
Global modeling of the effect 
of strong lateral viscosity 
variations on dynamic geoid
and mantle flow velocities

Scientific Technical Report STR08/08

Irina Rogozhina

www.gfz-potsdam.deISSN 1610-0956 Ir
in

a
 R

o
g
o
z
h
in

a
, 

G
lo

b
a
l 
m

o
d
e
li
n
g
 o

f 
th

e
 e

ff
e
c
t 

o
f 
s
tr

o
n
g
 l
a
te

ra
l 
v
is

c
o
s
it
y
 V

a
ri
a
ti
o
n
s

 S
T
R

0
8

/
0

8

ACHTUNG!
Rückenbeschriftung 
nach realer Breite ausrichten!



Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



Global modeling of the effect 
of strong lateral viscosity 
variations on dynamic geoid 
and mantle flow velocities

Scientific Technical Report STR08/08

vorgelegt von
Dipl.-Math.
Irina Rogozhina
aus Moskau, Russland

Von der Fakultät VI – Planen Bauen Umwelt
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktorin der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation

Berlin 2008
D83

Impressum

Telegrafenberg 

D-14473 Potsdam

e-mail: postmaster@gfz-potsdam.de

www: http://www.gfz-potsdam.de

Gedruckt in Potsdam

August 2008

ISSN 1610-0956

Imprint

Telegrafenberg 

D-14473 Potsdam

e-mail: postmaster@gfz-potsdam.de

www: http://www.gfz-potsdam.de

Printed in Potsdam, Germany

August 2008

ISSN 1610-0956

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



GLOBAL  MODELING  OF  THE  EFFECT  OF  STRONG  

LATERAL VISCOSITY  VARIATIONS  ON  DYNAMIC  

GEOID  AND  MANTLE FLOW  VELOCITIES. 
 

 
                

 

 

Ph.D. Thesis 

By Irina Rogozhina 

 

 

 

 

        
                                                                                                       Berlin, 2008 

 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 5

 

 

 

 

 

 

 

 

This research has been supervised by 

 

                     Dr. M. K. Kaban                     Prof. V. Trubytsyn 

 

Prof. M. Rothacher 

  

 

At 

 GeoForschungsZentrum Potsdam (Germany) 

and 

Institute of Physics of the Earth Moscow (Russia) 
 

 

 

 

                                                              
 

 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 7

Abstract 
 
This study is aimed at a development of numerical method to model 

the dynamic geoid and the surface plate velocities induced by 

global mantle flow with the effect of strong lateral viscosity 

variations (LVV) in conjunction with the effects of self-

gravitation and mantle compressibility. I employ the technique, 

which comprises the combination of the spherical harmonic method, 

the direct Godunov method used for solving the Stokes and Poisson 

equations in spherical harmonics with arbitrary boundary 

conditions, functions of density and radial viscosity, and the 

iterative method based on the principles suggested by Zhang and 

Christensen (1993) used for modeling the effect of LVV. 

The 3-D mantle viscosity model is based on the global seismic 

tomography model S20a converted to temperature variations. The 

maximum lateral viscosity contrast in the lithosphere-

asthenosphere zone modeled reaches four orders of magnitude. It is 

found that the influence of LVV on the dynamic geoid is extremely 

significant: an alteration of the geoid figure due to LVV exceeds 

45% of the maximum geoid undulations. The detailed analysis showed 

that the geoid is affected by both, strong LVV induced in the 

upper mantle and large-scale LVV induced in the lower mantle. 

According to the results of this study the separated effects of 

the upper- and lower-mantle LVV on the geoid figure are nearly 

additive with respect to the whole-mantle LVV and partly 

compensating with respect to each other. The mantle flows are 

strongly affected by LVV as well, especially by the long-

wavelength viscosity variations in the lower mantle: global 

upwellings tend to intensify due to the effects of LVV, while 

downwellings become weaker. The alteration of the near-surface 

velocities reaches 30-40% in amplitude not only due to the LVV-

induced toroidal flow but also due to change in the spheroidal 

velocity component.  

I can conclude that the LVV presented in both, upper and lower 

mantle, play an important part in global modeling, therefore, an 

incorporation of 3-D viscosity structure into the next generation 

global dynamic models is a task of vital significance.       
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Kurzfassung 
 

Diese Arbeit befasst sich mit der Entwicklung numerischer Methoden 

zur dynamischen Modellierung des Geoids sowie der Bewegung der 

Lithosphärenplatten als Folge der Konvektionsströme im Mantel. Im 

Speziellen werden die Effekte der lateralen Viskositätsvariationen 

(LVV) in Verbindung mit der Eigengravitation sowie die 

Kompressibilität des Mantels näher untersucht. Es werden eine 

Reihe von Methoden angewandt und miteinander kombiniert, nämlich 

die Methode der Beschreibung durch Kugelflächenfunktionen, die 

direkte Godunov-Methode für die Lösung der Stokes- und Poisson-

Gleichung mit beliebigen Randbedingungen sowie die iterative 

Methode (Zang und Christensen 1993) zur Berücksichtigung des 

Effekts der LVV. 

Das dreidimensionale Viskositätsmodell des Mantels basiert auf dem 

globalen seismischen Schichtmodell S20a, aus dem 

Temperaturvariationen berechnet wurden. Der maximale laterale 

Viskositätsunterschied im Bereich der Litho- und Asthenosphäre 

beträgt vier Größenordnungen. Es hat sich herausgestellt, dass das 

dynamische Geoid signifikant von der LVV beeinflusst wird: In 

Folge der LVV variiert die Geoidhöhe bis zu 45% der maximalen 

Geoidundulationen. Die Analyse ergab einen besonderen Einfluss der 

LVV im oberen Mantel auf das Geoid. Die Auswirkungen der LVV im 

oberen und im unteren Mantel sind nahezu entgegengesetzt und heben 

sich teilweise auf. Die Mantelströmungen sind ebenfalls von der 

LVV beeinflusst, hauptsächlich von den langwelligen 

Viskositätsvariationen im unteren Mantel: die globale Aufströmung 

wird durch die LVV intensiviert, währenddessen das Absinken 

schwächer wird. Die Geschwindigkeitsänderung oberflächennaher 

Strömungen liegt bei 30-40 % und wird sowohl durch Änderungen in 

den toroidalen als auch den sphäroidischen 

Geschwindigkeitskomponenten verursacht. 

Zusammenfassend lässt sich schlussfolgern, dass die LVV im oberen 

und unteren Mantel eine wichtige Rolle bei der globalen 

Modellierung spielt und dass deren Aufnahme in zukünftige globale 

dynamische Modelle von großer Bedeutung ist. 
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Chapter I  

Introduction 

1.1 The problem and motivation for the research 

Mantle convection leaves numerous traces that can be observed on 

the Earth’s surface. Among these evidences of internal perpetual 

motion there are some convection-related observables that are 

often used as major constraints in mantle convection models. In 

the last decade, numerous studies of geoid, dynamic topography and 

surface plate velocities (convection-related observables) have 

been carried out in the context of tomography-based flow models. 

One of the main objectives of this modeling is the inference of 

the rheological structure of the mantle. With a few exceptions, 

these studies were conducted in the framework of the viscous flow 

theory, which assumes that the mantle rheology can be represented 

in terms of pure radially variable viscosity. Most of the existing 

studies of the 3-D Earth’s structure let the effect of lateral 

viscosity variations (LVV) pass although its importance was 

demonstrated in the context of the mantle convection process in 2-

D Cartesian geometry as early as two decades ago. In recent years, 

several attempts were made to assess the sensitivity of the geoid 

to LVV. However, such studies are often inconsistent and give only 

a rough idea of the LVV implications for the geoid figure. 

According to the present conception of the Earth’s structure, real 

Earth’s viscosity distribution in the upper mantle can be 

correctly approached by LVV of seven orders of magnitude. Until 

recently, only the finite-element (FE) and finite-volume (FV) 

methods provided the possibility to model mantle flows with such 

strong LVV. Most studies based on FD (finite-difference), FE and 

FV methods fail to account for the effects of self-gravitation and 

mantle compressibility because the incorporation of these effects 

into spatial methods is coupled to certain complications 

dramatically increasing the computation time. The introduction of 
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the self-gravitation effect in the FE and FV methods requires an 

iterative process. The mantle compressibility effect significantly 

complicates the solution of Stokes equations in the spatial 

domain. The spectral method, being extremely fast, allows both 

effects to be incorporated directly through the Stokes equation 

represented in spherical harmonics. It is generally acknowledged 

(and, in particular, analyzed in greater detail in this study, see 

Chapter IV) that a distortion of the Earth’s surface and core 

boundaries and the resulting redistribution of internal forces due 

to the effect of self-gravitation have a critical influence on the 

geoid anomaly. As shown in this and previous studies, the effect 

of mantle compressibility plays an important role in forming the 

mantle flow pattern and thereby influences the geoid figure. 

In this study, we suggest a numerical method capable of handling 

strong LVV (up to about seven orders of magnitude) in conjunction 

with the effects of self-gravitation, mantle compressibility and 

radially varying gravity. The technique, which we employ, is a 

combination of the spectral method, the direct Godunov method used 

for solving systems of ordinary differential equations (ODE) with 

arbitrary boundary conditions, functions of density anomaly and 

radial viscosity, and the iterative method based on the principles 

suggested by Zhang and Christensen (1993). This combined method 

provides the possibility to model simultaneously spheroidal and 

toroidal mantle flows, mantle stresses, dynamic topography and 

geoid and has an evident advantage of extremely fast computations 

in the case of purely radial viscosity distribution regardless of 

the resolution of the input data. As distinct from the kernel 

technique generally used for solving the Stokes equation in 

spherical harmonics, the direct Godunov method provides a solution 

for any reasonable combination of arbitrary functions of radial 

viscosity and density heterogeneity without any requirement on 

their structural layering. We employ a joint inversion of seismic 

tomography data constrained by the geoid to find possible 
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disturbances of the radial viscosity profile and the depth-

dependent scaling factor. 

The main goal of this study is to develop a method applicable to 

the modeling of the dynamic geoid, topography and mantle flow 

velocities with due regard for the effects of self-gravitation, 

mantle compressibility and highly contrasting LVV that are close 

to the real state of the Earth. This method is intended to 

investigate instantaneous 3-D models of the Earth’s mantle (in the 

future, upgraded to evolving 3-D models) that provide a good fit 

to the convection-related observables in compliance with the 

presently available resolution of input data. Our study mainly 

focuses on the estimation of the LVV effect. Previous studies have 

led to rather contradictory conclusions on the LVV implication for 

global modeling. The effect of the whole mantle LVV has been 

poorly investigated. In this work, we do not pretend to solve all 

problems related to the uncertainties in the viscosity structure 

of the Earth’s mantle. We only perform a detailed analysis of the 

possible effects and the consequent ways to cope with global 

viscosity models in order to obtain the most comprehensive 

information concerning the general contribution of LVV to the 

geoid figure and the mantle flow velocities and particular 

contributions of LVV situated in various mantle layers. According 

to the widespread opinion, LVV (especially in the lower mantle) do 

not have a significant effect on the geoid figure and, therefore, 

there is no need to complicate global models by LVV incorporation. 

This work aims to disprove this widespread idea. Moreover, only 

the LVV effect is capable of generating a toroidal flow comparable 

in energy with a poloidal flow. Since toroidal flows are generated 

by LVV, any comprehensive model of the mantle should account for 

this effect, even if the geoid is adequately modeled by radial 

viscosity.       

The observed geoid provides important constraints on mantle 

parameters in global modeling studies, including the very 
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indefinite value of viscosity variations. However, the 

determination of the Earth’s mantle structure is ambiguous if only 

surface gravity data are used. A usual way to cope with such a 

problem is to combine gravity data with other geophysical data 

sets to obtain a solution that fits all data sets and therefore 

possesses fewer degrees of freedom. Seismic tomography models are 

commonly used for this purpose. In our study, we chose the S20a 

seismic tomography model (Ekstrom and Dziewonski (1998)) as one of 

the most used for the modeling in question. This model provides a 

resolution of up to the 20th spherical harmonic degree for 

isotropic velocity variations, which ensures a more realistic 

approach to temperature, density and viscosity distributions. We 

get density anomaly and viscosity distributions from the S20a 

model in order to estimate how significant the effects of LVV are. 

The derived knowledge may be applied then to the latest 

innovations in the seismic tomography data. There exist various 

seismic tomography models differing in resolution and properties. 

These models are being continuously improved and made more 

accurate. Although other models can differ in details from the 

S20a model, the general inference about the influence of LVV on 

the convection-related observables and mantle flow remains valid 

for all models possessing this or higher resolution.  

The analyzed 3-D model of the Earth implies the following 

assumptions and data sets: 

1) the radial density distribution inside the Earth mantle is 

based on the PREM model (Dziewonski and Anderson (1981)); 

2) the density anomaly distribution is obtained from the S20a 

seismic tomography model (Ekstrom and Dziewonski (1998)); 

3) a depth-dependent viscosity profile obtained from a joint 

inversion (constrained by the geoid) generally consistent 

with the results of existing studies; 

4) free-slip boundary conditions at the surface-mantle and 

core-mantle boundaries of the Earth; 

5) LVV model constructed on the basis of  

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



                                                                                                                                                        

 17

(a) S20a seismic tomography model converted to temperature and 

(b) assumptions on the homologous temperature in the mantle 

(Paulson et al. (2005)). 

1.2 Three-dimensional modeling history and current studies. 

In global studies, the joint use of gravity and geophysical data 

has been applied starting from the pioneer work by Hager and 

O'Connell (1981). Further, their study was continued and 

elaborated by Hager (1984), Ricard et al. (1984), Richards and 

Hager (1984), Hager et al. (1985), Forte and Peltier (1987, 1991), 

Schmeling (1989, 1991), Ricard and Vigny (1989), Maquart and 

Schmeling (1989), King and Masters (1992), Corrieu et al. (1994), 

Gurnis et al. (1998), Forte (2000), Tackley (2000), Forte and 

Mitrovica (2001), Niehuus and Schmeling (2003, 2004) and many 

others. The inversion of a long-wavelength non-hydrostatic geoid, 

known also as the inferences of viscosity from the geoid (in some 

cases, from surface flow velocities and constraints from mineral 

physics as well), has provided important information on mantle 

viscosity since mid-eighties (Ricard and Bai Wuming (1991); Forte 

et al. (1994); King (1995); Thoraval et al. (1995); Kido and Čadek 

(1997); Steinberger and O’Connell (1998); Čadek and Fleitout 

(1999); Forte et al. (2002); Forte and Mitrovica (2004); 

Steinberger and Calderwood (2006)). Despite all these efforts, the 

obtained results differ significantly and a generalized dynamic 

model of the Earth does not exist at present. Such an indefinite 

situation can be due to several factors. First, there still exists 

a trade-off between different model parameters and the same fit 

can be obtained within different model clusters. Second, the 

models analysed are still far from reality. The dynamic response 

of the Earth’s surface to internal loading requires the solution 

of the Stokes equations together with the Poisson's equation for 

the gravity potential. In most of the existingudies, a simplified 

model implies only radial viscosity variations, which provides the 

possibility to solve the equations separately for each spherical 
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harmonic coefficient. Therefore, it is suffitient to estimate the 

response of the Earth to an internal load (density 

heterogeneities) at different depths, the so-called geoid kernels, 

and then to use the kernels in the inversion. Although the method 

is extremely fast and effective, the effect of LVV remains 

unclear. The main difficulty is that all spherical harmonic 

coefficients are coupled with LVV, thereby diminishing all 

advantages of the kernel technique. Thus, until recently, 

attention had been only given to the determination of radial 

changes in viscosity. Lateral variations were neglected because 

the LVV effect was assumed to be small in comparison with the 

effect of radial variations in viscosity. Indeed, lateral changes 

in viscosity were often found to affect very little the whole-

mantle flow models with a free-slip or a rigid upper boundary 

(Richards and Hager (1989); Ritzert and Jacoby (1992); Čadek et 

al. (1993); Colin (1993); Martinec et al. (1993); Zhang and 

Christensen (1993); Forte and Peltier (1994); King and Hager 

(1994)). Numerous spherically symmetric models were considered in 

order to fit best to the observed long-wavelength geoid. Hager and 

Clayton (1989) predicted 90% of the geoid on the long waves using 

the tomographic model of Clayton and Comer (1983). Spherically 

symmetric models with radially stratified viscosity also predicted 

successfully about 60% of the poloidal component of plate motions 

(Forte and Peltier (1987, 1991)). However, spherically symmetric 

models fail to predict the toroidal component of present-day plate 

motions whose energy is nearly equal to that of the poloidal 

component (Hager and O’Connell (1978)). The toroidal motion can 

only be generated by LVV. 

Detailed investigation of LVV was carried out almost exclusively 

in terms of 2-D Cartesian geometry (Gurnis and Davies (1986); 

Christensen (1994); Richards and Hager (1989); Moresi and 

Solomatov (1995); Moresi et al. (1996); Yang and Baumgardner 

(2000)).  
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Richards and Hager (1989) demonstrated for 2-D convection models 

that the effect of LVV on geoid anomalies could be significant for 

degrees 4≥l  because, at the lowest harmonic degrees, the geoid is 

least affected.  

Olson and Bercovici (1991) showed that most of the toroidal energy 

is due to plate drift and strike-slip motions on faults, rather 

than to the plate spin. O’Connell et al. (1991) and Čadek and 

Ricard (1992) demonstrated that the actual motion of plates is 

such that it minimizes the toroidal energy if the present-day 

plate situation is considered. Ricard and Vigny (1989) predicted a 

toroidal component of the surface flow agreeing well with 

observations on the basis of a model in which rigid surface plates 

are coupled with buoyancy-driven flow in the mantle by means of a 

torque balance. Gable et al. (1991) presented a similar model in 

the Cartesian geometry, with the plate motion being coupled with 

time-dependent thermal convection. The model of Ribe (1992), in 

which the lithosphere is represented as a thin shell with LVV 

overlying a radially symmetric mantle, predicted a substantial 

part of the toroidal component of surface motion by introducing a 

high contrast of LVV in the shell. This model demonstrated that 

LVV and the thickness of the lithosphere could have a large effect 

on geoid anomalies if the mantle viscosity strongly increases with 

depth.  

Yoshida (2004) considered 2-D convection models with self-

consistently moving and subducting plates with LVV and found that 

the observed geoid anomaly on the Earth’s surface is significantly 

affected by plate-tectonic mechanism as a first-order effect. 

However, 2-D Cartesian studies cannot describe the excitation of 

toroidal flow and its coupling with poloidal flow. Thus, the 

investigation of all dynamic effects arising from LVV requires the 

construction of mantle flow models in fully three-dimensional 

spherical geometry. 
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In the last years, various authors attempted to assess the 

sensitivity of the geoid to LVV (Richards and Hager (1989); 

Christensen and Harder (1991); Ribe (1992); Zhang and Christensen 

(1993); Čadek et al. (1993); Matrinec et al. (1993); King and 

Hager (1994); Forte and Peltier (1994); Karpychev and Fleitout 

(1996); Wen and Anderson (1997); Zhong and Davies (1999); 

Karpychev and Fleitout (2000); Zhong (2001); Čadek and Fleitout 

(2003, 2005); Niehuus and Schmeling (2005); Latychev et al. 

(2005); Kaban et al. (2007); Moucha et al. (2007)). Although the 

results obtained in these papers are somewhat ambiguous, there are 

indications that LVV may play an important role if boundary layers 

are taken into account (Karpychev and Fleitout (2000); Čadek and 

Fleitout (2003)). Most of these studies took into consideration 

only regional models of LVV located in the uppermost and lowermost 

mantle or oversimplified 3-D viscosity models of the whole mantle. 

The effect of the whole mantle LVV was investigated in Kaban et 

al. (2007) and Moucha et al. (2007). The conclusions based on the 

results of these two studies are somewhat controversial because 

Moucha et al. (2007) arrived at the conclusion that the effect of 

LVV on the geoid is negligible, whereas Kaban et al. (2007) 

demonstrated that some particular features of the geoid could be 

predicted only by inclusion of the LVV effect. 

Ricard et al. (1988) investigated the effects of LVV in the 

shallow upper mantle, in which rigid plates were dynamically 

coupled with buoyancy-induced mantle flow. This and some other 

studies showed that, due to the complex rheology and boundaries of 

tectonic plates, large LVV in the lithosphere must be accounted 

for explicitly in mantle flow models (Ricard et al (1988); Ricard 

and Vigny (1989); Forte and Peltier (1994)) and in viscosity 

inversions (Forte and Mitrovica (2001); Mitrovica and Forte 

(2004)). These modeling studies demonstrated that the plates have 

a major effect on the convective flow and on the convection-

related observables such as dynamic topography and non-hydrostatic 

geoid.  
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Koch and Ribe (1989) also investigated some general effects of LVV 

on the surface observables, analyzing various simplified models. 

They found that LVV have a large (up to 50%) effect if the load is 

relatively “hard” and shallow, whereas this effect is small (<15%) 

if the load is “soft” or deep. The geoid anomaly produced by a 

soft upwelling plume differs only slightly (by about 13%) from 

that generated by an isoviscous plume. By contrast, the viscosity 

differences associated with subducting slabs could have a larger 

effect on the geoid. 

Christensen and Harder (1991) found only a weak toroidal component 

in models of thermal convection with temperature-dependent 

viscosity. Only in the cases of highly nonlinear rheology with a 

stress-exponent of harmonic degree 6 and a high-viscosity surface 

layer, was a moderate ratio of toroidal-to-poloidal component 

velocities of 0.25 obtained.   

Zhang and Christensen (1993) proposed a hybrid finite-difference 

and spherical harmonic method that provides the possibility to 

estimate the effect of realistic LVV within the mantle. The 

nonlinear coupling of various spherical harmonic modes was 

calculated by an iterative method. They examined the effect for 

long wavelengths (l=1-6) and found that, for such wavelengths, the 

effects of LVV on the geoid are smaller than those due to 

variations in the radial viscosity structure. However, they can 

also be significant for higher modes (l>3) if the viscosity is 

radially stratified. On the other hand, it was found that the 

misfit between the observed and modelled geoids is not reduced by 

introducing LVV. 

Forte and Peltier (1994) presented a quazi-analitical variational 

formulation of buoyancy-induced mantle flow in a heterogeneous 

spherical shell. They examined the effect of LVV on long-

wavelength surface observables (geoid undulations and dynamic 

topography), which were expanded up to spherical harmonic degree 
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6, using a dynamic complete, theoretical formulation of mantle 

flow. They argued that the effects of LVV are likely to have been 

masked by the uncertainties in the tomography models available at 

the time.   

Zhong and Davies (1999) applied spatial finite-element (FE) method 

combined with density anomalies derived from a subduction history 

model. They examined the joint effects of plate rheology and a 

subducting rigid lithosphere on the geoid and plate motions. They 

found that the plate rheology is significant and its inclusion 

yields a better geoid model and, moreover, reproduces the basic 

features of the observed field. According to their conclusions, 

the slab viscosity can strongly affect the geoid, depending on 

whether the slab is coupled with the surface. It is unclear, 

however, whether the change in the mean radial viscosity caused by 

assigning arbitrarily high viscosities to subducting slabs has a 

significant effect on the predicted geoid, and the most important 

effect on the geoid was not quantified.    

Karpychev and Fleitout (2000) calculated the effects on the geoid 

for a model with LVV in the upper mantle. Beneath the ancient 

stable continental regions, the viscosity decreases monotonically 

from the surface to the depth of about 400-600 km. The oceanic 

lithosphere and tectonically active continental provinces are 

underlain by the low-viscosity asthenosphere. The viscosity of the 

lower mantle is assumed to be constant. Mantle flows are driven by 

preset surface velocities and density anomalies inferred from 

tomography models. They found that the geoid differences between 

the models with and without LVV reach 30%. Contrary to what was 

proposed in previous studies, spherical harmonics of degrees 2 and 

3 are strongly affected by LVV. It is also important that shear 

stresses at plate bases are sensitive to LVV.  

Richards et al. (2001) estimated the effect of LVV in the upper 

mantle on surface plate velocities. They demonstrated that the 
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combination of a pronounced low-viscosity zone and a plastic yield 

stress accounting for localized weakening of the cold thermal 

boundary layer results in a distinctly plate tectonic style of 

convection, with ~30% toroidal surface motion in the 3-D case. 

Čadek and Fleitout (2003, 2005) investigated the effects of LVV in 

the upper 300 km of the mantle (Čadek and Fleitout (2003)) and 

core-mantle boundary region (Čadek and Fleitout (2006)), using the 

iterative technique of Zhang and Christensen (1993). In addition 

to the model of Karpychev and Fleitout (2000), they analysed the 

possible effect of partial layering of the mantle convection at 

the 670 km discontinuity. Considering all effects simultaneously, 

the authors were able to reduce significantly the misfit between 

the observed and modelled geoid: the partially layered model 

accounts for about 90% of the observed geoid at long wavelengths 

(l=2-8). Čadek and Fleitout (2003) argued that LVV in the 

lithosphere are needed to fit the present-day geoid with a simple 

viscosity profile. Furthermore, they imposed prescribed plate 

velocities as a surface boundary condition, thereby invoking an 

external energy source that had to drive mantle flow independently 

of the buoyancy forces in the mantle. This approach lacks dynamic 

consistency and, therefore, it is difficult to assess the actual 

effect of shallow LVV. In their further investigation of the LVV 

in the core-mantle boundary region, Čadek and Fleitout (2006) 

determined large-scale features of the viscosity structure in the 

lowermost mantle that yielded a high density of hotspots above the 

regions of a higher-than-average viscosity. The global inverse 

search applied to models with LVV in the lowermost mantle improved 

the agreement between predicted and observed geoids up to about 

95%, while models with only radial viscosity could account for no 

more than 78% of geoid. According to these studies, the 

consideration of LVV in the core-mantle boundary region improves 

the fit to the observed geoid much better than the inclusion of 

LVV in the lithosphere and asthenosphere. This inexplicable result 

can be due to a reduced (by about two orders) value of LVV that 
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was considered in the first models with lithosphere and 

asthenosphere LVV.  

Moucha et al. (2007) examined the LVV implications for global 

convection related observables such as the horizontal surface 

divergence, dynamic geoid and topography, using forward modelling 

of buoyancy induced incompressible flow in a 3-D spherical shell 

(variational formulation suggested by Forte and Peltier (1994)). 

The 3-D viscosity distribution was derived from a rheological law 

expressed in terms of a homologous temperature in the mantle. The 

considered 3-D viscosity distribution spans about 2.5 orders of 

magnitude in the upper mantle (the tomography model of Grand et 

al. (1997)), and 3 orders of magnitude in the lower mantle (the 

tomography model of Su and Dziewonski (1997)). They found that the 

resulting dynamic topography, as well as the gravitational 

response of the Earth, is affected relatively weakly by the 

inclusion of LVV as compared with results for a purely radial 

viscosity model. In particular, they revealed that the effect of 

LVV on the global observables is significantly smaller than the 

variability due to uncertainties in the current seismic tomography 

models. They also quantified the effect of LVV in the context of 

the viscosity inverse problem, using radial viscosity models and a 

fully three-dimensional viscosity models in which the LVV contrast 

reaches three orders of magnitude, and found that the LVV have 

virtually no effect on their inversion results. Spatial FE method 

CITCOMs (Zhong et al. (2000)) was included into the study for 

benchmarking purposes. The comparison of spectral and FE methods 

revealed divergences of up to 8% in the calculated geoid figures 

and 4.5% in the surface dynamic topography.   

Kaban et al. (2007) analysed the relative effect of LVV (with a 

maximum viscosity contrast of three orders of magnitude) in the 

upper and lower mantle on dynamic geoid undulations, dynamic 

topography and near-surface mantle velocities, using the spectral 

method in conjunction with the iterative method proposed by Zhang 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



                                                                                                                                                        

 25

and Christensen (1993). It was shown that the implementation of 

the whole-mantle 3-D viscosity variations based on the S20a 

seismic tomography model (Ekstrom and Dziewonski (1998)) 

apparently improves the model geoid, even without any additional 

tuning of model parameters. According to this study, geoid 

disturbances induced by the lower and upper mantle are of 

approximately the same significance (up to 40% of total geoid 

heights); however, the effect of the lower mantle is pronounced 

mainly on mid-range wavelengths. It was also found that the 

effects of the upper and lower mantle LVV on the geoid are nearly 

complementary with respect to the effect of the whole mantle LVV. 

In contrast to the geoid, the effects on dynamic topography 

induced by the upper mantle LVV were shown to be larger in 

amplitude than the effects due to the lower-mantle LVV. The effect 

of LVV on near-surface horizontal flow velocities was found to be 

very significant in particular with respect to the LVV-induced 

toroidal flow velocities. 

New generation of FE and FV methods for global spherical modelling 

of mantle convection is a growing tendency of the present day. The 

heavy computational demands of the spectral approaches (required 

for the incorporation of the LVV effect of a high resolution) and 

the complications involved in the modelling of high lateral 

viscosity contrasts with the aid of spectral methods gave rise to 

the development of the powerful numerical methods based on FE and 

FV techniques. Therefore, numerical spectral methods are being 

gradually replaced by the generation of spatial methods that are 

mostly applied to the development of the Earth’s interior on large 

time scales (Rykov and Trubitsyn (1996); Bunge et al. (1996, 

1997); Trubitsyn and Rykov (1999, 2000, 2001); Zhong et al. 

(2000), Trubitsyn et al. (2007)). The latest versions of FE and FV 

methods provide the possibility to avoid the pole problems, which 

occur in latitude-longitude grids in spherical coordinates (Zhong 

et al. (2000); Stemmer et al. (2006)). Since the Earth’s 

evolutionary processes are not concerned with the subject of this 
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work, I do not discuss in greater detail these methods. Moreover, 

these numerical methods can hardly produce an accurate geoid 

figure due to the complications associated with the introduction 

of mantle compressibility and self-gravitation effects; therefore, 

the studies based on these methods focus on mantle convection and 

the effects of post-glacial rebound and relative see levels 

(Gasperini and Sabadini (1989, 1990); Gasperini et al. (1991); 

Zhong and Gurnis (1994); Bunge et al. (1996); Kaufmann and Wu 

(1998, 2002); Zhong et al. (2000); Latychev et al (2005); Kaufmann 

et al. (2005); Steffen et al. (2006);  Wu et al. (2005); Paulson 

at al. (2005); Zhu and Feng (2005); Wu (2002, 2005, 2006); Wu and 

Wang (2006); Wang and Wu (2006); Stemmer et al. (2006)).   
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Chapter II. 

Internal loading theory and basic equations. 

It is generally accepted that the Earth’s solid interior behaves 

like a fluid on geological time scales. In order to solve the 

problems with fluid mechanics, it is necessary to solve the 

applicable continuum partial differential equations (Bachelor, 

1967). The distinguishing property of fluids is their ability to 

deform. On large time scales the solid rocks of the mantle deform 

as a fluid, thus, the behavior of the Earth’s mantle can be 

described by the Navier-Stokes equations that contain the 

continuity equation (conservation of mass) and momentum equation 

(conservation of momentum). Sometimes the energy equation 

(conservation of energy) is also included to Navier-Stokes 

equation system.  

The Navier-Stokes equations are the fundamental differential 

equations, which describe the motion of fluid substances (such as 

liquids and gases). These equations state that changes in momentum 

(acceleration) of fluid particles are only the product of changes 

in pressure and dissipative viscous forces acting inside the 

fluid. The viscous forces originate in molecular interaction and 

dictate how sticky a fluid is. Hence, the Navier-Stokes equations 

are a dynamical statement of balance of forces acting at any given 

region of the fluid, balance between inertial forces, pressure 

forces, viscous forces and the body force due to gravity.  

2.1 The Navier-Stokes and Poisson equations. 

The Navier-Stokes equations are derived from the basic principles 

of conservation of mass, momentum and energy. 

1) The continuity equation for an infinitesimal volume element: 

0
)(
=

∂
∂

+
∂
∂

i

i

x
u

t
ρρ

                                                (E2.1a) 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 

 28

0=
∂
∂

i

i

x
u

  (incompressible fluid)                              (E2.1b) 

where ix  is the position vector, t is time, ρ  is the density of 

the fluid, and iu  is the fluid velocity. 

2) The momentum equation on the elemental fluid parcel: 
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                                   (E2.2) 

where p is the fluid pressure, ig  is the acceleration of gravity, 

ijτ  is deviator stress tensor (in terms of strain rate):  
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 are the components of strain rate tensor of a 

fluid (nonzero strain rates generate deviator stresses), 
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δ  

- Kronecker delta, η  is the dynamic viscosity, and λ  is the second 

viscosity.  

In our study we neglect the bulk viscosity ηλ
3
2

+=Bk  (a measure of 

dissipation under compression) and take it to be zero. Then the 

The Navier-Stokes equation takes the form of: 
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3) The Poisson equation is the equation for the gravitational 

potential V that takes into account the changes in acceleration of 

gravity ig  due to the density perturbation of the flow: 

ρπGV 42 −=∇                                                   (E2.3) 
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where δρρρ +=  is the density distribution in the mantle, ρ  is the 

radial density profile, δρ  is the density anomaly, G is the 

universal gravitational constant. 

4) The energy equation for an elemental parcel of fluid: 

H
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                              (E2.4) 

where k is thermal conductivity, s is entropy per unit mass, H is 

the rate of internal heat production per mass unit, and T is the 

temperature.  

For compressible and incompressible fluids the thermal energy 

equation can be rewritten in clearer form: 
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 is the coefficient of thermal expansion 

of material, 
ρ
1

=v  is specific volume, p(*)  ( v(*) ) means that the 

pressure (volume) is held fixed, pc  ( vc ) is the specific heat at 

constant pressure (volume), 
j

i
ij x

u
∂
∂

=Φ τ  is the viscous dissipation 

function.  

2.2 Equations in spherical coordinates 

As the primary subject of this work is the in-depth study of the 

instantaneous state of the present-day Earth, the equation system 

describing this state may be distinctly simplified. The Navier-

Stokes equations’ adaptation to the specific conditions of the 

Earth’s “fluid” mantle (very high viscosity and relatively small 

velocity values) results in the following changes in equations 

E2.1 (the continuity equation) and E2.2 (the momentum equation):  
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0→
∂
∂
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 and 0→
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 =>  

1) The continuity equation applied to the Earth’s mantle: 
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  (incompressible fluid)                              (E2.5b) 

2) The momentum equation applied to the Earth’s mantle: 
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The energy equation E2.4 makes no sense whilst studying the state 

of the instantaneous Earth, thus, this equation will not be 

included to the equation system into be discussed further.  

In our study the Earth is represented as a spherical shell with 

some surface and core disturbances occurring due to the self-

gravitational effect, which will be defined and analyzed in the 

following parts. For the spherically symmetric Earth of inner 

radius cR , outer radius eR  with the density distribution 

),,()(),,( ϕθδρρϕθρ rrr += , the force of gravity )(rgg = , stratified by 

radius, and the viscosity distribution ),,( ϕθηη r=  it is convenient 

to rewrite the Stokes equations E2.5 and E2.6 in spherical 

coordinates ),,( ϕθr : 

1) The continuity equation in spherical coordinates: 
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(for incompressible mantle ρ  is constant) 

where ),,( ϕθ uuuu r=  is the mantle flow velocity. 
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2) The momentum equation in spherical coordinates: 

g
rrrr

r
rr

V
r
p rrrr δρττ

ϕ
τ

θθ
θτ

θ
τρ ϕϕθθ

ϕθ −+−
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−= )(1
sin
1)(sin

sin
1)(10

2

2   (E2.8a) 

)(1
sin
1)(sin

sin
1)(110

2

2 θττ
ϕ
τ

θθ
θτ

θ
τ

θ
ρ

θ ϕϕθ
θϕθθθ ctg

rrrr
r

r
V

r
p

r r
r −+

∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

−=   (E2.8b)        

)2(1
sin
11)(1

sinsin
10

2

2 θττ
ϕ
τ

θθ
ττ

ϕθ
ρ

ϕθ θϕϕ
ϕϕθϕϕ ctg

rrrr
r

r
V

r
p

r r
r ++

∂

∂
+

∂

∂
+

∂

∂
+

∂
∂

+
∂
∂

−=    (E2.8c) 

where ijτ  is the viscous stress tensor concerned with ),,( ϕθ uuuu r=  

and with components of the strain rate tensor ije  by the following 

expressions:   
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The expressions of the relation between normal strains and flow 

velocities will be also often required in the following parts: 
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∂
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                                         (E2.10) 
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+
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=
r
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r
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e
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1
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1

2
1

 

3) The Poisson equation (gravity field flux) in spherical 

coordinates: 

ρπGV
r
L

r
V

rr
V 42

2

2

2

2

−=−
∂
∂

+
∂
∂                                          (E2.11) 

Where 2

2

2
2

sin
1

sin

sin
1

θθθ
θ

θ

θ ∂
∂

−
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
−=L  

),,( ϕθrVV =  is the geopotential. 

4) The total stress tensor: 

It is convenient to turn to the other form of the viscous stress 

tensor ijσ  (total stress tensor): 

rrrr p τσ +−=  

θθθθ τσ +−= p                                                  (E2.12) 

ϕϕϕϕ τσ +−= p  

For the total stress tensor the Stokes equations take a simplified 

form: 

g
r
Vctg

rrrr rrr
rrrr δρρθτσσσ
ϕ
τ

θθ
τσ

θϕϕθθ
ϕθ −

∂
∂

+++−+
∂

∂
+

∂
∂

+
∂
∂

= )2(1
sin
110      (E2.13a) 

θ
ρτθσθσ

ϕ
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θϕϕθθ
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∂
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++−+
∂

∂
+

∂
∂

+
∂
∂

=
V

r
ctgctg

rrrr r
r )3(1

sin
110           (E2.13b)           

ϕθ
ρθττ

ϕ
σ

θθ
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θϕϕ
ϕϕθϕϕ

∂
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+++
∂

∂
+

∂

∂
+

∂

∂
=

V
r

ctg
rrrr r

r

sin
)23(1

sin
110             (E2.13c) 
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Chapter III 

Direct method for solving the Stokes equation in spherical 

harmonics 

Spherical geometry is of obvious relevance to our study of the 

mantle convection. Therefore, it is of great importance to 

consider the representation of the continuity, momentum and 

Poisson equations in spherical harmonics and the novel 

advantageous method of their solution. 

3.1 Spherical harmonic method. 

The initial (solenoidal) vector field U has three components 

)),,(),,,(),,,(( ϕθϕθϕθ ϕθ rUrUrUU r=  given in spherical coordinates ),,( ϕθr . 

The solenoidal vector field ϕϕθθϕθ eUeUeUUUUU rrr ++== ),,(  can be 

represented as a sum of two independent vector fields: spheroidal 

(S) and toroidal (T) TSU += . In this case the radial component rU  

can be represented by a complete set of spherical functions 

),( ϕθlmY , lateral components θU  and ϕU  - by a combination of 

spherical functions’ derivatives ),( ϕθθ
lmY  and ),( ϕθϕ

lmY . The radial 

component rU  of the spheroidal vector field S correlates with 

lateral components θU  and ϕU  by a differential equation. 

1) Spherical functions: 

Spherical functions known as spherical harmonics 

⎪⎩

⎪
⎨
⎧

=

=
=

2,sin)(cos

1,cos)(cos
),(

imPN

imPN
Y

m
llm

m
llm

lmi ϕθ

ϕθ
ϕθ                                   (E3.1) 

Where l (m) is the spherical harmonic degree (order): 0≥l  

( lm ≤≤0 ) 

m
l

m
mm

l d
Pd

P
)(cos

)(cos
)(sin)(cos

θ
θ

θθ =                                      (E3.2) 
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are associated Legendre functions defined in terms of the Legendre 

polynomials: l

ll

lll d
d

l
PP

)(cos
])1[(cos

!2
1)(cos)(cos

2
0

θ
θθθ −

==   

)!(
)!)(12)(2( 0

ml
mll

N m
lm +

−+−
=

δ
 are normalization coefficients for the 

associated Legendre functions.  

Every function ),,( ϕθrf  on a sphere can be expanded into spherical 

functions’ series according to:  

( )∑∑∑
∞

= = =

=
0 0

2

1
),(*)(),,(

l

l

m i
lmilmi Yrfrf ϕθϕθ                                 (E3.3a)  

∫ ∫=
π π

θθϕθϕθϕ
2

0 00

sin),(),,(1)( dYrfd
s

rf lmi
m

lmi                              (E3.3b) 

2) Orthonormalization law for spherical functions: 

'
0

' 12
2sin)(cos)(cos llll l

dPP δθθθθ
π

+
=∫                                  (E3.4a) 

''
0

'
' )!)(12(

)!(2sin)(cos)(cos mmll
m

l
m

l mll
mldPP δδθθθθ

π

−+
+

=∫                                         (E3.4b) 

For zonal harmonics (m=0): πϕ
π

∫ =
2

0

2d  & 12 0 =− mδ  & E3.4b => 

'''0

2

0
'''

0
''' 4sin),(),( iimmllmiimmllimllmi sdYYd δδδδδπδθθϕθϕθϕ

π π

==∫ ∫                  (E3.5a)     

For tesseral (0<m<l) and sectoral (m=l) harmonics: 

πϕϕϕϕ
ππ

== ∫∫
2

0

2
2

0

2 )(sin)(cos dmdm  & 22 0 =− mδ  & E3.4b => 

'''0

2

0
''

0
'''' 4sin),(),( iimmllmiimmllimllmi sdYYd δδδδδπδθθϕθϕθϕ

π π

==∫ ∫                  (E3.5b) 

E3.5a + E3.5b => π40 =ms , lm ≤∀  

3) Spherical functions’ derivatives ),( ϕθθ
lmY  and ),( ϕθϕ

lmY : 

θ
ϕθ

ϕθθ

∂
∂

=
),(

),( lm
lm

Y
Y   
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ϕ
ϕθ

θ
ϕθϕ

∂
∂

=
),(

sin
1),( lm

lm
Y

Y  

Functions ),,(1 ϕθrf  and ),,(2 ϕθrf  can be expanded into series of 

spherical functions’ derivatives according to: 

( )∑∑∑
∞

= = =

+=
0 0

2

1
1 ),(*)(),(*)(),,(

l

l

m i
lmilmilmilmi YrbYrarf ϕθϕθϕθ ϕθ                    (E3.6a) 

( )∑∑∑
∞

= = =

−=
0 0

2

1
2 ),(*)(),(*)(),,(

l

l

m i
lmilmilmilmi YrbYrarf ϕθϕθϕθ θϕ                    (E3.6b) 

∫ ∫ +=
π π

ϕθ θθϕθϕθϕθϕθϕ
2

0 0
21 sin)),(),,(),(),,((1)( dYrfYrfd

s
ra lmilmi

lm
lmi              (E3.6c) 

∫ ∫ −=
π π

θϕ θθϕθϕθϕθϕθϕ
2

0 0
21 sin)),(),,(),(),,((1)( dYrfYrfd

s
rb lmilmi

lm
lmi              (E3.6d) 

From the point of view of physics this expansion represents a sum 

of two vector fields: spheroidal S (poloidal for incompressible 

case) and toroidal T.  

In the next chapters and the Appendix, describing the derivation 

of the final equations, some knowledge of spherical harmonics and 

their properties will be demanded. Hence, it is of some use to 

refresh a set of expressions for spherical functions’ derivatives 

for the sake of following the thread of further reasoning. 

The spherical function ),( ϕθlmY  is the solution of Laplace’s 

equation:  

),(),(2 ϕθϕθ lmlm LYYL =                                             (E3.7)  

ϕϕθθθ
θ

θ
ϕθθ

θ
θ

ϕθ YYctgYYYLYlm −−−=
∂
∂

−
∂

∂
−= 2

2

2sin
1)(sin

sin
1),(  =>  

LYYYctgY −=++ ϕϕθθθ θ                                          (E3.7a)  

0=−+ θϕϕϕθ θ YYctgY                                            (E3.7b)  

02 =−+ θϕϕϕϕϕϕθ θ YYctgY                                          (E3.7c) 

θθϕϕϕϕθθθθθθθ θθθ LYYYctgYctgYYctgY −=+−−−+ 22                     (E3.7d)  
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where )1( +≡ llL , ),( ϕθθθ
lmYY ≡ , ),( ϕθϕϕ

lmYY ≡ , 2

2

θθθ
θθ

∂
∂

==
YYY , 2

2

2sin
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YY , 

ϕ
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4) Orthonormalization law for spherical functions’ derivatives: 

0sin),(),(sin),(),(
2

0 0
'''

2

0 0
''' =− ∫ ∫∫ ∫

π π
θϕ

π π
ϕθ θθϕθϕθϕθθϕθϕθϕ dYYddYYd lmiimllmiiml            (E3.8a) 
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2
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''' )1(4sin),(),(sin),(),( iimmlllmiimllmiiml lldYYddYYd δδδπθθϕθϕθϕθθϕθϕθϕ

π π
ϕϕ

π π
θθ +=− ∫ ∫∫ ∫  (E3.8b) 

Integration by parts: 

=− ∫ ∫∫ ∫
π π

ϕϕ
π π

θθ θθϕθϕθϕθθϕθϕθϕ
2

0 0
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Second integral: 
⎪⎩

⎪
⎨
⎧

=

=
⇒

⎪⎩

⎪
⎨
⎧

=

=

'''''' sin
1

sin

iml

lmi

iml

lmi

Yu

dYdv

dYdu

Yv

θ

ϕθ

ϕ

ϕϕ

ϕ

ϕ

 

'''0

'''

2

0 0
'''

2

0 0
'''

2

0 0
'''

2

0 0
'''

0

2

0
'''

2

0 0
'''

0

2

0
'''

2

0
'''

2

0 0
'''0'''

)1(

)1(4sinsin)(}5.3{

sin)()sinsincos(

sin)sincos(

sin
sin

1)sincos(sin

iimmllm

iimmlllmiimllmiiml

lmilmilmiimllmilmilmiiml

lmiimllmilmiiml

lmiimllmiimllmilmiimllmiiml

lls

lldYYdLdLYYdaE

dYYctgYYddYYYYd

ddYYdYYYd

ddYYYYdYYYYYd

δδδ

δδδπθθϕθθϕ

θθθϕθθθθϕ

θθϕθθθϕ

θθϕ
θ

θθθθϕ

π ππ π

π π
ϕϕθθθ

π π
ϕϕθθθ

π π
ϕϕ

π π
θθθ

π π
ϕϕ

π
ϕ

π π
θθθπθ

+=

=+==−−==

=++−=++−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

∫ ∫∫ ∫

 

)1()1(4 0 +=+= llslls mml π , lm ≤∀                                 (E3.8c) 

    3.2 The Stokes equation in spherical harmonics. 

At first I will consider only the simplified case of a radial 

viscosity distribution )(rηη =  because an introduction of LVV leads 
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to some complications (see Chapter V). The Stokes equations (in a 

spherical shell) can be represented in spherical harmonics by 

expansions of velocities ),,( ϕθ uuuu r= , total stresses ijσ , density 

anomalies ),,( ϕθδρ r , pressure ),,( ϕθrp  and gravitational potential 

),,( ϕθrV .    

Expanding the function of density anomalies into spherical 

harmonic series:   

∑=
ml

lm
lm Yrr

,
),()(),,( ϕθδρϕθδρ                                       (E3.9a) 

We shall search for a solution of the Stokes equations E2.7 + 

E2.13 and the Poisson equation E2.11 for potential V, pressure p, 

radial components of vector field of velocities u and total 

stresses ijσ  also in the form of spherical harmonic expansions: 

∑=
ml

lm
lm YrUrV

,
5 ),()(),,( ϕθϕθ                                        (E3.9b) 

∑=
ml

lmlm Yrprp
,

),()(),,( ϕθϕθ                                        (E3.9c) 

∑=
ml

lm
lm

r YrUru
,

1 ),()(),,( ϕθϕθ                                       (E3.9d) 

∑=
ml

lm
lm

rr YrU
r

r
,

3 ),()(1),,( ϕθϕθσ                                     (E3.9e) 

The solutions for lateral components of velocity θu , ϕu  and stress 

θτ r , ϕτ r  can be found in the form of expansions into series of 

spherical functions’ derivatives 
θ

θ

∂
∂

= lm
lm

YY  and 
ϕθ

ϕ

∂
∂

= lm
lm

YY
sin

1
 (toroidal 

part appears only due to LVV): 

∑=
ml

lm
lm YrUru

,
2 ),()(),,( ϕθϕθ θ

θ                                       (E3.9f) 

∑=
ml

lm
lm YrUru

,
2 ),()(),,( ϕθϕθ ϕ

ϕ                                       (E3.9g) 

∑=
ml

lm
lm

r YrU
r

r
,

4 ),()(1),,( ϕθϕθτ θ
θ                                      (E3.9h)       

∑=
ml

lm
lm

r YrU
r

r
,

4 ),()(1),,( ϕθϕθτ ϕ
ϕ                                      (E3.9i) 

where r is the relative radius. 
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Substituting expansions E3.9d, E3.9f and E3.9g of radial and 

lateral components of the velocity ),,( ϕθrur , ),,( ϕθθ ru  and ),,( ϕθϕ ru  to 

expressions E2.9 and E2.12 we obtain the remaining components of 

the total stress tensor ijσ :  

( )∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

ml
lmlm YrUYrU

r
pYr

,
21

*

)()(2),,( θθ
θθ

ηϕθσ                        (E3.9j)       
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))(()(2),,( θηϕθσ θϕϕ
ϕϕ                (E3.9k) 

( )∑ −=
ml

lmlm ctgYYrU
r

r
,

2

*

))((2),,( θηϕθτ ϕθϕ
θϕ                               (E3.9l) 

where 
0

* )()(
η
ηη rr =  is the dimensionless radial viscosity function and 

0η  is the mean mantle viscosity. 

Taking into consideration all derived expansions E3.9 and 

substituting them into the Stokes equations E2.7 and E2.13 and the 

Poisson equation E2.11 we arrive at an equation system of first-

order ordinary differential equations:  

lmlm
lm

LUUk
dr

dUr 21
1 )2( ++−=   

lmlmlm
lm

UUU
dr

dUr 4*21
2 1

η
++−=   

2*
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*
432
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*3 6)412( rgULUUULUk
dr

dU
r lmlmlmlmlmlm

lm

δρρηη +−++−+=            (E3.10) 

lmlmlmlmlm
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UUUULUk
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dUr 5
*
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*

1
*4 2)12(2)26( ρηη −−−−−+−=   

lmlm
lm

UU
dr

dUr 65
5 +=   

3
5

6 4 rLU
dr

dU
r lmlm

lm

πγδρ−=   

where 
0

* )()(
ρ
ρρ rr =  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

* )()(
g

rgrg  is the dimensionless radial density 

(acceleration of gravity) function, 0ρ  ( 0g ) is the mean mantle 
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density (acceleration of gravity on the Earth surface) and 

rd
rdrk

ln
)(ln)(

*ρ
=  is the mantle compressibility. 

Boundary conditions:  

0)()( 11 == ce rUrU  

0)()( 44 == ce rUrU  (free-slip condition) 

⎩
⎨
⎧

=
=

obse

c

UrU
rU

)(
0)(

2

4     (no-slip condition)                          (E3.11)        

)(
)(

)(4
)()1()( 3*
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56 e
e

ee
ee rU
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rUlrU
ρπγ

−+−=  

)(
)(

)(4
)()3()( 3*

*

56 c
c

cc
cc rU

rg
rr

rUlrU
ρπγ

−−=  

where er  and cr  are the relative values of the radius on the 

surface of the Earth and the core, correspondingly. 

The ODE system of the sixth order (Stokes + Poisson) must be 

solved for each harmonic mode (l (degree), m (order), i (qualifier 

of spherical function)). 

3.3 Direct method for solving the Stokes equation. 

In case of only radial viscosity variant, the Stokes equations 

(continuity and momentum) together with Poisson’s equation 

(gravity field flux) including effects of compressibility, self-

gravitation and depth-dependent gravity can be solved by a direct 

method of solving the ODE system for each spherical harmonic mode. 

Thus, applying the direct method of Godunov (Godunov, 1961) to the 

ODE system E3.10 for each couple of harmonic order m and degree 

maxll ≤ : 

)()(' rfyrAy +=                                                (E3.12) 
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where 
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⎟
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⎟
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Tlmlm rrgrf )4,0,0,,0,0()( 32* πγδρδρ −=  

with boundary conditions E3.11:   

brBy c =)(  (on the boundary between core and mantle)          (E3.13) 

crCy e =)(  (on the surface of the Earth),                 
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⎜

⎝

⎛
=

0
0
0

c                (E3.14b) 

in the range ec rrr ≤≤  of the relative radius values.  

The main objective of the direct Godunov method is that the 

preceding ODE system comes down to the Cauchy problem, which can 

be solved by any of the well-known methods (e.g. Runge-Kutta 

method).  For this purpose we must redefine some missing boundary 

conditions on one of the boundaries (on the surface or core-mantle 

boundary). Therefore, three boundary conditions from the core 

boundary cr  from the range ],[ ec rr  are imaginary shifted to the 

surface boundary. Hence, the missing boundary conditions get 

determined on the surface and, as a result, our problem turns into 

the ordinary Cauchy problem, which can be solved for every value 

of relative radius ],[ ec rrr∈ . 

In the first stage the fundamental system of solutions of the 

homogeneous equation system 0=By  must be built. As can be readily 
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appreciated, both boundary conditions (surface and core-mantle 

boundary) give us homogeneous systems E3.14a and E3.14b: 

0
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y
y
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l
g
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c

cρπγ
                              (E3.15) 

Obviously, all the rows of matrix B are linearly independent, 

therefore, the rank of the matrix B is equal to 3 ( 3=B ). Hence, 

the number of solutions comprehended by the fundamental system of 

solutions of E3.15 is equal to the number of surface boundary 

conditions. 

The fundamental system of solutions ),,( *
3

*
2

*
1

* yyyy =  of 0=By  can be 

easily found by Jordan’s method of exclusion, for example. As 

readily observed, )0,0,0,0,0,0(0 =y  is the particular trivial solution 

of the heterogeneous system bBy = .    

In the second stage of Godunov’s method three Cauchy problems in 

the following form: 

yrAy )('=                                                     (E3.16) 

3,2,1,)( * == iyry ic  

and one Cauchy problem in the form: 

)()(' rfyrAy +=                                                (E3.17) 

0)( yry c =  

must be solved. 

In this way we can get the set of solutions )(),(),...,( 01 ryryry k  for 

each value of radius ],[ ec rrr∈ . Taking into account the obtained sets 

of solutions )(),...,(1 ryry k  of the homogeneous Cauchy problem E3.16 and 

the solution )(0 ry  of the heterogeneous Cauchy problem E3.17 we can 

find the general solution: 

)()(...)()( 011 ryrydrydry kk +++=                                   (E3.18) 
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From the way the selection of the vectors 01 ,,..., yyy k  was done, it 

follows that the general solution satisfies the core-mantle 

boundary condition for any set of kdd ,...,1 . Thus, it is only 

necessary to find the values of coefficients kdd ,...,1 . The required 

coefficients can be found from the surface boundary condition 

E3.14a, E3.14b: 

)()(...)( 011 ekeke rCycdrCydrCy −=++                                  (E3.19) 

The values kdd ,...,1  can be obtained from the solution of the linear 

equation system E3.19. 
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Chapter IV 

Mantle compressibility and self-gravitation 

The comprehension of the effects of mantle compressibility and 

self-gravitation is of special importance in my study since the 

particular contribution of each of these effects to the mantle 

flow and geoid figure has been found extremely significant. An 

introduction of these effects in the new generation of the FE 

method is accompagned by a certain number of problems. A direct 

incorporation of self-gravitation and mantle compressibility 

effects into FD (finite-difference), FE and FV methods is 

impossible, consequently, we would have to fall back upon an 

iterative approach if using one of these methods. The grounds for 

the complications are concealed in the nature of the effects. 

4.1 Geoid and geoid undulations. 

Although the Earth is not flat or egg-shaped, as previously 

believed, neither is it precisely a sphere or even an ellipsoid. 

Mountains, ocean basins and variations in the crustal thickness 

contribute to the observed irregular shape and gravity field of 

the Earth, but they cannot explain the long-wavelength departures 

from a hydrostatic figure.  

The geoid is the equipotential surface of constant potential 

energy, which coincides with the mean sea level in the oceanic 

regions if neglecting the dynamic perturbations. The geoid anomaly 

is the variation of the height of the geoid with respect to a 

reference model. There are two principally different reference 

models: one is used in geodesy (a mathematical model of the world 

called an ellipsoid), the other is used in geodynamics (a 

hydrostatic spheroid).   

The geoid anomaly represents the effects of lateral density 

variations in the Earth. With the advent of the first seismic 

models of seismic tomography, it was noticed that long-wavelength 
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geoid lows correlate with seismically fast and therefore, 

presumably cold and heavy regions of the lower mantle, and vice 

versa, the highs of long-wavelength geoid correlate with 

seismically slow and light regions. This is the reverse of what 

would be expected in an undeformable Earth, where the geoid would 

exhibit a positive correlation with internal density anomalies. In 

order to calculate correctly the geoid due to mantle 

heterogeneities, it is essential to consider contributions of 

both, the internal density anomaly and the boundary deformations 

associated with flow induced by the anomaly. 

For the spherically symmetric rotating Earth (simplification 

applied for the global modeling) the geoid shape can be derived 

from the Bruns formula (Heiskanen and Moritz, 1967) 
g
Vr δδ = , where 

g  is the theoretical gravity on the surface of the spherical 

Earth, Vδ  is the angular-dependent component of the gravitational 

potential and rδ  is the departure of the geoid from a sphere. In 

general and in practice the geoid undulations are denoted by N. 

They represent the departure from an ellipsoid and can be 

calculated by the Stokes formula. 

The most recent gravity field combination models, for example 

model EIGEN-GL04C (a combination from the GRACE and LAGEOS mission 

results plus °×° 5.05.0  gravimetry and altimetry surface data) 

developed by GFZ Potsdam and GRGS Toulouse, possess very fine 

resolution (Flechhtner et al. (2007); Förste et al. (2007)). 

EIGEN-GL04C is complete to degree and order 360 in terms of 

spherical harmonic coefficients and thus, resolves geoid and 

gravity anomaly wavelengths of 110 km. Such a fine resolution is 

surely not required in the global modeling because, at present, we 

are not able to predict the geoid with such accuracy due to a lack 

of precision in seismic tomography data. Solving an inverse 

problem (Chapter VI) in order to obtain the best fit of the 

calculated geoid to the observed geoid, we use the above-mentioned 
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gravity field combination model only up to spherical harmonic 

degree 20 in the least-square adjustment.    

The long-wavelength features of the dynamic geoid contain the 

gravitational signal from deep-seated lateral mass and density 

inhomogeneities sustained by dynamic Earth mantle processes. To 

interpret the observed geoid with respect to mantle dynamics and 

structures, it is essential first to remove the lithosphere-

induced anomalous gravitational potential, which is generated by 

the topographic surface load and its isostatically compensating 

masses. Based upon the most recent global compilation of crustal 

thickness and density data and the age distribution of cooling 

oceanic lithosphere, residual topography and gravity are 

calculated by subtracting the “known” crustal and oceanic 

lithosphere compensating masses and gravitational effects from the 

surface fields (Kaban et al., 1999, 2004). The resulting isostatic 

model of the lithosphere is supposed to be valid for spatial 

wavelengths longer than 500 km. The isostatic lithosphere model 

field, expressed in terms of geoid heights, is subtracted from a 

satellite-derived long-wavelength geoid to yield the isostatic 

residual geoid (F4.1). Applying the isostatic correction, the 

overall pattern of the geoid becomes smoother and the most 

pronounced features, which are separated in the observed geoid, 

tend to get connected to larger structures. 

In the active tectonic areas the isostatic geoid reduction ranges 

from 18−  to +43 m. The maximum value is reached in Tibet, while 

the large negative values mostly extend over ‘old’ ocean areas 

with a deep ocean floor. The difference in an isostatic reduction 

of 20 m between the oceanic ridges and the old ocean purely 

reflects the isostatic balance of the oceanic lithosphere. 
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Figure (F4.1) Isostatic reduction of the geoid (Kaban et al., 2004). 

(a) Geoid (from the spherical harmonic global geopotential model to 

degree and order 180). 

(b) Isostatic geoid anomaly. 

(c) The geoid effect of the isostatically compensated lithospheric 

model. 

In this study we investigate the effect of LVV on the non-

isostatic geoid, which does not comprise the terms 20C  and 40C . The 

origin of these terms in the observed geoid relative to a 

hydrostatic spheroid is not completely comprehended, yet 

(Nakiboglu, 1982; Mound et al., 2003). Furthermore, the terms 20C  

and 40C  dominate in the observed non-hydrostatic geoid, their 

globally estimated root mean square (RMS) is equal to 28.5 m, 

which is almost identical to the RMS of the other terms (31.8 m). 

The modeling of the terms 20C  and 40C  requires precise knowledge of 

seismic velocity anomalies in the polar areas, which are not 

sufficiently resolved in the existing global tomography models, 

therefore, their amplitudes might be significantly reduced due to 

damping. 
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4.2 Mantle compressibility and self-gravitation. 

Here I summarize two special physical effects (mantle 

compressibility and self-gravitation) that give mantle convection 

its unique character.  

1) Mantle compressibility: 

Compressibility affects convection through the complex interplay 

of a number of material properties and the distribution of heat 

sources. Compressibility enters into the flow problem directly, 

through the system of equations governing flow (E3.12) in three 

fundamentally different ways. First, through its effect on the 

flow field – in order to conserve flux, flow velocities decrease 

as the density increases with depth. Second, there is a less 

direct effect of compressibility on the stress due to self-

gravitation. Finally, there is an indirect effect of 

compressibility on gravitational acceleration )(rg  (Corrieu et al. 

(1995); Panasyuk et al. (1996)). The latter effect is very 

important since )(rg  enters into both, the body force terms )(rf  in 

E3.12 and the relation between stress and dynamic topography. The 

effect of compressibility is significant in the mantle convection 

because the density of the Earth’s mantle increases by about 60% 

from the top of the mantle to the bottom (F4.2) since a parcel of 

mantle that flows from the uppermost mantle to the core-mantle 

boundary almost doubles in density. 

The nature of radial density variations in the Earth has been 

explored with the aid of the radial profiles of compressional pV  

and shear sV  wave velocities, experimental and theoretical 

information on chemical composition of the mantle rocks. The 

comprehensive analysis has concluded that the Earth’s density 

increases with depth mostly due to mantle compressibility and 

phase transitions. 
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Figure (F4.2) Radial density distribution according to PREM (Dziewonski and 

Anderson, 1981). 

The radial variations in density ρ  can be expressed in terms of 

the pressure p and the entropy s: 

dr
ds

sdr
dp

pdr
d

ps

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
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⎝

⎛
∂
∂

=
ρρρ

                                         (E4.1) 

where r is radial coordinate, s(*)  ( p(*) ) means isentropic (isobaric) 

variations – a reversible process without heat transfer (process 

with constant pressure).  

The laboratory experiments and theoretical studies have shown that 

thermal expansivity in the Earth’s mantle decreases with depth due 

to compressibility of rocks under high pressure. Altgough the 

depth dependence of thermal expansivity should be taken into 

account in realistic models of mantle convection, the variations 

of thermal expansivity with depth do not have a major influence on 

the style of mantle convection. Variations in viscosity with depth 

are much more important. 

Mantle compressibility is defined by the character of radial 

density )(* rρ :  

dr
rd

r
r

rd
rdrk )(

)(ln
)(ln)(

*

*

* ρ
ρ

ρ
==                                       (E4.2)  
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Figure (F4.3) Mantle compressibility corresponding to the radial density in 

figure (F4.2). 

2) Self-gravitation: 

The effect of self-gravitation is directly correlated with the 

lateral gravity variations in the Earth. We can schematically 

describe the process of appearance of lateral gravity variations 

as a sequence of events:  

(a) A spherically symmetric field is heated from below => (b) 

Convection occurs => (c) Flows appear => (d) Density and 

temperature distribution gain lateral variations inside the sphere 

=> (e) Surface and core boundaries are distorted. 

Convection itself and consequent density redistribution lead to 

alterations in boundaries of surface and core. Changes in 

boundaries and temperature distribution react against the 

spherically symmetric initial state of gravity and lead to a rise 

of its lateral variations. The forces acting on the internal mass 

are to be transformed by a change of gravity. Therefore, the 

mantle flows are corrected by the new distribution of the forces. 

Due to gradual correction of the flows the boundaries are 
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distorted more and more, consequently gravity distribution is also 

changed. Thus, the process of introduction of self-gravitation 

effect represents a vicious circle.  

4.3 Effects of mantle compressibility, self-gravitation and depth-

dependent gravity on the mantle velocities and geoid. 

The opinions differ on the importance of the effects, which I 

attempt to analyze in this chapter, for the global modeling of 

mantle convection and the most sensitive constraints. The thing is 

that an incorporation of the effects (compressibility and self-

gravitation) into wide-spread methods, based on FE and FD, is 

concerned with grand problems. Thus, a presumable dramatic effect 

of self-gravitation on the geoid would tie up maneuverability of 

the mentioned methods while attempting in-depth study of the deep 

Earth’s structure with the aid of the methods mentioned above. 

In order to remove the effects of self-gravitation and mantle 

compressibility from our methods we need to apply some 

simplification to the equation system (E3.10) and the boundary 

conditions (E3.11): 

 
Figure (ES4.1) Removal of mantle compressibility and partial self-gravitation 

effects from the equation system. 

Blue lines mark the terms in the equations responsible for the 

effect of mantle compressibility. These terms disappear 
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automatically if we assume the radial density function to be 

constant.  

As shown in Part 4.1 the effect of self-gravitation is double-

faced:  

- In order to exclude partial effect of self-gravitation due to 

redistribution of the forces and lateral gravity variations, 

which is of the most interest for us, we need to disconnect the 

Poisson equation from the Stokes equation by the removal of 

geopotential-related terms (marked by red crossed lines) from 

our equations for mantle flows and stresses. 

- The other connection between the equations comes from boundary 

conditions. An enormous trivial effect of boundary distortion 

can be excluded if we put away the influence of dynamic 

topography (not affected by gravity) on geopotential through the 

boundary conditions.   

The latter effect can easily be modeled by any numerical method 

(spectral method, FE and FV methods) since the Poisson equation 

can be solved separately from the Stokes equation using the 

resulting topography obtained from the Stokes equation. As the 

main goal of this chapter is to show how important the complete 

effect of self-gravitation on geoid and mantle flows is, I try to 

analyze only the partial effect, which cannot be reproduced by FD, 

FE and FV methods directly. This effect can be modeled only if 

both Poisson and Stokes equations are beling solved 

simultaneously. Therefore, the boundary conditions remain 

unchangeable (E3.11), and only the equation system is simplified 

by the removal of two terms (as shown in figure (ES4.1) by red 

lines) to uncouple the Stokes and Poisson equations.  

Two models (artificial and realistic) have been considered to 

reveal the contribution of each effect on the mantle velocities 

and dynamic geoid. Within each model different combinations of 

effects were analyzed: 
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(a) No-effect model: no mantle compressibility (radial density is 

constant ⎥⎦
⎤

⎢⎣
⎡== 30 4430)(
m
kgr ρρ ), no self-gravitation and no radial 

gravity change (radial acceleration of gravity is constant 

⎥⎦
⎤

⎢⎣
⎡= 210)(

s
mrg ). 

(b) All-effect model: all three effects are included. 

(c) No-compressibility model: all effects are included except for 

compressibility. 

(d) No-self-gravitation model: all effects are included except 

for self-gravitation. 

(e) No-radial-gravity model: all effects are included except for 

depth-dependent gravity.   

1) Artificial model.  

The first simple set of symmetric models is aimed at isolating 

each particular effect from objectionable influence of other 

effects and some casual impacts of viscosity variations.   

I have considered a set of models with the following input data: 

- Radial density profile from Figure (F4.2) 

- Density anomaly: ϕθϕθϕθδρ cos*2sin
4

15cos)(cos),( 1
221211 === PNY  

- Viscosity 1)(* ≡rη  

       
Figure (F4.4) Density anomalies: 
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Left: Cross-section through the longitudes 210 (left semicircle) and 30 (right 

semicircle). 

Right: View from the surface (these density anomalies are kept at all depths). 

Mantle velocities:             

 

 
Figure (F4.5) Velocities near surface and core: black arrows – (a) no-effect 

model; red arrows – (b) all-effect model.  

Top: Surface velocities:  

- (a) no-effect model (maximal velocity value 683944 mm/year). 

- (b) all-effect model (maximal velocity value 768130 mm/year). 

Bottom: Velocities near core: 
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- (a) no-effect model (maximal velocity value 806650 mm/year). 

- (b) all-effect model (maximal velocity value 749504 mm/year). 

 
Figure (F4.6) Profiles for lateral velocity components on the surface (Figures A 

and C) and near the core (Figures B and D) along the blue lines in figure 

(F4.5).  

- black curve – (a) no-effect model. 

- red curve – (b) all-effect model. 

The resulting values of mantle velocities [mm/year] and dynamic 

geoid [m] seem to be very huge since we consider an artificial 

model with very low constant viscosity (all through the mantle 

2110)( ≡rη ) and unnaturally great density anomalies (1000 times 

greater than in reality). 
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Figure (F4.5) represents the surface velocities and velocities 

calculated near the core for the models (a) no-effect model and 

(b) all-effect model. The maximal surface velocity values obtained 

from the model (b) near the surface of the Earth are approximately 

12.3% higher than those from the model (a). Near the core the 

situation is quite the opposite: the no-effect model (a) gives 

7.6% greater velocity values than the all-effect model (b). Thus, 

the no-effect model (a) produces rather significant difference 

between surface velocities and velocities calculated near the core 

(the latter ones have approximately 18% greater values). In the 

meanwhile the all-effect model (b) gives almost equal values for 

both: velocities near surface and core. 

 
Figure (F4.7) Velocity distribution in the cross-section (F4.4 Left) for the 

(a) no-effect model: the following velocity profiles have been calculated in 

the areas marked by white lines.  

- Cross-section (60): Blue arrows point at the cross-section through the 

latitude 60. 

- Cross-section (90): Vinous arrows point at the cross-section through the 

latitude 90. 
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Figure (F4.8) Velocity components in the cross-section (60) and differences 

between models with various effect combinations: 

Velocity components for models (a) and (b): 

A) Radial velocity component rV .  

C) Lateral velocity component θV . 

E) Lateral velocity component ϕV .  

- Black curve – (a) no-effect model 

- Red curve – (b) all-effect model 

Differences for models (b) and (a), (b) and (c), (b) and (d), (b) and (e) 

between: 

B) – radial velocities rV .  

D) – lateral velocities θV . 

F) – lateral velocities ϕV .  

Figures B, D and F: Impact of different effects (Red curve – contribution of all 

effects; Light blue curve – contribution of mantle compressibility; Green curve 

– contribution of self-gravitation; Dark blue curve - impact of radial gravity).  
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Figure (F4.9) Velocity components for cross-section (90) and differences between 

models with various effect combinations (analogously to (F4.8)). 

Figures (F4.8) and (F4.9) represent the particular contribution of 

the effects of mantle compressibility, self-gravitation and depth-

dependent gravity on velocity distribution. According to the 

figures almost all the changes in velocity distribution occur due 

to mantle compressibility. Contribution of depth-dependent gravity 

to velocity distribution is negligibly small (less than 1%) and 

can be taken as insignificant. Although the effect of self-

gravitation on the mantle velocities is not of the major 

significance, it is obviously much more substantial than the 

effect of depth-dependent gravity: on the radial component of 

velocity approximately 20% (of the change due to all effects), on 

both lateral components - 13%.  
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Geoid: 

 
Figure (F4.10) Geoids for model (a) no-effect and (b) all-effect and difference 

between them.  

Top left: (a) no-effect model. 

Top right: (b) all-effect model. 

Bottom: Difference between (b) all-effect and (a) no-effect models {(b)-(a)}. 

Impact of all effects on the geoid figure.  

Figure (F4.10) represents geoids calculated for (a) no-effect and 

(b) all-effect models. The difference between two geoids is 

visible to the naked eye. Geoid highs and lows are significantly 

intensified by an incorporation of mantle compressibility, self-

gravitation and radial gravity compared to the initial geoid 

figure.  
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Figure (F4.11) Impact of various effects on the geoid: models (b), (c), (d) and 

(e) are involved [in meters]:  

Top: Impact of mantle compressibility on the geoid figure. 

Center: Impact of radial gravity on the geoid figure. 

Bottom: Impact of partial self-gravitation effect on the geoid figure. 
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Figure (F4.11) demonstrates how large the contribution of each 

effect is. The effect of self-gravitation is obviously very high: 

the change of the geoid figure occurred due to only self-

gravitation effect exceeds 26% of the geoid calculated with all 

the effects (model (b)). We can conclude that the effect of self-

gravitation may not be neglected while modeling the geoid figure. 

The effect of compressibility on geoid is comparable with the 

effect of self-gravitation (22.5%) in this model. Complete neglect 

of depth-dependent gravity effect results in 6.5% error in the 

geoid figure. As is easy to see the effect of depth-dependent 

gravity on geoid intensifies a huge effect of self-gravitation 

while the effect of mantle compressibility reduces it. The rights 

of such a correlation between the effects can be verified by the 

next set of tests developed on the base of real data. We can also 

conclude that these effects are not additive, otherwise the 

resulting difference between the geoid calculated for (b) all-

effect and (a) no-effect models would be much smaller. 

2) Realistic model. 

A set of models based on…  

- Density anomalies (F4.13) from the S20 seismic velocity model 

- constant scaling factor equal to 0.2 

- radial density profile from figure (F4.2)   

- radial viscosity profile (F4.12), which gives a rather 

reasonable fit to the observed geoid (approximately 78%)  

…has been analyzed for the purpose of investigation of the mantle 

compressibility, self-gravitation and depth-dependent gravity 

effects on realistic models.  
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Figure (F4.12) Radial viscosity profile (relative values )(* rη ). 

          

Figure (F4.13) Density anomalies: cross-section through the longitudes 210 (left 

semicircle) and 30 (right semicircle). 
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Mantle velocities: 

 

Figure (F4.14) Velocity distribution in cross-section (F4.13) for the model (a) 

no-effect: the following velocity profiles have been calculated in the areas 

marked by pink (cross-section °=°= 30&60 ϕθ ) and light blue (cross-section 

°=°= 30&90 ϕθ ) lines. 
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Figure (F4.15) Profiles for horizontal velocities [mm/year] θu  (Top) and ϕu  

(Bottom) in the areas marked by lines in figure (F4.14): cross-sections 

°=°= 30&60 ϕθ (Left) and °=°= 30&90 ϕθ (Right). 

Black curve: (a) no-effect model. 

Red curve: (b) all-effect model. 

Green dashed curve: (c) no-compressibility model. 
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Figure (F4.16) Velocities near surface and core. 

- black arrows – (a) no-effect model. 

- red arrows – (b) all-effect model. 

Top: Surface velocities.  

- (a) no-effect model: maximum value is 102.4 mm/year  

- (b) all-effect model: maximum value is 94.5 mm/year. 

Bottom: Mantle velocities near core boundary. 

- (a) no-effect model: maximum value is 24.25 mm/year 

- (b) all-effect model: maximum value is 21.6 mm/year. 
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Figure (F4.17) Differences between horizontal velocities calculated for the 

models (a) no-effect and (b) all-effect [mm/year]. 

Left: near surface boundary 

Right: near core boundary 

Analogously to the mantle flows calculated for the artificial 

model 1) mantle velocities are highly affected by mantle 

compressibility (F4.15), the contribution of which is large in 

both, the uppermost and lowermost layers (F4.16 and F4.17). Since 

the distribution of the flows is rather intricate in the realistic 

models it is difficult to analyze the mean contribution percentage 

of the effects on it. The maximum change in horizontal mantle 

velocities near the core-boundary exceeds 40% of the maximum 

velocity value while the contribution of the effects in the 

uppermost layers is approximately 15% of the maximum velocity 

value. According to (F4.15) both components of horizontal velocity 

are almost doubled by the effect of mantle compressibility due to 

the redistribution of the global flows but the conclusions depend 

too much on the particular choice of the cross-sections.   
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Geoid: 

 
Figure (F4.18) Geoids calculated for models (a) no-effect model and (b) all-

effect model and difference between them [meters]. 

A) (a) no-effect model. 

B) (b) all-effect model. 

C) difference between (b) all-effect and (a) no-effect models. 
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Figure (F4.19) Impact of each effect on the geoid figure [meters]. 

A) Impact of mantle compressibility (difference between models (b) and (c)) 

B) Impact of radial gravity (difference between models (b) and (e)) 

C) Impact of self-gravitation (difference between models (b) and (d)) 
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The effect of self-gravitation in this model is even greater than 

in the artificial model considered above. The effect of self-

gravitation plays an important part in the shaping of the dynamic 

geoid (61.6% of the resulting geoid) and by no means may be 

neglected. The impact of the other two effects into dynamic geoid 

can be estimated in terms of relative changes of the maximum geoid 

heights if removing separately every effect from the (b) all-

effect model (F4.19). The impact of mantle compressibility to the 

geoid figure (F4.19A) is approximately a third part of the maximal 

geoid heights (approximately 38%), therefore, this effect also 

plays a substantial part in the total shape. The disturbance of 

the geoid figure due to radially variable gravity is less than 5% 

but even this relatively small contribution can be significant for 

the accurate modeling of the geoid anomalies. The correlation 

between the effects of self-gravitation and mantle compressibility 

is partially kept in the case of realistic model: mantle 

compressibility significantly reduces effect of self-gravitation 

that is why the contribution of self-gravitation into the geoid 

figure exceeds the contribution of all the effects. 
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Chapter V. 

The introduction of lateral viscosity variations. 

The introduction of 3-D viscosity structure is bound up with some 

difficulties if considering the Stokes equations in spherical 

harmonics. For radially symmetric viscosity the harmonic modes are 

decoupled, therefore, the Stokes equation can be solved directly 

for each harmonic mode (as it is described in Chapter III). As 

soon as laterally variable viscosity is involved, non-linear 

coupled terms appear in the basic equations because all spherical 

harmonics are coupled with LVV. One possible way to cope with the 

difficulty is to apply an iterative method in order to approximate 

to required equation solution by an iterative approach. 

In this chapter I consider a compressible flow in a self-

gravitating spherical shell with 3-D viscosity distribution 

),,( ϕθηη r= . Therefore, once more I have to revert to the equation 

system, which comprises the Stokes and Poisson equations expressed 

via the means of mantle flow velocity ),,( ϕθ uuuu r= , total stress 

tensor ijσ  and geopotential V:   
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5.1 Iterative methods for incorporating lateral viscosity 

variations. 

Two iterative methods U-transform and W-transform suggested by 

Zhang and Christensen (1993) for the incorporation of the LVV 

effect into the incompressible mantle will be completely analyzed 

in order to derive true formulae for non-linear coupled terms. 

Both methods were improved by the incorporation of the effect of 

mantle compressibility into them. Our detailed tests have shown a 

colossal difference between the results obtained from the initial 

methods for the same models on the contrary to the comparative 

analysis, which was put into practice by Zhang and Christensen 

(1993). As a result we had to derive all the equations and 

formulae from the very beginning. In both methods published by 

Zhang (1993) and Zhang and Christensen (1993) essential misprints 

were revealed that might play a crucial role in the published 

conclusions. First of all, a simple model with long-wavelength 3-D 

viscosity distributions (up to six spherical harmonics) stated by 

Zhang (1993) was analyzed (see Part 5.4). Using the formulae 

published by Zhang (1993) and Zhang and Christensen (1993) has led 

to the results remarkably different from those published by Zhang 

(1993). At the same time the results produced with the aid of each 

of foregoing methods also differ from the results published by 

Zhang (1993). This fact prevented us from determining what 

formulae were used by Zhang (1993) to derive the published results 

in reality. The new-derived formulations of U-transform and W-

transform iterative methods were applied to the aforementioned 

simple models. Both new-derived methods produced the results 

though identical to one another but again dissimilar to the data 

published in the PhD thesis by Zhang (1993). Furthermore, a 

comprehensive set of different viscosity models was elaborated in 

order to compare the efficiency of the new realizations of U- and 

W-transform (see Part 5.4). The thorough analysis showed good 

agreement between the results produced by the new realizations of 

U- and W-transform methods. In a few words both new method 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



                                                                                                                                                        

 71

realizations gave almost identical results (difference less than 

1%) for the models with identical input data. 

Based on analyzed tests we arrive at the following conclusions: 

- The new realization of the U-transform method provides the 

possibility to model 3-D viscosity structure with high 

viscosity contrasts. The convergence of the iterative method 

is steady even for models with a rather high resolution (up 

to 180 spherical harmonics) and viscosity contrast of seven 

orders of magnitude. The comparison of the new-derived 

iterative method with the FE method CITCOM (Zhong et al 

(2000); Tan et al (2000); Rogozhina et al. (2005, 2006); 

Baranov et al. (2007)) revealed good accordance between both 

methods. 

- The new realization of the W-transform method is applicable 

to the 3-D long-wavelength models with input data smoothed to 

a certain spherical harmonic degree (for various models the 

limitations are different). But it fails to handle models 

based on the present-day seismic tomography data as well as 

synthetic models of rather high resolution. In this case the 

iterative process diverges.     

The main distinction between the U-transform and W-transform 

methods originates from the different representation of mantle 

velocities and the 3-D viscosity distribution. The W-transform 

iterative method modifies velocity flow for account of LVV already 

on the first step of the iterative process. The main idea of this 

iterative method is to smooth the initial rough approach away and 

to reduce the primordial exaggerated effect of LVV on the velocity 

flow. On the contrary, the U-transform method as a typical 

iterative method implies an approach through an iterative way 

directly from the initial state and modifies velocity distribution 

obtained first for radial viscosity distribution, then changed 

step by step due to LVV.               
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The schemes used for both U- and W-transform iterative methods are 

ultimately rather similar. The initial solution (different for two 

iterative methods) for radial viscosity distribution (Chapter III) 

is modified to account for the effect of LVV. The non-linear 

coupled terms, appearing in the basic equations due to LVV, are 

shifted to the right-hand side and the equations are solved 

iteratively using the standard technique. The additions to right-

hand side terms are calculated on the base of the results of the 

previous step. Hence, we must solve two equation systems for 

spheroidal and toroidal components of velocity and stress 

considering the appearance of a set of viscous terms. All the 

deductions for the new realizations of the U- and W-transform 

methods are stated bellow (Appendix U and W). 

The equation system for the spheroidal components of mantle 

velocity and stress for both iterative methods:  
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The equation system for toroidal flow: 
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system E5.2 we arrive at a universal system describing both 

spheroidal and toroidal components of mantle velocity and stress 

together with geopotential:  
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With boundary conditions modified by change of variables:  

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 

 74

0)()( 11 == ce rZrZ  

0)()( 44 == ce rZrZ  (free-slip condition) 

0)()( 66 == ce rZrZ  

⎩
⎨
⎧

=

=
sph
obse

c

UrZ

rZ

)(

0)(

2

4 (no-slip condition)                               (E5.5)            

⎩
⎨
⎧

=

=
tor
obse

c

UrZ

rZ

)(

0)(

5

6  

))()((
)(

)(4
)()3()( 7

*
3*

*

78 cc
c

cc
cc rZrZ

rg
rr

rZlrZ ρ
ρπγ

−−−=  

))()((
)(

)(4
)()1()( 7

*
3*

*

78 ee
e

ee
ee rZrZ

rg
rr

rZlrZ ρ
ρπγ

−−+−=  

The equation system E5.4 for spheroidal and toroidal flows in 

matrix form:  
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The ODE system E5.6 with boundary conditions E5.7 must be solved 

for each harmonic mode (l (degree), m (order), i) and each 

iterative step. To solve this equation system we apply the same 

technique as for radial viscosity models (direct Godunov method, 

see Chapter III).           

5.2 Iterative method U-transform.  

The 3-D viscosity function is represented as a sum of radial and 

lateral viscosity components:  
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The nature of this representation may be actually various: the 

radial component )(rη  can be chosen in different ways but we 

exerted ourselves to analyze the influence of such a choice on 

convergence of U-transform method. According to our research a 

choice of a radial component itself does not play any role in the 

resulting solution but it can accelerate the method convergence.     

On the base of velocity distribution (stress distribution) 

obtained from the initial stage we calculate the values of the 

viscous terms preceded in the Appendix U. 

0=lmA  

( ) θθηϕ
η

ϕ
ϕ

θ
θ

ππ

dYeYed
s

rB lmrlmr
lm

lm sin~2

0

2

0
* +−= ∫∫  

θθηϕ
ππ

dYurked
s

rC lmrrr
m

lm sin
3

)(~6

0

2

00
⎟
⎠
⎞

⎜
⎝
⎛ +−= ∫∫                               

(E5.9) 

( ) lm
lmlm

lm

lm CdYDYDd
s
rD

3
1sin2

0

2

0

2

−+−= ∫∫
π

ϕ
ϕ

θ
θ

π

θθϕ
                              

( )∫∫ −−=
π

θ
ϕ

ϕ
θ

π

θθηϕ
η 0

2

0
* sin~2 dYeYed

s
rE lmrlmr

lm

lm    

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 

 76

( )∫∫ −−=
π

θ
ϕ

ϕ
θ

π

θθϕ
0

2

0

2

sin2 dYDYDd
s
rF lmlm
lm

lm  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂
+−+

∂

⎟
⎠
⎞

⎜
⎝
⎛ +∂

=
ϕ

η
θ

ηθ
θ

ηη
θϕ

ϕϕθθ

θθ

θ

)~(
sin

)(~
~

3
)(~

1
2

ereerctg
urker

r
D

r

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂

∂
++

∂

⎟
⎠
⎞

⎜
⎝
⎛ +∂

=
θ

η
ηθ

ϕ

ηη

θ
θϕ

θϕ

ϕϕ

ϕ

)~(~2

~
3

)(~

sin
11

2

e
rerctg

urker

r
D

r

 

π40 =ms   

)1(4)1(0 +=+= llllss mlm π  ( 0ms  and lms  have been derived in Part 3.1) 

where ije  are normal strains (E2.10).  

On each iterative step the velocity distribution generated on the 

previous step is used for determination of new viscous terms.  

Just for comparison here I quote the formulae published by Zhang 

and Christensen (1993) and Zhang (1993):  
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Figure (VT5.1) Misprints in U-transform method by Zhang and Christensen (1993) 

and Zhang (1993). The principal misprints (missing terms or incorrect 

expressions) in viscous terms are marked by red circles. The terms appearing due 

to the effect of mantle compressibility are marked by green circles. 

 

Figure (NC5.1) Misprints in normalization coefficients in U-transform method by 

Zhang and Christensen (1993) and Zhang (1993). 

Based on the deductions produced in Appendix U we are proceeding 

to the the main conclusions about the nature of distinctions 

between the method stated by Zhang and Christensen (1993) (Zhang 

(1993)) and method recently derived: 
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- Misprint in orthonormalization laws for the spherical 

functions and their derivatives result in reduction of all 

viscous corrections for the tesseral (0<m<l) and sectoral 

(m=l) harmonics by appearing of surplus normalization 

coefficient moδ−2  in )2(40 mo
ZC
ms δπ −=  and )1()2(4 +−= lls mo

ZC
lm δπ . 

- The published viscous terms have the opposite sign compared 

to the recently derived. In the general case the values of 

mantle velocities must be reduced by the incorporation of the 

high-viscous areas 0),,(~ >ϕθη r , consequently, the signs of 

viscous corrections must be opposite to the signs of mantle 

velocities. 

- The loss of the coefficient=2 in all the published viscous 

terms results in further reduction of viscous terms. This 

coefficient appears due to the nature of the relation between 

viscous stress tensor and mantle velocities. 

- False understanding of the role of dynamic pressure 

(spherical harmonic coefficients for the dynamic pressure 

were recognized by Zhang and Christensen (1993) as the 

spherical functions and expanded into spherical harmonics 

once more) results in the wrong contribution of the 

spheroidal and toroidal components. 

These are principal misprints, which appeared in the description 

of the U-transform iterative method stated by Zhang (1993), Zhang 

and Christensen (1993). The particular contribution of these 

misprints will be analyzed in details in Part 5.4 based on several 

models. 

5.3 Iterative method W-transform. 

As said above, the most principal distinction between the W-

transform and U-transform methods originates from different ways 

to represent mantle velocities and 3-D viscosity. In general, the 

W-transform technique pursues an idea of reduction of viscous 

corrections appearing due to LVV and, consequently, a better 
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convergence of the method. Under the theoretical and numerical 

conclusions of this study in case of mobile small-scale viscous 

rocks the effect of the first approach seems to be opposite to the 

forethought advanced effect. In this case the first exaggerated 

approach eventuates colossal correction values; therefore, the 

method either does not converge or gives a false result. And in 

general, the W-transform method offers a very scanty domain of 

applicability according to our analysis. In Part 5.4 I consider 

different models aimed at estimating the efficiency of each 

iterative method. 

The 3-D viscosity function is represented as a product of radial 

and lateral components:  

),,(ˆ*)(),,( ϕθηηϕθη rrr =                                          (E5.11) 

where choice of )(rη  can be various as well as in U-transform.  

Thus, the initial velocities and a consequent approach of 

velocities appear to be imaginary approximated by the viscosity 

essence ),,(ˆ ϕθη r : 
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The viscous terms appearing due to LVV can be calculated with the 

aid of mantle velocity distribution obtained from the previous 

iterative step: 
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Appendix W gives thorough comprehension of the deductions 

concerned to the W-transform iterative method. 

For comparison here I cite the formulae published by Zhang (1993), 

Zhang and Christensen (1993): 
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Figure (VT5.2) Misprints in W-transform method by Zhang and Christensen (1993) 

and Zhang (1993). The principal misprints (missing terms or incorrect 

expressions) in viscous terms are marked by red circles.  

 

Figure (NC5.2) Misprints in normalization coefficients in W-transform method by 

Zhang and Christensen (1993) and Zhang (1993). 
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The first and most obvious difference, which may attract an 

attention, is the difference in coefficients 0ms  and lms  stated by 

Zhang and Christensen (1993) (Zhang (1993)) in both iterative 

methods and recently derived coefficients (NC5.2). According to 

the formulae published by Zhang (1993), Zhang and Christensen 

(1993) )2(40 mo
ZC
ms δπ −=  and )1()2(4 +−= lls mo

ZC
lm δπ  are orthonormalization 

coefficients for the spherical functions and their derivatives. In 

Chapter III, Part 3.1 orthonormalization coefficients 0ms  and lms  

have been derived once more from the orthonormalization laws. They 

appear to differ from those stated by Zhang (1993), Zhang and 

Christensen (1993) for all harmonic modes except for the zonal 

harmonics: π40 =ms  and )1(4 += llslm π  (see Part 3.1). 

The viscous terms lmD  and lmF  (VT5.2) in the equations for 

spheroidal and toroidal horizontal stress for the W-transform 

method differ from those stated by Zhang (1993), Zhang and 

Christensen (1993) in the same manner as lmD  and lmF  (VT5.1) 

derived for the U-transform method. The reason of this distinction 

is also the same: false understanding of the particular role of 

dynamic pressure. The rest of viscous terms appearing in the W-

transfrom method due to LVV was published by Zhang and Christensen 

(1993) without misprints, except for the surplus normalization 

coefficient moδ−2  in )2(40 mo
ZC
ms δπ −=  and )1()2(4 +−= lls mo

ZC
lm δπ  

(analogously for both methods U-transform and W-transform). An 

appearance of this normalization coefficient in the W-transform 

method results in insufficient correction of the “imaginary” 

mantle velocity flows. But as soon as we try to revert back to the 

required velocities by inverse change of variables, the effect 

appears to be two times exaggerated, therefore, the changes in the 

resulting mantle flows are to be monstrous. The misprints in the 

published viscous terms for spheroidal and toroidal stresses 

affect not only stress distribution but also the figure of the 

geoid (through boundary conditions) and velocity flows. 
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5.4 Application of the W- and U-transform iterative methods to 

some synthetic models. Domains of method applicability. 

Model 5.4a: The first model is aimed at comparison of mantle 

velocities and the geoid obtained from the U-transform and W-

transform methods. As shown below the W-transform method may not 

be applied to the viscosity models with the high constrast, it 

was, therefore, decided to consider the first models with rather 

low viscosity constrast (approximately 1.35 orders of magnitude). 

In this case we can expect that both iterative methods provide a 

perfect convergence. 

The description of the model parameters: 

- Radial density profile )(rρ  from Figure (F4.2), 
0

* )()(
ρ
ρρ rr = , 

where ⎥⎦
⎤

⎢⎣
⎡= 30 4430
m
kgρ . 

- Density anomaly: ϕθϕθϕθδρ cos*2sin
4

15cos)(cos),( 1
221211 === PNY  for 

all depths. 

- Radial viscosity 1)(* =rη , ][10)( 21
0 sPar ⋅==ηη  

- 3-D viscosity distribution: 
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Mantle velocities: 

 
Figure (F5.1) Density anomalies and LVV [dimensionless]. 

Left: Density anomalies and velocities corresponding to the constant viscosity 

model. 

Right: LVV and response of velocity flow shown in (F5.1 Left) on appearance of 

the LVV. 
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Figure (F5.2) Comparison of velocity flows calculated by U-transform (black 

arrows) and W-transform (red arrows) iterative methods for the model with 

density anomalies and LVV shown in figure (F5.1). Green pointers mark the cross-

section for the velocity components, which are analysed in the following figure 

(F5.3).  
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Figure (F5.3) Cross-section marked in figure (F5.2) by green line [mm/year]: 

- Green curve: velocity profile calculated for the constant viscosity model. 

- Black dashed curve: velocity profile calculated with effect of LVV by U-

transform method. 

- Red curve: velocity profile calculated with effect of LVV by W-transform 

method.  

Left: Radial velocity component ru . 

Right: Lateral velocity component θu . 

Cross-sections of the velocity flows represented in figures (F5.2) 

and (F5.3) show good agreement between velocity distribution 

calculated by the U-transform and W-transform method. The 

difference between velocity distributions obtained with the aid of 

two iterative methods does not exceed 1% of the velocity values in 

the area with the highest contrast but still there exists some 

distinction, which is in general greater than the difference 

between the calculated geoids.  
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Dynamic geoid: 

 

Figure (F5.4) Dynamic geoid calculated for the constant viscosity model [m]. 

 

Figure (F5.5) Difference between geoid calculated with effect of LVV by U-

transform method and geoid calculated for the constant viscosity model [m]. 
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Figure (F5.6) Difference between geoids calculated with effect of LVV by U-

transform and W-transform iterative methods [m]. 

The difference between the geoids calculated by the U-transform 

and W-transform methods is rather insignificant (less than 1% of 

the total change) as it is easy to see in figure (F5.6), 

especially, compared to the initial geoid calculated for the 

constant viscosity model (F5.4) and the contribution of LVV to the 

shape of the geoid according to the resulting difference shown in 

figure (F5.5). 

Model 5.4b: Now let us look at the response of velocity flow on 

LVV simulated by the initial iterative methods stated by Zhang and 

Christensen (1993). This model has the same input data except for 

some simplification applied to LVV: the high-viscous area (on the 

right side of figure F5.1 right) is excluded from the test. 

3-D viscosity distribution:  
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0),,( ηϕθη =r , otherwise. 

 
Figure (F5.7) LVV [dimensionless] and velocity distribution calculated by 

iterative methods with the initial formulae stated by Zhang and Christensen 

(1993). 

Left: U-transform method by Zhang and Christensen (1993) and Zhang (1993)  

Right: W-transform method by Zhang and Christensen (1993) and Zhang (1993) 

As explained in Part 5.2 the viscous corrections for the U-

transform method produced by Zhang and Christensen (1993) have the 

opposite sign, which is clearly seen in figure (F5.7 left). The 

velocity values have diminished in the low-viscosity area; that is 

quite the opposite of what we can expect. In general, the 

corrections occurring due to LVV are rather insignificant since 

two coefficients in the viscous terms were lost while publishing 

the methods in the works by Zhang (1993) and Zhang and Christensen 

(1993) (see Part 5.2). At the same time an application of the 

initial W-transform method stated by Zhang (1993), Zhang and 

Christensen (1993) to the same LVV model produced far too 

exaggerated changes in velocity flows (F5.7 right), that also 

result from the loss of coefficients in the viscous terms (see 

Part 5.3). 
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Model 5.4c: The next set of models is aimed at the definition of 

limitations for the U-transform and W-transform methods. The 

viscosity constrast has been gradually increased from 100 till 107. 

The parameters (density anomalies, radial viscosity and density 

profiles) of the analyzed models are absolutely the same as for 

model 5.4a. The viscosity distribution is described by: 
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where VC is the viscosity contrast [100, 107]. 

        

Figure (F5.8) Convergence of U-transform method applied to the strong LVV (3.5, 

4.2, 6 and 7 orders of magnitude) [dimensionless velocity]. 

The set of the profiles shown in figure (F5.8) demonstrates stable 

convergence of the U-transform method under the conditions of 

extremely high viscosity contrast. In case of a viscosity contrast 
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lower than 3 orders of magnitude the number of iterative steps 

required for convergence achievement is rather acceptable. But in 

case of stronger LVV it goes up just like geometrical progression: 

- Convergence of the U-transform method applied to the models 

with LVV of 2 orders of magnitude is already achieved after 

60 iterative steps;  

- LVV of 3 orders of magnitude require approximately 150-200 

steps; 

- In case of 7 orders of magnitude an iterative process 

comprises nearly 1200 iterative steps.  

The adaptation of iterative methods to the models with strong LVV 

is, therefore, disadvantaged by the enormous number of iterative 

steps required for the complete convergence achievement. But this 

conclusion is only correct for the models with an analytical LVV 

specification. An iterative process converges rather fast even in 

case of very strong LVV if the real data used is smoothed to some 

harmonic degree.     
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Figure (F5.9) Response of mantle flow on LVV (logarithmic scales) in the area 

with low viscosity [dimensionless velocity]. 

Figure (F5.9) shows the changes occurring due to the incorporation 

of the low viscosity areas with different viscosity contrasts. Up 

to 4 orders of magnitude the profile is almost linear (in 

logarithmic scales), consequently, we should not expect any 

significant lowering of precision, but for magnitudes larger than 

4 orders the linearity of functional dependence is gradually 

distorted. The lack of method precision can explain this 

disturbance of the profile shape as well as the change of mantle 

flow behavior. According to the analysis provided by the help of 

CITCOM (Moresi et al. (2005); Rogozhina et al. (2005, 2006); 

Baranov et al. (2007)) the convective cells located in the low-

viscosity areas with a viscosity contrast of more than 4 orders of 

magnitude start to behave independently of the rest of the mantle 

flows.        
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Figure (F5.10) Convergence of W-transform method. W-transform iterative method 

does not converge for the viscosity contrast greater than 50 [dimensionless 

velocity V corresponding to velocities described in Zhang and Christensen, 

1993]. 

Figure (F5.10) shows convergence of the W-transform method under 

the same conditions as the U-transform method, however, for a 

lower viscosity contrast in the area with low viscosity. Based on 

this figure we can conclude that at least, for some models the W-

transform method has a very scanty domain of applicability, 

consequently, we cannot consider this iterative method as a high-

capacity technique.     

Model 5.4d: This model has been developed to study different 

behaviors of small-scale high-viscous fragments in the mantle. It 

will be demonstrated by this set of models that the small-scale 

fragments of high-viscous material behave in absolutely different 

way under diverse conditions. Such parameters as density anomalies 

and density radial profile remain customary for all the models 

including this one.  

- The radial viscosity profile is shown in figure (F5.11). 
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- The small-scale high-viscous fragments are incorporated into 

the 3-D viscosity distribution described in Model 5.4b with 

VC=20: 

a) The size of the fragment is 200 x 200 between depths of 

1375 and 1625 km inside the descending flow (viscosity 

contrast in the small-scale fragment is approximately 

170). 

b) The size of the fragment is 200 x 200 between depths of 

2025 and 2275 km where motion changes its direction 

(viscosity contrast in the small-scale fragment is 

approximately 80). 

In the upper mantle as well as in the lower mantle we can expect 

presence of small-scale high-viscous fragments (viscous roots of 

continents can be also considered as an application of this test) 

based on the data of seismic tomography. The question is how 

significant these small-scale impregnations are for mantle 

convection, in general. It is obvious that we cannot model such 

small-scale fragments precisely with the aid of the available 

seismic tomography data (mainly of very rough resolution). In the 

meantime the behavior of such fragments is of utmost interest. 

       

Figure (F5.11) Radial viscosity profile. 
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Figure (F5.12) Small-scale high-viscous fragments are located inside the low 

viscosity area. Shown velocities correspond to the Model 5.4b with VC = 20. 

 
Figure (F5.13) Zoomed small-scale high-viscous fragment shown in figure (F5.12 

left). The high-viscous fragment (with VC=170) is situated on the way of 

descending flow.  

Black arrows: initial velocity distribution shown in figure (F5.12 Left) 

Red arrows: velocity distribution changed by appearance of viscous fragment. 
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The viscous fragment located on the way of the descending flow 

appears to play a very small part in forming the global flow. It 

seems to be pulled by surrounding mass without any significant 

influence on its velocities.  

 
Figure (F5.14) Zoomed small-scale high-viscous fragment shown in figure (F5.12 

Right). High-viscous fragment (with VC=80) is situated in the area where the 

global motion changes its direction and velocity.  

Black arrows: initial velocity distribution shown in figure (F5.12 Left) 

White arrows: velocity distribution changed by appearance of viscous fragment. 

The conclusions based on the behavior of this fragment are quite 

the opposite. As easy to see, the initial flow starts to change 

the direction of its motion in the face of high-viscous small-

scale fragment. The change in motion occurs in advance, that is 
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quite consistent with the physical laws. Thus, the high-viscous 

fragment remains relatively motionless in comparison with the 

surrounding mass. 

Model 5.4e: Model suggested by Zhang (1993). 

There arose some problems in comparing our results with the 

results published by Zhang (1993) on the base of those published 

models since no test was set irrefragably. In the PhD thesis by 

Zhang (1993) there are 4 tests aimed at comparison of the U-

transform and W-transform methods:  

- The first two tests are missing the radial viscosity profile, 

which is not stated, therefore, the comparison would be 

possible only if we guessed, which profile was meant. 

- The description of the other two tests does not contain a 

correct statement of density anomaly and viscosity 

distributions. 

Finally, we chose one of those tests (the third in the PhD thesis 

of Zhang (1993), p. 32) with given spherical harmonic coefficients 

for the resulting surface divergence, radial vorticity and the 

geoid. There still remain some degrees of freedom in the choice of 

the input data since they are not set correctly. Therefore, we 

cannot be absolutely sure if we have got the identical conditions 

to those models considered by Zhang (1993) since the results 

differ from the results obtained by Zhang. 

The description of the model given in Zhang (1993): 

1) Density anomaly: 2011sin YYz +⋅= πδρ  

2) Viscosity distribution: )exp( 1
0

δρ
η
η

⋅= C  with 2.01 =C  

where 
ce

e

rr
rr

z
−
−

−= 1  

Since the density anomaly is stated incorrectly with respect to 

11Y , which can be 
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),(

1
1

1
1

11
iP

iP
Y i

ϕθ

ϕθ
ϕθ , we considered both 
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cases but the results obtained from both models were remarkably 

different from those stated by Zhang (1993). 

 

Figure (F5.15) Density anomalies and LVV in cross-section °= 90ϕ . 

Left: Density anomalies and velocities corresponding to the constant viscosity 

model (maximal velocity value is 686353 mm/year). 

Right: LVV cross-section. 

This model is rather similar to the artificial model considered in 

Part 4.3. The reason for the resulting values of mantle velocities 

[mm/year] and dynamic geoid [m] being so huge is also the same as 

in Part 4.3.  

In the PhD thesis by Zhang (1993) spherical harmonic coefficients 

for the geoid, surface divergence and radial vorticity are stated. 

These coefficients were used to compare the results stated by 

Zhang (1993) and the results obtained with the aid of the new 

formulations of the U- and W-transform methods. Both methods in 

the new realizations gave very similar geoid figures, surface 

divergence and radial vorticity (distinction is less than 1%), 

therefore, the figures shown below demonstrate the results 

obtained from only U-transform method. 
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Figure (F5.16) Calculated geoid (new realizations of U- and W-transform method) 

and geoid stated by Zhang (1993) [m].  

Left Top: Geoid calculated with the constant viscosity model  

Right Top: Geoid calculated with the LVV by U- and W-transform with new formulae 

Left Bottom: Dynamic geoid stated by Zhang (1993). 

Right Bottom: Difference between geoid calculated with the LVV (new formulae) 

and geoid calculated with the constant viscosity. 

The spherical harmonic coefficients for the geoid stated by Zhang 

(1993) are rather shady especially compared to the coefficients 

stated for the surface divergence and radial vorticity. First, the 

maximal value of spherical harmonic coefficients for the 

calculated geoid is -0.8268E-12, while the surface divergence is 

described by values of an absolutely different order of magnitude: 

-0.2166E+00 (Zhang (1993), p.32). Thus, the distinction between 

two stated quantaties exceeds 11 orders. According to the present 

study the spherical harmonic coefficients for the surface 

divergence and the geoid are comparable in values. We can assume 

that some normalization coefficient was used for the purpose of 

getting reasonable geoid heights in the study of Zhang (1993). If 
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so, a simple comparison of the geoid calculated without LVV and 

stated by Zhang (1993) astonishes to the most abysmal depth: 

taking into account that the viscosity constrast considered in 

this model scarcely exceeds 0.3 (less than 2 times) orders of 

magnitude, we could not expect such significant alteration in the 

geoid figure due to LVV. An obvious disagreement in changes 

occurring in the geoid figure and the surface divergence due to 

LVV sets a trap as well.   

 

Figure (F5.17) Surface divergence calculated for the constant viscosity model 

and with LVV by U- and W-transform with new formulae. Surface divergence stated 

by Zhang (1993). 

Figures (F5.17) and (F5.18) produce a better fit between the 

quantities stated by Zhang (1993) and the results of our 

calculations. Surface divergence seems to be affected by LVV in 

the same way in both studies. Maximal values of the surface 

divergence stated by Zhang (1993) and calculated by the new 

formulation of the U-transform method differ by a factor π4 . This 
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difference can arise, for example, from the loss of the 

normalization coefficient π4  appearing while spherical functions 

are decomposed into spherical harmonics. Similarity in the surface 

divergence calculated by the U-transform method in the new 

formulation and surface divergence stated by Zhang (1993) suggests 

that identical models were considered in our study and in the 

study of Zhang (1993). In this case the displacement of the major 

negative and positive anomalies of radial vorticity may not be 

explained simply by different input data.  

 

Figure (F5.18) Radial vorticity calculated by U- and W-transform with new 

formulae. Radial vorticity stated by Zhang (1993). 

Distinction between recently derived radial vorticity and the 

previously published one (Zhang (1993)) can be easily observed. It 

is difficult to draw any conclusion based on this brief analysis, 

for the quantities stated by Zhang (1993) and derived in this 

study are too different to be compared.    
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Chapter VI. 

Inverse problem. 

To construct a global model, which can describe most 

comprehensively the current structure of the Earth’s mantle, we 

need first to determine velocity-to-density scaling factor using 

which we are able to obtain density and temperature anomaly 

distribution in the Earth, and radial viscosity profile most 

consistent with the results of the previous studies, since this 

problem has been already investigated in a number of works in 

detail. There are basically two ways for determining a velocity-

to-density scaling factor: in the first approach the scaling 

factor is estimated using a joint inversion of seismic tomography 

data and surface observables (Corrieu et al., 1994), the other way 

is to use mineral physics equations and experimental data (Karato, 

1993). For the upper mantle we have used the results of a joint 

inversion of the residual mantle anomalies and SV  perturbations 

(Kaban and Schwintwer, 2001). Since it is not quite clear, how 

various factors influence velocity, density and temperature in the 

transition zones and in the lower mantle, we use initially the 

value of a velocity-to-density scaling factor at the bottom of the 

upper mantle also for the transition zone and the lower mantle 

(0.24), which is consistent with the mineral physics studies 

(Karato, 1993). Then the values are rescaled in a least-squares 

adjustment limiting a deviation from the initial scaling factor 

profile in the lower mantle while giving carte blanche to scaling 

parameters in the transition zone. The radial viscosity, which 

gives the most reasonable fit to the observed geoid, is to be 

determined from a large number of different profiles varying in 

several layers with respect to each other (7 layers in this 

study). 
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6.1 Joint inversion technique. 

An initial density model is produced by a simple linear conversion 

of the seismic tomography velocity disturbances into density 

variations 
Vs
Vsa j
δδρ 0=  using initial scaling factors 0)( jarSc = . The 

dynamic geoid is then calculated for separate mantle layers 

assuming a constant velocity-to-density scaling factor for the 

given viscosity model. In this study, we chose the initial scaling 

factor constant and equal to 0.24, which is rather consistent with 

the assumptions of mineral physics (Karato, 1993). The initial 

scaling factors are rescaled in a least-squares adjustment to get 

the best fit to the observed geoid with a prospect not to wander 

away too far from the initially chosen scaling factors. The 

inversion to solve for unknown scaling factors is performed in the 

spectral domain by spherical harmonics coefficients. The 

computational tests have proved that, if the area is large enough, 

an inversion in the spectral domain, namely in the terms of 

spherical harmonic coefficients, which are appropriately filtered 

by a convolution with an area function, gives essentially the same 

result as working directly in the spatial domain  (Kaban and 

Schwintzer, 2001). The scaling coefficients ja  (to rescale the 

initially adopted values of 0
ja ) are estimated in a least-squares 

adjustment starting with the linear observation equations 

ml

j

ml
jj

ml
obs NaN ,,, ε+= ∑                                              (E6.1) 

supplemented by the pseudo-observation equations with respect to 

the unknowns ja  

jjjjjj aa ε+−= 00                                                  (E6.2) 

where ml
obsN ,  is an observed geoid for degree l and order m; ml

jN ,  are 

geoid variations induced by a layer j. 

The least-squares principle implies minimization of the function: 
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( )∑∑ ∑ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

j
jjj

ml j

ml
jj

ml
obs aaNaN 20

,

2

,,2 βχ                               (E6.3) 

where ja  are unknown scaling factors and jβ  are damping factors 

introduced to stabilize a solution.  

The principle leads to a normal equation system:  

cBa =                                                         (E6.4) 

where the elements of normal matrix nnB ×  are  

jk
ml

ml
k

ml
jjk sNNb +⋅= ∑

,

,, , where 
⎪⎩

⎪
⎨
⎧

=−

≠
=

jkaa
jk

s
jjj

jk ),(
,0

0β
 

and the components of a right-hand-side vector c  are 

∑ ⋅=
ml

ml
k

ml
obsk NNc

,

,,  

where n is the number of layers. 

The system is solved for the vector a  by inversion of the normal 

matrix nnB × . The parameters ja  are a posteriori transformed to the 

convenient dimensionless ratio 

j
j

j
j

j

c
a

a
Vs
dVsd

Vsd
d

==⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

−

*
0

1

* *
ln
ln

ρρ
ρρ

                                 (E6.5) 

by computing an average density *
jρ  for each layer from PREM 

(Dziewonski and Anderson, 1981). The density-velocity scaling 

coefficient standard deviations jSc  resulting from the fit in the 

least-squares adjustment E6.3 are then 

j
j

j
j Sa

a
Sc *

0

ρ
= , jjj q

f
Sa 21 χ=                                       (E6.6) 

where jjq  is a diagonal element of inverse matrix 1−B , and f  

denotes the degree of freedom (the number of equations E6.1 and 

E6.2 minus the number of the unknowns). 

The pseudo-observation equation E6.2 constrains variations of the 

scaling factors from the initial coefficients 0
ja . 
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6.2 Inverse problem applied to the radial viscosity models. 

Since we investigate principal importance of LVV in the next 

generation of global dynamic models, an inverse problem is not the 

main subject of the study but only an instrument to derive the 

model of density distribution, which provides a reasonable fit to 

the observables. It has been decided not to overload the initial 

model by additional details, which are ill-founded. We have 

emphasized 8 radial layers (upper mantle (1 layer), transition 

zones (2 layers), lower mantle (5 layers)) keeping scaling factor 

Sc(r) constant in each of layers 8,...,1=j  and varying values in 

respect to each other. As the initial parameters for an inverse 

problem we have chosen constant scaling factor equal to 0.24. For 

the transition zone layers a damping factor jβ  has been taken 

equal to zero, therefore, the scaling factors in the layers can 

vary without any restrictions since our knowledge of these areas 

is very scanty. We have applied a least-square adjustment to the 

calculated geoid up to spherical degree and order 10 because the 

geoid has a maximum energy on the long waves. The radial viscosity 

profile )(rη  varied in 7 separated layers (the lithosphere (1 

layer), the asthenosphere (1 layer), the rest of the upper mantle 

(1 layer), the transition zones (2 layers) and the lower mantle (2 

layers)) has been sorted out from a set of 720 different 

combinations. The results of the inverse problem previously 

applied to several thousands of different radial viscosity 

profiles )(rη , varied in the lower mantle, have revealed that the 

best fit to the observed geoid is reached at the averaged values 

of viscosity between 30 and 40 (averaged by 21
0 10=η ) in the whole 

lower mantle. 
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Figure (F6.1) Scaling factors (from joint inversion), which correspond to the 

radial viscosity profile in (F6.2). Red lines show scaling coefficient standard 

deviations jSc  (E6.6). 
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Figure (F6.2) Radial viscosity profile (red line), which corresponds to the 

model with the best fit to both the observed geoid (78.2%) and initial scaling 

factors in the lower mantle. Hatched zone shows the chosen search area. 

The best combination of the radial viscosity profile and scaling 

factors was chosen based not only on the best fit to the observed 

geoid but also on the minimal deviation of the resulting scaling 

factors obtained for the lower mantle from the initial ones. In 

our study we disregard an influence of the uppermost 250 km. 
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Figure (F6.3) Residual geoid versus perturbations to the initial scaling factor 

in different radial viscosity models. Model cluster for viscosity value in 

asthenosphere. Black circle marks the area with the best solutions.  
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Figure (F6.4) Residual geoid versus perturbations to the initial scaling factor 

in different radial viscosity models. Model cluster for viscosity value in the 

upper part of the transition zone (above 670 km). Black circle marks the area 

with the best solutions. 
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Figure (F6.5) Isostatic anomalies of the observed geoid and geoid calculated 

with radial viscosity shown in (F6.2) and scaling factor shown in (F6.1).        

The clusters shown in figures (F6.3) and (F6.4) reveal the 

regularities in the model classes with the various values of 

effective viscosity in the asthenosphere and upper part of the 

transition zone (above 670 km) correspondingly.  It is clearly 

seen in (F6.3) that the best solutions are produced by the radial 

viscosity models with the higher viscosity values (1, 2) in the 
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asthenosphere contrary to what could be expected. Figure (F6.4) 

also reveals very interesting regularity: the model classes with 

the lower viscosity values (0.15, 0.3) in the upper part of the 

transition zone give better solutions for the geoid while the 

models with the higher viscosity values (0.6, 1) produce more 

reasonable fit to the initial scaling factors in the lower mantle. 

In general the best solutions are obtained for the viscosity 

values 0.3 in the upper part of the transition zone. Such an 

analysis, if applied to an exhaustive set of models with various 

viscosity values, produces very important information since any 

clusterization of the models with specific parameters delimits the 

further search for the best solutions.     
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Chapter VII. 

Global spherical models with lateral viscosity variations. 

The strong dependence of mantle viscosity on temperature exerts 

controlling influence on the evolution of the mantle. The 

temperature dependence of mantle viscosity acts as a thermostat 

regulating the average mantle temperature. Initially, when the 

Earth is hot, mantle viscosity is low, and extremely vigorous 

convection rapidly cools the Earth. Later in its evolution, when 

the Earth is relatively cold, its mantle viscosity is higher that 

results in more modest convection. Self-regulation tends to bring 

the viscosity of the mantle to a value that facilitates an 

efficient removal of the heat generated in the mantle.  

7.1 Three-dimensional global viscosity models. 

In our study 3-D global viscosity model is constructed using: 

- The S20a seismic tomography model by Ekstrom and Dziewonski 

(1998) converted to temperature 

- Assumptions about homologous temperature in the mantle 

(Paulson et al. (2005)) 

This model is one of the most commonly used in such a type of 

modeling. It provides resolution up to the 20th spherical harmonic 

degree for isotropic velocity variations. The last aspect is 

especially important in our study. Despite other models could 

differ from the S20a model in detail, the general conclusions 

about importance of taking into account LVV are valid also for all 

models with this and higher resolution. We use the procedure 

proposed by Paulson et al. (2005). The SV  perturbations have been 

initially converted into density variations. Based on the density 

variations we have estimated temperature distribution in the 

mantle ),,( ϕθrTT =  and determined a homologous temperature. It is 

consistent with the approximate nature of parameterized convection 

modeling to assume a Newtonian rheology with kinematic viscosity 

),,( ϕθηη r=  related to mantle temperature by (Paulson et al., 2005): 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= ),,(
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0 )(),,( ϕθ
γ

ηϕθη rT
rT

r m

err                             (E7.1) 

where )(rTm  is a solidus temperature, )(0 rη  are the initial 

coefficients, )(rγ  are the activation parameters related to the 

activation energy *E  of subsolidus creep deformation by: 

R
E *

=γ                                                        (E7.2) 

where R is the universal gas constant. 

The parameters )(rTm , )(0 rη  and )(rγ  should be chosen separately for 

different mantle layers depending on P-T conditions and on a phase 

state of the material, primarily for the upper and lower mantle. 

So we can also adjust a vertical viscosity profile, which should 

be assumable close to the results of the previous studies. Thus, 

LVV are then produced self-consistently within this approach. 

The velocity-to-density scaling factor has been estimated using 

joint inversion of seismic tomography data and surface observables 

(Corrieu et al. (1994)). This technique is described in Chapter 

VII. It is clear that not all velocity variations presented in the 

S20s model are induced by temperature effect. Compositional 

variations can substantially alter velocity-temperature 

relationship or simply mask the temperature effect. However, we 

assume that in spite of possible alterations of the computed 

fields in specific places, general conclusions about importance of 

incorporating LVV in global dynamic models will be convincing. 

The derived density variations have been converted into 

temperatures applying the depth-dependent thermal expansion 

coefficient (Paulson et al., 2005): 

51023 −⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ch
hα                                                 (E7.3) 

where h is the depth, ch  is the depth of the core-mantle boundary.  
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To calculate LVV with the aid of E7.1 we need radial profiles of 

the horizontally averaged temperature in the mantle and the 

solidus temperature. Since our model is instantaneous we cannot 

estimate the temperature distribution self-consistently and just 

take it from literature. The depth-dependent temperature 

distribution is based on Schubert et al. (2001); the temperature 

of solidus is taken from Yamazaki and Karato (2001). Both 

temperature curves are shown in figure (F7.1). The solidus 

temperature at the bottom of the mantle is slightly increased 

following Schubert et al. (2001). 

 
Figure (F7.1) Temperature profiles. 

Small dash: radial mantle temperature (Schubert et al. (2001)) 

Bold dash: solidus temperature in the mantle (Yamazaki and Karato (2001)) 

The only activation parameters )(rγ  are required to determine 

relative variations of viscosity based on temperature anomalies 
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(E7.1). Following Paulson et al., 2005 we take 10=γ  in the upper 

mantle and 17=γ  in the lower mantle (Yamazaki and Karato, 2001).  

The maximum LVV in the lower mantle are about two orders of 

magnitude and are represented at the whole length scale: from very 

broad anomalies to small-scale variations. These relative 

variations are multiplied by the radial viscosity distribution 

that finally gives the 3-D viscosity model. The upper mantle 

viscosity variations in most of our models are likely to be less 

than in reality. Although we are not limited by calculation 

technique and can take into account the variations up to 

approximately 7 orders of magnitude, we have ventured on the 

models with LVV magnitude not higher than 4 orders as yet. 

Radial viscosity profiles required in the final viscosity 

distribution have been chosen on the base of conclusions from the 

joint inversion. Thousands of different combinations for 7-layer 

viscosity profiles were considered to obtain the best fit to the 

observed dynamic geoid (also with effect of LVV). This problem is 

discussed in Chapter VII in detail.   

7.2 Contribution of lateral viscosity variations to mantle 

velocities. 

This simple model based on the S20a tomography model is aimed at 

demonstrating the effect of LVV on the mantle flows and especially 

near-surface velocities. 

The parameters of the models are following: 

- Radial density distribution )(rρ  is based on PREM (figure 

F4.1) 

- Density anomalies are obtained from SV  using S20a tomography 

model with the constant scaling factor 2.0)( =rSc  applying 

following relationship: 
S

S

V
V

rrSc
δ

ρδρ *)(*)(*(%)01.0 *=  
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- The radial viscosity profile is shown in figure (F7.2). The 

average viscosity in the upper mantle below 200 km to the 

depth of 670 km is equal to ][1021 sPa ⋅ . The average viscosity in 

the lower mantle is 40 times greater than the former one. 

Low-viscous asthenosphere and high-viscous continental keels 

are modulated mostly by LVV. 

- The technique described above (Part 6.1) is used to derive 

LVV. This model corresponds to the leading coefficients: 

][105 9
0 sPa ⋅×=η  in the upper mantle and ][105 13

0 sPa ⋅×=η  in the 

lower mantle. 

 

Figure (F7.2) Relative radial viscosity )(* rη . 
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Figure (F7.3) Density anomaly distribution. Velocities are calculated for radial 

viscosity model. 

 
Figure (F7.4) LVV and velocity redistribution due to LVV.  

Black arrows: Mantle velocities corresponding to the radial viscosity model. 

Violet and red arrows: Mantle velocities corresponding to the LVV model 

calculated by the U-transform iterative method.  

Black and brown circles mark zoomed areas shown in figures (F7.5) and (F7.6). 

 

Scientific Technical Report 08/08
DOI: 10.2312/GFZ.b103-08081

Deutsches GeoForschungsZentrum GFZ



 

 118

 
Figure (F7.5) Zoomed area with low viscosity (F7.4 Left).  

Black arrows: Mantle velocities corresponding to the radial viscosity model. 

Violet arrows: Mantle velocities corresponding to the LVV model.  

In the area of low viscosity the mean values of the flow 

velocities significantly increased (>50% of the velocities 

calculated for radial viscosity model) therefore the upwelling 

global flow widens due to the viscosity heterogeneities.  
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Figure (F7.6) Zoomed area with high viscosity (F7.4 Right).  

Black arrows: Mantle velocities corresponding to the radial viscosity model. 

Red arrows: Mantle velocities corresponding to the LVV model.  

Contrary to (F7.5) the high viscosity slackens the global flow’s 

pace and constricts the downwelling flow. Viscosity contrasts in 

the zone of low viscosity shown in (F7.5) and zone of high 

viscosity demonstrated in (F7.6) are approximately the same. The 

changes in mantle velocities due to LVV are of the same order in 

both cases, albeit the corrections have the opposite tendency.   
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Figure (F7.7) Near-surface velocities at the depth 100 km. Maximum value of 

near-surface velocities is approximately 96 mm/year. 

Black arrows: Radial viscosity model. 

Red arrows: LVV model.  

 

Figure (F7.8) Difference between near-surface velocities calculated with LVV and 

with only radial viscosity. Maximum value of resulting differences is 

approximately 40 mm/year. Red rectangles mark the areas with the most obvious 

vortical flows appearing due to LVV incorporation. 
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The near-surface velocities calculated at the depth 100 km are 

significantly affected by the LVV. A caliber of LVV impact into 

near-surface velocities (F7.7) becomes obvious as soon as the 

discrepancy between horizontal velocities obtained from the LVV 

model and radial viscosity model are shown (F7.8). The maximum 

change in velocity values due to LVV is approximately 45% of the 

initial velocities. Vortical flows (toroidal velocity component) 

appearing due to LVV are clearly seen in the Pacific Ocean and 

South Africa regions. The contribution of toroidal component is 

furthermore reflected in more details in radial vorticity (F7.9) 

in the form of negative and positive anomalies.    

 
Figure (F7.9) Surface divergence and radial vorticity. 

Top: Surface divergence for radial viscosity model (left) and LVV model (right). 

Bottom: Radial vorticity. 

Radial vorticity represents a direct response of the surface 

velocities on the LVV appearance. Figure (F7.9) shows a visible 

fit to the published results (Moucha et al, 2007) in all main 

features irrespective of the different choice of the global 3-D 
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viscosity models. Relative proportions of surface divergence and 

radial vorticity are also in a good agreement with the results 

derived by Moucha et al, 2007 for the poloidal and toroidal 

surface velocities. The visible correlation between shapes of 

continents and negative anomalies of surface divergence is reduced 

by an incorporation of the LVV (F7.9) as well as in Moucha et al, 

2007. 

7.3 Particular contribution of lateral viscosity variations 

induced in the upper and lower mantle to the geoid, dynamic 

topography and surface velocities. 

In this part we consider three LVV distributions: the whole-mantle 

LVV and two models (upper-mantle LVV and lower-mantle LVV), where 

LVV are restricted to the mantle above the 670 km discontinuity 

and below it in order to estimate the particular contribution of 

the LVV induced in the upper and lower mantle with respect to the 

effect of LVV in the whole mantle. For this purpose we use the 

whole-mantle LVV model of approximately 4 orders of magnitude in 

the lithosphere and asthenosphere and 2 orders of magnitude in the 

lower mantle. The 3-D viscosity models of the whole mantle (F7.10 

Right), the lower mantle (F7.11 Left) and the upper mantle (F7.11 

Right) are constructed based on the S-wave tomography model S20a 

of Ekstrom and Dziewonski (1998) as described in the Part 7.1 and 

on the results of joint inversion for the radial viscosity models 

discussed in Part 6.2 (Figure F6.2). Density anomalies are 

obtained from SV  using S20a tomography model 

S

S

V
V

rrSc
δ

ρδρ *)(*)(*(%)01.0 *=  with a scaling factor )(rSc  found from a 

least-squares adjustment first for radial viscosity model (F6.1), 

then corrected for the 3-D viscosity model (F7.12). These rescaled 

conversion parameters are used in both radial viscosity and LVV 

models in order to estimate correctly a constribution of LVV. 

Density distribution and its relation with the LVV distribution 

are shown on (F7.10).    
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Figure (F7.10) Cross-sections showing density anomaly and LVV (log10) in the 

mantle relative to the adopted vertical profile shown on (F6.2). Arrows show 

mantle velocities (maximal value is equal to 39.1 mm/year for the radial 

viscosity model (left) and 35.1 mm/year for the whole-mantle LVV model (right)) 

calculated with the same scaling factor shown on (F7.12 red). 

 

Figure (F7.11) Cross-sections showing LVV (log10) incorporated into the lower-

mantle model (left) and upper-mantle model (right) relative to the adopted 

vertical profile shown on (F6.2).  
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Figure (F7.12) Velocity-to-density scaling factor profile obtained from a least 

square adjustment to get a best fit to the observed geoid.  

Black line represents scaling factor for the radially dependent viscosity model 

analysed in the Part 6.2 (the same as on (F6.1)).  

Red line shows scaling factor for the model with the whole-mantle LVV.  

Fine lines (black and red) show scaling coefficient standard deviations (E6.6). 

In the lower mantle a conversion coefficient varies noticeably 

with a tendency to increase from approximately 0.13 to 0.27 while 

drawing nearer to the core-mantle boundary. In the transition zone 

a scaling factor exceeds 0.4 and differs significantly from the 

initial value (0.24). Therefore the difference with the initial 

scaling is quite substantial in both the lower mantle (0.11) and 

transition zone (0.17). 
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Figure (F7.13) Isostatic anomalies of geoid. 

Top: Isostatic anomalies of the observed geoid (Kaban et al., 2004).  

Bottom Left: Geoid undulations for the model with radially stratified viscosity. 

Bottom Right: Geoid undulations for the model with LVV. Terms C20 and C40 are 

excluded from all fields. 

It turns out that for a seven-layer radial viscosity model it is 

possible to get a reasonable fit to the observed geoid. The radial 

viscosity model discussed in Part 6.2 explains about 80% of the 

observed field, being a good result especially taking into account 

that we have excluded the terms 20C  and 40C  accumulating half of 

the total energy of the long-wavelenght non-hydrostatic geoid. The 

calculated geoid for the model with a radially stratified mantle 

is shown in (F7.13) compared to the observed non-isostatic geoid 

and geoid calculated taking into account whole-mantle LVV. The 

terms 20C  and 40C  are excluded from all fields as well as the 

impact of the isostatically compensated lithosphere is excluded 

from the observed geoid (F4.1). This provides a possibility to 
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uncover the effect of deep mantle horizons and of dynamic 

disturbances of the Earth’s surface. The overall fit of the geoid 

calculated with LVV (F7.13 Bottom Right) to the observed geoid is 

approximately the same as for the radial viscosity model but there 

are several geoid features presented in the observed geoid, 

appearing only after introducing the LVV. The most pronounced is 

the negative anomaly located near the western edge of North 

America. The extended maxima near South America and southern part 

of Africa are also better presented with the LVV. The same is true 

for the geoid pattern in South Pacific. The slender waist of the 

central positive anomaly situated to the west of Africa is also 

better predicted by the LVV model. This preliminary analysis shows 

that inclusion of LVV in the whole mantle improves some mid-range 

features of the dynamic geoid. At the same time some features of 

geoid sink in precision due to inclusion of LVV in comparison with 

the radial viscosity model (for example Greenland and northern 

Australia areas). The Indian anomaly is also reduced by an 

introduction of the LVV, however, not that significantly.  

Based on figure (F7.14) we can arrive at some general conclusion 

about the origin of the main geoid features whether they appear 

due to lower- or upper-mantle LVV. Assumptions made up on the base 

of this brief analysis may help to construct a combined 3-D 

viscosity model, which could stress special areas of low and high 

viscosity in the lower and upper mantle, therefore, producing a 

better fit to the main geoid features. 
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Figure (F7.14) Observed geoid and geoids calculated for various LVV models. 

Top Left: Isostatic anomalies of the observed geoid (Kaban et al., 2004). 

Top Right: Whole-mantle LVV model. 

Bottom Left: LVV in the upper mantle above 670 km (upper mantle LVV model). 

Bottom Right: LVV in the lower mantle below 670 km (lower mantle LVV model). 

It is clearly seen that the strong negative anomaly in the area of 

Antarctica originates from the effect of lower-mantle LVV as well 

as the positive anomalies situated to the north of Australia and 

near South America. But unfortunately the latter positive anomaly 

shaped by the lower-mantle LVV in the area of South America is 

suppressed by the opposite effect of the upper-mantle LVV. The 

negative anomalies in the area of North America result from the 

combined effect of both the lower and upper mantle as well as the 

positive anomaly in the Pacific Ocean. Upper-mantle LVV produce a 

very good fit to the Indian anomaly, which is distorted by 

interplay between the LVV in the lower and upper mantle.     
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Figure (F7.15) Discrepancies between a dynamic geoid generated by the 3-D 

viscosity models and initial "radial" model.  

Top: Whole-mantle LVV model.  

Bottom Left: Upper-mantle LVV model.   

Bottom Right: Lower-mantle LVV model. 

Discrepancies between the dynamic geoid generated by the 3-D 

viscosity models and the initial "radial" model are shown in 

(F7.15). The difference between the initial (only radial 

viscosity) dynamic geoid and the geoid with implemented LVV 

reaches –47.7 - +37.1 m for the whole mantle LVV, while the 

effects of the upper and lower mantle are equal to –68.8 - +36.3 m 

and –24.7 - +35.9 m correspondingly. The differences are exposed 

mainly at mid-range scale as it was suggested in the preliminary 

analysis. Noteworthy, these effects are not correlated in general, 

that might be of significance for future high-resolution dynamic 

models. In most areas the effects of the lower-mantle and upper-

mantle LVV compensate each other to some extent. But anyway the 

strongest changes in the geoid generated by the whole-mantle LVV 

model are mostly produced by the upper-mantle LVV, since the 

effect of the upper-mantle LVV is of more significance in 
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comparison with the lower-mantle LVV effect. It is important that 

the sum of the upper and lower mantle effects is very close to the 

effect of the whole mantle LVV, the maximum difference is about 2 

m. This provides a possibility to model lower- and upper-mantle 

LVV separately, e.g. using different calculation schemes, which 

work better in each specific case. 

 
Figure (F7.16) Discrepancies between a dynamic topography generated by the 3-D 

viscosity models and initial "radial" model.  

Top: Whole-mantle LVV model.  

Bottom Left: Upper-mantle LVV model.   

Bottom Right: Lower-mantle LVV model. 

The modifications in the geoid shown in (F7.15) are chiefly 

produced by differences in surface dynamic topography since the 

effect of density variations remains unchanged and the effect of 

the core-mantle boundary is small. The dynamic topography 

modifications for the tested viscosity models are shown in 

(F7.16). They correspond qualitatively to the changes of the 

geoid, however, we see many small-scale details. These details, 
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which do not remarkably influence the geoid, are mainly due to LVV 

in the upper mantle (F7.16 Bottom Left). The most significant 

effects are produced by sharp horizontal viscosity contrast in the 

upper mantle, e.g. related to the ocean-continent boundaries. 

Therefore, a relative difference in the amplitudes of the dynamic 

topography variations due to upper- and lower-mantle viscosity 

changes is more pronounced than the difference in the dynamic 

geoid (F7.15). The difference between dynamic topography generated 

by the initial radial viscosity model and dynamic topography with 

implemented whole-mantle LVV reaches –1.06 - +0.975 km, while the 

contribution of the upper- and lower-mantle LVV is equal to –1.48 

- +0.8 km and –0.31 - +0.49 km correspondingly. In comparison with 

the effect on the dynamic geoid the contribution of the upper-

mantle LVV into dynamic topography is even larger in amplitude 

with respect to the effect of the lower-mantle LVV. The higher 

amplitudes of the changes induced by the upper-mantle LVV are 

exposed in relatively small-scale details, therefore, they are 

more important for regional modelling. 

Modifications of near-surface mantle velocities (at the depth of 

100 km) caused by LVV are shown in (F7.18). These changes are 

remarkable and reach 21 mm/year. It is important that contrary to 

the dynamic geoid the effects of the upper- and lower-mantle LVV 

on horizontal near-surface velocities are not supplementary; 

generally the total change exceeds significantly the sum of the 

effects computed separately. The latter statement is brightly 

illustrated by the velocity patterns in the areas of vortical 

motion to the east of Australia. It is also important to note that 

the calculated near-surface mantle flow velocities (F7.17) and 

changes due to LVV (F7.18) might not completely correspond to 

plate velocities because our model does not imply stiff 

lithospheric plates, which integrate these differences over large 

areas. Despite individual velocity vectors could be changed due to 

different boundary conditions, a substantial difference between 
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the lower- and upper-mantle LVV effects should be still 

significant. 

 
Figure (F7.17) Near-surface mantle velocities.  

Black arrows: Radial viscosity model (maximum velocity value 68.7 mm/year).  

Red arrows: Whole-mantle LVV model (maximum velocity value 64.5 mm/year).   

 
Figure (F7.18) Transformations (differences with the initial radial viscosity 

model) of near-surface mantle velocities caused by LVV.  

Black arrows: Whole-mantle LVV model (maximum value is 20.94 mm/year).  

Red arrows: Upper-mantle LVV model (maximum value is 17.79 mm/year).   

Blue arrows: Lower mantle LVV model (maximum value is 8.41 mm/year). 
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Figure (F7.19) Surface divergence calculated for the radial viscosity model 

(left) and for the model with whole mantle LVV (right). 

 
Figure (F7.20) Differences between surface divergence generated by the various 

LVV models and initial radial viscosity model. 

Top: Whole-mantle LVV model.  

Bottom Left: Upper-mantle LVV model.   

Bottom Right: Lower-mantle LVV model. 

As shown in Part 7.2 an obvious interrelation between deep 

continent roots and negative anomalies of surface divergence 

(F7.19 Left) is to be suppressed by the effect of LVV (F7.19 
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Left). Surface divergence is mostly influenced by the upper-mantle 

LVV (F7.20), while the effect of the lower-mantle LVV is rather 

minor, but still there are some surface divergence patterns 

appearing due to lower-mantle LVV only. In general the effect of 

the lower-mantle LVV tends to intensify the effect of the upper-

mantle LVV on surface divergence.  

 
Figure (F7.21) Radial vorticity generated by various 3-D viscosity models.  

Top: Whole-mantle LVV model.  

Bottom Left: Upper-mantle LVV model.   

Bottom Right: Lower-mantle LVV model. 

According to (F7.21) the lower-mantle LVV do not play any 

significant part in forming of vortical near–surface motion. 

Toroidal flows observed on the surface are generated only by the 

upper-mantle LVV. The amplitudes of radial vorticity 

]104.2,104.2[ 66 −− ⋅⋅−  (calculated on the base of averaged surface 

velocities) are almost twice as great as the amplitudes of the 

changes in surface divergence due to the whole-mantle LVV 

]1055.1,1025.1[ 66 −− ⋅⋅−  and two times as small as the amplitudes of the 
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very surface divergence ]109.4,109.4[ 66 −− ⋅⋅− . Therefore, an effect of 

LVV on the surface mantle velocities is directed at generating of 

the vortical motion to a great extent.  
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Chapter VIII  

Conclusions 

A numerical method developed in this study provides the 

possibility to model mantle flows together with the main 

convection-related observables (the dynamic geoid, topography and 

surface velocities), taking into account such specific effects of 

the Earth’s mantle as lateral viscosity variations (LVV), mantle 

compressibility and self-gravitation. This method combines the 

spherical harmonic method with the direct Godunov method for the 

solution of systems of ordinary differential equations and the 

iterative method applied to incorporate the LVV effect. This 

combined approach is effective for overcoming all difficulties 

associated with the introduction of the aforementioned effects.  

One of the goals of this work is to demonstrate that the effects 

of self-gravitation and mantle compressibility have significant 

influence on the dynamic geoid and mantle flow; therefore, up-to-

date studies based on snap-shot models of mantle convection and 

convection-related observables cannot be comprehensive if these 

effects are ignored. These effects were analyzed using geoid 

kernels in a number of studies (Corrieu et al. (1995), Panasyuk et 

al. (1996) and some others) and found to influence the geoid 

rather significantly.  

The partucular contributions of each of these effects to both the 

dynamic geoid and mantle flow were estimated on the basis of 

synthetic and realistic models in this study. Among the existing 

techniques, only the spectral method is capable of taking into 

account both the mantle compressibility and self-gravitation 

effects directly. The incorporation of the aforementioned effects 

to spatial FE and FV methods involves a number of complications 

discussed in the previous chapters (e.g. Chapter I). Since both 

effects are found to influence very substantially the dynamic 

geoid, surface velocities and mantle flows, there arises the 
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question of whether mantle flows and the dynamic geoid can be 

modeled correctly by a spatial method ignoring any of these 

effects. Some synthetic models show that the contributions of the 

self-gravitation and mantle compressibility effects to the geoid 

figure are comparable (e.g. 26.5% and 22.5% of amplitudes 

respectively, see Chapter IV). In more realistic models, the 

contribution of the self-gravitation effect is much greater (61.5% 

of amplitudes), while the effect of mantle compressibility is 

partly opposite to the effect of self-gravitation and 

significantly reduces it. 

This work mostly focuses on the estimation of the influence of LVV 

on the main observables such as the dynamic geoid, topography and 

near-surface velocities because the existing studies give rather 

contradictory conclusions on the significance of this effect. To 

incorporate the effect of strong LVV we developed two iterative 

methods (the U-transform and W-transform methods, see Chapter V) 

based on the concept suggested by Zhang and Christensen (1993). 

Both methods take into account the effect of mantle 

compressibility. Comparison of these methods revealed good 

agreement between results obtained for models with identical input 

data. Both methods were fully tested in order to assess their 

capability of taking into account strong LVV. Based on a set of 

synthetic models, it was shown that the U-transform iterative 

method could treat effectively LVV varying by about seven orders 

of magnitude. By contrast, the W-transform iterative method is 

apparently applicable only to LVV models with rather low viscosity 

contrasts. Moreover, it gives unreasonable results or simply does 

not converge if the analyzed LVV models include small-scale 

details. As a result, we conclude that the W-transform method is 

inapplicable to a model possessing a resolution higher than five 

or six spherical harmonics. Therefore, all global models with 

strong LVV analyzed in this study were calculated with the aid of 

the U-transform iterative method.  
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Following Paulson et al. (2005), we constructed a 3-D mantle 

viscosity model based on the global seismic tomography model of 

Ekstrom and Dziewonski (1998) converted to temperature variations. 

The LVV have been calculated according to these variations and on 

the basis of the assumption of a depth-dependent homologous 

temperature. It was found that the incorporation of LVV 

significantly alters the dynamic geoid and near-surface 

velocities. The contribution of the LVV effect to the geoid 

exceeds 45% of the maximum geoid undulations calculated for a 

radial viscosity model. The near-surface velocity distribution is 

strongly affected by LVV due to not only the LVV-induced toroidal 

component but also the change in the spheroidal velocity 

component. The changes in the near-surface velocities are about 

30%-40% of the velocity amplitude calculated for the initial 

radially symmetric model. This study shows that the global flow 

patterns are, in general, also significantly affected by LVV. 

Since our 3-D viscosity model is derived from a 3-D temperature 

distribution, global downwellings are mainly located in areas with 

a predominant high viscosity, while global upwellings are mostly 

confined to low viscosity zones. Therefore, mantle upwellings tend 

to broaden and become more intense due to LVV. By contrast, mantle 

downwelling flows in high viscosity zones become narrower and 

weaker.  

We also considered several special models in which strong whole-

mantle LVV were intersected by small-scale high-viscosity 

fragments. These synthetic models were used to examine similar 

effects in the real Earth. We found that the small-scale high-

viscosity fragments (always present in the mantle) affect global 

flows variously, dependending mainly on the position of the 

fragment with respect to the global flow. If located in the way of 

a flow with nearly constant velocity of the global motion, a high-

viscosity fragment is pulled by the surrounding material without 

having any significant influence on the global motion. By 

contrast, if a fragment is present in the zone where the motion 
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changes its direction and velocity values, the surrounding 

material moves around such a fragment and starts to swerve from a 

course in advance. 

In this study, we specifically analyze the effects of LVV located 

in the major mantle layers of mantle (the upper and lower mantle) 

on the dynamic geoid, topography and surface velocities. Employing 

even a simple radial viscosity profile we are able to explain most 

of the observed geoid energy (see Chapter VI). Although long-

wavelength features are fitted reasonably well, mid- and small-

scale model features diverge with the observed fields. This is 

particularly evident after the removal of the terms C20 and C40 

dominating in the long-wavelength nonhydrostatic geoid. We analyze 

the possible impact of the whole-mantle LVV based on complete 

resolution tomography data. LVV in the lower mantle are less 

constrasting than in the subcrustal layer (the maximum constrast 

is about two orders of magnitude), but some anomalous zones in the 

lower mantle are much larger than thin zones of strong LVV in the 

subcrustal layer. Some large viscosity anomalies extend for more 

than half of the lower mantle thickness. Hence, their integral 

effect was found to be significant for global dynamic modeling.  

The difference between geoids obtained from radially stratified 

and whole-mantle LVV models varies from –47.7 to +37.1 m, and 

these values amount to about half of the amplitude of the observed 

geoid anomalies. This is a significant effect, particularly taking 

into account that the viscosity model used in this study is likely 

to represent the lower limit of possible viscosity variations in 

the upper mantle. Changes in the dynamic geoid modify the 

resulting velocity-to-density scaling factor. The differences in 

the scaling factors exceed 40% for the lower mantle, which can be 

important for mineral physics applications.  

The amplitudes of geoid disturbances induced by the upper-mantle 

LVV (–68.8 - +36.3 m) are somewhat higher than those resulting 
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from the lower-mantle LVV effect (–24.7 - +35.9 m). However, the 

latter is generally found to be opposite in sign to the upper-

mantle LVV effect; therefore, these effects compensate each other 

to a great extent. As a result, geoid disturbances induced by the 

whole-mantle LVV are significantly smaller than changes in the 

geoid figure due to solely the upper-mantle LVV effect. We also 

found that the effects of the upper- and lower-mantle LVV on the 

observed geoid are near complementary with respect to the whole-

mantle LVV effect. This conclusion needs to be checked for various 

viscosity models. If correct, it provides the possibility of 

separate treatment of lower- and upper-mantle LVV, using 

techniques that are most effective in these mantle regions. 

Although we could not remarkably improve the overall fit of the 

model geoid to the observed field by consideration of LVV simply 

incorporated into the radial viscosity model, we arrived at the 

conclusion that LVV play an important role in the formation of all 

convection-related fields and mantle flows. Apparently, the 

influence of LVV on the geoid is so significant that the changes 

induced by this effect should be adjusted by a proper variation in 

the radial viscosity profile in order to get a better fit to the 

observed fields. The inverse problem applied to the 3-D viscosity 

models with a variable radial viscosity can be effective for 

solving this problem. Moreover, the particular contributions of 

lower- and upper-mantle LVV to the geoid figure (see Chapter VII) 

might be helpful in this case because some geoid features are 

obviously generated by the effects of only lower- or upper-mantle 

LVV. 

The differences in the dynamic topography induced by the upper- 

and lower-mantle LVV (accordingly: –1.48 - +0.8 km and –0.31 - 

+0.49 km for the density equal to 1 g/cm3) are qualitatively 

similar to the corresponding differences in the dynamic geoid. The 

higher amplitudes of the changes induced by the upper mantle are 
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exposed in relatively small-scale details therefore, they are more 

important for regional modelling. 

The effect of LVV in the whole mantle on near-surface horizontal 

flow velocities is also found to be significant: the difference 

with the initial model reaches 21 mm/year. By contrast to geoid 

anomalies controlled by vertical flows, the differences of the 

horizontal flows induced by the lower- and upper-mantle LVV are 

essentially non-complementary. A joint effect of the mantle layers 

is normally much stronger than the separate effects of the lower- 

and upper-mantle LVV.         

Although the 3-D viscosity models considered in this study are 

probably oversimplified, we find that the resulting effect of the 

whole-mantle LVV is significant. LVV affect substantially both the 

dynamic geoid and the near-surface flow velocities, the main 

parameters currently used to constrain dynamic models. Thus, we 

may conclude that the incorporation of whole-mantle LVV into the 

next generation global dynamic models is a task of vital 

significance. 
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Appendix. 

Derivation of the U-transform and W-transform iterative methods. 

In the following parts I keep the original notations of Zhang and 

Christensen (1993) (even for geopotential, which they derive 

separately from mantle velocities and stresses) for a better 

understanding of the difference between the initial formulae and 

recently derived formulae. 

Agreed notations (N0a- N0g): 

(a) )1( +≡ llL    

(b)
θ
ϕθϕθθθ

∂
∂

=≡
),(),( YYY lm    

(c)
ϕ
ϕθ

θ
ϕθϕϕ

∂
∂

=≡
),(

sin
1),( YYY lm   

(d) 2

2

θθθ
θθ

∂
∂

==
YYY                                                 (N0) 

(e) 2

2
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(h) θctgc ≡  

Part U. 

In case of compressible flow the expressions for viscous stress 

tensor contain divergence, which may not be neglected. Shear 

stress is proportional only to the displacement part of the 

deformation but not to the total deformation, therefore the effect 

of triaxial compression must be included into the expression for 

the shear stress (Schubert et al. (2001)). 
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τrr =2η[∂Ur/∂r-(1/3)∇·Ui]=2ηerr-(2/3)η(err+eθθ+eϕϕ)                

τrθ =τθr=η[r∂(Uθ/r)/∂r+(1/r)∂Ur/∂θ]=2ηerθ,                     

τrϕ=τϕr=η[r∂(Uϕ/r)/∂r+(1/(rsinθ)) ∂Ur/∂ϕ]=2ηerϕ,               

τθθ =2η[(1/r)∂Uθ/∂θ+Ur/r-(1/3)∇·Ui]=2ηeθθ-(2/3) η(err+eθθ+eϕϕ),   (U1) 

τϕϕ=2η[(1/(rsinθ))∂Uϕ/∂ϕ+Ur/r+Uθ(ctgθ)/r-(1/3)∇·Ui]=2ηeϕϕ- 

-(2/3)η(err+eθθ+eϕϕ)                                                 

τθϕ=η[(sinθ/r)∂(Uϕ/sinθ)/∂θ+(1/(rsinθ))∂Uθ/∂ϕ]=2ηeθϕ,             

Expressions for the relation between normal strains and mantle 

flow velocities (Landau, theory of elasticity, 1987): 

err=∂Ur/∂r,  

eθθ=(1/r)∂Uθ/∂θ+Ur/r,  

eϕϕ=(1/(rsinθ))∂Uϕ/∂ϕ+Ur/r+Uθ(ctgθ)/r 

erθ=(1/2)[r∂(Uθ/r)/∂r+(1/r)∂Ur/∂θ]                               (U2) 

erϕ=(1/2)[r∂(Uϕ/r)/∂r+(1/(rsinθ)∂Ur/∂ϕ] 

eθϕ=(1/2)[(sinθ/r)∂(Uϕ/sinθ)/∂θ+(1/rsinθ)∂Uθ/∂ϕ] 

We can consequently represent the equation for the conservation of 

mass:  

divUi≡∇·Ui=∂Ur/∂r+(2/r)Ur+(1/(rsinθ))∂(sinθUθ)/∂θ+(1/(rsinθ))∂Uφ/∂φ= 

=∂Ur/∂r+(2/r)Ur+(1/r∂Uθ/∂θ+(c/r)Uθ+1/(rsinθ))∂Uφ/∂φ=(err+eθθ+eϕϕ)= 

=-(1/r)kUr                                                     (U3) 

Expressions for total sress components: 

σ rr=-p+2η∂Ur/∂r-(2/3)η∇·Ui,  

τrθ=η[(1/r)∂Ur/∂θ+∂Uθ/∂r-Uθ/r],  

τrϕ =η[∂Uϕ/∂r+(1/(rsinθ)∂Ur/∂ϕ-Uϕ/r],                    (U4) 

σθθ=-p+2η(1/r)[∂Uθ/∂θ+Ur]-(2/3)η∇·Ui  

σϕϕ=-p+2η(1/r)[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]-(2/3)η∇·Ui    

τθϕ=η(1/r)[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ] 

Taking into account (U3) ∇·Ui=-(1/r)k(r)Ur 

σrr=-p+2η∂Ur/∂r+(2/3)η(1/r)kUr=-p+2ηerr+(2/3)η(1/r)kUr  

rτrθ=η[∂Ur/∂θ+r∂Uθ/∂r-Uθ]=2ηrerθ,        

rτrϕ=η[r∂Uϕ/∂r+(1/sinθ)∂Ur/∂ϕ-Uϕ]=2ηrerϕ,                         (U5) 
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rσθθ=-rp+2η[∂Uθ/∂θ+Ur]+(2/3)ηkUr=-rp+2ηreθθ+(2/3)ηkUr 

rσϕϕ=-rp+2η[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]+(2/3)ηkUr=-rp+2ηreϕϕ+(2/3)ηkUr     

rτθϕ=η[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ]=2ηreθϕ,             

Additive viscosity component is stated by means of total viscosity 

and radial viscosity function: η(r, θ, ϕ)total = η*(r)+η1(r, θ, ϕ) 

Total stress can be expressed via the means of η*(r) and η1(r,θ,ϕ): 

rσrr=-rp+2rη*∂Ur/∂r+(2/3)η*kUr+2rη1err+(2/3)kη1Ur     

rτrθ=η*[∂Ur/∂θ+r∂Uθ/∂r-Uθ]+2rη1erθ 

rτrϕ=η*[r∂Uϕ/∂r+(1/sinθ)∂Ur/∂ϕ-Uϕ]+2rη1erϕ,                       (U6) 

rσθθ=-rp+2η*[∂Uθ/∂θ+Ur]+(2/3)η*kUr+2rη1eθθ+(2/3)kη1Ur   

rσϕϕ=-rp+2η*[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]+(2/3)η*kUr+2rη1eϕϕ+(2/3)kη1Ur 

rτθϕ=η*[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ]+2rη1eθϕ,      

We are looking for a solution of the Stokes equation for the 

mantle velocities U, stresses σij and geopotential Φ in spherical 

harmonics: 

Ur=∑Z1(r)lmΥlm(θ, ϕ) 

Uθ=∑[Z2(r)lmΥlm
θ+Z5(r)lmΥlm

ϕ]  

Uϕ=∑[Z2(r)lmΥlm
ϕ-Z5(r)lmΥlm

θ] 

σrr=∑y3Υ,                                                      (U7) 

τrθ=∑(y4Υθ+y6Υϕ),       

τrϕ=∑(y4Υϕ-y6Υθ),     

δρ(r,θ,ϕ)=∑ρΥ,            

Φ(r,θ,ϕ)=∑ΦΥ,               

p(r,θ,ϕ)=∑p(r)lmΥlm                                             

Thus, the required vector field V is represented as a sum of 

spheroidal and toroidal fields TS VVV += : 

),,( 521
ϕθ YZYZYZVS =  

),,0( 52
θϕ YZYZVT −=  

These vectors are mutually orthogonal in every point of the space 

since their scalar product is equal to zero: 

00)( 5252 =−+=⋅ θϕϕθ YZYZYZYZVV TS  
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According to Chandersekhar, (Schubert et al. (2001)) the poloidal 

field must meet the requirement 21
'

1 2 LZZrZ +−= . Our study has 

revealed that under the conditions of mantle compressibility this 

condition is not satisfied. That’s why the vector field SV  is not 

pure poloidal field but more comprehensive spheroidal field.  

The contributions of poloidal and toroidal fields are 

quantitatively described by the surface divergence and radial 

vorticity: 

Surface divergence:  

∇H·Ui=(1/(rsinθ))∂(sinθUθ)/∂θ+(1/(rsinθ))∂Uφ/∂φ                (U8a) 

Radial vorticity:  

[∇Ui]·rk/r=(1/(rsinθ)){∂(Uφsinθ)/∂θ-∂Uθ/∂φ}                    (U8b) 

Uθ=∑[Z2(r)lmΥlm
θ+Z5(r)lmΥlm

ϕ],  

Uϕ=∑[Z2(r)lmΥlm
ϕ-Z5(r)lmΥlm

θ] 

r∇H·Ui=(1/(sinθ))∂(sinθUθ)/∂θ+(1/(sinθ))∂Uφ/∂φ=∂Uθ/∂θ+cUθ+ 

+(1/(sinθ))∂Uφ/∂φ=Z2(r)lmΥlm
θθ+Z5(r)lmΥlm

ϕθ+cZ2(r)lmΥlm
θ+cZ5(r)lmΥlm

ϕ+ 

+Z2(r)lmΥlm
ϕϕ-Z5(r)lmΥlm

θϕ=Z2{Υθθ+cΥθ+Υϕϕ}+Z5{Υϕθ+cΥϕ-Υθϕ}=0-LZ2Υ 

[∇Ui]·rk=(1/(sinθ)){∂(Uφsinθ)/∂θ-∂Uθ/∂φ}=∂Uφ/∂θ+cUφ-(1/(sinθ))∂Uθ/∂φ= 

=Z2Υϕθ-Z5Υθθ+c{Z2Υϕ-Z5Υθ}-Z2Υθϕ-Z5Υϕϕ=Z2{Υϕθ+cΥϕ-Υθϕ}-Z5{Υθθ+cZ5Υθ+Υϕϕ}= 

=0+LZ5Υ 

∇H·Ui=-(L/r)Z2Υ    

[∇Ui]·rk/r=(L/r)Z5Υ 

Hence, velocity component 2Z  is responsible for the spheroidal 

(poloidal in case of incompressible flow) constitutent of 

horizontal mantle velocity, while 5Z  defines the toroidal part.   

Geopotential used by Zhang and Christensen (1993) is denoted Φ, 

geopotential used in our study is found from E5.4g as Z7. Relation 

between our notations and original notations of Zhang and 

Christensen (1993):  

Φ=Z7/r 

y3=(1/r)Z3-ρ*Φ                                                  (N1) 

y4=(1/r)Z4   
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y6=(1/r)Z6   

This difference between notations shown in (N1) will be covered in 

the final deductions. 

The other three components of total stress tensor rrσ , θθσ  and ϕϕσ  

can be found with the aid of expansions (U6) for the mantle 

velocities: 

rσθθ=-rp+2η*[∂Uθ/∂θ+Ur]+(2/3)η*kUr+2rη1eθθ+(2/3)kη1Ur   

rσθθ=-r∑p(r)lmΥlm+2η*∑[Z2lmΥθθ
lm+Z5lmΥϕθ

lm+Z1lmΥlm]+(2/3)η*k∑Z1lmΥlm+2η1reθθ+ 

+(2/3)kη1Ur                                                (U9a) 

rσϕϕ=-rp+2η*[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]+(2/3)η*kUr+2rη1eϕϕ+(2/3)kη1Ur 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ+2rη1eϕϕ+ 

+(2/3)kη1Ur                                                                            (U9b) 

rτθϕ=η*[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ]+2η1reθϕ,       

rτθϕ=η*∑[(Z2Υθϕ+Z5Υϕϕ)+(Z2Υϕθ-Z5Υθθ)-c(Z2Υϕ -Z5Υθ)]+2η1reθϕ, 

rτθϕ=η*∑[Z2(Υθϕ+Υϕθ-cΥϕ]+Z5[Υϕϕ-Υθθ+cΥθ)]+2η1reθϕ, 

rτθϕ=η*∑[2Z2(Υθϕ-cΥϕ]-Z5[LΥ+Υθθ)]+2rη1eθϕ,                       (U9c) 

where the coefficients lmrp )(  depend only on r, spherical functions 

η1eθθ  and  η1Ur are obtained from the previous iterative step. 

Derivation of the ODE system for the spherical harmonic 

coefficients 

Z1lm(r), Z2lm(r),  Z5lm(r), y3lm(r), y4lm(r), y6lm(r) and plm (r): 

1) Mass conservation: 

2Ur/r+∂Ur/∂r+(1/r)[∂Uθ/∂θ+cUθ+(1/sinθ)∂Uϕ/∂ϕ=-(1/r)k(r)Ur  

2∑(Z1/r)Y+∑YZ1’+∑(Z2/r)[Yθθ+cYθ+Yφφ]+∑(Z5/r)[Yϕθ+cYϕ-Yθφ]=-(1/r)k∑Z1Υ 

2∑(Z1/r)Y+∑Z1’Y-∑(Z2/r)LY=-(1/r)k∑Z1Υ 

2∑Z1Y+r∑Z1’Y-∑Z2LY=-k∑Z1Υ 

rZ1’=-(2+k)Z1+LZ2  => Аlm=0                                                   

lmlm
lm

LZZk
dr

dZr 21
1 )2( ++−=

                             (U10) 

2) Relation between σrr and mantle velocities: 

rσrr=-rp+2rη*∂Ur/∂r+(2/3)η*kUr+2rη1err+(2/3)η1kUr     
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Viscous terms can be represented via the means of spherical 

functions: 

η1err=∑(η1err)lmΥlm(θ,ϕ)     

η1Ur=∑(η1Ur)lmΥlm(θ,ϕ)                                      (U11) 

(η1err)lm=(1/smo)∫∫η1UrYlmdϕsinθdθ,     

(η1Ur)lm=(1/smo)∫∫η1errYlmdϕsinθdθ   

r∑y3Υ=-r∑p+2rη*∑Z1’Y+(2/3)η*k∑Z1Y+2r∑(η1err)lmΥlm(θ,ϕ)+(2/3)k∑(η1Ur)Y 

rplm=2η*rZ1’-ry3+(2/3)η*kZ1+2r(η1err)lm+(2/3)k(η1Ur)lm  

Using the derived relation (U10) rZ1’=-(2+k)Z1+LZ2: 

rp=-2η*(2+k)Z1+2η*LZ2-ry3+(2/3)η*k Z1+2r(η1err)+(2/3)k(η1Ur) 

Hence, the spherical pressure function can be obtained from the 

following expression: 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-ry3(r)+(2/3)η*kZ1(r)}lmYlm+ 

+∑[2r(η1err)lm+(2/3)k(η1Ur)lm]Ylm   

Switching to the notations of Zhang and Christensen (1993): 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φ}lmYlm+ 

+∑[(2/3)k(η1Ur)lm+2r(η1err)lm]}Ylm                               (U12) 

4) Relation between θτ r  and mantle velocities: 

rτrθ=η*[∂Ur/∂θ+r∂Uθ/∂r-Uθ]+2rη1erθ 

∑ry4Υθ+∑ry 6Υϕ=η*∑Z1Yθ+η*r∑[Z’2Yθ+Z’5Yϕ]-η*∑[Z2Yθ+Z5Yϕ]+2rη1erθ 

Z4Υθ+Z6Υϕ=η*Z1Yθ+η*r[Z’2Yθ+Z’5Yϕ]-η*[Z2Yθ+Z5Yϕ]+2rη1erθ 

∑[rZ’2-Z4/η*+Z1-Z2]Υθ+∑[rZ’5-Z 6/η*-Z5]Υϕ+(2r/η*)η1erθ=0 

Viscous terms corresponding to θτ r  and ϕτ r  must be represented as a 

sum of spheroidal and toroidal fields as well as the components of 

viscous stress tensor θτ r  and ϕτ r  themselves: 

η1erθ=F1(r,θ,ϕ)=∑fa(r)lmΥlm
θ+fb(r)lmΥlm

ϕ  =>                          (U13a) 

∑[rZ’2-Z4/η*+Z1-Z2+(2r/η*)fa(r)]Υθ+[rZ’5-Z 6/η*-Z5+ 

+(2r/η*)fb(r)]Υϕ=0                                           (U13b) 

5) Relation between ϕτ r  and mantle velocities: 

rτrϕ=η*[r∂Uϕ/∂r+(1/sinθ)∂Ur/∂ϕ-Uϕ]+2rη1erϕ, 

ry4Υϕ-ry6Υθ=η*[rZ’2Υϕ -rZ’5Υθ+Z1(1/sinθ)∂Υ/∂ϕ-Z2Υϕ +Z5Υθ]+2rη1erϕ.     
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Z4Υϕ-Z6Υθ=η*[rZ’2Υϕ -rZ’5Υθ+Z1∂Υϕ-Z2Υϕ +Z5Υθ]+2rη1erϕ. 

[-Z4+η*rZ’2+η*Z1-η*Z2]Υϕ +[Z6-η*rZ’5+η*Z5]Υθ+2rη1erϕ=0 

∑[rZ’2-Z4/η*+Z1-Z2]Υϕ-∑[rZ’5-Z6/η*-Z5]Υθ+(2r/η*)η1erϕ=0 

In a similar manner as in (U13a) we represent the viscous term 

η1erϕ as a sum of spheroidal and toroidal fields: 

η1erϕ=F2(r,θ,ϕ)=∑fa(r)lmΥlm
ϕ -fb(r)lmΥlm

θ                                 (U14a) 

∑[rZ’2-Z4η*+Z1-Z2+2(r/η*)fa]Υϕ-∑[rZ’5-Z6/η*-Z5+2(r/η*)fb]Υθ=0   (U14b) 

Coefficients fa(r)lm and fb(r)lm are the same for (U13b) and (U14b). 

The equations (U13b) and (U14b) can be represented in common form 

as: 

∑АΥθ+∑BΥϕ=0,    |*Υ(θ’,ϕ’)θ 

∑АΥϕ-∑BΥθ=0     |*Υ(θ’,ϕ’)ϕ 

The first and the second equations multiplied by Υ(θ’,ϕ’)θ and 

Υ(θ’,ϕ’)ϕ correspondently are integrated and summed up:  

∑A∫{Υ θΥ’
θ+ΥϕΥ’

ϕ}sinθ’dθ’dϕ’+∑B∫{ΥϕΥ’
θ-Υ θΥ’

ϕ}sinθ’dθ’dϕ’=A 

In much the same way the first and the second equations are 

multiplied conversely by Υ(θ’,ϕ’)ϕ and Υ(θ’,ϕ’)θ correspondently, 

integrated and subtracted one from another: 

∑A∫{ΥθΥ’
ϕ-ΥϕΥ’

θ }sinθ’dθ’dϕ’+∑B∫{ΥϕΥ’
ϕ+Υ θΥ’

θ}sinθ’dθ’dϕ’=0+B=B 

Both expressions must be equal to zero => A=B=0. 

Therefore we can avoid unnecessary calculations and obtain the 

solution from (U13b) without considering (U14b), which gives the 

same result. 

fa=(1/sml)∫2π0dφ∫π0{F1Yθlm+F2Yφlm}sinθdθ. 

fa =(1/sml)∫2π0dφ∫π0η*[η1erθ]Yθlm+[η1erϕ]Yφlm}sinθdθ, 

fb=(1/sml)∫2π0dφ∫π0{F1Yφlm-F2Yθlm}sinθdθ.  

fb=(1/sml)∫2π0dφ∫π0[η*{[η1erθ]Yφlm-[η1erϕ]Yθlm}sinθdθ 

rZ’2=-Z1+Z2+Z4/η*-(2r/η*)fa ,  

rZ’2=-Z1+Z2+Z4/η*+B, 

fa=(1/slm)∫∫η1{erθYθ+erϕYϕ}dϕsinθdθ,   

Blm =-2(r/η*)fa                                                
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( ) θθηϕ
η

η

ϕ
ϕ

θ
θ

ππ

dYeYed
s

r

ZZZ
dr

dZr

lmrlmr
lm

lmlmlm
lm

sin~2

1

0

2

0
*

4*21
2

+−

−++−=

∫∫
                            (U15) 

rZ’5=Z5+Z6/η*-2(r/η*)fb,   

rZ’5=Z5+Z6/η*+Elm,  

Elm=-2(r/η*)fb, 

fb=(1/(slm)∫∫η1{erθYϕ-erϕYθ}dϕsinθdθ                                                    

( )∫∫ −−

+=

π
θ

ϕ
ϕ

θ

π

θθηϕ
η

η

0

2

0
*

6*5
5

sin~2

1

dYeYed
s

r

ZZ
dr

dZr

lmrlmr
lm

lmlm
lm

                         (U16) 

As it is easy to see, the expressions for the viscous terms 

appearing in the equations E5.4b and E5.4e (spheroidal and 

toroidal mantle velocities) differ from those stated by Zhang and 

Christensen (1993) not only by sign but also by coefficient 2. 

6) Stokes equation along the axis er: 

∂σrr/∂r+(1/r)∂τrθ/∂θ+(1/rsinθ)∂τrϕ/∂ϕ+(1/r)[2σ rr-σθθ-σϕϕ+cτrθ]-δρg0+ 

+ρ0∂Φ/∂r=0 

r2∂σrr/∂r+r∂τrθ/∂θ+(r/sinθ)∂τrϕ/∂ϕ+r[2σrr-σθθ-σϕϕ+cτrθ]-r2δρg0+r2ρ0∂Φ/∂r=0.    

Expressions for the stress tensor components in sherical harmonics 

are substituded into the considered equation: 

σrr=∑y3Υ,  

τrθ=∑y4Υθ+y6Υϕ,  

τrϕ=∑y4Υϕ-y6Υθ,     

rσθθ=-rp+2η*[∂Uθ/∂θ+Ur]+(2/3)η*kUr+2rη1eθθ+(2/3)kη1Ur   

rσϕϕ=-rp+2η*[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]+(2/3)η*kUr+2rη1eϕϕ+(2/3)kη1Ur 

r2y’3Υ+ry4Υθθ+ry6Υϕθ+ry4Υϕϕ-ry6Υθϕ+2ry3Υ+{rp-2η*[Z2Υθθ+Z5Υϕθ+Z1Υ]- 
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-(2/3)η*kZ1Υ-2rη1eθθ-(2/3)kη1Ur}+{rp-2η*[Z1Υ+Z2(Υϕϕ +cΥθ)+Z5(-Υθϕ+ 

+cΥϕ)]-(2/3)η*kZ1Υ-2rη1eϕϕ-(2/3)kη1Ur}+c(ry4Υθ+ry6Υϕ)]-r2δρg0Υ+ 

+r2ρ0∂Φ/∂rΥ=0.       

r2∑y’3Υ+r∑y4[Υθθ+Υϕϕ+cΥθ]+r∑y6[Υϕθ-Υθϕ+cΥϕ]+2r∑y3Υ+2rp+2η*∑[-Z2Υθθ- 

-Z5Υϕθ-Z1Υ]+2η*∑[-Z2(Υϕϕ+cΥθ)+Z5(Υθϕ-cΥϕ)-Z1Υ]-(4/3)η*k∑Z1Υ-2rη1eθθ- 

-2rη1eϕϕ-(4/3)kη1Ur-r2∑δρg0Υ+r2ρ0∑∂Φ/∂rΥ=0. 

Taking into account properties of spherical functions’ derivatives 

E3.7a and E3.7b Υθθ+ Υϕϕ +cΥθ=-LY,  Yφθ +cYφ -Yθφ =0  to the derived 

equation we simplifyderived equation: 

r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ+2rp+2η*∑[-Z2(Υθθ+Υϕϕ +cΥθ)+Z5(-Υϕθ+Υθϕ-cΥϕ)-Z1Υ]- 

-2rη1eθθ-2η1reϕϕ-(4/3)kη1Ur-(4/3)η*k∑Z1Υ-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.    

r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ+2rp+2η*∑[LZ2Υ-2Z1Υ]-2rη1eθθ-2rη1eϕϕ-(4/3)kη1Ur- 

-(4/3)η*k∑Z1Υ-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.     

Now it is time to substitute the expression for the dynamic 

pressure (U12) into considered equation: 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φ}lmYlm+ 

+∑[(2/3)k(η1Ur)+2r(η1err)]}Ylm 

r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ+∑{-4η*(2+k)Z1(r)+4η*LZ2(r)-2Z3(r)+ 

+(4/3)η*kZ1(r)+2rρ0Φ}lmYlm+∑[(4/3)k(η1Ur)+4r(η1err)]}Ylm+2η*∑[LZ2Υ- 

-2Z1Υ]-2rη1eθθ-2rη1eϕϕ-(4/3)kη1Ur-(4/3)η*k∑Z1Υ-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0. 

y3=(1/r)Z3 -ρ0Φ, 

r2∑y’3Υ-Lr∑y4Y-2rρ0Φ+∑{-4η*(2+k)Z1+2rρ0Φ}lmYlm+∑[(4/3)k(η1Ur)+ 

+4r(η1err)]}Ylm+6η*LZ2Υ-4η*Z1Υ]-2rη1eθθ-2rη1eϕϕ-(4/3)kη1Ur-r2g0∑δρΥ+ 

+r2ρ0∑∂Φ/∂rΥ=0.     

r2∑y’3Υ-Lr∑y4Y+6η*∑Z2LΥ-4η*(3+k)∑Z1Υ+∑[(4/3)k(η1Ur)+4r(η1err)]Υlm- 

-2rη1(eθθ+eϕϕ)-(4/3)kη1Ur-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.    

Expression for divergence (U3): 

(err+eθθ+eϕϕ)=-(1/r)kUr,  

(eθθ+eϕϕ)=-err-(1/r)kUr, 

-2rη1(eθθ+eϕϕ)=2η1(rerr+kUr,)=2rη1err+2kη1Ur, 
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Taking into account that functions η1er and η1Ur are expanded into 

spherical harmonics (U11):   

r2∑y’3Υ-Lr∑y4Y+6η*∑Z2LΥ-4η*(3+k)∑Z1Υ+∑[(4/3)k(η1Ur)+4r(η1err)]Υ lm+ 

+∑[2r(η1err)-(2/3)k(η1Ur)]Υlm-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.       

Switching to the notations of Zhang and Christensen (1993): 

rZ’3 –Z3-r2ρ’0Φ-r2ρ0Φ’=4η*(3+k)Z1Υ-6η*Z2LΥ+LZ4-∑[(4/3)k(η1Ur)+ 

+4r(η1err)]Υ+r2δρg0-r2ρ0∂Φ/∂r-∑[2r(η1err)+(2/3)k(η1Ur)]Υlm    

∑{rZ’3 –Z3-r2ρ’0Φlm}Y={4η*(3+k)Z1Υ-6η*Z2LΥ+LZ4+r2g0δρlm}Υ-∑[6r(η1err)- 

-2k(η1Ur)]Υlm   

r∑Z’3 =4η*(3+k)∑Z1Υ-6η*∑Z2LΥ+∑Z3+L∑Z4+rρ0’∑Φ+r2∑δρg0-∑[6r(η1err)- 

-2k(η1Ur)]Υlm  

rZ’3lm=η*(12+4k)Z1lm-6η*LZ2lm+Z3lm+LZ4lm+rkρ0Φlm+r2δρlmg0+Clm  

Clm=-6r(η1err)lm-2k(η1Ur)lm 
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        (U17) 

Viscous term appearing in the equation E5.4c (radial stress) again 

differs from the term stated by Zhang and Christensen (1993). The 

nature of the distinction is the same as in (U16). The additional 

member -2k(η1Ur)lm in the viscous term appears due to the effect of 

mantle compressibility. 

7) Stokes equation along the axis eθ: 

0=r2∂τrθ/∂r+r∂σ θθ/∂θ+(r/sinθ)∂τθϕ/∂ϕ+r(cσθθ-cσϕϕ+3τrθ)+rρ0∂Φ/∂θ 

τrθ=∑y4Υθ+y6Υϕ.       

ry4=Z4,   

r2y’4=rZ’4 –Z4, 

r2∂τrϕ/∂r=∑[rZ’4(r)lmΥlm
θ+rZ’6(r)lmΥlm

ϕ]-∑[Z4(r)lmΥlm
θ+Z6(r)lmΥlm

ϕ] 

rσθθ=-rp+2η*[∂Uθ/∂θ+Ur]+(2/3)η*kUr+2rη1eθθ+(2/3)kη1Ur   

rσϕϕ=-rp+2η*[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]+(2/3)η*kUr+2rη1eϕϕ+(2/3)kη1Ur 

rτθϕ=η*[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ]+2rη1eθϕ,       
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rσθθ=-r∑p(r)lmΥlm+2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]+(2/3)η*k∑Z1Υ+2rη1eθθ+(2/3)kη1Ur 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ+2rη1eϕϕ+ 

+(2/3)kη1Ur   

rτθϕ=η*∑[(Z2Υθϕ +Z5Υϕϕ)+(Z2Υϕθ-Z5Υθθ)-c(Z2Υϕ-Z5Υθ)]+2rη1eθϕ, 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φ}lmYlm+ 

+∑[(2/3)k(η1Ur)+2r(η1err)]}Ylm 

rσθθ -rσϕϕ=-r∑p(r)lmΥlm+2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]+(2/3)η*k∑Z1Υ+2rη1eθθ+ 

+(2/3)kη1Ur+r∑pΥ-2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]-(2/3)η*k∑Z1Υ-  

-2rη1eϕϕ-(2/3)kη1Ur 

rσθθ -rσϕϕ=2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]-2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ +cΥϕ)]+ 

+2r(η1eθθ-η1eϕϕ) 

0=r2∂τrθ/∂r+r∂σ θθ/∂θ+(r/sinθ)∂τθϕ/∂ϕ+r(cσθθ -cσϕϕ+3τrθ)+rρ0∂Φ/∂θ 

0=r∑Z’4Υθ+r∑Z’6Υϕ-∑Z4Υθ-∑Z6Υϕ-r∑p(r)lmΥθ
lm+2η*∑[Z2Υθθθ+Z5Υϕθθ+Z1Υθ]+ 

+(2/3)η*k∑Z1Υθ+[2rη1eθθ+(2/3)kη1Ur]θ+η*∑[2Z2(Υθϕϕ-cΥϕϕ]-Z5[LΥϕ+Υθθϕ)]+ 

+(1/sinθ)2[η1eθϕ]ϕ+c2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]-c2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+ 

+Z5(-Υθϕ+cΥϕ)]+ +2cr(η1eθθ-η1eϕϕ)+3∑Z4Υθ+3Z6Υϕ+rρ0∑ΦΥθ 

0=r∑Z’4Υθ+r∑Z’6Υϕ-∑Z4Υθ-∑Z6Υϕ +∑{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)- 

-(2/3)η*kZ1(r)-rρ0Φ}lmYθlm-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yθlm+ 

+2η*∑[Z2Υθθθ+Z5Υϕθθ+Z1Υθ]+(2/3)η*k∑Z1Υθ+[2rη1eθθ+(2/3)kη1Ur]θ+ 

+η*∑[2Z2(Υθϕϕ-cΥϕϕ]-Z5[LΥϕ+Υθθϕ)]+(1/sinθ)2[η1eθϕ]ϕ+c2η*∑[Z2Υθθ+Z5Υϕθ+ 

+Z1Υ]-c2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+2cr(η1eθθ-η1eϕϕ)+3∑Z4Υθ+3Z6Υϕ+ 

+rρ0∑ΦΥθ 

0=r∑Z’4Υθ+r∑Z’6Υϕ+……-∑[(2/3)k(η1Ur)+2r(η1err)]}Yθlm+ 

+[2rη1eθθ+(2/3)kη1Ur]θ+(1/sinθ)2[η1eθϕ]ϕ +2cr(η1eθθ-η1eϕϕ) 

0=r∑Z’4Υθ+r∑Z’6Υϕ+……-∑[(2/3)k(η1Ur)+2r(η1err)]}Yθlm+2r2C         (U18) 

where C ={[rη1eθθ+(1/3)kη1Ur]θ+(r/sinθ)[η1eθϕ]ϕ+cr(η1eθθ-η1eϕϕ)}/r2     

8) Stokes equation along the axis eϕ: 

0=r2∂τrϕ/∂r+r∂τθϕ/∂θ+(r/sinθ)∂σϕϕ/∂ϕ+(3rτrϕ+2crτθϕ)+[(rρ0)/(sinθ)]∂Φ/∂ϕ, 

rτrϕ =∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ],  

ry4=Z4,   

r2y’4=rZ’4 –Z4 
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τrϕ =(1/r)∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ],  

∂τrϕ/∂r=(1/r)∑[Z’4(r)lmΥlm
ϕ-Z’6(r)lmΥlm

θ]-(1/r2)∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ] 

r2∂τrϕ/∂r=∑[rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ] 

τrθ=∑y4Υθ+y6Υϕ. 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ+2rη1eϕϕ+ 

+(2/3)kη1Ur 

rτθϕ=η*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+(2/3)η*k∑VrΥ+2rη1eθϕ 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φ}lmYlm+ 

+∑[(2/3)k(η1Ur)+2r(η1err)]}Ylm 

0=r2∂τrϕ/∂r+r∂τθϕ/∂θ+(r/sinθ)∂σϕϕ/∂ϕ+(3rτrϕ+2crτθϕ)+[(rρ0)/(sinθ)]∂Φ/∂ϕ, 

0=∑rZ’4(r) lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+η*∑[2Z2Υϕθθ]- 

-Z5[LΥθ+Υθθθ)]+(2/3)η*k∑VrΥθ+2r[η1eθϕ]θ-r∑pΥϕ+2η*∑[Z1Υϕ+Z2(Υϕϕϕ+cΥθϕ)+ 

+Z5(-Υθϕϕ+cΥϕϕ)]+(2/3)η*k∑Z1Υϕ+(1/sinθ)[2rη1eϕϕ+(2/3)kη1Ur]ϕ+ 

+3∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+2cη*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+(4c/3)η*k∑VrΥ+ 

+4crη1eθϕ+[(rρ0)/(sinθ)]∂Φ/∂ϕ,  

0=∑rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+η*∑[2Z2Υϕθθ]- 

-Z5[LΥθ+Υθθθ)]+(2/3)η*k∑VrΥθ+2r[η1eθϕ]θ+∑{2η*(2+k)Z1lm(r)-2η*LZ2(r)+ 

+Z3(r)-(2/3)η*kZ1(r)-rρ0Φ}lmYϕlm-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yϕlm+ 

+2η*∑[Z1Υϕ+Z2(Υϕϕϕ+cΥθϕ)+Z5(-Υθϕϕ+cΥϕϕ)]+(2/3)η*k∑Z1Υϕ+(1/sinθ)[2rη1eϕϕ+ 

+(2/3)kη1Ur]ϕ+3∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+2cη*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+ 

+(4c/3)η*k∑VrΥ+4crη1eθϕ+[(rρ0)/(sinθ)]∂Φ/∂ϕ,     

0=∑rZ’4(r) lmΥlm
ϕ-rZ’6(r)lmΥlm

θ +…-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yϕlm+ 

+2r[η1eθϕ]θ+(1/sinθ)[2rη1eϕϕ+(2/3)kη1Ur]ϕ+4crη1eθϕ 

0=∑rZ’4(r) lmΥlm
ϕ-rZ’6(r)lmΥlm

θ +…-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yϕlm+ 

+2r2D                                                         (U19) 

where D={r[η1eθϕ]θ+(1/sinθ)[rη1eϕϕ+(1/3)kη1Ur]ϕ+2crη1eθϕ}/r2 

Hence, we have arrived at the following equation system: 

0=r∑Z’4Υθ+r∑Z’6Υϕ+…-∑[(2/3)k(η1Ur)+2r(η1err)]}Yθlm+2r2C 

C ={[rη1eθθ+(1/3)kη1Ur]θ+(r/sinθ)[η1eθϕ]ϕ+cr(η1eθθ-η1eϕϕ)}/r2 

0=∑rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ +……-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yϕlm+2r2D 

D ={r[η1eθϕ]θ+(1/sinθ)[rη1eϕϕ+(1/3)kη1Ur]ϕ+2crη1eθϕ}/r2 
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C=∑ga(r)lmΥlm
θ+gb(r)lmΥlm

ϕ  

D=∑ga(r)lmΥlm
ϕ-gb(r)lmΥlm

θ       

ga=D=(r2/sml)∫2π0dφ∫π0 [CYθlm+DYφlm]sinθdθ                 

gb=F=(r2/sml)∫2π0dφ∫π0[CYφlm–DYθlm]sinθdθ             

0=r∑Z’4Υθ+r∑Z’6Υϕ+…-∑[(2/3)k(η1Ur)+2r(η1err)]}Yθlm+2∑ga(r)lmΥlm
θ+ 

+2∑gb(r)lmΥlm
ϕ 

C ={[rη1eθθ+(1/3)kη1Ur]θ+(r/sinθ)[η1eθϕ]ϕ+cr(η1eθθ-η1eϕϕ)}/r2 

0=∑rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ +…-∑{[(2/3)k(η1Ur)+2r(η1err)]}Yϕlm + 

+2∑ga(r)lmΥlm
ϕ-2∑gb(r)lmΥlm

θ 

D={r[η1eθϕ]θ+(1/sinθ)[rη1eϕϕ+(1/3)kη1Ur]ϕ+2crη1eθϕ}/r2 

0=r∑Z’4Υθ+r∑Z’6Υϕ+…+2∑g*a(r)lmΥlm
θ+2∑gb(r)lmΥlm

ϕ 

C ={[rη1eθθ+(1/3)kη1Ur]θ+(r/sinθ)[η1eθϕ]ϕ+cr(η1eθθ-η1eϕϕ)}/r2 

0=∑rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ+…+2∑g*a(r)lmΥlm
ϕ-2∑gb(r)lmΥlm

θ 

D={r[η1eθϕ]θ+(1/sinθ)[rη1eϕϕ+(1/3)kη1Ur]ϕ+2crη1eθϕ}/r2 

g*a(r)=ga(r)-[(1/3)k(η1Ur)+r(η1err)] 

rZ’4=… -2galm+[(2/3)k(η1Ur)+2r(η1err)]lm =-2g*   

rZ’6=… -2gblm                           

ga=(r2/sml)∫2π0dφ∫π0[CYθlm+DYφlm]sinθdθ                   (U20) 

gb=(r2/sml)∫2π0dφ∫π0[CYφlm–DYθlm]sinθdθ     

η1Ur=(1/smo)∫∫η1UrYlmdϕsinθdθ,     

η1err=(1/smo)∫∫η1errYlmdϕsinθdθ                  

g*a=ga(r)-[(1/3)k(η1Ur)+r(η1err)]=(r2/sml)∫2π0dφ∫π0[CYθlm+DYφlm]sinθdθ-  

-(1/sm0)∫2π0dφ∫π0[(1/3)k(η1Ur)+r(η1err)]Ylmsinθdθ 

Dlm=-2g*alm =-2(r2/sml)∫2π0dφ∫π0[CYθlm+D Yφlm]sinθdθ+ 

+2(1/sm0)∫2π0dφ∫π0[(1/3)k(η1Ur)+r(η1err)]Ylmsinθdθ 
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(U21) 

Flm=-2gblm=-2(r2/sml)∫2π0dφ∫π0[CYφlm-DYθlm]sinθdθ 
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            (U23) 

C={[rη1eθθ+(1/3)kη1Ur]θ+(r/sinθ)[η1eθϕ]ϕ+cr(η1eθθ-η1eϕϕ)}/r2 

D={r[η1eθϕ]θ+(1/sinθ)[rη1eϕϕ+(1/3)kη1Ur]ϕ+2crη1eθϕ}/r2 

Again the same distinction in sign and coefficient… The additional 

members due to the effect of mantle compressibility appeared once 

more in both viscous terms. Expressions for the viscous terms 

themselves are obviously different from those derived by Zhang and 

Christensen (1993), they differ at least in the member 

2(1/sm0)∫2π0dφ∫π0[(1/3)k(η1Ur)+ +r(η1err)]Ylmsinθdθ, which is absent in 

Zhang and Christensen (1993). It is clearly seen that the former 

viscous terms are compised by only coefficients for spherical 

functions’ derivatives ),( ϕθθ
lmY  and ),( ϕθϕ

lmY , while the new formulae 

for Dlm and Flm include the coefficients for spherical functions 

),( ϕθlmY  as well. 

Part W. 

The process of derivation of the viscous terms for the W-transform 

method is rather similar to the calculations done for the U-

transform method in the previous part. 

Relation between viscous stress tensor and mantle velocities: 

τrr=2η[∂Ur/∂r-(1/3)∇·Ui] ,                    
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τrθ=η[r∂(Uθ/r)/∂r+(1/r)∂Ur/∂θ],              

τrϕ=η[r∂(Uϕ/r)/∂r+(1/(rsinθ))∂Ur/∂ϕ],                    (W1) 

τθθ=2η[(1/r)∂Uθ/∂θ+Ur/r-(1/3)∇·Ui],                  

τϕϕ=2η[(1/(rsinθ))∂Uϕ/∂ϕ+Ur/r+Uθ(ctgθ)/r-(1/3)∇·Ui],          

τθϕ=η[(sinθ/r)∂(Uϕ/sinθ)/∂θ+1/rsinθ)∂Uθ/∂ϕ],                

As it is seen from above an application of total stress instead of 

viscous shear stress to the Stokes equations simplifies the 

deductions: 

σrr=-p+τrr,  

σθθ=-p+τθθ,  

σϕϕ=-p+τϕϕ , 

Mass conservation: 

∇·(ρ0Ui)=(1/r2)∂/∂r(r2ρ0Ur)+(1/(rsinθ))∂/∂θ(sinθρ0Uθ)+ 

+(1/(rsinθ))∂ρ0Uϕ/∂ϕ=0 

∇·Ui=2Ur/r+∂Ur/∂r+(1/r)[∂Uθ/∂θ+cUθ+(1/sinθ)∂Uϕ/∂ϕ]=-(1/r)k(r)Ur   (W2)   

Stokes equation along the axis er: 

0=∂σrr/∂r+(1/r)∂τrθ/∂θ+(1/(rsinθ))∂τrϕ/∂ϕ+1/r)(2τrr-τθθ-τϕϕ+τrθ ctgθ)- 

-δρg0+ρ0∂Φ/∂r         

0=r2∂σrr/∂r+r∂τrθ/∂θ+(r/sinθ)∂τrϕ/∂ϕ+r(2τrr-τθθ-τϕϕ+τrθ ctgθ)-r2δρg0+ 

+r2ρ0∂Φ/∂r                                                      (W3) 

Stokes equation along the axis eθ: 

0=∂τrθ/∂r+(1/r)∂σθθ/∂θ+(1/(rsinθ))∂τθϕ/∂ϕ+(1/r)(сσθθ-сσϕϕ +3τrθ)+ 

+(ρ0/r)∂Φ/∂θ,  

0=r2∂τ rθ/∂r+r∂σ θθ/∂θ+(r/sinθ)∂τθϕ/∂ϕ+r(сσθθ-сσϕϕ+3τrθ)+rρ0∂Φ/∂θ,   (W4) 

Stokes equation along the axis eϕ: 

0=∂τrϕ/∂r+(1/r)∂τθϕ/∂θ+(1/rsinθ)∂σϕϕ/∂ϕ+(1/r)(3τrϕ+ 

+2сτθϕ)+[ρ0/(rsinθ)]∂Φ/∂ϕ, 

0=r2∂τrϕ/∂r+r∂τθϕ/∂θ+(r/sinθ)∂σϕϕ/∂ϕ+r(3τrϕ+2сτθϕ)+[rρ0/(sinθ)]∂Φ/∂ϕ,(W5) 

Relation between total stress and mantle velocities: 

σrr=-p+2η∂Ur/∂r-(2/3)η∇·Ui                            

rτrθ=η[∂Ur/∂θ+r∂Uθ/∂r-Uθ],                
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rτrϕ=η[r∂Uϕ/∂r+(1/sinθ)∂Ur/∂ϕ-Uϕ],                  

rσθθ=-rp+2η[∂Uθ/∂θ+Ur]–(2/3)rη∇·Ui            (W6) 

rσϕϕ=-rp+2η[(1/sinθ)∂Uϕ/∂ϕ+Ur+cUθ]-(2/3)rη∇·Ui               

rτθϕ=η[(1/sinθ)∂Uθ/∂ϕ+∂Uϕ/∂θ-cUϕ],              

Change of variables applied to mantle velocities: 

η(r,θ,ϕ)=η*(r)⋅T(r,θ,ϕ) 

Vr(r,θ,ϕ)=T(r,θ,ϕ)Ur ,   

Ui=Vi/T ,                                                      (W7) 

Vθ(r,θ,ϕ)= T(r,θ,ϕ)Uθ ,  

Vϕ(r,θ,ϕ)=T(r,θ,ϕ)Uϕ .   

In the general form: 

Ui=Vi/T,   

∂Ui/∂ξk=(1/T)[∂Vi /∂ξk-Vi ∂lnT/∂ξk]=(1/T)[∂Vi/∂ξk-ViTξ]            (W8) 

where Tξ≡∂lnT/∂ξk=(1/T)∂T/∂ξk 

In spherical coordinates: 

rV∇lnT=VrrTr+VθTθ+(1/sinθ)VϕTϕ 

r∂lnT/∂r=Tr,  

∂lnT/∂θ=Tθ,                                                    (W9) 

(1/sinθ)∂lnT/∂ϕ=Tϕ 

rV∇lnT=VrTr+VθTθ+VϕTϕ 

Applying this change of variables to the continuity equation: 

∇·Ui=2Ur/r+∂Ur/∂r+(1/r)[∂Uθ/∂θ+cUθ+(1/sinθ)∂Uϕ/∂ϕ]=-(1/r)k(r)Ur,                  

(1/T)[2Vr/r+∂Vr/∂r+(1/r)[∂Vθ/∂θ+cVθ+(1/sinθ)∂Vϕ/∂ϕ]-(1/T)[VrTr+ 

+(1/r)VθT
θ+(1/rsinθ)VϕTϕ]=-(1/r)k(r)(1/T)Vr,             

2Vr/r+∂Vr/∂r+(1/r)[∂Vθ/∂θ+cVθ+(1/sinθ)∂Vϕ/∂ϕ]=-(1/r)k(r)Vr+V∇lnT 

where V∇lnT =VrTr+(1/r)VθTθ+(1/rsinθ)VϕTϕ                             

2Vr+r∂Vr/∂r+[∂Vθ/∂θ+cVθ+(1/sinθ)∂Vϕ/∂ϕ]=-k(r)Vr+rV∇lnT 

where rV∇lnT=VrTr+VθTθ+VϕTϕ  (∇·Vi=-k(r)Vr+rV∇lnT)  

Applying change of variable to the expressions for the relation 

between non-hydristatic normal stress and mantle velocities: 
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σrr=-p+2η∂Ur/∂r-(2/3)η∇·Ui=-p+2η*T[(1/T)∂Vr/∂r-(1/T2)Vr ∂T/∂r]+ 

+(2/3)η*(1/r)k(r)Vr  

σrr=-p+2η*T[(1/T)∂Vr/∂r-(1/T2)Vr∂T/∂r]+(2/3)η*(1/r)k(r)Vr  

σrr=-p+2η*∂Vr/∂r-2η*Vr∂lnT/∂r+(2/3)η*(1/r)k(r)Vr  

rσrr=-rp+2rη*∂Vr/∂r-2η*TrVr+(2/3)η*k(r)Vr                 (W10a) 

τrθ=η[(1/r)∂Ur/∂θ+∂Uθ/∂r-Uθ/r] 

τrθ=η*[(1/r)∂Vr/∂θ+∂Vθ/∂r-Vθ/r]-η*[(1/r)VrTθ+VθTr]     

rτrθ=η*[∂Vr/∂θ+r∂Vθ/∂r-Vθ]-η*[VrTθ+VθTr]          (W10b) 

τrϕ=η[∂Uϕ/∂r+(1/rsinθ)∂Ur/∂ϕ-Uϕ/r] 

τrϕ=η*[∂Vϕ/∂r+(1/rsinθ)∂Vr/∂ϕ-Vϕ/r]-η*[VϕTr+(1/rsinθ)VrTϕ]   

rτrϕ=η*[r∂Vϕ/∂r+(1/sinθ)∂Vr/∂ϕ-Vϕ]-η*[VϕTr+VrTϕ]        (W10c) 

σθθ=-p+2η[(1/r)∂Uθ/∂θ+Ur/r]-(2/3)η∇·Ui 

σθθ=-p+2η*[(1/r)∂Vθ/∂θ+Vr/r]-2η*[(1/r)VθTθ]+(2/3)η*(1/r)k(r)Vr, 

rσθθ=-rp+2η*[∂Vθ/∂θ+Vr]-2η*[VθTθ]+(2/3)η*kVr                 (W10d) 

τθϕ=η[(1/rsinθ)∂Uθ/∂ϕ+(1/r)∂Uϕ/∂θ-Uϕc/r] 

τθϕ=η*[(1/rsinθ)∂Vθ/∂ϕ+(1/r)∂Vϕ/∂θ-Vϕc/r]-η*[(1/r sinθ)VθTϕ+(1/r)VϕTθ], 

rτθϕ=η*[(1/sinθ)∂Vθ/∂ϕ+∂Vϕ/∂θ-cVϕ]-η*[VθTϕ+VϕTθ],            (W10e) 

Spherical functions for mantle velocities, stresses, dynamic 

pressure, density and geopotential are represented in spherical 

harmonics: 

Vr(r,θ,ϕ)=T(r,θ,ϕ)Ur =∑Z1(r)lmΥlm(θ,ϕ) 

Vθ(r,θ,ϕ)=T(r,θ,ϕ)Uθ =∑[Z2(r)lmΥlm
θ+Z5(r)lmΥlm

ϕ]  

Vϕ(r,θ,ϕ)=T(r,θ,ϕ)Uϕ=∑[Z2(r)lmΥlm
ϕ-Z5(r)lmΥlm

θ] 

σrr=∑y3Υ,         

τrθ=∑(y4Υθ+y6Υϕ),                                              (W11)   

τrϕ =∑(y4Υϕ-y6Υθ),     

δρ(r,θ,ϕ)=∑ρΥ,            

Φ(r,θ,ϕ)=∑ΦΥ,              

p(r,θ,ϕ)=∑p(r)lmΥlm                                              

rσθθ=-rp+2η*[∂Vθ/∂θ+Vr]-2η*[(VθTθ]+(2/3)η*kVr,     

rσθθ=-r∑p(r)lmΥlm+2η*∑[Z2lmΥθθ
lm
 +Z5lmΥϕθ

 lm+Z1lmΥlm]+(2/3)η*k∑Z1lmΥlm – 
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–2η*[(VθTθ],                                              (W12a) 

rσϕϕ=-rp+2η*[(1/sinθ)∂Vϕ/∂ϕ+Vr+cVθ)]-2η*[(1/sinθ)VϕTϕ]+(2/3)η*kVr- 

-2η*[VϕTϕ]                          

rσϕϕ=-r∑p(r)Υ+2η*[(1/sinθ)∂Vϕ/∂ϕ+Vr+cVθ]=-r∑p+2η*∑[(Z2Υϕϕ-Z5Υθϕ)+Z1Υ+ 

+(Z2Υθ+Z5Υϕ)c]+(2/3)η*k∑Z1Υ-2η*[VϕTϕ] 

rσϕϕ=-r∑pΥ+2η*∑[(Z2Υϕϕ-Z5Υθϕ)+Z1Υ+c(Z2Υθ+Z5Υϕ)]+(2/3)η*k∑Z1Υ- 

-2η*[(1/sinθ)VϕTϕ] 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ- 

-2η*[VϕTϕ]                                                   (W12b) 

rτθϕ=η*[(1/sinθ)∂Vθ/∂ϕ+∂Vϕ/∂θ-cVϕ]-η*[(1/sinθ)VθTϕ+VϕTθ],  

rτθϕ=η*∑[(Z2Υθϕ +Z5Υϕϕ)+(Z2Υϕθ-Z5Υθθ)-c(Z2Υϕ -Z5Υθ)]-η*[VθTϕ+VϕTθ] 

rτθϕ=η*∑[Z2(Υθϕ +Υϕθ-cΥϕ ]+Z5[Υϕϕ-Υθθ+cΥθ)]-η*[VθTϕ+VϕTθ] 

rτθϕ=η*∑[2Z2(Υθϕ-cΥϕ]-Z5[LΥ+Υθθ)]-η*[VθTϕ+VϕTθ]                  (W12c) 

Relation between notations used in this study and original 

notations of Zhang and Christensen (1993): 

σrr‘=σrr+ρ0(r)Φ(r,θ,ϕ)=-p+τrr+ρ0(r)Φ(r,θ,ϕ)=(1/r)∑Z3(r)lmΥlm(θ,ϕ)        

σrr=(1/r)∑Z3Υ-ρ∑0Φ 

τrθ=(1/r)∑[Z4(r)lmΥlm
θ+Z6(r)lmΥlm

ϕ]  

τrϕ =(1/r)∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]                              (W13) 

y3=(1/r)Z3-ρ0Φ    

y4=(1/r)Z4  

y6=(1/r)Z6   

Φ=Z7/r 

Derivation of the ODE system for the spherical harmonic 

coefficients 

Z1lm(r), Z2lm(r),  Z5lm(r), y3lm(r), y4lm(r), y6lm(r) and plm (r): 

1) Mass conservation: 

2Vr/r+∂Vr/∂r+(1/r)[∂Vθ/∂θ+cVθ+(1/sinθ)∂Vϕ/∂ϕ=-(1/r)k(r)Vr+V∇lnT  

2∑(Z1/r)Y+∑YZ1’+∑(Z2/r)[Yθθ+cYθ+Yφφ]+∑(Z5/r)[Yϕθ+cYϕ-Yθφ]= 

=-(1/r)k∑Z1Υ+V∇lnT 

2∑(Z1/r)Y +∑Z1’Y-∑(Z2/r)LY=-(1/r)k∑Z1Υ+V∇lnT 

2∑Z1Y+r∑Z1’Y-∑Z2LY=-k∑Z1Υ+rV∇lnT 
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rV∇lnT=∑A(r)lmΥlm(θ,ϕ) 

rZ1’=-(2+k)Z1+LZ2+Alm                                

where Alm=(1/smo)∫∫(rV∇lnT)Ylmdϕsinθdθ 

∫ ∫ ∇+

+++−=

π π

θθϕθϕ
2

0 00

21
1

sin),(ln

)2(

dYTVd
s
r

LZZk
dr

dZr

lm
m

lmlm
lm

                          (W14) 

2) Relation between stress σrr and mantle velocities: 

σrr=-p+2η*∂Vr/∂r-2η*Vr∂lnT/∂r+(2/3r)η*kVr,      

Tr=∂lnT/∂r 

TrVr=∑(TrVr)lmΥlm(θ,ϕ)=(1/r)∑RlmΥlm(θ,ϕ) 

Rlm=(rTrVr)lm =(1/smo)∫∫(rTrVr)Ylmdϕsinθdθ,           (W15) 

∑y3Υ=-∑p+2η*∑Z1’Y-2η*(1/r)∑RY+(2/3r)η*k∑Z1Y, 

plm=2η*Z1’-y3-2η*(1/r)Rlm+(2/3r)η*kZ1              

rp lm=2η*rZ1’-ry3-2η*Rlm+(2/3)η*kZ1 

Using (5.1) we arrive at the expression for dynamic pressure: 

rZ1’=-(2+k)Z1+LZ2+Alm  

rp=-2η*(2+k)Z1+2η*LZ2+2η*Alm-ry3-2η*R+(2/3)η*kZ1 

rplm=-2η*(2+k)Z1lm+2η*LZ2lm-ry3lm+(2/3)η*kZ1lm+2η*(Alm-Rlm)        (W16)    

where Alm(r)=(1/smo)∫∫(rV∇lnT)Ylmdϕsinθdθ 

 Rlm(r)=(1/smo)∫∫(TrVr)Ylmdϕsinθdθ              (W17) 

Spherical function for dynamic pressure can be found from: 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-ry3(r)+(2/3)η*kZ1(r)}lmYlm+ 

+2η*∑{Alm(r)-Rlm(r)}Ylm  

Reverting to the notations of Zhang and Christensen (1993): 

ry3=Z3-rρ0Φ, 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φ}lmYlm+ 

+2η*∑{Alm(r)-Rlm(r)}Ylm                                                             (W18) 

3) Relation between stress τrθ and mantle velocities: 

rτrθ=η*[∂Vr/∂θ+∂Vθ/∂r-Vθ/r]-η*[Vr Tθ+rVθTr]     
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∑ry4Υθ+∑ry 6Υϕ=η*∑Z1Yθ+η*r∑[Z’2Yθ+Z’5Yϕ]-η*∑[Z2Yθ+Z5Yϕ]-η*∑[VrTθ+rVθTr] 

Z4Υθ+Z6Υϕ=η*Z1Yθ+η*r[Z’2Yθ+Z’5Yϕ]-η*[Z2Yθ+Z5Yϕ]-η*[VrTθ+rVθTr] 

[Z4-η*Z1-η*rZ’2+η*Z2 ]Υθ+[Z6-η*rZ’5+η*Z5]Υϕ+η*[VrTθ +rVθTr]=0 

[Z4η*-Z1-rZ’2+Z2]Υθ+[Z6/η*-rZ’5+Z5]Υϕ+[VrT
θ+rVθTr]=0 

∑[rZ’2-Z4η*+Z1-Z2]Υθ+∑[rZ’5-Z 6/η*-Z5]Υϕ-[VrTθ+VθTr]=0 

[VrTθ+rVθTr]=F1(r,θ,ϕ)=∑fa(r)lmΥlm
θ+fb(r)lmΥlm

ϕ                      

∑[rZ’2-Z4η*+Z1-Z2-fa(r)]Υθ+[rZ’5-Z6/η*-Z5-fb(r)]Υϕ=0             (W19) 

4) Relation between stress τrϕ and mantle velocities: 

rτrϕ=η*[r∂Vϕ/∂r+(1/sinθ)∂Vr/∂ϕ-Vϕ]-η*[rVϕTr+(1/sinθ)VrTϕ] 

ry4Υϕ-ry6Υθ=η*[rZ’2Υϕ -rZ’5Υθ+Z1(1/sinθ)∂Υ/∂ϕ-Z2Υϕ +Z5Υθ]-η*[rVϕTr+ 

+(1/sinθ)VrTϕ]. 

Z4Υϕ-Z6Υθ=η*[rZ’2Υϕ-rZ’5Υθ+Z1∂Υϕ-Z2Υϕ+Z5Υθ]-η*[rVϕTr+(1/sinθ)VrTϕ]. 

[Z4-η*rZ’2-η*Z1+η*Z2]Υϕ+[-Z 6+η*rZ’5-η*Z5]Υθ+η*[rVϕTr+(1/sinθ)VrTϕ]=0 

[Z4/η*-rZ’2-Z1+Z2]Υϕ-[Z 6/η*-rZ’5+Z5]Υθ+[rVϕTr+(1/sinθ)VrTϕ]=0 

∑[rZ’2-Z4η*+Z1-Z2]Υϕ-∑[rZ’5-Z 6/η*-Z5]Υθ-[VϕTr+VrTϕ]=0 

[rVϕTr+(1/sinθ)VrTϕ]=F2(r,θ,ϕ)=∑fa(r)lmΥlm
ϕ-fb(r)lmΥlm

θ                      

∑[rZ’2-Z4η*+Z1-Z2-fa]Υϕ-∑[rZ’5-Z 6/η*-Z5-fb]Υθ=0                 (W20) 

Taking into account (W19) and (W20) we arrive at the equations for 

the spheroidal and toroidal components of the mantle velocity: 

rZ’2=-Z1+Z2+Z4/η*+falm                        

rZ’5=Z5+Z6/η*+fblm                              

fa=(1/sml)∫2π0dφ∫π0{F1Yθlm+F2Yφlm}sinθdθ. 

fa=(1/sml)∫2π0dφ∫π0η*[rVrTθ+VθTr]Yθlm+[rVϕTr+(1/sinθ)VrTϕ]Yφlm}sinθdθ, 

fb=(1/sml)∫2π0dφ∫π0{F1Yφlm-F2 Yθlm}sinθdθ.  

fb=(1/sml)∫2π0dφ∫π0[η*{[VrTθ+rVθTr]Yφlm-[rVϕTr+(1/sinθ)VrTϕ]Yθlm}sinθdθ 

The final formulae for the equations E5.4b and E5.4e: 

rZ’2=-Z1+Z2+Z4/η*+fa  

fa=(1/slm)∫∫{[Vθ Tr +VrTθ]Yθ+[Vϕ Tr+VrTϕ]Yϕ}dϕsinθdθ=Blm                  
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             (W21) 

rZ’5=Z5+Z6/η*+fb,  

fb=(1/slm)∫∫{[VθTr+VrTθ]Yϕ-[VϕTr+VrTϕ]Yθ}dϕsinθdθ=Elm                             

( ) ( )[ ]∫∫ +−++
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lmlm
lm

            (W22) 

5) Stokes equation along the axis er: 

∂σrr/∂r+(1/r)∂τrθ/∂θ+(1/rsinθ)∂τrϕ/∂ϕ+(1/r)[2σ rr-σθθ-σϕϕ+cτrθ]-δρg0+ 

+ρ0∂Φ/∂r=0. 

r2∂σrr/∂r+r∂τrθ/∂θ+(r/sinθ)∂τrϕ/∂ϕ+r[2σ rr-σθθ-σϕϕ+cτrθ]-r2δρg0+r2ρ0∂Φ/∂r= 

=0.    

Substituting the expansions for stress tensor components: 

σrr=∑y3Υ,        

τrθ=∑y4Υθ+y6Υϕ,        

τrϕ=∑y4Υϕ-y6Υθ,     

rσθθ=-r∑p(r)lmΥlm+2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]+(2/3)η*k∑Z1Υ-2η*[VθTθ] 

rσϕϕ=-r∑plmΥlm+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ- 

-2η*[VϕTϕ]                       

r2y’3Υ+ry4Υθθ+ry6Υϕθ+ry4Υϕϕ-ry6Υθϕ+[2ry3Υ+rp-2η*[Z2Υθθ+Z5Υϕθ+Z1Υ]- 

-(2/3)η*kZ1Υ+2η*[VθTθ]+rp-2η*[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]- 

-(2/3)η*kZ1Υ+2η*[VϕTϕ]+c(ry4Υθ+ry6Υϕ)]-r2δρg0Υ+r2ρ0∂Φ/∂rΥ=0.    

r2∑y’3Υ+r∑y4[Υθθ+Υϕϕ+cΥθ]+r∑y6[Υϕθ-Υθϕ+cΥϕ]+2r∑y3Υ+2rp+2η*∑[-Z2Υθθ- 

-Z5Υϕθ-Z1Υ]+2η*∑[-Z2(Υϕϕ +cΥθ)+Z5(Υθϕ-cΥϕ)-Z1Υ]-(4/3)η*k∑Z1Υ+ 

+2η*[VθTθ]+2η*[VϕTϕ]-r2∑δρg0Υ+r2ρ0∑∂Φ/∂rΥ=0.     

Using properties of the spherical functions’ derivatives E3.7a and 

E3.7b Υθθ+Υϕϕ+cΥθ=-LY,  Yφθ+cYφ-Yθφ=0: 
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r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ+2rp+2η*∑[-Z2(Υθθ+Υϕϕ+cΥθ)+Z5(-Υϕθ+Υθϕ-cΥϕ)- 

-2Z1Υ]+2η*[VθTθ]+2η*[VϕTϕ]-(4/3)η*k∑Z1Υ-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.  

r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ+2rp+2η*∑[LZ2Υ-2Z1Υ]+2η*[VθTθ]+2η*[VϕTϕ]- 

-(4/3)η*k∑Z1Υ-r2g0∑δρ Υ+r2ρ0∑∂Φ/∂rΥ=0.       

Derived expression for dynamic pressure (W16) is substituded into 

equation: 

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+ 

+rρ0Φ}lmYlm+2η*∑{Alm(r)-Rlm(r)}Ylm 

r2∑y’3Υ-Lr∑y4Y+2r∑y3Υ-4η*∑Z1Υ+2η*∑Z2LΥ+∑{-4η*(2+k)Z1Υ+4η*LZ2Υ- 

-2ry3Υ+(4/3)η*kZ1Υ+4η*∑[Alm(r)-Rlm(r)]}Ylm+2η*[VθTθ]+2η*[VϕTϕ]- 

-(4/3)η*k∑Z1Υ-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.    

r2∑y’3Υ-Lr∑y4Y+6η*∑Z2LΥ-4η*(3+k)∑Z1Υ+4η*∑[Alm-Rlm]Υ lm+2η*[VθTθ+VϕTϕ]- 

-r2g0∑δρΥ+r2ρ0∑∂Φ/∂rΥ=0.       

r2∑y’3Υlm=4η*(3+k)∑Z1Υ-6η*∑Z2LΥ+Lr∑y4-4η*∑[Alm-Rlm]Υ+r2g0∑δρΥ- 

-r2ρ0∑∂Φ/∂rΥlm-2η*[VθTθ+VϕTϕ] 

Reverting to the notations of Zhang and Christensen (1993): 

rZ’3–Z3-r2ρ’0Φ-r2ρ0Φ’=4η*(3+k)Z1Υ-6η*Z2LΥ+Lry4-4η*∑[Alm-Rlm]Υ+r2δρg0- 

-r2ρ0∂Φ/∂r-2η*[VθTθ+VϕTϕ]     

∑{rZ’3 –Z3-r2ρ’0Φlm}Y={4η*(3+k)Z1Υ-6η*Z2LΥ+Lry4-4η*∑[Alm-Rlm]Y+ 

+r2g0δρlm}Υ-2η*[VθTθ+VϕTϕ]     

r∑Z’3 =4η*(3+k)∑Z1Υ-6η*∑Z2LΥ+∑Z3+Lr∑y4+rρ0∑Φ+r2∑δρg0-4η*∑[Alm-Rlm]Υ- 

-2η*[VθTθ+VϕTϕ]     

[VθT
θ+(1/sinθ)VϕTϕ]=∑SlmΥlm,  

where Slm=(1/smo)∫∫[VθTθ+(1/sinθ)VϕTϕ]Ylmdϕsinθdθ 

∑rZ’3Υlm=∑{4η*(3+k)Z1-6η*Z2L+Z3+Lry4+rρ0Φ+r2δρg0-4η*[Alm(r)-Rlm(r)]- 

-2η*Slm}Υlm     

rZ’3lm=η*(12+4k)Z1lm-6η*LZ2lm+Z3lm+LZ4lm+rkρ0Φlm+r2δρlmg0+Clm , 

where Clm=6η*r[VrTr-V∇lnT]lm= 6η*(Rlm-Alm) 

      Rlm(r)=(1/smo)∫∫(TrVr)Ylmdϕsinθdθ                 

      Alm=(r/smo)∫∫(V∇lnT)Ylmdϕsinθdθ           

Alm-Rlm =-[1/(6η*)]Clm=-(1/smo)∫∫(TrVr-V∇lnT)Ylmdϕsinθdθ 
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θθϕη

η
δρρηη

π

ϕϕθθ

π

dYVTVTd
s

r

grZkLZZZLZk
dr

dZr

lm
m

lmlmlmlmlm
lm

sin)(6

6)412(

0
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*
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*

1
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∫∫ +−

−+−++−+=

        (W23) 

6) Stokes equation along the axis eθ 

0=∂τrθ/∂r+(1/r)∂σθθ/∂θ+(1/rsinθ)∂τθϕ/∂ϕ+(1/r)(cσθθ-cσϕϕ+3τrθ)+(ρ0/r)∂Φ/∂θ 

0=r2∂τrθ/∂r+r∂σ θθ/∂θ+(r/sinθ)∂τθϕ/∂ϕ+r(cσθθ-cσϕϕ+3τrθ)+rρ0∂Φ/∂θ 

τrθ=∑y4Υθ+y6Υϕ.       

ry4=Z4,   

r2y’4=rZ’4–Z4, 

r2∂τrϕ/∂r=∑[rZ’4(r)lmΥlm
θ+rZ’6(r)lmΥlm

ϕ]-∑[Z4(r)lmΥlm
θ+Z6(r)lmΥlm

ϕ] 

rσθθ=-r∑p(r)lmΥlm+2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]+(2/3)η*k∑Z1Υ-2η*[VθTθ], 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ-2η*[VϕTϕ] 

rτθϕ=η*∑[(Z2Υθϕ +Z5Υϕϕ)+(Z2Υϕθ-Z5Υθθ)-c(Z2Υϕ-Z5Υθ)]-η*[VθTϕ+VϕTθ] 

rτθϕ=η*∑[2Z2(Υθϕ-cΥϕ]-Z5[LΥ+Υθθ)]-η*[VθTϕ+VϕTθ]  

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)-Z3(r)+(2/3)η*kZ1(r)+rρ0Φlm+ 

+2η*(A-R)}lmYlm  

rσθθ-rσϕϕ=-r∑p(r)lmΥlm+2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]+(2/3)η*k∑Z1Υ-2η*[(VθTθ]+ 

+r∑pΥ-2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]-(2/3)η*k∑Z1Υ+2η*[VϕTϕ] 

rσθθ -rσϕϕ=2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]-2η*[(VθTθ]-2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+ 

+Z5(-Υθϕ+cΥϕ)]+2η*[VϕTϕ] 

0=r2∂τrθ/∂r+r∂σθθ/∂θ+(r/sinθ)∂τθϕ/∂ϕ+r(cσθθ-cσϕϕ+3τ rθ)+rρ0∂Φ/∂θ 

0=r∑Z’4Υθ+r∑Z’6Υϕ-∑Z4Υθ-∑Z6Υϕ-r∑p(r)lmΥθ
lm+2η*∑[Z2Υθθθ+Z5Υϕθθ+Z1Υθ]+ 

+(2/3)η*k∑Z1Υθ-2η*[(VθTθ]θ+η*∑[2Z2(Υθϕϕ-cΥϕϕ]-Z5[LΥϕ+Υθθϕ)]- 

-η*(1/sinθ)[VθTϕ+VϕTθ]ϕ+c2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]-c2η*[VθTθ]-c2η*∑[Z1Υ+ 

+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+c2η*[VϕTϕ]+3∑[Z4Υθ+Z6Υϕ]+rρ0∑ΦΥθ 

0=r∑Z’4Υθ+r∑Z’6Υϕ-∑Z4Υθ-∑Z6Υϕ+∑{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)- 

-(2/3)η*kZ1(r)-rρ0Φ-2η*(A-R)}lmΥθ
lm+2η*∑[Z2Υθθθ+Z5Υϕθθ+Z1Υθ]+ 

+(2/3)η*k∑Z1Υθ-2η*[(VθTθ]θ+η*∑[2Z2(Υθϕϕ-cΥϕϕ]-Z5[LΥϕ+Υθθϕ)]- 

-η*(1/sinθ)[VθTϕ+VϕTθ]ϕ+c2η*∑[Z2Υθθ+Z5Υϕθ+Z1Υ]-c2η*[VθTθ]-  

-c2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+c2η*[VϕTϕ]+3∑Z4Υθ+Z6Υϕ+rρ0∑ΦlmΥθ 
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This equation can be represented in common form as: 

0=∑(rZ’4lm+…)Υθ+∑(rZ’6lm+…)Υϕ-∑2η*(A-R)Υθ
lm-η*C2 

0=∑(rZ’4lm+…)Υθ+∑(rZ’6lm +…)Υϕ-η*C1-η*C2 

C1=2∑(A-R)lmΥθ
lm   

G=rZ’4-Z4+{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)-(2/3)η*kZ1(r)-rρ0Φ- 

-2η*(A-R)}+(2/3)η*kZ1+3Z4θ+Z6ϕ+rρ0Φlm+η*{2Z2Υθθθ+2Z5Υϕθθ+2Z1Υθ+2Z2(Υθϕϕ- 

-cΥϕϕ)-Z5[LΥϕ+Υθθϕ]+c2[Z2Υθθ+Z5Υϕθ+Z1Υ]-2cZ1Υ-2cZ2(Υϕϕ+cΥθ)+ 

+2cZ5(Υθϕ-cΥϕ)} 

G=rZ’4-Z4+{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)-(2/3)η*kZ1(r)-rρ0Φ- 

-2η*(A-R)}+(2/3)η*kZ1+3Z4θ+Z6ϕ+rρ0Φlm+2η*{Z2Υθθθ+Z5Υϕθθ+Z1Υθ+Z2(Υθϕϕ- 

-cΥϕϕ)-(1/2)Z5[LΥϕ+Υθθϕ]+c[Z2Υθθ+Z5Υϕθ+Z1Υ]-cZ1Υ-cZ2(Υϕϕ+cΥθ)+cZ5(Υθϕ- 

-cΥϕ)} 

G=r∑Z’4+{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)-(2/3)η*kZ1(r)-rρ0Φ- 

-2η*(A-R)}+(2/3)η*kZ1+3Z4θ+Z6ϕ+rρ0Φlm+2η*{Z2Υθθθ+Z5Υϕθθ+Z1Υθ+Z2(Υθϕϕ- 

-cΥϕϕ)-(1/2)Z5[LΥϕ+Υθθϕ]+c[Z2Υθθ+Z5Υϕθ]-cZ2(Υϕϕ+cΥθ)+cZ5(Υθϕ-cΥϕ)} 

G=r∑Z’4+{2η*(2+k)Z1lm(r)-2η*LZ2(r)+Z3(r)-(2/3)η*kZ1(r)-rρ0Φ- 

-2η*(A-R)}+(2/3)η*kZ1+3Z4θ+Z6ϕ+rρ0Φlm+2η*Z1+2η*{Z2Υθθθ+Z5Υϕθθ+Z2(Υθϕϕ- 

-cΥϕϕ)-(1/2)Z5[LΥϕ+ +Υθθϕ]+c[Z2Υθθ+Z5Υϕθ]-cZ2(Υϕϕ+cΥθ)+cZ5(Υθϕ-cΥϕ)} 

C2(V,T)=C2(r,θ,ϕ)=2η*[(VθTθ]θ+η*(1/sinθ)[(1/sinθ)VθTϕ+VϕTθ]ϕ + 

+с2η*[(VθTθ]-2сη*[(1/sinθ)VϕTϕ] 

C2=2[(VθTθ]θ+2с[(VθTθ-VϕTϕ ]+(1/sinθ)[VθTϕ+VϕTθ]ϕ                           (W24) 

C1=2∑(A-R)lmΥθ
lm 

7) Stokes equation along the axis eϕ: 

0=r2∂τrϕ/∂r+r∂τθϕ/∂θ+(r/sinθ)∂σϕϕ/∂ϕ+(3rτrϕ+2crτθϕ)+[(rρ0)/sinθ]∂Φ/∂ϕ,  

rτrϕ=∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ],  

ry4=Z4,   

r2y’4=rZ’4–Z4 

τrϕ =(1/r)∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ],  

∂τrϕ/∂r=(1/r)∑[Z’4(r)lmΥlm
ϕ-Z’6(r)lmΥlm

θ]-(1/r2)∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ] 

r2∂τrϕ/∂r=∑[rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ] 

rσϕϕ=-r∑pΥ+2η*∑[Z1Υ+Z2(Υϕϕ+cΥθ)+Z5(-Υθϕ+cΥϕ)]+(2/3)η*k∑Z1Υ-2η*[VϕTϕ] 
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Properties of spherical functions’ derivatives E3.7a and 3.7b => 

rτθϕ=η*∑[2Z2(Υθϕ-cΥϕ]-Z5[LΥ+Υθθ)]+(2/3)η*k∑VrΥ-η*[VθTϕ+VϕTθ]  

rτθϕ=η*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+(2/3)η*k∑VrΥ-η*[VθTϕ+VϕTθ]  

rp(r,θ,ϕ)=∑{-2η*(2+k)Z1m(r)+2η*LZ2(r)-Z3(r)+(2/3)η*k Z1(r)+rρ0Φlm+ 

+2η*(A-R)}lmYlm 

0=∑rZ’4(r)lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+η*∑[2Z2Υϕθθ]- 

-Z5[LΥθ+Υθθθ)]+(2/3)η*k∑VrΥθ-η*[VθTϕ+VϕTθ]θ-r∑pΥϕ+2η*∑[Z1Υϕ+ 

+Z2(Υϕϕϕ+cΥθϕ)+Z5(-Υθϕϕ+cΥϕϕ)]+(2/3)η*k∑Z1Υϕ-2η*(1/sinθ)[VϕTϕ]ϕ+ 

+3∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+2cη*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+(4c/3)η*k∑VrΥ- 

-cη*[VθTϕ+VϕTθ]+[(rρ0)/sinθ]∂Φ/∂ϕ,  

0=∑rZ’4(r) lmΥlm
ϕ-rZ’6(r)lmΥlm

θ]-∑[Z4(r)lmΥlm
ϕ-Z6(r)lmΥlm

θ]+η*∑[2Z2Υϕθθ]- 

-Z5[LΥθ+Υθθθ]+(2/3)η*k∑VrΥθ-η*[VθTϕ+VϕTθ]θ-∑{-2η*(2+k)Z1lm(r)+2η*LZ2(r)- 

-Z3(r)+(2/3)η*kZ1(r)+rρ0Φlm+2η*(A-R)}lmΥϕ+2η*∑[Z1Υϕ+Z2(Υϕϕϕ+cΥθϕ)+ 

+Z5(-Υθϕϕ+cΥϕϕ)]+(2/3)η*k∑Z1Υϕ-2η*(1/sinθ)[VϕTϕ]ϕ+3∑[Z4(r)lmΥlm
ϕ- 

-Z6(r)lmΥlm
θ]+2cη*∑[2Z2Υϕθ]-Z5[LΥ+Υθθ)]+(4c/3)η*k∑VrΥ-2cη*[VθTϕ+VϕTθ]+ 

+[(rρ0)/sinθ]∂Φ/∂ϕ  

This equation can be rewritten in common form: 

0=∑(rZ’4lm+…)Υϕ-∑(Z’6lm+…)Υθ-2η*(Alm-Rlm)Υ ϕ
lm-η*D2 

0=∑(rZ’4lm+…)Υϕ-∑(Z’6lm+…)Υθ-η*D1-η*D2 

D2=[VθTϕ+VϕTθ]θ+2η*(1/sinθ)[VϕTϕ]ϕ+2cη*[VθTϕ+VϕTθ]                (W25) 

D1=∑2(A-R)lmΥ ϕ
lm 

Therefore we arrive at the final equation system: 

0=∑(rZ’4lm+…)Υθ+∑(rZ’6lm+…)Υϕ-η*C1-η*C2 

where C1=2∑(A-R)lmΥθ
lm   

      C2=2η*[(VθTθ]θ+2сη*[(VθTθ-VϕTϕ]+η*(1/sinθ)[VθTϕ+VϕTθ]ϕ   

0=∑(rZ’4lm+…)Υϕ-∑(Z’6lm+…)Υθ-η*D1-η*D2 

where D1=2(Alm-Rlm)Υϕ
lm 

         D2=η*[VθTϕ+VϕTθ]θ+2η*(1/sinθ)[VϕTϕ]ϕ+2cη*[VθTϕ+VϕTθ]    

Using the same technique as for the U-transform method: 

C2=∑fa(r)lmΥlm
θ+fb(r)lmΥlm

ϕ  

D2=∑fa(r)lmΥlm
ϕ-fb(r)lmΥlm

θ       
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fa=(1/sml)∫2π0dφ∫π0 [C2Yθlm+D2Yφlm]sinθdθ          

fb=(1/sml)∫2π0dφ∫π0[C2Yφlm–D2Yθlm]sinθdθ            

C1=2∑(Alm-Rlm)Υθ
lm       

D1=∑2(A-R)lmΥ ϕ
lm 

C1=∑ga(r)lmΥlm
θ+gb(r)lmΥlm

ϕ  

D1=∑ga(r)lmΥlm
ϕ-gb(r)lmΥlm

θ       

ga1=(1/sml)∫2π0dφ∫π0 [C1Yθlm+D1Yφlm]sinθdθ= 

=(1/sml)∫2π0dφ∫π0[2∑(Alm-Rlm)Υθ
l’m’Yθlm+2(Al’m’-Rl’m’)Υ ϕ

lmYφlm]sinθdθ= 

=(1/sml)2∑(Alm-Rlm)∫2π0dφ∫π0[Υθ
l’m’Yθlm+Υϕ

lmYφlm]sinθdθ=  

=(1/sml)2∑(Alm-Rlm)sml=2∑(Alm-Rlm) 

gb1=(1/sml)∫2π0dφ∫π0[C1Yφlm–D1Yθlm]sinθdθ= 

=2∑(Al’m’-Rl’m’)(1/sml)∫2π0dφ∫π0[Υθ
l’m’Yφlm–Υ ϕ

l’m’Yθlm]sinθdθ=0 

=> ga1=2∑(Alm-Rlm)=-2η*[(1/smo)∫∫(TrVr-V∇lnT)Ylmdϕsinθdθ  

   gb1=0 

0=∑(rZ’4lm+…)Υθ+∑(rZ’6lm+…)Υϕ-η*[2∑(Alm-Rlm)Υθ
lm]-η*[∑fa(r)lmΥlm

θ+ 

+fb(r)lmΥlm
ϕ ] 

0=∑(rZ’4lm+…)Υ ϕ-∑(Z’6lm+…)Υ θ-η*[∑2(A-R)lmΥ ϕ
lm]-η*[∑fa(r)lmΥlm

ϕ- 

-fb(r)Υlm
θ] 

Dlm=η*2(Alm-Rlm)+η*fa(r)lm 

Flm=η*fb(r)lm  

fa=(1/sml)∫2π0dφ∫π0[C2Yθlm+D2Yφlm]sinθdθ          

fb=(1/sml)∫2π0dφ∫π0[C2Yφlm–D2Yθlm]sinθdθ            

C2=2[(VθTθ]θ+2с[(VθTθ-VϕTϕ ]+(1/sinθ)[VθTϕ+VϕTθ]ϕ  

D2=[VθTϕ+VϕTθ]θ+(2/sinθ)[VϕTϕ]ϕ+2c[VθTϕ+VϕTθ]   

Dlm=fa=(η*/sml)∫2π0dφ∫π0[C2Yθlm+D2Yφlm]sinθdθ-2η*[(1/smo)∫∫(TrVr- 

-V∇lnT)Ylmdϕsinθdθ  

[ ] θθϕηθθϕη

ηη

π

ϕϕθθ

ππ
ϕθ

π

dYVTVTd
s

rdYDYCd
s

ZZZLZk
dr

dZr

lm
m

lmlm
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lmlmlmlm
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sin)(2sin
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00

*
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0
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432
*
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∫∫∫∫ ++++
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(W26) 

Flm=(η*/sml)∫2π0dφ∫π0[C2Yφlm–D2Yθlm]sinθdθ  
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[ ]∫∫ −+

+−−=

π
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                             (W27) 
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       (W28)    

Viscous terms (W26) and (W27) in the equations for spheroidal and 

toroidal stress differ from those stated by Zhang and Christensen 

(1993) in the same manner as (U21) and (U22) derived for the U-

transform method. The reason of this distinction is also the same: 

incorrect understanding of the particular role of dynamic 

pressure. 
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List of abbreviations 

 

- FD – finite difference 

- FE – finite element 

- FV – finite volume 

- LVV – lateral viscosity variations 

- ODE – ordinary differential equations 

- ZC – indicator for the formulae stated by Zhang and Christensen 

(1993) 

Model abbreviations: 

- No-effect model: no compressibility, no self-gravitation and no 

radial gravity change  

- All-effect model: all three effects are included 

- No-compressibility model: all effects are included except for 

mantle compressibility. 

- No-self-gravitation model: all effects are included except for 

self-gravitation. 

- No-radial-gravity model: all effects are included except for depth-

dependent gravity.  
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List of notations 

 

Chapter II. Part 2.1 

p – fluid pressure  

ig  - acceleration of gravity  

ijτ  - deviator stress tensor  

ije  - strain rate tensor  

ijδ  - Kronecker delta  

η  - dynamic viscosity  

λ  - second viscosity 

Bk  - bulk viscosity  

V - gravitational potential 

ρ  - density distribution in the mantle  

ρ  - radial density profile  

δρ  - density anomaly  

G - universal gravitational constant 

k – thermal conductivity  

s - entropy per unit mass  

H - rate of internal heat production per mass unit  

T - temperature.  

α  - coefficient of thermal expansion of material  

v  - specific volume 

p(*)  ( v(*) ) - the pressure (volume) is held fixed  

pc  ( vc ) - specific heat at constant pressure (volume)  

j

i
ij x

u
∂
∂

=Φ τ  - viscous dissipation function. 

Chapter II. Part 2.2 

cR  - radius of the core  

eR  - radius of the Earth  

g  - radial gravity 

u  - mantle flow velocity 

ijσ  - total stress tensor 

Chapter III. Part 3.1 
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),( ϕθlmiY  - spherical functions 

l – spherical harmonic degree 

m – spherical harmonic order  

)(cosθm
lP  - associated Legendre functions 

)(cosθlP  - Legendre polynomials 

lmN  - normalization coefficients for associated Legendre functions  

),( ϕθθ
lmY  and ),( ϕθϕ

lmY  - spherical functions’ derivatives 

0ms  and mls  - orthonormalization coefficients for spherical functions and 

their derivatives 

Chapter III. Part 3.2 

0η  - mean mantle viscosity  

r - relative radius 

)(* rη  - dimensionless radial viscosity function 

0ρ  - mean mantle density  

0g  - acceleration of gravity on the Earth surface 

)(* rρ  - dimensionless radial density  

)(* rg  - dimensionless acceleration of gravity 

)(rk  - mantle compressibility 

er  and cr  - relative values of radius of the Earth’s surface and the core 

boundary 

Chapter III. Part 3.3 

maxl  - maximum spherical harmonic degree 

Chapter IV. Part 4.1 

rδ  - departure of the geoid from a sphere 

Vδ  - angular-dependent component of the gravitational field  

Nδ  - geoid undulations (departure of the geoid from an ellipsoid) 

20C  and 40C  - zonal spherical harmonic coefficients with order l=2 and 

l=4   

Chapter IV. Part 4.2 

s(*)  ( p(*) ) - isentropic (isobaric) variations – reversible process 

without heat transfer (process with constant pressure) 

Chapter VI. Part 6.1 
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SV  - seismic velocity distribution 

)(rSc  - scaling factor 

0
ja  - initial scaling factor 

ja  - unknown scaling factors 

ml
obsN ,  - spherical harmonic coefficients of the observed geoid 

ml
jN ,  - geoid variations induced by a layer j 

jβ  - damping factors introduced to stabilize a solution 

jSc  - density-velocity scaling coefficient standard deviations 

Chapter VII. Part 7.1 

)(rTm  - solidus temperature  

)(0 rη  - initial coefficients  

)(rγ  - activation parameters 

*E  - activation energy of the subsolidus creep deformation 

h - depth  

ch  - depth of the core-mantle boundary 
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∇H·Ui – surface divergence 

[∇Ui]·rk/r – radial vorticity 
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