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Abstract

This study is aimed at a development of numerical method to model
the dynamic geoid and the surface plate velocities induced by
global mantle flow with the effect of strong lateral viscosity
variations (LVV) iIn conjunction with the effects of self-
gravitation and mantle compressibility. 1 employ the technique,
which comprises the combination of the spherical harmonic method,
the direct Godunov method used for solving the Stokes and Poisson
equations iIn spherical harmonics with arbitrary boundary
conditions, functions of density and radial viscosity, and the
iterative method based on the principles suggested by Zhang and
Christensen (1993) used for modeling the effect of LVV.

The 3-D mantle viscosity model 1i1s based on the global seismic
tomography model S20a converted to temperature variations. The
max imum lateral viscosity contrast in the lithosphere-
asthenosphere zone modeled reaches four orders of magnitude. It is
found that the influence of LVV on the dynamic geoid is extremely
significant: an alteration of the geoid figure due to LVV exceeds
45% of the maximum geoid undulations. The detailed analysis showed
that the geoid i1s affected by both, strong LVV induced in the
upper mantle and large-scale LVV 1induced in the Qlower mantle.
According to the results of this study the separated effects of
the upper- and lower-mantle LVV on the geoid figure are nearly
additive with respect to the whole-mantle LVV and partly
compensating with respect to each other. The mantle flows are
strongly affected by LV as well, especially by the long-
wavelength viscosity variations 1in the Jlower mantle: global
upwellings tend to intensify due to the effects of LVV, while
downwellings become weaker. The alteration of the near-surface
velocities reaches 30-40% in amplitude not only due to the LVV-
induced toroidal flow but also due to change in the spheroidal
velocity component.

I can conclude that the LVV presented in both, upper and lower
mantle, play an important part in global modeling, therefore, an
incorporation of 3-D viscosity structure into the next generation
global dynamic models i1s a task of vital significance.
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Kurzfassung

Diese Arbeit befasst sich mit der Entwicklung numerischer Methoden
zur dynamischen Modellierung des Geoids sowie der Bewegung der
Lithospharenplatten als Folge der Konvektionsstrdome im Mantel. Im
Speziellen werden die Effekte der lateralen Viskositatsvariationen
(LW) in Verbindung mit der Eigengravitation sowie die
Kompressibilitat des Mantels naher untersucht. Es werden eine
Reihe von Methoden angewandt und miteinander kombiniert, namlich
die Methode der Beschreibung durch Kugelflachenfunktionen, die
direkte Godunov-Methode fur die LOsung der Stokes- und Poisson-
Gleichung mit beliebigen Randbedingungen sowie die iterative
Methode (Zang und Christensen 1993) zur Berlucksichtigung des
Effekts der LVV.

Das dreidimensionale Viskositatsmodell des Mantels basiert auf dem
globalen seismischen Schichtmodell S20a, aus dem
Temperaturvariationen berechnet wurden. Der maximale laterale
Viskositatsunterschied im Bereich der Litho- und Asthenosphare
betragt vier GroRenordnungen. Es hat sich herausgestellt, dass das
dynamische Geoid signifikant von der LVV beeinflusst wird: 1In
Folge der LVV variiert die Geoidhbhe bis zu 45% der maximalen
Geoirdundulationen. Die Analyse ergab einen besonderen Einfluss der
LVV 1m oberen Mantel auf das Geoid. Die Auswirkungen der LVV im
oberen und Im unteren Mantel sind nahezu entgegengesetzt und heben
sich teilweise auf. Die Mantelstromungen sind ebenfalls von der
LVV beeinflusst, hauptsachlich von den langwelligen
Viskositatsvariationen im unteren Mantel: die globale Aufstromung
wird durch die LVV intensiviert, wahrenddessen das Absinken
schwécher wird. Die Geschwindigkeitsanderung oberflachennaher
Stromungen liegt bei 30-40 % und wird sowohl durch Anderungen in
den toroidalen als auch den sphéroidischen
Geschwindigkeitskomponenten verursacht.

Zusammenfassend lasst sich schlussfolgern, dass die LVV im oberen
und unteren Mantel eine wichtige Rolle bei der globalen
Modellierung spielt und dass deren Aufnahme i1n zukiunftige globale
dynamische Modelle von groflier Bedeutung ist.
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Chapter 1

Introduction
1.1 The problem and motivation for the research

Mantle convection leaves numerous traces that can be observed on
the Earth’s surface. Among these evidences of internal perpetual
motion there are some convection-related observables that are
often used as major constraints in mantle convection models. 1In
the last decade, numerous studies of geoid, dynamic topography and
surface plate velocities (convection-related observables) have
been carried out iIn the context of tomography-based flow models.
One of the main objectives of this modeling i1s the inference of
the rheological structure of the mantle. With a few exceptions,
these studies were conducted in the framework of the viscous fTlow
theory, which assumes that the mantle rheology can be represented
in terms of pure radially variable viscosity. Most of the existing
studies of the 3-D Earth’s structure let the effect of Ilateral
viscosity variations (LVV) pass although 1ts importance was
demonstrated in the context of the mantle convection process In 2-
D Cartesian geometry as early as two decades ago. In recent years,
several attempts were made to assess the sensitivity of the geoid
to LVV. However, such studies are often inconsistent and give only

a rough i1dea of the LVV implications for the geoid figure.

According to the present conception of the Earth’s structure, real
Earth’s viscosity distribution in the upper mantle can be
correctly approached by LVV of seven orders of magnitude. Until
recently, only the finite-element (FE) and finite-volume (FV)
methods provided the possibility to model mantle flows with such
strong LVV. Most studies based on FD (Ffinite-difference), FE and
FV methods fail to account for the effects of self-gravitation and
mantle compressibility because the incorporation of these effects
into spatial methods 1is coupled to certain complications
dramatically increasing the computation time. The iIntroduction of
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the self-gravitation effect In the FE and FV methods requires an
iterative process. The mantle compressibility effect significantly
complicates the solution of Stokes equations in the spatial
domain. The spectral method, being extremely fast, allows both
effects to be incorporated directly through the Stokes equation
represented in spherical harmonics. It is generally acknowledged
(and, in particular, analyzed iIn greater detail in this study, see
Chapter 1V) that a distortion of the Earth’s surface and core
boundaries and the resulting redistribution of internal forces due
to the effect of self-gravitation have a critical influence on the
geoid anomaly. As shown in this and previous studies, the effect
of mantle compressibility plays an important role in forming the
mantle flow pattern and thereby influences the geoid figure.

In this study, we suggest a numerical method capable of handling
strong LVV (up to about seven orders of magnitude) in conjunction
with the effects of self-gravitation, mantle compressibility and
radially varying gravity. The technique, which we employ, is a
combination of the spectral method, the direct Godunov method used
for solving systems of ordinary differential equations (ODE) with
arbitrary boundary conditions, functions of density anomaly and
radial viscosity, and the iterative method based on the principles
suggested by Zhang and Christensen (1993). This combined method
provides the possibility to model simultaneously spheroidal and
toroidal mantle flows, mantle stresses, dynamic topography and
geoid and has an evident advantage of extremely fast computations
in the case of purely radial viscosity distribution regardless of
the resolution of the input data. As distinct from the kernel
technique generally used for solving the Stokes equation 1In
spherical harmonics, the direct Godunov method provides a solution
for any reasonable combination of arbitrary functions of radial
viscosity and density heterogeneity without any requirement on
their structural layering. We employ a joint inversion of seismic
tomography data constrained by the geoid to find possible
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disturbances of the radial viscosity profile and the depth-
dependent scaling factor.

The main goal of this study is to develop a method applicable to
the modeling of the dynamic geoid, topography and mantle flow
velocities with due regard for the effects of self-gravitation,
mantle compressibility and highly contrasting LVV that are close
to the real state of the Earth. This method 1s iIntended to
investigate instantaneous 3-D models of the Earth’s mantle (in the
future, upgraded to evolving 3-D models) that provide a good fit
to the convection-related observables i1n compliance with the
presently available resolution of 1input data. Our study mainly
focuses on the estimation of the LVV effect. Previous studies have
led to rather contradictory conclusions on the LVV implication for
global modeling. The effect of the whole mantle LVV has been
poorly investigated. In this work, we do not pretend to solve all
problems related to the uncertainties iIn the viscosity structure
of the Earth’s mantle. We only perform a detailed analysis of the
possible effects and the consequent ways to cope with global
viscosity models iIn order to obtain the most comprehensive
information concerning the general contribution of LVV to the
geoid figure and the mantle flow velocities and particular
contributions of LVV situated in various mantle layers. According
to the widespread opinion, LVV (especially in the lower mantle) do
not have a significant effect on the geoid figure and, therefore,
there is no need to complicate global models by LVV incorporation.
This work aims to disprove this widespread idea. Moreover, only
the LVV effect is capable of generating a toroidal flow comparable
in energy with a poloidal flow. Since toroidal flows are generated
by LVV, any comprehensive model of the mantle should account for
this effect, even i1f the geoid 1is adequately modeled by radial
viscosity.

The observed geoid provides iImportant constraints on mantle
parameters in global modeling studies, including the very
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indefinite value of viscosity variations. However, the
determination of the Earth’s mantle structure is ambiguous i1f only
surface gravity data are used. A usual way to cope with such a
problem is to combine gravity data with other geophysical data
sets to obtain a solution that fits all data sets and therefore
possesses fewer degrees of freedom. Seismic tomography models are
commonly used for this purpose. In our study, we chose the S20a
seismic tomography model (Ekstrom and Dziewonski (1998)) as one of
the most used for the modeling in question. This model provides a
resolution of up to the 20th spherical harmonic degree for
isotropic velocity variations, which ensures a more realistic
approach to temperature, density and viscosity distributions. We
get density anomaly and viscosity distributions from the S20a
model in order to estimate how significant the effects of LVV are.
The derived knowledge may be applied then to the latest
innovations iIn the seismic tomography data. There exist various
seismic tomography models differing in resolution and properties.
These models are being continuously 1Improved and made more
accurate. Although other models can differ in details from the
S20a model, the general inference about the influence of LVV on
the convection-related observables and mantle flow remains valid

for all models possessing this or higher resolution.

The analyzed 3-D model of the Earth implies the following
assumptions and data sets:

1) the radial density distribution inside the Earth mantle is
based on the PREM model (Dziewonski and Anderson (1981));

2) the density anomaly distribution is obtained from the S20a
seismic tomography model (Ekstrom and Dziewonski (1998));

3) a depth-dependent viscosity profile obtained from a joint
inversion (constrained by the geoid) generally consistent
with the results of existing studies;

4) free-slip boundary conditions at the surface-mantle and
core-mantle boundaries of the Earth;

5) LVV model constructed on the basis of
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(a) S20a seismic tomography model converted to temperature and
(b) assumptions on the homologous temperature in the mantle
(Paulson et al. (2005)).

1.2 Three-dimensional modeling history and current studies.

In global studies, the joint use of gravity and geophysical data
has been applied starting from the pioneer work by Hager and
O"Connell (1981). Further, their study was continued and
elaborated by Hager (1984), Ricard et al. (1984), Richards and
Hager (1984), Hager et al. (1985), Forte and Peltier (1987, 1991),
Schmeling (1989, 1991), Ricard and Vigny (1989), Maquart and
Schmeling (1989), King and Masters (1992), Corrieu et al. (1994),
Gurnis et al. (1998), Forte (2000), Tackley (2000), Forte and
Mitrovica (2001), Niehuus and Schmeling (2003, 2004) and many
others. The inversion of a long-wavelength non-hydrostatic geoid,
known also as the inferences of viscosity from the geoid (in some
cases, from surface flow velocities and constraints from mineral
physics as well), has provided important information on mantle
viscosity since mid-eighties (Ricard and Bai Wuming (1991); Forte
et al. (1994); King (1995); Thoraval et al. (1995); Kido and Cadek
(1997); Steinberger and O0’Connell (1998); Cadek and Fleitout
(1999); Forte et al. (2002); Forte and Mitrovica (2004);
Steinberger and Calderwood (2006)). Despite all these efforts, the
obtained results differ significantly and a generalized dynamic
model of the Earth does not exist at present. Such an indefinite
situation can be due to several factors. First, there still exists
a trade-off between different model parameters and the same fit
can be obtained within different model clusters. Second, the
models analysed are still far from reality. The dynamic response
of the Earth’s surface to internal loading requires the solution
of the Stokes equations together with the Poisson®"s equation for
the gravity potential. In most of the existingudies, a simplified
model implies only radial viscosity variations, which provides the
possibility to solve the equations separately for each spherical
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harmonic coefficient. Therefore, i1t is suffitient to estimate the
response of the Earth to an internal load (density
heterogeneities) at different depths, the so-called geoid kernels,
and then to use the kernels in the inversion. Although the method
is extremely fast and effective, the effect of LVV remains
unclear. The main difficulty 1is that all spherical harmonic
coefficients are coupled with LVV, thereby diminishing all
advantages of the kernel technique. Thus, until recently,
attention had been only given to the determination of radial
changes 1In viscosity. Lateral variations were neglected because
the LVV effect was assumed to be small in comparison with the
effect of radial variations in viscosity. Indeed, lateral changes
in viscosity were often found to affect very little the whole-
mantle flow models with a free-slip or a rigid upper boundary
(Richards and Hager (1989); Ritzert and Jacoby (1992); Cadek et
al. (1993); Colin (1993); Martinec et al. (1993); Zhang and
Christensen (1993); Forte and Peltier (1994); King and Hager
(1994)). Numerous spherically symmetric models were considered in
order to fit best to the observed long-wavelength geoid. Hager and
Clayton (1989) predicted 90% of the geoid on the long waves using
the tomographic model of Clayton and Comer (1983). Spherically
symmetric models with radially stratified viscosity also predicted
successfully about 60% of the poloidal component of plate motions
(Forte and Peltier (1987, 1991)). However, spherically symmetric
models fail to predict the toroidal component of present-day plate
motions whose energy is nearly equal to that of the poloidal
component (Hager and O’Connell (1978)). The toroidal motion can
only be generated by LVV.

Detailed iInvestigation of LVV was carried out almost exclusively
in terms of 2-D Cartesian geometry (Gurnis and Davies (1986);
Christensen (1994); Richards and Hager (1989); Moresi and
Solomatov (1995); Moresi et al. (1996); Yang and Baumgardner
(2000)).
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Richards and Hager (1989) demonstrated for 2-D convection models
that the effect of LVV on geoid anomalies could be significant for
degrees | >4 because, at the lowest harmonic degrees, the geoid is
least affected.

Olson and Bercovici (1991) showed that most of the toroidal energy
iIs due to plate drift and strike-slip motions on faults, rather
than to the plate spin. 0’Connell et al. (1991) and cCadek and
Ricard (1992) demonstrated that the actual motion of plates 1is
such that 1t minimizes the toroidal energy if the present-day
plate situation is considered. Ricard and Vigny (1989) predicted a
toroidal component of the surface flow agreeing well with
observations on the basis of a model in which rigid surface plates
are coupled with buoyancy-driven flow in the mantle by means of a
torque balance. Gable et al. (1991) presented a similar model 1In
the Cartesian geometry, with the plate motion being coupled with
time-dependent thermal convection. The model of Ribe (1992), in
which the Ilithosphere is represented as a thin shell with LW
overlying a radially symmetric mantle, predicted a substantial
part of the toroidal component of surface motion by introducing a
high contrast of LVV in the shell. This model demonstrated that
LVV and the thickness of the lithosphere could have a large effect
on geoid anomalies 1T the mantle viscosity strongly increases with
depth.

Yoshida (2004) considered 2-D convection models with self-
consistently moving and subducting plates with LVV and found that
the observed geoid anomaly on the Earth’s surface is significantly
affected by plate-tectonic mechanism as a Tfirst-order effect.
However, 2-D Cartesian studies cannot describe the excitation of
toroidal flow and its coupling with poloidal flow. Thus, the
investigation of all dynamic effects arising from LVV requires the
construction of mantle flow models i1n TfTully three-dimensional

spherical geometry.
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In the last years, various authors attempted to assess the
sensitivity of the geoid to LVV (Richards and Hager (1989);
Christensen and Harder (1991); Ribe (1992); Zhang and Christensen
(1993); Cadek et al. (1993); Matrinec et al. (1993); King and
Hager (1994); Forte and Peltier (1994); Karpychev and Fleitout
(1996); Wen and Anderson (1997); Zhong and Davies (1999);
Karpychev and Fleitout (2000); Zhong (2001); Cadek and Fleitout
(2003, 2005); Niehuus and Schmeling (2005); Latychev et al.
(2005); Kaban et al. (2007); Moucha et al. (2007)). Although the
results obtained iIn these papers are somewhat ambiguous, there are
indications that LVV may play an important role if boundary layers
are taken into account (Karpychev and Fleitout (2000); Cadek and
Fleitout (2003)). Most of these studies took iInto consideration
only regional models of LVV located in the uppermost and lowermost
mantle or oversimplified 3-D viscosity models of the whole mantle.
The effect of the whole mantle LVV was investigated iIn Kaban et
al. (2007) and Moucha et al. (2007). The conclusions based on the
results of these two studies are somewhat controversial because
Moucha et al. (2007) arrived at the conclusion that the effect of
LVW on the geoid 1is negligible, whereas Kaban et al. (2007)
demonstrated that some particular features of the geoid could be
predicted only by inclusion of the LVV effect.

Ricard et al. (1988) investigated the effects of LVV 1In the
shallow upper mantle, in which rigid plates were dynamically
coupled with buoyancy-induced mantle flow. This and some other
studies showed that, due to the complex rheology and boundaries of
tectonic plates, large LVV in the lithosphere must be accounted
for explicitly in mantle flow models (Ricard et al (1988); Ricard
and Vigny ((1989); Forte and Peltier (1994)) and 1In viscosity
inversions (Forte and Mitrovica (2001); Mitrovica and Forte
(2004)). These modeling studies demonstrated that the plates have
a major effect on the convective flow and on the convection-
related observables such as dynamic topography and non-hydrostatic
geoid.
20
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Koch and Ribe (1989) also investigated some general effects of LW
on the surface observables, analyzing various simplified models.
They found that LVV have a large (up to 50%) effect if the load is
relatively “hard” and shallow, whereas this effect is small (<15%)
if the load i1s “soft” or deep. The geoid anomaly produced by a
soft upwelling plume differs only slightly (by about 13%) from
that generated by an isoviscous plume. By contrast, the viscosity
differences associated with subducting slabs could have a larger

effect on the geoid.

Christensen and Harder (1991) found only a weak toroidal component
in models of thermal convection with temperature-dependent
viscosity. Only in the cases of highly nonlinear rheology with a
stress-exponent of harmonic degree 6 and a high-viscosity surface
layer, was a moderate ratio of toroidal-to-poloidal component

velocities of 0.25 obtained.

Zhang and Christensen (1993) proposed a hybrid finite-difference
and spherical harmonic method that provides the possibility to
estimate the effect of realistic LVV within the mantle. The
nonlinear coupling of various spherical harmonic modes was
calculated by an 1i1terative method. They examined the effect for
long wavelengths (1=1-6) and found that, for such wavelengths, the
effects of LVV on the geoid are smaller than those due to
variations in the radial viscosity structure. However, they can
also be significant for higher modes (1>3) i1f the viscosity 1is
radially stratified. On the other hand, i1t was found that the
misfit between the observed and modelled geoids is not reduced by

introducing LVV.

Forte and Peltier (1994) presented a quazi-analitical variational
formulation of buoyancy-induced mantle flow iIn a heterogeneous
spherical shell. They examined the effect of LVW on long-
wavelength surface observables (geoid undulations and dynamic
topography), which were expanded up to spherical harmonic degree
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6, using a dynamic complete, theoretical formulation of mantle
flow. They argued that the effects of LVV are likely to have been
masked by the uncertainties in the tomography models available at
the time.

Zhong and Davies (1999) applied spatial finite-element (FE) method
combined with density anomalies derived from a subduction history
model. They examined the joint effects of plate rheology and a
subducting rigid lithosphere on the geoid and plate motions. They
found that the plate rheology is significant and 1i1ts inclusion
yields a better geoid model and, moreover, reproduces the basic
features of the observed field. According to their conclusions,
the slab viscosity can strongly affect the geoid, depending on
whether the slab 1i1s coupled with the surface. It 1is unclear,
however, whether the change in the mean radial viscosity caused by
assigning arbitrarily high viscosities to subducting slabs has a
significant effect on the predicted geoid, and the most important
effect on the geoid was not quantified.

Karpychev and Fleitout (2000) calculated the effects on the geoid
for a model with LVV in the upper mantle. Beneath the ancient
stable continental regions, the viscosity decreases monotonically
from the surface to the depth of about 400-600 km. The oceanic
lithosphere and tectonically active continental provinces are
underlain by the low-viscosity asthenosphere. The viscosity of the
lower mantle is assumed to be constant. Mantle flows are driven by
preset surface velocities and density anomalies inferred from
tomography models. They found that the geoid differences between
the models with and without LVV reach 30%. Contrary to what was
proposed in previous studies, spherical harmonics of degrees 2 and
3 are strongly affected by LVV. It is also important that shear
stresses at plate bases are sensitive to LVV.

Richards et al. (2001) estimated the effect of LVV i1n the upper
mantle on surface plate velocities. They demonstrated that the
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combination of a pronounced low-viscosity zone and a plastic yield
stress accounting for Jlocalized weakening of the cold thermal
boundary layer results in a distinctly plate tectonic style of

convection, with ~30% toroidal surface motion iIn the 3-D case.

Cadek and Fleitout (2003, 2005) investigated the effects of LVV in
the upper 300 km of the mantle (Cadek and Fleitout (2003)) and
core-mantle boundary region (Cadek and Fleitout (2006)), using the
iterative technique of Zhang and Christensen (1993). In addition
to the model of Karpychev and Fleitout (2000), they analysed the
possible effect of partial layering of the mantle convection at
the 670 km discontinuity. Considering all effects simultaneously,
the authors were able to reduce significantly the misfit between
the observed and modelled geoid: the partially layered model
accounts for about 90% of the observed geoid at long wavelengths
(1=2-8). Cadek and Fleitout (2003) argued that LVV in the
lithosphere are needed to fit the present-day geoid with a simple
viscosity profile. Furthermore, they 1i1mposed prescribed plate
velocities as a surface boundary condition, thereby invoking an
external energy source that had to drive mantle flow independently
of the buoyancy forces in the mantle. This approach lacks dynamic
consistency and, therefore, it is difficult to assess the actual
effect of shallow LVV. In their further investigation of the LWV
in the core-mantle boundary region, Cadek and Fleitout (2006)
determined large-scale features of the viscosity structure in the
lowermost mantle that yielded a high density of hotspots above the
regions of a higher-than-average viscosity. The global 1nverse
search applied to models with LVV in the lowermost mantle improved
the agreement between predicted and observed geoids up to about
95%, whille models with only radial viscosity could account for no
more than 78% of geoid. According to these studies, the
consideration of LVV in the core-mantle boundary region improves
the fit to the observed geoid much better than the inclusion of
LVV i1n the lithosphere and asthenosphere. This inexplicable result
can be due to a reduced (by about two orders) value of LVV that
23
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was considered in the Tfirst models with [lithosphere and
asthenosphere LVV.

Moucha et al. (2007) examined the LVV implications for global
convection related observables such as the horizontal surface
divergence, dynamic geoid and topography, using forward modelling
of buoyancy induced incompressible flow In a 3-D spherical shell
(variational formulation suggested by Forte and Peltier (1994)).
The 3-D viscosity distribution was derived from a rheological law
expressed iIn terms of a homologous temperature in the mantle. The
considered 3-D viscosity distribution spans about 2.5 orders of
magnitude in the upper mantle (the tomography model of Grand et
al. (1997)), and 3 orders of magnitude in the lower mantle (the
tomography model of Su and Dziewonski (1997)). They found that the
resulting dynamic topography, as well as the gravitational
response of the Earth, 1is affected relatively weakly by the
inclusion of LVV as compared with results for a purely radial
viscosity model. In particular, they revealed that the effect of
LVV on the global observables i1s significantly smaller than the
variability due to uncertainties In the current seismic tomography
models. They also quantified the effect of LVV in the context of
the viscosity inverse problem, using radial viscosity models and a
fully three-dimensional viscosity models in which the LVV contrast
reaches three orders of magnitude, and found that the LVV have
virtually no effect on their iInversion results. Spatial FE method
CITCOMs (Zhong et al. (2000)) was included into the study for
benchmarking purposes. The comparison of spectral and FE methods
revealed divergences of up to 8% in the calculated geoid figures
and 4.5% in the surface dynamic topography.

Kaban et al. (2007) analysed the relative effect of LVV (with a
maximum viscosity contrast of three orders of magnitude) in the
upper and Hlower mantle on dynamic geoid undulations, dynamic
topography and near-surface mantle velocities, using the spectral
method in conjunction with the iterative method proposed by Zhang
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and Christensen (1993). It was shown that the implementation of
the whole-mantle 3-D viscosity variations based on the S20a
seismic tomography model (Ekstrom and DziewonskKi (1998))
apparently i1mproves the model geoid, even without any additional
tuning of model parameters. According to this study, geoid
disturbances induced by the Jlower and upper mantle are of
approximately the same significance (up to 40% of total geoid
heights); however, the effect of the lower mantle 1s pronounced
mainly on mid-range wavelengths. It was also found that the
effects of the upper and lower mantle LVV on the geoid are nearly
complementary with respect to the effect of the whole mantle LVV.
In contrast to the geoid, the effects on dynamic topography
induced by the upper mantle LVV were shown to be larger in
amplitude than the effects due to the lower-mantle LVV. The effect
of LVV on near-surface horizontal flow velocities was found to be
very significant i1n particular with respect to the LVV-induced

toroidal flow velocities.

New generation of FE and FV methods for global spherical modelling
of mantle convection is a growing tendency of the present day. The
heavy computational demands of the spectral approaches (required
for the incorporation of the LVV effect of a high resolution) and
the complications involved iIn the modelling of high Ilateral
viscosity contrasts with the aid of spectral methods gave rise to
the development of the powerful numerical methods based on FE and
FV techniques. Therefore, numerical spectral methods are being
gradually replaced by the generation of spatial methods that are
mostly applied to the development of the Earth’s interior on large
time scales (Rykov and Trubitsyn (1996); Bunge et al. (1996,
1997); Trubitsyn and Rykov (1999, 2000, 2001); Zhong et al.
(2000), Trubitsyn et al. (2007)). The latest versions of FE and FV
methods provide the possibility to avoid the pole problems, which
occur in latitude-longitude grids in spherical coordinates (Zhong
et al. (2000); Stemmer et al. (2006)). Since the Earth’s
evolutionary processes are not concerned with the subject of this
25
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work, 1 do not discuss in greater detail these methods. Moreover,
these numerical methods can hardly produce an accurate geoid
figure due to the complications associated with the introduction
of mantle compressibility and self-gravitation effects; therefore,
the studies based on these methods focus on mantle convection and
the effects of post-glacial rebound and relative see levels
(Gasperini and Sabadini (1989, 1990); Gasperini et al. (1991);
Zhong and Gurnis (1994); Bunge et al. (1996); Kaufmann and Wu
(1998, 2002); Zhong et al. (2000); Latychev et al (2005); Kaufmann
et al. (2005); Steffen et al. (2006); Wu et al. (2005); Paulson
at al. (2005); Zhu and Feng (2005); Wu (2002, 2005, 2006); Wu and
Wang (2006); Wang and Wu (2006); Stemmer et al. (2006)).
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Chapter 11.

Internal loading theory and basic equations.

It is generally accepted that the Earth’s solid interior behaves
like a fTluid on geological time scales. In order to solve the
problems with fluid mechanics, 1t 1is necessary to solve the
applicable continuum partial differential equations (Bachelor,
1967). The distinguishing property of fTluids i1s their ability to
deform. On large time scales the solid rocks of the mantle deform
as a fTluid, thus, the behavior of the Earth’s mantle can be
described by the Navier-Stokes equations that contain the
continuity equation (conservation of mass) and momentum equation
(conservation of momentum). Sometimes the energy equation
(conservation of energy) 1is also included to Navier-Stokes

equation system.

The Navier-Stokes equations are the TfTundamental differential
equations, which describe the motion of fluid substances (such as
liquids and gases). These equations state that changes in momentum
(acceleration) of fluid particles are only the product of changes
in pressure and dissipative viscous forces acting inside the
fluid. The viscous forces originate in molecular interaction and
dictate how sticky a fluid is. Hence, the Navier-Stokes equations
are a dynamical statement of balance of forces acting at any given
region of the Tluid, balance between 1nertial forces, pressure

forces, viscous forces and the body force due to gravity.
2.1 The Navier-Stokes and Poisson equations.

The Navier-Stokes equations are derived from the basic principles

of conservation of mass, momentum and energy.

1) The continuity equation for an infinitesimal volume element:

o, o) _ g (E2.1a)
ot OX:
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M _o  (incompressible Fluid) (E2.1b)

OX

i
where x, 1s the position vector, t is time, p 1Is the density of

the fluid, and u; is the fluid velocity.

2) The momentum equation on the elemental fluid parcel:

ou. ou. op Ot
iy — =+ L4 g E2.2
p(@t ’ax,} o ax, Y (£2-2)

J J

where p is the fTluid pressure, g, is the acceleration of gravity,

Tij is deviator stress tensor (in terms of strain rate):

6ui auj
Ty = 2779“- + //Lekké‘ij =n a + a—XI + ﬂ,ekké‘ij

1( du, ou; _
where qj:E{E—L+E;LJ are the components of strain rate tensor of a
X . X
j i
B B _ 0,i # ]
Fluid (nonzero strain rates generate deviator stresses), oJ;= Lizi
=]

- Kronecker delta, p is the dynamic viscosity, and 4 is the second

viscosity.
In our study we neglect the bulk viscosity szﬂnwgn (a measure of

dissipation under compression) and take it to be zero. Then the
The Navier-Stokes equation takes the form of:

ou; ou, op 0 (o, ou; 20u;
T, S =B G B T 2T 4 g, E2.2a
a ’ax,} ox, x| Max, Tk 3ax 1) (E2-22)

]

Yo,

: : . ou;
P QEL+uj§yL =—~@34~£1-n EEL+——i +pg, (incompressible flow) (E2.2b)
ot OX; oX;  0OX; oX; O

J
3) The Poisson equation 1is the equation for the gravitational
potential V that takes iInto account the changes in acceleration of

gravity g, due to the density perturbation of the flow:

VA = -4sGp (E2.3)
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where p=p+dp is the density distribution in the mantle, p is the
radial density profile, Jp 1is the density anomaly, G 1is the

universal gravitational constant.

4) The energy equation for an elemental parcel of fluid:
PT£%+uiaa_Zj:Tijz_:+ai;i(k2_;)+PH (E2.4)
where k is thermal conductivity, s is entropy per unit mass, H is
the rate of iInternal heat production per mass unit, and T is the
temperature.

For compressible and incompressible fluids the thermal energy

equation can be rewritten in clearer form:

oT oT op op o[, oT

—+U,— |—al| —+U, — |=—| k— |+ D+ pH E2.4a
pc"(at 'axJ “ (at '8XJ axi( axij o (F2-42)
£C, a—T+uia—T _9 ka—T +®+ pH (incompressible fluid) (E2.4b)

ot oX; ) OX \ OX

where 6121[91) :_"E(QBJ iIs the coefficient of thermal expansion
viaT J, p\aT ),

of material, v::-l is specific volume, (*), ((*),) means that the
Yo,

pressure (volume) is held fixed, c, (c,) is the specific heat at

ou, . _ . i,
constant pressure (volume), ¢)=TH5—L iIs the viscous dissipation
X .
J

function.
2.2 Equations in spherical coordinates

As the primary subject of this work is the in-depth study of the
instantaneous state of the present-day Earth, the equation system
describing this state may be distinctly simplified. The Navier-
Stokes equations’ adaptation to the specific conditions of the
Earth’s “fluid” mantle (very high viscosity and relatively small
velocity values) results in the following changes iIn equations
E2.1 (the continuity equation) and E2.2 (the momentum equation):
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QE—»O and QQ—»O =>
ot ot

1) The continuity equation applied to the Earth’s mantle:

apus) _ (E2.5a)
OX;

%:o (incompressible fluid) (E2.5Db)
X

2) The momentum equation applied to the Earth’s mantle:
a_ op o fau v 20u
x| o ox, |\ ox, ox 3o

i j

<%j}+/gi (compressible flow) (E2.6a)

o __op_ 0 [Qﬁn+@ﬁ9}+/gi (incompressible flow) (E2.6b)

7 OX;  OX

Yox, ox, ox,

[ J

The energy equation E2.4 makes no sense whilst studying the state
of the instantaneous Earth, thus, this equation will not be
included to the equation system into be discussed further.

In our study the Earth is represented as a spherical shell with
some surface and core disturbances occurring due to the self-
gravitational effect, which will be defined and analyzed iIn the
following parts. For the spherically symmetric Earth of inner

radius R, , outer radius R with the density distribution

p(r,0,p)=p(r)+p(r,0,p), the force of gravity g=g(r), stratified by
radius, and the viscosity distribution p=75(,0,¢) it Is convenient
to rewrite the Stokes -equations E2.5 and E2.6 1in spherical

coordinates (r,0,9):

1) The continuity equation in spherical coordinates:

25 DSi o(pu
" ﬂneaa.pw)+raabpﬂne)+r (pu,) =0 (E2.7)
resing or 00 op

(for incompressible mantle p is constant)

where u=(u,,u,u,) iIs the mantle flow velocity.
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2) The momentum equation in spherical coordinates:

2 H a
o:_§B+5§!+£L6“Z% N 1 a@meag+_ 1 oJr,

or " or r* or rsind 00 rsind o¢

1 _
—?(2'99 +7,,)-0p (E2.8a)

__l@+éﬂ+ia(r27r9)+ 1 @(Siﬂ@rgg)+ 1 01y,

1
= +— —-7_ctgd E2.8b
rod r oo r*  or rsin@ 00 rsind op r(ﬂe Tpt96) )

— ®, P a_v+i28(rzrm)+la%+ L iz
rsin@ op rsind op r or r o6 rsin@ op

+1(rw +27,,ct90) (E2.8c)
r

where 7; is the viscous stress tensor concerned with u=(u,u,u,)

and with components of the strain rate tensor g; by the following

expressions:
au, 2 (10(%u,) 1 o(u,sing) 1 d(u,) 2
=2n——-Zpn| = LA 4 + ” |=2ne.. —=n(e,. +e, +e
e = M5 3n(r2 or rsind 00 rsind og M 377(rr 00+ )

’ i a(u
T%:Zn(laungu_,j 2 (ia(rur)+ 1 ou,sing) 1 o,

2
-0 _z =2 —-—n(e. +e, +e
roo r r2  or rsing 06 rsind op J oo BU(’r 0 F o)

377

T re or rsing 06 rsind oo

ou ctgd 2 o(u, sin@ o(u
gL M, U Ucgl) 2 (10(Pu) 1 osing) 1 o)
7 rsind op r r 3

2
:Zne(pgo _gn(err +e:9f9 +e(p¢7)
14y,

a[”ﬂ j
r
=7 +r

fro =1\ 50 or

o Yo
1 ou, r
= +r—=

v nrsin@% or |

e, (E2.9)

u‘/’
. 1 ou,  sing sin@ P
o =" sing dp ot o0 Moo

The expressions of the relation between normal strains and flow
velocities will be also often required in the following parts:

ou,
err =
or
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_Lla, U

r

e =
“ roe0 r

o - 1 %Jru_urugctge
2 rsin@ op 1 r

1(1¢ou, ou, u,
e ——|z% o Ho E2.10
"0 2(raa or rj ( )
o L L ou ou U,
“ 2\rsindop or r
. 1 au9+18uw_u¢,ctgt9
% 2\rsing 6p r 06 r
3) The Poisson equation (gravity field flux) in spherical
coordinates:
o 2oV P

+25 2V =446 E2.11
or* ror r? P ( )

1 6(3"]96%9j 1 5

Where L*=-—— ——
siné 06 sin® @ 00°
V =V(r,0,p) is the geopotential.

4) The total stress tensor:
It 1s convenient to turn to the other form of the viscous stress

tensor o; (total stress tensor):

o, =—-p+7,

Ogg =P+ 7Ty (E2.12)
Oy ==P+7,,

For the total stress tensor the Stokes equations take a simplified

form:
oo, 1lor 1 Ot 1 oV

O=_——m =710 4 Y +-@20, -0,,+0, +1.,C90)+p——3507 E2.13a
o r 06 rsind op r( " O+ Oy T 71oC190) Por P ( )
or,, 1loo 1 071y, 1 p oV

0=t 4 =220 4 ? +=(o,Ctg0 -, Ctgf +3r,,) + = — E2.13b
o r 80 rsind op r(G” 900,190 +37,,) r 00 ( )
ot ot oo 2]

0= (10T 1 %% L o ctgeye L2V (E2.13c)
or r 06 rsing op r rsiné op
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Chapter 111
Direct method for solving the Stokes equation in spherical

harmonics

Spherical geometry 1is of obvious relevance to our study of the
mantle convection. Therefore, 1t 1is of great 1iImportance to
consider the representation of the continuity, momentum and
Poisson equations in spherical harmonics and the novel

advantageous method of their solution.
3.1 Spherical harmonic method.

The initial (solenoidal) vector fTield U has three components
U=U,(r,0,0),U,(r0,¢),U,(0¢) given in spherical coordinates (r,6,¢).
The solenoidal vector field U=U, U, U )=Ue +U,,+Ue, can be
represented as a sum of two iIndependent vector fields: spheroidal
(S) and toroidal (T) U=S+T. In this case the radial component U,
can be represented by a complete set of spherical functions
Yin(0,9) , lateral components U, and U, - by a combination of
spherical Tfunctions” derivatives Y/(0,9) and YZ2(0,9). The radial
component U, of the spheroidal vector field S correlates with

lateral components U, and U, by a differential equation.

1) Spherical functions:

Spherical functions known as spherical harmonics

N, P"(cos@)cosme,i=1
Vi (0.0) =1 " 'm( cosme: (E3.1)
N,,R" (cos@)sinmg,i =2
Where I (m) is the spherical harmonic degree (order): 1>0
(0<m<1)
Rm(czose)z(sjne)’“g—ELEEEQ (E3.2)

d(cosd)™
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are associated Legendre functions defined in terms of the Legendre

1 d'[(cos®0-1)']

olynomials: P (cosé) = P°’(cosd) =
POty | (€050) = R (C0s0) = on ™ 4 (cos )

_ —_m)l
Nm==J(2 (xW%2|+;xl m)! are normalization coefficients for the
+m)!

associated Legendre functions.

Every function f(r,0,9¢) on a sphere can be expanded into spherical

functions” series according to:

(1,0,0) =33 (s (N * Y (0.09) (E3.32)

1=0 m=0 i=1

fimi (1) = Sizfd(ﬂjf f(r,0,9)Y,, (0,p)sincdo (E3.3b)

mo 0 0

2) Orthonormalization law for spherical functions:

IP,(cose)Pl.(cosH)sin me:icsu. (E3.4a)
0 21+1
% , |
[P" (cos6)P (cosH)sin ao-—20+mt 5 5 (E3.4b)
0 @+ —m)!
2z
For zonal harmonics (m=0): jd¢=:27 & 2-0,,=1 & E3.4b =>
0
2z V4
[ d[Yini (0, 0,01 (0, 9)SIN OO = 476,81y = 1195y s (E3.5a)
0 0
For tesseral (O<m<l) and sectoral (m=1) harmonics:
27 2z
[cos*(mp)de = [sin®(mp)dp=7 & 2-5,,=2 & E3.4b =>
0 0
2z n
qu)IYlmi (0,0)Y i (0,0)SINO = 4755, ;i = $110)- Oy (E3.5b)
0 0

E3.5a + E3.5b => s, =47, Vvm<lI

3) Spherical functions” derivatives Y/ (0,9) and Y/ (6,9):

N, (6,9)

Yin (0,0) = 20
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1 oY, (6,
Ym@0) =55 Ia((p 2

Functions f (r,0,9¢) and f,(r,0,9) can be expanded into series of

spherical functions” derivatives according to:

2

f(r.0,9) = :O ;;(am (1) %Y1 (0,0) +Dy,, (1) *Y,7,(0,9)) (E3-62)
fo(r.0,0) = I: mI_OiZ::(a.mi (1) *Y,52(6,0) by, (0 *Y,1,(0,9)) (E3.6b)
B (1) = — Td(pT (1,(r.0.0)Y5: (0. 0) + 1,(r,0,0)Y,7; (6, 0)) sin O (E3.60)
by (r) = %Zfd w;j (1,(r.0,0)Y,7: (0,0) = 1,(r.0,0)Y,y; (0. ))sin O (E3.6d)

From the point of view of physics this expansion represents a sum
of two vector fTields: spheroidal S (poloidal for i1ncompressible

case) and toroidal T.

In the next chapters and the Appendix, describing the derivation
of the final equations, some knowledge of spherical harmonics and
their properties will be demanded. Hence, it is of some use to
refresh a set of expressions for spherical functions” derivatives
for the sake of following the thread of further reasoning.

The spherical function Y, (0,9¢) is the solution of Laplace’s

equation:

LY, (6,0) = LY,, (6,9) (E3.7)
Hin(6:0) = _siie a(Signg) } sin12 0 Z;t =Y cg oy =

Y +ctgdy? +Y” =—LY (E3.73)
Y 4 ctgdy ? —Y % =0 (E3.7b)
Y 0 4 2ctgey * —Y % = (E3.7¢)
Y ® 1ctgdy Y7 —ctg®OY ? —2ctgY ? +Y ¥? = —LY? (E3.7d)
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%Y 1 0%

where L=I(1+)), Y’'=Y/,9), Y =Y20,0), Y¥=Y,=—i-, Y= -,
(1+3 m (0, 9) m (0, 9) % = 592 Sin206¢2
(2) .. daem
v _ 1 00 oy o sing og
sind oOgp 06

4) Orthonormalization law for spherical functions” derivatives:

2r V4 2r T
[do[ Y0 (0,005 (0, 9)sin O - [do[Y,1,.(6,0)Y,% (0.0)sin &0 = 0 (E3.82)
0 0 0 0

2z T 2z 4

[de[ Y7 (0. 0)Y0 (6,9)sin O - [do[Y,5,.(0,0)Y,% (0, 9)siN QO = 47 (1 +1)5,, 5,5, (E3-8D)
0 0 0 0

Integration by parts:

2r Vs 2z T
[do Y5 (6.0)Yin (0, 9)sin O - [do[ Y, (0, 0}V, (6,9)sin 616 =
0 0 0 0

First integral V=Ypsing dv = (Y, sin@+Y,; cos9)de
- =
dU = Y|$n'i'd6 u= Yl'm'i‘
V= @ dVZSinml:ﬁ?dgp
Second integral: m . 1
du=Yf.dp  |u=——Y.,

sin@

/4

2
0

2z n n 2z
_ 0 i 4 0 00 .- 1 ) _
_lm{ﬁmYmmnﬂo—?%WWWC%0+YWsm0m0J+ﬂéﬁgﬂwﬂﬁ —!ﬂmMﬁdé%m&m_

T

2 V4 2
= dgp(— [ Vi (Yo OO+, sin 6)d9J+ | (— [ Y,.m.i.Y,nﬁ?’d(pjsin &0 =
0 0 0

0

Imi Imi

2z i 2z T
=~ [ [ Yy (Y0 COSO + Y20 siN O+ Y, 20 siN0)d 0 = — [ dp[ Yy (Y, CtGO + Y27 +Y,20)sin 6010 =
0 0 0 0

mm'~ii’

2 V4 2 V4
={E3.5a} =~ [d[ Yy (~LY,y)SIN GO =L [ dop[ ¥, Y,y 5In GO = 471 (1 +1)5,.5 e 5y =
0 0 0 0

= SmOI (I + 1)5II'5mm'5ii'
Sy =4d(1+1) =s I(1+1), vm<I (E3.80c)
3.2 The Stokes equation in spherical harmonics.

At first 1 will consider only the simplified case of a radial

viscosity distribution n=7(r) because an introduction of LVV leads
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to some complications (see Chapter V). The Stokes equations (in a
spherical shell) can be represented in spherical harmonics by

expansions of velocities u=(u,u,u,), total stresses o;, density

anomalies 0p(r,0,9), pressure p(r,d,¢) and gravitational potential
V(r,0,p) .
Expanding the function of density anomalies into spherical

harmonic series:

3p(r,6,0) = 3. 30" (1Y, (6,9) (E3.92)

We shall search for a solution of the Stokes equations E2.7 +
E2.13 and the Poisson equation E2.11 for potential V, pressure p,
radial components of vector Tfield of velocities u and total

stresses o; also in the form of spherical harmonic expansions:

V(r.0.0)= T US(T)Y, (6.0) (E3.9b)
p(r’ 0, (0) = Z Pim (r)YIm (6' ¢) (E3 - 90)
U, (1.6,0) = XU (), (6.0) (E3.9d)
00 (1,0.0) =1 T UL ()Y, (0,0) (E3.9)

The solutions for lateral components of velocity u,, u, and stress

T,» 7, can be found in the form of expansions into series of

spherical functions” derivatives Y”ﬂ::aYIm and Yﬁ::—;L—aYm (toroidal
00 sin@ op
part appears only due to LVV):
Uy (r,0,0) = D U3 (r)Y,m (6,0) (E3.9F)
I,m
u,(r,0,9)=> U (Y (0,9 (E3.99)
I,m
1 m
7,0 (r,6,0) = ;ZUL ()Y (6, 9) (E3.9h)
I,m
1 . _
7., (1,6, 9) =?ZUZ (N)Yin (0, 9) (E3.9i)
I,m

where r is the relative radius.
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Substituting expansions E3.9d, E3.9f and E3.9g of radial and
lateral components of the velocity u.(r,0,9), u,(r,d,¢) and u,(r,0,p) to

expressions E2.9 and E2.12 we obtain the remaining components of
the total stress tensor oy:

0o (r,0,0) = Z[_ PYim + Z_TZ*(Ul (ry +U, (r)erig )] (E3.9))
c,,(r.0,¢) = Z[— pY,. JFZT”*(Ul ()Y +U, (r)(Y,2 +Y"ictg¢9))J (E3.9k)
i (1,0.0) = 23U, (00 - Yizetgo) (E3.91)

where rf(r):p—(—2 iIs the dimensionless radial viscosity function and
Mo

n, 1Is the mean mantle viscosity.

Taking into consideration all derived expansions E3.9 and
substituting them into the Stokes equations E2.7 and E2.13 and the
Poisson equation E2.11 we arrive at an equation system of first-

order ordinary differential equations:

du," . .
r d; =—(2+K)U," + LU}

Im
rdgzz—uﬁ+uﬁ+jaﬂm
r
dUSIm *1pIm 1 Im Im Im *11Im Im *.2
r = (12+4K)7 UM —6Lp UM +UM 4 LU — p UM +5p™gr (E3.10)
dUzltm *1pIm *1pIm Im Im *1 1 Im
r g =6+ 207U ~2(2L -1y U U - 207 - U
r
Im
rdU5=U?+U?
du.

r = LU —4zysp™r?

dr

where /f(n::BLQ- [gxn::gggj is the dimensionless radial density
Po 0

(acceleration of gravity) function, p, (g,) is the mean mantle
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density (acceleration of gravity on the Earth surface) and

k(nzzg%gﬁhgl is the mantle compressibility.

Boundary conditions:
Ul(re) = Ul(rc) = O
U,(r.)=U,(r.)=0 (free-slip condition)

U4(rc):O - -y =
(no-slip condition) (E3.11)
UZ(re):Uobs
Aan.p (r
Uy(r) =1 +0U, (r,) - 2702 )y
g (r.)
4w p (1)
U.(r)=(01-3U.(r.)————~2U(r
6(0) ( ) 5(c) g*(rc) 3( c)
where r. and r. are the relative values of the radius on the

e c

surface of the Earth and the core, correspondingly.

The ODE system of the sixth order (Stokes + Poisson) must be
solved for each harmonic mode (I (degree), m (order), i1 (qualifier

of spherical function)).

3.3 Direct method for solving the Stokes equation.

In case of only radial viscosity variant, the Stokes equations
(continuity and momentum) together with Poisson’s equation
(gravity field flux) including effects of compressibility, self-
gravitation and depth-dependent gravity can be solved by a direct
method of solving the ODE system for each spherical harmonic mode.
Thus, applying the direct method of Godunov (Godunov, 1961) to the
ODE system E3.10 for each couple of harmonic order m and degree

1<l :

— “max

y'=A(r)y+ f(r) (E3.12)
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-2-k L 0 O 0
-1 1 0 { 0
N N n
where A(r)=| 12+4K)n —6L7 1L 0 -p| and
_(6+2K)7° 2L-1y" -1 -2 —p° 0
0 0 0 O 1 1
0 0 0 O L 0

f (r) = (0,0, 5p|mg*r ’0,0,_4717/5plmr3)T
with boundary conditions E3.11:

By(r,)=b (on the boundary between core and mantle) (E3.13)
Cy(r,)=c (on the surface of the Earth),
10 0 0 0 0 0
where B=|0 0 0 1 0 0| and b=|0 (E3.14a)
00 Mﬂi—p(rc) -(1-3 1 0
g (r.)
10 0 0 0 O 0
C=/0 0 0 1 0 0] and c=|0 (E3.14b)
Mm;—p(re) 0 I+1 1 0
g (r.)

in the range r.<r<r, of the relative radius values.

is that the
preceding ODE system comes down to the Cauchy problem,

The main objective of the direct Godunov method
which can
be solved by any of the well-known methods (e.g-
method) .

conditions on one of the boundaries (on the surface or core-mantle

Runge-Kutta
For this purpose we must redefine some missing boundary
boundary).

Therefore, three boundary conditions from the core

[r..r.]
the

determined on the surface and, as a result, our problem turns into

boundary

c

from the range are 1imaginary shifted to the

surface boundary. Hence, missing boundary conditions get

the ordinary Cauchy problem, which can be solved for every value

of relative radius rejr,r].

In the first stage the Tfundamental system of solutions of the

homogeneous equation system By=0 must be built. As can be readily
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appreciated, both boundary conditions (surface and core-mantle
boundary) give us homogeneous systems E3.14a and E3.14b:

Vi

10 o o0 o o]
oo o 1 o of%l=0 (E3.15)

0 0 P _g_g 1|

g, Ys

Ys

Obviously, all the rows of matrix B are linearly independent,
therefore, the rank of the matrix B is equal to 3 (|B|=3). Hence,

the number of solutions comprehended by the fundamental system of
solutions of E3.15 is equal to the number of surface boundary

conditions.

The fundamental system of solutions vy =(y;,y,,Y¥;) of By=0 can be
easily found by Jordan’s method of exclusion, for example. As
readily observed, y,=(00000,0) is the particular trivial solution
of the heterogeneous system By=»Db.

In the second stage of Godunov’s method three Cauchy problems in
the following form:

y'= A(r)y (£3-16)
y(r,)=vy;,i=123

and one Cauchy problem in the form:

y'=A(r)y+ f(r) (E3.17)
y(r) = Yo

must be solved.

In this way we can get the set of solutions y,(r),..,Y,(r),y,(r) for
each value of radius re[r,r,]. Taking Into account the obtained sets
of solutions y,(r),.. Yy, (r) of the homogeneous Cauchy problem E3.16 and
the solution y,(r) of the heterogeneous Cauchy problem E3.17 we can

find the general solution:

y(r) =dyy, () +...+dy, (1) + y,(r) (E3.18)
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From the way the selection of the vectors y,,.,Y.,Y, was done, it
follows that the general solution satisfies the core-mantle
boundary condition for any set of d,,..d,. Thus, it 1is only
necessary to find the values of coefficients d,,..,d, . The required
coefficients can be found from the surface boundary condition
E3.14a, E3.14b:

Cy,(r,)d, +...+Cy, (r,)d, =c—Cy,(r.) (E3.19)
The values d,,..,d, can be obtained from the solution of the linear

equation system E3.19.
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Chapter 1V

Mantle compressibility and self-gravitation

The comprehension of the effects of mantle compressibility and
self-gravitation i1s of special importance In my study since the
particular contribution of each of these effects to the mantle
flow and geoid figure has been found extremely significant. An
introduction of these effects iIn the new generation of the FE
method is accompagned by a certain number of problems. A direct
incorporation of self-gravitation and mantle compressibility
effects 1i1nto FD (finite-difference), FE and FV methods 1is
impossible, consequently, we would have to fall back upon an
iterative approach if using one of these methods. The grounds for
the complications are concealed in the nature of the effects.

4.1 Geoird and geoid undulations.

Although the Earth 1is not flat or egg-shaped, as previously
believed, neither i1s it precisely a sphere or even an ellipsoid.
Mountains, ocean basins and variations in the crustal thickness
contribute to the observed irregular shape and gravity field of
the Earth, but they cannot explain the long-wavelength departures

from a hydrostatic figure.

The geoid 1is the equipotential surface of constant potential
energy, which coincides with the mean sea level iIn the oceanic
regions if neglecting the dynamic perturbations. The geoid anomaly
iIs the variation of the height of the geoid with respect to a
reference model. There are two principally different reference
models: one is used in geodesy (a mathematical model of the world
called an ellipsoid), the other 1is wused 1iIn geodynamics (a

hydrostatic spheroid).

The geoid anomaly represents the effects of lateral density
variations in the Earth. With the advent of the Tfirst seismic

models of seismic tomography, it was noticed that long-wavelength
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geoid lows correlate with seismically fast and therefore,
presumably cold and heavy regions of the lower mantle, and vice
versa, the highs of long-wavelength geoid correlate with
seismically slow and light regions. This is the reverse of what
would be expected in an undeformable Earth, where the geoid would
exhibit a positive correlation with internal density anomalies. In
order to calculate ~correctly the geoid due to mantle
heterogeneities, it 1iIs essential to consider contributions of
both, the internal density anomaly and the boundary deformations
associated with flow induced by the anomaly.

For the spherically symmetric rotating Earth (simplification
applied for the global modeling) the geoid shape can be derived

from the Bruns formula (Heiskanen and Moritz, 1967) <%:>@£, where
g

g 1is the theoretical gravity on the surface of the spherical
Earth, oV 1s the angular-dependent component of the gravitational
potential and & 1is the departure of the geoid from a sphere. In
general and in practice the geoid undulations are denoted by N.
They represent the departure from an ellipsoid and can be

calculated by the Stokes formula.

The most recent gravity fTield combination models, for example
model EIGEN-GLO4C (a combination from the GRACE and LAGEOS mission
results plus 05°x05° gravimetry and altimetry surface data)
developed by GFZ Potsdam and GRGS Toulouse, possess very fTine
resolution (Flechhtner et al. (2007); Forste et al. (2007)).
EIGEN-GLO4C 1s complete to degree and order 360 in terms of
spherical harmonic coefficients and thus, resolves geoid and
gravity anomaly wavelengths of 110 km. Such a fine resolution is
surely not required in the global modeling because, at present, we
are not able to predict the geoid with such accuracy due to a lack
of precision 1In seismic tomography data. Solving an inverse
problem (Chapter V1) in order to obtain the best fit of the
calculated geoid to the observed geoid, we use the above-mentioned
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gravity Tield combination model only up to spherical harmonic
degree 20 in the least-square adjustment.

The long-wavelength features of the dynamic geoid contain the
gravitational signal from deep-seated Ilateral mass and density
inhomogeneities sustained by dynamic Earth mantle processes. To
interpret the observed geoid with respect to mantle dynamics and
structures, 1t 1is essential Tirst to remove the lithosphere-
induced anomalous gravitational potential, which is generated by
the topographic surface load and 1i1ts isostatically compensating
masses. Based upon the most recent global compilation of crustal
thickness and density data and the age distribution of cooling
oceanic lithosphere, residual topography and gravity are
calculated by subtracting the “known” crustal and oceanic
lithosphere compensating masses and gravitational effects from the
surface fields (Kaban et al., 1999, 2004). The resulting isostatic
model of the Ilithosphere 1is supposed to be valid for spatial
wavelengths longer than 500 km. The 1isostatic lithosphere model
field, expressed in terms of geoid heights, is subtracted from a
satellite-derived Ilong-wavelength geoid to yield the isostatic
residual geoid (F4.1). Applying the 1isostatic correction, the
overall pattern of the geoid becomes smoother and the most
pronounced features, which are separated in the observed geoid,
tend to get connected to larger structures.

In the active tectonic areas the isostatic geoid reduction ranges
from -18 to +43 m. The maximum value is reached in Tibet, while
the large negative values mostly extend over “old” ocean areas
with a deep ocean floor. The difference in an isostatic reduction
of 20 m between the oceanic ridges and the old ocean purely
reflects the isostatic balance of the oceanic lithosphere.
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Figure (F4.1) Isostatic reduction of the geoid (Kaban et al., 2004).
(a) Geoid (from the spherical harmonic global geopotential model to
degree and order 180).
(b) Isostatic geoid anomaly.
(c) The geoid effect of the isostatically compensated lithospheric
model .

In this study we investigate the effect of LVW on the non-
isostatic geoid, which does not comprise the terms C, and C, . The
origin of these terms iIn the observed geoid relative to a
hydrostatic spheroid is not completely comprehended, yet

(Nakiboglu, 1982; Mound et al., 2003). Furthermore, the terms C,

and C,, dominate 1in the observed non-hydrostatic geoid, their
globally estimated root mean square (RMS) is equal to 28.5 m,
which is almost identical to the RMS of the other terms (31.8 m).
The modeling of the terms C, and C, requires precise knowledge of
seismic velocity anomalies iIn the polar areas, which are not
sufficiently resolved iIn the existing global tomography models,
therefore, their amplitudes might be significantly reduced due to

damping.
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4.2 Mantle compressibility and self-gravitation.

Here 1 summarize two special physical effects (mantle
compressibility and self-gravitation) that give mantle convection

its unique character.

1) Mantle compressibility:

Compressibility affects convection through the complex interplay
of a number of material properties and the distribution of heat
sources. Compressibility enters into the flow problem directly,
through the system of equations governing flow (E3.12) in three
fundamentally different ways. First, through 1its effect on the
flow field — in order to conserve fTlux, flow velocities decrease
as the density increases with depth. Second, there is a less
direct effect of compressibility on the stress due to self-
gravitation. Finally, there is an indirect effect of
compressibility on gravitational acceleration g(r) (Corrieu et al.
(1995); Panasyuk et al. (1996)). The Ilatter effect 1is very
important since ¢(r) enters into both, the body force terms f(r) in
E3.12 and the relation between stress and dynamic topography. The
effect of compressibility is significant in the mantle convection
because the density of the Earth’s mantle increases by about 60%
from the top of the mantle to the bottom (F4.2) since a parcel of
mantle that flows from the uppermost mantle to the core-mantle

boundary almost doubles iIn density.

The nature of radial density variations in the Earth has been

explored with the aid of the radial profiles of compressional V,

and shear V. wave velocities, experimental and theoretical

information on chemical composition of the mantle rocks. The
comprehensive analysis has concluded that the Earth’s density
increases with depth mostly due to mantle compressibility and

phase transitions.
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Figure (F4.2) Radial density distribution according to PREM (Dziewonski and
Anderson, 1981).

The radial variations in density p can be expressed in terms of
the pressure p and the entropy s:

dp _(op %j{@_ﬁj ds (E4.1)
dr op ), dr os ), dr

where r is radial coordinate, (*); ((*),) means isentropic (isobaric)

variations — a reversible process without heat transfer (process
with constant pressure).

The laboratory experiments and theoretical studies have shown that
thermal expansivity in the Earth’s mantle decreases with depth due
to compressibility of rocks under high pressure. Altgough the
depth dependence of thermal expansivity should be taken iInto
account iIn realistic models of mantle convection, the variations
of thermal expansivity with depth do not have a major influence on
the style of mantle convection. Variations in viscosity with depth
are much more important.

Mantle compressibility 1i1s defined by the character of radial

density p (r):

_dinp’(r) _ 1 dp'(n)
k()= dinr ~ p'(r) dr (E4-2)
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Figure (F4.3) Mantle compressibility corresponding to the radial density in
figure (F4.2).

2) Self-gravitation:

The effect of self-gravitation 1is directly correlated with the
lateral gravity variations 1in the Earth. We can schematically
describe the process of appearance of lateral gravity variations

as a sequence of events:

(a) A spherically symmetric field is heated from below => (b)
Convection occurs => (c) Flows appear => (d) Density and
temperature distribution gain lateral variations inside the sphere
=> (e) Surface and core boundaries are distorted.

Convection itself and consequent density redistribution lead to
alterations i1n boundaries of surface and core. Changes 1iIn
boundaries and temperature distribution react against the
spherically symmetric initial state of gravity and lead to a rise
of 1ts lateral variations. The forces acting on the internal mass
are to be transformed by a change of gravity. Therefore, the
mantle flows are corrected by the new distribution of the forces.
Due to gradual correction of the flows the boundaries are
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distorted more and more, consequently gravity distribution is also
changed. Thus, the process of introduction of self-gravitation

effect represents a vicious circle.

4_3 Effects of mantle compressibility, self-gravitation and depth-
dependent gravity on the mantle velocities and geoid.

The opinions differ on the importance of the effects, which |
attempt to analyze i1n this chapter, for the global modeling of
mantle convection and the most sensitive constraints. The thing is
that an incorporation of the effects (compressibility and self-
gravitation) into wide-spread methods, based on FE and FD, 1is
concerned with grand problems. Thus, a presumable dramatic effect
of self-gravitation on the geoid would tie up maneuverability of
the mentioned methods while attempting in-depth study of the deep
Earth’s structure with the aid of the methods mentioned above.

In order to remove the effects of self-gravitation and mantle
compressibility from our methods we need to apply some
simplification to the equation system (E3.10) and the boundary
conditions (E3.11):

rim
,f£L=_@E@UP+LUP
dr i

{f{"?im Tint Tim 1 Tint
POV gy gy Ly
dr 7

f{.—"’ s o * * s 3 ! " = * 9
s =12’ U™ -6Ln’Usy +U" + LU + pE" v Sp™g'r?

r
1

i e
rdL’:—m¥2@fﬁﬁ—ZQL—UEUT—U?—2UP~pmﬁ
ar e

dqu

{/I.';’m 4§ (/_.'ém
dr ‘

r

rim
du!
dr

Figure (ES4.1) Removal of mantle compressibility and partial self-gravitation

r = L[I‘r.‘-{“: —42'}’0‘[?!'"?'3
effects from the equation system.

Blue lines mark the terms in the equations responsible for the

effect of mantle compressibility. These terms disappear
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automatically if we assume the radial density function to be

constant.

As shown iIn Part 4.1 the effect of self-gravitation is double-
faced:

- In order to exclude partial effect of self-gravitation due to
redistribution of the forces and lateral gravity variations,
which 1s of the most interest for us, we need to disconnect the
Poisson equation from the Stokes equation by the removal of
geopotential-related terms (marked by red crossed lines) from
our equations for mantle flows and stresses.

- The other connection between the equations comes from boundary
conditions. An enormous trivial effect of boundary distortion
can be excluded if we put away the influence of dynamic
topography (not affected by gravity) on geopotential through the

boundary conditions.

The Hlatter effect can easily be modeled by any numerical method
(spectral method, FE and FV methods) since the Poisson equation
can be solved separately from the Stokes equation using the
resulting topography obtained from the Stokes equation. As the
main goal of this chapter is to show how important the complete
effect of self-gravitation on geoid and mantle flows is, | try to
analyze only the partial effect, which cannot be reproduced by FD,
FE and FV methods directly. This effect can be modeled only if
both Poisson and Stokes equations are beling solved
simultaneously. Therefore, the boundary conditions remain
unchangeable (E3.11), and only the equation system is simplified
by the removal of two terms (as shown in figure (ES4.1) by red
lines) to uncouple the Stokes and Poisson equations.

Two models (artificial and realistic) have been considered to
reveal the contribution of each effect on the mantle velocities
and dynamic geoid. Within each model different combinations of

effects were analyzed:
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(a) No-effect model: no mantle compressibility (radial density is

kg

constant ;Xr):;%=:4430{—3}), no self-gravitation and no radial
m

gravity change (radial acceleration of gravity is constant
_ m
g(r)= 10[5—2} )-

(b) All-effect model: all three effects are included.

(c) No-compressibility model: all effects are included except for
compressibility.

(d) No-self-gravitation model: all effects are included except
for self-gravitation.

(e) No-radial-gravity model: all effects are included except for

depth-dependent gravity.
1) Artificial model.

The Tirst simple set of symmetric models i1s aimed at isolating
each particular effect from objectionable influence of other
effects and some casual impacts of viscosity variations.

I have considered a set of models with the following input data:

- Radial density profile from Figure (F4.2)
- Density anomaly: 5p=Y211(6’,g0)=N21P21(COSH)COS¢:ESiﬂZO*COSq)

- Viscosity 7 (r)=1

Bl a8 o as 8

Figure (F4.4) Density anomalies:

52
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Left:

Cross-section through the longitudes 210 (left semicircle) and 30 (right
semicircle).

Right: View from the surface (these density anomalies are kept at all depths)
Mantle velocities:

5018
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Figure (F4.5) Velocities near surface and core: black arrows — (@) no-effect
model; red arrows — (b) all-effect model.
Top: Surface velocities:

(a) no-effect model (maximal velocity value 683944 mm/year).

(b) all-effect model (maximal velocity value 768130 mm/year).
Bottom: Velocities near core:
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- (@) no-effect model (maximal velocity value 806650 mm/year).

- (b) all-effect model (maximal velocity value 749504 mm/year).
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Figure (F4.6) Profiles for lateral velocity components on the surface (Figures A
and C) and near the core (Figures B and D) along the blue lines in figure
(F4.5).
- black curve — (a) no-effect model.

- red curve — (b) all-effect model.

The resulting values of mantle velocities [mm/year] and dynamic
geoid [m] seem to be very huge since we consider an artificial
model with very low constant viscosity (all through the mantle
7(r)=10") and unnaturally great density anomalies (1000 times

greater than iIn reality).
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Figure (F4.5) represents the surface velocities and velocities
calculated near the core for the models (a) no-effect model and
(b) all-effect model. The maximal surface velocity values obtained
from the model (b) near the surface of the Earth are approximately
12.3% higher than those from the model (a@). Near the core the
situation is quite the opposite: the no-effect model (a) gives
7.6% greater velocity values than the all-effect model (b). Thus,
the no-effect model (@) produces rather significant difference
between surface velocities and velocities calculated near the core
(the latter ones have approximately 18% greater values). In the
meanwhile the all-effect model (b) gives almost equal values for

both: velocities near surface and core.

JJJJ{;’::”.W_”;
e u i! T
IR t1LAA IS ‘,””

A AT

AT

Figure (F4.7) Velocity distribution in the cross-section (F4.4 Left) for the

(a) no-effect model: the following velocity profiles have been calculated in

the areas marked by white lines.

- Cross-section (60): Blue arrows point at the cross-section through the
latitude 60.

- Cross-section (90): Vinous arrows point at the cross-section through the
latitude 90.
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Figure (F4.8) Velocity components in the cross-section (60) and differences
between models with various effect combinations:
Velocity components for models (a) and (b):

A) Radial velocity component V, .
C) Lateral velocity component V,.
E) Lateral velocity component V¢-

- Black curve — (@) no-effect model
-  Red curve — (b) all-effect model
Differences for models (b) and (a), (b) and (c), (b) and (d), (b) and (e)

between:

B) — radial velocities V,.
D) — lateral velocities V,.

F) — lateral velocities V.

Figures B, D and F: Impact of different effects (Red curve — contribution of all
effects; Light blue curve — contribution of mantle compressibility; Green curve

— contribution of self-gravitation; Dark blue curve - impact of radial gravity).
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Figure (F4.9) Velocity components for cross-section (90) and differences between

models with various effect combinations (analogously to (F4.8)).

Figures (F4.8) and (F4.9) represent the particular contribution of
the effects of mantle compressibility, self-gravitation and depth-
dependent gravity on velocity distribution. According to the
figures almost all the changes iIn velocity distribution occur due
to mantle compressibility. Contribution of depth-dependent gravity
to velocity distribution is negligibly small (less than 1%) and
can be taken as insignificant. Although the effect of self-
gravitation on the mantle velocities 1is not of the major
significance, 1t 1is obviously much more substantial than the
effect of depth-dependent gravity: on the radial component of
velocity approximately 20% (of the change due to all effects), on
both lateral components - 13%.
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Geoid:
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Figure (F4.10) Geoids for model (&) no-effect and (b) all-effect and difference

between them.

Top left: (@) no-effect model.

Top right: (b) all-effect model.

Bottom: Difference between (b) all-effect and (&) no-effect models {(b)-(a)}.-
Impact of all effects on the geoid figure.

Figure (F4.10) represents geoids calculated for (a) no-effect and
(b) all-effect models. The difference between two geolds is
visible to the naked eye. Geoid highs and lows are significantly
intensified by an incorporation of mantle compressibility, self-
gravitation and radial gravity compared to the initial geoid

figure.
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Figure (F4.11) Impact of various effects on the geoid: models (b), (c), (d) and
(e) are involved [in meters]:

Top: Impact of mantle compressibility on the geoid figure.
Center: Impact of radial gravity on the geoid figure.
Bottom: Impact of partial self-gravitation effect on the geoid figure.
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Figure (F4.11) demonstrates how large the contribution of each
effect i1s. The effect of self-gravitation is obviously very high:
the change of the geoid figure occurred due to only self-
gravitation effect exceeds 26% of the geoid calculated with all
the effects (model (b)). We can conclude that the effect of self-
gravitation may not be neglected while modeling the geoid figure.
The effect of compressibility on geoid 1is comparable with the
effect of self-gravitation (22.5%) in this model. Complete neglect
of depth-dependent gravity effect results iIn 6.5% error in the
geoid figure. As 1i1s easy to see the effect of depth-dependent
gravity on geoid intensifies a huge effect of self-gravitation
while the effect of mantle compressibility reduces it. The rights
of such a correlation between the effects can be verified by the
next set of tests developed on the base of real data. We can also
conclude that these effects are not additive, otherwise the
resulting difference between the geoid calculated for (b) all-

effect and (a) no-effect models would be much smaller.
2) Realistic model.
A set of models based on..

- Density anomalies (F4.13) from the S20 seismic velocity model

- constant scaling factor equal to 0.2

- radial density profile from figure (F4.2)

- radial viscosity profile (F4.12), which gives a rather
reasonable fit to the observed geoid (approximately 78%)

..has been analyzed for the purpose of investigation of the mantle
compressibility, self-gravitation and depth-dependent gravity
effects on realistic models.
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Figure (F4.12) Radial viscosity profile (relative values 7 (r)).
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Figure (F4.13) Density anomalies: cross-section through the longitudes 210 (left
semicircle) and 30 (right semicircle).
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Mantle velocities:

SERELERT

in cross-section (F4.13) for the model (@)

Figure (F4.14) Velocity distribution
in the areas

no-effect: the following velocity profiles have been calculated

marked by pink (cross-section #=60°&@=30°) and light blue (cross-section

0=90°& @ =30°) lines.
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Figure (F4.15) Profiles for horizontal velocities [mm/year] U, (Top) and u,

(Bottom) in the areas marked by lines in figure (F4.14): cross-sections
0 =60°& @ =30° (Left) and € =90°& ¢ =30° (Right).

Black curve: (a) no-effect model.

Red curve: (b) all-effect model.

Green dashed curve: (c) no-compressibility model.
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Figure (F4.16) Veloci

black arrows — (a) no-effect model.

red arrows — (b) all-effect model.
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Figure (F4.17) Differences between horizontal velocities calculated for the
models (a) no-effect and (b) all-effect [mm/year].
Left: near surface boundary

Right: near core boundary

Analogously to the mantle TfTlows calculated for the artificial
model 1) mantle velocities are highly affected by mantle
compressibility (F4.15), the contribution of which is large 1in
both, the uppermost and lowermost layers (F4.16 and F4.17). Since
the distribution of the flows is rather intricate in the realistic
models i1t is difficult to analyze the mean contribution percentage
of the effects on it. The maximum change in horizontal mantle
velocities near the core-boundary exceeds 40% of the maximum
velocity value while the contribution of the effects 1In the
uppermost layers is approximately 15% of the maximum velocity
value. According to (F4.15) both components of horizontal velocity
are almost doubled by the effect of mantle compressibility due to
the redistribution of the global flows but the conclusions depend

too much on the particular choice of the cross-sections.
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Geoid:
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Figure (F4.18) Geoids calculated for models (a) no-effect model and (b) all-
effect model and difference between them [meters].

A) (a) no-effect model.

B) (b) all-effect model.

C) difference between (b) all-effect and (a) no-effect models.
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Figure (F4.19) Impact of each effect on the geoid figure [meters].
A) Impact of mantle compressibility (difference between models (b) and (c))
B) Impact of radial gravity (difference between models (b) and (e))
C) Impact of self-gravitation (difference between models (b) and (d))
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The effect of self-gravitation iIn this model is even greater than
in the artificial model considered above. The effect of self-
gravitation plays an important part in the shaping of the dynamic
geoid (61.6% of the resulting geoid) and by no means may be
neglected. The iImpact of the other two effects into dynamic geoid
can be estimated in terms of relative changes of the maximum geoid
heights i1f removing separately every effect from the (b) all-
effect model (F4.19). The impact of mantle compressibility to the
geoid Ffigure (F4.19A) is approximately a third part of the maximal
geoid heights (approximately 38%), therefore, this effect also
plays a substantial part in the total shape. The disturbance of
the geoid figure due to radially variable gravity is less than 5%
but even this relatively small contribution can be significant for
the accurate modeling of the geoid anomalies. The correlation
between the effects of self-gravitation and mantle compressibility
is partially kept 1in the case of realistic model: mantle
compressibility significantly reduces effect of self-gravitation
that i1s why the contribution of self-gravitation into the geoid
figure exceeds the contribution of all the effects.
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Chapter V.

The introduction of lateral viscosity variations.

The iIntroduction of 3-D viscosity structure is bound up with some
difficulties 11f considering the Stokes equations 1n spherical
harmonics. For radially symmetric viscosity the harmonic modes are
decoupled, therefore, the Stokes equation can be solved directly
for each harmonic mode (as i1t is described iIn Chapter I111). As
soon as laterally variable viscosity 1is involved, non-linear
coupled terms appear iIn the basic equations because all spherical
harmonics are coupled with LVV. One possible way to cope with the
difficulty is to apply an iterative method in order to approximate
to required equation solution by an iterative approach.

In this chapter |1 consider a compressible Tflow in a self-
gravitating spherical shell with 3-D viscosity distribution
n=n(r,0,p) . Therefore, once more 1 have to revert to the equation

system, which comprises the Stokes and Poisson equations expressed

via the means of mantle flow velocity u=(u,u,u,), total stress

tensor o; and geopotential V:

ou

u, o Ny e, Mo | KO (E5.1a)

r or r{ o6 sind op r
oo or r Or oV

O=r>2->"4 o 4 Y +r(20. —0,, +o_ +71.,ct90)+r’o——r’003 (E5.1b
8r ae Sin0 a¢ ( r 060 oQ ré g ) p ar m ( )
or oo r Or, _oV

O=r?—rr—% ? +r(o,,Ctgf —o ctgf@+37r.,)+rp— E5.1c
ar 69 Sine a¢ ( 00 g [ g r@) p 69 ( )
or or oo )

O=r>_—""2 4%, .r ¢¢+4131w-+2qMMQ0)+—££—§Y- (E5.1d)
or 060 sin@ O siné op

o 20V L?

+ o2~V =456 E5.1e
o ror r? r ( )
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5.1 Iterative methods for incorporating lateral viscosity

variations.

Two iterative methods U-transform and W-transform suggested by
Zhang and Christensen (1993) for the incorporation of the LWV
effect into the incompressible mantle will be completely analyzed
in order to derive true formulae for non-linear coupled terms.
Both methods were improved by the incorporation of the effect of
mantle compressibility into them. Our detailed tests have shown a
colossal difference between the results obtained from the initial
methods for the same models on the contrary to the comparative
analysis, which was put into practice by Zhang and Christensen
(1993). As a result we had to derive all the equations and
formulae from the very beginning. In both methods published by
Zhang (1993) and Zhang and Christensen (1993) essential misprints
were revealed that might play a crucial role in the published
conclusions. First of all, a simple model with long-wavelength 3-D
viscosity distributions (up to six spherical harmonics) stated by
Zhang (1993) was analyzed (see Part 5.4). Using the formulae
published by Zhang (1993) and Zhang and Christensen (1993) has led
to the results remarkably different from those published by Zhang
(1993). At the same time the results produced with the aid of each
of foregoing methods also differ from the results published by
Zhang (1993). This fact prevented us from determining what
formulae were used by Zhang (1993) to derive the published results
in reality. The new-derived formulations of U-transform and W-
transform iterative methods were applied to the aforementioned
simple models. Both new-derived methods produced the results
though i1dentical to one another but again dissimilar to the data
published in the PhD thesis by Zhang (1993). Furthermore, a
comprehensive set of different viscosity models was elaborated in
order to compare the efficiency of the new realizations of U- and
W-transform (see Part 5.4). The thorough analysis showed good
agreement between the results produced by the new realizations of
U- and W-transform methods. In a few words both new method
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realizations gave almost identical results (difference less than
1%) for the models with identical input data.

Based on analyzed tests we arrive at the following conclusions:

- The new realization of the U-transform method provides the
possibility to model 3-D viscosity structure with high
viscosity contrasts. The convergence of the iterative method
Is steady even for models with a rather high resolution (up
to 180 spherical harmonics) and viscosity contrast of seven
orders of magnitude. The comparison of the new-derived
iterative method with the FE method CITCOM (Zhong et al
(2000); Tan et al (2000); Rogozhina et al. (2005, 2006);
Baranov et al. (2007)) revealed good accordance between both
methods.

- The new realization of the W-transform method is applicable
to the 3-D long-wavelength models with input data smoothed to
a certain spherical harmonic degree (for various models the
limitations are different). But i1t fails to handle models
based on the present-day seismic tomography data as well as
synthetic models of rather high resolution. In this case the

iterative process diverges.

The main distinction between the U-transform and W-transform
methods originates from the different representation of mantle
velocities and the 3-D viscosity distribution. The W-transform
iterative method modifies velocity flow for account of LVV already
on the Ffirst step of the iterative process. The main idea of this
iterative method is to smooth the initial rough approach away and
to reduce the primordial exaggerated effect of LVV on the velocity
flow. On the contrary, the U-transform method as a typical
iterative method i1mplies an approach through an iterative way
directly from the initial state and modifies velocity distribution
obtained Tfirst for radial viscosity distribution, then changed
step by step due to LVV.
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The schemes used for both U- and W-transform iterative methods are
ultimately rather similar. The initial solution (different for two
iterative methods) for radial viscosity distribution (Chapter 111)
is modified to account for the effect of LVV. The non-linear
coupled terms, appearing in the basic equations due to LVV, are
shifted to the right-hand side and the equations are solved
iteratively using the standard technique. The additions to right-
hand side terms are calculated on the base of the results of the
previous step. Hence, we must solve two equation systems for
spheroidal and toroidal components of velocity and stress
considering the appearance of a set of viscous terms. All the
deductions for the new realizations of the U- and W-transform
methods are stated bellow (Appendix U and W).

The equation system for the spheroidal components of mantle

velocity and stress for both iterative methods:

Im
Y _ —(2+kU," + LU, + A
Im
rgﬁL:—UF+U?+-{UP+B;
dr n
Im
L (12+4K)p'U," 6L U +U" + LU, = p'U" +3p™g ' r? +C,., (E5.2)
Im
r " _ —(6+2k)" U™ —22L-)nU)" —U —2u," - p'U + D,
Im
r 9Ys =U"+U¢"
Im
r d:JS = LU} —dzysp™r®
r

Boundary conditions:
U,(r,)=U,(r,)=0
U,(r,)=U,(r,)=0 (free-slip condition)

U4(rc) :O
U2(re) =Usph

obs

(no-slip condition) (E5.2a)

Uy(r) =~ +1)u5<re)—%u3(re)

e
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U, () = (1-3)U,(1.) —%ug(m

C

The equation system for toroidal flow:

Im
r AW, =W," Jri*wz'm +E™ (E5.3)
dr n
dw,™

r

=(L-2)p' W™ —2w," + F'"
r

with boundary conditions:
W,(r,)=W,(r.)=0 (free-slip condition)

WZ(rc) =0
Wl(re) :Utor

obs

(no slip condition) (E5.3a)

Applying a change of variables Zz"=U", z=U)", ZzZI"=Ul"+pU,
z"=uy, zr=w", zr"=w, z"=U" and Z)"=U)" to the equation
system E5.2 we arrive at a universal system describing both

spheroidal and toroidal components of mantle velocity and stress
together with geopotential:

Im
r 3%, =—(2+Kk)Z" +LZ)" + A" (E5.4a)
r
Im
r 922 =—zl'm+z;m+i*z;m+8'm (E5.4b)
r n
dzém *= Im *= Im Im Im *= Im Im*.2 Im
r =(12+4K)p 2" —6Ly'Zm + ZI" + LZI" —kp ZI" + 5p'"g r? + C (E5.4c)
dzzltm *—= Im *— Im Im Im Im
P =6+ 2K 2" 2L 1)y 7" - 25" ~227 + D (E5.4d)
Zlm
rdd—5=z;m+ 1*ng+E'”‘ (E5.4e)
r n
dz(lim *= Im Im Im
r =(L-2p'zim—2z" + F (E5.4F)
Im
9% =7 +Z] (E5.49)
dzf;m Im Im .3
r 5 =LZ;" —4rnyop™'r (E5.4h)
r

With boundary conditions modified by change of variables:
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Z,(r,) =Z,(r.) =0
Z,(r,)=2,(r,)=0 (free-slip condition)
Z6(re) = ZG(rc) :O

Z4(rc):0 - =4 =
{Z U):ﬂJmh(no—sllp condition) (E5.5)
ZG(rc) = O
ZS(re) ZU;?)I;
Z,(t) = (1-3)Z,(r) - 2L ) 7 oy 7))
g (r)
Z,() = (1 +1)Z, (r.) —%(zg(re) P'Z(1))

The equation system E5.4 for spheroidal and toroidal flows in

matrix form:

z'=A,(rz+f,(r)+F,(r) (E5.6)
-2-k L 0 0 0 0 0 O
-1 1 0 { 0 0 0 O
* * 77 *
(12 +4k)n —6Lny 1 L 0 0 pk O
—(6+2K)n" 22L-Dn" -1 -2 0 0 0 O
where A, (r)= ( ) ( 7 1
0 0 0 0 1 — 0 O
o
0 0 0 0 (L-2» -2 0 O
0 0 0 0 0 0 1 1
0 0 0 0 0 0 L O
fz (r) = (0’0’5plmg*r ,010,0107_47775,0|mg*r3)T
Fz(r):(Alm,BIm,Clm,Dlm,Elm,FIm,O,O)T
with boundary conditions:
B,z(r,) =b, (on the boundary core-mantle) (E5.7)
C,z(r,)=c, (on the surface of the Earth),
10 0 0 00 0 0 0
00 0 1 00 0 0 0
where B, =10 0 0 001 0 0| and b, =|
* * 2
0 0 L) o o o g dle () X
g (r.) g (r)
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10 0 000 0 0 0
00 0 100 0 0 0
C.=l0 0 0 001 o o ofandc=,
0 0 YL ) o o g qap P ) .

g°(r.) 9°(r.)
The ODE system E5.6 with boundary conditions E5.7 must be solved
for each harmonic mode (1 (degree), m (order), 1) and each
iterative step. To solve this equation system we apply the same
technique as for radial viscosity models (direct Godunov method,
see Chapter 111).

5.2 lterative method U-transform.

The 3-D viscosity function i1s represented as a sum of radial and
lateral viscosity components:

n(r,0,¢) =1 (r) +n,n(r.0,9) (E5.8)
The nature of this representation may be actually various: the
radial component 7(r) can be chosen in different ways but we
exerted ourselves to analyze the influence of such a choice on
convergence of U-transform method. According to our research a
choice of a radial component itself does not play any role in the
resulting solution but i1t can accelerate the method convergence.

On the base of velocity distribution (stress distribution)
obtained from the initial stage we calculate the values of the

viscous terms preceded In the Appendix U.

Alm —
. 2r 2z V4 _ p o\
B :—SIn*jd¢fn@mﬂm+ewﬂmkwnﬂ0
m 0 0

2z
c =—S6—rjdgojn(e +Lu jY,m sinadd

m o o (E5.9)
[ 2r’ % 1 0 |
D" = o !d(pl(oavm +D, Y, )sin &6 - gc m
i 2r T o\
E™=- *Jd¢jn@mﬂ£—ewﬂmﬁwnﬂ0
m7 9 %
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227r V.4

F" jdgoj DY, - smé)d&
SIm 0
C (o~ k() - j
ol rne, +—=-nu ~
D 1 [77 ST +rctgOn (e, —e )+LM
o r? o0 W sing g
[ k(r) ~ )
a(rne +—"nu, ~
~ o(ne
D =i2 _1 3 +2rctgne,, +r (784,)
" r?|sing o ’ 0
Smo = 47

Sim =Smol 1 +1) =44(1+1) (s,, and s,, have been derived in Part 3.1)

where e; are normal strains (E2.10).

On each iterative step the velocity distribution generated on the
previous step iIs used for determination of new viscous terms.

Just for comparison here | quote the formulae published by Zhang
and Christensen (1993) and Zhang (1993):

A™ =0
2z T
B™ = S.fn%n !dgp!ﬁ(ereY,z +e Y. )sin Ao

cn = fdgojne”Y,m sincdo

mO

2 2r T

D" = [dp[(DZY,2 + DX°Y,2 )sin &de
m o 0 (E5.10)
2z T
E™ :sfnc% !dgp!ﬁ(ergY"’;’ —er,Yim )sin Ao

2z

j ”(Dgcv,g; —DZY,? )sin &6
0

m 0

27 e ; . 207 2 o7
D;° =Tz I_Omz_o((3zl —(2L-DZ" )’ +0.5(2 - L)Z! me)_ _(999 &)t rsinegeg’”

Zﬁ _Imax l | 2 877 2 677
Dz _ 21 32" —(2L-1)Z" )2 —05(2-L)ZI"Y? )|+ TN
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Figure (VT5.1) Misprints in U-transform method by Zhang and Christensen (1993)
and Zhang (1993). The principal misprints (missing terms or 1incorrect
expressions) in viscous terms are marked by red circles. The terms appearing due
to the effect of mantle compressibility are marked by green circles.

S0 = 4m(Z>)|= 5,0(Z>850)
qfif — m{J ](] 7 l) 4@('} 2 l) S‘J'm ﬂ

Figure (NC5.1) Misprints in normalization coefficients in U-transform method by
Zhang and Christensen (1993) and Zhang (1993).

Based on the deductions produced in Appendix U we are proceeding
to the the main conclusions about the nature of distinctions
between the method stated by Zhang and Christensen (1993) (Zhang
(1993)) and method recently derived:
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- Misprint in orthonormalization Jlaws for the spherical
functions and their derivatives result iIn reduction of all
viscous corrections for the tesseral (O<m<l) and sectoral
(m=1) harmonics by appearing of surplus normalization
coefficient 2-6,, in s =47(2-6,,) and s =4z(2-5,,)(1+1) .

- The published viscous terms have the opposite sign compared
to the recently derived. In the general case the values of
mantle velocities must be reduced by the incorporation of the
high-viscous areas 7(r,0,9)>0, consequently, the signs of
viscous corrections must be opposite to the signs of mantle
velocities.

- The loss of the coefficient=2 in all the published viscous
terms results in further reduction of viscous terms. This
coefficient appears due to the nature of the relation between
viscous stress tensor and mantle velocities.

- False understanding of the role of dynamic pressure
(spherical harmonic coefficients for the dynamic pressure
were recognized by Zhang and Christensen (1993) as the
spherical functions and expanded into spherical harmonics
once more) results i1n the wrong contribution of the
spheroidal and toroidal components.

These are principal misprints, which appeared in the description
of the U-transform iterative method stated by Zhang (1993), Zhang
and Christensen (1993). The particular contribution of these
misprints will be analyzed in details in Part 5.4 based on several
models.

5.3 lterative method W-transform.

As said above, the most principal distinction between the W-

transform and U-transform methods originates from different ways

to represent mantle velocities and 3-D viscosity. In general, the

W-transform technique pursues an idea of reduction of viscous

corrections appearing due to LVV and, consequently, a better
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convergence of the method. Under the theoretical and numerical
conclusions of this study in case of mobile small-scale viscous
rocks the effect of the first approach seems to be opposite to the
forethought advanced effect. In this case the first exaggerated
approach eventuates colossal correction values; therefore, the
method either does not converge or gives a Talse result. And in
general, the W-transform method offers a very scanty domain of
applicability according to our analysis. In Part 5.4 1 consider
different models aimed at estimating the efficiency of each
iterative method.

The 3-D viscosity function is represented as a product of radial
and lateral components:

n(r,0,9)=n(r)*n(r,0,9) (E5.11)
where choice of 7(r) can be various as well as iIn U-transform.

Thus, the 1initial velocities and a consequent approach of

velocities appear to be imaginary approximated by the viscosity
essence 7(r,0,p) :

Imax

Ve =0(r,6,0)*u, => > Z,"Y, (6,9)

1=0 m=0

I |

v, =5(r0,0)*u, = > Y [ZIY (6,90) + 22 (0, 0)] (E5.12)

1=0 m=0

Imax |

v, =7(r0.0)*u, = > Y [Zi,2(6.0) - 2™V (6,9))]

1=0 m=0
The viscous terms appearing due to LVV can be calculated with the
aid of mantle velocity distribution obtained from the previous

iterative step:

A — Sizfd(pj [77rVr +InV, +1n,V, }(,m sin&dé

m0 0 0

2z V4
B" = Si [de| (7,9, + 7. X2+ (3,3, + 1,9, )2 Jsin le

Im o 0

* 27 T * 27 4

c"= 2L jd(pjnrer,m sinad@ —6n"A™ = - /L jd(oj(i]evg +77¢V(p)(,m sinado
0

S

m0 0 mo0 0 0
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*27r

D" = jdgoj[D Y,m+D,,,Y,g;]sin6d9—%c'm (E5.13)
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E " = Si fd¢j [(UrVa +77,V, )Yln(/; - (ﬂrvzp + nqavr )eri ]Sin o

Im 0 0

*277

jd¢j[D Y, - DY, Jsinado

where 7, = olnn(r,0,9) = olnn(r,0,) , _ .l olnn(r,8,)
dinr 00 ? sin@ op
(9(77 Vv ) 1 0(m,V, +n,V,)
D, =292, 2¢ctgd(n.v, —n vV )+ 2 g
0 20 96(n,v, —1,V,) sind o0
2 (77¢, ¢,) o,y +1,V,)
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@ SlnH a g (77¢; 14 770 ¢) 89

Appendix W gives thorough comprehension of the deductions
concerned to the W-transform iterative method.

For comparison here 1 cite the formulae published by Zhang (1993),
Zhang and Christensen (1993):

B amn amﬁ olnn .
A" = Idgpr Vingl,, sinado = J.d J'{ 5 Vot 50 v, Vi Sinado
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mO 0
* 27
jdgoj' DZY,% + DY Jsinadg + 25" A" (E5.14)
SIm
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s 4 s\ ainr o0 )™ ainr " agp
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Figure (VT5.2) Misprints in W-transform method by Zhang and Christensen (1993)
and Zhang (1993). The principal misprints (missing terms or incorrect

expressions) in viscous terms are marked by red circles.
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Figure (NC5.2) Misprints in normalization coefficients in W-transform method by
Zhang and Christensen (1993) and Zhang (1993).
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The first and most obvious difference, which may attract an
attention, is the difference in coefficients s, and s, stated by

Zhang and Christensen (1993) (Zhang (1993)) 1iIn both iterative
methods and recently derived coefficients (NC5.2). According to
the formulae published by Zhang (1993), Zhang and Christensen

(1993) s =4r(2-6,,) and sk =4rx(2-5,,)I(1+1) are orthonormalization

mo0

coefficients for the spherical functions and their derivatives. In

Chapter 111, Part 3.1 orthonormalization coefficients s 6 and s,

have been derived once more from the orthonormalization laws. They
appear to differ from those stated by Zhang (1993), Zhang and
Christensen (1993) for all harmonic modes except for the zonal

harmonics: s, ,=4r and s, =4z(+1) (see Part 3.1).

The viscous terms D™ and F™ (VT5.2) in the equations for
spheroidal and toroidal horizontal stress for the W-transform
method differ from those stated by Zhang (1993), Zhang and

Christensen (1993) in the same manner as D™ and F™ (VT5.1)
derived for the U-transform method. The reason of this distinction
is also the same: false understanding of the particular role of
dynamic pressure. The rest of viscous terms appearing in the W-
transfrom method due to LVV was published by Zhang and Christensen
(1993) without misprints, except fTor the surplus normalization
coefficient 2-6,, in s =4x(2-5,,) and SpC =4x(2—5,,)I(1+1)
(analogously for both methods U-transform and W-transform). An
appearance of this normalization coefficient iIn the W-transform
method results 1in insufficient correction of the “iImaginary”
mantle velocity flows. But as soon as we try to revert back to the
required velocities by inverse change of variables, the effect
appears to be two times exaggerated, therefore, the changes iIn the
resulting mantle flows are to be monstrous. The misprints in the
published viscous terms for spheroidal and toroidal stresses
affect not only stress distribution but also the figure of the

geoid (through boundary conditions) and velocity flows.
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5.4 Application of the W- and U-transform iterative methods to

some synthetic models. Domains of method applicability.

Model 5.4a: The first model 1is aimed at comparison of mantle
velocities and the geoid obtained from the U-transform and W-
transform methods. As shown below the W-transform method may not
be applied to the viscosity models with the high constrast, it
was, therefore, decided to consider the Tfirst models with rather
low viscosity constrast (approximately 1.35 orders of magnitude).
In this case we can expect that both iterative methods provide a

perfect convergence.

The description of the model parameters:

Radial density profile p(r) from Figure (F4.2), p*ajzzp(n i

Po

where p0=44m{5%}.
m

- Density anomaly: 5p:Y211(6’,(p):N21P21(C0849)COS(p:ESiﬂZ@*COS(p for
all depths.
- Radial viscosity 7 (r)=1, 7(r)=n,=10*[Pa-s]

- 3-D viscosity distribution:

_In(lo)(1+cos49):l+cos 4¢) P 37[
S <p<— 3
T T
n(r,0,p)=mn,* LrcoshONL f 4 , —<O<—
7|n(10)( +c0s460)(1+cosdp) 571_ 772_ 4 4
2-¢ 4 ——<p<—
4 4

n(r,0,9) =n,, otherwise
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Mantle velocities:

Density anomalies Viscosity contrast

-0.018 -0.008 /] 0.008 0018 - -068 -0.38 -0.07 024

Figure (F5.1) Density anomalies and LVV [dimensionless].

Left: Density anomalies and velocities corresponding to the constant viscosity
model .

Right: LVV and response of velocity flow shown in (F5.1 Left) on appearance of
the LVV.
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Figure (F5.2) Comparison of velocity flows calculated by U-transform (black
arrows) and W-transform (red arrows) iterative methods for the model with
density anomalies and LVV shown in figure (F5.1). Green pointers mark the cross-
section for the velocity components, which are analysed in the following figure
(F5.3).
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Figure (F5.3) Cross-section marked in figure (F5.2) by green line [mm/year]:
- Green curve: velocity profile calculated for the constant viscosity model.
- Black dashed curve: velocity profile calculated with effect of LVV by U-
transform method.

- Red curve: velocity profile calculated with effect of LVV by W-transform
method.

Left: Radial velocity component U,.

Right: Lateral velocity component U,.

Cross-sections of the velocity flows represented in figures (F5.2)
and (F5.3) show good agreement between velocity distribution
calculated by the U-transform and W-transform method. The
difference between velocity distributions obtained with the aid of
two i1terative methods does not exceed 1% of the velocity values in
the area with the highest contrast but still there exists some
distinction, which 1i1s in general greater than the difference

between the calculated geoids.
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Dynamic geoid:

I
50 100 150 200 250 300 350

-400,000 -200,000 0 200,000 400,000

Figure (F5.4) Dynamic geoid calculated for the constant viscosity model [m].

50 100 150 200 250 300 350

-30000 -20000 -10000 0 10000 20000 30000

Figure (F5.5) Difference between geoid calculated with effect of LVV by U-
transform method and geoid calculated for the constant viscosity model [m].
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-300 -200 -100 0 100 200 300

Figure (F5.6) Difference between geoids calculated with effect of LVV by U-
transform and W-transform iterative methods [m].

The difference between the geoids calculated by the U-transform
and W-transform methods is rather insignificant (less than 1% of
the total change) as 1t 1s easy to see 1iIn fTigure (F5.6),
especially, compared to the 1initial geoid calculated for the
constant viscosity model (F5.4) and the contribution of LVV to the
shape of the geoid according to the resulting difference shown iIn
figure (F5.5).

Model 5.4b: Now let us look at the response of velocity flow on
LVV simulated by the initial iterative methods stated by Zhang and
Christensen (1993). This model has the same input data except for
some simplification applied to LVV: the high-viscous area (on the
right side of figure F5.1 right) is excluded from the test.

3-D viscosity distribution:

~In(10) (1+cos 40)(1+cos 4¢) 3

T JT
n(r,0,p)=mn,-e ,zécoﬁ

4
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n(r,0,9)=n,, otherwise.

ogiovisc [T 0 wooise) [T 0
4 1 -1 07 04 £1

Figure (F5.7) LVV [dimensionless] and velocity distribution calculated by
iterative methods with the initial formulae stated by Zhang and Christensen
(1993).

Left: U-transform method by Zhang and Christensen (1993) and Zhang (1993)

Right: W-transform method by Zhang and Christensen (1993) and Zhang (1993)

As explained iIn Part 5.2 the viscous corrections for the U-
transform method produced by Zhang and Christensen (1993) have the
opposite sign, which is clearly seen iIn figure (F5.7 left). The
velocity values have diminished in the low-viscosity area; that is
quite the opposite of what we can expect. 1In general, the
corrections occurring due to LVV are rather insignificant since
two coefficients in the viscous terms were lost while publishing
the methods in the works by Zhang (1993) and Zhang and Christensen
(1993) (see Part 5.2). At the same time an application of the
initial W-transform method stated by Zhang (1993), Zhang and
Christensen (1993) to the same LVV model produced far too
exaggerated changes 1i1n velocity flows (F5.7 right), that also
result from the loss of coefficients in the viscous terms (see
Part 5.3).
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Model 5.4c: The next set of models is aimed at the definition of
limitations for the U-transform and W-transform methods. The
viscosity constrast has been gradually increased from 10° till 10°.
The parameters (density anomalies, radial viscosity and density
profiles) of the analyzed models are absolutely the same as for

model 5.4a. The viscosity distribution is described by:

_In(vc)(l+cos4€):1+cos4(p) P 37[
e S <p<™ 3
4 4 T T
7(r.0,0) =10, - (1-+c0s 46)(1+¢0s 49) S0 —
—In(ve)y———>=——-—"2 57 r 4 4
2—¢ 4 T <p<—
4 4
n(r,0,9)=n,, otherwise
where VC is the viscosity contrast [10°, 107].
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Figure (F5.8) Convergence of U-transform method applied to the strong LVV (3.5,
4.2, 6 and 7 orders of magnitude) [dimensionless velocity].

The set of the profiles shown in figure (F5.8) demonstrates stable
convergence of the U-transform method under the conditions of

extremely high viscosity contrast. In case of a viscosity contrast
90
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lower than 3 orders of magnitude the number of Iiterative steps
required for convergence achievement i1s rather acceptable. But in
case of stronger LVV it goes up just like geometrical progression:
- Convergence of the U-transform method applied to the models
with LVV of 2 orders of magnitude is already achieved after
60 iterative steps;
- LW of 3 orders of magnitude require approximately 150-200
steps;
- In case of 7 orders of magnitude an 1iterative process

comprises nearly 1200 iterative steps.

The adaptation of iterative methods to the models with strong LVV
is, therefore, disadvantaged by the enormous number of iterative
steps required for the complete convergence achievement. But this
conclusion i1s only correct for the models with an analytical LWV
specification. An 1i1terative process converges rather fast even 1in
case of very strong LVV if the real data used is smoothed to some

harmonic degree.
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Figure (F5.9) Response of mantle flow on LVV (logarithmic scales) in the area

with low viscosity [dimensionless velocity].

Figure (F5.9) shows the changes occurring due to the incorporation
of the low viscosity areas with different viscosity contrasts. Up
to 4 orders of magnitude the profile 1i1s almost linear (in
logarithmic scales), consequently, we should not expect any
significant lowering of precision, but for magnitudes larger than
4 orders the linearity of functional dependence 1s gradually
distorted. The Jlack of method precision can explain this
disturbance of the profile shape as well as the change of mantle
flow behavior. According to the analysis provided by the help of
CITCOM (Moresi et al. (2005); Rogozhina et al. (2005, 2006);
Baranov et al. (2007)) the convective cells located iIn the low-
viscosity areas with a viscosity contrast of more than 4 orders of
magnitude start to behave independently of the rest of the mantle

flows.
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Figure (F5.10) Convergence of W-transform method. W-transform iterative method
does not converge for the viscosity contrast greater than 50 [dimensionless
velocity V corresponding to velocities described in Zhang and Christensen,
1993].

Figure (F5.10) shows convergence of the W-transform method under
the same conditions as the U-transform method, however, for a
lower viscosity contrast In the area with low viscosity. Based on
this figure we can conclude that at least, for some models the W-
transform method has a very scanty domain of applicability,
consequently, we cannot consider this iterative method as a high-
capacity technique.

Model 5.4d: This model has been developed to study different
behaviors of small-scale high-viscous fragments in the mantle. It
will be demonstrated by this set of models that the small-scale
fragments of high-viscous material behave i1n absolutely different
way under diverse conditions. Such parameters as density anomalies
and density radial profile remain customary for all the models
including this one.

- The radial viscosity profile is shown in figure (F5.11).
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- The small-scale high-viscous fragments are incorporated into
the 3-D viscosity distribution described in Model 5.4b with
VC=20:

a) The size of the fragment is 20° x 20° between depths of
1375 and 1625 km inside the descending flow (viscosity
contrast in the small-scale fragment 1is approximately
170).
b) The size of the fragment is 20° x 20° between depths of
2025 and 2275 km where motion changes 1its direction
(viscosity contrast 1i1n the small-scale fragment is
approximately 80).
In the upper mantle as well as in the lower mantle we can expect
presence of small-scale high-viscous fragments (viscous roots of
continents can be also considered as an application of this test)
based on the data of seismic tomography. The question is how
significant these small-scale 1mpregnations are for mantle
convection, iIn general. It i1s obvious that we cannot model such
small-scale fragments precisely with the aid of the available
seismic tomography data (mainly of very rough resolution). In the
meantime the behavior of such fragments is of utmost interest.

3000 —

2000 —

DEPTH
1

1000 —

1] 10 20 30 40
RADIAL VISCOSITY

Figure (F5.11) Radial viscosity profile.
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Figure (F5.12) Small-scale high-viscous fragments are located inside the low
viscosity area. Shown velocities correspond to the Model 5.4b with VC = 20.

Figure (F5.13) Zoomed small-scale high-viscous fragment shown in figure (F5.12
left). The high-viscous fragment (with VC=170) is situated on the way of
descending flow.

Black arrows: initial velocity distribution shown in figure (F5.12 Left)
Red arrows: velocity distribution changed by appearance of viscous fragment.
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The viscous fragment located on the way of the descending fTlow
appears to play a very small part in forming the global flow. It
seems to be pulled by surrounding mass without any significant

influence on its velocities.

Figure (F5.14) Zoomed small-scale high-viscous fragment shown in figure (F5.12
Right). High-viscous fragment (with VC=80) is situated in the area where the
global motion changes its direction and velocity.

Black arrows: initial velocity distribution shown in figure (F5.12 Left)

White arrows: velocity distribution changed by appearance of viscous fragment.

The conclusions based on the behavior of this fragment are quite
the opposite. As easy to see, the initial flow starts to change
the direction of its motion in the face of high-viscous small-

scale fragment. The change iIn motion occurs iIn advance, that 1is
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quite consistent with the physical laws. Thus, the high-viscous
fragment remains relatively motionless 1In comparison with the

surrounding mass.

Model 5.4e: Model suggested by Zhang (1993).

There arose some problems 1in comparing our results with the
results published by Zhang (1993) on the base of those published
models since no test was set irrefragably. In the PhD thesis by
Zhang (1993) there are 4 tests aimed at comparison of the U-
transform and W-transform methods:

- The first two tests are missing the radial viscosity profile,
which 1is not stated, therefore, the comparison would be
possible only 1f we guessed, which profile was meant.

- The description of the other two tests does not contain a
correct statement of density anomaly and viscosity
distributions.

Finally, we chose one of those tests (the third in the PhD thesis
of Zhang (1993), p. 32) with given spherical harmonic coefficients
for the resulting surface divergence, radial vorticity and the
geoid. There still remain some degrees of freedom in the choice of
the i1nput data since they are not set correctly. Therefore, we
cannot be absolutely sure if we have got the identical conditions
to those models considered by Zhang (1993) since the results
differ from the results obtained by Zhang.

The description of the model given in Zhang (1993):

1) Density anomaly: dp=sinzz-Y,, +Y,

2) Viscosity distribution: L =exp(C,-sp) with C, =02

o

r.—r
where z=1--¢
r.—r

e c

Since the density anomaly 1is stated incorrectly with respect to

3P} (cos) cosp,i =1

, we considered both
3P} (cos)sin p,i =2

Y., which can be ﬂu@%¢)={
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cases but the results obtained from both models were remarkably
different from those stated by Zhang (1993).

Density anomaly LWV (log10)
E = TEEaa a2 e

-1 05 a 0.5 1 1.5 2 <01 -0.05 0 0.05 01 0.15 0.2
Figure (F5.15) Density anomalies and LVV in cross-section ¢ =90°.

Left: Density anomalies and velocities corresponding to the constant viscosity
model (maximal velocity value is 686353 mm/year).

Right: LVV cross-section.

This model is rather similar to the artificial model considered in
Part 4.3. The reason for the resulting values of mantle velocities
[nm/year] and dynamic geoid [m] being so huge is also the same as
in Part 4.3.

In the PhD thesis by Zhang (1993) spherical harmonic coefficients
for the geoid, surface divergence and radial vorticity are stated.
These coefficients were used to compare the results stated by
Zhang (1993) and the results obtained with the aid of the new
formulations of the U- and W-transform methods. Both methods iIn
the new realizations gave very similar geoid figures, surface
divergence and radial vorticity (distinction is less than 1%),
therefore, the figures shown below demonstrate the results
obtained from only U-transform method.
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Figure (F5.16) Calculated geoid (new realizations of U- and W-transform method)
and geoid stated by Zhang (1993) [m].-
Left Top: Geoid calculated with the constant viscosity model
Right Top: Geoid calculated with the LV by U- and W-transform with new formulae
Left Bottom: Dynamic geoid stated by Zhang (1993).
Right Bottom: Difference between geoid calculated with the LVV (new formulae)
and geoid calculated with the constant viscosity.

The spherical harmonic coefficients for the geoid stated by Zhang
(1993) are rather shady especially compared to the coefficients
stated for the surface divergence and radial vorticity. First, the
maximal value of spherical harmonic coefficients for the
calculated geoid is -0.8268E-12, while the surface divergence 1is
described by values of an absolutely different order of magnitude:
-0.2166E+00 (Zhang (1993), p-32). Thus, the distinction between
two stated quantaties exceeds 11 orders. According to the present
study the spherical harmonic coefficients for the surface
divergence and the geoid are comparable in values. We can assume
that some normalization coefficient was used for the purpose of
getting reasonable geoid heights in the study of Zhang (1993). If
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so, a simple comparison of the geoid calculated without LVV and
stated by Zhang (1993) astonishes to the most abysmal depth:
taking into account that the viscosity constrast considered in
this model scarcely exceeds 0.3 (less than 2 times) orders of
magnitude, we could not expect such significant alteration in the
geoid Tfigure due to LVV. An obvious disagreement 1in changes
occurring in the geoid figure and the surface divergence due to
LVV sets a trap as well.

=50

50 100

-0.0205 0.0205 0.041

50

-50

-0.515 -0.2575 0.2575 0.515

Figure (F5.17) Surface divergence calculated for the constant viscosity model
and with LVV by U- and W-transform with new formulae. Surface divergence stated
by Zhang (1993).

Figures (F5.17) and (F5.18) produce a better fit between the
quantities stated by Zhang (1993) and the results of our
calculations. Surface divergence seems to be affected by LVV in
the same way in both studies. Maximal values of the surface
divergence stated by Zhang (1993) and calculated by the new

formulation of the U-transform method differ by a factor 4z . This
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difference can arise, for example, from the 1loss of the
normalization coefficient 4r appearing while spherical functions
are decomposed into spherical harmonics. Similarity in the surface
divergence calculated by the U-transform method 1i1n the new
formulation and surface divergence stated by Zhang (1993) suggests
that identical models were considered In our study and in the
study of Zhang (1993). In this case the displacement of the major
negative and positive anomalies of radial vorticity may not be
explained simply by different input data.

Figure (F5.18) Radial vorticity calculated by U- and W-transform with new
formulae. Radial vorticity stated by Zhang (1993).

Distinction between recently derived radial vorticity and the
previously published one (Zhang (1993)) can be easily observed. It
is difficult to draw any conclusion based on this brief analysis,
for the quantities stated by Zhang (1993) and derived 1iIn this
study are too different to be compared.
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Chapter VI.

Inverse problem.

To construct a global model, which can describe most
comprehensively the current structure of the Earth’s mantle, we
need Tfirst to determine velocity-to-density scaling factor using
which we are able to obtain density and temperature anomaly
distribution in the Earth, and radial viscosity profile most
consistent with the results of the previous studies, since this
problem has been already investigated iIn a number of works 1in
detail. There are basically two ways for determining a velocity-
to-density scaling factor: 1in the Tfirst approach the scaling
factor i1s estimated using a joint inversion of seismic tomography
data and surface observables (Corrieu et al., 1994), the other way
is to use mineral physics equations and experimental data (Karato,

1993). For the upper mantle we have used the results of a joint
inversion of the residual mantle anomalies and V; perturbations

(Kaban and Schwintwer, 2001). Since it is not quite clear, how
various factors influence velocity, density and temperature in the
transition zones and in the lower mantle, we use initially the
value of a velocity-to-density scaling factor at the bottom of the
upper mantle also for the transition zone and the lower mantle
(0.24), which 1s consistent with the mineral physics studies
(Karato, 1993). Then the values are rescaled iIn a least-squares
adjustment limiting a deviation from the initial scaling factor
profile in the lower mantle while giving carte blanche to scaling
parameters 1in the transition zone. The radial viscosity, which
gives the most reasonable fit to the observed geoid, is to be
determined from a Qlarge number of different profiles varying 1iIn
several layers with respect to each other (7 layers in this
study).
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6.1 Joint inversion technique.

An initial density model is produced by a simple linear conversion
of the seismic tomography velocity disturbances into density

variations ép==a?%¥§ using initial scaling factors Sc(r)=aj. The
S

dynamic geoid 1is then calculated for separate mantle layers
assuming a constant velocity-to-density scaling factor for the
given viscosity model. In this study, we chose the initial scaling
factor constant and equal to 0.24, which is rather consistent with
the assumptions of mineral physics (Karato, 1993). The initial
scaling factors are rescaled In a least-squares adjustment to get
the best fit to the observed geoid with a prospect not to wander
away too fTar from the initially chosen scaling Tfactors. The
inversion to solve for unknown scaling factors is performed iIn the
spectral domain by spherical harmonics coefficients. The
computational tests have proved that, if the area is large enough,
an inversion in the spectral domain, namely iIn the terms of
spherical harmonic coefficients, which are appropriately filtered
by a convolution with an area function, gives essentially the same
result as working directly iIn the spatial domain (Kaban and

Schwintzer, 2001). The scaling coefficients a; (to rescale the

initially adopted values of a?) are estimated in a least-squares
adjustment starting with the linear observation equations

Nope = > a;Nj™ +&"" (E6.1)
j

obs

supplemented by the pseudo-observation equations with respect to

the unknowns a,
0
0;=a;-a;+¢; (E6.2)

where N!"™ is an observed geoid for degree | and order m; N}m are

obs
geoid variations induced by a layer j.

The least-squares principle implies minimization of the function:
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zZ=Z[Né£—ZaJ—N}‘”‘] +> B, -a)f (E6.3)

where a; are unknown scaling factors and g, are damping factors

introduced to stabilize a solution.

The principle leads to a normal equation system:

Ba=c (E6.4)

where the elements of normal matrix B™" are

b, =Y N!"-N/"+s, , where Sjk:{;k(:ia‘?)k:j
J J 17

and the components of a right-hand-side vector C are

I,m I,m
C = Z Nops « Ny
I,m

I,m

where n i1s the number of layers.

The system is solved for the vector a by inversion of the normal
matrix B"™ . The parameters a; are a posteriori transformed to the
convenient dimensionless ratio

4

a.
[d'”/’j :d_/f*(_dvsj —a® ¢ (E6.5)
dinvs);, p Vs :

by computing an average density p; for each layer from PREM
(Dziewonski and Anderson, 1981). The density-velocity scaling

coefficient standard deviations Sc; resulting from the fit in the

least-squares adjustment E6.3 are then

aj 1,
Sc; =—Sa;, Sa;= |—x°q; (E6.6)
Pij f

where q; 1is a diagonal element of inverse matrix B*, and f

denotes the degree of freedom (the number of equations E6.1 and

E6.2 minus the number of the unknowns).

The pseudo-observation equation E6.2 constrains variations of the

scaling factors from the initial coefficients a?.
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6.2 Inverse problem applied to the radial viscosity models.

Since we 1iInvestigate principal 1importance of LVV in the next
generation of global dynamic models, an inverse problem is not the
main subject of the study but only an instrument to derive the
model of density distribution, which provides a reasonable fit to
the observables. 1t has been decided not to overload the initial
model by additional details, which are ill-founded. We have
emphasized 8 radial layers (upper mantle (1 layer), transition
zones (2 layers), lower mantle (5 layers)) keeping scaling factor
Sc(r) constant iIn each of layers j=1..8 and varying values in
respect to each other. As the initial parameters for an IiInverse
problem we have chosen constant scaling factor equal to 0.24. For

the transition zone layers a damping factor pj; has been taken

equal to zero, therefore, the scaling factors iIn the layers can
vary without any restrictions since our knowledge of these areas
IS very scanty. We have applied a least-square adjustment to the
calculated geoid up to spherical degree and order 10 because the
geoid has a maximum energy on the long waves. The radial viscosity
profile 7(r) varied iIn 7 separated layers (the Ilithosphere (1
layer), the asthenosphere (1 layer), the rest of the upper mantle
(1 layer), the transition zones (2 layers) and the lower mantle (2
layers)) has been sorted out from a set of 720 different
combinations. The results of the 1inverse problem previously
applied to several thousands of different radial viscosity
profiles 7(r), varied in the lower mantle, have revealed that the
best fit to the observed geoid i1s reached at the averaged values

of viscosity between 30 and 40 (averaged by n,=10") in the whole

lower mantle.
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Figure (F6.1) Scaling factors (from joint inversion), which correspond to the

radial viscosity profile in (F6.2). Red lines show scaling coefficient standard

deviations Sc; (E6.6).
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Figure (F6.2) Radial viscosity profile (red line), which corresponds to the
model with the best fit to both the observed geoid (78.2%) and initial scaling
factors in the lower mantle. Hatched zone shows the chosen search area.

The best combination of the radial viscosity profile and scaling
factors was chosen based not only on the best fit to the observed
geoid but also on the minimal deviation of the resulting scaling
factors obtained for the lower mantle from the initial ones. In
our study we disregard an influence of the uppermost 250 km.

107
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



2 | l l l
-
+ 0 e,
. ]
* :
O 02 . ‘
ob pe
] 05 o
O 1 e "
2 . J
@ 1.5_ @ "% * [
C o
E o ."
(@] o -
m <
— <
9 ; .
o — s o ‘o .-l-
GJ © s
= 1- A N
o Ll
= N g o
m *
C 2 o DOGOOZO * L N
o = § $ g g
- — a
E U & a
(eb} e - o
@) e © 2
o ~ ]
= [@)) W = o,
% .5 . o 1 E 5 *y
&
Q- g 0.5_ ’ "o‘ * Sl o N
L+
s “" ol PP 3 o ¢ . -
o o °o O o Bk * . *
= & ""‘: g ¢ A .
=l:‘:o ) E oD ¢ ‘g . *
303 - o DO@ :.
':e°§c;n‘ Eo°
e 9
&
0 | |

Figure (F6.3) Residual
in different radial

asthenosphere. Black c

Scientific Technical Report 08/08

viscosity models.

residual geoid

geoid versus perturbations to the initial scaling factor
Model

ircle marks the area with the best solutions.

cluster for viscosity value in

108
DOI: 10.2312/GFZ.b103-08081
Deutsches GeoForschungsZentrum GFZ



2 1 l l l
* -
*
- + o‘
-I- C).1ES *y
* ©
O 03 ;  °
) L
u . m
O 1 ;
. *
*
* * -
o 1.57 “ . —
+
= i
— *
m - *
QO e -
w .
— % *
© * . °
—
= wt Ry
P : g ©
*
GJ ™ * e,
e * +
+ 1 L P o
- : e o
2 :
(J) i ¥ = . o
mE ¥ o RS =
= [I: " e +* » 8 . Z
CD .°+ * * & . - 9
= - P ° o =
T g . : o
o
J: e & L
L_C o
= 1o : £ By
©
o el o 2 oo
Q= (0.5- ] : o 4 e R
L . Qo
o o o 1
o ] o ¢ O o o O o o
o o o o ge° o o ?
Bo g - DDE W ® o
o
o B8 g ea GD ] E o ¢
; gogso o Eoo § 2
[ )
o8 pg EEE% g §°D
m
8o B 5

I
0.24 0.26 0.28 0.3
residual geoid
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Figure (F6.5) Isostatic anomalies of the observed geoid and geoid calculated
with radial viscosity shown in (F6.2) and scaling factor shown in (F6.1).

The clusters shown in Tfigures (F6.3) and (F6.4) reveal the
regularities iIn the model classes with the various values of
effective viscosity in the asthenosphere and upper part of the
transition zone (@bove 670 km) correspondingly. It is clearly
seen in (F6.3) that the best solutions are produced by the radial
viscosity models with the higher viscosity values (1, 2) iIn the
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asthenosphere contrary to what could be expected. Figure (F6.4)
also reveals very interesting regularity: the model classes with
the lower viscosity values (0.15, 0.3) in the upper part of the
transition zone give better solutions for the geoid while the
models with the higher viscosity values (0.6, 1) produce more
reasonable fit to the initial scaling factors in the lower mantle.
In general the best solutions are obtained for the viscosity
values 0.3 iIn the upper part of the transition zone. Such an
analysis, if applied to an exhaustive set of models with various
viscosity values, produces very important information since any
clusterization of the models with specific parameters delimits the
further search for the best solutions.
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Chapter VII.

Global spherical models with lateral viscosity variations.

The strong dependence of mantle viscosity on temperature exerts
controlling influence on the evolution of the mantle. The
temperature dependence of mantle viscosity acts as a thermostat
regulating the average mantle temperature. Initially, when the
Earth is hot, mantle viscosity is low, and extremely vigorous
convection rapidly cools the Earth. Later in its evolution, when
the Earth is relatively cold, its mantle viscosity Is higher that
results 1n more modest convection. Self-regulation tends to bring
the viscosity of the mantle to a value that facilitates an
efficient removal of the heat generated iIn the mantle.

7.1 Three-dimensional global viscosity models.

In our study 3-D global viscosity model is constructed using:
- The S20a seismic tomography model by Ekstrom and Dziewonski
(1998) converted to temperature
- Assumptions about homologous temperature in the mantle
(Paulson et al. (2005))
This model is one of the most commonly used iIn such a type of
modeling. 1t provides resolution up to the 20 spherical harmonic
degree for isotropic velocity variations. The Hlast aspect 1is
especially 1important in our study. Despite other models could
differ from the S20a model 1in detail, the general conclusions
about importance of taking into account LVV are valid also for all
models with this and higher resolution. We use the procedure

proposed by Paulson et al. (2005). The V; perturbations have been

initially converted iInto density variations. Based on the density

variations we have estimated temperature distribution in the

mantle T=T(r,0,p) and determined a homologous temperature. It is

consistent with the approximate nature of parameterized convection

modeling to assume a Newtonian rheology with kinematic viscosity

n=n(r,0,p) related to mantle temperature by (Paulson et al., 2005):
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- [“”TIE"%]
n(r,0,p)=m,(r)e . (E7.1)

where T, (r) 1i1s a solidus temperature, 7,(r) are the 1iInitial
coefficients, y(r) are the activation parameters related to the

activation energy E° of subsolidus creep deformation by:
=— E7.2
7=7R ( )

where R i1s the universal gas constant.
The parameters T, (r), 7,(r) and y(r) should be chosen separately for

different mantle layers depending on P-T conditions and on a phase
state of the material, primarily for the upper and lower mantle.
So we can also adjust a vertical viscosity profile, which should
be assumable close to the results of the previous studies. Thus,

LVV are then produced self-consistently within this approach.

The velocity-to-density scaling factor has been estimated using
joint inversion of seismic tomography data and surface observables
(Corrieu et al. (1994)). This technique 1is described in Chapter
VII. It is clear that not all velocity variations presented iIn the
S20s model are iInduced by temperature effect. Compositional
variations can substantially alter velocity-temperature
relationship or simply mask the temperature effect. However, we
assume that in spite of possible alterations of the computed
fields iIn specific places, general conclusions about importance of
incorporating LVV in global dynamic models will be convincing.

The derived density variations have been converted into
temperatures applying the depth-dependent thermal expansion
coefficient (Paulson et al., 2005):

a=(3—i—h)105 (E7.3)

C

where h i1s the depth, h, is the depth of the core-mantle boundary.

c
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To calculate LVV with the aid of E7.1 we need radial profiles of
the horizontally averaged temperature in the mantle and the
solidus temperature. Since our model 1is instantaneous we cannot
estimate the temperature distribution self-consistently and just
take it from literature. The depth-dependent temperature
distribution is based on Schubert et al. (2001); the temperature
of solidus 1is taken from Yamazaki and Karato (2001). Both
temperature curves are shown in Tfigure (F7.1). The solidus
temperature at the bottom of the mantle is slightly increased
following Schubert et al. (2001).

O_

3000 I ] | | | I |
1000 2000 3000 4000 5000
Temperature, °K

Figure (F7.1) Temperature profiles.
Small dash: radial mantle temperature (Schubert et al. (2001))
Bold dash: solidus temperature in the mantle (Yamazaki and Karato (2001))

The only activation parameters y(r) are required to determine

relative variations of viscosity based on temperature anomalies
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(E7.1). Following Paulson et al., 2005 we take y»=10 in the upper

mantle and y=17 in the lower mantle (Yamazaki and Karato, 2001).

The maximum LVV i1n the 1lower mantle are about two orders of
magnitude and are represented at the whole length scale: from very
broad anomalies to small-scale variations. These relative
variations are multiplied by the radial viscosity distribution
that Tfinally gives the 3-D viscosity model. The upper mantle
viscosity variations in most of our models are likely to be less
than i1n reality. Although we are not Hlimited by calculation
techniqgue and can take 1Into account the variations up to
approximately 7 orders of magnitude, we have ventured on the

models with LVV magnitude not higher than 4 orders as yet.

Radial viscosity profiles required in the final viscosity
distribution have been chosen on the base of conclusions from the
joint inversion. Thousands of different combinations for 7-layer
viscosity profiles were considered to obtain the best fit to the
observed dynamic geoid (also with effect of LVV). This problem is
discussed in Chapter VII i1n detail.

7.2 Contribution of lateral viscosity variations to mantle

velocities.

This simple model based on the S20a tomography model is aimed at
demonstrating the effect of LVV on the mantle flows and especially

near-surface velocities.

The parameters of the models are following:
- Radial density distribution p(r) is based on PREM (figure
F4.1)
- Density anomalies are obtained from V; using S20a tomography
model with the constant scaling factor Sc(r)=0.2 applying

following relationship: ép::QOKWQ*ScU)*p*U)*§¥i
S
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- The radial viscosity profile is shown in figure (F7.2). The
average viscosity in the upper mantle below 200 km to the
depth of 670 km is equal to 10%[Pa-s]. The average viscosity in

the lower mantle i1s 40 times greater than the former one.
Low-viscous asthenosphere and high-viscous continental keels

are modulated mostly by LVV.

- The technique described above (Part 6.1) is used to derive
LVW. This model corresponds to the leading coefficients:

7, =5x10°[Pa-s] in the upper mantle and 7,=5x10"[Pa-s] in the

lower mantle.

3000

2000

DEPTH

1000

0 10 20 30 40
RADIAL VISCOSITY

Figure (F7.2) Relative radial viscosity 77*(r)-
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Density anomalies

-0.002 -0.001 '] 0.001 0.002

Figure (F7.3) Density anomaly distribution. Velocities are calculated for radial
viscosity model.

Lateral viscosity variations (log10)
Figure (F7.4) LVV and velocity redistribution due to LVV.
Black arrows: Mantle velocities corresponding to the radial viscosity model.
Violet and red arrows: Mantle velocities corresponding to the LVV model
calculated by the U-transform iterative method.
Black and brown circles mark zoomed areas shown in figures (F7.5) and (F7.6).
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-

Figure (F7.5) Zoomed area with low viscosity (F7.4 Left).
Black arrows: Mantle velocities corresponding to the radial viscosity model.

Violet arrows: Mantle velocities corresponding to the LVV model.

In the area of low viscosity the mean values of the flow
velocities significantly increased (&50% of the velocities
calculated for radial viscosity model) therefore the upwelling

global flow widens due to the viscosity heterogeneities.
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I
Figure (F7.6) Zoomed area with high viscosity (F7.4 Right).

Black arrows: Mantle velocities corresponding to the radial viscosity model.

Red arrows: Mantle velocities corresponding to the LVV model.

Contrary to (F7.5) the high viscosity slackens the global flow’s
pace and constricts the downwelling flow. Viscosity contrasts 1in
the zone of low viscosity shown in (F7.5) and zone of high
viscosity demonstrated in (F7.6) are approximately the same. The
changes i1n mantle velocities due to LVV are of the same order 1in
both cases, albeit the corrections have the opposite tendency.
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The near-surface velocities calculated at the depth 100 km are
significantly affected by the LVV. A caliber of LVV i1mpact into
near-surface velocities (F7.7) becomes obvious as soon as the
discrepancy between horizontal velocities obtained from the LVV
model and radial viscosity model are shown (F7.8). The maximum
change in velocity values due to LVV is approximately 45% of the
initial velocities. Vortical flows (toroidal velocity component)
appearing due to LVV are clearly seen in the Pacific Ocean and
South Africa regions. The contribution of toroidal component 1is
furthermore reflected in more details in radial vorticity (F7.9)
in the form of negative and positive anomalies.

-2.6E-006 -2E-007 2.2E-006

Figure (F7.9) Surface divergence and radial vorticity.
Top: Surface divergence for radial viscosity model (left) and LVV model (right).
Bottom: Radial vorticity.

Radial vorticity represents a direct response of the surface
velocities on the LVV appearance. Figure (F7.9) shows a visible
fit to the published results (Moucha et al, 2007) in all main
features 1irrespective of the different choice of the global 3-D
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viscosity models. Relative proportions of surface divergence and
radial vorticity are also in a good agreement with the results
derived by Moucha et al, 2007 for the poloidal and toroidal
surface velocities. The visible correlation between shapes of
continents and negative anomalies of surface divergence is reduced
by an incorporation of the LVV (F7.9) as well as in Moucha et al,
2007.

7.3 Particular contribution of lateral viscosity variations
induced in the upper and lower mantle to the geoid, dynamic

topography and surface velocities.

In this part we consider three LVV distributions: the whole-mantle
LVW and two models (upper-mantle LVV and lower-mantle LVV), where
LVV are restricted to the mantle above the 670 km discontinuity
and below 1t iIn order to estimate the particular contribution of
the LVV induced in the upper and lower mantle with respect to the
effect of LVV in the whole mantle. For this purpose we use the
whole-mantle LVV model of approximately 4 orders of magnitude 1in
the lithosphere and asthenosphere and 2 orders of magnitude in the
lower mantle. The 3-D viscosity models of the whole mantle (F7.10
Right), the lower mantle (F7.11 Left) and the upper mantle (F7.11
Right) are constructed based on the S-wave tomography model S20a
of Ekstrom and Dziewonski (1998) as described In the Part 7.1 and
on the results of joint inversion for the radial viscosity models

discussed in Part 6.2 (Figure F6.2). Density anomalies are

obtained from Vg using S20a tomography model

5p:0.01(%)*8c(r)*p*(r)*% with a scaling factor Sc(r) found from a

S
least-squares adjustment first for radial viscosity model (F6.1),
then corrected for the 3-D viscosity model (F7.12). These rescaled
conversion parameters are used In both radial viscosity and LVV
models in order to estimate correctly a constribution of LVV.
Density distribution and i1ts relation with the LVV distribution
are shown on (F7.10).
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Density anomaly

-0.005 -0.0025 0 0.0025 0,005

Figure (F7.10) Cross-sections showing density anomaly and LVV (logy) iIn the
mantle relative to the adopted vertical profile shown on (F6.2). Arrows show
mantle velocities (maximal value is equal to 39.1 mm/year for the radial
viscosity model (left) and 35.1 mm/year for the whole-mantle LVV model (right))

calculated with the same scaling factor shown on (F7.12 red).

Upper mantle LVV

-1.5 -1 -0.5 0 05 1 15 2

Figure (F7.11) Cross-sections showing LVV (logiyp) incorporated into the lower-
mantle model (left) and upper-mantle model (right) relative to the adopted

vertical profile shown on (F6.2).
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Figure (F7.12) Velocity-to-density scaling factor profile obtained from a least
square adjustment to get a best fit to the observed geoid.

Black line represents scaling factor for the radially dependent viscosity model
analysed in the Part 6.2 (the same as on (F6.1)).

Red line shows scaling factor for the model with the whole-mantle LVV.

Fine lines (black and red) show scaling coefficient standard deviations (E6.6).

In the Ilower mantle a conversion coefficient varies noticeably
with a tendency to increase from approximately 0.13 to 0.27 while
drawing nearer to the core-mantle boundary. In the transition zone
a scaling factor exceeds 0.4 and differs significantly from the
initial value (0.24). Therefore the difference with the initial
scaling is quite substantial in both the lower mantle (0.11) and

transition zone (0.17).
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Figure (F7.13) lIsostatic anomalies of geoid.

Top: Isostatic anomalies of the observed geoid (Kaban et al., 2004).

Bottom Left: Geoid undulations for the model with radially stratified viscosity.
Bottom Right: Geoid undulations for the model with LVV. Terms Cy,y and C4 are
excluded from all fields.

It turns out that for a seven-layer radial viscosity model it is
possible to get a reasonable fit to the observed geoid. The radial
viscosity model discussed in Part 6.2 explains about 80% of the
observed field, being a good result especially taking into account

that we have excluded the terms C, and C, accumulating half of

the total energy of the long-wavelenght non-hydrostatic geoid. The
calculated geoid for the model with a radially stratified mantle
is shown in (F7.13) compared to the observed non-isostatic geoid
and geoid calculated taking into account whole-mantle LVV. The

terms C,, and C, are excluded from all fTields as well as the

impact of the 1isostatically compensated lithosphere is excluded
from the observed geoid (F4.1). This provides a possibility to
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uncover the effect of deep mantle horizons and of dynamic
disturbances of the Earth’s surface. The overall fit of the geoid
calculated with LVV (F7.13 Bottom Right) to the observed geoid is
approximately the same as for the radial viscosity model but there
are several geoid features presented iIn the observed geoid,
appearing only after introducing the LVV. The most pronounced 1is
the negative anomaly located near the western edge of North
America. The extended maxima near South America and southern part
of Africa are also better presented with the LVV. The same is true
for the geoid pattern in South Pacific. The slender waist of the
central positive anomaly situated to the west of Africa is also
better predicted by the LVV model. This preliminary analysis shows
that inclusion of LVV in the whole mantle improves some mid-range
features of the dynamic geoid. At the same time some features of
geoid sink in precision due to inclusion of LVV in comparison with
the radial viscosity model (for example Greenland and northern
Australia areas). The Indian anomaly 1is also reduced by an
introduction of the LVV, however, not that significantly.

Based on figure (F7.14) we can arrive at some general conclusion
about the origin of the main geoid features whether they appear
due to lower- or upper-mantle LVV. Assumptions made up on the base
of this brief analysis may help to construct a combined 3-D
viscosity model, which could stress special areas of low and high
viscosity in the lower and upper mantle, therefore, producing a

better fit to the main geoid features.
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Figure (F7.14) Observed geoid and geoids calculated for various LVV models.
Top Left: Isostatic anomalies of the observed geoid (Kaban et al., 2004).
Top Right: Whole-mantle LVV model.

Bottom Left: LVV in the upper mantle above 670 km (upper mantle LVV model).
Bottom Right: LVV in the lower mantle below 670 km (lower mantle LVV model).

It is clearly seen that the strong negative anomaly in the area of
Antarctica originates from the effect of lower-mantle LVV as well
as the positive anomalies situated to the north of Australia and
near South America. But unfortunately the latter positive anomaly
shaped by the lower-mantle LVV in the area of South America is
suppressed by the opposite effect of the upper-mantle LVV. The
negative anomalies iIn the area of North America result from the
combined effect of both the lower and upper mantle as well as the
positive anomaly in the Pacific Ocean. Upper-mantle LVV produce a
very good fit to the Indian anomaly, which 1is distorted by
interplay between the LVV in the lower and upper mantle.
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Whole Mantle LVV

-50 -40 30 -20 -0 O 10 20 30 40 S0
Figure (F7.15) Discrepancies between a dynamic geoid generated by the 3-D
viscosity models and initial "radial™ model.
Top: Whole-mantle LVV model.
Bottom Left: Upper-mantle LVV model.
Bottom Right: Lower-mantle LVV model.

Discrepancies between the dynamic geoid generated by the 3-D
viscosity models and the initial "radial™ model are shown in
(F7.15). The difference between the initial (only radial
viscosity) dynamic geoid and the geoid with 1implemented LVV
reaches —-47.7 - +37.1 m for the whole mantle LVV, while the
effects of the upper and lower mantle are equal to —68.8 - +36.3 m
and —24.7 - +35.9 m correspondingly. The differences are exposed
mainly at mid-range scale as it was suggested in the preliminary
analysis. Noteworthy, these effects are not correlated in general,
that might be of significance for future high-resolution dynamic
models. In most areas the effects of the lower-mantle and upper-
mantle LVV compensate each other to some extent. But anyway the
strongest changes in the geoid generated by the whole-mantle LVV
model are mostly produced by the upper-mantle LVV, since the
effect of the upper-mantle LVV 1is of more significance 1iIn
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comparison with the lower-mantle LVV effect. It is important that
the sum of the upper and lower mantle effects is very close to the
effect of the whole mantle LVV, the maximum difference is about 2
m. This provides a possibility to model lower- and upper-mantle
LVV separately, e.g. using different calculation schemes, which

work better in each specific case.

4 05 0 0s 1

Figure (F7.16) Discrepancies between a dynamic topography generated by the 3-D

viscosity models and initial "radial' model.
Top: Whole-mantle LVV model.

Bottom Left: Upper-mantle LVV model.

Bottom Right: Lower-mantle LVV model.

The modifications iIn the geoid shown in (F7.15) are chiefly
produced by differences iIn surface dynamic topography since the
effect of density variations remains unchanged and the effect of
the core-mantle boundary 1is small. The dynamic topography
modifications for the tested viscosity models are shown 1In
(F7.16). They correspond qualitatively to the changes of the
geoid, however, we see many small-scale details. These details,
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which do not remarkably influence the geoid, are mainly due to LVV
in the upper mantle (F7.16 Bottom Left). The most significant
effects are produced by sharp horizontal viscosity contrast in the
upper mantle, e.g. related to the ocean-continent boundaries.
Therefore, a relative difference in the amplitudes of the dynamic
topography variations due to upper- and lower-mantle viscosity
changes 1s more pronounced than the difference iIn the dynamic
geoid (F7.15). The difference between dynamic topography generated
by the initial radial viscosity model and dynamic topography with
implemented whole-mantle LVV reaches -1.06 - +0.975 km, while the
contribution of the upper- and lower-mantle LVV is equal to -1.48
- +0.8 km and -0.31 - +0.49 km correspondingly. In comparison with
the effect on the dynamic geoid the contribution of the upper-
mantle LVV iInto dynamic topography is even larger in amplitude
with respect to the effect of the lower-mantle LVV. The higher
amplitudes of the changes 1induced by the upper-mantle LVV are
exposed in relatively small-scale details, therefore, they are
more important for regional modelling.

Modifications of near-surface mantle velocities (at the depth of
100 km) caused by LVV are shown in (F7.18). These changes are
remarkable and reach 21 mm/year. It is important that contrary to
the dynamic geoid the effects of the upper- and lower-mantle LVV
on horizontal near-surface velocities are not supplementary;
generally the total change exceeds significantly the sum of the
effects computed separately. The latter statement 1is brightly
illustrated by the velocity patterns in the areas of vortical
motion to the east of Australia. It is also important to note that
the calculated near-surface mantle flow velocities (F7.17) and
changes due to LVV (F7.18) might not completely correspond to
plate velocities because our model does not amply stiff
lithospheric plates, which integrate these differences over large
areas. Despite individual velocity vectors could be changed due to
different boundary conditions, a substantial difference between
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Radial Viscosity Model

SE006  -25E-008 0 256006 5E-006

Figure (F7.19) Surface divergence calculated for the radial viscosity model
(left) and for the model with whole mantle LVV (right).

Whole Mantle LVV

AE-006 -5E-007 0 5E-007 1E-006

Figure (F7.20) Differences between surface divergence generated by the various
LVV models and initial radial viscosity model.

Top: Whole-mantle LVV model.

Bottom Left: Upper-mantle LVV model.

Bottom Right: Lower-mantle LVV model.

As shown in Part 7.2 an obvious interrelation between deep
continent roots and negative anomalies of surface divergence
(F7.19 Left) is to be suppressed by the effect of LVW (F7.19
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Left). Surface divergence is mostly influenced by the upper-mantle
LvwW (F7.20), while the effect of the lower-mantle LVV 1is rather
minor, but still there are some surface divergence patterns
appearing due to lower-mantle LVV only. In general the effect of
the lower-mantle LVV tends to intensify the effect of the upper-
mantle LVV on surface divergence.

Whole Mantle LVV

Figure (F7.21) Radial vorticity generated by various 3-D viscosity models.
Top: Whole-mantle LVV model.

Bottom Left: Upper-mantle LVV model.

Bottom Right: Lower-mantle LVV model.

According to (F7.21) the Jlower-mantle LVV do not play any
significant part in forming of vortical near—-surface motion.
Toroidal flows observed on the surface are generated only by the
upper-mantle LVV. The amplitudes of radial vorticity

[2.4-10°2.4.10°] (calculated on the base of averaged surface

velocities) are almost twice as great as the amplitudes of the
changes i1n surface divergence due to the whole-mantle LWV

[-1.25-10°1.55-10°] and two times as small as the amplitudes of the

133
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



very surface divergence [-4.9:10°4.9.-10°]. Therefore, an effect of

LVV on the surface mantle velocities is directed at generating of

the vortical motion to a great extent.
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Chapter VIII1

Conclusions

A  numerical method developed 1iIn this study provides the
possibility to model mantle flows together with the main
convection-related observables (the dynamic geoid, topography and
surface velocities), taking into account such specific effects of
the Earth’s mantle as lateral viscosity variations (LVV), mantle
compressibility and self-gravitation. This method combines the
spherical harmonic method with the direct Godunov method for the
solution of systems of ordinary differential equations and the
iterative method applied to incorporate the LVV effect. This
combined approach 1is effective for overcoming all difficulties
associated with the introduction of the aforementioned effects.

One of the goals of this work is to demonstrate that the effects
of self-gravitation and mantle compressibility have significant
influence on the dynamic geoid and mantle flow; therefore, up-to-
date studies based on snap-shot models of mantle convection and
convection-related observables cannot be comprehensive if these
effects are ignored. These effects were analyzed using geoid
kernels 1n a number of studies (Corrieu et al. (1995), Panasyuk et
al. (1996) and some others) and found to influence the geoid
rather significantly.

The partucular contributions of each of these effects to both the
dynamic geoid and mantle flow were estimated on the basis of
synthetic and realistic models in this study. Among the existing
techniques, only the spectral method is capable of taking into
account both the mantle compressibility and self-gravitation
effects directly. The incorporation of the aforementioned effects
to spatial FE and FV methods involves a number of complications
discussed iIn the previous chapters (e.g. Chapter 1). Since both
effects are found to influence very substantially the dynamic
geoid, surface velocities and mantle flows, there arises the
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question of whether mantle flows and the dynamic geoid can be
modeled correctly by a spatial method ignoring any of these
effects. Some synthetic models show that the contributions of the
self-gravitation and mantle compressibility effects to the geoid
figure are comparable (e.g. 26.5% and 22.5% of amplitudes
respectively, see Chapter 1V). In more realistic models, the
contribution of the self-gravitation effect i1s much greater (61.5%
of amplitudes), while the effect of mantle compressibility 1is
partly opposite to the effect of self-gravitation and
significantly reduces it.

This work mostly focuses on the estimation of the influence of LVV
on the main observables such as the dynamic geoid, topography and
near-surface velocities because the existing studies give rather
contradictory conclusions on the significance of this effect. To
incorporate the effect of strong LVV we developed two iterative
methods (the U-transform and W-transform methods, see Chapter V)
based on the concept suggested by Zhang and Christensen (1993).
Both methods take into account  the effect of mantle
compressibility. Comparison of these methods revealed good
agreement between results obtained for models with identical input
data. Both methods were fully tested iIn order to assess their
capability of taking into account strong LVV. Based on a set of
synthetic models, i1t was shown that the U-transform iterative
method could treat effectively LVV varying by about seven orders
of magnitude. By contrast, the W-transform iterative method 1is
apparently applicable only to LVV models with rather low viscosity
contrasts. Moreover, it gives unreasonable results or simply does
not converge 1if the analyzed LVV models 1include small-scale
details. As a result, we conclude that the W-transform method 1is
inapplicable to a model possessing a resolution higher than five
or six spherical harmonics. Therefore, all global models with
strong LVV analyzed in this study were calculated with the aid of
the U-transform iterative method.
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Following Paulson et al. (2005), we constructed a 3-D mantle
viscosity model based on the global seismic tomography model of
Ekstrom and Dziewonski (1998) converted to temperature variations.
The LVV have been calculated according to these variations and on
the basis of the assumption of a depth-dependent homologous
temperature. It was found that the 1Incorporation of LW
significantly alters the dynamic (geoid and near-surface
velocities. The contribution of the LVV effect to the geoid
exceeds 45% of the maximum geoid undulations calculated for a
radial viscosity model. The near-surface velocity distribution 1is
strongly affected by LVV due to not only the LVV-induced toroidal
component but also the <change iIn the spheroidal velocity
component. The changes in the near-surface velocities are about
30%-40% of the velocity amplitude calculated for the initial
radially symmetric model. This study shows that the global flow
patterns are, 1iIn general, also significantly affected by LVV.
Since our 3-D viscosity model 1i1s derived from a 3-D temperature
distribution, global downwellings are mainly located in areas with
a predominant high viscosity, while global upwellings are mostly
confined to low viscosity zones. Therefore, mantle upwellings tend
to broaden and become more intense due to LVV. By contrast, mantle
downwelling flows iIn high viscosity zones become narrower and

weaker .

We also considered several special models in which strong whole-
mantle LVV were intersected by small-scale high-viscosity
fragments. These synthetic models were used to examine similar
effects in the real Earth. We found that the small-scale high-
viscosity fragments (always present in the mantle) affect global
flows variously, dependending mainly on the position of the
fragment with respect to the global flow. If located in the way of
a flow with nearly constant velocity of the global motion, a high-
viscosity fragment is pulled by the surrounding material without
having any significant iInfluence on the global motion. By
contrast, if a fragment i1s present in the zone where the motion
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changes 1i1ts direction and velocity values, the surrounding
material moves around such a fragment and starts to swerve from a

course iIn advance.

In this study, we specifically analyze the effects of LVV located
in the major mantle layers of mantle (the upper and lower mantle)
on the dynamic geoid, topography and surface velocities. Employing
even a simple radial viscosity profile we are able to explain most
of the observed geoid energy (see Chapter VI). Although Ilong-
wavelength features are fTitted reasonably well, mid- and small-
scale model features diverge with the observed fields. This is
particularly evident after the removal of the terms Cy and Cy
dominating in the long-wavelength nonhydrostatic geoid. We analyze
the possible impact of the whole-mantle LVV based on complete
resolution tomography data. LVV in the Jlower mantle are less
constrasting than in the subcrustal layer (the maximum constrast
is about two orders of magnitude), but some anomalous zones in the
lower mantle are much larger than thin zones of strong LVV in the
subcrustal layer. Some large viscosity anomalies extend for more
than half of the lower mantle thickness. Hence, their integral
effect was found to be significant for global dynamic modeling.

The difference between geoids obtained from radially stratified
and whole-mantle LVV models varies from —-47.7 to +37.1 m, and
these values amount to about half of the amplitude of the observed
geoid anomalies. This is a significant effect, particularly taking
into account that the viscosity model used in this study is likely
to represent the lower limit of possible viscosity variations in
the upper mantle. Changes 1iIn the dynamic geoid modify the
resulting velocity-to-density scaling factor. The differences in
the scaling factors exceed 40% for the lower mantle, which can be
important for mineral physics applications.

The amplitudes of geoid disturbances induced by the upper-mantle
LVW (-68.8 - +36.3 m) are somewhat higher than those resulting
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from the lower-mantle LVV effect (-24.7 - +35.9 m). However, the
latter is generally found to be opposite In sign to the upper-
mantle LVV effect; therefore, these effects compensate each other
to a great extent. As a result, geoid disturbances induced by the
whole-mantle LVV are significantly smaller than changes in the
geoid Ffigure due to solely the upper-mantle LVV effect. We also
found that the effects of the upper- and lower-mantle LVV on the
observed geoid are near complementary with respect to the whole-
mantle LVV effect. This conclusion needs to be checked for various
viscosity models. If correct, it provides the possibility of
separate treatment of lower- and upper-mantle LVV, using
techniques that are most effective in these mantle regions.

Although we could not remarkably improve the overall fit of the
model geoid to the observed field by consideration of LVV simply
incorporated into the radial viscosity model, we arrived at the
conclusion that LVV play an important role in the formation of all
convection-related fields and mantle flows. Apparently, the
influence of LVV on the geoid is so significant that the changes
induced by this effect should be adjusted by a proper variation in
the radial viscosity profile iIn order to get a better fit to the
observed fields. The inverse problem applied to the 3-D viscosity
models with a variable radial viscosity can be effective for
solving this problem. Moreover, the particular contributions of
lower- and upper-mantle LVV to the geoid figure (see Chapter VII)
might be helpful in this case because some geoid features are
obviously generated by the effects of only lower- or upper-mantle
LVV.

The differences in the dynamic topography induced by the upper-
and lower-mantle LVV (accordingly: -1.48 - +0.8 km and -0.31 -
+0.49 km Tfor the density equal to 1 g/cm®) are qualitatively
similar to the corresponding differences in the dynamic geoid. The
higher amplitudes of the changes induced by the upper mantle are
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exposed in relatively small-scale details therefore, they are more
important for regional modelling.

The effect of LVV iIn the whole mantle on near-surface horizontal
flow velocities is also found to be significant: the difference
with the initial model reaches 21 mm/year. By contrast to geoid
anomalies controlled by vertical flows, the differences of the
horizontal flows induced by the lower- and upper-mantle LVV are
essentially non-complementary. A joint effect of the mantle layers
is normally much stronger than the separate effects of the lower-
and upper-mantle LVV.

Although the 3-D viscosity models considered in this study are
probably oversimplified, we find that the resulting effect of the
whole-mantle LVV 1is significant. LVV affect substantially both the
dynamic geoid and the near-surface flow velocities, the main
parameters currently used to constrain dynamic models. Thus, we
may conclude that the incorporation of whole-mantle LVV into the
next generation global dynamic models 1s a task of vital

significance.
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Appendix.
Derivation of the U-transform and W-transform iterative methods.

In the following parts 1 keep the original notations of Zhang and
Christensen (1993) (even for geopotential, which they derive
separately from mantle velocities and stresses) for a better
understanding of the difference between the iInitial formulae and

recently derived formulae.

Agreed notations (NOa- NOg):
(@ L=I1(+1)
oY (6, 9)

06

1 oY (6,p)
sind  Og

()Y’ =Y, (0.9) =

@Y7 =Y75(0.9)=

o
00°
1 1 0%

e)y” = Y =
S sin@ " sin? @ 0¢°

(DY =Y, (NO)

oY
a I

Op

sind _ﬁne op
1 a[s'rlm?(j
! 4
Y = Y, =
@ sing o6
(h) c=ctgo

Part U.

In case of compressible flow the expressions for viscous stress
tensor contain divergence, which may not be neglected. Shear
stress 1s proportional only to the displacement part of the
deformation but not to the total deformation, therefore the effect
of triaxial compression must be included into the expression for
the shear stress (Schubert et al. (2001)).
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Trr =2n[0U/0r-(1/3)V-Uil=2ner—(2/3)n(errt+eesnteyy)

tro =Ttor=n[ro(Ue/r)/0r+(1/r)oU./00]=2nere,
Tro=Ter=n[ro(Uy/r)/or+(1/(rsinb)) oU./09]=2ner,,

19 =2N[(1/1r)0Ue/00+U,/r-(1/3)V -Uil=2nee-(2/3) n(errtegptey,) , (Ud)
Top=2n[ (17 (rsin®))oUy/0p+U,/r+Us(ctgB)/r-(1/3)V -Ui]=2n€gpe-
-(273)n(errteqteq)

Teo-ML(s1N0/1)0(Uy/sinB)/00+(1/ (rsinbd))oUp/0p]=2neqy,

Expressions for the relation between normal strains and mantle
flow velocities (Landau, theory of elasticity, 1987):

err=0U/0r,

ego=(1/r)0oUe/06+U /T,

€ep=(1/(rsinB))oU,/op+U,/r+Us(ctgb)/r

ere=(1/2)[ro(Ue/r)/or+(1/r)ou,/o0] u2)
ere=(1/2)[ro(Uy/r)/or+(1/(rsinB)ou,/op]
€0o=(1/2)[(sinB/r)o(Uy,/sinB)/08+(1/rsinbd)oUe/0¢]

We can consequently represent the equation for the conservation of

mass:
divU;=V-U;=0U/or+(2/r)U+(1/(rsine))o(sinels)/o6+(1/(rsine))oU,/op=
=0U/0r+(2/r)U+(1/1roUg/06+(c/r)Us+1/(rsing))oU,/0o=(errteppteyy) =
=-(1/r)kU, (u3)
Expressions for total sress components:

o rr=—p+2noU/or-(2/3)nV-Ui,

tro=M[(1/r)0U,/00+0Us/0r-Ue/ 1],

Tro =N[O0Ux/0r+(1/(rsin®)ou,/op-Uy,/r], wa)
oge=—p+2n(1/r) [0Ue/00+U,]-(2/3)1nV -U;

Opp=—P+2n(1/1r) [(1/5in6)0Uy/ 0p+Ur+cUp] - (2/3)NV -U;

10o=N(1/1r) [(1/sin6)0Us/ 0p+06U,/00-CcU, ]

Taking into account (U3) V-Ui=-(1/r)k(r)u,
orr=—p+2noU/or+(2/3)n(A/r)kU=-p+2ne+(2/3)n(1/r)kU,
rto=n[0oU/00+rdUpg/0r-Ug]=2nre o,
rtrp=n[roUy/or+(1/sinB)ouU,/op-Uy]=2nrey,, (U5)
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roge=-rp+2n[0oUe/00+U,]+(2/3)nkU=-rp+2nreg+(2/3)nkU,
Fope=—rp+2n[(1/s1n0)0oUy/0p+Ur+CUg]+(2/3)nkU=-rp+2nreey,+(2/3)nkU,
rte,=n[(1/s1n0)0Ue/ 0p+0U,/00-cU,]=2nreq,,

Additive viscosity component is stated by means of total viscosity
and radial viscosity function: n(r, 6, @)wwa = n*(r)+ni(r, 6, @)

Total stress can be expressed via the means of n*(r) and ni(r,0,¢):
ror=-rp+2rn*oU./or+(2/3)n*kUr+2rnier+(2/3)kn.U,
rtro=n*[0U/700+roUs/0r-Ug]+2rn1€re
rtre=n*[roUy/or+(1/sin6)ou,/op-Uy,]+2rn1€r, u6)
roge=—-rp+2n*[0Ue/00+U, ]+ (2/3)nN*kU+21rn1€60+(2/3)kn1U,
Fope=—rp+2n*[(1/s1nB)0Uy/0p+U+cUp]+(2/3)M*KUr+2rn1€4e+(2/3) kniUr
rte,=M*L(1/s1n06)0Ug/ 0p+0Uy/ 08-CUy ] +21m1€gq,

We are looking for a solution of the Stokes equation for the

mantle velocities U, stresses o; and geopotential ® in spherical

harmonics:

Ur=2Z1(NinYin(0, ¢)

Uo=2[Z2(r) inY i’ +Zs(r) inYin"]

Up=Z[Z2(N) 1nY 10"~ Zs (X)) inY 1n°]

orr=2YysY, wn
=2 (YaY +y6Y?),

Tro=2(YaY®-y6Y"),

5p(r,0,0)=2pY,

o(r,0,9)=29Y,

p(rse ,(P):Zp(r)lelm
Thus, the required vector field V is represented as a sum of

spheroidal and toroidal fields V=V +V;:
Ve =(ZY,Z,Y%,Z.Y")
V; =(0,Z,Y?-Z.Y")
These vectors are mutually orthogonal in every point of the space
since their scalar product is equal to zero:
Vs -V;)=0+2Z,Y°ZY?-Z,Y°ZY’ =0
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According to Chandersekhar, (Schubert et al. (2001)) the poloidal

field must meet the requirement rZ, =-2Z,+LZ,. Our study has
revealed that under the conditions of mantle compressibility this
condition is not satisfied. That’s why the vector field V, is not
pure poloidal field but more comprehensive spheroidal field.

The contributions of poloidal and toroidal fields are
quantitatively described by the surface divergence and radial
vorticity:

Surface divergence:

Vi-Ui=(1/(rsine))o(sineéUy)/06+(1/(rsine))olU,/o¢ (Usa)
Radial vorticity:
[VUi]-r/r=(1/(rsine)){o(U,sin6)/06-0Us/0p} (U8b)

Ue=Z[Zo(r) inY in' +Zs (X)) inY1n"1

Up=2[Z2(N) 1Y 1n®-Zs () inYin']
rvy-Ui=(1/(sine))o(sineUs)/06+(1/(sine))oU,/d9=0Ue/06+CUo+
+(1/(5iNn8))dU,/89=Zo(r)1nY1n  +Zs () 1nY 1n™*+CZo () 1nY 1n +CZs (r) 1n Y in®+

+Zo (M) 1Y 10%°-Zs (N 1nY 1 =Zo{ YO+ Y+ Y1+ Zs { YO+ CY?-Y*}=0-LZ, Y
[VUi]-r=(1/(sine)){o(U,sin6)/06-0Us/0¢p}=0U,/068+CU,~(1/(Sin6))0oUes/Op=
=Z,Y?-ZsY®+c{Z,Y?-Z5 Y} - 2, YO - Zs Y =7, { YO+ c Y- YO} - Zs { YO+ cZ5 YO+ Y?P} =
=0+LZsY

Vi-Ui==(L/1)ZY

[VUi]-r/r=(L/r)ZsY

Hence, velocity component Z, 1is responsible for the spheroidal
(poloidal in case of incompressible Tflow) constitutent of
horizontal mantle velocity, while Z, defines the toroidal part.

Geopotential used by Zhang and Christensen (1993) is denoted o,
geopotential used iIn our study is found from E5.4g as Z;. Relation
between our notations and original notations of Zhang and
Christensen (1993):
®=Z7/r
ys=(1/r)Zs-p’¢ (N1)
Ya=(1/r)Z4

144

DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Ye=(1/1)Zs
This difference between notations shown in (N1) will be covered in

the final deductions.
The other three components of total stress tensor o,, o, and o,

can be Tfound with the aid of expansions (U6) for the mantle

velocities:

roge=-rp+2n*[oUs/00+U, 1+ (2/3)n*kU+2rm1€pet (2/3) knaUr

roge=—rZp () inYint2n*ZLZ210Y it Zsin Y Cunt Zoin Y ind + (27 3)M*KZZ11n Y 1n+ 211 F€po+
+(2/3)kn1Ur (U9a)
roee=—rp+2n*[(1/sinB8)oU,/0¢+Ur+cUs]+(2/3)n*KUr+2rniee+ (2/3) kniUr
FGpp=—rEZPY+2n*T[Z1Y+Zo(Y*+CY?) +Zs (- Y**+cY?) ]+ (2/3)IN*KEZ1Y+2rn 0+
+(2/3)kn1Ur (U9b)
rto,=n*L(1/s1n06)0Up/ 0p+0U,/00-CcU,]+2n1r€p,

F1og=n*LL(ZaY " +Z5Y ") +(Z2Y*-ZsY*) -c(Z2Y? -ZsY)]+2n1ren,,

rtop=n*2 [Zo(Y**+Y?-cY?]+Zs[Y**-Y*+cY") ]+2n1req,,
rtoe=n*L[2Z2(Y*-cY?]-Zs[LY+Y*)]+2rn:e0,, (U9c)
where the coefficients p(r),, depend only on r, spherical functions

mee and mniUr are obtained from the previous iterative step.

Derivation of the ODE system for the spherical harmonic

coefficients

Zin(X), Zow(P), Zsin(X), Yaim(X), Yam(r), Yem(r) and pim (r):
1) Mass conservation:

2U/r+0U/0r+(1/r) [0Us/00+CUp+(1/s1N6)0Uy/ 0p=-(1/r)K(r)Uy,

25 (ZL/ V)YHIYZ, "+ (Zo/ V) [YO+CYO+ Y9+ (Zs/ ) [YO+cY?- Y =— (1/ KT Z,Y
23 (Z1/Y)Y+XZ17Y-2(Z2/ Y)LY=-(L/)KZZ, Y

232, Y+rYZ, " Y- Z,LY=-KX.Z,Y

rz,”=-(2+k)Z1+LZ; => A3,=0

dzzlm Im Im
r d; =—(2+k)Z," +LZ, w10y

2) Relation between o and mantle velocities:

rorr=—-rp+2rn*ouU,/or+(2/3)n*kUr+2rnier+(2/3)n:1kUy
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Viscous terms can be represented via the means of spherical
functions:

Mmerr=2(M1€rr) Y 1n(0,0)

NUr=2(M1Ur) 1nY1n (6, 9) (U11)
Merr) 1im=(1/Smno) J SM1UrY1ndosinedo,

(MU 1n=(1/Sno) J SM1€rrYindosindde
rXysY=-rxp+2rn*2Z;’Y+(2/3)N*kXZ1Y+2r2(mierr) inYin(0,0)+(2/3) kX (MmUY
FPIn=20*1Z1” ~rys+(2/3)n*KZi+2r (nier) in+ (2/3)K (MU 1n

Using the derived relation (U10) rZ;’=-(2+k)Z;+LZ;:
rp=-2n*(2+k)Z1+2n*LZ>-rys+(2/3)n*k Z1+2r(nie,)+(2/3)k(n1Uy)

Hence, the spherical pressure function can be obtained from the

following expression:
rp(r,0,0)=2{-2n*2+k)Z1in(r)+2n*LZ2(r)-rys(r)+(2/3)M*KZ:(r) }inYin+
+X[2r(ier) int (2/3)K(M1Ur) 1n]Yim

Switching to the notations of Zhang and Christensen (1993):

rp(r,0,0)=>2{-2n*(2+k)Z1in(r)+2n*LZo(r)-Z3(r)+(2/3)n*kZ1(r)+rpo@}inYint
+2[27/3)KkMUr) in+2r(i€rr) ind }Yim (u12)
4) Relation between 7, and mantle velocities:
rto=n*[0U/00+roUg/or-Ug]+2rn:€ere

SrysY+3ry 6Y=n*YZi Y+ *rI[Z7 oY+ 27 s YO -n* 2 [Z2 Y +Zs YO +2rmaero

ZaY +Z6Y = *Z Y+ *r [ 27 oY+ 27 s YO - * [Z2Y '+ Zs Y] +2rn1ere
S[rZ72-Za/M*+Z21-Z]Y+Z[rZ275-Z 6/M*-Zs]Y*+(2r/n*)n1e,6=0

Viscous terms corresponding to r, and r,, must be represented as a
sum of spheroidal and toroidal fields as well as the components of

viscous stress tensor r, and 7, themselves:

'T'llerezlzl(r,e,(P):Zfa(r)ImYImB"'-':b(r)ImYIm(P => (UlBa)
SIrZ7 2-Za/M*+Z1-Zo+ Qr /) Fa(r) 1Y +[rZ275-Z ¢/n*-Zs+
+Q2r/m*)Fp(r)]Y*=0 (U13b)

5) Relation between 7, and mantle velocities:

rtre=m*[roUy/or+(1/sin®)ou,/op-Uy]+2rn €y,
rysY-ryeY'=n*[rZ>,Y® -rZ>sY*+Z,(1/sin®)dY/dp-Z,Y°® +ZsY']+2rn €y, .-
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Z4Y?-ZeY '=*[rZ7,Y" -rZ”sY+Z10Y°-Z,Y® +ZsY']+2rn €r-

[-Z4tn*rZ7 ;+*Z1-n*Z]Y® +[Z6-n*rZ”s+n*Zs] Y +2rn.e,,=0

S[rZ7 2-Za/M*+21-2] Y -2 [r 27 5-Z6/N*-Zs] Y+ (2r /m*)n1€,0=0

In a similar manner as in (Ul3a) we represent the viscous term
Mmero as a sum of spheroidal and toroidal fields:
niere=F2(r,0,9)=XFa(NinYin’ -Fo(inYin’ (U14a)
S[rZ7 2-Zan*+Z1-Zo+2(r/I*) £ ]Y-2[rZ75-Ze/M*-Zs+2(r /n*)F,]Y=0  (U14b)
Coefficients f.(r), and fp(r)in are the same for (Ul3b) and (Ul4b).
The equations (U13b) and (Ul4b) can be represented in common form

as:
YaAY%+YBY?=0, 1*Y(07,0%)°
>AY®-YBY=0 1*Y(67,097)°

The first and the second equations multiplied by Y(07,97)% and
Y(07,90”)? correspondently are integrated and summed up:

SAS{LY °Y-°+Y9Y-°}sine’do de’+XB{Y?Y-*-Y %Y-9}sino*de de’=A

In much the same way the Ffirst and the second equations are
multiplied conversely by Y(0”,¢0?)° and Y(07,¢”)° correspondently,
integrated and subtracted one from another:

SA{YY-*-Y?Y-? }sine’do’de’+XB s {Y?Y-*+Y °Y-*}sine’do”dp>=0+B=B

Both expressions must be equal to zero => A=B=0.

Therefore we can avoid unnecessary calculations and obtain the
solution from (U13b) without considering (U14b), which gives the
same result.

Fa=(1/sm) [%0odo ["o{F1Y IntF2YIn}sineds.

Ta =(1/sm) S odeS " on*[N1ere] Yo in+[M1€re] Y im}sinede,

Fo=(1/sm) S %0do [ o{F1Y In-F2Y°In}sineds.

fo=(1/sn)S*odoS o [*{[N:€re] Y*in-[N:€re]1 Y in}sinede

rZ’ ,==21+Z+Z4/M*-2r/m*)f, ,

rZ’,=—Z1+Z+Z4/N*+B,

o= (U/sim) S mi{ereY+er,Y*}desinede,

B'" =-2(r/m*)fa
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dz'"

=—z;m+z;m+i*z;m—

' dr
_ SZF* Td(o]aﬁ(emY,z + er(,,Y.n(ﬁ)Sin o (U15)
Im77 0 0

rz’ 5225+ZG/’|’]*—2 (r/n*)fb 5
rZ”s=Zs+Ze/n*+E'",

E"=—2(r/n*)*y,

Fo=(L/ (Sim)SIMi{ereY-er,Y?}dosinede

Im
=1

_ 2r* ngo]iﬁ(emY,n‘ﬁ —€,Yim )sin o (16

SIm77 0 0

As 1t 1iIs easy to see, the expressions for the viscous terms
appearing in the equations E5.4b and E5.4e (spheroidal and
toroidal mantle velocities) differ from those stated by Zhang and
Christensen (1993) not only by sign but also by coefficient 2.

6) Stokes equation along the axis g:

0o /0r+(1/r)0t,9/00+(1/rsin®)0t,e/00+(1/r)[20 r—0e—Oge*+Ctre]-8pJot
+po0&/or=0

1200 /Or+rot e/ 00+(r/sin®)ot o/ 0¢+r[20,r—00e—0pe+Ctre] -F?8pgo+r’ped®/or=0.
Expressions for the stress tensor components iIn sherical harmonics
are substituded into the considered equation:

orr=2y3Y,

Tro=2yaY +YeY?,

T rcp:Zy4Y¢-YGYe ,

roge=—rp+2n*[8Us/80+U, ]+ (2/3)n*kU,+21rn1e60+(2/3) kn:Uyr
Foge=-rp+2n*[(1/sinB)oUy/0p+U+cUp]+(2/3)N*KUr+2rn1€¢p+(2/3)kn1Ur

r2y” sY+ry YO+ rys Y+ ry Yo -rys Y+ 2rysY+{rp-2n*[ 2. Y*+Zs Y**+Z, Y] -
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- (2/3)N*KZ1Y-2rn1e00- (2/3) kU 3+{rp-2n*[Z:Y+Z2(Y*® +cY®)+Z5(- Y%+
+CY?)]-(2/3)N*KZ1Y-2rn1€4o- (2/3) kniU F+c(rysYo+ryeY®) ]1-r2spgoY+
+r2pede/orY=0.

2y sY+rIy [ YO+ Y+ Y +r2ys [YO-Y®+c Y] +2rZysY+2rp+2n* X [- Z, Y-
~Z5Y?-Z, Y]+ 2n* 2 [-Z2 (Y +CcY?) +Z5 (Y*-cY?) -Z: Y] - (4/3)n*KZZ: Y -2 1 60—
~2rM1€ge- (4/3)kn1Ur—-r?Y8pgoY+r2poXdd/orY=0.

Taking Into account properties of spherical functions” derivatives
E3.7a and E3.7b Y®+ Y* +cY®=-LY, Y* +cY® -Y®* =0 to the derived

equation we simplifyderived equation:

r2Yy”sY-Lr2y Y+2r2ysY+2rp+2n* T [-Zo (YO+Y*® +cY®)+Z5(-Y*+Y*-cY?)-7,Y] -
~2rn1€ee—2M1F€pp— (4/3)kn1U=(4/3)N*KXZ1Y-r’goXspY+ripeX00/0rY=0.
r’Yy’sY-Lr2y Y+2rXysY+2rp+2n* L [LZ.Y-2Z:Y]-2rni€e0-21n 1€¢p— (4/3)kn1Ur-
—-(4/3)IN*KXZ1Y-r?gord5pY+r2pox0e/orY=0.

Now it is time to substitute the expression for the dynamic

pressure (Ul2) into considered equation:
rp(r,0,0)=2{-2n*(2+k)Z1in(r)+2n*LZo(r)-Z3(r)+(2/3)n*KZ1(r)+rpo@}inYint
+2[(273)k(mUr)+2r(maerr)13Yim
r’Yy”sY-LrXyaY+2r2ysY+2{-4n* (2+k) Z1 (r)+4n*LZ>(r)-2Zs(r)+
+(4/3)n*kZ(r)+ FinY it 2 [(A73) k(MU +4r (mierr) 1Y int2n*2 [LZ,Y -
~2Z1Y]-2rn1€00-21M1€40- (4/3)kniUr=(4/3)N*KEZ1Y-r?goXdpY+r’pox0e/orY=0.
ys=(1/r)Z3 -po?,

r’Yy”sY-LrZyaY-2rpod+X{-4n*(2+k) Z1+2rpo@}inYint ZL(4/3)k(niUr)+

+4r (1€ ) 1HY 1nt6N*LZoY -4Nn*Z1 Y] -21rn1€06-21M1€00- (4/3) kn1Upr-r2goXspY+
+r2pex0e/0rY=0.

r’Ly”sY-LrXy,Y+6n*ZZ.LY-4n* (3+k) XZ Y+ X[ (4/3)k(MiUr) +4r (i€ )] Yin-
~2rn1(Eep+Epe) — (4/3)kn1U-1r?goXdpY+r?poX00/0rY=0.

Expression for divergence (U3):

(errtegateey)=-(1/r)kU,,

(€eotepp)=-€rr—(1/r)kU,,

-2rni1(€epteee) =2n1(rerr+kUr, )=2rnierr+2kn1Uy,
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Taking into account that functions n;e, and n:U, are expanded into

spherical harmonics (Ull):
r’Yy”sY-LrIysY+6n*2ZoLY -4n* (3+K) XZ, Y+ X [ (473)Kk (MU +4r(mier) 1Y int
+Y [2r(ierr) - (27/3)k(M1U) 1Y 1n-r?goxdpY+r2poX0d/orY=0.

Switching to the notations of Zhang and Christensen (1993):

rZ”3 —Z3-r?p’ o®-r2pod” =4n*(3+k) Z1Y-6n*Z,LY+LZ4-Y [ (4/3) k(MU )+

+Ar (1) 1Y +r25pgo-r?pedd/or-Y[2r (nierr)+(2/3)Kk(M1U) 1Y 1

Y{rZ7s —Z3-r’p’ 0@ 1n }Y={4n* (3+K) Z1Y-6N*ZoLY+LZ4+r?godpin} Y-2[6r (N1€rr) -
-2k(MiU) 1Y 1n

rYZ”3 =an*(3+k) X2 Y-6n*TZoLY+2Z3+L Y Z4+1rpo” Té+1°Y.5pgo-2 [61 (N1€1r) -
-2k(MiU) 1Y 1n

rZ” sin=n* (12+4K) Z11n-6n*LZoin+ Zain+LZain+ rkpo@in+ r’8pingo+Cin
Cin==-6r(ma€rr) im-2K(M1Ur) In

rdz3'm

= (12+4K)'Z" ~6Ly 2 + 2" + L2 ~kp'Z]" + 5‘;‘”2 -

0
—ﬂngo]zﬁ(err +@uerlm sin&lé @
Smo 0 % 3
Viscous term appearing in the equation E5.4c (radial stress) again
differs from the term stated by Zhang and Christensen (1993). The
nature of the distinction is the same as in (Ul6). The additional
member -2k(niUr)in In the viscous term appears due to the effect of
mantle compressibility.
7) Stokes equation along the axis ep:
0=r201,6/0r+rdc ¢/ 00+(r/Sin®)0toy/ 8¢+ (Copp—COpe+3Tre)+Ipodd/ 0
Tro=2YaY +YeY°.
rys=Zs,
rzy’4=rZ’4 —Za,
r20tro/r=2LrZ” s(r)inY1n+rZ” 6 (N inY1n’1-Z[Za (X 1Y 12+ Zs (X)) 1nY 1n°]
roge=—rp+2n*[0Ug/00+U ]+ (2/3)Nn*KkUr+2rn1€60+(2/3) kn1Ur
Fope=—rp+2n*[(1/s1n08)0Uy/0p+U+cUp]+(2/3)N*KUr+21rni€¢e+ (2/3)kniUy
rte,=—n*L(1/s1n0)0Up/0p+0Uy/ 00-CUy]+21M €4,
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roee=-rXp(N) Y 1mt2n*2[Z2YP+Zs Y +Z, Y ]+ (2/3)n*k2ZZ, Y+2rniee0t+(2/3) kniUr
FOoe=—rZpY+2n*T[Z1Y+Zo(Y?P+CY?) +Zs (-Y**+c V) 1+(2/3)N* kX Z, Y +2rn €40+
+(2/3)kn:1Uy

rtop=*TL(Z2Y™ +ZsY*)+(ZoY*-ZsY™*) -c(Z2Y*-Z5sY*) ]+2 11 €04,
rp(r,0,0)=2{-2n*(2+k) Z1in(r)+2n*LZ2(r)-Z3(r)+(2/3)n*kZ1(r)+rpo2}inYint
+X[(2/3)K(MiU)+2r(mierr) 1} Yim

Foge —Foge=-rXp(r)inYint2n*X[Z2Y*+ZsY®+Z, Y]+ (2/3)N*KEZ1 Y+21rn €6+
+(2/3) kiU +rEpY-2n*T[Z,Y+Z2(Y*+CY®) +Z5 (- Y¥+cY®) ] - (2/3)n*KZZ, Y -
-2IM1€go—(2/3)kn1U,

rogs —Foee=2n*T[Z2YP+ZsYP+Z,Y]-2n*T[Z,.Y+Z2(YPO+CY?) +Z5(-Y® +cY?) ]+

+2r (M1€00-M1€¢0)

0=r?01,6/0r+rdc ¢/ 00+(r/Sin0)dte,/0¢+r(Coss —COpe+3Tre)+rpod®/00

0=rYZ” Y +rYZ276Y-3Z4Y -3 Z6 Y- rZp(r) 1nY int2n*T [ Z2 Y+ Zs Y+ 2, YO +
+(2/3)N*kXZ1 Y+ [2rneeet (2/3)kniUy Jotn*Z[2Z2 (Y- Y®?] - Zs [LYP+Y™*) ]+
+(1/5in0)2[M1€oplo+C2N*T[Z2Y*+ZsYP+Z, Y] -c2n* T [Z1Y+Zo (Y*P+cY) +
+Z5(-Y®+cY®) ]+ +2cr(ni€es-11€0p) +32ZaY +3ZsY*+rpoY aY®

0=rYZ7 Y +rYZ76Y-3Z,Y -3 Z6Y? +X{2n* (2+K) Z11n(r) -2n*LZ2(r)+Za(r) -
-(2/3)N*KZ1 (1) -rpoetinY in-E{[(2/3)k(M1Ur) +2r (naerr ) 13Y0in+

+2N* T [ZY "+ Zs Y+ 2, YO +(2/3)*kZZ, Y+ [2rnieee+ (2/3) kU o+

+n* T [2Z2(Y*P-cY®]-Zs[LY*+Y**) ]+ (1/5in0) 2[n1€60 ] o +C2N* T [Z2YP+2Z5 Y0+
+Z1Y]-C2n*T[Z1Y+Z2(YO+CY®?) +Z5 (-Y**+CY?) ]+2Cr (1€00-11€00) +3XZ4Y +3Z YO+
+r‘poZ<I>Ye

0=rYZ7 Y +r3z76Y+...-X[(2/3) k(MU +2r (ier) 13Yo 1+
+[2rnieeet(2/3)kniUr]et(1/sinB)2[Mi€ge]e +2Cr (N1€06-M1€00)

0=rXZ” ,YH+rYZ76Y%+...-X[(2/3)k(MiU) +2r (i) 13Yin+2r°C (U18)
where C ={[rniepe+(1/3)kniUr]e+(r/sind) [niee,] o+Cr(M1€op—M1€9p) }/1?

8) Stokes equation along the axis g,:

0=r201 o/ Or+rd1gy/ 90+ (r/sin@) 0o,/ 0p+(3r1 e+2Crtey)+[(rpo)/(sind)]oe/oe,
Fre =X [Za(N) inY1n®~Ze (N inYin' 1 »

rys=Zs,

r2y’4=rZ’, —Z4
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Tre =(/VZLZs(ND) 1Y 1n*-Z6 (D 1nYin'1

0tro/Or=(L/TIZLZ” 4N 1nY1n*-Z7 6 (N 1nYin 1= (/D ZLZa (D) inY 1n"-Z () inY1n' ]
r20tro/Or=2rZ” s(r)inYin®-rZ” 6 (N inYir 1-Z[Za(D) 1nY1n*-Z6s (N inY 1n°]

Tro=2YaY +yeY°.

FOpo=-FXPpY+2n* T [Z1Y+Z2(YOP+CY?)+Z5 (- Y¥*+cY?) 1+(2/3)IN*KEZ1 Y +21rn €00+
+(2/3)kn1Ur

rtee=N*X[2Z,Y*]-Zs[LY+Y*) 1+ (2/3)n*KkZV, Y+2rn €40
rp(r,0,0)=2{-2n*(2+k) Zuin(r)+2n*LZ>(r)-Zs(r)+(2/3)n*kZ1(r)+rpo@}inYin+
+2[(2/73)k(MiUD)+2r(mierr)1}Yim

0=r201 o/ Or+rd1g,/30+(r/sin@) 0o,/ 09+ (3rt ,+2Crtey)+[(rpoy/ (sing)10e/op,
0=2rZ4(r) inYin®-rZ76(N)inYin'1-2[Zs(r) inY 1n"-Zs (") inY1n 1+ * X [2Z2, Y] -
~Zs[LY*+Y%*®) ]+ (2/3)n*KZV, Y+ 2r [n1€0p 1o~ rZpY+2n* T [Z1 Y +Zo (Y*P+CY?) +
+Z5(-Y?"*+cY™) ]+ (2/3)n*kTZ1 Y+ (1/5in0) [2rnieep+ (2/3) kU 1o+

+3X[Z4(D) 10Y 10~ Z6 (X)) 1nY 1n° ] +2en* 2 [2Z2Y %] - Zs [LY+Y?) ]+ (4c/3)n*kZV, Y +
+4crnieeetL(rpoy/ (sinb)]oo/oe,

0=2rZ" 4(NinY1n’-rZ7 6 (N inYin 1-ZL[Z4 (N inY 1n*-Z6 (N 1nY 1n 1+ *2[2Z:Y*] -
~Zs[LY*+Y*) 1+ (2/3)M*KIV Yo+ 2r [n180p] o+ Z{2Nn* (2+K) Z1in(r) -2n*LZo (1) +
+Z3(r)~(2/3)M*KZ1 (D)~ rpos}inY *in-Z{L(2/3)K (MU +2r (nierr) 13 it

+2N*T[Z1 Y +Zo(YO+CY*?) +Z5 (- Y ¥ +cY®) ]+(2/3)N*KEZ1 Y+ (1/Sin0) [2rn1€e0+
+(2/3)kniUr1o+3Z[Za () inY1n®-Z6 (X)) nY1n’1+2en* T [2Z,Y%9] -Zs [LY+Y*) ]+
+(4c/3)IN*K2V Y +4crrmieg,t L(rpoy/ (sinb)]oe/ 0,

0=2rZ74(r) inYi®-rZ7e(NmYi® +.-2{[(27/3)k(MU)+2r(mier)13Y mn+
+2r[mi€eplet+(1/sin6) [2r1€pet (2/3)kniUr]ot4CIni€e,

0=2rZ’4(r) inYin®-rZ7s() Y’ +.-2{[(2/3)k(MU)+2r(nier)13Y i+

+2r°D (U19)
where D={r[ni€esple+(1/Sin0) [Irniep+(1/3)kniUr]o+2CIni€00}/ 1>

Hence, we have arrived at the following equation system:

0=rXZ7 Y +rYz76Y+.-X[(2/3)k(MiUr) +2r (i) 13Y in+2r°C

C ={[rniee+(1/3)kn1UrJo+(r/sind) [nioplo+cr(nios-11€9) 3/ 1>

0=2rZ" 4N 1nY1n®-rZ7 6 (DY +..mX{[(27/3)k(MUr) +2r (M1err) 13 1n+2 r’D

D ={r[mieeplo+(1/sin0) [Irni€ee*+(1/3)kn1Ur]o+2CIni€ep}/ 1>
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C=Yga(N) inYin +Go () inY 1n’

D=Yga(N) inYin"-go(r)inYin’

9a=D=(r?/sm)S*odeS™ [CY®1n+DY*in]Sinede

go=F=(r?/sm)S*odeS " [CY*1n—DY®n]sinede

0=rY¥Z7 Y H+rXz76Y+. .- [(2/3)k(MiU)+2r(M1&rr) 13 Y in+2Xga () inYin +
+22.96(N Y’

C ={[rnieo+(1/3)kn:Ur]o+(r/sind) [ni€eelo+Cr(ni€oo-n1€ep) }/1°
0=2rZ4s(ND 1Y rZ7 (N Y1 +.->{[(2/3) k(iU +2r(maere) 13Y%m +
+23ga(N) inYin*-22gs () inY1n’

D={r[m1€ep]e+(1/5in0) [rni€ep+(1/3)kniU]o+2CIn1€00}/1°

0=r3Z” Y H+rXZ”6Y*+. +230% (N inYin +2296(r) inY1n’

C ={[rnieo+(1/3)kn1Ur]o+(r/sind) [ni€eelo+Cr(ni€oo-N1€ee) }/1°
0=2rZ” 4N inYin*-rZ”6 () inYin +.+22g*a (M) inY 1n"- 2296 (N inYin’
D={r[m1€ep]e+(1/sin®) [rni€ep+(1/3)kniU]o+2CIrn1€00}/1°
9*a(r)=ga(r)-L[(1/3)k(nUr)+r(mer)]

rZ’4=.. -2gamt[(2/3)k(MiUr)+2r(mierr) Jim =-29*

rZ’s=.. —20oin

9a=(r’/sm)J*ode "o [CY°1n+DY*In]sinede (U20)
gb=(r?/sm) S ode "o [CY*1,—DY®n]sinede
MUr=(17/Smno0) S SM1UrY1ndesinodo,

Ni€rr=(1/Sno) S SM1€rrYindesinbdo

9*a=ga(N-[(1/Dk(MU)+r(ier) 1=(r*/sm) f*odeS o [CY®1n+DY*in] sinede-
~(1/35m0) [?ode S [(1/3)K(MUr)+r(n1€rr)]Yinsinede

Din=-20%a1n =-2(r2/sm) ol " [CY°1,+D Y*i,]sinede+
+2(1/5m0) Sode ™ [(1L/3)K (MU +r(n1€rr)]Yinsinede

dzpr

=—(6+2K)p'Z" -22L-)p'Z)" -2 -2Z," -

22J?d¢]€ CY + Dv,” S|n6bI(9+—J'd¢j (e +Qu jY"nSinédQ u21)

SIm 0 mO 0
F|m=—2gb|m:—2(r2/8m|)f2nod(pfno[QY‘Pm—QYem]SInede
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dz."

r =(L-2y'Z" -2z -
2r2 2 V1 )1 (U22)
—S—jdgoj[gv,:;—gvlm]sm ao
Im 0 0
~ k(r) ~
8(rne€€+77u } ~
1 3 r 0(ney,) ~
C=— 4 tg O _
= r? 00 Tsing Gl +retgn (€ =e,)
u23)
~ k() -~ ) (
~ olrpe, +—"nu
2 A Om)
D=i2 r (ne9¢)+ _1 3 +2rctgfre,
r 00  sind op v

C={[rnieee+(1/3)kn1UrJe+(r/sind) [ni€eo]o+Cr(ni€oo-11€po) 3/ 1>
D={r[mi€eplot(1/sin6) [Ini€ee+(1/3)kniUr]e+2C rmee(,,}/r2

Again the same distinction in sign and coefficient.. The additional
members due to the effect of mantle compressibility appeared once
more 1In both viscous terms. Expressions for the viscous terms
themselves are obviously different from those derived by Zhang and
Christensen (1993), they differ at least 1in the member
2(1/sn0) S ode o [(L/3)k(MiU)+ +r(nier)]Yinsinede, which is absent in
Zhang and Christensen (1993). It is clearly seen that the former
viscous terms are compised by only coefficients for spherical

functions” derivatives Y/’(0,9) and Y/(6,9), while the new formulae
for Dy, and Fy, include the coefficients for spherical functions

Yn(0,0) as well.

Part W.

The process of derivation of the viscous terms for the W-transform
method is rather similar to the calculations done for the U-
transform method in the previous part.

Relation between viscous stress tensor and mantle velocities:
Trr=2n[oU/or-(1/3)V-Ui] ,
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tro=n[ro(Ue/r)/or+(1/r)ou,/o0],

Tre=n[ro(Uy/r)/or+(1/(rsind))ou/oe], (w1)
100=2n[(1/1r)0Ue/36+U/r-(1/3)V -Ui],

Toe=2n[L(1/ (rsin6))oU,/op+U/r+Us(ctgb)/r-(1/3)V-Ui],
To,=ML(s1N6/1r)0(Uy/SsiNB)/00+1/rsinb)oUs/0¢] ,

As it is seen from above an application of total stress instead of
viscous shear stress to the Stokes equations simplifies the
deductions:

Orr=—P*Trr,

Opo=—P*T o0,

Opp——P+Too »

Mass conservation:

V- (poUi)=(1/r*)a/0r (r’poUr)+(1/ (rsing))a/00 (sinbpoUp) +
+(1/(rsinb))opoUy/ 0p=0
V-Ui=2Ur/r+0U,/0r+(1/r) [0Us/ 06+cUes+(1/5in0)U,/091=-(1/r)K(rU,  (W2)
Stokes equation along the axis e,:
0=00,+/0r+(1/r)01re/00+(1/(rsin®))otro/09+1/r) (21 rr—Too—Toot Tro CEYO) -
-35pgotpodd/or
0=r200,r/0r+rot,e/00+(r/sin®) ot r,/00+r (21 rr—Tee— T+ Tro Cg0)-r’dpgo+
+r2pode/or w3)
Stokes equation along the axis egp:
0=01re/0r+(1/1)0cpe/ 00+ (1/(rsin®))otoe/ 09+ (1/1r) (cop—coge +3Tro)+
+(po/1r)od/o6,

0=r201 o/0r+rdc go/00+(r/sin®)dte,/0p+r(coee—Copy+3Tre)+rpod®/0o0, \wa)
Stokes equation along the axis e,:
0=01ro/0r+(1/1r)019o/00+(1/rsinB)0c,e/ 09+ (1/1r) (Btret

+2ctep)+[po/ (rsind)Joe/oe,

0=r201 o/ 0r+ro1gy/ 00+ (r/sin®) 0o,/ 0¢+r (31re+2cte,)+L[rpo/ (sinB)16e/0¢ , (W5)
Relation between total stress and mantle velocities:
orr=-p+210U/0r-(2/3)nV - U;

rto=n[oU,/00+roUe/0r-Ue] ,
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rtrp=n[roUy/or+(1/sinb)ou,/op-U,] ,

roge=-rp+2n[oUe/006+U]—-(2/3)rmV-U; we)
roye,=—rp+2n[(1/sinB)oU,/0¢+Ur+cUe]-(2/3)rmV-U;
rte,=n[(1/s1NnB)0Us/89+0U,/00-cUy] ,

Change of variables applied to mantle velocities:
n(r,0,¢)=n*(r)-T(r,6,0)

Ve(r,0,9)=T(r,0,9)Ur ,

Ui=Vi/T , w7)
Vo(r,0,9)=T(r,0,¢)U ,

Vo(r,0,9)=T(r,0,9)U, -

In the general form:

Ui=Vi/T,

UiZ08=(L/T)[Vi 705-Vi oInT/05]=(L/T)[Vi/o5x-ViT¢] w8)
where T:=0InT/08=(1/T)0T/0%«

In spherical coordinates:

rvvInT=V, rT +VeT*+(1/sin0)V,T°

rolnT/or=T",

aInT/80=T°, W9)
(1/sinB)oInT/0p=T°

rVvInT=V, T +VTo+V,T°

Applying this change of variables to the continuity equation:
V-Ui=2Ur/r+0U /0r+(1/r) [0Us/ 06+cUe+(1/sin0) U,/ 09]=-(1/r)K(r)U;,

(/T [2V/r+N L 0r+(1/ ) [Vo/ 00+CcVo+(1/SiN0)V,/00]- (/T [V, T+
+(1/r)VeT+(1/rsino)V,T?]=-(1/r)k(r) (1/T)V,,

2V /r+0V /0r+(1/r) [0Ve/06+CVo+(1/s1N6) 0V /090 ]=-(1/r)K(r)V+VVINT
where VVINT =V, T +(1/r)VeT+(1/rsind)V,T?

2V +roVe/or+[0Ve/06+cVe+(1/siN0)0Ve/0p]=-K(r)V+rvvIinT

where rvvInT=V, T +VeT%+V,T® (V-Vi=-K(r)V+rvvinT)

Applying change of variable to the expressions for the relation

between non-hydristatic normal stress and mantle velocities:
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Orr=-p+210U/0r-(2/3)nV - Ui=—p+2n*TL(/T) OV /or-(L/T2V, oT/or]+
+(2/3)n*(L/r)K(r)V,
Orr=-p+2n*TL(L/T)VLor-(L/ TV, 0T/or]+(2/3)n*(L/r)Kk(r)V,
orr=—p+2n*oV/or-2n*V, oInT/or+(2/3)n*(1/r)k(r)V,

ror=-rp+2rn*oV /or-2n*T"V,+(2/3)n*k(r)V, (W10a)
Tro=nL(1/1r)oU/30+0Us/0r-Ue/ 1]

Tro=N* [ (17 1)V /00+Vo/3r-Vo/ r T-n*[(L/ )V, T4V T"]

rto=N* [0V /780+rdVe/or-Vo]-n*[V,T%+VeT"] (W10b)
Tro=n[OUy/0r+(1/rsing)ou,/op-U,/r]

Tre=N*[Vo/0r+(1/rsin®) oV /00-Vo/r1-n*[V, T +(1/rsinb)V,T?]
rtre=M*[roVe/or+(1/sin®)oV,/oe-Ve] -n* [V, T +V, %] (W10c)
Go=-p+2n[(1/r)dUe/30+U,/r]-(2/3)nV -U;
coe=—P+2n*[(1/1)Ve/00+V/r]-20*[(1/ )V T 1+(2/3)n*(L/r)K(r)V,,
roee=—rp+2n*[6Ve/80+V,]-2n*[VeT?]1+(2/3)n*KkV, (wiod)
Too=N L (17/rsin®)oUe/op+(1/r)oU,/00-U,c/r]

10o=N*[(1/rsin®)Ve/ 00+ (1/1r)NVy/00-V,c/r]1-n*[(1/r Sinb)VeT*+ (1/r)V(pT9] ,
rtap=n*[(1/51n0)8Ve/0p+8V,/00-CVo]-n*[VeT+V,T°], (W10e)
Spherical functions TfTor mantle velocities, stresses, dynamic

pressure, density and geopotential are represented in spherical

harmonics:

Ve(r,0,0)=T(r,0,0)Ur =2Z:(r)inYn(0,0)

Vo(r,0,0)=T(r,0,0)Up =Z[Zo(r)inYir'+Zs(r)inY1n"]

Vo(r,0,0)=T(r,0,0)Us=L[Z2(r) 1nY1n*-Zs()1nY1n']

orr=2YyaY,

Tro=2 (YaY+YeY?), (W11)

Tro =2 (Y4Y*-yeY?),

5p(r,0,9)=2pY,

o(r,0,0)=29Y,

P(r,6,0)=2p(r)mYm

FGee=-rp+2n*[Ve/00+V,]1-2n*[(VoT"]1+(2/3)n*KV,,

roee=-rxp(r) inYint2n*T[Z21nY%in +Z51nY® 10t ZoinYind+(2/3)M*KEZ14nY 1n —
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—2n*[(VeT"1, (W12a)
Fope=—rp+2n*[(1/sinB8)oVy/00+V+cVe)]-2n*[(1/sinO)V,T?]+(2/3)In*KkV -
—2n*[VeT°]
FGoo=-rZp(r)Y+2n*[(1/Sin0)oV,/do+V+CVe]l=-rYp+2n*T[(Z2Y**-ZsY'*)+Z, Y+
+(Z2Y+Z5Y?) 1+ (2/3)n*KZZ1 Y -21n* [V, T7]

FOoo=—rIpY+2n*T [(Z2Y "' -Z5Y ") +Z1Y+C(Z2Y +ZsY?) 1+ (2/3)n* kX2, Y -
-2n*[(1/sine)V,T]

FOpe=-FXPpY+2n*T [Z1Y+Zo(YP+CY?)+Zs (-Y*+cY?) ]+ (2/3)n*kZZ, Y -

-2n*[V,T7] (W12b)
rtoo=N*[(1/5iNn0)Ve/0¢+0V,/30-cV,]-n*[(1/Sin0)VeT?+V,T],

rtee=N*LL(Z2Y% +ZsY*®) +(Z2Y?-ZsY*) -c(Z2Y® -ZsY)1-n*[VoTO+V,T°]
rtoe=n*2[Z2(Y% +Y%-cY® 1+Zs[Y*°-Y*+cY®)]-n*[VeT?+V,T%]
rtep=N*2[2Z2(Y*-cY®]-Zs[LY+Y*) -1 * [VoT+V,T°] (W12c)
Relation between notations used in this study and original

notations of Zhang and Christensen (1993):
orr “=orrtpo(r)e(r,0,¢)=-p+tr+po(r)e(r,0,¢)=(1/r)2Zz(r)inYin(0,¢)
orr=(1/r)XZ3Y-pXo®
1=/ Z[Z4(N) inYin' +Z6 () inY 1n’]
Tro =(/N)ZLZs() inY1n*-Ze (N inYin'] (W13)
y3=(1/r)Z3-po®
y4=(1/r)Z,4
Ye=(1/1)Zs
&=7./r
Derivation of the ODE system for the spherical harmonic

coefficients

Zinm(M), Zom(P), Zsin(X), Yam(X), Yam(r), Yem(r) and pmm (r):
1) Mass conservation:

2V /7 +0V, /0r+(1/1) [6Ve/80+CVe+(1/51N0)8V/69p=— (1L/)K(r)V,+VVInT
2Y(Z1/ V)Y+EYZ1 +3(Zo/ V) [Y P+ YO+ Y]+ 2 (Zs/ ) [YP+cYe-Y*] =
=—(1/r)KXZ;Y+VVINT

25(Z1/ V)Y +3XZ1°Y-2(Z2/ P)LY=-(1/r)KZZ,Y+VVInT

237, Y+r3Z, " Y -3 Z,LY=-KZZ: Y+rvvInT
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rVvviInT=2A(r) inYin(0,0)
rZ,”=- (2+k)Zl+LZZ+A|m
where Ap=(1/sn)JSS(rvvInT)Y,desinodo

) dz,"

o —(2+Kk)Z™ +LZ) +
r

2r T
+—— [dg[VVInTY,,(6,9)sin &1 (4

SmO 0 0

2) Relation between stress o, and mantle velocities:
Orr=—p+2n*oV/0r-2n*V oInT/0r+(2/3r)n*kV,,

T'=0InT/or

TV =2 (TV) 1nY1n (0, 0)=(1/r)XRinY 1n(0, ¢)

Rin=(rTVe)in =(175:)J S (rTVr)Yindesinedo, (W15)
YYsY=-3p+2n*3Z1 7 Y-2n*(1/ ) IRY+(2/3)N*K3Z, Y,

PIn=2n*Z1” -y3-2n*(1/r)Rin+(2/3r)n*kZ;

rp in=2n*rZy” -rys-2n*Rin+(2/3)n*kZ;

Using (5.1) we arrive at the expression for dynamic pressure:
rZ,”=—(2+k)Z;+LZ,+An
rp=-2n*(2+k)Z1+2n*LZo+2n*Ain-rys-2n*R+(2/3)n*kZ,

rp|m:—2n*(2+k)Zl|m+2n*LZZ|m— ry3|m+(2/3)n*k21|m+2n*(A|m—R|m) (W16)
where A (N)=(1/sw)JS(rvVInT)Y,desinddo
R|m(r):(l/Smo)ff(TrVr)Ymdq)Sin6d6 wi7z)

Spherical function for dynamic pressure can be found from:
rp(r,0,0)=2{-2n*(2+k)Z1n(r)+2n*LZ2(r)-rys(r)+(2/3)n*kZ:(r) }inYint

+2n*Z{A|m(r)—R|m(r)}Y|m
Reverting to the notations of Zhang and Christensen (1993):

rys=Zsz-rpo#,

rp(r,6,0)=2{-2n*(2+k) Z1in(r)+2n*LZ>(r)-Zs(r)+(2/3)n*kZ1(r)+rpo@}inYmn+
+2n* 2{AIm(r)-Rin(r)}Ym (W18)
3) Relation between stress 1,4 and mantle velocities:

Ftro=n*[0Ve/ 06+0Vo/ Or -Vo/ rT-n*[Vr T+rVT']
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SryaY+Yry 6Y=n*YZi Y+ rI[Z7Y+Z 7 s YO - * 2 [Z2 Y+ Zs YO - S [V TO+1rVeT']
Z4Y +Z6Y N *Z YN *r[Z7 Y+ 27 5 YO - * [ Z2Y 4 Z5 Y O - * [V, TO+rVeT ]
[Z4-M*Z1-M*rZ7 2+n*Zs JY +[Z6-n*rZ7s+n*Zs] Y+ * [V, T +rVeT =0
[Z*-Z1-vrZ7 o+ Z5] Y +[Z6/M*-¥Z7 5+ Zs] YO+ [V, TO+rVeT ]=0

S[rZ72-Zan*+Z1-Z2] Y+ X [rZ75-Z 6/M*-Z5] Y- [V, T?+VeT =0

[VeTH+rVeT 1=F1(r,0,0)=XFa(r)inYin +Fo (N inYin’
SIrZ72-Za*+Z1-Zo-Fa(r) 1Y +[rZ2”5-Ze/n*-Zs-Fo (r) ]Y®=0 (W19)
4) Relation between stress 1, and mantle velocities:
rtre=n*[roVy/or+(1/sind)oVe/oo-Vo]-n*[rV,T"+(1/sind)V,T°]
rysY-ryeY'=n*[rZ>,Y® -rZ>sY*+2,(1/sin0)dY/dp-Z,Y® +ZsY ]-n*[rV,T +
+(1/sinb)V,T].

Z4Y®-ZeY '=*[rZ” .Y -rZ” sY +Z10Y - Z,Y +ZsY ] -n* [rV, T +(1/sine)V, T’] .
[Zs-M*rZ7 2-*Za+*Z2] YO+ [-Z 6+n*rZ” 5-n*Zs] Y +n*[rV,T"+(1/sind)V,T*]=0
[Z4/M*-¥Z7 3-Z1+Z5]YO-[Z o/M*-¥Z” 5+Zs] YO+ [rV, T +(1/sine)V,T?]=0
Y[rZ72-Zm*+Z1-Z1Y -2 [rZ”5-Z 6/M*-Zs]Y - [V, T +V, T?]=0
[rV@P#(l/sinG)V{W]ze(r,9,@):Zfa(r)meﬁ—fb(r)mY]ﬁ

S[rZ” 2-Zan*+Z1-Zo-F]Y-2[rZ75-Z 6/M*-Z5-F,]Y°=0 (W20)
Taking into account (W19) and (W20) we arrive at the equations for

the spheroidal and toroidal components of the mantle velocity:
VZ” y==Z1+Zo+Zs/M*+Famn

rZ’s=Zs+Zs/M*+Foin

Fa=(1/sm) 1 %70do fHo{F1 Y 1ntFaYIn}sinede .

o= (U/sm) S 7o "o * [rVeT+VoT Y 1n+ [rV, T +(1/sin0)V, T*]Y* . }sinede,
Fo=(L/sm) S odo [ of{F1Y*In-F2 Y®in}sineds.

Fo=(1/sm) S Zode S oI * LIV TH+rVeT YO - [rV, T +(1/sin®) V, T?] Y8, }sinede
The final formulae for the equations E5.4b and E5.4e:
rZ7,=-Z1+Zo+Zs/*+F4

Fa=(U/s1n) SS{IVe T" +V, TTY+[V, T"+V, T?]Y*}desin6de=B""
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dz.m - 1.
A e
———Zﬁ f w21
+ s,l [dofTV, + TV, W2 +(TV, +T,V, 2 lsinado (W21
m 0 0

rZ’s=Zs+Zg/m*+¥,,
Fo=(L/s1n) SS{ Ve T +V, T YO- [V, T +V, T*] Y*}des in6de=E""

Im
(9Zs _ zr +i*Zf'3m +
dr n
2 V4
+ Si [doflTy, + TV e -y, +T,V, )2 lsinade (=)
Im 0 0

5) Stokes equation along the axis egr:
0crr/Or+(1/r)0tre/00+(1/rsSiNB) 01/ 09+ (1/r)[20 rr—Cop—TpetCtro]-3pTdot
+po0d/0r=0.

1200 /Or+rot,e/00+(r/sin®)ot,y/0¢p+r[26 rr—0ee—0pe+CTrol-r>8pgo+r2podd/or=
=0.

Substituting the expansions for stress tensor components:
orr=2YyaY,

Tro=2yaY +YeY?,

T quZY4Y(p-YGYe ,

roee=-rIp(r) inYint2n*T[Z:Y*+ZsYP+Z,Y]+(2/3)n*kZZ1Y-2n*[VeT%]
FOpe=-FXPInY 1n+2n*T[Z1Y+Zo (Y**+CY)+Z5(-Y*+cY?) ]+ (2/3)n*kZZ, Y -
-2n*[VeT*]

r2y” sY+rys YO+ rys Y+ ry Y- rys YO+ [2rysY+rp-2n*[Z.Y®+ 25 Y*+Z, Y] -
—(2/3)N*KZ1Y+2n* [VeTel+rp-2n*[Z2.Y+Z2(Y**+CY?) +Zs (- Y**+cY?) ] -
—(2/3)INFKZ Y +2n* [V T+ (ryaYo+rysY?) 1-r2spgoY+r2pede/orY=0.

2y sY+rZy [ YO +Y*+c Y +riys [YO- Y +c Y +2r2ysY+2rp+2n*T [- Z, Y-
~Z5Y?-Z Y]+ 2n* T [-Z2(Y* +cY®)+Z5(Y¥-cY?)-Z:Y] - (4/3)n*kTZ, Y+

+2Nn* [VoTol+2n* [V T?1-r?X5pgoY+r2poxod/orY=0.

Using properties of the spherical functions’ derivatives E3.7a and
E3.7b Y®+Y®+cY®=-LY, Y*®%+cY®-Y®*=0:

161
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



r’Yy” sY-LrIyaY+2rZysY+2rp+2n*X[-Zo(Y*+Y*+cY*) +Zs (- Y +Y*-cY?) -
—2Z1Y]+20* [VoT?]+2n* [VoT°] - (4/3)N*KEZ, Y -r?goX5pY+r?pordd/orY=0.
r2Yy”3Y-LrXyY+2rysY+2rp+2n*X [LZ.Y-2Z: Y] +2n* [VeT ] +2n* [V, T7] -
—(4/3)N*KTZ1Y-r’goxdp Y+r2poxoe/orY=0.

Derived expression for dynamic pressure (W16) is substituded into
equation:

rp(r,0,0)=2{-2n*(2+k)Z1in(r)+2n*LZ2(r)-Z3(r)+(2/3)n*kZ:(r)+
+ FinY it 20 2 { A (D) -Rin (X)) }Yim
r2Yy 7 sY-LrYysY+2r2ysY-4n*2Z. Y420 * 2 2L Y+ {-4n* (2+K) Z, Y +4n*LZ,Y -
—2rysY+(4/3)M*KZ Y+ * T [AIm (1) -Rin (N 1Y i+ 20 * [Ve T T+2n* [V, T9] -
—(4/3)N*KEZ1Y-r?goX3pY+r2poXoe/orY=0.
r2Yy” sY-LrYy Y+6n*XZoLY-4n* (B+k) XZ: Y +HAN* T [Arm-Rin] Y int20* [VeT +V,T9] -
-r2goXdpY+r2peXoe/orY=0.
r’Yy” sYin=4n* (3+k) XZ:Y-6n*2ZoLY +Lr Xy a-4n*2 [Ain-Rin] Y+r°goX5pY -
~r2poX00/0rY 1n-2n* [VeTo+V,T°]
Reverting to the notations of Zhang and Christensen (1993):
rZ”3—Z3-r?p’ od-r’pe@” =4n* (3+K) Z1Y-6N*ZoLY+Lrys-4n*Y [An-Rin] Y+r?5pgo-
~1r2pdd/or-2n* [VeT*+V,T]
S{rZ7 3 —Z3-r?p” 0@ 1n}Y={4n* (B+K) Z1 Y -61*ZoLY +Lry4-4n*Y [Atn-Rin] Y+
+1r2godpinyY-2n*[VeT?+V,T¢]
Y773 =4n*(3+k) XZ1Y-6n*LZoLY+ X Z3+L r Xy a+rpore+r2Y.5pgo-4n*2 [Am-Rin] Y-
—2n* [VeTo+V,T?]
[VeT’+(1/Sin®)V,T1=XS1nYim,
where Sin=(1/Sno)J S [VeT’+(1/sin®)V,T*]Y1ndpsinodo
SrZ7 Y 1n=2{AN* (3+K) Z1-6M*ZoL+Z3+Lrys+rpod+r?5pgo-4n* [An(r)-Rin(r)]-
-20*Sin}Yin
rZ” sin=n* (12+4k) Z11n-6n*LZ2in+ ZaimtLZatnt rkpo@int r’8pino+Cin
where Cyp=6n*r[V,T"-VVInT]in= 6n*(Rin—-An)

Rin(r)=(1/5m0) S S (TVe) Yindosin6do

Ar=(r/sn) S S (VVINT)Y ,desinodde
Amn=Rin ==[1/(6n*)1Cin=-(17/Sno) S S (TV,=VVINT)Y 1ndesinodo
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Im 2
9% _ 2+ A Z" —6Ly 2" + 23" + L2 —kp'Zg" + P _
o
* 27 4 (W23)
_bnr [do] TV, +TV, )V, sin&do
Smo 0 0

6) Stokes equation along the axis eg

0=0t1re/0r+(1/1r) 0060/ 00+ (1/rsinbd)otey/ 09+ (1/ 1) (Copp—COyet3Tre)+(po/ )0/ 00
0=r201,6/0r+rdc ¢/ 00+(r/Sin0)dte,/ 00+ (Coee—COupe+3Tre)+Ipodd/00

Tro=2YaY +yeY?.

rys=Zs,

rey”4=rZ”4—Zs,

r20t e/ Or=2[rZ” s(r)inYin+rZ” s (N inYin"1-Z[Za (X)) 1nY 10 +Z6 (X 10 Y 10°]
roge=-rXp(N) Y imt2n*2[Z2Y®+Zs Y +Z, Y ]+ (2/3)n*k2Z, Y -2n*[VeT ],
FOoe=—rLpY+2n*T[Z1Y+Zo(YPP+CY?)+Zs(-Y**+c V) 1+ (2/3)N*kEZ, Y -2 * [V, T?]
rtop=N*LL(Z2Y® +Z5Y**)+(Z2YP-Z5Y®) -c(Z2Y*-Z5Y) ] -n* [Ve T*+V, T]
rtoe=N*L[2Z2(Y*-cY?]-Zs[LY+Y*®)]-n*[VoTO+V,T%]
rp(r,0,0)=2{-2n*(2+k) Z11n(r) +2n*LZ2(r)-Z3(r)+(2/3IN*KZ1 (r) +rpo@int
+2n*(A-R) HinYim

oo Ope=—rZP () nY 1nt2n*LLZ2Y*+ZsY%%+2Z, Y]+ (2/3)n*KZZ Y -2n* [ (VeT ]+
+rypY-2n*X[Z:Y+Z2 (Y +CY?) +Z5 (-Y**+cY?) 1 - (2/3)n*KZZ1 Y+2n* [V, T9]

rogs —Foee=2n*L[Z2YP+ZsYP+Z, Y] -2n* [ (Ve T ] -2n*T[Z1Y+Z2(YOP+CY®) +
+Z5(-Y*+cY®)]+2n* [V, T%]

0=r201,6/0r+rdcee/00+(r/sin®) 1o,/ 0p+r(Cope—COpp+3T re)+Ipodd/00

0=r3Z7 4Y +rYZ7 6Y*-3Z4Y -3 Z6 Y- rXp(r) 1nY int2n* 2 [Z2 Y+ Z5 Y+ 2, YO +
+(2/3)N* K221 Y -2 * [ (Vo T et * T [2Z2(Y**P-c Y] -Zs [LY®+Y%%%) ] -
~N*(1/sin0) [VeT*+V, T% g +c2n*T[Z2Y*+Zs Y +Z, Y] -c2n* [VeT ] -c2n* T [Z. Y+
+Z,(YP+CY)+Zs (-Y*+cY®) T+C2n* [V, T?]+3X [Z4Y +Z6 Y] +rpoXeY®

0=rYZ” Y +rYz6Y -YZ,Y -3 Zs YO+ X {2n* (2+k) Z11n (1) -2n*LZ2(r) +Z3(r) -

- (2/3)N*KZ1(r) -rpod-2n* (A-R) }1n Y 1nt 2 * 2 [ ZoY 2"+ Zs Y+ 2, YO  +
+(2/3)N*KZZ1 Y -2 * [ (Vo T ot * T [2Z2(Y**P-c Y] -Zs [LY?+Y%%%) ] -
—N*(1/sin0) [VeT*+V, T o +c2n*T[Z2Y*+Z5 Y +2Z, Y] -c2n*[VeT?] -
—C2N*T[Z1Y+Z2(YP+CY?) +Z5 (-Y¥+CY?) J+C2n* [V T 1+3XZ4Y +Z6 Y+ rpoX @ 1nY®
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This equation can be represented in common form as:

0=X(rZ” at+. )Y +X(rZ”emnt+.. ) Y*-X2n*(A-R) Y’1n-1*Cs

0=X(rZ” sin*+.)Y+X(rZein +.)Y*-n*C1-n*C,

C1=2Z(A-R)1nY’rn

G=rZ” 4-Zs+{2n* (2+K) Z11n(r) -2n*LZo(r) +Zs(r) - (2/3)n*kZ1 (r) -rpodé-

—2n*(A-R) }+(2/3)N*KZ1+3Z,°+Z6 "+ rpo@1ntn* {22, Y0 +2Z5Y*+27, Y +27, (Y0

—CY®) -Zs[LY®+Y*°]+c2[Z,Y*+Z5Y*%+Z, Y] -2CZ, Y -2¢Z, (Y +CY?) +

+2cZs5(Y*-cY®)}

G=rZ” 4-Zs+{2n* (2+K) Z11n(r) -2n*LZo(r) +Z3(r) - (2/3)n*kZ1 (r) -rpodé-

-2n* (A-R) }+(2/3)N*KZ1+3Z,°+ 26"+ rpodint+2n*{Zo Y "+ 25 Y**+ 2, YO+ 2, (YO -

—-CY®)-(1/72) Zs[LY*+Y®*]+c[Z,Y?+Z5s Y +Z, Y] -cZ1 Y-cZo (Y +cY?) +cZ5 (YO -

-cY®}

G=rYZ” 4+{2n* (2+k) Z11n(r) -2n*LZ2(r)+Z3(r) - (2/3)n*kZ1(r) -rpo@-

20> (A-R) }+(2/3)N*KZ1+3Z +Z6"+rpod i+ 2n*{Zo Y ¥+ Z5 Y**+ 2, YO+ 2, (YO0

~CY®?)-(1/2) Zs[LY*+Y**]+C[Z,Y*+Z5Y*] -cZo (Y +cY?) +cZs (Y*-cY?) }

G=rYZ” 4+{2n* (2+k) Z11n(r) -2n*LZ2(r)+Z3(r) - (2/3)n*kZ1(r) -rpo@-

—2n*(A-R) }+(2/3)N*KZ1+3Z,°+Z6+rpo@1nt+2n*Z1+20* {2, Y+ Z5Y*+ 7, (YO0 -

—CY®)-(1/2)Zs[LY*+ +Y* ] +c[ZoY%+Z5Y%"]-cZo(Y*P+cY?) +cZs(Y*-cY?) }

Co(V,T)=Co(r,0,0)=2n*[(VeT?Te+n* (1/sin0) [(1/SinO)VeT®+V,T%], +

+e2n*[(VoT?]-2en*[(1/sin®)V,T?]

Co=2[ (VeT T 0+2c [ (VeT?-V,T® 1+(1/sin0) [VoT®+V,T%], w24)

C1=2Z(A-R)1nY’rn

7) Stokes equation along the axis e,:

0=r2ot ro/ Or+1r01g,/00+(r/sinB)0cyy/0¢+(3rtret2Crigy)+L(rpo)/sinb]oe/oop,

o= [Za(r) inYin®-Z6 () inYin' 1,

rys=Zs,

r2y’4=rZ’ ;24

Tre =(A/V)X[Z4(r) Y in"-Zs(r) Y],

Otre/Or=(L/NZLZ7 s 1nY1n*-Z” 6 (D) 1nY1n' 1= (L/ T E[Za (D 1nY 1n°~Z6 (N 1Y 1n']

r’oteo/or=XrZ” 4s(r) Y in®-rZ” s (D inYin 1-ZLZs(r) inYin*-Z6 () inY1n"]

FOpo=-FXPpY+2n*T [Z1Y+Z2(YOP+CY?)+Z5 (- Y¥+cY?) ]+(2/3)IN*kZZ Y -2n* [V, T*]
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Properties of spherical functions” derivatives E3.7a and 3.7b =>
Ftee=n*X[2Z(Y*-cY?]-Zs[LY+Y*)]+(2/3)IN*KEV, Y -n* [Ve T+V,T°]
Fee=n*X[2Z,Y*]-Zs[LY+Y*)]+(2/3)In*KZV, Y -n* [VeT*+V,T%]
rp(r,6,0)=2{-2n*(2+k)Zin(r)+2n*LZ2(r)-Z3(r)+(2/3)n*k Z1(r)+rpo@in+
+2n*(A-R) FinYim
0=2rZ a(ND inY1n*-rZ” 6 (N inYin' 1-Z[Za (D 1nY 1~ Z6 () inY 1n" 1+ *Z[2Z,Y*] -
~Zs[LY*+Y*®) 1+ (2/3)n*KZV Yo - * [ Ve T*+V, T lo-rZpY®+2n*T [Z, Y+
+Zo (YO P+CY*) +Z5 (Y2 +cY?) 1+ (2/3)n*KEZZ1 YO -2n* (1/Sin6) [V, T o+
+3X[Z4(D) 1Y 1n*-Z6 (N 1nY 1n° ] +2en* 2 [2Z2:Y] - Zs [LY+Y®) ]+ (4c/3)n*KZV, Y -
—en*[VoT+V, T+ [(rpoy/sine]oa/de,
0=2rZ"4(r) inYin’-rZ> () inYin' 1-ZLZa () inY 1n"-Zs () inYin 1+ * X [2Z,Y°%] -
~Zs[LY*+Y**]+(2/3)n*KZV, Yo -1 * [Vo T4V, T o- X {-2n* (2+K) Z11n(r) +2n*LZ2(r) -
~Z3(r)+(2/3)N*KZ1(r) +rpodint2n* (A-R) 1in Yo+ 21n* T [Z1 Y+ Zo (Y +cY®) +
+Zs(-Y¥P+cY®) 1+ (2/3)IN*KZZ1 Y -21* (1/5in0) [V, T +3Z [Za (X)) inYin’-
~Z6(N) Y11 +2en* T [2Z,Y9°] - Zs [LY+Y*®) ]+ (4c/3)In*KIV, Y -2cn* [VeTO+V, T+
+[(rpoy/sind]ée/o¢
This equation can be rewritten in common form:
0=2(rZ” s+ )Y*-E(Z 610+ )Y -20* (Ain-Rin) Y 15=1*D>
0=2(rZ’ s+ )Y*-E(Z 61n+.)Y'-n*D1-n*Ds
Do=[VeT?+V,T%6+2n* (1/5iN0) [V, T?]o+2Cn* [VeT*+V,T%] (W25)
D:1=>2(A-R) Y “mn
Therefore we arrive at the final equation system:
0=X(rZ” sin*+.)Y+2(rZ sint.. )Y -n*Ci1-n*Co
where C;=2Y.(A-R)inY°n
Co=2n*[(VoT*Jo+2en*[(VoT*-VoT]+n*(1/Sin6) [VeT®+V, T,
0=>2(rZ’ sint+..)Y*-2(2Z" 6|m+.--)Ye-n*21-n*Qz
where D1=2(Am-Rin) Y’
Do=n* [VoT?+V,T]o+2n*(1/51n0) [V, T? o+ 2> [V To+V,T%]

Using the same technique as for the U-transform method:
Co=XFa(r) inYin +Fo(r)inYin’
Do=YFa(r) inY 1n~Fo () inYin’
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Fa=(1/sm) S%0deS™ [CoYo1n+D2Y*in]sinede
Fo=(1/5m) J*odeS 0 [CoY*1n—D2 Yo In] sinede
C1=2Y (Arn-Rin) Yon
D:1=22(A-R)inY ®in
Ci=Xga(r) Y +go(r) Y’
D1=Yga(r) inY 1n~Go () inY1n’
gar=(1/sn) % odeS ™ [C1Y®in+D1Y*in]sinede=
=(1/sa) S de " [2Z (Ain-Rin) Yrn-Yount2(Ar-n--Ri-n-) Y “1nY*in]sinede=
=(1/50) 22 (Atn-Rin) S 2 odoS o [Y 10 Yo 1nt Y 1nY*in] sSinede=
=(1/sm) 2ZCAimn-Rim) sm=22 (Ain—Rin)
9b1=(1/sm) S ode S o [C1Y®1m—D1Y®1n] Sinede=
=2 (Ar-n-=Ri-n-) (17/8m) S Z0do ™[ Y210 Yo1=Y ®1-n-Yein]sinede=0
=> ga1=2Z (Ain-Rin)=-2n*[(1/Sno) S S (TV-VVINT) Y dosinodeo
Op1=0
0=2(rZ’ sin+. )Y +Z(rZ” s1n+. )Y -1*[2Z (Atn=Rim) Yornd -n* [ Fa(r) in Y in'+
+F (DY’ 1
0=2(rZ” a1n+.)Y *-Z(Z 61nt+.)Y *-n*[Z2(A-R)1nY “ind-n*[ZFa(r)inYin’-
(N Yin']
Din=n*2((Aim-Rim)+n*Fa(r)in
Fin=n*To(r)in
o= (1/5m) S odeS 0 [CoY1ntD2 Y in] sinede
fo=(1/sm)S*odeS o [CoY?1n—D2Yin]sinede
Co=2[ (VeT T o+2c [ (VeT?-V,T® 1+(1/sin0) [VoT®+V,T%],
Do=[VeT?+V,T%] ¢+ (2/51N0) [V, T o+2C [VeT+V,T7]
Din=Fa=(m*/Sm) S 0deS 0 [CoY°1n+D2Y?In]sinede-2n*[(1/Sy0) S/ (T"V,-
-VVINnT)Y,desin6do

Im
(942 _ —(6+2K)p" Z" —2(2L - Z)" - 2" -2Z" +
n* (W26)
jdq)j[c Y+ DY Jsinado + 21" jd j(rgv +T NV, )Y, sin &6
SIm SmO

Fin=(n*/50) S ZodeS ™o [CoY*1n—D: Y in] sinede

166
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



rdz;;“

= (L-2)y"Z" —2z7!" +

dr
* 2 T
+1Tdp[[c, Y2~ D,y kinade (20
SIm 0 0
szgﬁELQWWNT—VT)+1 0T, +Y,To)
=2 00 070 7297 sing 00
oV,T, +V,T,) 2 O(V.T) (W28)
D, = £ 9?77 +2ctgf(V,T +V.T)+ R4
= 00 9ON,T, +V,To) sing o0

Viscous terms (W26) and (W27) in the equations for spheroidal and
toroidal stress differ from those stated by Zhang and Christensen
(1993) in the same manner as (U21) and (U22) derived for the U-
transform method. The reason of this distinction is also the same:
incorrect understanding of the particular role of dynamic

pressure.
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List of abbreviations

FD — finite difference

FE — finite element

FV — finite volume

LVV — lateral viscosity variations

ODE — ordinary differential equations

ZC — indicator for the formulae stated by Zhang and Christensen
(1993)

abbreviations:

No-effect model: no compressibility, no self-gravitation and no
radial gravity change

All-effect model: all three effects are included

No-compressibility model: all effects are included except for
mantle compressibility.

No-self-gravitation model: all effects are included except Tfor
self-gravitation.

No-radial-gravity model: all effects are included except for depth-

dependent gravity.
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List of notations

Chapter I11. Part 2.1

p — Fluid pressure

g, - acceleration of gravity

TU - deviator stress tensor

e; - strain rate tensor

0; - Kronecker delta
n - dynamic viscosity
A - second viscosity
kg - bulk viscosity

V - gravitational potential
p - density distribution in the mantle

p - radial density profile
op - density anomaly

- universal gravitational constant
— thermal conductivity

- entropy per unit mass

Iz u X ®

T - temperature.

- rate of internal heat production per mass unit

a - coefficient of thermal expansion of material

v - specific volume

(*), ((*),) - the pressure (volume) is held fixed

¢, (c¢,) - specific heat at constant pressure (volume)

ou; . o - "
d):r”ErL - viscous dissipation function.
X .
J

Chapter I11. Part 2.2

R, - radius of the core

R. - radius of the Earth

e
g - radial gravity
u - mantle flow velocity

o; - total stress tensor

Chapter 111. Part 3.1
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Ymi (6,9) - spherical functions

1 — spherical harmonic degree

m — spherical harmonic order

P™(cosd) - associated Legendre functions
P, (cosd) - Legendre polynomials

N,. - normalization coefficients for associated Legendre functions

Im

Y. (0,9) and Y/ (6,9¢) - spherical functions” derivatives

Sqn and s, - orthonormalization coefficients for spherical functions and

their derivatives
Chapter I11l. Part 3.2

17, - mean mantle viscosity
r - relative radius
7 (r) - dimensionless radial viscosity function

p, - mean mantle density

g, - acceleration of gravity on the Earth surface
p (r) - dimensionless radial density

g (r) - dimensionless acceleration of gravity
k(r) - mantle compressibility

r., and r, - relative values of radius of the Earth’s surface and the core

e
boundary

Chapter I111. Part 3.3

|« — maximum spherical harmonic degree

Chapter IV. Part 4.1

or - departure of the geoid from a sphere

oV - angular-dependent component of the gravitational field

ON - geoid undulations (departure of the geoid from an ellipsoid)

C, and C, - zonal spherical harmonic coefficients with order 1=2 and
1=4

Chapter 1V. Part 4.2

(*)s ((*),) - isentropic (isobaric) variations — reversible process
without heat transfer (process with constant pressure)

Chapter VI. Part 6.1
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Vs - seismic velocity distribution

Sc(r) - scaling factor

a?°

; — @Initial scaling factor

a; - unknown scaling factors

N!™ - spherical harmonic coefficients of the observed geoid

obs

N}m - geoid variations induced by a layer j
B; - damping factors introduced to stabilize a solution

Sc; - density-velocity scaling coefficient standard deviations
Chapter VII. Part 7.1
T,(r) - solidus temperature
n7,(r) - initial coefficients
y(r) - activation parameters
E® - activation energy of the subsolidus creep deformation
h - depth
h, - depth of the core-mantle boundary
Appendix.
c=ctgl
Fid
06°
1, 1oy
sin®@ " sin?@ d¢®

oY
P
v _ 1 v 1 (69)

Op

Y :Yee =

Y —

~sin@ :ﬁnH op
{2
v oo _ 1 v - sind op
sing *’ o0
Vu-U; — surface divergence

[VUi]l-r/r — radial vorticity

171
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



List of Figures

Chapter 1V.

(F4.1) Isostatic reduction of the geoid 44
(F4.2) Radial density distribution according to PREM 46
(F4.3) Mantle compressibility 47

(ES4.1) Removal of mantle compressibility and partial self-gravitation

effects from the equation system 48

Artificial model:
(F4.4) Density anomalies: cross-section through the longitude 30;
view from the surface 50

(F4.5) Velocities near surface and core 51

(F4.6) Profiles for lateral velocity components at the surface and
near the core 52
(F4.7) Velocity distribution for the model without effects of

self-gravitation, mantle compressibility and radial gravity _ 53
(F4.8) Velocity components and differences between models with

various effect combinations (cross-section through the

longitude 60) 54

(F4.9) Velocity components and differences between models with

various effect combinations (cross-section through the
longitude 90) 55
(F4.10) Geoids obtained from the models without effects and with

all effects. Difference between calculated geoids 56

(F4.11) Impact of self-gravitation, mantle compressibility and

radial gravity into geoid 57
Realistic model:
(F4.12) Radial viscosity profile 59
(F4.13) Density anomalies (cross-section through the longitude 30) _ 59
(F4.14) Velocity distribution in the model without effects 60

(F4.15) Profiles for horizontal velocities u, and u, with and

without effects 61

(F4.16) Velocities near surface and core calculated with and
without effects 62

(F4.17) Difference between horizontal velocities calculated for the
models with and without effects 63
(F4.18) Geoids obtained from the models without effects and with all

172
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



effects. Difference between calculated geoids 64

(F4.19) Impact of each effect into geoid Ffigure 65
Chapter V.
(VT5.1) Misprints in U-transform method by Zhang and Christensen (1993)

and Zhang (1993) 75
(NC5.1) Misprints in normalization coefficients in U-transform

method by Zhang and Christensen (1993) and Zhang (1993) 75
(VT5.2) Misprints in W-transform method by Zhang and

Christensen (1993) and Zhang (1993) 79
(NC5.2) Misprints in normalization coefficients in W-transform

method by Zhang and Christensen (1993) and Zhang (1993) 79
Model 5.4a:
(F5.1) Density anomalies and LVV 82
(F5.2) Comparison of velocity flows calculated by U-transform

and W-transform iterative methods 83
(F5.3) Comparison of vertical profiles of mantle velocities 84
(F5.4) Dynamic geoid calculated for the constant viscosity model = 85

(F5.5) Difference between geoid calculated with effect of LVV by
U-transform method and geoid calculated with the constant
viscosity model 85

(F5.6) Difference between geoids calculated with effect of LVV

by U-transform and W-transform iterative methods 86
Model 5.4b:
(F5.7) LW and velocity distributions calculated by iterative

methods with the formulae stated by Zhang and

Christensen (1993) 87
Model 5.4c:
(F5.8) Convergence of U-transform method applied to the strong

LVV models (3.5, 4.2, 6 and 7 orders of magnitude) 88
(F5.9) Response of mantle flow on LVV in the area with low

viscosity 89
(F5.10) Convergence of W-transform method 90
Model 5.4d:
(F5.11) Radial viscosity profile 92

(F5.12) Small-scale high-viscous fragments located inside the low

viscosity area 92

(F5.13) Zoomed small-scale high-viscous fragment situated on the

way of descending flow 93

173
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



(F5.14) Zoomed small-scale high-viscous fragment in the area where

the motion changes its direction and velocity 94
Model 5._4e:
(F5.15) Density anomalies and LVV in cross-section through

the longitude 90 96

(F5.16) Geoid calculated by the new realization of the U-transform
method and geoid stated by Zhang (1993) 97
(F5.17) Surface divergence calculated for the constant viscosity

model and with LVV by new realizations of the U- and

W-transform. Surface divergence stated by Zhang (1993) _ 98
(F5.18) Radial vorticity calculated by U- and W-transform with

new formulae. Radial vorticity stated by Zhang (1993) _ 99
Chapter VI.

(F6.1) Scaling factors (from joint inversion) and scaling coefficient
standard deviations, which correspond to the radial viscosity
profile in (F6.2) 104

(F6.2) Radial viscosity profile, which corresponds to the model with
the best fit to both the observed geoid (78.2%) and initial

scaling factors in the lower mantle. Search area 105

(F6.3) Residual geoid versus perturbations to the initial scaling
factor in different radial viscosity models (model cluster

for viscosity value in asthenosphere) 106

(F6.4) Residual geoid versus perturbations to the initial scaling
factor in different radial viscosity models (model cluster for
viscosity value In the upper part of the transition zone
(above 670 km)) 107
(F6.5) Isostatic anomalies of the observed geoid and geoid calculated

with radial viscosity 108
Chapter VII.
(F7.1) Temperature profiles 112
(F7.2) Relative radial viscosity 114
(F7.3) Density anomaly distribution. Velocities calculated for radial

viscosity model 115
(F7.4) LVV and velocity redistribution due to LVV 115
(F7.5) Zoomed area with low viscosity 116
(F7.6) Zoomed area with high viscosity 117
(F7.7) Near-surface velocities at the depth 100 km 118

(F7.8) Difference between near-surface velocities calculated with LVV

174
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



(F7.
(F7.

(F7.

(F7.

(F7.

(F7.
(F7.

(F7.

(F7.
(F7.

(F7.

(F7.

(F7.

and with only radial viscosity 118

9) Surface divergence and radial vorticity 119

10) Cross-sections showing density anomaly and LVV in the mantle

relative to the adopted vertical profile 121

11) Cross-sections showing LVV incorporated into the lower-mantle
model (left) and upper-mantle model (right) relative to the
adopted vertical profile 121

12) Velocity-to-density scaling factor profile obtained from a

least square adjustment to get a best fit to the observed

geoid 122
13) Isostatic anomalies of geoid calculated with radial

viscosity and LVV. Observed geoid 123

14) Observed geoid and geoids calculated for various LVV models 125
15) Discrepancies between a dynamic geoid generated by the 3-D

viscosity models and initial "radial' model 126

16) Discrepancies between a dynamic topography generated by the

3-D viscosity models and initial "radial" model 127

17) Near-surface mantle velocities 129

18) Transformations (differences with the initial radial viscosity
model) of near-surface mantle velocities caused by LVV 129

19) Surface divergence calculated for the radial viscosity model

and for the model with whole mantle LVV 130
20) Differences between surface divergence generated by the
various LVV models and initial radial viscosity model 130
21) Radial vorticity generated by various 3-D viscosity models 131
175

DOI: 10.2312/GFZ.b103-08081

Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



References

Anderson D. L., 1989. Theory of the Earth. Blackwell Scientific
Publications.

Bachelor G. K., 1967. Fluid Mechanics. Cambridge University Press,
Cambridge.

Baranov A., Trubitsyn V., Kaban M. K., Rogozhina 1., 2007. Effect of
strong lateral viscosity variations on the global mantle flow. EGU.

Bunge H. P., Richards M. A., Baumgardner J. R., 1996. Effect of depth-
dependent viscosity on the planform of mantle convection. Nature. 379,
436-438.

Bunge H. P., Richards M. A., Baumgardner J. R., 1997. A sensitivity study
of three-dimensional spherical mantle convection at 10® Rayleigh
number: Effects of depth-dependent viscosity, heating mode, and an
endothermic phase change. J. Geophys. Res. 102, 11991-12008.

Cadek 0., Fleitout L., 1999. A global geoid model with imposed plate
velocities and partial layering. J. Geophys. Res. 104(12), 29055-29075

Cadek 0., Fleitout L., 2003. Effect of lateral viscosity variations in
the top 300 km on the geoid and dynamic topography. Geophys. J. Int.
152(3), 566-580.

Cadek, O., Fleitout, L., 2006. Effect of lateral viscosity variations in
the core-mantle boundaru region on predictions of the long-wavelenght
geoid. Stud. Geophys. Geod., 50, 217-232.

Cadek O., Ricard Y., 1992. Toroidal/poloidal energy portioning and
global [lithospherical rotation during Cenozoic time. Earth planet.
Sci. Lett., 109, 621-632.

Cadek 0., Ricard Y., Martinec Z., Matyska C., 1993. Comparison between
Newtonian and non-Newtonian flow driven by internal loads. Geophys. J.
Int., 112, 103-114.

Chandrasekhar S., 1961. Hydrodynamic and hydromagnetic stability.
Claredon Press, Oxford.

Christensen U. R., 1984. Convection with pressure and temperature
dependent non-Newtonian rheology. Geophys. J. R. astr. Soc., 77, 343-
384.

Christensen U. R., Harder H., 1991. 3-D convection with variable
viscosity. Geophys. J. Int., 104, 213-226.

176
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Clayton R. W., Comer R. P., 1983. A tomographic analisys of mantle
heterogeneities from body wave travel time. EOS Trans. Am. Geophys.
Un, 62, 776.

Colin P., 1993. Geoid global, topographie associee et structure de la
convection dans le manteau terrestre: Modelisation et observation. Ph.
D. Thesis, Ecole normale superieure, Paris, France.

Corrieu V., Ricard Y., Froidevaux C., 1994. Converting mantle tomography
into mass anomalies to predict the Earth"s radial viscosity. Physics
of the Earth and Planetary Interiors. 84(1-4), 3-13.

Corrieu, V., Thoraval, C., Ricard, Y., 1995, Mantle dynamics and geoid
Green functions. Geophysical-Journal-International. 120(2), 516-523
Dziewonski A., D. L. Anderson, 1981. Preliminary reference Earth model

(PREM). Phys. Earth Planet. Inter. 25, 297-356.

Ekstrom G., Dziewonski A. M., 1998. The unique anisotropy of the Pacific
upper mantle. Nature (London). 394, 6689, 168-172.

Flechtner F., Schmidt R., Meyer U., Neumayer K.H., Koénig, R., Rothacher
M., Kusche J., 2007. The new EIGEN-GRACEO5S (RLO4) Gravity Field Time
Series. EGU.

Forste Ch., Flechtner F., Schmidt R., Biancale R., Lemoine J.-M.,
Stubenvoll R., Neumayer H., Loyer S., Rothacher M., Kusche J., 2007.
THE EIGEN TEAM EIGEN-05C - A new global mean Gravity Field Model from
Combination of Satellite Mission and Altimetry/Gravimetry Surface
data. EGU.

Forte A. M., 2000. Seismic-geodynamic constraints on mantle flow:
Implications fTor layered convection, mantle viscosity, and seismic
anisotropy in the deep mantle. In Earth’s Deep Interior: Mineral
Physics From the Atomic to the Global Scale, Geophys. Monogr. Ser.
117, edited by S. Karato et al., AGU, Washington, DC, pp. 3-36.

Forte A. M., Mitrovica J. X., 2001. Deep-mantle hight-viscosity flow and
thermochemical structure inferred from seismic and geodynamic data.
Nature. 410, 1049-1056.

Forte A. M., Mitrovica J. X., 2004. Deep-mantle high-viscosity flow and
thermochemical structure inferred from seismic and geodynamic data.
Nature, 410, 1049-1056.

Forte, A. M., Peltier, W. R., 1987. Plate tectonics and aspherical Earth
structure: the importance of poloidal- toroidal coupling. Journal of
Geophysical Research. 92(B5), 3645-3679

177
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Forte A. M., Peltier W. R., 1991. Viscous fTlow models of global
geophysical observables: 1. Forward problems. J. geophys. Un., 73,
200.

Forte A. M., Peltier W. R., 1994. The kinematics and dynamics of
poloidal-toroidal coupling in mantle flow: the importance of surface
plates and lateral viscosity variations. Adv. Geophys., 36, 1-119.

Forte A. M., Woodward R. L. and Dziewonski A. M., 1994_. Joint inversions
of seismic and geodynamical data for models of three-dimensional
mantle heterogeneity. J. Geophys. Res., 99. 21857-21877.

Forte A. M., Mitrovica J. X., Espesset A., 2002. Geodynamic and seismic
constraints on the thermochemical structure and dynamics of convection
in the deep mantle, Philos. Trans. R. Soc. London, 360 (1800), 2521-
2543.

Gable C. W., O’Connell R. J., Travis B. J., 1991. Convection in three
dimensions with surface plates: generation of toroidal flow. J.
Geophys. Res. 96, 8391-8405.

Gasperini P., Sabadini R., 1989. Lateral heterogeneities 1in mantle
viscosity and postglacial rebound, Geophys. J., 98, 413-428.

Gasperini, P., and R. Sabadini, 1990. Finite element modeling of lateral
viscosity heterogeneities and post-glacial rebound. Tectonophysics.
179, 141-149.

Gasperini P., Sabadini. R., Yuen D. A., 1991. Deep continental roots: the
effect of lateral variations of viscosity on post-glacial rebound. In
Glacial Isostasy, Sea-Level and Mantle Rheology, pp- 21-32, eds
Sabadini R. et al., Kluwer, Dordrecht.

Grand S. P., van der Hilst R.D., Widiyantoro S., 1997. Global seismic
tomography: a snapshot of convection in the Earth. GSA Today. 7(4), 1-
7.

Godunov S. K., 1961. "0 chislennom reshenii kraevyh zadach dlya sistem
lineynyh obyknovennyh differentsial“nyh uravneniy', Journal "Uspehi
matematicheskih nauk™.

Gurnis, M., Wysession, M., Knittle, E., and Buffett, B. , 1998. The Core
Mantle Boundary Region, Geodynamics Series, Volume 28, AGU,
Washington, D.C.

Gurnis M., Davis G. F., 1986. Numerical study of high Rayleigh number
convection in a medium with depth-dependent viscosity. Geophys, J. R.
astr. Soc. 85, 523-542.

178
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Hager B. H., 1984. Subducted slabs and the geoid: constraints on mantle
rheology and flow. J. Geophys. Res. 89, 6003-6015.

Hager B. H., Clayton R. W., Richards M. A., Comer R. P., Dziewonski A.
M., 1985. Lower mantle heterogeneity, dynamic topography, and the
geoid. Nature. 313, 541-545.

Hager B. H., Clayton R. W., 1989. Constraints on the structure of the
mantle convection using seismic observations, flow models, and the
geoid. Mantle Convection, pp.657-764.

Hager B. H., 0’Connell R. J., 1978. Subduction zone dip angles and flow
driven by plate motion, Tectonophysics, 50, 111-133.

Hager B. H., 0O’Connell R. J., 1981. A simple global model of plate
dynamics and mantle convection. J. Geophys. Res. 86, 4843-4867.

Heiskanen W. A., Moritz H., 1967. Physical Geodesy. W.H. Freeman and
Company. San Francisco and London.

Kaban M. K., Rogozhina 1., 2007. Global modeling of the dynamic geoid: an

integrative approach. EGU.

Kaban M. K., Rogozhina 1., Trubitsyn V., 2007. Importance of lateral
viscosity variations in the whole mantle for modelling of the dynamic
geoid and surface velocities, Journal of Geodynamics, 43, 262-273.

Kaban M. K., Schwintzer P., Tikhotsky S. A., 1999. A global isostatic
gravity model of the Earth. Geophys. J. Int. 136 (3), 519-536.

Kaban M. K., Schwintzer P., 2001. Oceanic upper mantle structure from
experimental scaling of Vs and density at different depths.
Geophysical Journal International. 147, 1, 199-214.

Kaban M. K., Schwintzer P., Reigber Ch., 2004. A new isostatic model of
the lithosphere and gravity field. Journal-of-Geodesy. 78(6), 368-385
Karato S., Wu P., 1993. Rheology of the upper mantle: A synthesis.

Science. 260, 771-778.

Karato S., 1993. Importance of anelasticity in the 1interpretation of
seismic tomography. Geophys. Res. Lett. 20, 1623-1626.

Karpychev M., Fleitout L., 1996. Simple consideration of forces driving
plate motion and on the plate-tectonic contribution to the long-
wavelenght geoid. Geophys. J. Int., 127, 268-282.

Karpychev M., Fleitout L., 2000. Long-wavelengh geoid: the effect of
continental roots and lithosphere thickness variations. Gephys. J.
Int. 143, 945-963.

Kaufmann G., Wu P., 1998. Upper mantle lateral viscosity variations and
postglacial rebound: application to the Barents Sea. In 'Dynamics of

179

DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



the Ice Age Earth: A Modern Perspective™ edited by P.Wu, Trans Tech
Publ ., Switzerland, p.583-602.

Kaufmann G., Wu P., 1998. Lateral asthenospheric viscosity variations
and postglacial rebound: a case study for the Barents Sea. Geophys.
Res Lett. 25, 1963-1966.

Kaufmann G., Wu P., 1998. Upper mantle lateral viscosity variations and
postglacial rebound: application to the Barents Sea, Ann. Geophys.
Vol. 16, pp. C53.

Kaufmann G., Wu P., 2002. Glacial isostatic adjustment in Fennoscandia
with a three dimensional viscosity structure as an inverse problem,
Earth and Planetary Science Letters, 197, 1-10.

Kaufmann G., Wu P., 1lvins E. R., 2005. Lateral viscosity variations
beneath Antarctica and their implications on regional rebound motions
and seismotectonics, J. Geodyn. 39, 165-181

Kido M., Cadek 0., 1997. Inferences of viscosity from oceanic geoid:
Indication of a low viscosity zone below the 660-km discontinuity.
Earth Planet. Sci. Lett., 151, 125-138.

King S. D., 1995. Radial models of mantle viscosity: Results from a
genetic algorithm. Geophys. J. Int., 122, 725-734.

King S. D., Hager, B. H., 1994. Subducted slabs and the geoid: 1)
numerical calculations with temperature-dependent viscosity. J.
Geophys. Res., 99, 19843-19852.

King S. D., Masters G., 1992. An inversion for radial viscosity structure
using seismic tomography. Geophys. Res. Lett. 19(15), 1551-1554.

Kious W. J., Tilling R. 1., 1996. This dynamic earth: the story of plate
tectonics: U.S. Geological Survey General Information Product, 77.

Koch D. M., Ribe N. M., 1989. The effect of lateral viscosity variations
on surface observables. Geophys. Res. Lett. 16(6), 535-538.

Landau L. D., Lifshitz E. M., 1987. Theory of elasticity. Oxford,
Pergamon Press.

Latychev K., Mitrovica J. X., Tamisiea J., Tromp J., Christara C., Moucha
R., 2005. GIlA-induced secular variations in the Earth"s long
wavelength gravity field: Influence of 3-D viscosity variations.
Earth. Planet. Science Lett. 240, 322-327.

Latychev K., Mitrovica J. X., Tromp J., Tamisiea J., Komatitisch D.,
Christara C., 2005. Glacial 1isostatic adjustment on 3-D earth models:
A finite-element formulation. 161(2), 421-444.

180
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Marquart G., Schmeling H., 1989. Topography and geoid undulations caused
by small scale convection beneath continental lithosphere of variable
elastic thickness. J. Geophys. 97, 511-527.

Martinec Z., Matyska C., Cadek O., Hrdina P., 1993. The Stokes problem
with 3-D Newtonian rheology in a spherical shell. Comput. Phys.
Commun. 76, 63-79.

Mitrovica J. X., Forte A. M., 2004. A new inference of mantle viscosity
based wupon joint inversion of convection and glacial isostatic
adjustment data. Earth planet. Sci. Lett. 225, 177-189.

Moresi L. N., Solomatov V. S., 1995. Numerical investigation of 2-D
convection with extremely large viscosity variations. Phys. Fluids. 7,
2154-2162.

Moresi L., Zhong S. J., Gurnis M., 1996. The accuracy of finite element
solutions of Stokes” flow with strongly varying viscosity. Phys. Earth
Planet. Inter. 97, 83-94.

Mound J. E., Mitrovica J. X., Forte A. M., 2003. The equilibrium form of
a rotating earth with an elastic shell. Geophys. J. Int. 152, 237-241.

Moucha R., Forte A. M., Mitrovica J. X., Daradich A., 2007. Lateral
variations in mantle rheology: implications for convection-related
surface observables and inferred viscosity models. Geophys. J. Int.,
169, 113-135.

Nakiboglu S. M., 1982. Hydrostatic theory of the Earth and its mechanical
implications. Physics-of-the-Earth-and-Planetary-Interiors. 28(4),
302-311.

Niehuus K., Schmeling H., 2003. Geoid, its Temporal Variation and Dynamic
Topography as Constraints in Global Geodynamics. AGU.

Niehuus K., Schmeling H., 2004. Geodynamic interpretation of temporal
geoid variations. EGU.

Niehuus K., Schmeling H., 2005. Models of Laterally Variable Viscous
Flow in the Earth"s Mantle With Constraints From Mineral Physics and
Surface Observations. AGU.

0’Connell R. J., Gable C. W., Hager B. H., 1991. Toroidal-poloidal
partitioning of lithospheric plate motion. In Glacial Isostasy, Sea-
Level and Mantle Rheology, pp- 545-551, Eds. Sabadini R., Lambeck K.,
Boshci E., Kluwer, Dordrecht.

Olson P., Bercovici D., 1991. On the equipartitioning of kinetic energy
in plate tectonics, Geophys. Res. Lett. 18, 1751-1754.

181
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Panasyuk S. V., Hager B. H., Forte A. M., 1996. Understanding the effects
of mantle compressibility on geoid kernels. Geophysical Journal
International. 124, 1, 121-133.

Paulson A., Zhong S., Wahr J., 2005. Modeling post-glacial rebound with
lateral viscosity variations. GJI. 163, 357-371.

Reigber C., Schmidt R., Flechtner F., Koenig R., Meyer U., Neumayer K.-
H., Schwintzer P., Zhu S. Y., 2005. An Earth gravity field model
complete to degree and order 150 from GRACE: EIGEN-GRACEO2S, Journal
of Geodynamics, 39, 1-10.

Ribe N. M., 1992. The dynamics of thin shells with variable viscosity and
the origin of toroidal flow in thg mantle. Geophys. J. Int. 110, 537-
552.

Ricard Y., Bai W., 1991. Inferring viscosity and the 3-D density
structure of the mantle from geoid, topography and plate velocities.
Geophys. J. Int., 105, 561-572.

Ricard Y., Fleitout L., Froidevaux C., 1984. Geoid heights and
lithospheric stresses for a dynamic Earth. Ann. Geophys. 2, 267-286.
Ricard Y., Froidevaux C., Fleitout L., 1988. Global plate motion and the

geoid: a physical model. Geophys. J. 93, 477-484.

Ricard Y., Vigny C., 1989. mantle dynamics with induced plate tectonics.
J. Geophys. Res. 94, 17543-17559.

Richards M. A., Hager B. H., 1984. Geoid anomalies in a dynamic earth, J.
Geophys. Res. 89(B7), 5987-6002.

Richards M. A., Hager B. H., 1989. Effects of lateral viscosity
variations on long-wavelength geoid anomalies and topography. Journal
of Geophysical Research. 94(B8), 10299-10313.

Richards M. A., Yang W. S., Baumgardner J. R., Bunge H. P., 2001. Role of
a low-viscosity zone in stabilizing plate tectonics: Implications for
comparative terrestrial planetology, Geochem. Geophys. Geosyst., vol.
2, 2000GC000115.

Ritzert M., Jacoby W. R., 1992. Geoid effects in a convecting system with
lateral viscosity variations, Geophys. Res. Lett., 19, 1547-1550.

Rogozhina 1., Kaban M. K., Trubitsyn V., Schwintzer P., 2005. Modeling of

dynamic geoid with lateral viscosity variations, EGU.

Rogozhina 1., Kaban M. K., Trubitsyn V., Rothacher M., 2006. Importance

of lateral viscosity variations for a modeling of geoid and dynamic
topography. EGU.

182
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Rogozhina 1., Kaban M. K., Trubitsyn V., 2007. Perturbation method for
modeling of lateral viscosity variations of 7 orders of magnitude,
EGU.

Rykov V. V., Trubitsyn V., 1996. Numerical technique for calculation of
three-dimensional mantle convection and tectonics of continental
plates. In Computational Seismology and Geodynamics; ed. by D. K.
Chowdhury. Am. Geophys. Un., Washington D.C. 3, 17-22.

Schmeling H., 1989. Numerical models of Rayleigh-Taylor instabilities
superimposed upon convection. Bulletin of the Geological Institutions
of the University of Uppsala, 14.

Schmeling H., 1989. Compressible convection with constant and variable
viscosity: the effect on geoid, topography, and slab formation, J.
Geophys. Res. 94, 12463-12481.

Schmeling H., Jacoby W. R., 1981. On modelling the lithosphere iIn mantle
convection. J. Geophys. 50, 89-100.

Schmeling, H., 1991. Variable viscosity convection in a compressible
upper mantle and the thickness of continental lithosphere. In: Glacial
Isostacy, Sea-Level and Mantle Rheology. Ed.: R. Sabadini, K. Lambeck,
E. Boschi, Kluwer, Dordrecht, 607-636.

Schubert G., Turcotte D. L., Olson P., 2001. Mantle convection in the
Earth and planets. Cambridge Univ. Press, Cambridge, UK, p. 940.

Steffen H., Kaufmann G., Wu P., 2006. Three-dimensional Tfinite-element
modelling of glacial isostatic adjustment in Fennoscandia. Earth and
Planet. Sci. Lett. 250(1-2), 358-375.

Steinberger B., Calderwood A., 2006. Models of large-scale viscous flow
in the earth’s mantle with constraints from mineral physics and
surface observations. Geophys. J. Int. 167, 1461-1481.

Steinberger B., 07Connell R. J., 1998. Advection of plumes in mantle
flow: Implication for hotspot motion, mantle viscosity and plume
distribution. Geophys. J. Int., 132, 412-434.

Stemmer K., Harder H., Hansen U., 2006. A new method to simulate
convection with strongly temperature- and pressure-dependent viscosity
in a spherical shell: application to the Earth’s mantle. Physics of
the Earth and Planetary Interiors. 157(3-4), 223-249.

Su W., Dziewonski A. M., 1997. Simultaneous inversion for 3-D variations
in shear and bulk velocity in the mantle. Phys. Earth planet. Inter.
100, 135-156.

183
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Tackley P., 2000. Three-dimensional simulations of mantle convection with
a thermochemical basal boundary layer: D”? 1In: M. Gurnis, M. E.
Wysession, E. Knittle and B. A. Buffett (Eds), The Core-Mantle
Boundary Region, Geophysics series, 28, AGU, Washington, D. C., 231-
253.

Tan E., Thoutireddy P., Choi E., Gurnis M., Aivazis M., 2000.
GeoFramework Partl: Coupling models of mantle convection with Python
framework. Geochemistry, Geophysics, Geosystems.

Thoroval C., Machetel P. and Cazanave A., 1995. Locally layered
convection inferred from dynamic models of the Earth’s mantle. Nature,
375, 777-780.

Trubitsyn V., Kaban M. K., Rothacher M., 2007. Evolution of global mantle
convection: mechanical and thermal effects of TfTloating continents.
EGU.

Trubitsyn V., Rykov V. V., 1995. A 3-D numerical model of the Wilson
cycle. J. Geodynamics. 20, 63-75.

Trubitsyn V., Rykov V. V., 1999. 3-D spherical models of mantle
convection, continental drift and the formation and disintergration of
supercontinents. Russian J. Earth’s Sciences. 1, no 2,
http://rjes.agu.org.

Trubitsyn V., Rykov V. V., 2000. 3-D spherical models of mantle
convection with Ffloating continents. U.S. Geological Survey Open File
Report 00-218. 2-44.

Trubitsyn V., Rykov V. V., 2001. A numerical evolution model of
interacting continents Tfloating on a spherical Earth. Russian J.
Earth”s Sciences. 2, no 6, http://rjes.agu.org.

Wang H. S., Wu P., 2006. Effects of lateral variations in lithospheric
thickness and mantle viscosity on glacially induced surface motion on
a spherical, self-gravitating Maxwell Earth. Earth and Planetary
Science Letters. 244, 576-589.

Wen L., Anderson D. L., 1997. Present-day plate motion constraint on
mantle rheology and convection. J. Geophys. Res., 102, 24639-24653.

Wu P., 2002. Mode coupling in a viscoelastic self-gravitating spherical
earth induced by axisymmetric loads and lateral viscosity variations.
Earth and Planetary Science Lett., 202, 49-60.

Wu P., 2005. Effects of lateral variations in lithospheric thickness and
mantle viscosity on glacially induced surface motion in Laurentia.
Earth and Planetary Science Lett. 235, 549-563.

184

DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Wu P., 2006. Sensitivity of relative sea levels and crustal velocities in
Laurentide to radial and lateral viscosity variations in the mantle,
Geophys. J. Int., 165, 401-413.

Wu P., Wang H. S., 2006. Effects of Mode Coupling and Location of
Rotational Axis on Glacial Induced Rotational Deformation 1in a
Laterally Heterogeneous Viscoelastic Earth. Geophys. J. Int. 167, 853-
859.

Wu P., Wang H. S., Schotman H., 2005. Postglacial Induced Surface
Motions, Sea-levels & Geoid Rates on a Spherical, Self-gravitating
Laterally Heterogeneous Earth. J. Geodyn. 39(2), 127-142.

Yang W. S., Baumgardner J. R., 2000. Matrix-dependent transfer multigrid
method for strongly variable viscosity infinite Prandtl number thermal
convection. Geophys. and Astrophys. Fluid Dyn. 92, 151-195.

Yamazaki, D., Karato, S. 1., 2001. Some mineral physics constraints on
the rheology and geothermal structure of Earth®"s Ilower mantle.
American Mineralogist. 86(4), 385-391.

Yoshida M., 2004. Possible effects of Ilateral viscosity variations
induced by plate-tectonic mechanism on geoid inferred from numerical
models of mantle convection. Physics of the Earth and Planet. Inter.
147(1), 67-85.

Zhang S., 1993. 3-D modelling of present mantle structure, constrained by
plate subduction, geoid and mantle tomography: flow in a spherical
shell with Jlateral viscosity variations. Dissertation, Johannes
Gutenberg-Universitaet in Mainz.

Zhang S., Christensen U., 1993. Some effects of lateral viscosity
variations on geoid and surface velocities 1induced by density
anomalies in the mantle. Geophys. J. Int. 114, 551-547.

Zhong S., 2001. Role of ocean-continent contrast and continental keels on
plate motion, net rotation of lithosphere, and the geoid. J. Geophys.
Res., 106, 703-712.

Zhong S., Davis G. F., 1999. Effects of plate and slab viscosities on the
geoid. Earth Planet Sci. Lett., 170, 487-496.

Zhong S., Gurnis M., 1994. Role of plates and temperature-dependent
viscosity in phase change dynamics, J. Geophys. Res., 99, 15903-
15917.

Zhong S., Zuber M. T., Moresi L. N., Gurnis M., 2000. The role of
temperature dependent viscosity and surface plates in spherical shell
models of mantle convection. J. Geophys. Res. 105, 11063-11082.

185
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Zhu T., Feng R., 2005. The patterns of high-degree thermal free
convection and its features in a spherical shell. Acta Seismologica
Sinica. 18(1), 12-26.

186
DOI: 10.2312/GFZ.b103-08081
Scientific Technical Report 08/08 Deutsches GeoForschungsZentrum GFZ



Scientific Technical Report 08/08

DOI: 10.2312/GFZ.b103-08081

ISSN 1610-0956
Deutsches GeoForschungsZentrum GFZ

STR08/08

Irina Rogozhina, Global modeling of the effect of strong lateral viscosity Variations



	Str0808print2.pdf
	Seite1

	Str0808print.pdf
	Seite2

	Str0808print.pdf
	Seite1




