(Z(x.))) = c2
iv) co\b(b(xi)Mxj^Z(xk),xkes) = 0 Vx, # x}

Condition (iiia) allows for the possibility to observe exactly
at the point xx, i.e. G2(xi)= 0. Usually the 2nd stage sampling
is performed at all points, and the sampling variance at x{ is

only a function of the true value z(xt); in such a case, because

of (i), it is natural to then require (iiib). Conditions (ii)
and (iv) can always be inforced by the design of the 2nd stage

procedure.
The kriging estimate is defined as:

(5.7)
z (K)=lM'i)

jes

and the error is

z\vj-z(V0)= J4XJz(xj)+JitXjb(xj)--^—lz(x)dx
jes jes ,vv 'o > V.X(VJ;
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If £X;= 1, then £z8(z*(Vo)-Z(Vo))= 0; the anticipated mean square

jes

error (i.e. taking the expectation with respect to the process

and the 2nd stage sampling procedure) is, under (5.6), easily

found to be:

E{z^vj-z(yj}2=-X^-YzUr-^)-Yz(K,vj+2XMz(^v0)+2^2U-)
>,jes

Minimizing this expression under the constraint yields the

kriging equations with sampling errors:

(5.8)

^XJyz(x;-x})-X.G2(x!)+ \i = yz(x;,V0) for x,es
jes

5>,-»
JSSl

EZi8(z*(V0)-Z(V0))=J,X:yz(x;,Vo)-yz(Vo,V0)+ ii
ies

To apply (5.8), one generally will have to estimate somehow the

underlying variogram Yz and the variances a2(x,) (note that 5.8

is also valid for intrinsic Z(x) ). Under assumptions (i, iiib)

this is not a major difficulty; indeed one first notes that

ys(h): = -Ezs(S(x+h)-S(x))2=yz(h) +G2 for h*0.

Furthermore, let a2(x;) be a design-unbiased variance estimate

of cr2(zU,)) (usually an Horwitz-Thompson estimate of a quadratic

form) and set a2=-£o2(x,); under (iiib) £z£8|z(a2)= ö2 .

" ies

Hence, it suffices to shift the empirical variogram ys of the

observed process downwards by a2 to obtain an estimate of the

variogram Yz of the uhobserved process, while retaining the de¬

finition Yz(°)=0- For Punctual kriging at x0€s, it can be

checked that setting YzW= Y*W-<*2 for A*0' Yz(°) = ° into (5-8)

is equivalent, for point estimation, to ordinary kriging with

ys(h),ys(0) = 0, whereas the resulting mean square error must be

reduced by a2 to give the correct answer. If xoes, this is no

longer true and it is easily verified that (5.8) does not give
an exact interpolator anymore, but instead smoothes even the

Observation point (see N. Cressie, 1991, p.128, for similar

findings in a slightly different context). For domain kriging,

it is necessary to use (5.8) directly. In short, it is wrong,

for kriging purposes, to treat sampling error as an ordinary

nugget effect.
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The kriging equations (5.8) can be applied in the context of

measurement errors (A. Galli et al, 1987), where the following
unconditional assumptions are made:

(5.9)

i) Z(x) is intrinsic
ii) E{b(xi))= 0,Var(Hxi))= O2(xi) xtes

iii) Vx^x, cow(d(xi)Mxj))= 0 , VxiyXj cov(b(xi),Z(xjj)= 0

Condition (iii) requires that the true values and the measu¬

rement errors are uncorrelated. For this reason, the kriging
equations (5.8) will also be referred to as kriging with

(uncorrelated ) measurement errors.

To incorporate auxiliary Information into kriging it is temp-

ting, by analogy, to set formally:
(5.10)

(5.11)

5(x,) = Z(xi),5(xi)= a2(xi)= 0 for Xies2
5(xi) = Z(xi),5(xi)= Z(x,)-Z(xi) for x;eSl-s2

zV.)=2M*i)+xmu.)
ies2 ieji~s2

with the kriging equations

Y4^jyz(xt-xJ) + \i = yz{xl,V0) for ies2

^X.yz(x;-x.)-X;c2(x.)+ \i = yz(xi,V0) for iesl-s2
jest

E{z*(v0)-z(y0)}2=X^Yz(^^0)-Yz(^^0)+^
1*6«!

i.e. to view the predictions as observations with errors. The

variogram Yz can ^e estimated on the basis of the small sample
only, and C2(x;) by some ad-hoc procedure, e.g. residual sum of

Squares if a2(x,)= a2, which we shall assume in the following.

ünfortunately, this procedure is mathematically incorrect:

indeed, under the decomposition (3.6) 8(x1) = -e(x1), which implies
cov(Z(x1),8(x1.)) = -vare(x,.)s-c2 ?t0 and (5.9) is violated.

However (5.10) still yields an unbiased estimate, and its empi¬
rical Performance, as shown in the case study of chapter 7 is
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satisfactory, with a tendency to underestimate the mean square

error.

To proceed further we assume that the correlation ränge of the

residual process e(x)= -8(x) is small in comparison with the do¬

main and the distance between the sample points, which implies

cov(8(x,.),8(x;))= 0 for xf*x;, cov(Z(VJ,8(x,)) = 0. The error can be re-

written as z*(V0)-z(V0)= ^Xjz(xj)-——\z(x)dx+5>,-8(x;); using the

jesx M»«,)^ v'&*i-*2

equation (4.12) and taking the extra covariance term into

account the expected mean square error is found to be:

e{z*(v0)-z(v0)}2 =
-J,^Jyz(xl-xJ)-yziV0,V0) + 2jjXlyz(xt,V0)- 5>2o2(x()

(Jes, 'esi (€s,-s2

Minimization under the unbiasedness constraint yields the

following kriging equations:
(5.12)

ZXAz^-^)+^= Yz(^'K) f°r *,e*2
jesx

2^YzUi-^)+^2-|-^= Yz(^»vr0) for x.teSl-s2
jesx

E{z\vj-Z(V0)}2=2dXiyz(xi,V0)-yM,V0)+ iL

The only difference between the kriging Systems (5.11) and

(5.12) is the sign of the term a2 for xies1-s2. However, to

ensure a positive MSE in (5.12) one must require Yz(°+)>a2'
which will be the case if for instance YZW= yz(h) +a2 for h*°>

i.e. with a pure nugget effect for the residual process. In

such a case, the kriging equations (5.12) can be rewritten in

terms of the variogram of the prediction process, to give:
(5.13)

X^YzUi-x>)-X1a2+u= Yz(x1,K) f°r *ie*2-
jes,

^jyz(xi-xj)+ \i = yz(xi,V0) for xiesl-s2
jest

e{z*(v0)-z(v0)}2=X^zU,K)-yz(K,v0)+^
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Formally, the kriging System (5.13) can be viewed as the Stan¬

dard kriging System with measurement errors (5.11), while in-

terchanging the roles of z[x) and z(x). This intuitively nice

result leads to the so called mixed kriging procedure, which is

derived in a slightly different way in the next section.



27

5.3 Mixed Kriging

We assume that Z(x) is intrinsic and that e(x) is stationary

(with zero expectation and variance C2) and uncorrelated with

Z(x).
The starting point is the same as in section 5.2, i.e. we

consider an estimate of the form

(5.14)

z\v0)= ^X}z(xjn 5>jH*;)
Define

then

jes2 jesi-sz

^--^öl^^
z\V0)-z(Vo) = z*(Vo)-z(Vo) + z(Vo)-z(Vo)

(5.15)

(5.16)

= J,XJz[xJ)-z{VJ+2JXJe(xJ)--±-jeix)dx
Jes, Jes2 A\Vo>V0

The first term in (5.16) is an authorized linear combination

( e(x) being the realization of e(x) ) . We now assume that the

ränge r of yE[h) is negligible in comparison with X{V0), so that

the integral over the residual process yields negligible 'vari¬

ance and covariance terms (which excludes punctual kriging).
The unbiasedness condition implies as usual the constraint

VL=1 and the mean square error is found to be :

Jes,

(5.17)

e{z*<v.)-z(vo)}2 = e{|>;z(x;) -z(vo)} +|>2o-2+o(jgj)
Using (4.12) for the first term, the Lagrange's technique

yields the mixed kriging equations
(5.18)

^Xjy^-x^-Xp2+\i = yz(xi,V0) for x,es2
jes.

^Xjyz(xi-xj)+\i= yz(xi,V0) for x.,<=Sl-s2
jes.

Jes,

and the mean square error is again of the form
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(5.19)

E{z\v0)-Z(V0)}2^Xtyz(xtyo)-yz{Vo,Vo)+ [i
tes,

The interesting aspects of mixed kriging is that it only rests

upon the variogram of the predictions, which can usually be

fitted on large data sets. Formally, it is equivalent to Stan¬

dard kriging with measurement errors, but with the role of

observations and predictions interchanged.
The assumptions made above are, of course, violated in

punctual kriging, i.e. V0={x0}. In this case, (5.17) becomes

E{z*(Vo)-Z(Vo)}2=-JdXiXjyz(xi-xj)+2YlXj(xj-x0)
ijes, jes,

+ ^X2Ja2{xJ) + o2(x0)-2jjXJcov(e(Xj)Mx0))
Jes2 Jes2

which leads to the modified kriging equations
(5.20)

£Xjyz(x, -Xj) - Xta2 (x()I2 [xt) +12 (x() cov(e(x(),e(x0 )) + \i = yz (x( - x0)

Jes,

where /2(x) = l if x€.s2, /2(x) = 0 if xis2.
The expected mean square error is given by:

(5.21)

E{z*(VJ-Z(V0)}2=JjXjyz(xj-x0)+c2(x0)-J^Xjcov(e(xj),e(x0))+\i
jes, jes2

If we now assume that |x( -xj > r = rangeiye[h)), it is straight-

forward to describe the following special cases:

(i) if x0es2 then z'(x„) = z(x0) ,EMS= 0. .

(ii) if x0€s1-s2 then z*(x0) = £(x0) ,EMS = a2(xc),

In this sense, punctual mixed kriging generalizes the exact

interpolation property of ordinary kriging; it gives the true

Observation at an Observation point (with zero kriging variance

of course) and the prediction at a pure prediction point (with

kriging variance equal then to the prediction variance at this

point), which is intuitively appealing. However, punctual
kriging is irrelevant for forest inventory; it must also be
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emphasized that mixed kriging for domains, as given by equa¬

tions (5.18-5.19) does not enjoy this property, and that it is

a valid technique as long as the ränge of the correlation of

the residual process is small in comparison with the domain to

be estimated.

Therefore, kriging with errors and mixed kriging are straight-
forward procedures to incorporate auxiliary Information; they

yield unbiased point estimates but do not give reliable mean

square errors; kriging with errors neglects the correlation

between residual and true value, whereas mixed kriging assumes

a very short ränge of the residual process. Nevertheless, the

case study of chapter 7 reveals that they give better point
estimates than ordinary kriging, which does not incorporate any

auxiliary Information. Finally, kriging with errors can be used

to treat sampling errors in ordinary kriging.
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5.4 Co-Kriging

The estimators (5.7) and (5.14) use the predictions z(x) where

the observations z(x) are not available, i.e. in sl-s2.
Obviously, there are no reasons for not using z(x) in s2, which

is precisely what co-kriging does. The idea is to find the best

linear unbiased estimate in the class:

zV.)=XM*i)+2>i«(*i).

ies2 les,

Before proceeding further we State explicitly several simple
technical facts, which are often either overlooked or a source

of confusion in the literature, primarily because co-kriging is

usually presented in terms of covariances and not of vario¬

grams, an unnecessary restriction (see also D. E. Myers, 1982) .

Recall first the two possible definitions of the cross-

variograms
(5.22)

2yzzW = cov(Z(x + h)- Z(x),Z(x+ h) - Z(x)) and

(5.23)

2rz.z<h> = var(Z(x + h)- Z(x))

as well as their properties
(5.24)

YZiZ(h) = Y2iZ(h), but in general yzz{h)*yzzi-h)
(5.25)

rzz(h)= rzz(-h), but in general Tzz{h)±Tzz(h)
If the processes Z(x) and Z(x) are furthermore second order

stationary and if the following symmetry condition holds

(5.26)

Czz(h) = cov(Z(x + h), Z(x)) = cov(Z(x+ h), Z(x)) = Czz(h)
(Czz[h)= Cz^{-h) being always true)

then it is straightforward to check that the following rela-

tions hold

yz/h)= czz(0)-czt(h) , yzzW= rzz(h)-rzz(0)

Let u0 e R2 arbitrary, then

YZiZ(y-x)=0.5cov{z(y)-Z(uo)+ Z(uo)-Z(x),Z(y)-Z(uo) + Z(uo)-Z(x)}=
YZÄ(y-u0)+ Yz,zU-u0)-cov(Z(x)-Z(u0),Z(y)-Z(u0))
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provided that the well defined covariance of increments is

symmetrical, i.e. if

(5.28)
cov(Z(y)- Z(u0), Z(x) - Z{u0))= cov(Z(x)- Z(u0), Z(y) - Z(u0))
then, by the relation above, this covariance also satisfies

cov(Z(y)-Z(u0),Z(x)-Z(u0)) = YZ(Z(y-u0)+Yz^U-"0)-Yz^(y-^)
and consequently this also implies

Yz.z<y-*)= Yz>zu-y)
From this we can easily calculate the covariance of two autho-

rized linear combinations ^Xt=0 ,^M.(=0, namely

cov(X>.(Z(x(),X^Z(y())= cov(X>.((Z(x()-Z(u0)),X^^(y1)-Z(u0)))
]£Xtu((YZf2(x(-u0) + Yz^(y(-u0)-YzzU(-y1))=-X>"^iY^U1-yi)
u a

Therefore we can State the important result

(5.29)
If Vx,y,u0
cov(Z(y)- Z(u0),Z(x) - Z(u0)) = cov(Z(x)-Z(u0), Z(y) - Z(u0))
then

Yz.z(y-*) = Yz.z(*-y)
and for all linear combinations ^Xt=0 ,^n(=0, we have

cov(£XlZ{xi),]T u,Z(y,)) = -X^d^(x< " yi >
u

This generalizes the fundamental property of the variogram to

the cross-variogram. The symmetry condition in (5.29) seems

natural, but is of course very difficult to check in practice.
This result is easier to establish with the second cross-

variogram, indeed

rz2(x-y) = 0.5var(Z(x)-Z(y))= 0.5varZ(x)+ 0.5varZ(y)-cov(Z(x),Z(y))
(this is true also in the non-stationary case) so that

cov(X^Z(x(),X^Z(yI))= X^I(o.5varZ(xt)+ 0.5varZ(y1)-rz^(x1-yl))
u

= -^lXi\3ilTZtZ{xl -y,) , by using the constraints.
u

Hence, we have

(5.30)
if X^(=0 >Xw=0 then

cov(£XtZ[xt),]£ vMyt)) = -XKvFzz U, - y,)
a

For future use we need the following results:
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(5.31)
if X^i=l ' S'1':=^ an<^ t^ie symmetry condition (5.29) holds

then
(

cov X^Z(x()--i-Jz(x)dx,XfA1Z(yi)
i "l'o'vMV0){

-E^Yz^u1-y()+Z^Yz^(yMv0)=-X^irz^^-y()+X^rz,z(y!'vo)-
a i a i

where as usual

This can be easily proved by approximating the integral by an

arithmetic mean and by using (5.29-5.30). Likewise, one obtains

with (Z,e) in place of (Z,Z) the following result:

(5.32)
if ]^X,(=1 .^M-i=l and the symmetry condition (5.29) for (Z,e))
holds then

( 1 \ \
XmÄly,)-—-\z[x)dx^Xiz[x^-—-\z[x)dx =

l MV0>V i A>[V0)l*o w o /

2KMzM*~^]~Yz.£(Vo• Vo) +ZWYZ,E(y,.V0) + X^Y2,EUt.V0)=
2x^rfe(x(-y,)-rfe(v0.vj+X^(y«.v0)+Xx(r±ieu(.v0).

cov

V

where

y^vo>Vo)=^\\yts»-v)dudv , rze(vo,vj=^J|rze(M-v)^v
We are now ready to find the BLUE estimate in the class

(5.33)

zV„) = XM*r)+ 5>/*(*/)
*2 /es,

The error is

z\vj-z(VJ= J^X;z(x!)-^jz(x)dx+ JjVilHxl)
hence the conditions

5>r=i . 5>,=o
ensure first that the error is an authorized linear combination

of the underlying processes, and second that it has zero expec-

tation (unbiasedness). The expected mean square error can now

easily be calculated by using (4.4), (4.12), (5.31) and is

found to be:
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(5.34)

E{z\vo)-Z(Vj}2=-JJXiXjyz(xi-xj)-yz(V0,VJ + 2^Xiyz(xi,Vo)
i,jes2 'es2

- XwwÄ(*fc-*«)-2X^yz^u(-^)+2Xhiyz^ui.v0)
kies, ies2,les, les,

Minimizing (5.34) under the constraints yields the so called

co-kriging equations, which read:

XÄ..YzU«-*fc) + S^YZiftU«-*fc) + v,=YzUfc.Vro) for k e s2
tes2 les,

JJXtyz2[xl-xk) + JJlilyz(xl-xk) + v2=yZJZ(xk,V0) for k <s Sl
tes2 'es,

X^ = 1
(es2

les,

The mean square error is then found to be:

ies2 'ö.

(5.35)

(5.36)

The same equations apply with TzX in place of YZtZ • If further-

more (5.27) holds (i.e. stationary processes with symmetrical

covariance), then it is easily verified that the Solutions

Xl,\il,vl,X2 coincide, as well as the mean square error, so that

both cross-variogram definitions are then equivalent with

respect to co-kriging.
So far Z,Z,e were arbitrary intrinsic or stationary processes

and the relation Z(x) = Z(x)+ e(x) has not been used; it implies

at once from the definitions the following identities:

(5.37)
yzih) = yz[h) + yE(h)+ 2yZE(h)
Yz.z(fc) = Yz(h) + Y2,e(h) ' Yz,e(h) =Yz^(h)+Ye(h)

The other cross-variograms Tzz(h) and rZe(h) do not have these

properties, which are very useful for graphical model checking.

Furthermore, if predictions and residuals (or their increments)

are uncorrelated, the Standard and natural assumption of any

model, then YZE(h) = °/ but Tix{h)*0. Furthermore, this also imp¬
lies rzz(x-y) = Y2(x-y)+ 0.5vare(x) and consequently a constant

residual variance since this should depend only on x-y. For

these reasons, we prefer to use the cross-variograms
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Yzz and YZe > which are anyway more germane to the intrinsic

hypothesis, as they are based on the covariance of the

increments.

We shall now give an alternative formulation of the co-kriging
procedure which is more in line with the design-based approach
to double sampling as defined in (D. Mandallaz, 1991).

Since Z(x)= Z(x)+.e(x), the co-kriging estimate (5.33) can be

rewritten in the form

(5.38)

zV0)=XM*,)+£M(*;)
iesj les,

where

Xt=Xt for ies2 ,ji, = X, + |l, for les2,\il =H, for le^-S-,
which implies ^Xt=l anc^ X&=*

les2 les,

Therefore, finding the best estimate in the class (5.38) under

the new constraints is equivalent to the co-kriging set-up as

defined in (5.33). However, it is very instructive to work

directly with (5.38).

z\vo)-z(VJ= JjXie(xi)-^\e(x)dx+^rz(x,)dx--^jz(x)dx
ies2 WV0)v, les, K\Vo) V.

which is a sum of authorized linear combinations under the new

constraints. Using (4.12) and (5.32) the expected mean square

error is found to be:

E{z\vj-Z(V0)}2=-^XiXjyE(xi-xj)-yE(V0^J+2YKyM^0)
i,jes2 ies2

- Xiwz(*fc-*iMz(v0,v0)+2X£«yz(*i.v;)
kies, les,

+ 2 X^Yz,EU(-^)-2Yz,E(V0,V0)
tes2 .(es,

+ 2XA[YZ,UI,V0)+ 2X^YZ,U(.V0)
les, les2

Minimizingthis expression under the new constraints yields the

modified co-kriging equations:
(5.39)

X^fYeU«-^ic)+ SAlYÄieU«-^fc)+ ^=YEUfc.Vr0)+ YZieUfc.V0) for kes2
les2 les,

J4XtyzJxl-xk)+ ^lyz{xl-xk)+ x2=yz{xk,V0)+ yzJxk,V0) for kes,
(€S2 les,

Xxt = i , X*> = 1
tes2 les,

The mean square error is then found to be:
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e{zVj-z(vj}2=XVM*i>K)-YE(K>v0)+*i
+ X^YzU!,V0)-y^(V-0,V-0)+ t2

(5.40)

ies2

f

les,

+ X^Yz,EU(.V0)+ XfI1Yz,EU(,V0)-2Yz,E(V0,V0)
(es2 les,

The equations (5.39) and (5.40) are also valid with TZE .

Substituting (5.37) into (5.35), it is straightforward but

tedious to check that indeed

Xt=Xt for £es2,flL,=A,,+H, for les2,fL, =n, for lesl-s2
and that the mean square errors are equal, as expected on gene¬

ral grounds. Why then consider the more difficult and non-

standard equations (5.39) and (5.40)? The reason is that, if

the increments of residuals and predictions are uncorrelated,
then YZE(h) = 0 and (5.39) and (5.40) simply reduce to separate

kriging of residuals and predictions, and subsequent addition

of the resulting mean square errors (note that this simpli-

fication does not occur explicitly with the cross-variogram

rz£, though under assumption 5.26 the Solutions coincide). This

is a very appealing procedure, which we shall call double

kriging and investigate in the next section.
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5.5 Double Kriging

Double Kriging yields the best linear unbiased estimate in the

class

(5.41)

«*(v.)= XM(*i)+5>i*(*i)
ies2 les,

under the following assumptions:

i) e(x),Z(x) are intrinsic processes

ii) e(x) and Z(x) have uncorrelated increments, i.e.

cov(e(x+A)-e(x),Z(x +/j)-Z(x)) = 2YZE(/i) = 0

iii) the covariance structure of the increments is

symmetrical
cov(e(y)- e(u0),Z(x)- Z(u0)) = cov(e(x)- e(u0 ),Z(y)- Z(u0)) Vx, y, u0

Remarks:

ii) is weaker than requiring residuals and predictions to be

uncorrelated.

iii) is required in order for (5.29) and (5.39) to hold.

Under these assumptions, the co-kriging result (5.39) shows

that the double kriging estimate can be obtained by kriging
residuals and predictions separately i.e.

XVy^-xJ+T^YJxjcVj for fces2
(es2

X^ = 1
les2

y£Viyz(xl-xk) +x2=yz{xk,V0) for kes{
les,

X^=1
les,

The mean square error is then found to be

E{z*(v0)-z(y0)}2 = XxiYEUi^0)-YE(v0,v0)+x1
ies2

+ X^YzUi.V0)-Yz(V0,V0)+ x2
les.

(5.42)

(5.43)
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Double kriging is therefore remarkably simple, it is obtained

by the following Steps:

1) Perform an ordinary kriging of the predictions.
2) Perform an ordinary kriging of the residuals.

3) Add up the point estimates and the expected mean

square errors.

Once again we emphasize that double-kriging is equivalent to

co-kriging observations and predictions according to (5.35) or

to co-kriging predictions and residuals in the sense of (5.39);

this is true essentially under the condition that predictions
and residuals have uncorrelated increments, a natural assump-

tion, particularly if an external prediction model is used,

which, and this is of the utmost importance, does not have to

be "true" (i.e. Ee(x)=0 ) for the procedure to be valid (simp¬

ly because the model equation (3.6) actually defines the resi¬

dual process). If one really believes in the model, then simple
kriging instead of ordinary kriging could be used for the resi¬

duals, but this seems generally to be an over-optimistic view

and, besides, unnecessary. Finally, it is easily seen that

double-kriging yields an exact interpolator.
It is worth noting that the design-based regression estimate

(linear or not) for double sampling can be rewritten in the

double-kriging form (5.41) by setting Xi=n21 ,H,=rii-1; if the

two variograms are pure nugget effects the mean square error

corresponds formally to the design-based variance (D. Mandal¬

laz, 1991, 1992). In this sense, double kriging is the natural

generalization of the design-based regression estimates used in

double-sampling schemes.

The situations in which co-kriging can be simplified or even

reduced to separate kriging procedures has received much atten¬

tion (G. Matheron, 1965; A.G. Journel, C. Huijbregts, 1978; J.

Rivoirard, 1989) .

Kriging of residuals has been used in many applications (for a

review see S. P. Neumann, E. A. Jacobson, 1984), primarily to

take non-stationarity into account. The approach presented here
differs in as much as one wants to get better estimates by
using auxiliary Information, summarized in the prediction



38

process Z(x); that is, techniques originally developed for the

non-stationary case can be used, even if the prediction and the

residual processes are stationary or at least intrinsic; if

they are not, one can, at least in principle, use non-

stationary geostatistics to both components of (5.40), e.g.

intrinsic kriging of order k (see G. Matheron, 1973; Delfiner,
1976; P. Chauvet, 1991; section 5.6 below). Also, it is more in

line with design-based sampling theory.
So far, we assumed that the model was external, that is given

beforehand, and not fitted on the basis of the present inven¬

tory data. If the model itself has to be constructed from the

inventory data (i.e. with (z(x(),A(x(),i € s2} ), or only the

unknown parameter ß to be estimated, several problems occur:

1) Any estimate ß of ß cannot be optimal, since this would

require the knowledge of the true underlying variogram of the

residual process.

2) Any estimation of the true underlying variogram yE{h) on

the basis of the fitted residuals is biased. The bias is gene¬

rally small for small lags h, but can be serious for large lags
(G. Matheron, 1970;N. Cressie, 1991; M. Armstrong, 1984; J.P.

Chiles, 1977). In the next section, we shall present a new

model-basedmethod, which eliminates these difficulties.

If the auxiliary Information is reduced to a set of polyno-
mials in the co-ordinates, it is possible to bypass the above

circularity by using the theory of intrinsic functions of order

k (G. Matheron, 1973) . Unfortunately, polynomials do not really
convey the idea of auxiliary Information as needed for forest

inventory. However, we shall now see how the IRF-k ideas can be

adapted to our problem.
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5.6 External Drifts and Universal Kriging.

In this chapter we consider the following decomposition
Z(x) = m(x)+ e(x)

where m(x) is a deterministic function and e(x) is a stochastic

process with zero expectation and finite variance (not neces-

sarily stationary). If m[x) is known everywhere, the estima¬

tion of

zivJ-ik)lzMdx
is straightforward, namely

where e (V0) is the simple kriging estimate based on the true

residuals e(x) = z(x)-m(x). However, m(x) is rarely, if ever,

completely known and has to be modelled. To pursue further, we

shall postulate a linear relationship, i.e. set

m(x) = F(x)'ß with F(x),$eR"
Note: Vectors are always understood as column vectors and the

upper index t Stands for the transposition Operator of vectors

and matrices.

If the model is external and correct (that is ß is known and

EZ(x)= m(x) ) and F(x) is known everywhere (for instance when

the auxiliary Information rests upon thematic maps), then the

previous remarks apply (fm(x)dx is known). If these conditions

are not met, we are back to the circular problem mentioned in

the previous chapter. However, if F(x) is a polynomial of

degree k in the coordinates (possibly with locally varying
coefficients), the techniques of intrinsic kriging of order k

can be applied (G. Matheron, 1973; Galli et al, 1987, G. Chris¬

takos, 1992) . This approach is perfectly justified to model

non-stationary behaviour with either :

(i)an obvious structure (e.g. a strong linear trend in one

direction).
(ii) an unclear structure without an intuitive physical
background.

Under case (ii) the , so called internal, drift can be

approximately and purely pragmatically modelled by local

polynomials. Unfortunately, this does not really address the
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problem of combined forest inventory, primarily because the

auxiliary Information has generally a strong influence on

m(x) = EZ(x),with a direct physical meaning (e.g. stand

structure),which we shall call an external drift and which

cannot be adequately modelled by polynomials (m(x) being for

instance discontinous at stand boundaries). The main idea of

intrinsic kriging of order k is to consider only linear

combinations of the data which filter out the polynomial
trends, and this can be heuristically extended to any F(x) as

we shall see.Before going into the mathematics, let us

emphasize a few points of more philosophical nature.

In the decomposition (5.43) "drift+residual" the process Z(x)
is by definition non-stationary, whereas a structural analysis
performed on a realization z(x) (and also on e(x),z(x) ) may

well not reject the assumption of stationarity. Why, then ,use

techniques specially designed to cope with non-stationarity,
like universal or intrinsic kriging of order k ? Not for the

sake of sophistication, but to take auxiliary Information into

account. This Situation may seem rather confusing, as also are

the dichotomies "stationarity/non-stationarity" and "drift /

residuals", concepts which are highly dependent on the scale of

the problem at hand and of the availability of auxiliary Infor¬

mation (for a review see A. G.Journel, M. E. Rossi, 1990; D. M

Myers, 1989). To formulate this issue in forestry terms: a

forest may well look stationary if one does not have a stand

map of it, but not if one has, and likewise if one looks at

smaller or larger parts of it. From a pragmatic point of view

the correct approach is the one giving the best estimates;
since the true value of z(V0) is nearly always unknown (an ex-

ception being the case study of chapter 7), it is recommen-

dable to use several techniques for comparison.
We define the following column vectors and simplify the nota-

tion by setting n = n2 (formally nj=<», since the auxiliary
Information must be known everywhere).

(5.44)
z = (z(x1),z(x2), z(x„))' eR" ,xt es2

e=(e(xl),e(x2), e(xn))' eR",x; €s2

(all vectors are defined as column vectors, and the vector e

is the realization of the corresponding random vector e ) .



41

The [n,p) matrix F is defined according to:

(5.45)
i-th row of F = F[xt)eRp
We shall of course assume that the number of observations is

much larger than the number of parameters, i.e. n>p .

The restriction of the model at the data points x, reads

(5.46)
z = F^+ e

Z is observable but not e since ß is unknown. We assume

furthermore that

(5.47)
Ee(x) = 0,Eee' =ZE ,ZeJJ =cov(e(xr),e(x;))

We define for future use

(5.48)

a: =var
1

\e(x)dx €/?'

<C=cov e(^;),t \e(x)dx' X(V0)J
eR" ,x{ esi '=J2

F=—^—[F(x)dxeR"

The universal kriging estimate of

«v°]=mlzMdx
is the best linear unbiased estimate in the class

z*(V0) =X'z,XeR"
which implies the condition

F'X = F0
Unbiasedness can always be ensured if the following
compatibility condition holds :

span{F{x)',xes2) = span(F{xY,x eV)<zRp
i.e. the data points span the entire space of auxiliary
Information.

The mean square error is easily found to be :

E(z*(V0)-Z(V0)f=X%X+o20-2X'a2
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Minimizing the above expression under the unbiasedness

constraint by the Lagrange's technique yields the universal

kriging equations :

(5.49)

F' 0

(XF

^

where \ieRp is the vector of Lagrange's multipliers and 0 is

the [p,p) null matrix.

The mean square error is then equal to

(5.50)

E(z*(V0)-Z(V0))2=a2-X'a2,0-F0V

It must be emphasized that the kriging equations (5.49-5.50)
are very general and in particular they do not require any

assumptions of stationarity. Note that universal kriging gives
also an exact interpolator.
The main drawback of the universal kriging equations (5.49-
5.50) is, of course, that ZE ,o20 <J2 are unknown, which leads

again to the circularity problem mentionned before (N. Cressie,
1991) ; by assumption F0 is known since the auxiliary Informa¬

tion is known in every point, otherwise it must be estimated,
which induces further difficulties we shall not deal with here.

Furthermore, there is a fundamental difficulty, which is often

overlooked, by postulating the model (in vector form)
Z = F^ +e

Indeed, one can add a zero mean random vector ß to ß and

redefine the residuals, i.e. set

Z = F(ß + ß) + e

The two modeis are obviously indistinguishable. When F(x) is a

polynomial this leads to the equivalence class of intrinsic

random functions of order k (IRF-k for short) as defined by G.

Matheron (1973). We shall see that the same kind of indeter-

mination holds for external drifts, but that it is irrelevant

for estimation purposes.

In analogy with- the IRF-k theory, we consider only linear

combinations of the observations which filter out the unknown

drift, i.e.
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(5.51)

Vß X'z =X'F$+Xe= Xe for all X such that X'F = 0

Since a unique realization is available the above authorized

linear combinations of the data are, from an operational point
of view, the only meaningful quantities as they are independent
of the true but unknown underlying drift. In other words, X

must be orthogonal to the subspace of Rn generated by the

columns of F. It is worth noting that the same idea is the

starting point, in the gaussian case, of the so-called restri-

cted maximum likelihood procedures (R. Christensen, 1990b; D.L.

Zimmermann, 1989), which is presented in the mathematical

appendix. To characterize this subspace we use the singular

value decomposition of the matrix F (G.H. Golub, C.F. van

Loan, 1983) given by :

(5.52)
F = UDV

where U and V are orthogonal (n,n) and (p,p) matrices and D

is an (n,p) "diagonal" matrix, satisfying :

D9=0 for i*j,Dii=al for i<p,Dg=0 for i> p and

a, >o2 >....>cq >aq+l =....= ap = 0 , rank(F) = q<p .

Partitioning the matrix U into its first q and last n-q

column vectors, U= \Uq\u„_q), one can determine the protection

Operator P1 onto the subspace orthogonal to Range(F) = F(RP)
(i.e. the residual-space ) according to

P1 =U U'

Note that the projection Operator onto the model-space Range(F)
is P = I-P1=UqU'q (see G.H. Golub, C.F. van Loan, 1983, p.21)

and that rank(P1)=n-q , rank(P) = q.

We calculate the projection Operator via the singular value

decomposition because of numerical efficiency and generality
(non-full rank modeis with q<p are very useful with quali¬
tative data) and not via the Computing intensive "hat-matrix",
i.e. P1 =I„-F(F'F)~1F', as commonly done.

The vector of the observed residual is defined by r = PLz, and

the corresponding random variable by
R = P1Z = P1{F$+e) = P1z as PXF = 0 .

Note that the so defined residuals are not the optimal ones as

this would require the knowledge of the true covariance matrix.
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The authorized linear combinations X are then of the form

X = PV for some [i€Rn (recall that P1 is idempotent and

Symmetrie). One then has

X'Z= (p1\i)'z= \i'P±Z = \i'P1e = \i'R and therefore E X'Z = E \i'R= 0

For instance, the individual empirical residuals are authorized
linear combinations, indeed it suffices to choose |1, ,1 = 1,2—n
as the canonical basis of R" and to set Xt = P1^.
More generally, one could take any basis \it of Rn. In all

instances the variance of an authorized linear combination is

given by:
var(X',z) = E (X/zf = varfn/T^e) = n/P^PV, =V^z

Hence, a sensible strategy for fitting a parametric model to X

is to minimize the expression:
(5.53)

X(M2-vW
Alternatively, since Xl'Z= [il'P1e= [il'R one also has

var(X/Z)= lVERR% = ^/P12EPX^/

where Ze denotes the covariance of the true residual vector.

Therefore, minimizing (5.53) is equivalent to minimizing
(5.54)

The question is now to choose a family of vectors |i, for which

(5.54) is to be minimized. It seems natural to impose a norma-

lizing constraint on the vector norms and not to privilege any

direction, which leads to using orthonormal bases only.
Furthermore, a sensible approach to estimate the unknown
covariance matrix 2e is to minimize the maximum of (5.54), i.e.

to üse a minimax strategy.
Let us define A = rr' -•PiXE/>1 and the Frobenius norm of any matrix

f \Y2
A by X«,2 =p{A'A)

V'.j J
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Since [1, is an orthonormal basis there exists an orthogonal
matrix B such that H, =ß<?z • where e, is the canonical basis.

Set Ä = B'AB , then one has:

XWAU,)2=±{e;le)2=±K =XV-SV<|ä|2 = ||A||2 = Trac. A2 =X«,2
z=i /=i /=i /,t=i /** '=1

where we have used the invariance of the Frobenius norm under

orthogonal transformations (G. H. Golub, van Loan, 1983, p. 15)

and where a2 >a2 >....>a2 are the squared eigenvalues of the

matrix A (which is Symmetrie but not necessarily positive
definite). It is now clear that the upper bound is actually
achieved when the orthonormal basis |i, eoineides with the

orthogonal basis consisting of the eigenvectors of the matrix

A. For computational purposes it is useful to note that with

Q = P\
\\rr' - ÖZßl = Trace{{rr< - QXQXrr'- QLQ)) = Trace((rr'- XQ)(rr'-Zß))= \rr' - Zß|| = \rr' -Ql\\
(because of the invariance of the trace under cyclic permu-

tation and Qr = r , Q2=Q ).

Hence we have proved the following important result:

(5.55)
The minimax least square estimate £E of the residual covariance

matrix ZE minimizes the Frobenius norm

rr'-P1ZP1|=lk'-P15:|
It is interesting to note that the Frobenius norm was also

proposed by P. K. Kitanidis (1985) in the context of quadratic
estimation of components of covariance; in this approach one

Postulates a decomposition of the form :

(5.56)

sE=i>2^
i=i

with known matrices V{; the coefficients can then be explici-

tely estimated via quadratic forms (see also R.J. Marshall and

K.V. Mardia, 1985). The least square approach (5.55) is, of

course, far more general, but requires numerical minimization,
because the parametric model for the covariance matrix is usu¬

ally non-linear in the parameters. This can be prohibitive if

the dimension of the parameter space is large. However, if the

model is adequate, the residual can be expected to have a

simple covariance structure (i.e. spherical/ circular, expon-

ential, gaussian), depending only on sill, ränge and possibly a
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nugget effect. Anisotropy or nested structures could indicate

that not all the relevant auxiliary variables have been taken

into account. To be specific, let us assume that I(ö)= oK(d),
where K(ü) denotes a correlation matrix depending on the

unknown parameter üeRk and the unknown variance <7 .

It is shown in the appendix that, under fairly general condi-

tions on the correlation matrix for a set of sample points, the

following algorithm yields, in the gaussian case, asymptot-

ically consistent estimates Ä,a :

(5.57)

Step 1

Find, with respect to "&, the absolute minimum of

Irr'-a'WP1/^)!
or, equivalently, the absolute maximum of

LS:={r'Kmr)a2m
where

r'K(ö)r
(5.58)

o'(ä)= -

Tr(PLK(ü))2
Let # denote the unique absolute extremum

Step 2

Set

62=o2(fl)

Remarks:

(1) In the simple stationary case, the only "external

drift" is the constant "1" and the minimax least square

estimation amounts essentially to perform non-linear

weighted least Squares on the empirical covariances at all

lags, the weights being proportional to the number of pairs
(in practice one usually retains the lower lags of the

empirical variogram in order to have enough pairs and a

better estimate near the origin). Therefore, the above

procedure is a mathematically sound generalization of the

empirical fitting techniques commonly used.
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(2) The gaussian assumption can be removed with technical

conditions on the 4th moments, hence the least square

procedure is more general than the gaussian maximum

likelihood (though the later is often used in non-gaussian
cases). The correlation matrix must not necessarily be

stationary, though it will have to be in applications.

(3) The convergence holds for domain asymptotics, i.e. one

considers a fixed grid and let the domain tend to infinity.
It may not hold for infill asymptotics, i.e. when the

number of sample points in a finite domain tends to

infinity. Fortunately, this is not really relevant for

forest inventory.

(4) In the stationary case, convergence holds not only for

all covariances with finite ranges but also for some

displaying long term dependencies.

(5) In finite samples, the convergence conditions imply
that the correlation ränge must be substantially smaller

than the dimension of the domain containing the sample
points used for the estimation. If, a posteriori, this is

not the case the estimation procedure can be unreliable. If

it is, the kriging estimates for the entire domain will

terid to be very close to the classical sampling theory
estimates. In this sense, geostatistical estimation is pri-
marily relevant to obtain unbiased and efficient local

estimates. This important point is rarely mentioned,

probably because formal convergence proofs were not

available.

(6) The restricted maximum likelihood estimates are more

efficient than the least Square estimates. From a numeri-

cal point of view, the least square estimates are far less

Computer intensive under straightforward grid search tech¬

niques since, in contrast to maximum likelihood, they do

not require inversions of the, sometimes very large, corre¬

lation matrices. The efficiency ratio tends to 1 for

increasing nugget effect (see 7 below) or decreasing



48

correlation ranges. Formulae for the asymptotic covariances

matrices of the estimates are given in the mathematical

appendix, as well as a discussion in terms of the spec-

tral density of the underlying residual process.

(7) To take a nugget effect into account simply set
_2

ZE = a\Kxm+o2/ = a2((1-X)K{(d)+Xl),a2= a2 + a2 ,X = -f
where X is the proportion of the variance due to the

nugget effect.

(8) In practice one should look at the empirical variogram
of the residuals to determine the domain over which the

optimization should be performed. The least square estimate

could be used to perform a one Step iteration with maximum

likelihood in order to get shorter confidence intervals. In

any case, the estimation process yields a unique extremum

as long as the correlation matrices differ from the unity
(i.e. a ränge shorter than the minimum distance between two

sample points cannot be estimated !)

The interested reader will find formal or elaborated heuristic

proofs of the above facts in the mathematical appendix.
The least square approach immediately suggests the use of

other matrix norms to improve the robustness of the estimates.

However, the euclidian Frobenius norm is intuitively more

appealing and enjoys the important minimax Interpretation.
From a numerical point of view, the required Computing time

can be a problem with very large matrices. One could then split
the domain into subdomains and pool the estimates, provided
they are coherent; if not, stratified universal kriging should

be used instead.

The Software BLUEPACK uses a related estimation procedure for

estimating the generalized covariances in the IRF-k (k<=2)

context. However, it directly works with a set of authorized

linear combinations (i.e. with equation 5.53 instead of 5.55)

based on moving neighbourhoods of moderate size. Moreover, it

is purely empirical and convergence criteria are not available.

Moving neighborhoods can be problematic with truly external

drifts for two reasons; first because generalized covariances
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are only legitimate with polynomial drifts and secondly because

the compatibility conditions may not hold in small neighbour-

hoods, a problem rarely occuring with polynomials. In our expe-

rience, using generalized covariances with non-polynomial
drifts can lead to completely misleading results.

We now briefly consider hypothesis testing for the residual

covariance. Let X0 be the true but unknown covariance matrix

and Zj the test covariance matrix.

Let \|/( be the unit eigenvectors of the matrix PJ\Z1P1 (.Symmetrie

and positive semi-definite) corresponding to the non-zero

eigenvalues 0, 1 = 1,2 n-q = rank(Px)= rank(P1I,lP1). Under the null

hypothesis 21=S0 tne random variables \\f\R are uncorrelated

since

covfep,V|ä) = FfcP^'PVj=v|PxW*= 6A,z
The linear combination y',r of the empirical residuals have the

obvious non-parametric variance estimate (\|/{r) and as para-

metric estimate the eigenvalue . In the gaussian case, and if

the model is correct, the random variable

(5.59)
1-9 \,=IW
;=i ö;

is therefore distributed as a chi-square on n-q degrees of

freedom. Now, one can rewrite (5.59) as

* .?H2Sl_Trace Lf.*&}-r'?»I
;=i o, ^ ftV '=i vi J

2=? Mi nr'

(=1 ö,
1-9 yy w'

The matrix X ^s precisely the Moore-Penrose generalized

inverse of P1!^1 (see G.H. Golub, C.F. van Loan, 1983, p.139),
denoted by (P^P1)* . Hence one can also write:

X2=r'(p%P±)+r
Under the null-hypohesis, this random variable follows a chi-

square distribution on n-q degrees of freedom. This is a gene-

ralization of a well-known result on quadratic form (see C. R.

Rao, 1967, p.493). The expected value is easily found to be

E X2 = Trace(p1I.0PL(P%P1)+).
Under the null hypothesis P1!.^1^1^1)* is the orthogonal

projection onto Range(PLlLGPi-) (see G.H. Golub, C.F. van Loan,



50

1983, p.139) so that EX2=n-q also holds in the non-gaussian

case.

Let us emphasize that X2 is not a goodness-of-fit test, i.e.

it would be wrong to perform this test with an estimate of the

covariance matrix and to infer from a non-significant value

that the point estimate is compatible with the data (within the

model) or that the parametric model is correct. As a matter of

fact, the chi-square so obtained will be exactly n-q at the

restricted maximum likelihood estimate, no matter what model is

fitted (see the mathematical appendix). On the other hand,

assuming the model structure to be essentially correct (e.g. a

spherical covariance), then one can easily determine an inter-

val of ranges compatible with the data for a given sill.

We now go back to the fundamental indetermination of the

model. The observable empirical residual random vector R is

linked to the true but unobservable residual vector £ by the

relation R = PLe. This equation for e is consistent as

ReP^R"); the general Solution is given by
(5.60>

e =M+P+(/n-MV)co
where (OeRn is arbitrary and A+ denotes the Moore-Penrose

generalized inverse of any matrix A; furthermore A+A is the

projection Operator onto Range(A') (G.H Golub, C.F. van Loan,

1983); now, R = PLZ , (/„ -(P1)+P1) is the projection Operator

onto RangeiF) and projectors are Symmetrie, so that one finally

obtains

(5.61)
e = R+ F$

where ß is an arbitrary random vector with zero expeetation (R

has by definition of £, and e, as the corresponding model must

also be correct).
In otherwords, for a given observed empirical residual vector

r, there exist infinitely many compatible realizations e of

the underlying true but unobservable residual process. For a

given version e^ the process defined by

e2 = 6j +Fß
where ß e Rp is a random vector with zero expeetation and a

given covariance matrix £ß, is equivalent from the point of

view of Statistical inference; note that since 0) was arbi-
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trary, one can assume without loss of generality that ß is

independent of 6j. Thus, the fundamental indetermination

suggested earlier, purely heuristically, is in fact the only
one. From (5.61) one easily obtains the following relations

between the various covariances used in universal kriging:
(5.62)

Z2=Z1 + FL&F'
<0.2=<O.l+*V/
<2=<i+^f;

where Z&=Eßß' and the indices 1,2 refer to the versions. Let

us denote by A,,,^ and X2,\i2 the Solutions of the kriging Sys¬

tem (5.49) with respect to versions 1 and'2. Using equation
(5.61), it is easily verified that the Solutions and the expec-

ted mean square errors are equal, so that the indetermination

is irrelevant for kriging. Likewise, the Frobenius (euclidian)
norm jjrr* — JP"LX/>xj|, used for estimating the covariance matrix, is

independent of the version chosen, since P1F=0 .

This result is in complete analogy with the IRF-k theory. The

difference being that for arbitrary drifts we have to postulate
the existence of a stationary residual process (other, non-

stationary processes, would give the same observable quanti-
ties, but they are equivalent with respect to kriging), whereas

the IRF-k theory actually establishes, under the crucial assum-

ption of polynomial drifts, the existence of a stochastic

process with stationary generalized increments and gives the

general properties of the underlying structure (generalized
covariances) . It can be shown that in this case IRF-k kriging
is equivalent to an appropriate universal kriging model (R.

Christensen, 1990a).
The disadvantages of universal kriging, as compared with

double kriging, are that it requires an exhaustive knowledge of

the auxiliary Information (in practice thematic maps with

accurate determination of surface areas) and that the model

structure must be correct (zero mean residual). In such a case,

one could still get the least square or restricted maximum

likelihood estimate of the residual covariance matrix and then

use one of the following three methods:
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(1) Perform universal kriging at the points xesl-s2

followed by kriging with measurement errors according to

the rule: a2(x)=estimated kriging variance when xes1-s2 ,

and a2 (x) = 0 when x e s2.

(2) Perform universal kriging at all points xe^ followed

by double kriging. Note that kriging the residuals yields
zero for the point estimate (since universal kriging is an

exact interpolator), but not for the mean square error.

(3) Recalculate predictions and residuals with generalized
weighted least Squares based on the estimated covariance

matrix and then perform double kriging.

The second procedure has the advantage that it is simpler than

the third (and in most instances numerically very close, if the

validity assumptions for convergence are fulfilled), whereas

the first underestimates the mean square error as we have seen.

The main advantage of universal kriging as presented here is

that it gives a mathematically correct treatment for internal

modeis, bypassing the drift/residual circularity problem, and

validity conditions.

The only remaining difficulty (assuming drifts and covariance

have been adequately modelled) is to assess the impact of using
an estimate of the covariance, instead of the true covariance,

on the point estimates and the kriging variance. Analytically,
this appears to be an extremely difficult problem; preliminary
results indicate that the strength of the spatial correlation

(the stronger the better) and the condition index (ratio of the

largest to the smallest eigenvalue) of the covariance matrix

(the smaller the better) play an important role (P. Diamond, M.

Armstrong, 1984; J.J. Warnes, 1986; D. Posa, 1989; M. L. Stein,

M.S. Handcock, 1989; D. L. Zimmermann, N. Cressie, 1992) .
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5.7 Estimationof Ratios

In many applications, one has to estimate quantities of the

form:
(5.63)

[z^dxr-r(V)d =^1"' \z2(x)dx z2(V0)

e.g. percentages of trees with some characteristics, or mean

timber volume per tree, etc. Note that in most circumstances,

it would be wrong to consider quantities like:

MV„){z2(x)
z (x)

as the function , ^
is generally not even additive.

z2(x)
The technique we propose to estimate r(V0), and particularly
its mean square error, differs from the Standard procedure as

presented in (A.G. Journel, C. Huijbregts, 1978). Instead, it

rests upon a geostatistical reformulation of Fieller's theorem

(D.R. Cox, 1967), which is more in line with the design-based

approach.
For each peR' we define the following random variable:

(5.64)

6(p) =—\-JU(x)- pz2 {x))dx

Note that from the definitions, one has :

(5.65)
6(r(Vo))= 0

Let 6*(p) be an estimate of 6(p); this estimate can be obtained

by any of the techniques described so far, for instance double

kriging. For each given p, one needs to determine the vario¬

grams of the "predictions" z7(x)-pz2(x) and of the "residuals"

e,(x)-pe2(x). This can be done either by direct model fitting of

the empirical variograms of these two new processes or by using

pre-existing modeis of variograms and cross-variograms, and the

relation yu_pV(h)= yu{h) + p2yv[h)-2pyuv{h) for any two processes

U,V. Obviously, the first technique is more time consuming,

but also more robust and instructive, since it modeis the

relevant variogram directly.
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The estimate r =r (V0) of the ratio r(V0) is defined, because of

(5.65), as the Solution of the equation
(5.66)

6*(p) = 0,i.e. eV*) = o

The procedure is iterative, namely:
(5.67)

* z*(V0)
ri ~

*

z2(V0)
* *

* * 9 (k )
r = r H —s-^-

z2(V0)
where z1 (V0),z2 (V0) are the double kriging estimates of the true

values zi(V0),z2(V0). The scheme (5.67) is based on the following

argument:
sie * ? ?

Set rB+1 = r„ +e„ in (5.64) to obtain 6(rn+1) = 6(rn )-e„z2(K) • Because of

(5.66), this suggests immediately to set:
sk jk jk sk

0 = 9 (rB+1) = 6(r„)-enz2(V0)
which is precisely the iteration scheme (5.67).

We assume convergence and define limrn =r .

Let 9 (p) = 9(p)+ e(p), where e(p) is the estimation error satis-

fying Ee(p) = 0 and E<?2(p) = MSE(9 (p)). Hence, one can write

0 =9 (r ) = 9(r ) + e(r ) and therefore

r*(V#)-KK)=^^)
so that r (V^) is asymptotically unbiased, with the mean square

error approximately given by:
(5.68)

U <v.))

in perfect analogy with the design-based approach (D. Mandal¬

laz, 1991) . In practice it appears that 0, 1, 2 iterations

suffice. It is worth noting that the above procedure also

reduces the bias of the first iteration estimate, which is

simply the Standard estimate. The minor and obvious modif-

ications required when using the other estimation techniques
(e.g. ordinary kriging, mixed kriging, universal kriging) are

left to the reader.
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5.8 Numerical Aspects

(1) Numerical Integration

The boundary of the domain of interest V0 must be approxima-

tely defined by a set of polygons. It appears that point esti¬

mates are not too sensitive with respect to the accuracy of

such polygons,whereas the variance can be substantially infla-

ted if large zones of non-forest area are not explicitly decla-

red as such. It is therefore important that the polygons match

the overall shape of the "forest/non-forest" zones, the error

with respect to surface area being less important. Once the

polygons are defined, it is necessary to define a grid to per¬

form the numerical integrations required by the quantities
Y(x,V0) , y(V0,V0). The discretization mesh should be fine enough

to stabilize the numerical values, also under translations of

the grid. Comparisons of different kriging methods are valid

only with a common underlying grid satisfying the above condi¬

tions for each method. In any case,the numerical uncertainty
should be much smaller than the kriging error.

(2) Kriging

For numerical reasons, it is preferable to keep kriging neigh-
bourhoods under 300 points. For large areas it may therefore be

necessary to work with roughly equally large sub-domains with

less than 300 points. Each subdomain Vt,i = 1,2...L is kriged with

its interior data points only (according to any of the techni¬

ques described in the sections 5.1-5.7 ). The point estimates

z*(V() and the mean square errors MSE, are then combined into a

global estimate for

1=1

according to
.V
MSE;

the overall point estimate is obviously also unbiased. The

formula for the overall mean square error neglects the corre¬

lation between neighbouring points in two adjacent subdomains.
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Nevertheless, it is an excellent approximation if the indi-

vidual kriging estimates are based on more than 50 points.
For the construction of kriging maps, one can use gliding

neighbourhoods instead of a unique neighbourhood. With external

drifts, one must choose neighbourhoods large enough to ensure

the compatibility condition of universal kriging. In our opi-
nion, if one is willing to accept the underlying stationarity
hypothesis or cannot reject it, there are no stringent reasons

for using moving neighbourhoods, except the size of the kriging
matrix and the numerical stability of its inversion. Besides,

fitting variograms or covariances is usually done globally. In

any case, it is wise to investigate the impact of the kriging
neighbourhoods on the point and error estimates, as it appears

difficult to give general guidelines valid a priori.

(3) Software

The calculations required for the case study presented in

chapter 7 were performed either with the Software SAS (SAS

Institute, 1987) on an IBM 3090 for the "classical" Statistical

parts and the linear algebra calculations, or with the Software

BLUEPACK (B1UEPACK, 1990), on a VAX 9000-420 for the geosta¬

tistical parts.
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6 The Design-based Approach.

For easier reference, we briefly outline the main results of

the design-based approach as needed to understand the case

study of chapter 7. Details can be found in (D. Mandallaz,

1991) .

The prediction process Z(x) and the residual process

e(x) = Z(x)-Z(x) are observed at points arranged in Clusters.

Each Cluster is defined by a set of M points x, according to:

(6.1)

x, =x+ e,,e, eR2,l = l,2...M

The random point x is uniformly distributed in a domain

Az>V, such that Pr(x, € V) * 0, VI . The number of points of a

Cluster falling into the forest area is therefore also a random
M

variable M(x) = ^Iv(xx). To simplify the notation, we redefine
i=i

the indices so that the points of the Cluster lying in the

forest area are x,,l = 7,2...M(x). We now define the mean of the

processes at the Cluster level according to:

MM MU) Mix)

Xzu,) X^x!> Xe(x<>
M(x) M(x) M(x)

(The realization of e(.) is denoted by e{.)) .

The design-based regression estimate is given by

XM(x)£(x) %M(x)e(x)
<•. xes, xes2
Z„e = =T •" "

(6.2)

(6.3)

XM(x) J^M(x)
xes2

which is simply the sum of the overall mean of predictions and

residuals ignoring the Cluster structure; it obviously belongs

to the class of double kriging estimates, the weights being

equal to constants for the predictions and the residuals. The

reason for writing the regression estimate in the form (6.3) is

to highlight the role of the weights M(x), particularly in the

variance, as shown below. The large sample s; consists of n;

Clusters, whose centres X are independently uniformly distri¬

buted in A, whereas the small sample s2as1 consists of n2
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Clusters chosen in the large sample according to equal

probability sampling without replacement. The regression
estimate (6.3) is design-unbiased for external modeis, other¬

wise only asymptotically. Note that in contrast to sections

5.1-5.7, rij,n2 are the number of Clusters and not the total

number of points. The design-based variance can be estimated

according to

(6.4)

varz = 1- Ih,
n,
J_J_yri«x)Y(^)_%).+i_l_2.
n2 ih-1^ M2 ) nj n2 -1 JMai

M(x) - \2{z(x)-z2)

where

J,M(x)z(x) ^M(x)e(x)
xes2 — xes.

X^(x)
xes2

,e2 — ¦

XM<*)
X^w

M=^
«2

When estimating domains V0 c V, the above formulae remain

valid after restriction to slnV0. Similar formulae are

available for ratios.

It is obvious but worth noting that one-phase or two-phase
simple random sampling are special cases with

n2 = n, or M(x) = 1

If the centres of the Cluster are lying on the nodes of a

systematic grid (with random Start and possibly also random

orientation), the regression estimate is still asymptotically
design-unbiased but the variance formula (6.3) is no longer
valid (the entire sample can be considered as a Single large
Cluster and no estimate of variance can be based on a Single
realization, which is precisely the dilemma mentionned in the

introduction). However, in practice one nearly always assumes

(as we shall do in the case study of chapter 7) that syste¬

matic samples can be regarded as random samples, so that (6.3)

and (6.4) can be used; this postulate corresponds in some sense

to the intrinsic or stationarity hypothesis in geostatistics.
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7. Case Study.

7.1 Generalities

The major objective of this case study is to illustrate the

theory and give a first empirical Validation of the techniques
described in chapters 5 and 6. The material of this case study
has also been used for an extensive evaluation of various

design-base techniques, as well as model-based and model-

dependent ones (D.- Mandallaz, 1991) .

7.2 Material

The data for this case study rests upon an intensive inven¬

tory carried out in parts of the Zürichberg Forest belonging to

the city and the Canton of Zürich. This forest is typical of

the Swiss Plateau Forest, though its recreational purpose and

its accessibility are above the average.

In what follows, the regeneration areas do not belong, by
definition, to the forest area.

The inventoried forest Covers 217.92 ha, of which 17.07 ha

served for a füll census with accurate determination of the

tree co-ordinates. Aerial infrared photographs are also avai¬

lable (scales 1:9000 and 1:3000) as well as a stand map and

other thematic maps.

Fig. 1 displays the stand map, together with the polygon defi-

ning the small area with füll census and the location of the

plots of the terrestrial inventory. Enclaves of non-forest or

regeneration areas are blank. The stand map is constructed by

Interpretation of aerial photographs with control on the

ground. Data management tasks (digitization, Updates, overlay,
drawing, etc.) were perfomed with the G.I.S. Arcinfo on a VAX

Computer. The stand map is based on 3 qualitative variables,

namely:
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(1) Developmental stage

This stand attribute is defined by the dominant diameter ddom,
the average of the 100 trees per ha with the biggest diameter

at breast height. Though the definition is quantitative it must

be emphasized that the assessment is done by "expert

judgement".

In the present case we have 4 categories:

'3' pole stage
'4' young timber tree

'5' middle age timber tree

'6' old timber tree

12 < ddom < 20 cm

20 < ddom < 35 cm

35 < ddom < 50 cm

50 < ddom .

(2) Degree of mixture

In the present case this attribute has 2 categories:

'1' predominantly conifers

'2' predominantly broadleaves.

(3) Crown closure

This stand attribute is based on the canopy density, defined as

the Proportion of total ground surface of the stand to the

ground surface covered by the trees crowns.

In the present case we have only 2 categories:

1' dense
2' closed

canopy density > 0.9

0.6 < canopy density < 0.9

The 16 possible stand structures actually all occur and are

given in Fig. 1. Fig 2 displays the small domain with its 4784

trees. Table 1 gives the absolute and relative surface areas

according to the different categories of the 3 stand attr-

ibutes.
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Table 1: Absolute and relative surface areas

(without regeneration areas)

Variables Entire Domain Small Area

ha % ha %

Develop. Stage
3 24.93 11.4 1.27 7.5

4 25.87 11.9 2.99 17.5

5 134.73 61.8 7.32 "42.9

6 32.38 14.9 5.49 32.1

Total 217.91 100.0 17.07 100.0

Degr. Mixture

1 50.83 23.3 3.56 20.9

2 167.08 76.7 13.51 79.1

Total 217.91 100.0 17.07 100.0

Crown Closure

1 84.71 38.9 3.27 19.1

2 133.20 61.1 13.80 80.9

Total 217.91 100.0 17.07 100.0

7.3 Inventory Methods

i) Sampling Scheme for Auxiliary Information

The sampling procedure rests upon a 5 points Cluster: from

the central point 2 points are taken 30 m in the W-E

directions and another 2 points 40 m away in the N-S

directions.

The first Ist phase procedure sets the central Cluster

point on a 120 m (W-E) by 75 m (N-S) systematic rectangular
grid, which yields a nominal density of 5.56 points per ha,
or 1 point per 0.18 ha (note that the Clusters partially
overlap in the N-S direction). The Geographical Information

System provides for each point the stand map Information.

The second Ist phase procedure does not actually draw

sample points but gives instead the true means of the
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auxiliary variables via the exact surface areas of the

different Stands; it is used only for universal kriging
with external drifts.

ii) Sampling Scheme for the Terresterial Inventory

The 2nd phase sampling is based on a 5 plots Cluster with

the same geometrical structure as above. The plots have a

horizontal surface area of 300 m^ (9.77 m radius). Diameter

at breast height (DBH in cm), species, crownclass, State of

health and other qualitative variables are recorded on each

tree in the plot whose diameter is above 12 cm. This

sampling scheme sets the central plot on a 1:4 parallel
subgrid of the Ist phase grid, i.e. on a 240 m (W-E) by 150

m (N-S) systematic rectangular grid with a nominal density
of 1.39 plot per ha (1 plot per 0.72 ha).
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7.4 Inventory Data

Table 2 displays the absolute and relative frequencies of the

tree species drawn.

Table 2: Tree Data

Entire Domain Small Area

Species (samples) (census)

Frequencies Frequencies
absolute relative absolute relative

Norway Spruce 807 28.1
..

1874 39.2

Silver Fire 76 2.6 147 3.1

Larch 185 6.6 119 2.4

other coniferous 76 2.6 24 0.5

Total coniferous 1144 39.9 2164 45.2

Beech 1164 40.6 1617 33.8

Norway maple 17 0.6 245 5.1

Sycamore maple 106 3.7 214 4.5

Ash 180 6.2 244 5.1

Elm 50 1.7 173 3.6

other broadleaves 209 7.3 127 2.7

Total broadleaves 1726
'

60.1 2620 54.8

Total 2870 100.0 4784 100.0

Table 3 below gives '

the essential features of the actually
observed sizes (at the Cluster and plot levels), for the points
or plots falling into the forest area. A point is "in", if its

nominal co-ordinates are 'in' with respect to the relevant

polygons of the stand map.

Likewise for a plot according to the nominal co-ordinates of

its centre. For all but one plot no boundary problems ocurred;
because of the inherent inaccuracies in the stand map no adjus-
tment was performed
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Table 3: Observed Sample Sizes

Samples Entire Domain Small Area

nc np MV nc np MV

Ist phase

2nd phase

298 1203 4.04 1.92

73 298 4.08 1.99

29 92 3.17 2.37

8 19 2.38 2.27

Legend:
n„

n
p

Mi

V

number of Clusters with at least one point in the

forest area

total number of points in the forest area

mean number of points per Cluster in the forest area

variance of the number of points per Cluster in the

forest area.

7.5 PredictionModel

The stand map Information can be fully characterized by the

following 9-dimensional vector

X(co)= (X, (co) 1 = 7,2, 9), where

X7(co) = 7 if co lies in

X8(co) = 7 if CO lies in

X9(co) = 7 if co lies in

X;(co) = i, intercept term

for i = 2,3,4,5 one sets

X,(co)= 7 if co lies in development stage i + 1 , 0 otherwise

X6(co) = 7 if co lies in a coniferous stand , 0 otherwise

a broadleaved stand , 0 otherwise

a dense stand , 0 otherwise

a normal stand , 0 otherwise

This model has rank 6, which requires the use of generalized
inverses. Alternatively, one could work with a regulär design
of rank 6 by setting, for example
X,((o) = l

X2(co) = 7 if co lies in development stage 3

X5(co) = 7 if CO lies in development stage 4

X4((ö) = l if co lies in development stage 5

0 otherwise

0 otherwise

0 otherwise

X2(co) = XJ(co) = X<(co) = -7 if co lies in development stage 6
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X5(co) = 7 if CO lies in a coniferous stand , -7 otherwise

Xe(co) = 7 if co lies in a dense stand , -7 otherwise

The model is of the form

y(co) = X'(co)ß+e(co)
i.e. the response variable (stem or basal area density) follows

a simple analysis of variance type model, without interactions.

This model needs, in the classical sense, 6 degrees of freedom,

whereas simple stratification with respect to the stand map

needs 16 parameters.
The Standard least square estimates of the regression coeffi-

cients for the regulär design were:
5k sk 5k *k

(411.96 ,291.62 ,19.86,-126.27 ,11.22,32.54 ) for stem density
5k sk 3k ?k

(30.44 ,-11.61 ,-0.18,7.13 ,4.25,1.96 ) for basal area.

The asteriks denoting a 5% level significant value according to

the Standard tests (i.e. assuming independence and normality).
The magnitudes and signs of the coefficients reflect common

practical knowledge on forest Stands.

According to Shapiro-Wilks test (which assumes independence),
neither the raw observations nor the residuals of the basal

area depart significantly from normality; on the other hand,

the raw observations of the stem density depart significantly
from normality and, to a lesser degree, also from lognorma-

lity; similarly, the residuals on the original scale and on the

log-scale (i.e. using the same model structure on log-stem

density) depart significantly from the normal distribution,

though, optically, less so than the raw observations (see also

Fig. 3 and 4 in section 7.6).

The auxiliary Information is assumed to be error free. This

implies that the nominal co-ordinates of a plot or a point are

the same as the actual co-ordinates (no location errors), and

that the stand map polygons are exact. Furthermore, the auxi¬

liary Information for plots at stand boundaries is determined

by the plot centre only. In such cases, the 0-1 indicator vari¬

ables could be allowed to take fractional values, a technique
which is not presented here as it did not significantly improve
the results.
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To illustrate the estimation technique for ratios, we also

consider the percentage of non-healthy trees (a tree being
healthy if its apparent foliage lo'ss is less or equal 10 %) . To

this end, we use a slightly different model. First, a logistic
model with the same explanatory variables as above is fitted to

the observed percentages in the terrestrial plots. The predi¬
cted number of non-healthy trees in any point is then obtained

by multiplying the predicted number of stems by the predicted
percentage at this point; this procedure is better than a

direct fitting of the number of non-healthy trees. For details

on the State of health and the logistic model see D. Mandallaz

et al (1986) .

The multiple coefficients of determination r2 were 0.5 for

stem density, 0.2 for basal area and 0.15 for the percentage of

non-healthy trees, in agreement with previous experiences.
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7.6 Variography

The figures 3 and 4 display the histograms of the stem and

basal area densities observed in the 298 terrestrial plots.

Fig. 3: Histogramof the observed stem density.
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A selection of the variograms required for the various estima¬

tion problems is given in the figures 5 to 9; the fitted vario¬

grams are the sum of elementary variograms in the sense of

(4.18). The interactive "fitting by eye" technique of BLUEPACK

was used throughout.

Fig. 5: Variograms of the observed and predicted stem densities
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Fig. 6: Variograms of the observed and predicted basal area
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Fig. 7: Variogram of residuals and cross-variogram observation-
residual for the stem density.
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Fig. 9: Auxiliaryvariogram for the estimation of the

percentage of non-healthy trees in the entire domain

by ordinary kriging.
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Fig. 10 and 11 below display the results obtained by the least

square (LS) and restricted maximum likelihood (ML) techniques,
as required for the estimation of the residual covariances in

universal kriging (details are given in sections 9.2-9.3). The

model used is a simple" isotropic spherical covariance without

nugget effect. Both techniques yield shorter ranges than the

direct fitting of the empirical variograms given in Fig. 7 and

8. Similarly, Fig. 12 and 13 displays the results obtained by
the LS and ML techniques for the observed basal area; the model

used is a spherical isotropic covariance with nugget effect.
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Fig. 10: Least square and maximum likelihood curves of the
isotropic spherical model for the residual stem
density
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Fig. 11: Least square and maximum likelihood curves of the
isotropic spherical model for the residual basal area
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Fig. 12: Least square surface for the isotropic spherical model
with nugget effect of the observed basal area
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Fig. 13: Likelihood surface of the isotropic spherical model
with nugget effect for the observed basal area
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Discussion:

1. Fig.3 may suggest a log-transformation for the stem densi¬

ty and, consequently, to apply log-normal kriging for esti¬

mation (see N. Cressie, 1991, p. 135) by ordinary kriging
(generalization to double, mixed and universal kriging being
obvious); whereas this technique is straightforward for

punctual estimation it is computationally prohibitive for

domain estimation (it requires in principle the Integration
of the backtransformed punctual estimates) . Furthermore, as

already mentionned in section 7.5, the log-normal distri¬

bution is not adequate either. For double and universal
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kriging, the contribution of the residual to the mean square
error is predominant: as we have seen, the residuals are

closer to the normal than the raw observations, though, again
neither the original scale nor the log-scale are really
satisfactory. For these reasons, log-kriging was not perfor¬
med; section 7.7 shows that the improvement, if at all, would

have been irrelevant practically.
2.

The variograms of the predictions are continuous at the

origin, which reflects the regulär stand structure, and have

ranges between 250m and 500m corresponding roughly to the

average stand dimensions; stem density displays a slight
anisotropy north-south / east-west. As a first approximation,
the variograms of the observed densities are the sums of the

prediction variograms and pure nugget effects.
3.

The empirical variogram of the observed basal area density
gives a ränge =490m and a nugget effect of =60%, in good
agreement with the ML estimates (466m); the LS ränge is much

larger (633m), though not significantly different because of

its substantial Standard error (196m) (see Fig. 6, 12, 13).
4.

The variograms and cross-variograms of the residuals of the

stem density show that the validity conditions (5.37) for
double kriging are fulfilled. The empirical variogram stron-

gly suggests a short ränge, which was set somewhat arbitra-

rily at 80m (i.e. the largest distance between 2 plots in the

same Cluster). The LS technique yields a spherical variogram
with ränge 3 9.8m and sill 21'267, in perfect agreement with
ML estimates; this is somewhat surprising as the distribution
of the residuals is closer to a lognormal than a normal.

5.

The cross-variogram for the residuals of the basal area show
that the validity conditions (5.37) for double kriging are

also fulfilled. At first sight, the empirical variogram could
suggest either a short ränge, or a ränge around 500m. In ana-

logy with the stem density and because the prediction vario¬

gram itself has a ränge of 475m, the ränge was set at 80m.

The LS ränge (68m) is larger than the ML ränge (45m), but the



80

difference is only borderline significant, which is also

somewhat surprising since here the distribution of the

residuals can be assumed to be normal. It is worth noting
that, in this case, interactive "fitting by eye" used alone

could be misleading.
6. The ML Standard errors are smaller than the LS Standard

errors, particularly for the observed basal area ränge, in

agreement with the theoretical results of section 9.3.

7.

It is interesting to note that under the assumption of a pure

homogeneous Poisson forest, the correlation ränge with circu-

lar sampling plot of 300m2 would be just under 20m. Filtering
out the inhomogeneities, approximatively taken into account

by the stand map, should therefore lead to similar ranges if

the forest departs mildly from the Poisson hypothesis. As the

Poisson structure is generally an acceptable first appro¬

ximation, this provides a further indirect qualitative check
on the adequacy of the LS and ML estimates of the residual

stem density ränge, whose 95% confidence limit is roughly
(28m, 52m) .

8.

The auxiliary variogram.for estimating the percentage of non

healthy trees (Fig. 9) has a ränge of 800 m, well above the
stand dimensions, which could reflect the long ränge depen-
dence of forest damage.
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7.7 Results

The following abbreviations have been used throughout

O.K Ordinary Kriging
M.K Mixed Kriging
D.K Double Kriging
E.K Kriging with uncorrelated Measurement Errors

E.D Universal Kriging with External Drifts.

D.B Design-Based.

For illustration purposes, the kriging map of the stem density
is given in Fig. 14; Fig. 15 displays the corresponding error

map.

Tables 4 and 5 below display the results for the various esti¬

mation techniques; the simple empirical variograms given in

Fig. 5-9. were used throughout.
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Fig. 14: Double Kriging map for stem density
(Squares of 100m by 100m)
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Fig. 15: Double Kriging error map for stem density.
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Discussion

The most important facts are:

1. The point estimates for the entire domain are all very

close to each other.

2. For the small area the empirical biases of the geostatis¬
tical techniques are much smaller than the empirical biases of

the design-based approach, though both are within the res-

pective Standard errors.

3. The kriging errors are generally smaller than the design-
based error, particularly for the small area. This Statement

must be somewhat weakened as the design-based technique is

known to overestimate, generally, the error under systematic
grids. Furthermore, universal kriging relies on the exact know-

ledge of the spatial means of the auxiliary variables and

should be compared, therefore, to the corresponding design-
based technique (D. Mandallaz, 1991), which gives slightly
smaller errors than the DB-errors of tables 4 and 5, without

changing the overall conclusions.

4. As expected on theoretical grounds, the mixed kriging
errors are too small (especially for the small area ), likewise

but to a lesser degree, for kriging with measurement errors.

5. Universal kriging with external drifts yields, in most ins¬

tances, a smaller error than double kriging, as expected on

theoretical grounds.

6. Modified double kriging (in which the predictions are

obtained by universal kriging, see section 5.6) gives
essentially the same results as double kriging.

7. As compared to the design-based approach, double kriging
yields, for the entire domain and the small area, variance

reductions of 15% and 33% for the stem density, 36% and 85% for

the basal area, respectively.
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8. Whereas the design-based technique assigns constant weights
to all the predictions and to all the residuals, the double

kriging weights display, as expected, a very different beha-

viour: e.g. for the stem density in the small area, the 192

predictions weights (see point 4 below of the paragraph on

numerical methods) ranged from -1.64% to 2.64%, roughly 2 0%

being negative, whereas the 298 residual weights ranged from

0.06% to 1.53% and were far more stable, with a bulk around

0.3%, in agreement with the short ränge of the residual corre¬

lation, close to a nugget effect.

9. For the estimation of the percentage of non-healthy trees,

ordinary and double kriging perform best and are essentially
equivalent.

10. Double and Universal Kriging with the LS and ML give- prac-

tically the same results as the empirical variograms. The same

holds also for the Ordinary Kriging of the basal area, even

with the substantially, but not significantly, larger LS ränge.
In this sense, kriging results appear to be reasonably robust
with respect to the choice of the variogram, in agreement with

general experience. However, point 11 below shows that the

above Statement is not to be trüsted blindly.

11. The model-dependent technique, which is essentially equi¬
valent to Universal Kriging with a pure residual nugget effect

(D. Mandallaz, 1991) ,. yields point estimates very close to ED

in tables 4-5, but it substantially underestimates the error

for the small area (by 44% for the stem density and 27% for the

basal area). Therefore, in Double and Universal Kriging, signi-
ficantly to small ranges can yield misleading error estimates,
in contrast to significantly to large ranges.

12. The kriging map for stem density (Fig. 14) displays obvious
similarities with the stand map (Fig. 1); the kriging error map

(Fig. 15) displays larger errors at the boundaries, as expected
since the point estimates are based on less observations than

in the central parts.
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Further Information on the numerical methods:

1. Prediction kriging for the entire domain was performed
after dividing the domain in 8 roughly equal sectors, each

kriged in a unique neighbourhood, with subsequent combinations

of the kriging point estimates and errors.

2. Ordinary kriging was performed in a unique neighbourhood.

3. To check the -accuracy of the combination technique, men-

tionned before, ordinary kriging was also performed with 4

roughly equal sectors. The numerical difference was well within

the Statistical error, so that the technique could be deemed

reliable.

4. For the small area, the kriging of the predictions was

performed with a unique neighbourhood of 192 points, out of

which 92 were inside.

5. For the kriging maps, the predictions were kriged in moving
8 points neighbourhoods.

6. Kriging of the residual was always performed in a unique
neighbourhood with all 298 points and with the variograms
obtained by the least square technique of section 5.6; moving
neighbourhoods led to poorer results, particularly in the small

area where the terrestrial plots were, by chance, well below

average.

7. The numerical integrations were all performed with the same

25m by 25m grid.

8. Several other tuning options were tried, without much

impact on the results. The advantage of the choice presented
here is that it is constant for all procedures.

9. For estimating ratios, it was found that one iteration

suffices to determine the auxiliary variogram (see section

5.7) .



87

10. The accuracy of the polygons defining the forest area does
not have too much impact on the results as long as the main

geographical features are captured; the kriging error is more

sensitive than the point estimates. For instance, considerably
simplifying the polygon for the entire domain from 2490 to 28
vertices leads to relative differences of 3.5% for the surface
area, 0.8% for the ordinary kriging point estimate of the stem

density, and 3.2% for its error, i.e. all the differences are

well within the Statistical uncertainty.
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7.8 Validation.

Unbiasedness and coverage probability

To validate the estimation procedures the small area was divi-

ded in Squares of lha and 0.25ha, for which point estimates and

95% confidence intervals (assuming normality) were calcu-lated.

For Squares overlapping the non-forest area surface, areas

adjustments were done. For space reasons, the details are given
for ordinary and double kriging only. The calculations were

performed with the empirical variograms.

Figures 14-21 below display the scatter plots predicted versus
observed values, for the stem density and the basal area. Cir-
cles indicate that the true value lies in the confidence inter¬

vals, whereas the stars indicate that it does not. The'most

important facts are:

1) Both methods give empirically unbiased point estimates.

2) For the stem density, double kriging yields an actual cove¬

rage rate close to 95 % (if the Squares were independent the

difference between actual and nominal coverage rates would not

be significant) and performs better than ordinary kriging.

3) For basal area, neither ordinary kriging nor double kriging
are really matching the nominal coverage rate with the lha

Squares; with the .25ha Squares double kriging performs rather

well and better than ordinary kriging.

3) The correlation between observed and predicted values is,
in all but one case, higher for the lha than the .25ha Squares,
as intuitively expected.

Fig. 22-25 display the empirical distribution functions, over

the Squares, of the true and predicted values. They reveal that

double kriging performs indeed better than ordinary kriging for

the stem density; for the basal area both techniques have dif-

ficulties to cope with the large values.
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Fig. 16: Double Kriging for stem density, lha Squares.
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Fig. 17: Ordinary Kriging for stem density, lha Squares
(r2=0.56).
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Fig. 18: Double Kriging for basal area, lha Squares
(r2=0.12)
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Fig. 19: Ordinary Kriging for basal area, lha Squares
( r2=0.39)
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Fig. 20: Double Kriging for stem density,.25 ha Squares.
(r2=0.57)
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Fig. 21: Ordinary Kriging for stem density, .25ha Squares
(r2 =0.42)
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Fig. 22: Double Kriging for basal area, .25 ha Squares,
(r2=0.15)
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Fig. 23: Ordinary Kriging for basal area, .25 ha Squares,
( r2=0.35 )
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Fig. 24: Empirical distribution for lha Squares,
stem density
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Fig. 25: Empirical distribution for .25ha Squares,
stem density
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Fig. 26: Empirical distribution for lha Squares,
Basal area density (m2/ha)
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Basal area density (m2/ha)
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The previous findings show that the point estimates are satis-

factory, but that apparently the confidence intervals may be a

source of concern, especially for the basal area. To get
further insight, we compare the estimated mean square errors

with the corresponding empirical values and remove the striking
outliers (though there were no obvious reasons for their occu-

rence). More precisely we consider the following two criteria:

*\2 -XU-**)2
Chi-square= 2_, ~2 , Index= —-r

i=l E«?
If the Squares were independent, and under a gaussian model,

the first criterion will approximately föllow a chi-square
distribution on n degrees of freedom, hence its name. Both

criteria indicate how well the model-based errors agree with

their empirical counterparts. Tables 6 and 7 below display the

results.

Table 6: Goodness-of-fit with all the observations.

Variables Squares Methods Sample
size

Chi-
square

Index r2

Stem

Density

100x100

lha

DK 28 14 0.54 0.89

OK 28 42 1.61 0.56

50x50

.2 5ha

DK 78 123 1.48 0.57

OK 78 203 2.34 0.42

Basal

Area

Density

100x100

lha

DK 28 61 2.07 0.12

OK 28 67 2.34 0.39

50x50

.25ha

DK 78 98 1.20 0.15

OK 78 197 2.57 0.35



96

Table 7: Goodness-of-fit without outliers,

Variables Squares Methods Sample
size

Chi-
square

Index r2

Stem

Density

100x100

lha

DK 28 14 0.54 0.89

OK 27 31 1.34 0.46

50x50

.25ha

DK 75 37 0.54 0.50

OK 74 79 1.20 . 0.42

Basal

Area

Density

100x100

lha

DK 25 28 1.04 0.27

OK 26 39 1.52 0.53

50x50

.25ha

DK 76 76 0.89 0.20

OK 71 108 1.56 0.40

One observes that:

1. Double kriging gives, on average, better error estimates

than ordinary kriging; however, without adjustment for outlying
observations, both techniques underestimate the error.

2. The goodness-of-fit criteria are very sensitive to a few

outliers.

3. After removing the outliers, double kriging overestimates

the error, whereas ordinary kriging underestimates it. Hence,

double kriging does not only give smaller errors, but it is

also more reliable.

4. It was also found that mixed kriging and kriging with measu¬

rement errors were empirically unbiased; both underestimate the

error, sometimes severely and in any case more so than O.K. and

D.K. (even after removing the outliers), particularly mixed

kriging.

5. It can be expected on theoretical grounds that universal

kriging with external drifts performs as well as double

kriging, but the calculations were not carried out because of

the enormous amount of work required.
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8 Conclusions.

The general conclusion of this work is that geostatistics
offers a natural theoretical framework to the estimation
Problems of forest inventory; it is also more germane to these
Problems than classical sampling theory as it takes the funda¬
mental spatial aspects into account, which sampling theory
essentially ignores.
The primary objective of this work was to adapt geostatistical
techniques to combined forest inventory. This can be done in
several ways: mixed kriging, kriging with measurement errors,

co-kriging, double kriging and universal kriging; the latter
only if the first phase is exhaustive (i.e. when thematic maps
of the auxiliary informations are available).
The best procedure, in terms of simplicity, efficiency, relia-

bility and mathematical coherence is double kriging, which is a

straightforward generalization of the classical design-based
regression techniques in double sampling; this procedure is
very simple when the prediction model is external, i.e. known
prior to the inventory: perform ordinary kriging of the pre¬
dictions and residuals and add up the point estimates and kri¬
ging variances; this requires the covariances or variograms of
predictions (available in large numbers) and residuals. Univer¬
sal kriging is the limit case of double kriging when the first
sampling phase is exhaustive. Mixed-kriging and kriging with
measurement errors are simpler ad-hoc procedures which also
yield unbiased point estimates; however, they tend to under¬
estimate the kriging error. Mixed-kriging rests upon the vario¬
gram of the predictions only, which can be an advantage if the
sample size of the second phase sample is small.
If the prediction model has to be estimated with the inven¬

tory data, the inference of the residual covariance is a dif-
ficult mathematical problem. This estimation can be performed
either by a least square procedure, which is a mathematically
correct version of the empirical "fitting by eye " technique,
or by a restricted maximum likelihood procedure. Both methods
filter out the drifts and are therefore also applicable with
external modeis (and in the stationary case). It turns out that
the two techniques yield consistent estimates of the Parameters
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of the residual covariance under essentially the same condi¬

tions, in particular, if the ränge of the correlation is small

with respect to the dimension of the data field; if this condi¬

tion is not met, consistency may or may not hold. The least

square estimate is easier to compute but less efficient than

the restricted maximum likelihood estimate, particularly under

increasingly stronger correlation. The consistency conditions

and first empirical evidence tend to indicate that kriging
techniques are primarily relevant for local estimation.

Though all proposed geostatistical techniques yield theoreti-

cally and empirically unbiased estimates (as shown by the case

study), double kriging is more reliable, with respect to the

estimated error, than mixed kriging and kriging with measure¬

ment errors. Universal kriging performs even better than double

kriging but is of course more expensive and is not always avai¬

lable.

The case study, at the level of the forest enterprise (220ha,

with 3 00 terrestrial plots and a stand map), suggests that

double kriging and universal kriging, together with an adequate
estimation procedure of the residual covariance, are reliable

procedures for the estimation of stem and basal area densities,
as well as for estimation.of ratios (such as the percentage of

non-healthy trees). For very small areas (.25ha-lha, stem and

basal area densities only), they yield excellent point esti¬

mates and acceptable error estimates, whereas design-based
techniques are either not even available or of little practical
value. For small areas (20ha), they perform much better than

the classical design-based techniques, with respect to bias and

error (up to 85% variance reduction for basal area). For larger
areas, all the point estimates get closer and the variance

reduction is smaller, though still interesting (3 6% for basal

area).
From a practical point of view, it must be emphasized that the

quality of the prediction model and the cost ratios are key
factors in combined inventory, in both the classical and geo¬

statistical contexts. For optimization, one can rely on the

classical techniques as a first approximation, since the crite¬

ria for optimization are generally defined at the global level,

whereas geostatistics is primarily relevant for local estima-
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tion. Since geostatistical techniques rely first of all on good
estimates of the spatial correlation, particularly at short

distances, it is recommended to use Cluster sampling tech¬

niques, at least partially.
Future work will apply the techniques developed in this work

at the regional and national levels (with the hope that a kind
of scale invariance will hold for the conclusions) and extend

them to continous inventory (i.e. to the estimation of growth),
particularly under sampling with partial replacement. With

respect to long term perspectives, a large advantage of geosta-
tistics over sampling theory is that the sampling design is
irrelevant for the calculations (but not for efficiency):in the

design-based approach the calculations tend to become inextri-
cable with more than two sampling occasions.
There is also a need to know more about the finite sample pro-

perties of the estimates of the spatial covariance, particu¬
larly when its ränge is not negligible with respect to the

dimension of the data field, and to assess the impact thereof
on the kriging estimates. This will require extensive simula-
tions and numerical work.
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9 Mathematical Appendix

This chapter gives a detailed discussion of the restricted

maximum likelihood procedure for estimating the residual cova¬

riance matrix in universal kriging. The results are not new as

such, but recent and difficult enough to have been mostly igno-
red by the applied literature. The proofs given are interesting
because of their relative simplicity and in this sense also new

(the literature deals generally with the füll maximum likeli¬

hood approach). Moreover, this chapter presents a rigorous
treatment of the least square procedure for estimating the

residual covariance and compares it to the restricted maximum

likelihood approach. These results are new. Though of a theore¬

tical nature, the developments below are not without practical,
sometimes even far reaching consequences, especially with

respect to the underlying assumptions. These findings have been

intuitively outlined in section 5.6.

Before going into the proper Statistical discussion, it is

necessary, for easier reference, to list or prove several tech-

nical facts. This is done in section 9.1.

9.1 Preliminaries

N.B. Vectors are understood throughout as column vectors and

the upper index t Stands for the transposition Operator of

vectors and matrices.

Lemma (9.1)

Let A, B be two (n,n) symmetrical matrices and Tr{ ) denote the

trace Operator, then one has

(Tr(AB))2 <Tr(A2)Tr(ß2)
with equality if and only if 3^1 eR A = [lB.
This is essentially the Cauchy-Schwartz inequality. For a proof
see (J.R. Magnus, H. Neudecker, 1988, p.201).
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Lemma (9.2)

Let A,X be positive semi-definite (n,n) matrices, then

(detAdetX)i<-7r(AX)
n

with equality if and only if A = 0 or 3|ie/?+ X= nA~i. For a

proof see (J.R. Magnus, H. Neudecker, 1988, p.226).

Lemma (9.3)

The Frobenius (euclidian) norm of any matrix C is defined by:
i/ ( V2

\\C\\ = {Tr(CC)Y2= 2C2-,
v <'.; J

Then for any quadratic (n,n) matrix C one has

Tr{C2)<Tr(Cc)= \\C\\2
with equality if and only if C is symmetrical, i.e. C'=C.

Proof:

By definition Tr(c2) = £c?.+%C!JcCki.
1=1 **i

set A = Tr(C'c)-Tr{c2) = ^C2k-^CikCki , which can be rewritten as:
k*i k*i

^ch~ZjCi^Ck.i+2Lc^-2l,CikCkil let Au =Clk-Ck., then one gets
k<i k<i k>i k>i

A = 5XA*+£q,Aw= XQA,+XCU(-A,J= X(Cu -Ct,)A.t = £a2u >0,
*« *>i *<i *<> k<i k<i

with equality if and only if Au=0, which completes the proof.

Lemma (9.4)

Let Al,A2 be symmetrical (n,n) matrices with eigenvalues
^(At)<X2(At)< Xm(Ak),k= l,2

then one has the following upper bound for the norm of the, not

necessarily symmetrical, matrix product:

V i=l )
Proof:

Diagonalizing the matrices one can write Ak =QkÄkQ'k ,k = 1,2 ,

where the Ak are diagonal and the Qk are orthogonal; then,
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because of the invariance of the norm under left/ right ortho¬

gonal transformations and the definition of the norm one has

llA^f =||ß1A1ö1'ö2A2^|2 =||A1ö1'ß2A2|f = 7r(A2$ß1A2ß1'ß2A2)
= 7>(ß^ß1A21ö1'ß2A22) = 7r(A21(ß^ß1)'A22i22öi) . because of the invariance of

the trace under cyclic permutation. With the orthogonal matrix

R =Q2Qi this last expression can be written as 7r(A2/?'A22/?). Let

dt ¦ = (/?'A2R) .

= r{A22rt , where the r; are the orthonormal column

vectors of R. It is then straightforward to verify that

Tr(A\R'A22R) = ^X2(A1)dii , and therefore the result since the qua-
i=l

dratic form defining the dit takes its maximum at the largest

eigenvalue.

Lemma (9.5)

Let Al,A2 be symmetrical matrices with eigenvalues as in Lemma

4 then one has the following inequality:

rr(4Aj24i>r(4)k(A2)
The proof follows at once from the Lemmas 3 and 4. This result

will play a key role in the convergence proof.

Lemma (9.6)

(Poincare Separation theorem):

Let A be a real (n,n) symmetrical matrix with eigenvalues

X,1<X2 <Xn and G a semi-orthogonal (n,k) matrix, i.e. G'G= Ik.
Let (Xj<p,2< \ik denote the non-zero eigenvalues of G'AG, then

X^ii.zX^., 1 = 1,2...*
Furthermore, if M is (n,n) symmetrical idempotent matrix of

rank k, then the non-zero eigenvalues \ix<\x.2< [ik of the

matrix MAM satisfy the relations

X.t<lL;<Xn_k+i i = l,2...k

Proof: see (J.R. Magnus, H. Neudecker, 1988, p.209-210).
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Lemma (9.7)

If Y is a random vector following a multivariate normal

distribution N([i,?L) and A,B are two matrices such that

A[i= 0,B\i = 0, then one has the following expression for the

covariance of two quadratic forms:

E{Y'AY){Y'BY) = Tr(AZ)Tr(BIl)+ 2Tr(AI£Il)

Proof:

This is a straightforward generalization of a result given in

(J.R. Magnus, H. Neudecker, 1988, p.251) after using the

relation 4co\(X,Y) = \ai(X+Y)-\ar(X-Y).

Lemma (9.8)

Let Y be tf(U-,Z).
For the quadratic form n~lY'BY with B\i = 0 to converge in mean

square,and hence in probabitity, towards its expected value,
i.e. HmE(n~l(Y'BY-Tr(BI,))) = 0, it is sufficient that the follo-

n—>o°

wing condition holds:

lim(/r27r(ßZ)2) = 0

Proof:

Expanding the square and lemma (9.7) yield the result after

some simple algebraic manipulations.

Lemma (9.8) will play a key role as it allows the use of a law

of large numbers with correlated random variables, provided the

correlation is not "too strong". It is heuristically clear that

the lemma will hold without the assumption of normality but

with further conditions on the 4th moments.

Lemma (9.9)

Let C be a symmetrical (n,n) matrix of rank n-r with non-zero

eigenvalues X{<X2 ^"X„-r • A generalized inverse of C is any
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matrix C satisfying CC C = C. Then there exits a (n,n-r) matrix

A such that

c-=a(a,ca)~1a'
in particular (a'CA) is a regulär (n-r,n-r) matrix.

Proof:

There exists an orthogonal matrix R such that
(1 . 0>|

(Xx 0 ... (A

C = R
0 . 0

• • K-r„ 0

0 0 ... 0

R' , let A = Ä

0 . 0

0 0 1

. . 0

0 0 0

(so that dimensions match), it is easily verified that

(X, 0 .... 0 ^

A'CA =
0 X2 .... 0

0

0 ... 0 Xn-rj
and that C =A\A'CA) A' indeed satifies CC C = C.

This lemma simply amounts to reparameterizing a linear system"
with dependent equations.

Lemma (9.10)

Consider the differentiable mapping p e Rp-> V(p), where V(p) is a

symmetrical (n,n) matrix, then

-—logdetV(p) = 7V
dpt V~\p)j-V(p)
^-V-l(p) = -V-l(p)^-V(p)V-\p)dp dp

See (J.R. Magnus, H. Neudecker, 1988, p.150) for a proof and

the exact regularity conditions.



105

9.2 RestrictedMaximum Likelihood Estimate of the Residual

Covariance

In this section, we investigate the properties of the restri¬
cted maximum likelihood estimate (for short REML) of the resi¬
dual covariance matrix; this estimate is simpler and has a

better finite sample behavior than the füll maximum likelihood
estimate (which simultanously estimates the regression coeffi-
cients and the covariance). The idea is to consider only linear
combinations of the data which filter out the drift.

The residual vector r = P±Y has a singular multivariate normal

distribution with zero expeetation and covariance matrix
Z= P 1P , where X is the regulär covariance matrix of a

multivariate normal random vector Y. By assumption, this
random vector is the restriction of an underlying gaussian
stochastic process in the plane at a finite set of sample
points where the process is actually observed. According to the

external drift model, described in section 5.6, one has
EY= \L = F$ and P1\l= 0 since by construetion of the projection
Operator P±F=0. Except for the more intricate discussion of
infill asymptotics this underlying process is never used expli-
citely. We assume that Z = Z(0) with 6 = (a2,p)' <=Rk . The variance
a is assumed to be constant and p is a k-l dimensional Para¬
meter describing the structure of the correlation (ränge, ani-
sotropies etc.). We therefore have the model Z(6) =C2K(p), where

K(p) is a correlation matrix. The underlying stochastic process

is not assumed, at this stage, to be necessarily stationary
(even if the variance is constant).
The covariance matrix of the residual vector q is Z(6) and has
rank n-q = dim(Range(P1)); hence, there exists a (n,n-q) füll

column rank matrix A such that A'r = A'P1Y has a regulär multi¬
variate normal distribution with zero expeetation and a regulär
(n-q,n-q) covariance matrix 1(9):= A'Z(0)A. It is often useful to

take A to consist of the n-q eigenvectors of P1 to the eigen-
value 1 (see also CR. Dietrich, M.R. Osborne, 1991, for alter¬
native algorithms details useful in special cases).
Following R. Christensen (1990b), the likelihood of the random



106

vector A'r is, up to an irrelevant multiplicative constant,

independent of the choice of the matrix A, and is given by:

/(AV.8)=(2*>-*(deti<e))-* «Ipj-Ä:j
The REML equations can be obtained via lemma (9.10) and are

(9.12)
? ~ \ -

. ? - -
.

Tr(l~l(6)4^(9)] = r'Afr1m^-l{*)±-1(0)AVV dQ ) dö

Specializing this to the case 0 = (o2,p)' the partial derivative

with respect to the variance yields the following relation at

the extremum:

(9.13)

2( , Y'P'AKipr'A'P'Y 1){k(p)-1A'P±Yr'P1A)
<r(p)= -^ =

, with
n-q n-q

K(p) = A'PLK(p)P1A=:A,K(p)A

Tr(k(pylk(Po))
Note that E o2(p) = a2

n-q

Substituting the expression for a2(p) in the logarithm of the

restricted likelihood (9.11) one obtains the so called restri¬
cted profile log-likelihood for p, which reads, up to irre¬

levant additive constants:

(9.14)

log/(A'r;p) = -^loga2(p)-^logdet£(p)=:ML
Therefore, after elimination of the variance, finding the REML

estimate of the ränge parameter p is equivalent to minimizing
the function a2(p)""* detÄ"(p). The matrix K(p) depends on the samp¬

ling design and not on the observations. To have consistency
one should at least require <J2(p) to converge towards its ex-

Tr(k(pYlK(p0))
pected value £ a2(p) = a2 . Some algebraic manipula-

n-q

tions and lemma (9.8) show that this will be the case provided
that lim ^rrf^pr'^pj) -»0, pa being the true value. The

»-»»(n - q)
following theorem shows that this is essentially the case, if

the true value lies in a known compact set and some technical

regularity conditions are fulfilled.
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Theorem (consistency of REML)

(9.15)

Let t/c/?*"1 be a compact set whose interior contains the true

value po of the correlation parameter. Consider an increasing

sequence of sample points such that the following conditions

are satisfied:

(i) Vpetf lim—^—TTr(k-l(p)k(po)f=0i-*" (n-q)
(ii) The mapping peU-»K(p) e R" is injective and continuous.

(iii) vp,,p2€t/ (an>o k(pl)=[ik(p2)) =>pi = p2

(iv) Let Bj y' = l,2 K(M) a covering of UczRk~l with open spheres
of radius M~l . There exists a sequence eM >0, lim eu =0 such

M—?<»

that:
.2.

VM limPp sup
peBj log^^V(p)>ew • = 0 Vj = 1,2....K{M)

Let p„ef/ be the argument at the absolute minimum of the random

function

/„(p):=loga2(p)+—logdet£(p).
n-q

Then p„ converges in probability towards the true value p0 .

Condition (iv) means that C2(p) converges towards its expected
value not only pointwise (which is implied by the first condi¬

tion) , but also uniformly in p in arbitrary small spheres; the

supremum can be taken over a dense countable subset and is

therefore measurable.

Proof:

Define the (non-random) function

4».(p) = log o2 + log Tr
K (p)Kip° >

+-J—log det K(p) = log Ep a2(p)+—logdet^(p).
n-q n-q n-q

o 1
We first show that ()>„ (p0) = log c + logdetÄ"(po) is the strict

n-q
minimum of <t>„(p). This is equivalent to the inequality:
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1 -logdet£(p0)<—logdet£(p)+logTr(K (p)K(p")] for p*Po
n-q n-q n-q

i.e.

(d«^(p)frp.))~<IV*"(p)*(p').
n-q

By lemma (9.2) the latter is true unless K(p) = [ik(po) for some u,

which implies, by condition (iii), that p = p0-

Next we prove the uniform convergence of /_(p)—<l)„(p) = log 5——,
Epc (p)

i.e. Ve>0 a„(e) = PPo{su^|/n(p)-(|)n(p)|>e}^0
large that eM<e (by iv) , then one has from the definitions

as n—»°°. Take M so
peC""'

'

K(M)

a„(e)<XpPp.
;=i

SUD
peBj log^-^P^2(P) >eM

For any arbitrary small 8>0, take n so large that by (iv) each
8

summand in the above expression is less than , which
K(M)

implies a„(e)<5 and the result. Therefore, we have shown that

the random function /„(p) converges in probability and uniformly
in p towards the non-random function <t>„(p) which has a unique
absolute minimum at po .

We finally prove that the minimum p„ of /„(p) converges in pro¬

bability towards po. Indeed, suppose that p„ did not converge

in probability towards p0 . Then there exists a neighbourhood
W of po such that p„&W infinitely often.

Set y = inf{ty„(p)-$„(po))>0 (since p0eW yields the minimum).

Choose n so large that p„€W and sup|/n(p)-(|)n(p)|<—. Then one

has:

/.(P.)= 0.(P.)+U(P.)-^(P.))<^(P.) +|
/.(P-)=^(P-)+(/.(P.)-*-(P.))>*.(P-)-f

and therefore also

/.(P.)-/.(P.)>t-(P.)-fc(P.)-5*0as p„eW.
This implies at once /„(p„)>/„(po)/ and a contradiction since p„
yields the absolute minimum of /„(.)• Hence p„ converges in

probability towards p0, which completes the proof.
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Remarks:

1) Condition (ii) implies in particular that the correlation
matrices cannot be the identity for a subset of p values; in

other words, the minimum distance between two sample points
must be smaller than the correlation ränge (otherwise the like¬

lihood is flat and any ränge below the minimum distance can be

taken as the REML).

2) Condition (iii) is very technical but follows asymptoti¬
cally from condition (ii) under reasonable regularity condi¬
tions. First recall, that in K(p) = A'P1K(p)P1A the choice of A

is arbitrary. In particular, we can choose A to consist of the

n-q orthonormal eigenvectors of the projector P1 to the eigen-
value 1 ; thus PXA = A is a semi-orthogonal (n,n-q) matrix. By
lemma (9.6) one has the inequalities:

Xi(p)<Xi(p)<Xq+i(p),i= l,2 n-q
where the A,,(p) are the ordered eigenvalues of the original
correlation matrices K(p). Therefore K(px) = [ik(p2) implies at

once:

(n-qr^ipO^iiin-qy^X^p^^in-qr^X^p,)
i=l i=l i=l

If the eigenvalues are bounded, letting n-»°° yields |j. = 1 as

the trace of the correlation matrix is n. If the asymptotic
spectrum is a continuum then obviously X(p)—>X,(p); intuitively
speaking, filtering out the drifts has asymptotically no effect

on the eigenvalues and it suffices to consider processes with

zero expeetation when dealing with quantities depending only on

the eigenvalues (we shall use this fact later for the calcula-

tion of the asymptotic relative efficiency). If the residual

process is a stationary time series with bounded spectral
density then X(p) —>X(p); this follows from a famous theorem of

Szegö on the asymptotic distribution of the eigenvalues of

Toeplitz' forms (see U. Grenander, M. Rosenblatt, 1984, p. 104-

105). For processes on the plane, we shall present later on a

heuristic proof. In this sense , condition (ii) and (iii) will

generally be asymptotically equivalent, at least for the Stan¬

dard stationary cases and for "non-pathological" sampling
schemes (i.e. when the design matrix has a very particular
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structure, depending on the drift, which, by chance, coincides

with some pattern of the residual correlation ).

3) X. Guyon (1993, theorem 3.3, p. 106) gives convergence

proofs in a more general set-up, with a condition similar to

(iv) , but assuming that <)>„(p)-ty„(po) converges towards a so-

called contrast function, which is not required here. From a

practical point of view, it is difficult to think of situations

where (i) holds, i.e. pointwise convergence, and (iv) not, i.e.

uniform convergence on arbitrary small sets.

Using lemma (9.5) it is possible to give simple sufficient

conditions for condition (i) to hold. Indeed, if A,,(p) denote

the ordered eigenvalues of the matrices k(p), then condition

(i) holds if

1
lim

(n-q)2
Y l

trx2(P) K(Po)= o

Using lemma (9.6) one obtains at once the following important
result:

Theorem

(9.16)
If condition (i) implies (iv) and if conditions (ii) , (iii)
hold, then uniform boundedness, from below and above, of the

eigenvalues of' the correlation matrices, i.e.

3ml,m2 Q<mx <A,1(p)<A,„(p)<m2<°° Vpet/
implies that the REML is consistent.

From a practical point of view, it can be expected that bounded

eigenvalues suffices to insure consistency.

Remarks:

1) K.V Mardia and R.J Marshall (1984) obtained similar results

for the füll maximum likelihood estimate, but without the

condition on the smallest eigenvalue (this is rather surprising
since allowing the smallest eigenvalue to tend to zero would

lead to singular covariance matrices; X. Guyon, 1982, has the
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same condition for the smallest eigenvalue in terms of the

spectral density). For a stationary process observed on a

regulär grid of the plane, the largest eigenvalue is uniformly
bounded if the correlation is uniformly summable, i.e. if

£#((/,,l2), p) < M < oo
, Kid,,l2), p) = corr{(k,,k2), (*, +/, ,k2 +12))

(hk)e22

(the grid points are identified with their integer valued

coordinates), see K.V. Mardia and R.J. Marshall (1984). From

this follows that the REML is consistent for all stationary
corre-lations with a uniformly bounded ränge if the domain

tends to infinity and the grid mesh is fixed.

2) For a stationary time series, condition (i) can be formul-

ated explicitly in term of the spectral density (M. Fox, M. J.

Taqqu, 1987); this important but very difficult result shows

that condition (i) can also hold for processes with a long
ränge dependence (see F. R. Hampel, 1987, J. Beran, 1992).

Using well-known relations between the .behaviour of the

spectral density and the distribution of the eigenvalues (U.

Grenander, M. Rosenblatt, 1984, p. 104-105), we see that theo-

rem (9.16) gives sufficient but not necessary conditions.

3) Unbounded eigenvalues can also occur with infill asympto¬

tics, i.e when n—»oo in a finite domain (see B.D. Ripley,
1988) . For time series this can be seen by using the aliasing
relation between the spectral density of the underlying process

in continuous time and the spectral density of the resulting
time series under discrete systematic sampling (U. Grenander,
M. Rosenblatt, 1984, p. 57), and the afore mentionned Szegö's
theorem. It is therefore not quite clear when condition (i)
will hold under infill asymptotics. Fortunately this case is

not relevant for forest inventory (if we knew the forest in

every point we do not need any statistics).

4) If the eigenvalues are uniformly bounded then, in particu-

lar, w-2]^X^(p0)= /i_2||ÄT(p0)|| -»0. For a regulär grid this implies
i=l

that the average correlation between all pairs tends to zero,

i.e that the correlation ränge is small with respect to the

dimension of the domain.
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Using lemma (9.8) and equation (9.13) it is clear that, under

the condition of theorem (9.15), one obtains a consistent esti¬

mate of the variance by setting:

cn2=c2(p„)

In section (5.6) we considered the chi-square test

X2 = Y'P1(P1X(Ql)P1)+P1Y
based on the Moore-Penrose generalized inverse. Using lemma

(9.9) this can be rewritten as

x2 = Y'p1Ä(Ä,pxi:(el)PxÄr1ÄpxY
for some Ä\ ).

If we choose this matrix as Ain<n_q) and take

0! =(a2(p1),p1) we obtain, according to equation (9.13),

X2 =(o2 (pt))"' Y'P^K-1(p,)A'P1Y = n-q
Hence, if we take, in particular, as test matrix the REML esti¬

mate we always get exactly n-q. This shows why we cannot use

this chi-square as a goodness-of-fit test.

To obtain asymptotic expressions for the asymptotic variances,

the covariance matrix must satisfy further conditions, which

are now outlined:

(9.17)
A.V 1 The mapping Ä2"x(o2,p)-4Z(6) is twice continuously

differentiable.

A.V 2 ^min-qr'Tril-H^AjiQj)2=0 , V9^"^^6)
A.V 3 Imin-qT'Tril-^QjlMl-^ejtjtfJ^O,£,(0) = ^-2;(0)
Remarks:

The assumption A.V 1 may not hold at a finite set of points,
for instance with the spherical covariance. This can lead to

multimodality of the likelihood (K. V. Mardia, A. J. Watkins,

1989) . From a mathematical point of view one can always take,

to any degree of accuracy, an infinitely differentiable regula-
rization. In practice, such cases are potentially dangerous for

iteration procedures based on derivatives, like Newton-Raphson.
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Splitting the parameter vector into variance and correlation

structure, conditions A.V 1 and A.V 2 hold mutatis mutandis for

the correlation matrix K(po) as well as, in obvious notation:

A.V 4 lim(n-^)-27/-(ri(po)^.(pj)2=0.

It is clear from lemmas (9.5) and (9.6) that conditions A.V. 2

and A.V 4 will hold when the absolute eigenvalues of the deri¬

vatives of the correlation matrix are bounded. Later on we

shall give a heuristic argument showing that this also implies
A.V. 3. K.V Mardia and R.J Marshall (1984) have shown that this

is the case in the context of the füll maximum likelihood. In

any case, these conditions are rather technical and far less

intuitive than the condition for consistency. In practice one

can have reasonable hopes that the consistency conditions will

suffice for everything.
We are now able to calculate the asymtotic variance by using
Standard arguments. It is easier to work with the complete
restricted log likelihood function (see 9.11), i.e. with

^(y,0):= --{logdet£(0) +rP1A2:-1(0)A'P1y}
The gradiant g' is defined through g- (Q) = —g(Y,Q) , and the

32
Hessian matrix g" through gy"(B)= —-—-g(YtQ). Tedious but simple

dv^Qj
calculations based on lemma (9.7) yields:

(9.18)

E6og;'(Qo)= 0,i = l,2....k

^«?;(eo)^/(eo)=|rr(!:-1(0o)xl.(0o)2:-1(0jz.(0o))
W,(0.)=-^Tfc-\e.)%{e.)i-\e.)tj(6.))
Under the conditions A.V 1-A.V 3 and by repeated use of lemma

(9.8) one obtains, after lenghty but simple manipulations of

the trace Operator, the convergence result

(9.19)

^mn-1(g"(Bo)-E6og"(Qo)) = 0 in probability.

One has the Taylor expansion
0 = g'(§„)= *'(Y,Q0)+g"(r,0)(0„-0o) where 0-0, 0.-0,
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hence, because of (9.19) and the consistency theorem (9.15), we

have, asymptotically, 0„ -0O =-(E%g"(Q,))'1 g'(Y,QB). From (9.18) one

obtains at once the asymptotic covariance matrix of the REML:

(9.20)

I§< =(ITr{l~l(9.%(9.)l~l (9. )£,- (9.)))
It is worth noting that K.V. Mardia and R.J. Marshall (1984)

obtained the same result for the füll maximum likelihood but

with X(90) instead of £(90). To get a consistent estimate of the

asymptotic covariance matrix one replaces in (9.20) the true

Parameter 0O by its estimate 0„ .

For the füll maximum likelihood estimate K.V Mardia and R.J.

Marshall (1984), based on results of B. T. Sweeting (1980),

have proved asymtotic normality, so that the same holds for the

REML because both estimates are asymtotically equivalent.
To get further insight into the asymptotic variance of the REML

and in order to compare it later with the least square esti¬

mate, we shall restrict the discussion to stationary processes

and express the results in terms of the spectral density (note

that 9.20 does not require as such stationarity). We shall

derive the main results with two different arguments and

without bothering about the regularity conditions. To date,

formal proofs are only available for stationary time series (M.

Fox, M. J. Taqqu, 1987) .

From now on, we restrict our attention to stationary processes

with zero expeetation (because, under regularity assumption,
the estimation of the drift is asymptotically irrelevant for

the calculation of the asymptotic variance) and to sampling
schemes based on systematic reetangular grids. Note that this

does not cover Cluster sampling, a technique frequently used in

forest inventory.
The sample points are identified with their integer coordi-

nates with respect to the fundamental cell of the grid, i.e. we

set:

x = (u,v)€ Z2 :u = l,2....n1 ,v = 1,2...n2,n= n{n2.
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The main idea of the first argument is to wrap the finite

rectangular grid onto a torus by identifying (ni,v) = (l,v) Vv and

(u,n2) = (u,l) Vm , thus avoiding the boundary problems. If the grid
mesh is constant and /ip/i2—><» the grid on the torus becomes

"flatter" and, intuitively, can be viewed as a planar grid.
This is a generalization of the time series technique identi¬

fying the line with a circle. In the spatial set-up this

argument has been justified rigorously for a special class of

markovian processes by P. A. Moran (1973) and used by many
authors since (J. Besag, P. A. Moran, 1975; J. Besag, 1977; X.

Guyon, 1982; K.V. Mardia, R.J. Marshall, 1984). Though
intuitive and simple, this "wrapping on the torus" trick is not

uncon-troversial in terms of the physical Interpretation of the

underlying process (M. Kendali, A. Stuart, J.K. Ord, 1983, p.

539) . In any case, it has the advantage of simplifying the

mathematics.

On the torus the covariance matrix is circular, i.e.

cov((m1 , vl); (u2, v2)) = c(w, -u2, vl - v2) = cov((n1 -(uy -u2); (n2 - (Vj - v2))
It can be verified that this has the far reaching consequence

that, within a model, all the covariance matrices commute,
i.e.:

(9.21)
2(91)K92) = Z(92)Z(91)

From a well-known result in linear algebra there exists then a

fixed unitary matrix U ,U'U = I, ( Ü is the complex conjugate
of U) which simultaneously diagonalizes all the covariance

matrices, i.e.

(9.22)
X(9) = i/-1A(9)f/ V9

The set of values of the spectral density, for the process on

the torus, at the points 2rc(—,-2-) ik=l,2...nk ,k = l,2 coincide with
nx n2

the set of eigenvalues in A(9) (see for instance K.V. Mardia,
R.J. Marshall, 1984). Since (9.22) implies at once

n-1rr(l-I(9)Z(0o))2=n-I7r(A-1(0)A(0j)2=-±^nti M9)
and therefore asymptotically the important result:

¦-*-n 4k2 £ f(X,Q)
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where /(A,,0) = ]£cov(/,0)exp(//X), tX = llX1+l2X2 , is the spectral density
leZ2

of the original planar process and n2 =[0,2ti]x[0,27c]. For time

series this is precisely the famous result of M. Fox and M. J.

Taqqu (1987). The consistency condition is therefore fulfilled

for spectral densities satisfying 0<m1 <f(X,Q)<m2 <°° V0.

We now assume that•under further regularity conditions we can

formally dif ferentiate (9.22) with respect to 0, then one

obtains the following relation:

(9.24)

lim ItKz-(9.)i,<e.)i-<e.)z/(e.))=-|L j^f^^äx»-»-n 47t ^ / (.A,,ö0)

r)f(X 0)
where fi'(X,Q) =——'¦— i = l,2...Jt are the partial derivatives of the

30,
bivariate spectral density. Using (9.20 ) we can therefore

State the "theorem":

(9.25)
Under regularity conditions 0„-0o is asymptotically multiva¬

riate normal with covariance matrix:

*-i
1

i f/,»,e0)//».e0) v'

4t21 /2(X.e0)

' ¦

3 .a
^

r %m.) A -\ Uk*^k^»^
For time series this is precisely the result given in (R. Fox,

M.S. Taqqu, 1986, lemma on page 525), which is also valid for

certain unbounded spectral densities resulting from long ränge

dependence (like fractiönal brownian motion).
It can be expected that (9.25) will hold under mild regularity

assumptions on the spectral density, not only for stationary
processes but also after filtering out the drifts.

For autoregressive processes in the plane, (9.25) can be found

in a famous paper of P. Whittle going back to 1954, whereas X.

Guyon (1982) derives (9.25) in arbitrary dimensions for an

estimate based on the modified spectrogram. The asymptotic
expression (9.25) will be extremely useful to calculate the

asymptotic relative efficiency of restricted maximum likelihood

and least Squares estimates of the covariance.
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We now outline the second argument, which does not have the

drawback, from a physical point of view, of distorting the

covariance matrix by wrapping it on the torus; on the other

hand it requires to work instead with an infinite sample from
the onset. For stationary covariances matrices A,B on Z2, the

spectral theorem states that:

Ap,9 = TTJexP(_I'(/7 ~ 9)^)/a&)<&• P>qeZ2
47r n2

B<" =YT\™V<<-i(q-r)X)fB{X)dX q,reZ2AtzHJl n2

where fA(X), fB(X) are the spectral densities defined now on

Il2 =[-7C,7t]x[-7C,Jt] to comply with Standard Convention. Because

fA(X),fB(X) are even functions one can write the above Fourier

coefficients as:

Ap.9 = TTjexp(-iqX)fAp(X)dX ,fA,p(X)= exp(ipX)fA(X)
47t n2

B*r =TT UxV(-iqX)fBj{X)dX ,fB,r,p(X) = exV(iPX)fB(X)
471 n2

For spectral densities in L2(I~I2), i.e. square integrable, the

infinite product matrix is well defined through

(AB)pr = %AMBV p,reZ2
qeZ2

Since the bivariate exponentials form a complete orthogonal
System for L2(FI2) the Parseval relation (see e.g. N. Wiener,
1958, p. 44) yields:

(AB)pr=^jfA<p(X)fBr(X)dX = ^Tjexp(-i(p-q)X)fA(X)fB(X)dX
Thus, we have an Hubert space isomorphism between the multi-

plication of doubly infinite stationary covariance matrices on

Z2 and the product of spectral densities. In particular, if

/^(X) admits a Fourier expansion, then:

(9.26)
,
_

1 rexp(-i(p-g)A,)^A--^i Aoi)
A

By induction on the number of matrices, and by tranlating the

above relations into asymptotic results for finite matrices as
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ny,n2,n-><*>, one obtains in particular the important relation for

the trace:

(9.27)

Mi-TriABf=-^T \{fA(X)fB(X)YdX k = l,2...
«-»»n 4TT

n

lim -Tr(ABCD)=-^ [ fA(X)fB(X)fc(X)fD(X)dX

The first formula has been proved to hold for time series under

fairly general conditions (F. Fox, M.S. Taqqu, 1987). The for¬

mulae (9.26-9.27) yield at once (9.24).

It is now clear that regularity conditions, essentially ensu-

ring that f, f'1, f/e ii(U2) have Fourier coefficients generating

X,Z"\Z;., will imply (9.23) and (9.25).

It is worth noting that these important results have been

obtained by two very different techniques.

From a pragmatic point of view, we can summarize the results

of this chapter as follows:

1. If the estimated correlation ränge is small with respect

to the dimension of the domain, the REML is reliable,

asymptotic validity has been reached, and kriging is prima¬

rily relevant for local estimation.

'2. If not, this might suggest that the drift model is not

adequate and should, if possible, be revised. If the drift

is deemed correct and the confidence interval yields ränge

values comparable to the domain dimension, or even larger,
then the asymptotic validity or the correlation model may

be at fault. In any case caution is required.

3. Estimation of the covariance structure with small moving

neighbourhoods can yield totally unreliable results.



119

9.3 Least Squares Estimate of the Residual Covariance

In this section, we investigate the properties of the least

square estimate (for short LS) of the residual covariance
matrix as defined in section (5.6); this estimate minimizes the
maximum discrepancy between the empirical and model-dependent
variances over a canonical set of authorized linear combin¬

ations filtering out the drift. It can also be viewed as the

mathematically correct version of the widely used "fitting by
eye" technique of the empirical variogram. It is computational-
ly simpler than the REML as it does not require the inversion
of the, sometimes very large, covariance matrices. We shall see

that the LS is consistent under essentially the same conditions
as the REML, but that it is less efficient, particularly under

increasingly stronger correlation. These results appear to be

new, even if intuitively expected and related to similar fin-

dings in slightly different contexts.

Most of the underlying concepts and the notation have been pre-

viously defined in section 9.2, so that only the main points
will be given.
The LS estimate of the covariance matrix Z(0) minimizes over 0

the expression:
(9.28)

\\rr'-P1'L(e)P1f =|p1(}Tt -KO^P1!2 = \\rr' - PLZ(Q)\\
(the last equality holds because of PLr = r,P1PL=PL) .

Taking the partial derivatives with respect to 0 = (a2,p) yields
the "normal equations":

(9.29)

TriZ(0)^Z(0)1= T ^Z(0)7, 1(9) = P1Z(9)Pi

Using Tr{K(p)P1K(p)P1) = Tr(k2(pj), K(p) = PLK(p)Px, the partial deri¬

vative with respect to a2 yields the relation at the extremum:



120

_

(9.30)

a2(p)= w:Tr(K2(p))

which should be compared with (9.13) for the REML. Note that

Po

-2,

7r(*2(p))
According to Lemma (9.8) C'Cp) will converge towards its expec¬

ted value Epo(a2(pj) if

Km\Tr{k(p)k(po)Y=0
"-*°° n2

Substituting (9.30) into (9.28) yields after some algebraic
manipulations:

(9.31)

|k-0w*<p>N"f-ggJ
Set

/„ (p) = 2 log(rK(p)Y)- log Tr(K2 (p))
<t>„ (p) = 2 log Tr(k(p)K(p0))- log Tr(K2(p))

(9.32)

Minimizing (9.31) is equivalent to maximizing f„(p). Consider:

/,(P)-<MP)= 21og-^g-Epc (p)
This converge pointwise to zero in probability and also unifor¬

mly under the same condition as 9.15 (iv) (using the same ar-

guments and notations as in the proof of 9.15). Furthermore,

<(>B(p0)= log(7r(Ä'2(po))) is the absolute maximum of §„(.); indeed,

$„(p)<K(P0)**{Trk(p)k(po)<Trk2(p)k2(po))
_

which by lemma (9.1) is true, with equality if 3n K(p) =iiK(p0).
Let pB be the argument at the absolute maximum of /„(p), i.e. at

the absolute minimum of (9.31) and hence the least square

estimate. It is now clear that using exactly the same arguments

(and notation) as in the proof of the consistency of the REML

(9.15) we can State the following theorem:
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Least Squares consistency theorem

(9.33)
Let UcR*'1 be a compact set whose interior contains the true

value po of the correlation parameter. Consider an increasing
sequence of sample points such that the following conditions

are satisfied:

1 ,_ _

(i) Vpetf Hm—Tr(K(p)K(p0))=0"-*" n

(ii) The mapping p e U —> K(p) e R" is injective and continuous.

(iii) Vp,,p2ef/ (3u>0 k(p1) = [iX(p2)) =>p!=p2

(iv) Let Bj 7 = 1,2 K(M) a covering of [/cÄ*"1 with spheres of

radius M"1 . There exists a sequence eM>0,limeM=0 with
M-*«

VM lim Pp i suppeÄ, log^-Epc2(p) >e« = 0 y/ = i,2..../s:(M)

Let p„e£/ be the argument at the absolute maximum of the random

function

/„ (p) = 2 log(Y'K(p)Y) - log(Tr(k2 (p))).
Then pn converges in probability towards the true value p0.

Since P1 is a symmetrical idempotent matrix of rank n-q, we

can apply the second part of the Poincare Separation theorem

(lemma 9.6) and proceed as for the REML to show that under

regularity conditions, condition (ii) will imply asymptotically
condition (iii) and that the minimum distance between the

sample points must be smaller than the true ränge, in order to

avoid a "flat" sum of Squares over identity matrices. Again, it

can be expected that condition (i) will generally imply
condition (iv).
Using lemma (9.5) one gets at once the following result:

(9.34)
If condition (i) implies (iv) and if conditions (ii),(iii)
hold, then the uniform boundedness of the eigenvalues from

above, i.e.

3/^ 0<X„(p)<m2<oo Vpef/
implies that the LS estimate is consistent.
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The condition on the smallest eigenvalue is no longer neces¬

sary, but this is of purely academic interest. It is now clear

that the remarks 1,3,4 following theorem (9.16) also apply; for

time series the result of M. Fox and M. J. Taqqu (1987) also

holds. In other words, restricted maximum likelihood and least

Squares are consistent under essentially the same conditions.

We are now able to calculate the asymptotic variance by using
arguments similar to the REML. It is easier to work with

^(y,9):=-2y'z(9)r+rr(z2(9))=|pi(iT'-z(0))P1||2-y'pJ-iT'p1y,
the second equality resulting from simple algebra. Obviously
the LS estimate yields the absolute minimum of this function.

The gradiant g' is defined through £,'(9) = -—g(Y,Q) / and the Hes-
d0,

d2
sian matrix g" through &-" (Q) =tttt g(Y,B).

döfdö.

In perfect analogy with the REML we now assume that the follo¬

wing conditions hold:

A.V.L 1 The mapping R2n x(a2,p)-> Z(9) is twice continuously
differentiable.

A.V.L 2 limn-2rr(Z(9o)Z.(9o))2=0, with Z.(9)= —|-Z(9)
<•-*— dVidxij

A.V.L 3 limn-2rr(Z(9o)Zi(9o)Z(9o)Z.(9o))2=0, with Z;(9)=^-Z(9)
Tedious but simple calculations based on lemma (9.7) yields:

(9.35)

EBo8!'(6o)= 0,i = l,2....k

E6og- (6.)*/(0O) = 8rr(Z(0o)Zi(0o)Z(9o)ZJ(9o))
^e^,,i/(0J = 27'r(Z1(9o)Z.(9o))

Under the conditions A.V.L 1 - A.V.L 3 and by repeated use of

lemma (9.8) one obtains, after lenghty but simple manipulations
of the trace Operator, the convergence result:
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(9.36)

ümn-l(g"(Go)-ESog"(eo)) = 0 in probability.

One has the Taylor expansion:

0 = g'(0J = g'(Y,Q0)+ g"(y,9)(9„-90) where 9-9, 9-9,

Hence, because of (9.36) and the consistency theorem (9.33) ,

we have, asymptotically, 0„ -90 = -(Eeg"(0o))~g'(Y,Q0). From (9.35)

one obtains at once the asymptotic covariance matrix of the

least square estimate:

(9.37)
Z. = 2(Tr%(9„ )Z. (0O))_17r(Z(0o )Z;(0o )Z(0O)Z. (0O))(Tri, (0O )Z.(0O ))_1

Substituting 0„ for 0O into (9.37) yields a consistent estimate

of the asymptotic covariance.

Using (9.26) and (9.27), it is straightforward to rewrite the

equation (9.37) in terms of the spectral density to obtain the

"theorem":

(9.38)
Under regularity conditions 0„-0o follows asymptotically a

multivariatenormal normal distribution with covariance matrix:

v!
/

l-lfi&>W;'fr>%)d} -^J/2a,eo)^(X,eo)/;.'(X)eo)^]^J^(X)0o)/;.,(?i,eo)d47C n V4*X ^ A47r n2

As for the REML, (9.38) can be expected to hold under weak

regularity conditions on the spectral density, not only for

stationary processes, but also after filtering out the drifts.

We now State the important result:

(9.39)
The restricted maximum likelihood estimate of the covariance

structure is more efficient than the least Squares estimate,
i.e. the matrix

Z. -Z.
6,LS *,REML

is positive definite,
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Proof:

It is equivalent to show that 'L~1ö,reml-Z-19,ls is positive definite

(J.R. Magnus, H. Neudecker, 1988, p.22). Using (9.25) and

(9.38) this is equivalent to show this for the matrix

J^-(j/r,//)(j/a/,,//r(j/,'//)
where we have simplified the notation in an obvious way.
We now view the point X as a uniform random point in FI2 and

consider the 2k dimensional random vector

4> =

Then, the matrix

[£(MU
/(M.)

./(W/KW
Y

,i = l,2...k

x 4tc2

(ef'f- t \j^-dX jfifj'dX
jf-fj'dx jf2f;f;dx

fV A\
A J

is positive definite, hence the matrix BE^WW'B' is also posi¬
tive definite for any matrix B

fr Ar-^
Choosing B =

h -AT

0

leads to BE^'B' =
(V-AJ-'A 0 >
V o r-l positive definite and therefore

also V-A/-1A, which is precisely the result.

Note that this proof is absolutely similar to the proof of the

multi-dimensional Cramer-Rao inequality.

H. R. Künsch (1980, p. 85) obtained the same result in a dif-

ferent context: he considered spatial modeis of the form

X, =^jaij(Q)Xj+Ui (with correlated U{ ) and the maximum likelihood

as well as least Squares estimates of 0.

If we define the relative efficiency as the ratio of the

determinant of the asymptotic variances, we obtain by the

previous results the following theorem:
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Asymptoticrelative efficiency

1<-
detZ,

det
V

e.L?
_ Vn2

(9.40)

lf2(X,Q0)f:(X,e0)f;(X,e0)dx \rHKe.WM,)//&>*„)<&
\P*

detZ
6.REML detjfi(X,e0)f}'(X,Q0)dX

V "2

This result allows us to get better insight into the depen-
dence of the efficiency on Parameters. For a model with a sill,
ränge and nugget effect, the spectral density function can be

written as :

f(X,Q)=c2((l-a)g(X,p)+OL) ,0<a<l,j^jg(X,p)dX= lVp47C n2

Even with this simple model it is extremely difficult to deal

with the three Parameters simultanously, so that we consider

one parameter at a time, given that the other two as known. It

is then easily verified that (9.40) yields the following
properties:

l<e(a2\p,a)= e1(p,a), lim ^,00= 1
a-»l

l<e(a|o2,p)= e2(p,a), lime2(p,a) = l
a-»l

l<<Kp|c2,a)= e3(p,a), lime3(p,oc) = l
a-»l

The efficiency therefore does not depend on the sill and tends

to one with increasing nugget effect.

To analyse further the efficiency with respect to the ränge

Parameter, we replace the product of the integrals by double

integrals in (9.40), symmetrize the numerator and apply the

mean value theorem since all integrands are positive. This then

yields:

BVA^ell, «3(p,a)= - (l-oQgßn.pHa"! | ((l-a)g(k2,p)+a>
(l-a)g(X2,p)+a {(l-a)g(Xl,p)+aJ

Using the equivalent of Szegö's theorem (i.e spectral density
on the torus gives the eigenvalues), we get from the previous
equation the approximate upper bound for large samples:

(9.41)

e3(P>a)<- (l-g)A,,(p)+a'
k(l-a)X,(p)+a>

+ 1
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This means: the stronger the correlation, the greater the

advantage of maximum likelihood over least square; the larger
the nugget effect, the smaller the difference.

To illustrate this effect, we briefly consider a time series

with exponential covariance, i.e c(k,p) = pk. The spectral density
is found to be:

1-P2g(Kp)= - Xs[-n,n]l-2pcosA,+ p2
Fig. 28 displays the relative efficiency as a function of the

correlation p at unit lag in the absence of nugget effect. The

curve is based on numerical Integration. It is obvious that the

least square estimate is loosing much efficiency for correla¬

tion over 0.5 and even dramatically so for correlation beyond
0.8. It can also be verified that the upper bound (9.41) is far

too pessimistic for a correlation beyond 0.2 (e.g. for p =0.6

the bound is 128.5).

Fig. 28: Ratio E of least square versus maximum likelihood

variance of the estimated correlation in markovian

time series.

55 E

0.8



127

From a pragmatic point of view we can summarize the previous
results as follows:

The least square estimate of the covariance (or variogram) is

the mathematically correct version of the "fitting by eye"

technique. It is consistent under essentially the same condi¬

tions as the restricted maximum likelihood, easier to compute,
can be used in the non-gaussian case, but can suffer large
efficiency losses in the presence of strong spatial correla¬

tion. If possible, a one step iteration with maximum likeli¬

hood should be performed using the least square estimate as a

starting value. As for maximum likelihood, caution is required
if the estimated correlation ränge is not small with respect
to the dimension of the domain.
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