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Summary 

The term “squeezing” refers to the phenomenon of large time-dependent deformations that develop 

when tunnelling through weak rocks. If an attempt is made to stop the deformations with a lining, a 

so-called ‘‘genuine rock pressure” builds up, which may reach values beyond the structurally man-

ageable range. Often, the only feasible solution in heavily squeezing ground is a tunnel support 

that is able to deform without becoming damaged, in combination with a certain amount of over-

excavation in order to accommodate the deformations. 

Although the interaction between the ground and the support is well understood and considerable 

experience has been built up with different construction methods in recent years, the prediction of 

ground response to tunnelling under squeezing conditions still remains one of the most demanding 

tasks in tunnelling, during both design and construction. 

The interaction between support systems and the rock when tunnelling under squeezing conditions 

is normally studied by means of two-dimensional analyses. Part I (of five) shows that the plane 

strain assumption underlying two-dimensional analyses may lead, under certain conditions, to 

ground pressure and deformation values that are considerably lower than those produced by stress 

analyses that take into account spatial effects in the vicinity of the tunnel face. The differences are 

due to the stress path dependency in the elasto-plastic behaviour of the ground and, more specifi-

cally, to the inability of the plane strain model to map the actual radial stress history, which involves 

a complete radial unloading (and, later, a re-loading) of the tunnel boundary over the unsupported 

span. This inherent weakness of any plane strain analysis is relevant from the design standpoint, 

particularly for heavily squeezing conditions that require a yielding support. 

Part II investigates an important practical consequence of the Part I results. Specifically, it shows 

the effects of stress-path dependency on the interaction between yielding supports and squeezing 

ground. The idea behind yielding supports is that squeezing pressure will decrease by allowing the 

ground to deform. When estimating the amount of deformation required, one normally considers 

the characteristic line of the ground, i.e. the relationship between the ground pressure and the radi-

al displacement of the tunnel wall under plane strain conditions. The computation of the character-

istic line assumes a monotonic decrease of radial stress at the excavation boundary, while the ac-

tual tunnel excavation and subsequent support installation involve a temporary complete radial un-

loading of the tunnel wall. This difference, in combination with the stress path dependency of the 

ground behaviour, is responsible for the fact that the results obtained by spatial analysis are not on-

ly quantitatively, but also qualitatively different from those obtained by plane strain analysis. More 

specifically, the relationship between ground pressure and deformation at the final state prevailing 

far behind the face is not unique, but depends on the support characteristics, because these affect 

the stress history of the ground surrounding the tunnel. The yield pressure of the support, i.e. its 

resistance during the deformation phase, therefore proves to be an extremely important parameter. 

The higher the yield pressure of the support, the lower will be the final ground pressure. A targeted 

reduction in ground pressure can be achieved not only by installing a support that is able to ac-

commodate a larger deformation (which is a well-known principle), but also by selecting a support 

that yields at a higher pressure. Part II presents design nomograms, which enable the rapid as-

sessment of yielding supports. 
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Part III presents a systematic and in-depth study of a paradox of elasto-plastic tunnel analysis 

which is occasionally mentioned in the literature. The elasto-plastic tunnel analysis may produce a 

paradox in the calculation of ground pressure whereby ground pressures appear to increase in re-

lation to higher ground quality. More specifically, for an overstressed ground in combination with a 

stiff support, analysis may indicate greater loading of the support with a ground of high strength 

than with a ground of low strength (all of the other parameters being equal). This counter-intuitive 

outcome appears in all of the common calculation models (analytical plane strain analysis, numeri-

cal plane strain analysis and numerical axisymmetric analysis), although it does not correspond ei-

ther to the ground behaviour that is intuitively expected or to ground behaviour observed in the 

field, thus raising doubts over the predictive power of common tunnel design calculations. Part III 

discusses the assumptions made in the models that are responsible for the paradox: the assump-

tion that ground behaviour is time-independent (whereas in reality over-stressed ground generally 

creeps) and the assumption that the support operates with full stiffness close to the face (which is 

not feasible in reality due to the nature of the construction procedures). When proper account is 

taken of either or both of these assumptions in more advanced models, the paradox disappears. As 

the models which generate the paradox are very commonly used in engineering and scientific prac-

tice, the investigations of Part III may be of value, helping the engineer to understand the uncertain-

ties inherent in the models and to arrive at a better interpretation of the results they produce. 

Part IV shows some of the reasons for the frequently observed variability of squeezing intensity 

over short distances along the tunnel alignment. The variability of squeezing can be traced back to 

heterogeneities of the ground at different scales and with respect both to its mechanical and to its 

hydraulic characteristics. Often the cause of this phenomenon is an advance through a sequence 

of rock zones with different degrees of crushing or shearing. The results of numerical calculations 

indicate that even relatively thin competent rock interlayers may have a pronounced stabilizing ef-

fect. However, even in a macroscopically homogeneous rock mass, a large variation of defor-

mations may be observed. This can be explained theoretically by the fact that the results of ground 

response analyses are highly sensitive to minor changes in rock properties. 

The variability of squeezing intensity makes tunnelling in squeezing ground very demanding as it 

decreases the predictability of the ground response even after experience has been built up with a 

specific geological formation during excavation. Reliable predictions of the ground conditions 

ahead of the face are thus essential in order to avoid project setbacks. Such predictions would en-

able adaptations to be made during construction to the temporary support, to the excavation di-

ameter and also to the final lining. The assessment of the behaviour of the core ahead of the face, 

as observed by means of extrusion measurements, provides some indications as to the mechanical 

characteristics of the ground. Part V investigates whether it is possible to predict the ground re-

sponse to tunnelling by assessing the axial extrusion of the core ahead of the face. Part V shows 

that if the ground exhibits a moderate time-dependent behaviour, a prediction of the convergences 

is feasible, provided that the interpretation of the core extrusion takes into account the effects of the 

support measures. If the ground behaviour is pronouncedly time-dependent, however, conver-

gence predictions become very difficult, because the extrusion of the core depends on the short-

term characteristics of the ground, which may be different from the long-term properties that govern 

the final convergences. The case histories of the Gotthard Base Tunnel and of the Vasto tunnel 

show that there is a weak correlation between the axial extrusions and the convergences of the 

tunnel. In order to identify potentially weak zones on the basis of extrusion measurements, careful 
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processing of the monitoring data is essential, in order to take account of the effects of tunnel sup-

port and time, and to eliminate errors caused by the monitoring process. 
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Zusammenfassung 

Der Ausdruck „druckhaftes Gebirge“ bezeichnet das Phänomen von grossen, langanhaltenden 

Gebirgsverformungen, die beim Vortrieb im gering festen und hoch verformbaren Gebirge auftre-

ten. Beim Versuch, die Verformungen mit einem Ausbau zu stoppen, baut sich der sogenannte 

„echte Gebirgsdruck“ auf diesen auf. Die dadurch entstehenden Gebirgsdrücke können Werte er-

reichen, welche die technische Machbarkeit solcher Ausbauten überschreiten können. In stark 

druckhaftem Gebirge besteht die einzige machbare Lösung oft aus einem nachgiebigen Ausbau, 

welcher sich verformen kann, ohne dabei zerstört zu werden. 

Obwohl das Zusammenspiel von Gebirge und Ausbau heute gut erforscht ist und in den letzten 

Jahren viele Erfahrungen mit verschiedenen Vortriebskonzepten gemacht wurden, ist die Voraus-

sage des Gebirgsverhaltens in druckhaftem Gebirge immer noch eine der anspruchsvollsten Auf-

gaben des Tunnelbaus  ̶  sowohl während der Projektierung als auch während des Baus. 

Die Interaktion zwischen Ausbau und Gebirge beim Vortrieb eines Tunnels in druckhaftem Gebirge 

wird häufig mit Hilfe von Modellen im ebenen Verformungszustand untersucht. Teil I (von fünf) 

zeigt, dass die Annahme des ebenen Verformungszustandes unter bestimmten Bedingungen zu 

Gebirgsdrücken und Verformungen führen kann, welche deutlich niedriger sind als jene, die mit 

räumlichen Spannungsanalysen bestimmt wurden. Der Unterschied besteht in der Spannungs-

pfadabhängigkeit des elasto-plastischen Baugrundverhaltens, beziehungsweise im Unvermögen 

ebener Modelle die wirkliche Spannungsgeschichte zu reproduzieren. Der Vortrieb mit anschlies-

sender Sicherung des Ausbruchrandes führt zu einer Spannungsgeschichte, welche eine vollstän-

dige Entlastung (und eine spätere Wiederbelastung) des Ausbruchrandes über der ungesicherten 

Länge beinhaltet. Diese inhärente Schwäche aller Modelle im ebenen Verformungszustand ist be-

treffend des Entwurfs und der Dimensionierung besonders im Fall von stark druckhaftem Gebirge, 

welches den Einsatz eines nachgiebigen Ausbaus erfordert, relevant. 

Teil II behandelt eine wichtige praktische Folge der Ergebnisse von Teil I. Die Interaktion zwischen 

nachgiebigen Ausbauten und druckhaftem Gebirge wird mittels räumlichen Berechnungen, welche 

die wirkliche Spannungsgeschichte des Baugrunds während des Vortriebs berücksichtigen, unter-

sucht. Die Idee des nachgiebigen Ausbaus entstand aufgrund der Beobachtung, dass der Gebirgs-

druck abnimmt, wenn Verformungen des Gebirges zugelassen werden. Bei der Bestimmung des 

erforderlichen Mehrausbruchs wird in der Regel die Gebirgskennlinie angewendet. Die Gebirgs-

kennlinie stellt die Beziehung zwischen dem Gebirgsdruck und der radialen Verschiebung des 

Ausbruchsrandes unter der Annahme des ebenen Verformungszustandes dar. Die Bestimmung 

der Gebirgskennlinie geht von einem monotonen Abfall der radialen Spannungen am Ausbruchs-

rand aus. Der wirkliche Vortrieb mit dem anschliessenden Aufbringen der Sicherung beinhaltet je-

doch eine vollständige Entlastung des Ausbruchrandes. Dieser Unterschied in Kombination mit 

dem spannungspfadabhängigen Baugrundverhalten ist dafür verantwortlich, dass die Ergebnisse, 

die mit räumlichen Modellen ermittelt werden, sich nicht nur quantitativ, sondern auch qualitativ von 

den Resultaten unterscheiden, die mit ebenen Berechnungen ermittelt werden. Die Beziehung zwi-

schen Gebirgsdruck und Gebirgsverformung im Endzustand weit hinter der Ortsbrust ist nicht ein-

deutig, sondern hängt auch von der Kennlinie des Ausbaus ab, welche die Spannungsgeschichte 

des Baugrunds im Bereich des Tunnels beeinflusst. Der Widerstand des nachgiebigen Ausbaus 
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während der Deformationsphase (die sogenannte Fliessspannung des nachgiebigen Ausbaus) 

stellt aus diesem Grund einen sehr wichtigen Parameter des Ausbaus dar. Je höher dieser gewählt 

wird, umso kleiner wird die Endbelastung des Ausbaus. Eine angestrebte Verminderung des Ge-

birgsdrucks kann demzufolge nicht nur mit einem grösseren Mehrausbruch, sondern auch mit einer 

höheren Fliessspannung des Ausbaus erreicht werden. Für die Vordimensionierung des nachgie-

bigen Ausbaus werden in Teil II Nomogramme bereitgestellt. 

Teil III untersucht systematisch und ausführlich ein Paradox der elasto-plastischen Tunnelanalyse, 

welches fallweise in der Literatur zu finden ist. Die Analyse eines Tunnelvortriebs in einem Bau-

grund mit einem elasto-plastischen Verhalten kann zu paradoxen Resultaten führen, die besagen, 

dass der Gebirgsdruck im Fall einer höheren Baugrundqualität höher ist, als für eine niedrige Bau-

grundqualität. Ein überbeanspruchter Baugrund in Kombination mit einem steifen Ausbau führt zu 

höheren Belastungen des Ausbaus im Falle eines Baugrundes mit einer hohen Festigkeit als im 

Falle eines Baugrundes mit einer niedrigen Festigkeit (wobei alle anderen Parameter konstant ge-

halten werden). Dieses Verhalten tritt bei allen gebräuchlichen Berechnungsmodellen (analytische 

und numerische Lösung unter der Annahme des ebenen Verformungszustandes und numerische 

Lösung eines axialsymmetrischen Modells) auf, obwohl es sowohl der Intuition wie auch der Erfah-

rung widerspricht. Ein solches Verhalten lässt an der Zuverlässigkeit der Voraussagen aller gängi-

gen Berechnungsmethoden zweifeln. Teil III diskutiert die Modellannahmen, die für das Paradox 

verantwortlich sind: Einerseits die Annahme, dass das Baugrundverhalten zeitunabhängig ist (ob-

wohl ein überbeanspruchter Baugrund in Wirklichkeit kriecht) und anderseits die Annahme eines 

steifen Ausbaus nahe an der Ortsbrust (was in Wirklichkeit wegen des Bauablaufs nicht möglich 

ist). Wenn eine oder beide dieser Annahmen korrekt mit erweiterten Modellen berücksichtigt wer-

den, verschwindet das Paradox. Da die Modelle, die das Paradox zeigen sowohl in der Tunnelbau-

praxis als auch in der Forschung sehr verbreitet sind, sollen die Untersuchungen von Teil III dem 

Ingenieur beziehungsweise dem Wissenschaftler helfen, die modellinhärenten Unsicherheiten zu 

verstehen und dadurch zu einer besseren Interpretation der Ergebnisse führen. 

Teil IV zeigt einige Gründe für die häufig beobachtete und über kurze Distanzen auftretende Varia-

bilität der Intensität der Druckhaftigkeit entlang der Linienführung eines Tunnels im druckhaften 

Gebirge. Die Variabilität kann auf die Heterogenität des Baugrundes in verscheiden Massstäben 

und bezüglich den mechanischen und auch hydraulischen Eigenschaften zurückgeführt werden. 

Der Grund für dieses Phänomen ist häufig ein Vortrieb durch eine Abfolge von Gebirgsabschnitten 

von unterschiedlicher Zerscherung und Zerdrückung. Die Ergebnisse von numerischen Berech-

nungen zeigen, dass schon dünne Zwischenschichten von intaktem Fels einen ausgeprägten Sta-

bilisierungseffekt haben. Jedoch auch im makroskopisch homogenen Fels kann eine grosse Varia-

tion der Gebirgsverformungen beobachtet werden. Dies kann theoretisch durch die hohe Sensitivi-

tät des Gebirgsverhaltens bezüglich kleiner Änderungen der Gebirgseigenschaften erklärt werden. 

Die Variabilität der Intensität der Druckhaftigkeit erschwert die Voraussage des Gebirgsverhaltens, 

auch wenn schon Erfahrungen mit bestimmten geologischen Verhältnissen während des Vortriebs 

gemacht wurden. Eine zuverlässige Voraussage der Baugrundverhältnisse vor der Ortsbrust ist 

unverzichtbar, um Rückschläge vermeiden zu können. Solche Voraussagen ermöglichen es, die 

Ausbruchsicherung, den Ausbruchsquerschnitt und den Endausbau während des Vortriebs anzu-

passen. Die Verformungen des Gebirgskerns vor der Ortsbrust, welche mittels Messung der Extru-

sion des Kerns erfasst werden können, liefern Hinweise auf die mechanischen Eigenschaften des 

Gebirges. Teil V untersucht, ob es möglich ist, das Gebirgsverhalten mit Hilfe der Messungen der 
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axialen Extrusion des Gebirgskerns vorauszusagen. Es wird gezeigt, dass eine Voraussage der 

Konvergenzen im Falle von mässig zeitabhängigem Gebirgsverhalten machbar ist, wenn bei der 

Interpretation der Extrusion die Effekte der Sicherung miteinbezogen werden. Bei einem ausge-

prägt zeitabhängigen Gebirgsverhalten gestaltet sich die Voraussage der Konvergenzen jedoch 

schwieriger: Die kurzfristigen Gebirgseigenschaften, welche die Extrusion bestimmen, können un-

gleich den langfristigen Eigenschaften sein, welche die Konvergenzen bestimmen. Bei den Fallbei-

spielen des Gotthard Basistunnels und des Tunnels „Vasto“ ist eine schwache Korrelation der axia-

len Extrusionen und der Konvergenzen zu erkennen. Teil V zeigt weiter, dass eine sorgfältige 

Auswertung der Messdaten von grosser Bedeutung ist, wenn potentielle Bereiche niedriger Ge-

birgsqualität vor der Ortsbrust mittels der Extrusionen erkannt werden sollen. Die Auswertung 

muss die Einflüsse der Ausbruchsicherung und der Zeit berücksichtigen sowie möglich Fehler, 

welche durch den Messprozess verursacht werden können, eliminieren. 
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Introduction 

The term “squeezing” refers to the phenomenon of large time-dependent deformations that develop 

when tunnelling through weak rocks. If an attempt is made to stop the deformations with a lining, a 

so-called ‘‘genuine rock pressure” builds up, which may reach values beyond the structurally man-

ageable range. Often, the only feasible solution in heavily squeezing ground is a tunnel support 

that is able to deform without becoming damaged, in combination with a certain amount of over-

excavation in order to accommodate the deformations. 

The interaction between the ground and the support is well understood in principle. In the initial 

state prevailing before tunnel construction, an equilibrium exists between the core ahead of the 

tunnel face and the surrounding ground. The ground around the future opening exerts a load upon 

the core and, vice versa, the core supports the surrounding ground. As the support effect of the 

core disappears with its excavation, a spatial stress redistribution accompanied by deformations 

occurs around the working face, and a pressure develops upon the lining, because the latter par-

tially hinders the convergence of the tunnel walls.  

Although the interaction between the core and the support is well understood and considerable ex-

perience has been built up with different construction methods in recent years, the prediction of 

ground response to tunnelling under squeezing conditions still remains one of the most demanding 

tasks in tunnelling, during both design and construction. 

Besides the numerous uncertainties caused by the lack of available information in the design stage 

(in respect of the initial stress field and the material constants of the ground), the constitutive model 

and the static system represent additional sources of uncertainty. Several computational models in 

one, two or three spatial dimensions are available today. The one-dimensional ground response in 

the rotational-symmetric problem of a deep tunnel can be expressed by a closed-form solution of 

the so-called “ground response curve”. The ground response curve relates the radial displacement 

of the rock at the excavation boundary to the support pressure. Numerical two-dimensional plane 

strain models consider a tunnel cross section far behind the face and can be applied for arbitrary 

geometries and initial conditions. Spatial effects can be handled numerically only with axially sym-

metric or three-dimensional models, which take into account the sequence of lining installation and 

excavation works. Due to the high cost of such spatial analyses, however, tunnel design calcula-

tions are based, in most cases, upon plane strain models. The present thesis analyses certain spa-

tial effects in tunnelling associated with the advancing tunnel heading and investigates whether and 

to which extent the uncertainties of the simplified computational models limit the value of their pre-

dictions.  

One of the main difficulties encountered during the construction of tunnels in squeezing ground is 

the variability of squeezing intensity, which decreases the predictability of the conditions ahead of 

the face, even after experience has been acquired with a specific geological formation. Squeezing 

variability therefore introduces major uncertainties concerning the prediction of the ground re-

sponse during construction. The thesis discusses some of the reasons for squeezing variability and 

analyses in-depth the spatial variation in ground response in the specific case of heterogeneous 

rock structures. Furthermore, the thesis investigates whether it is possible to predict the ground re-
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sponse (including all spatial effects) on the basis of the monitored extrusions of the core ahead of 

the face. Such prediction would considerably reduce the uncertainties during construction. 

The thesis is structured in five parts. Parts I to IV have been published in 4 scientific papers. 

Part I (Cantieni and Anagnostou 2009a) shows that the plane strain assumption underlying two-

dimensional analyses may lead, under certain conditions, to ground pressure and deformation val-

ues that are considerably lower than those produced by stress analyses that take into account spa-

tial effects in the vicinity of the tunnel face. More specifically, the relationship between ground pres-

sure and deformation at the final state prevailing far behind the face is not unique (as we might ex-

pect from the plane strain ground response curve), but depends on the support characteristics, as 

these affect the stress history of the ground surrounding the tunnel. Part I emphasises the influence 

of the stress path on the deformations and pressures developing in tunnels crossing weak rocks 

that are prone to squeezing and exhibit important plastic flow. More specifically, it is the purpose of 

Part I to show, by comparative computations, how greatly the ground response calculated using a 

more realistic spatial model may deviate from the response predicted through plane strain anal-

yses, to show the limitations and nature of the simplifications involved in even the most sophisticat-

ed methods of pre-deformation estimation, and to improve our understanding of the reasons for 

these deviations. 

Part II (Cantieni and Anagnostou 2009b) investigates an important practical consequence of the 

Part I results. Specifically, it shows the effects of stress-path dependency on the interaction be-

tween yielding supports and squeezing ground. Yielding supports which yield under high ground 

pressures lead to lower final pressures on the shotcrete lining than supports which yield under low 

ground pressures. Such results cannot be reproduced with plane strain models. This is due to the 

different stress histories of the stress-path dependent ground during the advance of the face. Part II 

provides a new insight into the problem of ground-support interaction, and investigates in detail the 

influence of the main design parameters of the yielding support (yield pressure and deformation 

capacity). Part II also presents design nomograms which enable a rapid assessment to be made of 

yielding supports. 

Part III (Cantieni and Anagnostou 2010) presents a systematic and in-depth study of a paradox of 

elasto-plastic tunnel analysis which is occasionally mentioned in the literature. The paradox is that 

the commonly-used elasto-plastic computational models predict that pressures may increase with 

better ground quality (the higher the ground strength, the higher the loading will be). This is clearly 

contrary to the behaviour that might be expected both intuitively and on the basis of tunnelling ex-

perience, which is that overstressing of the lining or severe convergences are associated with 

ground of poor quality. Part III illustrates the paradox by means of results obtained from the appli-

cation of commonly used computational methods, investigates the conditions under which the par-

adox occurs and explains why the paradox occurs. It shows that the paradox can be traced back to 

a combination of large deformations ahead of the face and small deformations of the support sys-

tem. Even if the reason for the paradox is understood, a question remains as to why such behav-

iour is not exhibited in nature or, in other words: what are the specific modelling assumptions that 

lead to the paradoxical model behaviour. Part III discusses possible reasons for the discrepancy 

between model behaviour and actual behaviour. 

Part IV (Cantieni and Anagnostou 2007) shows some of the reasons for the frequently observed 

variability of squeezing intensity along the tunnel alignment (which can be observed for one and the 
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same excavation method, type of temporary support, depth of cover and lithology). The variability 

of squeezing can be traced back to heterogeneities of the ground at different scales and with re-

spect both to its mechanical and its hydraulic characteristics. Part IV discusses the sensitivity of 

ground response to small variations in rock mass properties by means of computational results and 

with reference to tunnelling experience. Furthermore it deals with the case of a heterogeneous rock 

mass consisting of alternating weak and hard rock zones. 

Part V investigates whether it is possible to predict the ground response to tunnelling by assessing 

the axial extrusion of the core ahead of the face. Such a prediction would enable adaptations to be 

made, during construction, to the temporary support, to the excavation diameter and also to the fi-

nal lining. Part V analyses the behaviour of the core ahead of the face on the basis of extrusion 

measurements from a number of case histories and by means of numerical computations which 

consider the effect of the support measures and of the ground properties (such as strength, rheolo-

gy and heterogeneity). Part V shows that a prediction is very difficult in ground with a pronounced 

time-dependent behaviour because the extrusion of the core depends on the short-term ground 

properties, while the final convergences depend on the long-term ground properties. In the light of 

the results of the numerical computations, Part V discusses the predictability of the convergences 

by means of case histories. 
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PART I 

 

THE EFFECT OF THE STRESS PATH ON SQUEEZING 

BEHAVIOUR IN TUNNELLING 

Abstract: The interplay between support systems and the rock when tunnelling under squeezing 

conditions is normally studied by means of two-dimensional analyses. The present paper shows 

that the underlying plane strain assumption involved in a two-dimensional analysis may lead under 

certain conditions to ground pressure and deformation values that are considerably lower than the 

ones produced by stress analyses that take into account spatial effects in the vicinity of the tunnel 

face. The differences are due to the stress path dependency in the elasto-plastic behaviour of the 

ground and, more specifically, to the inability of the plane strain model to map the actual radial 

stress history, which involves a complete radial unloading (and, later, a re-loading) of the tunnel 

boundary over the unsupported span. This inherent weakness of any plane strain analysis is rele-

vant from the design standpoint particularly for heavily squeezing conditions that require a yielding 

support. For the majority of tunnelling conditions and methods, however, involving as they do com-

pletion of a stiff support within a few meters of the face, the errors introduced by the plane strain 

assumption are not important from a practical point of view.  
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Notation: 

a Tunnel radius 

c Ground cohesion  

d Lining thickness 

d1,2 Plastic multipliers  

E Young's modulus of the ground 

EL Young's modulus of the lining 

e Unsupported span  

fc Uniaxial compressive strength  

F Function defined by Eq. (6)  

g1,2 Plastic potential functions  

k Lining stiffness  

m Material constant defined by Eq. (4)  

p Radial pressure acting upon the lining  

p Final radial pressure acting upon the lining  

r Radial co-ordinate (distance from tunnel axis) 

s Round length in the step-by-step calculations 

u Radial displacement  

u  Radial displacement (unsupported opening) 

Eu  Radial displacement (unsupported opening, elastic ground) 

y Axial co-ordinate (distance behind the tunnel face) 

1,2,… Material constants defined by Eq. (4) 

yy Axial strain 

rr Radial strain 

tt Tangential strain 

ry Shear strain 

…,el Elastic strain  

…,pl Plastic strain  

1,2,3 Material constants defined by Eq. (A32) 

4 Material constants defined by Eq. (A14) 

5,6 Material constants defined by Eq. (A29) 

 Material constant defined by Eq. (4)  

 Poisson's ratio of the ground 

 Radius of plastic zone 

’ Radius of the inner part of the plastic zone 
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2D Radius of plastic zone under plane strain conditions 

pl Radius of plastic zone 

py Radius of zone yielding in the past 

...  Transformation of stress … (Eq. A3) 

1 Maximum principal stress  

3 Minimum principal stress  

a Radial support pressure  

o Initial stress  

yy Axial stress  

rr Radial stress  

tt Tangential stress  

ry Shear stress  

' Radial stress at r = ' 

 Angle of internal friction of the ground 

 Function defined by Eq. (12)  

 Dilatancy angle of the ground 

1 Introduction 

The interaction between the ground and the tunnel lining is well understood in principle (cf. Lom-

bardi 1971 & 1981, Panet & Guellec 1974). In the initial state prevailing before tunnel construction, 

an equilibrium exists between the core ahead of the tunnel face and the surrounding ground. The 

ground around the future opening exerts a load upon the core and, vice versa, the core supports 

the surrounding ground. As the support effect of the core disappears with its excavation, a spatial 

stress redistribution accompanied by deformations occurs around the working face, and a pressure 

develops upon the lining, because the latter partially hinders the convergence of the tunnel walls. 

The magnitude of the loading depends on the magnitude of the deformations constrained by the 

lining (i.e. on the magnitude of the deformations that would occur in the absence of a lining) and 

thus on the distance between the working face and the location of the lining installation (e in Fig. 

1a). The smaller this distance, the higher will be the load that develops with the progress of exca-

vation. Furthermore, as in any statically undetermined system, the magnitude of the ground pres-

sure depends on the load-deformation characteristics both of the lining and of the ground.  

The deformations and rock pressures can be estimated by means of three-dimensional numerical 

models that take into account the sequence of lining installation and excavation works. Due to the 

high cost of such three-dimensional analyses, however, tunnel design calculations are based in 

most cases upon plane strain models that consider a tunnel cross section. The principle of such 

two-dimensional calculations can be illustrated best by considering the axisymmetric case of a 
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deep cylindrical tunnel. Figure 1b shows the characteristic lines of the ground and of the lining. The 

characteristic line of the rock (the so-called "ground response curve") relates the radial displace-

ment of the rock at the excavation boundary to the support pressure, while the characteristic line of 

the lining relates the radial displacement of the lining to the pressure exerted by the rock. The in-

tersection point of the two lines (the “ground response point”) fulfils the conditions of equilibrium 

and compatibility, and shows the radial pressure p(∞) acting upon the lining far behind the face and 

the respective radial displacement u(∞) of the ground at the excavation boundary r = a. For deter-

mining the intersection point, an a priori assumption must be made concerning the ground dis-

placement u(e) that occurs before the lining is installed (“pre-deformation”). Note that small varia-

tions in the assumed pre-deformation u(e) may lead to large variations in rock pressure, particularly 

in the case of a highly non-linear ground response. This sensitivity has prompted considerable re-

search aimed at finding methods for estimating pre-deformation without needing to carry out costly 

spatial numerical analyses. Research efforts in the nineties were focused mainly to the axisymmet-

ric problem of a cylindrical tunnel (Corbetta 1990, Bernaud 1991, Bernaud and Rousset 1996, 

Nguyen-Minh and Corbetta 1992, Nguyen-Minh and Guo 1993, 1996, Guo 1995, Panet 1995, 

AFTES 2002), while recent papers have examined the influence of the tunnel shape and of the ani-

sotropy or heterogeneity of the initial stress field (Carranza-Torres and Fairhurst 2000, González-

Nicieza et al. 2008). 

 

The problem is, however, more fundamental than estimating the magnitude of pre-deformation: for 

geomaterials with path-dependent mechanical behaviour, the existence of a single “ground re-

sponse curve” is in itself questionable, as the response of the ground depends on its stress history 

and, in the case of time-dependent processes such as creep (Kaiser 1980) or consolidation (Anag-

nostou 2007a), on the excavation advance rate as well. The method involving characteristic lines 

may nevertheless oversimplify reality even in the absence of time-dependency. So, for example, 

Amberg (1999) has remarked (on the basis of the results of design calculations for the Gotthard 

Base Tunnel) that three-dimensional simulations of tunnel excavation may lead both to higher 

ground pressures and to higher deformations than those predicted by plane strain calculations (i.e. 

to ground response points which are located above the ground response curve, e.g. point “3D” in 

Fig. 1b). Also Bliem (2001) recognized that for a given amount of pre-deformation the final lining 

pressure obtained by a spatial calculation may be higher than the value obtained by considering 

the ground response curve. Furthermore, the numerical results presented by Barla (2000, 2001) 

show a significant difference between the stresses predicted by two- and three-dimensional mod-

els, with a clear influence on the stress path experienced by the ground surrounding the tunnel. 
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Fig. 1 (a) Radial displacement of the tunnel wall; (b) Characteristic lines of the ground and of the lining 



12 Part I 

The role of stress path has been examined in recent years also in the context of tunnelling or min-

ing through hard brittle rocks (Pelli et al. 1995, Martin et al. 1999, Cai et al. 2002, Diederichs et al. 

2004). So, for example, Eberhardt (2001) presented the results of a three-dimensional numerical 

study on the rotation of the principal stress axes in the vicinity of the tunnel face and on its effect on 

the direction of fracture propagation.  

In the present paper, emphasis is placed on the influence of the stress path on the deformations 

and ground pressures developing in tunnels crossing weak rocks that are prone to squeezing and 

exhibit important plastic flow. More specifically, it is the purpose of this paper to show by compara-

tive computations how greatly the ground response calculated using a more realistic spatial model 

may deviate from the response predicted through plane strain analyses (Section 3), to show the 

limitations and the nature of the simplifications involved even in the most sophisticated methods of 

pre-deformation estimation (Section 4) and to improve our understanding of the reasons for these 

deviations (Section 5). 

The present investigation concerns only the effect of the computational domain (plane vs. spatial 

system). It should be noted, however, that the stress history of the ground and its response to tun-

nelling may be influenced also by time-effects. The latter are pronounced particularly when the 

ground becomes overstressed and are therefore important for squeezing behaviour. This aspect is 

not dealt-with by the present paper. 

2 Problem layout and solution method 

2.1 Problem layout  

For the sake of simplicity and without compromising its general applicability, the comparative anal-

yses of the present paper refer to a deep, cylindrical and uniformly supported tunnel that crosses a 

homogeneous and isotropic ground. The initial stress field is assumed to be uniform and hydrostat-

ic. The mechanical behaviour of the ground is modelled as isotropic, linearly elastic and perfectly 

plastic according to the Mohr-Coulomb yield criterion with a non-associated flow rule.  

The lining is modelled as an elastic radial support with stiffness k = dp/du, where p and u denote 

the radial loading and the radial displacement of the lining, respectively. The radial stiffness k of a 

ring-shaped lining is equal to ELd/a2, where a, d and EL denote its radius, thickness and Young’s 

modulus, respectively. The longitudinal bending stiffness of the lining will not be taken into account. 

(This effect is however of subordinate importance.) Lining installation occurs at a distance e behind 

the tunnel face (Fig. 1a). 

Under the assumptions made above, the problem obeys rotational symmetry with respect to the 

tunnel axis y (Fig. 1a). The plane strain assumption leads to a one-dimensional problem for which a 

closed form solutions exist (Section 2.2), while the three-dimensional problem of the advancing 

tunnel heading reduces then to a two-dimensional axisymmetric problem that is solved numerically 

by the finite element method (Section 2.3). 
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2.2 Plane strain problem 

According to the closed-form solutions presented by, e.g., Anagnostou and Kovári (1993), the dis-

placements in the elastic range, i.e. if 
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These equations assume that plastic flow takes place only in the plane of the tunnel cross section. 

According to the adopted Coulomb yield criterion, this is true only if the secondary axial stress is 

the strict intermediate principal stress. The effect of the axial stress on the deformation fields 

around a cylindrical cavity in a brittle Coulomb material has been investigated analytically by Ngu-

yen-Minh and Berest (1979) and Reed (1988). Here attention is paid to the special case of a per-

fectly plastic material. The closed-form solution for the stress field and the ground response curve 

is given in the Appendix. According to this analysis, when the support pressure is low and the initial 

stress high, out-of-plane plastic strains develop as both the axial stress and the tangential stress 

fulfil the yield condition (so-called "edge flow"). The error introduced by neglecting the out-of-plane 

plastic strains may be considerable for materials exhibiting softening behaviour (Reed 1988) but, 

as shown below, is negligible for perfectly plastic materials. 

Figure 2a shows ground response curves for an example with parameter values according to Table 

1 (with c = 500 kPa). The dashed curve is based upon Eq. (3), which does not take into account 

the out-of-plane plastic flow, while the solid line has been calculated by the closed-form solution 

derived in the Appendix (Eq. A31). The marked points have been obtained numerically by the finite 

element method. (In the numerical calculations, edge flow is taken into account based upon the 

classical method of Koiter 1953.) The error caused by neglecting the out-of-plane strains is in this 

example negligible. In the theoretical case of  = 0, the error is larger but still small (Figure 2b). The 

numerical solutions agree well with the analytical ones. Figure 3 provides a more complete picture. 

The diagram shows the error over the normalized support pressure for a friction angle  = 15 or 
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35º, the common range of Poisson's ratio ( = 0.15 - 0.35) and the two borderline cases of the flow 

rule ( = 0º or ). As can be seen from Figure 3, neglecting the plastic flow in the axial direction 

leads in general to an underestimation of the radial boundary displacement by a few per cent. 

 

Table 1: Assumed model parameters 

Parameter   Value 

Initial stress  0 12.5 MPa 

Tunnel radius a 4 m 

Lining stiffness k variable 

Unsupported span e variable 

Young’s Modulus (Ground) E 1000 MPa 

Poisson’s ratio (Ground)  0.3 

Angle of internal friction (Ground)  25° 

Cohesion (Ground) c 500 or 2000 kPa 

Dilatancy angle (Ground)  5° 

 

2.3 Axisymmetric problem 

The numerical solution of the axisymmetric problem is usually based upon a simulation of the ex-

cavation and support installation that models the advancing tunnel heading step-by-step (cf., e.g., 

Franzius and Potts 2005). Since large stress- and deformation-gradients prevail in the vicinity of 
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Fig. 2 Ground response curve with/without consideration of out-of-plane plastic flow (solid/dashed curve) as 

well as numerically obtained results (marked points): (a) Poisson's ratio  = 0.30, (b) Poisson's ratio  = 0.0 (c 

= 500 kPa, other parameters: see Table 1) 
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the tunnel face and the latter moves during the step-by-step simulation, either the finite element 

mesh has to be fine everywhere along the tunnel axis or adaptive re-meshing must be carried-out 

for each excavation step. Such an analysis is, therefore, very time-consuming even in the case of 

linear material behaviour.  

The present problem, however, belongs to the large category of problems with constant conditions 

in the tunnelling direction (the stress- and deformation fields are steady with respect to the tunnel 

heading, i.e. they “advance” together with the face in the direction of excavation) and it is solved 

here by means of a single computational step. The basic principle behind this so-called "one-step 

solution method" can be traced back to the work of Nguyen-Quoc and Rahimian (1981) on steady 

crack propagation in elasto-plastic media, and it is that the time-coordinate can be eliminated from 

the equations governing the steady state by re-formulating the equations in a frame of reference 

that is fixed to the advancing heading. In such an approach, the co-ordinate y in the tunnelling di-

rection (Fig. 1a) undertakes the role of the time-dimension in the integration of the elasto-plastic 

constitutive equations. Corbetta (1990) applied this method for the analysis of advancing tunnels in 

elasto-plastic and viscoplastic media (cf. also Corbetta and Nguyen-Minh 1992), while Anagnostou 

(2007a) proposed a generalization of the one-step solution method for coupled problems involving 

seepage flow and consolidation processes. Details concerning the calculation of the internal forces 

of the support elements (under consideration of the pre-deformations of the ground) can be found 

in Anagnostou (2007b).  

Figures 4 and 5 compare numerical results obtained by the one-step solution method with the re-

sults of step-by-step computations. A sequential excavation and support installation procedure is 

determined by the following two geometrical parameters: the round length s and the minimum dis-

tance e between the leading edge of the support and the tunnel face (Fig. 4a). In the step-by-step 

method, the excavation and support cycles are simulated by activating support elements and de-

activating ground elements stepwise over successive round lengths s. Each excavation round 

causes a stress re-distribution in the longitudinal direction and an additional load increment upon 

the installed support elements. The anterior parts of the support elements are more affected by the 

excavation of the core, because the effect of each excavation round decreases with the distance 

from the face. This leads to a saw-shaped distribution of the ground pressure and deformation 
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Fig. 3 Error caused by not considering the out-of-plane plastic flow 
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along the tunnel wall. The lines 1 and 2 in Figure 4 have been obtained by means of step-by-step 

simulations performed by the finite element code HYDMEC of the ETH Zurich (Anagnostou 1992) 

and the commercial geotechnical finite element package PLAXIS (Brinkgreve 2002), respectively. 

The parameters of the numerical example are: round length s = 2 m, unsupported span e = 4 m, 

cohesion c = 500 kPa, lining thickness d = 50 cm, Young’s modulus of the lining EL = 30 GPa (see 

Table 1 for the other parameters). The lining was modelled as an elastic radial support with 

(PLAXIS simulation) or without (HYDMEC simulation) longitudinal bending stiffness. The saw-
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Fig. 4 (a) Calculation sequence in the step-by-step method; (b) radial displacement of the tunnel boundary; (c) 

distribution of the pressure acting upon the lining 
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shaped distribution is typical for step-by-step simulations (cf., e.g., Bonnier et al. 2002 and Graziani 

et al. 2005) and, as can be seen from Figure 4, occurs even if taking into account the bending stiff-

ness of the support. Furthermore, the comparison of Lines 1 and 2 in Figure 4 shows that the sim-

plification introduced by neglecting the longitudinal bending stiffness of the lining is not decisive for 

the investigation of the final lining pressures and convergences. 

The lines 5 in Figure 4 show the respective numerical results of the one-step solution method im-

plemented in the finite element code HYDMEC. The distribution of the pressures and deformations 

along the tunnel is smooth because the round length does not represent a parameter in this meth-

od. In fact, the one-step solution method refers to the borderline case of a zero round length s. The 

length of the unsupported span is thus continuously equal to e, while in the step-by-step simula-

tions it varies between e and e+s (Fig. 4a). Due to the shorter unsupported span, the one-step so-

lution method leads to slightly lower ground deformations and slightly higher ground pressures. 

(For the comparison of the pressures, the numerical results of the step-by-step simulations have 

been averaged over each lining segment; see Lines 3 and 4 in Figure 4c.) 

For the validation of the implementation of the one-step solution method into the finite element 

code HYDMEC, a series of step-by-step simulations has been carried-out with different values of 

the round length s. The lines marked by white symbols in Figure 5 show the influence of the round 

length s on the final lining pressure p and ground deformation u (average values and variation over 

the lining segment). One recognizes that the results of the step-by-step calculations approach the 

values obtained by the one-step solution method (black markers) with decreasing round length. 

The one-step solution method corresponds thus to the limiting case of a step-by-step model with 

zero round length. 

3 Deviation from the plane strain response 

In this section, the results of plane strain analyses will be compared to those of spatial analyses 

that take into account the advance of the tunnel heading. The analysis refers to a 500 m deep tun-

nel that has a radius a = 4 m. Table 1 summarizes the parameters of the model. The material con-

stants (particularly, the low dilatancy angle) are typical for the weak kakiritic rocks from the 

Gotthard Base Tunnel (Vogelhuber et al. 2004). Concerning the shear strength of the ground, two 

cohesion values have been considered. The higher value (c = 2000 kPa) applies to a moderately 

squeezing ground, the lower (c = 500 kPa) to a heavily squeezing ground.  

Typical linings have a stiffness k in the range 0.1 - 1 GPa/m. The calculations have been carried 

out for a wider range of stiffness values (0.01 - 100 GPa/m) in order to gain a complete picture of 

model behaviour. Furthermore, unsupported spans e of up to 16 m have been considered. The 

larger values for an unsupported span take into account in a simplified way the case of a yielding 

support that allows the occurrence of a free radial convergence (u(0)-u(e) in Fig. 1a) and starts to 

exert a pressure at a distance y = e behind the tunnel face. 

Figure 6b shows the ground response curve (the solid line marked by "GRC") obtained by a 

closed-form, plane strain solution, as well as the results of the numerical calculations for the case 
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of heavily squeezing ground (points marked by circles, e.g. A1,2,3,…; see also Table 2). The numeri-

cal results show that the ground response deviates considerably from the plane strain curve 

(GRC). The stiffer the lining and the longer the unsupported span e, the more pronounced will be 

the difference. Plane strain analysis systematically underestimates ground pressures and defor-

mations. The same observation, but to a lesser degree, can be made for the case of a moderately 

squeezing ground (Fig. 7b). The underestimation of ground pressures and deformations by the 

plane strain model is typical for elasto-plastic ground behaviour. For elastic behaviour of course 

there is no difference between the plane and the spatial model.  

A plane strain analysis is adequate under the following conditions:  

(i) It must lead to ground response points (p(∞), u(∞)) that are close to the ones obtained when tak-

ing into account the evolution of stress and deformation in the vicinity of the working face;  

(ii) A practicable way exists to estimate the pre-deformations of the ground, i.e. the deformations 

that take place up to the installation of the support. As can be seen from Figures 6b and 7b, the 
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Fig. 5 Results of the step-by-step method as a function of round length s and results of the one-step solution 

method (plotted at s = 0) 
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first condition is fulfilled in the case of a lower stiffness lining (low k-values) or a lining installation 

close to the face (small e-values).  

With respect to the second condition, the ground pressure and deformation values obtained by the 

convergence – confinement method will be examined next. 
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Fig. 6 Heavily squeezing ground. (a) Radial displacement u() of the ground far behind the face as a function 

of the unsupported span e; (b) Ground response curve under plane strain conditions (GRC), ground response 

curve under axisymmetric conditions for the case of a uniform suppport pressure acting along the excavation 

boundary (dashed curve next to the GRC), ground response points (A1,2,3,…; cf. Table 2) far behind the tunnel 

face (at y/a = 75) for different unsupported spans e and lining stiffnesses k, characteristic lines of support 

(us1, us2, us3, s1, s2, s3; cf. Table 2); (c) Radial pressure p() acting upon the lining far behind the face as a 

function of the unsupported span e 
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Fig. 7 Moderately squeezing ground. (a) Radial displacement u() of the ground far behind the face as a 

function of the unsupported span e; (b) Ground response curve under plane strain conditions (GRC), ground 

response points (A1,2,3,…; cf. Table 2) far behind the tunnel face (at y/a = 75) for different unsupported spans e 

and lining stiffnesses k, characteristic lines of support (s1, s2, s3; cf. Table 2); (c) Radial pressure p() acting 

upon the lining far behind the face as a function of the unsupported span e 
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4 Limitations of the convergence – confinement 

method 

The estimation of pre-deformation, which is of paramount importance for any plane strain model, 
starts by considering the development of the radial displacement ( )Eu y  along the excavation 

boundary (y > 0, r = a) of an unsupported tunnel crossing a linearly elastic ground: 

 
    
 

( ) ( )E E
y

u y u F
a

, (5) 

where ( )Eu  denotes the final radial displacement far behind the face (given by Eq. 2 with p = 0), 

while the function F is defined as follows (AFTES 2002): 

 
2

0.75
( ) : 1 0.75

0.75
F t

t
     

 (6) 

or, according to Corbetta (1990), 

   0.7( ) : 0.29 0.71 1 exp 1.5F t t    . (7) 

As both expressions lead to similar results, Eq. (6) will be used in the comparative calculations of 
the present paper. Following Corbetta (1990) the development of convergence ( )u y  for the case of 

elasto-plastic ground can be obtained approximately by applying a so-called homothetic transfor-
mation to the elastic convergence ( )Eu y  (Fig. 8): 

 
( )

constant
( )E

OP u

OE u


 


, (8) 

Table 2 Parameters for support and ground response points in Figures 6 and 7 

Line or point k [GPa/m] e [m] Estimation of pre-deformation 

us1 0.1 2 Based upon unsupported opening (Eq. 10) 

us2 1 2 " 

us3 1 8 " 

s1 0.1 2 Implicit method (Eq. 13 and 14) 

s2 1 2 " 

s3 1 8 " 

A1 0.1 2 Not applicable (result of axisymmetric analysis) 

A2 1 2 " 

A3 1 8 " 

A4 0.1 1 " 

A5 1 1 " 
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where ( )u   denotes the final elasto-plastic convergence of an unsupported tunnel (given by Eq. 3 

with p = 0). It follows from Eqs. (2), (3) and (8) that the so-called similitude ratio ( ) / ( )Eu u   de-

pends on the initial stress 0, on the Poisson's ratio  and on the plasticity constants c,  and . 

From Figure 8 it follows that: 

 
( )

( ) ( )
( )P E E

E

u
u y u y

u





 ;    

( )

( )
E

E P
u

y y
u





  . (9) 

Eqs. (5) and (9) yield with yP = e the convergence at the point of support installation: 

 
( )

( ) ( )
( )

Eu e
u e u F

u a

 
    

 . (10) 

Eq. (10) offers the simplest way of estimating pre-deformation, but at the same time it leads, as 

pointed out by AFTES (2002), to a serious underestimation of ground pressure. This can be illus-

trated by comparing the numerical results of Figure 6b with the results obtained by the conver-

gence – confinement method. The straight lines us1, us2 and us3 are the characteristic lines for 

three linings with different stiffnesses k and an unsupported span e (Table 2). Line us1 applies to a 

rather soft lining (k = 0.1 GPa/m, i.e. a 15 cm thick ring with a Young’s modulus of only 10 GPa) in-

stalled at e = 2 m behind the face. The intersection point of the line us1 with the ground response 

curve gives the ground pressure and deformation according to the convergence-confinement 

method. It is lower - by a factor of 2 - than the pressure obtained by the axisymmetric analysis 

(point A1). Lines us2 and us3 apply to a higher lining stiffness (k = 1 GPa/m, i.e. a 50 cm thick ring 

with a Young’s modulus of 30 GPa) and an unsupported span e of 2 m or 8 m, respectively. Points 

A2 and A3 mark the respective results of the axisymmetric analysis. Here, the convergence-

confinement method underestimates the pressure by a factor of about 4. 

As Eq. (10) is based upon the development of convergence along an unsupported opening while a 

stiff lining reduces not only the final convergence but the pre-deformations as well, the underesti-

mation of pressure by the convergence-confinement method has been attributed to the overestima-

tion of pre-deformation (cf., e.g. AFTES 2002). We see, however, from Figure 6b that the defor-

mations are actually only slightly overestimated. The fact that all of the ground response points 
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Fig. 8 Development of radial displacement along the excavation boundary of an unsupported tunnel crossing 

an elasto-plastic ground according to Nguyen-Minh and Guo (1996) 
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A1,2,3,… are located above the plane strain ground response curve shows that the problem is more 

fundamental: a plane strain analysis cannot reproduce both the deformations and the pressures. In 

order to determine the ground pressure through a plane strain analysis, the pre-deformations have 

to be underestimated.  

A more advanced, so-called implicit method (Guo 1995, Nguyen-Minh and Guo 1996) attempts to 

resolve this problem basically by applying a reduction factor  to the "unsupported" pre-
deformation ( )u e :  

 
( )

( ) ( )
( )

u
u e u e

u

 
   

 , (11) 

where u(e) and u() denote the pre-deformation and final convergence of the supported opening, 

respectively, while the function  is defined as follows: 

  3( ) : 0.55 0.45 0.42 1t t t     . (12) 

Eqs. (10) and (12) lead to the following expression for the pre-deformation: 

 
( ) ( )

( ) ( )
( ) ( )

Eu e u
u e u F

u a u

   
         

 . (13) 

According to Eq. (13), the pre-deformation u(e) depends on the final displacement u() and thus 

(cf. Eq. 2) on the unknown final support pressure p() as well. The latter is, however, related to the 

deformation of the support: 

 ( ) ( ( ) ( ))p k u u e     . (14) 

Eqs. (13) and (14) form a system for the support pressure p() and the pre-deformation u(e). By 

inserting u(e) from Eq. (13) into Eq. (14) we obtain a non-linear equation for the support pressure 

p(), which can easily be solved using Newton's iteration method. 

The pre-deformations underlying the characteristic lines of support s1, s2 and s3 in Figure 6b have 

been calculated in this way. Line s1 applies to a soft lining (k = 0.1 GPa/m) installed at e = 2 m be-

hind the face. The intersection point of the characteristic line s1 with the ground response curve is 

located below the respective ground response point A1, i.e. it shows a practically equal ground 

pressure but underestimates the radial displacement. At a higher lining stiffness (lines s2 and s3), 

both the ground pressure and the pre-deformation are underestimated considerably (by 1 MPa and 

15-20 cm, respectively, compare with points A2 and A3). In order to achieve a better agreement 

with the numerically obtained ground pressure value, an even smaller and unrealistic pre-

deformation must be assumed. Note that, due to the large dp/du - gradient of the plane strain 

ground response curve in the relevant pressure range, small variations in the assumed pre-

deformation lead to significant variations in the ground pressure.  

Figures 6a and 6c provide a more complete picture of the differences between the results of the 

convergence-confinement method and the axisymmetric analyses. The diagrams show the ground 

pressure p and the ground displacement u, respectively, as a function of the length e of unsupport-

ed span for two values of lining stiffness: a soft lining (k = 0.1 GPa/m, e.g. a 15 cm thick ring with a 

Young’s modulus of only 10 GPa) and a rather stiff lining (k = 1 GPa/m, e.g. a 50 cm thick ring with 

a Young’s modulus of 30 GPa). According to Figure 6c, the ground pressures predicted by the im-
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plicit method for the soft lining agree well with the numerical results for all e – values, while the de-

formations are underestimated by a factor of 1.5 to 2, particularly for long unsupported spans (Fig. 

6a). For the stiff lining, however, the pressures are underestimated considerably (up to 1 MPa). A 

similar trend can be observed also for the moderately squeezing ground (Fig. 7). It is, however, 

remarkable that the results of the convergence-confinement method agree here better with the 

ones of the axisymmetric analyses. 

On the basis of these comparisons, it can be concluded that the convergence-confinement method, 

even in combination with advanced methods of pre-deformation estimation, underestimates the 

ground pressure and deformation particularly for stiff linings, long unsupported spans and heavily 

squeezing ground with highly non-linear material behaviour. 

5 Stress and deformation history and its effect on 

ground response 

Next, the numerical results obtained for the case of the heavily squeezing ground will be studied in 

detail in order to explain the reasons for the deviation of the ground response values from those 

that were predicted under plane strain conditions. 

5.1 Stresses and deformations 

Figure 9 shows the region with plastic deformations and the stress distribution along the excavation 

boundary (r = a) for an unsupported opening (Fig. 9a), as well as for three supported tunnels with a 

different lining stiffness k and unsupported spans e (Fig. 9b, 9c and 9d). The term "past-yield zone" 

will be explained later in this section. As can be seen from Figure 9, the axial stress yy ahead of 

the face decreases with the approaching excavation from its initial value 0 (which prevails far 

ahead of the face) to zero (at the unsupported tunnel face). Due to the lowered axial stress, the 

core cannot sustain the radial pressure exerted by the surrounding ground: the core yields and, 

consequently, larger radial deformations u develop ahead of the face, while both the radial and 

tangential stresses (rr,tt) decrease (Fig. 11). This happens within the plastic zone, which extends, 

in this example, up to a distance of one - two radiuses ahead of the face (Fig. 9). As indicated by 

the peak in the tangential stress tt (at the boundary of the plastic zone at r = a), a stress concen-

tration occurs in the elastic region ahead of the plastic zone. Although this peak is slightly more 

pronounced if the tunnel is unsupported (Fig. 9a), Figure 9 shows that the stress field ahead of the 

face is largely independent of the support characteristics.  

At the face, the radial stress becomes equal to zero, while both the tangential and axial stresses 

(tt, yy) become - in accordance with the assumed yield condition - equal to the uniaxial compres-

sive strength fc. The continuation of excavation does not alter the stresses at the wall (r = a) of an 

unsupported tunnel (Fig. 9a). In a supported tunnel, however, the radial stress at the tunnel wall 

remains equal to zero over the unsupported span 0 < y < e but afterwards increases due to the 
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installation of the lining, as the latter offers a resistance to the deformations of the ground caused 

by the subsequent excavation (Fig. 9b, 9c and 9d). The axial and the tangential stress increase as 

well with the distance y from the face, because the ground - on account of Coulomb's yield condi-

tion - is able to sustain more pressure in the tangential and axial direction due to radial confine-

ment. In the case of a stiff lining (Fig. 9b and 9d), the axial stress yy increases more rapidly than 

the tangential stress tt and becomes the highest principal stress. This is because a stiff lining fa-

cilitates arching in the longitudinal direction, particularly if installed close to the face (Fig. 9b). In the 

case of a soft lining (Fig. 9c), the ground at the excavation boundary also continues to yield after 

lining installation (both the axial and tangential stress increase with rr, thus fulfilling the yield condi-

tion of Coulomb). 

Figure 10a shows the stress path in the principal stress space (3, 1) for an unsupported tunnel. 

The points A to F in the diagram refer to the location of the advancing face (see Fig. 11). The 
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Fig. 9 Plastic zone and history of the radial (rr), tangential (tt), axial (yy) and shear stress (ry) along the 

tunnel boundary (r = a). Note that the cases (b), (c) and (d) correspond to the points A5, A4 and A3 of Figure 

6b, respectively 
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stress state reaches the yield condition at Point B ahead of the face, follows the yield condition 

down to point D (which is located at the tunnel face) and remains afterwards constant. In the plastic 

zone developing around the opening (Fig. 9a), the deformations are partially irreversible and the 

stress field fulfils the yield condition.  

In the presence of a stiff lining (Fig. 10b and 10d), the stress state reaches the yield condition 

slightly closer to the face, becomes bi-axial at the tunnel face (point D) and remains bi-axial over 

the unsupported span (stress state D applies for e < y < 0). With the development of radial pres-

sure from the lining, however, the stress state again becomes elastic (“elastic re-compression”, cf. 

Gärber, 2003). The deformations within the so-called “past-yield zone” (Fig. 9b and 9d) are partially 

irreversible, however, while the stress state is within the elastic domain (the ground in this region 

will have experienced yielding and irreversible deformations in the past). Figure 12 shows the re-

sults of a parametric study on the extent of the plastic zone. The marked points have been ob-

tained by a series of axisymmetric calculations with different values of lining stiffness k and show 

the radiuses pl and py of the plastic zone and of the past-yield zone, respectively, as well as the 

respective ground pressure p∞ developing upon the lining far behind the face. Note that the plane 

strain analysis (solid curve 2D) underestimates the extent of the region experiencing irreversible 

deformations in the case of stiff linings (2D < py at high k - values). 
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Fig. 10 Principal stress paths along the tunnel boundary (line yc = yield condition, line ps = elastic portion of 

the stress path under plane strain conditions, see Fig. 11 for the location of points A to F). Note that the cases 

(b), (c) and (d) correspond to the points A5, A4 and A3 of Fig. 6b, respectively 
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Fig. 11 (a) State prevailing in a cross-section far ahead of the face; (b) qualitative representation of the effect 

of the approaching excavation and location of the points A to F referred by Figure 10 
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Fig. 12 Radius 2D of the plastic zone developing under plane strain conditions as a function of support pres-

sure p (solid curve), radius of the plastic zone (pl) and of the zone with past yielding (py) developing far be-

hind the face under axisymmetric conditions for different values of the support stiffness k 
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In the vicinity of the face, the longitudinal gradient of the radial displacement is large, because the 

core partially hinders the deformations (Fig. 13). Consequently, the ground is subject to shearing 

and thus to a rotation of the principal stress axes in the r-y plane. The rotation of the principal 

stress axes is temporary as the shear stress ry disappears (the principal stresses are oriented in 

the radial, tangential and axial directions) far ahead and far behind the face (Fig. 9). Note that the 

major part of the shear strain ry is irreversible (Fig. 14) and, consequently, the ground remains in 

an intensively sheared state (in the r-y-plane) far behind the face although the shear stresses dis-

appear (Fig. 9). 

5.2 Reasons for the deviations in ground response  

The behaviour of the axisymmetric model discussed in the last section has two particularly con-

spicuous features: (i) the development of irreversible shear strains in the r-y-plane associated with 

the rotation of the principal axes in the vicinity of the face; (ii) the complete radial unloading of the 

excavation boundary over the unsupported span and an increase in radial stress following the in-

stallation of the lining.  
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Fig. 13 Radial displacement u/a along the tunnel boundary (a) for an unsupported tunnel; (b) for a tunnel sup-

ported by a stiff lining installed close to the face (corresponds to point A5 of Fig. 6b) 
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Fig. 14 Elastic and plastic shear strain components (ry,el, ry,pl) along the tunnel at r/a = 1.2 (a) for an unsup-

ported tunnel; (b) for a tunnel supported by a stiff lining installed close to the face (corresponds to point A5 of 

Fig. 6b) 
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In a plane strain analysis it applies that: (i) the out-of-plane shear strains are by definition zero, 

while (ii) the radial stress at the excavation boundary decreases monotonously from its initial value 

0 to the support resistance p(). For these reasons, the features described above cannot be re-

produced by a plane strain analysis and this might, therefore, explain the ground response devia-

tions discussed in Section 3. 

The results obtained for the case of an unsupported tunnel show, however, that point (i) cannot be 

responsible for the error of the plane strain model: the axisymmetric analysis leads, in spite of the 

large irreversible shear strains ry (Fig. 14a), to a final convergence, which is practically equal to the 

one obtained by the closed-form, plane-strain solution (Fig. 6). Note also that according to Figure 

6b and 7b, the distance of the ground response points (A1,2,3,…) from the plane strain ground re-

sponse curve (GRC) increases systematically with increasing lining stiffness, although the longitu-

dinal convergence gradients and, consequently, the shear strains ry will decrease in the presence 

of a stiffer lining. Additional evidence of this is provided by axisymmetric analyses for the hypothet-

ical case of a support that is installed immediately after excavation at the tunnel face and exerts 

right from the start a constant uniform pressure (i.e., rr = p() at r = a for all y > 0). The results for 

this case are given by the dashed curve plotted next to the plane strain solution (solid curve GRC) 

in Figure 6b. The dashed curve practically coincides with the plane strain ground response curve, 

in spite of the plastic shear strains ry developing in the vicinity of the face. The stress path followed 

by the ground in this case is similar to the plane strain model in that the support does not allow for 

a complete radial de-stressing of the excavation boundary. 

So the deviation of the ground pressures developing upon a support must be due to the above-

mentioned point (ii), i.e. to the inability of any plane strain model to map the radial stress reversal 

that follows the installation of the lining. If this suggestion is true, then we would expect that the er-

ror introduced by the plane strain assumption will increase with the amount of radial stress rever-

sal, i.e. with the length of the stress path portion DF in Fig. 10 or, since stress state D is biaxial, 

with the final pressure p() and thus with the lining stiffness k (the unsupported span e being 

fixed). 

Figure 6b shows precisely this behaviour. For example, the ground response point A4 that results 

from the axisymmetric calculation for a soft support (k = 0.1 GPa/m, installed at e = 1 m) is closer 

to the plane strain ground response curve (GRC) than the ground response point A5 that applies to 

a stiff support (k = 1 GPa/m, installed also at e = 1 m). As can be seen from Figure 10, the elastic 

re-compression that follows support installation is less pronounced in the case of a soft support 

(the path portion DF is shorter in Fig. 10c than in Fig. 10b). In general, the stiffer the lining (the val-

ue of the unsupported span e being fixed), the larger will be the deviation from the ground re-

sponse curve. 

Let us consider now the effect of an unsupported span e for a fixed value of lining stiffness k. Cas-

es (b) and (d) in Figure 9 involve a stiff lining (k = 1 GPa/m) installed at e = 1 or 8 m, respectively. 

The deviation from the ground response curve is larger in the case of the longer unsupported span 

(compare point A3 with point A5 in Fig. 6b). This is because the biaxial stress state (point D in Fig-

ure 10d), rather than the final stress state (point F in Figure 10d), governs the extent of the plastic 

zone (Fig. 9d) and the magnitude of deformation, since it prevails over the long unsupported por-

tion of the tunnel. The deviation from the ground response curve therefore increases with the 

length e of unsupported span.  
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At the same time, however, the longer the unsupported span, the lower will be the final pressure 

p(), the smaller will be the difference between the final stress state and the temporary biaxial 

stress state, and the less pronounced will be the radial stress reversal. Consequently, the deviation 

from the ground response curve will also be smaller. The net effect of an unsupported span is 

therefore more complicated than that of lining stiffness. The error introduced by the plane strain as-

sumption is small for linings installed close to the face, increases with the unsupported span e but 

decreases again at very large values of e (see, e.g., solid line for k = 1 GPa/m in Fig. 6b).  

6 Conclusions 

An axisymmetric model that takes into account the sequence of excavation and lining installation 

will always lead to ground response points above the plane strain ground response, i.e. the con-

vergence corresponding to a certain ground pressure p(∞)will always be larger than the one ob-

tained by a plane strain analysis. This is due to the inability of the plane strain model to map the 

radial stress reversal that follows the installation of the lining. In general, the stiffer the lining and 

the longer the unsupported span e, the larger will be the deviation from the ground response curve. 

The convergence-confinement method, even in combination with advanced methods of pre-

deformation estimation, underestimates the ground pressure and deformation particularly for stiff 

linings, long unsupported spans and heavily squeezing ground with highly non-linear material be-

haviour. The inherent weakness of any plane strain analysis is that it cannot reproduce at one and 

the same time both the deformations and the pressures. This is relevant from the design standpoint 

particularly for heavily squeezing conditions that require a yielding support in combination with an 

over-excavation: in this case one needs reliable estimates of the deformations that must occur in 

order for the squeezing pressure to be reduced to a pre-defined, technically manageable level. In 

cases where the question of deformation is of secondary importance, however, a plane strain anal-

ysis in combination with an implicit method of pre-deformation estimation will suffice. For support 

completion close to the face, the differences in the results obtained by the different methods of 

analysis are not important from a practical point of view. 

Appendix of Part I 

Consideration of out-of-plane plastic flow in the ground response curve 

Radial and tangential stress field 

The radius  of the plastic zone as well as the distribution of the radial and tangential stresses (rr, 

tt) within the plastic zone (a ≤ r ≤ ) can be determined without taking into account the defor-

mations because the equilibrium equation 
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 tt rrrrd

dr r

  
  (A1) 

and the yield condition 

 tt rrm  , (A2) 

where the overscore denotes the stress transformation 
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form a system for the determination of the two stress components. Eq. (A2) presupposes that rr < 

yy ≤ tt. This condition is always satisfied (Reed, 1988). Taking into account the condition  

 rr ar a
 


  (A4) 

prevailing at the tunnel boundary as well as the requirement of stress continuity at the interface be-

tween the plastic and the elastic zone, i.e. 

 02

1rr r m








, (A5) 

the integration of Eqs. (A1) and (A2) leads to the well-known expressions  
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Axial stress field 

Assuming that plastic flow does not occur in the axial direction, i.e. 

 , 0yy pl  , (A8) 

the out-of-plane elastic strain is also equal to zero, 

 , , 0yy el yy yy pl     , (A9) 

and on account of Hooke's law,  

  , 0 0 0
1

( ) ( ) ( )yy el yy rr ttE
              , (A10) 

the axial stress yy reads as follows: 

 0( ) (1 2 )yy rr tt         . (A11) 

The assumption made (Eq. A8) presupposes that the axial stress is the strict intermediate stress, 

i.e. 

 rr yy tt    , (A12) 
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or, on account of Eqs. (A2) and (A11), 

    01 (1 ) (1 2 ) (1 )rr rrm m             . (A13) 

One can readily verify that the first inequality is always satisfied: in a trivial manner if  > (1-sin)/2; 

and due to Eq. (A5) if  < (1-sin)/2. The second inequality will be satisfied if  

 4 0 4
1 2

,  where 
(1 )rr m
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  , (A14) 

i.e. if the radial stress is higher than a critical value. Taking into account that the lowest radial 

stress to be considered in the determination of the ground response curve is equal to zero, 
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the inequality (A14) will be satisfied for the entire ground response curve if 

 0
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 . (A16) 

Incompressible materials ( = 0.5) fulfil this condition always. For  < 0.5 and uniaxial compressive 

strength fc lower than the value indicated by (A16), however, the out-of-plane stress (Eq. A11) ob-

tained under the assumption of no plastic flow in the axial direction (Eq. A8) will be higher than the 

tangential stress thereby violating the yield criterion (Fig. 15). In order to satisfy the latter, i.e. 

 yy rrm  , (A17) 

plastic flow in the axial direction has to occur in the inner part of the plastic zone. The plastic flow 

does not influence the extend of the plastic zone  or the radial and tangential stress field, because 

these are determined by the equilibrium and the yield condition. Therefore, the radius ' of the inner 

part of the plastic zone can be calculated from Eq. (A6) and (A14), while the radial stress at r = ' is 

given by the right hand side of inequality (A14): 

 

1

1
0

4 4 0,
m

aa 
    





 
  

 
       . (A18) 

One can readily verify that ' < , i.e. the plastic zone consists of an outer ring with rr <  yy <  tt 

and an inner ring with rr <  yy =  tt (Fig. 15). 

Deformation field 

The stress states within the inner ring satisfy both Eq. (A2) and Eq. (A17). The corresponding plas-

tic potential functions are:  

 1( , , )rr tt yy tt rrg       , (A19) 

 2( , , )rr tt yy yy rrg       , (A20) 

where  depends on the dilatancy angle  (Eq. 4). As the stress states are located on the edges of 

the Coulomb plastic potential surface (which has a pyramidoidal form in the principal stress space) 
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and the latter is not continuously differentiable at the edges, the determination of the plastic strain 

increments proceeds according to Koiter (1953): 
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where d1 and d2 denote the plastic multipliers. From these equations we obtain  

  , , , 0rr pl tt pl yy pl      . (A24) 

By taking into account the kinematical relations 

   andrr tt
du u

dr r
    (A25) 

as well as the strain decomposition  

 , , , , , ,,   and 0,rr rr el rr pl tt tt el tt pl yy yy el yy pl                (A26) 

the relationship between the plastic strains (Eq. A24) leads to  

  , , ,rr el tt el yy el
du u

dr r
        . (A27) 
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Fig. 15 Distribution of the radial stress rr, of the tangential stress tt and of the axial stress yy for an unsup-

ported tunnel (c = 500 kPa, other parameters: see Table 1) 

 



34 Part I 

This is a differential equation for the radial displacement u because the right hand side is a known 

function of radius r (the elastic strains are interconnected with the stresses via Hooke's law and the 

stresses are given by Eqs. A2, A6 and A17). The solution reads as follows: 
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while the displacement u(') of the interface of the two plastic regions is obtained by applying Eq. 

(3) to the outer plastic ring: 
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where the radius ' and the contact pressure ' are given by Eq. (A18). The ground response 

curve is obtained from Eq. (A28) for r = a and can be written in the following form: 
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The coefficients 1, 2 and 3 in Eq. (A31) are the contribution of the out-of-plane plastic flow. The-

se terms shall be considered in the determination of the following portion of the ground response 

curve: 

    4 0a   . (A33) 

The inequality (A33) has been obtained from Eq. (A18) for '/a > 1. 

One can readily verify by observing Eqs. (3) and (A31) that the error of the simplified Eq. (3), de-

fined as  

  Error = 
.(3) .( 31)

.( 31)

( ) ( )

( )
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u a u a

u a
   , (A34) 

depends on the normalized support pressure  0/a , on the Poisson's ratio , on the friction angle 

 and on the plastic dilatancy angle  (or, equivalently, on the material constants m and ).  
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PART II 

 

THE INTERACTION BETWEEN YIELDING SUPPORTS AND 

SQUEEZING GROUND 

Abstract: In this paper we investigate the interaction between yielding supports and squeezing 

ground by means of spatial numerical analyses that take into account the stress history of the 

ground. We also present design nomograms which enable the rapid assessment of yielding sup-

ports. The idea behind yielding supports is that squeezing pressure will decrease by allowing the 

ground to deform. When estimating the amount of deformation required, one normally considers 

the characteristic line of the ground, i.e. the relationship between the ground pressure and the radi-

al displacement of the tunnel wall under plane strain conditions. The computation of the character-

istic line assumes a monotonic decrease of radial stress at the excavation boundary, while the ac-

tual tunnel excavation and subsequent support installation involve a temporary complete radial un-

loading of the tunnel wall. This difference, in combination with the stress-path dependency of the 

ground behaviour, is responsible for the fact that the results obtained by spatial analysis are not on-

ly quantitatively, but also qualitatively different from those obtained by plane strain analysis. More 

specifically, the relationship between ground pressure and deformation at the final state prevailing 

far behind the face is not unique, but depends on the support characteristics, because these affect 

the stress history of the ground surrounding the tunnel. The yield pressure of the support, i.e. its 

resistance during the deformation phase, therefore proves to be an extremely important parameter. 

The higher the yield pressure of the support, the lower will be the final ground pressure. A targeted 

reduction in ground pressure can be achieved not only by installing a support that is able to ac-

commodate a larger deformation (which is a well-known principle), but also by selecting a support 

that yields at a higher pressure. 
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Notation: 

a Tunnel radius 

b Spacing of steel sets (Fig. 1) 

b' Clear distance between the steel sets, length of the deformable elements (Fig. 1) 

c Ground cohesion  

d Lining thickness 

dII Thickness of the deformable elements and of the lining during the deformation phase 

dIII Lining thickness after the deformation phase 

e Unsupported span  

ER Young's modulus of the ground 

EL Young's modulus of the lining 

fc Uniaxial compressive strength of the ground 

fy Yield strength of the highly deformable concrete elements 

H Depth of cover  

k Lining stiffness  

kI Support stiffness before the deformation phase 

kIII Support stiffness after the deformation phase 

n Number of deformable elements and sliding connections in one cross-section 

nf Number of friction loops per sliding connection 

N Lining hoop force 

Ny Lining hoop force during the deformation phase 

Nf Sliding resistance of one friction loop 

p Radial pressure acting upon the lining  

p() Final radial pressure acting upon the lining  

py Yield pressure of support  

po Initial stress  

r Radial co-ordinate (distance from tunnel axis) 

s Slot size in the circumferential direction (Fig. 1 and 2) 

u Radial displacement of the ground 

u2D Radial displacement of the ground assuming plane strain conditions 

u(0) Radial displacement of the ground at the face 

u() Final radial displacement of the ground  

uy Maximum radial displacement of support in the deformation phase 

Uy Normalized maximum radial displacement of support in the deformation phase 

x Axial co-ordinate (distance behind the tunnel face) 

 Unit weight of the ground  
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 Poisson's ratio of the ground 

s Slot size reduction (Fig. 1) 

 Slot deformation s/s (Fig. 2) 

y Slot deformation during the deformation phase 

2D Radius of the plastic zone assuming plane strain conditions 

1 Maximum principal stress  

3 Minimum principal stress  

s Lining hoop stress  

xx Axial stress  

rr Radial stress  

tt Tangential stress  

rx Shear stress  

 Internal friction angle of the ground 

 Dilatancy angle of the ground 

1 Introduction 

The term "squeezing" refers to the phenomenon of large deformations that develop when tunnelling 

through weak rocks. If an attempt is made to stop the deformations with the lining (so-called "re-

sistance principle", Kovári 1998), a so-called "genuine rock pressure" builds up, which may reach 

values beyond the structurally manageable range. The only feasible solution in heavily squeezing 

ground is a tunnel support that is able to deform without becoming damaged, in combination with a 

certain amount of over-excavation in order to accommodate the deformations. Supports that are 

based on this so-called "yielding principle" can be structurally implemented in two main ways (An-

agnostou and Cantieni, 2007): either by arranging a compressible layer between the excavation 

boundary and the extrados of a stiff lining (Fig. 1a) or through a suitable structural detailing of the 

lining that will allow a reduction in its circumference (Fig. 1b). In the first case the ground experi-

ences convergences while the clearance profile remains practically constant. This solution has 

been proposed particularly for shield tunnelling with practically rigid segmental linings (Schneider et 

al. 2005, Billig et al. 2007). The second solution is the one usually applied today. It involves steel 

sets having sliding connections in combination with shotcrete (Fig. 1b, sections c-c and d-d, re-

spectively).  

Steel sets applied in squeezing ground usually have a top hat cross-section. The hoop force in the 

steel sets is controlled by the number and by the pre-tensioning of the friction loops connecting the 

steel segments. Up to 4 friction loops, each offering a sliding resistance of about 150 kN, may be 

used per connection. Shotcrete may be applied either after the occurrence of a pre-defined amount 

of convergence (as a recent example the lot Sedrun of the Gotthard Base Tunnel can be men-

tioned, see Kovári et al., 2006) or, more commonly, right from the start. In order to avoid 
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overstressing of the shotcrete and, at the same time, to allow it to participate in the structural sys-

tem, special elements are inserted into longitudinal slots in the shotcrete shell (Fig. 1b, section d-

d). Figure 2 shows the typical load - deformation characteristics of such elements. As can be seen 

from the hoop force N vs. deformation  relationships, the elements yield at a specific load level, 

thereby limiting the stress in the shotcrete shell. The so-called “lining stress controllers” (Schubert 

1996, Schubert et al. 1999) consist of co-axial steel cylinders which are loaded in their axial direc-

tion, buckle in stages and shorten up to 200 mm at a load of 150 - 250 kN. Actual examples of this 

include the Galgenberg tunnel (Schubert, 1996), the Strenger tunnel (Budil et al., 2004) and the 

Semmering pilot tunnel (Schubert et al., 2000). Additionally, there are the recently-developed "high-

ly-deformable concrete" elements (Kovári, 2005), which are composed of a mixture of cement, 

steel fibers and hollow glass particles. These collapse at a pre-defined compressive stress which is 

dependent on the composition of the concrete, thereby providing the desired deformability. These 

elements have been applied in the Lötschberg Base Tunnel and in the St. Martin La Porte site ac-

cess tunnel of the Lyon Turin Ferroviaire (Thut et al., 2006a and 2006b).  

The number n, the size s (in circumferential direction, Fig. 2) and the deformability of the compress-

ible elements (or the sliding ways of the steel set connections) will determine the possible reduction 

of the circumference of the lining during the yielding phase, limiting the amount of radial displace-

ment that can occur without damaging the lining. The elements selected must therefore be compat-

ible with the planned amount of over-excavation. The latter represents an important design param-

eter. If it is too low, costly and time-consuming re-profiling works will be necessary. On the other 

hand, if it is too high, the over-profile will have to be filled by the cast-in-situ concrete of the final lin-

ing.  

The idea behind all yielding support systems is that the ground pressure will decrease if the ground 

is allowed to deform. During construction, the support system and the amount of over-excavation 

can be adapted to changes in squeezing intensity through the use of advance probing, monitoring 

results and observations made in tunnel stretches excavated previously. In the planning phase, 

however, decision-making has to rely solely upon experience and geomechanical calculations. 

When estimating the required amount of over-excavation, the usual approach is to consider a tun-

nel cross-section far behind the tunnel face and to assume plane strain conditions. Where there is 

rotational symmetry, the plane strain problem is mathematically one-dimensional. The so-called 

characteristic line of the ground (also referred to as the "ground response curve", Panet & Guenot, 

c - c
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3 Steel set

4 Sliding connection with 

three friction loops

5 Shotcrete

6 Compressible element
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Fig. 1 Basic types of deformable supports: (a) compressible layer between lining and excavation boundary; 

(b) yielding supports with steel sets, shotcrete and compressible insets 
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1982) expresses the relationship between the radial stress p and the radial displacement u of the 

ground at the excavation boundary (Fig. 3a). Closed-form solutions exist for the ground response 

curve in a variety of constitutive models. The ground response curve can be employed for estimat-

ing the radial convergence u() of the ground that must occur in order for the ground pressure to 

decrease to a chosen, structurally manageable value p() (Fig. 3a).  

The first problem with this approach is that the radial convergence u() represents only an upper 

limit in terms of the amount of over-excavation required, because it includes the ground displace-

ment u(0) that has already occurred ahead of the tunnel face. The pre-deformation u(0) introduces 

an element of uncertainty into the estimation of the required amount of over-excavation. This un-

certainty is particularly serious in the case of heavily squeezing ground because its behaviour is 

highly non-linear and, consequently, small variations in the deformation will have a large effect on 

the pressure. 

A second, more fundamental problem is that all plane strain solutions (whether closed-form solu-

tions for the ground response curve or numerical simulations involving a partial stress release be-

fore lining installation) assume that the radial stress at the excavation boundary decreases mono-

tonically from its initial value (far ahead of the face) to the support pressure (far behind the face), 

while the actual load history will include an intermediate stage with a complete unloading of the 
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Fig. 2 Load - deformation characteristics (N, s/s) of compressible elements and respective convergence u 

vs. pressure p relationships for a circular lining with n = 6 insets. lsc: lining stress controllers (4 cylinders per 

linear meter) after Schubert et al. (1999); hdc: highly deformable concrete elements after Thut et al. (2006a, 

2006b) having a yield stress of 4 - 7 MPa 
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excavation boundary in the radial direction: the radial boundary stress is equal to zero over the un-

supported span e > x > 0 between the tunnel face and the installation point of the lining (Fig. 3b). 

Cantieni and Anagnostou (2007) have shown that the assumption of a monotonically decreasing 

radial stress may lead (particularly under heavily squeezing conditions) to a more or less serious 

underestimation of ground pressure and deformation. The actual (u(), p()) - points prevailing at 
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Fig. 3 (a) Determination of amount of over-excavation based upon ground response curve; (b) Development 

of ground pressure and deformation along the tunnel wall; (c) Ground - support interaction in the rotational 

symmetry model under plane strain conditions 
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the equilibrium far behind the face are consistently located above the ground response curve (Point 

B in Fig. 3a). This means that, a plane strain analysis cannot reproduce at one and the same time 

both the deformations and the pressures: in order to determine the ground pressure through a 

plane strain solution, the deformations have to be underestimated (point C in Fig. 3a) or, vice ver-

sa, in order to determine the deformations, the ground pressure has to be underestimated (point D 

in Fig. 3a). This is particularly relevant from the design standpoint for a yielding support, because in 

this case one needs reliable estimates both of the deformations (for determining the amount of 

over-excavation) and of the pressures (for dimensioning the lining). 

Moving on from these results, the present paper investigates the interaction between yielding sup-

ports and squeezing ground by means of numerical analyses that take into account the evolution of 

the spatial stress field around the advancing tunnel heading.  

In view of the well-known uncertainties of all computational models in tunnelling (in respect of the 

initial stress field, the constitutive behaviour and the material constants of the ground), it is reason-

able to ask what is the value of such a refined model from the standpoint of practical design. In the 

present paper we see that an approach that takes account of the stress history leads to results, 

which are not only quantitatively but also qualitatively different from the ones obtained by plane 

strain analyses. The most significant and surprising result of our study is that the higher the yield 

pressure of the support, the lower will be the final pressure. In practical terms, the important con-

clusion here is that a yielding support should be designed so that it yields at the highest possible 

pressure. An ideal yielding support is one that starts to deform at a pressure just below the bearing 

capacity of the lining. As explained below, this result cannot be obtained through a plane strain 

model.  

Figure 3c illustrates the ground - support interaction using the characteristic line method. In the 

case of rotational symmetry considered here, the radial displacement u vs. pressure p relationship 

for the yielding support can be obtained from the hoop force N vs. deformation  curves of the 

compressible elements by means of simple algebraic operations (Fig. 2). The solid polygonal line in 

Figure 3c represents an idealized model of the characteristic line of a yielding support. Phase I is 

governed by the stiffness kI of the system up to the onset of yielding. In Phase II the support sys-

tem deforms under a constant pressure py. In the example of Figure 2, the yield pressure py 

amounts to 150 - 400 kPa depending on the type of the compressible elements. In the presence of 

steel sets (Fig. 1b), one should also take into account the resistance offered by the sliding connec-

tions (that is nfNf /ba, where nf, Nf and b denote the number of friction loops per connection, the fric-

tional resistance of one friction loop and the spacing of the steel sets, respectively). When the 

amount of over-excavation uy is used-up, the system is made practically rigid (stiffness kIII), e.g. by 

applying shotcrete, with the consequence that an additional pressure builds up upon the lining 

(Phase III). Figure 3b shows schematically the development of radial pressure along the tunnel. 

The amount of over-excavation (uy) and the yield pressure (py) are the main design parameters for 

a yielding support, while the stiffnesses kI and kIII are of secondary importance for the cases that 

are relevant in practical terms. 

The intersection point of the ground response curve with the characteristic line of the support (Fig. 

3c, point A) fulfils the conditions of equilibrium and compatibility and shows the radial ground con-

vergence and the final pressure acting upon the lining far behind the face. In the case of a support 

having a lower yield pressure py' and the same deformation capacity uy (dashed polygonal line), 
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one would obtain exactly the same intersection point, i.e. the same values of pressure and defor-

mation. According to this approach, the yield pressure has no bearing on the final ground pressure 

developing upon the lining. We will see, however, that the actual equilibrium points (obtained by 

spatial, axisymmetric calculations) are located above the ground response curve (obtained under 

plane strain conditions) and that the final ground pressure is higher in the case of supports involv-

ing a lower yield pressure (the points B and B' in Figure 3c apply to yield pressures of py and py', 

respectively). Section 2 of this paper explains why this is so, providing thereby a new insight into 

the problem of ground - support interaction, while Section 3 investigates in detail the influence of 

the main design parameters (yield pressure py, deformation capacity uy). 

The influence of the yield pressure on the final rock pressure has never before been investigated. 

The literature contains only a few project-specific three-dimensional numerical studies (e.g., Am-

berg 1999, Fellner and Amann 2004). Furthermore, until now there has been no reliable simplified 

method for estimating the required amount of over-excavation. Since a plane strain analysis cannot 

reproduce at one and the same time both the deformation and the pressure, three-dimensional 

numerical computations are unavoidable at least for heavily squeezing conditions. We carried-out a 

comprehensive parametric analysis which involved more than 1,500 parameter combinations cov-

ering the relevant range of values and we developed dimensionless design nomograms that can be 

used for estimating the amount of over-excavation when applying yielding supports (Section 4). 

All of the computations in the present paper apply to the case of rotational symmetry. The underly-

ing assumptions are: a cylindrical tunnel; uniform support pressure over the circumferential direc-

tion (but of course variable in the longitudinal direction); a homogeneous and isotropic ground; a 

uniform and hydrostatic initial stress field. Figure 4 shows the computational domain and the 

boundary conditions. The assumption concerning the initial stress field does not allow determining 

bending moments, which would develop in the case of a non-hydrostatic initial stress field. Howev-

er, yielding support design is mostly based upon the widely used method of characteristic lines, 

which assumes rotational symmetry as well and therefore agrees better with the chosen axisym-

metric model.  

Being aware of the great variety of the existing constitutive models, the mechanical behaviour of 

the ground was modelled here as linearly elastic and perfectly plastic according to the Mohr-

Coulomb yield criterion, with a non-associated flow rule. This constitutive model is widely used in 

the engineering practice. The lining was modelled as a radial support having a deformation-

dependent stiffness k = dp/du (Fig. 3c). Tunnel face support has not been taken into account, and 
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Fig. 4 Model dimensions (not to scale) and boundary conditions 
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nor have any time dependencies of the behaviour of the ground or of the shotcrete lining. The nu-

merical solutions of the axisymmetric tunnel problem have been obtained by means of the Finite 

Element Method. The advancing tunnel heading was handled using the so-called "steady state 

method" (Corbetta 1990, Anagnostou 2007). As mentioned above, plane strain computations are 

inadequate for the analysis of yielding supports. However, results of such calculations will also be 

presented in the next Sections for the purpose of comparisons.  

2 The influence of the stress path on ground - 

support interaction 

This Section provides some useful insights into the effect of the stress path by a comparative anal-

ysis of two hypothetical support cases. Consider firstly a stiff, almost rigid lining (EL = 30 GPa, d = 

35 cm), which is installed at a distance of e = 24 m behind the tunnel face (the other parameters 

are given in Table 1). Figures 5a and 5b show on their left hand sides ("Support case 1") the sup-

port pressure development in the longitudinal direction and the radial displacement of the ground at 

the excavation boundary, respectively. The final ground pressure p(∞) prevailing far behind the lin-

ing installation point amounts to 700 kPa, while the radial convergence u(∞) - u(0) of the opening is 

about 52 cm. As it is assumed that the 24 m long span between the face and the lining has been 

left unsupported, this case is rather theoretical. It is equivalent, however, to a yielding support 

which is installed immediately at the tunnel face and which is able to accommodate a radial con-

vergence of at least 52 cm while offering only negligible resistance to the ground in the deformation 

phase. 

Consider now ("Support case 2") a yielding support that is installed directly at the face and offers a 

resistance of py = 700 kPa during the deformation phase (i.e., the yield pressure is assumed to be 

as high as the final ground pressure p(∞) in the first case). Let us, additionally, assume that the 

support is able to accommodate a sufficiently large deformation so that the ground – support sys-

tem reaches equilibrium at the yield pressure py. The final ground pressure will therefore also 

 

Table 1 Model parameters (numerical examples of Section 2 and 3) 

Parameter   Value 

Initial stress  p0 12.5 MPa 

Depth of cover H 500 m 

Unit weight of ground  25 kN/m3 

Tunnel radius a 4 m 

Young’s Modulus (Ground) ER 1000 MPa 

Poisson’s ratio (Ground)  0.3 

Angle of internal friction (Ground)  25° 

Cohesion (Ground) c 500 kPa 

Dilatancy angle (Ground)  5° 
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amount to 700 kPa in this case. As the final radial convergence of the opening amounts in this case 

to about 24 cm (Fig. 5b, right hand side), the assumption made (that the system reaches equilibri-

um at the yield pressure) presupposes that the support is able to accommodate a convergence of 

at least 24 cm in the deformation phase. 
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Fig. 5 Numerical results for a stiff support installed at e = 24 m behind the tunnel face (left hand side) and for 

a yielding support installed at the tunnel face (right hand side). (a) Ground pressure distribution along the tun-

nel wall (r = 4.01 m); (b) Radial displacement of the ground at the tunnel boundary; (c) Extend of the plastic 

zone; (d) Evolution of the stresses at the tunnel wall (r = 4.01 m) 
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The only difference between the two support cases mentioned above lies in the stress history: in 

the first case the pressure starts to develop at a distance e = 24 m from the face and reaches its 

final value of 700 kPa far behind the face, while in the second case the support pressure of 700 

kPa acts right from the start (see Fig. 5a). This difference leads to a considerable variation in the 

longitudinal deformation profiles, particularly in the region behind the tunnel face (Fig. 5b): the final 

radial displacement of the ground at the excavation boundary is twice as high in support case 1 as 

it is in support case 2, while the displacements ahead of the tunnel face are approximately equal. In 

view of the support pressure distributions in Figure 5a, this result makes sense intuitively, while 

clearly differing from what one might expect under the characteristic line method. 

According to the latter, the radial displacement should be the same in both support cases, because 

the relationship between ground pressure and deformation is unique (the ground response curve is 

one and the same for both cases as it does not depend on the support behaviour) and both cases 

have the same final ground pressure p of 700 kPa. For this pressure, a plane strain analysis would 

predict a radial displacement u2D of approximately 35 cm. This value agrees well with the results of 

the axisymmetric analysis obtained for support case 2, but underestimates considerably the final 

displacement in support case 1 (Fig. 5b). For the latter, the axisymmetric analysis leads to a radial 

displacement, which is closer to the plane strain displacement for an unsupported opening (marked 

by u2D(p=0) in Fig. 5b).  

Similar observations can be made regarding the extent of the plastic deformation zone (Fig. 5c): in 

support case 2 the final radius of the plastic zone amounts to 10.5 m, which is very close to the 

plane strain analysis result for a support pressure of 700 kPa (2D = 11.0 m). In support case 1 the 

plastic zone extends up to a radius of 14.5 m. This value is closer to the plane strain analysis pre-

diction for an unsupported opening (15.6 m). 

Figures 5d and 6 show the evolution of the stresses (xx, rr, tt, rx) at a point located at the tunnel 

boundary and the stress path in the principal stress diagram, respectively. The stress state at the 
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Fig. 6 Stress paths of the ground at the tunnel boundary in the principal stress diagram for a stiff support in-

stalled at e = 24 m behind the tunnel face (left hand side) and for a deformable support that reaches equilibri-

um at the yield pressure of 700 kPa (right hand side). Points "a", "b", "c", "d": stress state at the respective lo-

cations indicated in Figure 5d. Straight lines "yc" and "ps": yield condition and stress path under plane strain 

conditions, respectively 
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tunnel boundary locations marked by "a", "b", "c" and "d" in Figure 5d is given by the respective 

points in the principal stress diagram of Figure 6. According to Fig. 5d, the stress paths ahead of 

the tunnel face are very similar for the two support cases: with the approaching excavation, the ax-

ial stress xx decreases from its initial value p0 (in the field far ahead of the face) to zero (at the 

face). In the region far ahead of the tunnel face, a stress concentration can be observed (stress 

path portion "ab" in Fig. 6), while close to the face the axial confinement is lost to such a degree 

that the core yields and, as a consequence of Coulomb's yield criterion, the radial stress rr and the 

tangential stress tt decrease (stress path portion "bc" in Fig. 6). Immediately after excavation the 

radial stress becomes equal to zero, while both the tangential and the axial stresses become equal 

to the uniaxial compressive strength of the ground fc (stress state "c" in Fig. 6). This stress state 

persists in support case 1 over the entire unsupported span. The radial stress increases to its final 

value of 700 kPa after the installation of the practically rigid lining, because the latter hinders further 

ground convergence (stress path portion "cd" in Fig. 6). In support case 2, the radial stress in-

creases (due to the initial support stiffness kI, see Fig. 3c) practically immediately after support in-

stallation to the yield pressure py and remains constant thereafter.  

Plane strain analysis assumes a monotonic decrease in the radial pressure from its initial value 

(that prevails in the natural state far ahead the face) to the final value (that prevails after excavation 

far behind the face), while both support cases considered here involve an intermediate stage char-

acterized by a complete unloading of the excavation boundary in the radial direction. The difference 

between the two support cases lies in the length of this intermediate stage: in support case 1, the 

biaxial stress state "c" persists over the entire, 24 m long unsupported span, while in support case 

2, the stress state remains biaxial only very briefly, almost instantaneously at the face. This is why 

the intermediate biaxial stress state "c" (zero radial stress) governs both the extent of the plastic 

zone and the magnitude of ground deformations in support case 1 (the results are closer to the 

plane strain predictions for an unsupported opening), while the final triaxial stress state "d" (700 

kPa radial stress) governs the support case 2 results (the final radius of the plastic zone and the 

radial displacement agree well with the plane strain results for an actual final support pressure of 

700 kPa). 

The results of a parametric study with different values for the unsupported span e provide addition-

al evidence for the significance of the intermediate stage. Figure 7a shows the ground pressure 

p(∞) and the radial displacement of the ground u(∞) at the final equilibrium prevailing far behind the 

face for the two support cases discussed above as well as, for the purpose of comparison, the 

ground response curve obtained under plane strain conditions. Note that each point under support 

case 1 applies to another value of the unsupported length e (the e - values are reported besides 

the ordinate axis), while each point under support case 2 applies to another value of the yield pres-

sure py (the py - values are equal to the final pressures p(∞) on the ordinate axis). The diagram il-

lustrates quite plainly the non-uniqueness of the ground pressure vs. ground displacement relation-

ship: the equilibrium points for support case 1 are consistently located above the ground response 

curve, while all of the support case 2 results agree well with the plane strain predictions.  

Figure 7b is more useful from a practical point of view as it shows the radial convergence u(∞) -

 u(0) of the opening instead of the radial displacement u(∞) of the ground. This diagram includes 

only the results of the axisymmetric computations because plane strain analysis yields the total ra-

dial displacement u(∞), but not the pre-deformation u(0). Note that u(∞) - u(0) represents the mini-

mum amount of over-excavation that is necessary in order to preserve the clearance profile. The 
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purpose of a yielding support is to reduce ground pressure to a pre-defined, structurally man-

ageable level. Figure 7b points to the interesting conclusion that the amount of over-excavation - 

an essential design parameter - does not depend only on the ground quality and on the desired de-

sign load level, but also on the characteristics of the support. In order to reduce the ground pres-

sure to 0.7 MPa, for example, the amount of over-excavation has to be 24 - 52 cm depending on 

the support system (see points A and B in Fig. 7b). On the other hand, for a given amount of over-

excavation, the final ground load will depend on the support characteristics as well. For an over-

excavation of, e.g., 24 cm, the final ground pressure in support case 1 will amount to 2.4 MPa, that 

is three to four times higher than the load in case 2 (see points B and C in Fig. 7b). This difference 

is considerable from a design standpoint. 

Note that support case 1, which necessitates a larger amount of over-excavation for a given design 

load level (or attracts a higher ground load for a given amount of over-excavation), is equivalent to 

the case of a deformable support with negligible yield pressure. So Figure 7b actually indicates that 

a high yield pressure is favourable in terms of the final ground load and the amount of over-

excavation. Moving on from this finding, we will examine in Section 3 the influence of yield pressure 

in more detail. 

Before doing so, however, we will briefly examine the theoretical case of a ground with elastic be-

haviour. The response of an elastic material does not depend on stress history. Consequently, in 

both of the support cases discussed above, the final ground pressure and the ground displacement 

will fulfil Kirsch's solution, i.e. the final equilibrium points prevailing far behind the tunnel face will be 

located on the straight ground response line. The value of the final ground pressure fixes the value 

of the final ground displacement. The final ground displacement does not depend on how the radial 

stress at the excavation boundary evolves before reaching its final value. So, the ground displace-
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Fig. 7 (a) Ground response curve under plane strain conditions and final equilibrium points for a stiff support 

installed at a distance e behind the tunnel face ("support case 1") and for a deformable support that is in-

stalled at the tunnel face and has such a large deformation capacity that it reaches equilibrium at the yield 

pressure ("support case 2"); (b) Radial convergence of the tunnel wall and ground pressure at equilibrium for 

the two support cases 
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ment u(∞) will be the same for the two support cases in Figure 5. The pre-deformation u(0), how-

ever, will be smaller in case 2, because the support exerts a pressure earlier than in case 1, which 

involves support installation at a greater distance behind the face. Consequently, the convergence 

of the opening u(∞) - u(0), i.e. the amount of over-excavation required, will be larger in case 2 for a 

given ground displacement u(∞) or for a given ground pressure p(∞). Also, for a given amount of 

over-excavation, the ground loading developing in case 2 will be higher than in case 1. This con-

clusion is diametrically opposite to the results obtained for elasto-plastic ground. The case of elas-

tic ground behaviour is interesting only from the theoretical point of view, because large conver-

gences that necessitate a yielding support are always associated with an overstressing of the 

ground and cannot be reproduced by assuming elastic material behaviour. Our examination of 

elastic behaviour shows, however, that the conclusions of the present paper are valid for heavily 

squeezing ground in particular. 

3 The influence of yield pressure and yield 

deformation 

In this Section we investigate numerically the effects of the main yielding support characteristics. 

All of the numerical analyses have been carried out for the parameters of Table 1 and an unsup-

ported span of e = 1 m. For the sake of simplicity, the tunnel radius was kept fixed, i.e., it was not 

increased by the amount of over-excavation that is required in order to preserve the clearance pro-

file when the support deforms. Figure 8a shows the characteristic lines of the tunnel supports, while 

Table 2 summarizes the numerical values of their parameters. The yielding supports are assumed 

to deform at a constant pressure py of 0 - 1.2 MPa up to a radial displacement of uy = 0.15 m (cas-

es O, A, B, C and D) or 0.30 m (cases O', A', B', C' and D') and to be practically rigid after the de-

formation phase. Yielding pressures like the ones assumed for cases A, A', B and B' are today real-

istic. Recently developed ductile concrete elements of particularly high yield strength (up to 20 

MPa, Solexperts 2007) make higher yield pressures (such as in cases C and C') seem feasible at 

least in principle. Cases D and D' are only of theoretical interest (the assumed yield pressure is un-

realistically high) and are considered here only in order to show complete model behaviour. The 

same is true for support S, whose yield pressure has been set so high that the ground - support 

system reaches equilibrium before the support yields. 

The marked points in Figure 8a represent the loading p(∞) and the radial displacement u(∞) - u(e) 

of the support at the equilibrium state far behind the tunnel face. Figure 8b shows the correspond-

ing equilibrium points (u(∞), p(∞)) of the ground and additionally, for the purposes of comparison, 

the ground response curve under plane strain conditions (solid line GRC) as well as the ground 

pressure and deformation for a practically rigid lining (point R).  

As the effect of yield deformation uy is well known, attention is paid here to the effect of yield pres-

sure py. We examine how the equilibrium point changes in relation to the yield pressure py (cases 

A, B, C, …) starting with a support that can undergo a radial displacement of uy = 15 cm without of-

fering any resistance to the ground (case O). The support O starts to develop pressure only after 

the utilization of the deformation margin uy. As can be seen from Figure 8c (curve O), this happens 
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at a distance of about 7 m behind the tunnel face. So, support O is structurally equivalent to the 

case of a practically rigid lining with a 7 m long unsupported span (cf. Support Case 1 discussed in 

Section 2). Due to the stress path dependency of the ground behaviour (cf. Section 2), the equilib-

rium point for this case is located above the plane strain response curve. When the yield pressure 

0 1 2
 py [MPa]

3

O'

u
(�

) 
-
 u

(e
) 

[m
]

p
(�

) 
[M

P
a]

O

0.4

0.3

0.2

0.1

0

0

1

2

3

4

5

0 1 2 3
 py [MPa]

B'

S

C, C'

D, D'

B
p(�

) 
=

 p
y

A'

A uy = 0.15 m

Section 1: 
Deformation uy 

utilized, 
load increases 
to p > py

Section 2: 
Deformation uy 

not utilized,
equilibrium 
at p = py

Section 3: 
No yielding 

(py is too high), 
equilibrium 
at p < py

C, C'

B'

S

uy = 0.30 m

uy = 0.15 m

B

D, D'

O' A'

O A

uy = 0.30 m

0.30

2

0

u [m]

0

0.15

1

p
  
[M

P
a]

0.30

2

0

0

0.15

1 C
D

C'
D'

AO

O'

0.30

2

0

u [m]

0

0.15

1

0.30

2

0

0

0.15

1

0.30

2

0

u [m]

0

0.15

1

0.30

2

0

0

0.15

1

0.30

2

0

u [m]

0

0.15

1

0.30

2

0

0

0.15

1

0.30

2

0

u [m]

0

0.15

1

0.30

2

0

0

0.15

1

p
  
[M

P
a]

(a)

(b)

(c)

(d)

B

B'A'

(e)

u(�) [m]
0 0.3 0.6

0

1

2

3

4

5

O

A

R

O'

B'

B

C, C'

A'

GRC

uy = 0.30 m

uy = 0.15 mS

D, D'

p
(�

) 
[M

P
a]

3

2

1

0

08162432

p
 [

M
P

a]

x [m]

uy = 0.15 mpy [kPa] =

150

425

850

0
O

A

B

C

 

Fig. 8 (a) Characteristic lines of the analyzed yielding supports (cf. also Table 2) and final equilibrium points; 

(b) Ground response curve under plane strain conditions and final equilibrium points for the analyzed sup-

ports; (c) Ground pressure p vs. distance x behind the face for different values of the yield pressure py (sup-

port cases O, A, B and C); (d) Influence of the yield pressure py on the final ground pressure; (e) Influence of 

the yield pressure py on the radial displacement u(∞) - u(e) of the support 
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increases, the final ground pressure will decrease (Fig. 8c) and the equilibrium point will move 

towards the ground response curve (OAB, see Fig. 8b), i.e. the deviation from the ground re-

sponse curve will become smaller at higher yield pressure values. Note that the ground defor-

mation remains approximately constant as it is governed by the yield deformation uy which is the 

same for the support cases O, A and B. At a sufficiently high yield pressure (850 kPa in this numer-

ical example), the equilibrium point reaches the ground response curve (case C, Fig. 8b). In case C 

the ground - support system reaches equilibrium just before reaching the final rising branch of the 

characteristic line of the support, i.e. the deformation margin uy = 0.15 m is just used up. At yield 

pressures higher than in case C, the amount of over-excavation is not utilized completely (Fig. 8a, 

case D) and the system reaches equilibrium at a ground pressure which is equal to the yield pres-

sure. Consequently, the ground pressure, after reaching a minimum value (case C), increases with 

the yield pressure and, as discussed in Section 2, the equilibrium points approximately follow the 

ground response curve (Fig. 8b, CD). Similar conclusions can be drawn from an examination of 

the numerical results for the larger deformation margin of uy = 0.30 m (cases O', A', B', …). The de-

viation from the ground response curve is due to the increase in stress associated with the final ris-

ing branch of the characteristic line of the support after the deformation margin is used up (see Fig. 

8a and 8b, cases O, A, B, O', A'). 

Table 2 Support parameters (see also Fig. 3c) 

Case kI  
(1) 

[MPa/m] 
py 

[kPa] 
uy  

[cm] 
kIII 

[MPa/m] 
Description n 

[-] 
s 

[cm] 

R n/a n/a 0 656 35 cm thick lining according to resistance 
principle (EL = 30 GPa). 

n/a n/a 

O 
(O') 

n/a 0 15 
(30) 

656 35 cm thick shotcrete lining with open longitu-
dinal slots (EL = 30 GPa(2)). 

6 
(6) 

15 
(30) 

A 
(A') 

100 150 15 
(30) 

656 Steel sets TH-44 spaced at 1 m with sliding 
connections by 4 friction loops each offering a 
resistance of 150 kN(3).  

6 
(6) 

15 
(30) 

B 
(B') 

100 425 15 
(30) 

656 Like A, but additionally 20 cm shotcrete with 
highly deformable concrete elements inserted 
into the slots (y = 50%, fy  =  7  MPa, cf. So-
lexperts 2007). 

6 
(9) 

30 
(40) 

C 
(C') 

100 850 15 
(30) 

656 Like B, but with higher yield strength elements 
(fy = 17 MPa, Solexperts 2007). 

6 
(9) 

30 
(40) 

D 
(D') 

100 1'200 15 
(30) 

656 Like C, but with a higher yield pressure.(4) 6 
(9) 

30 
(40) 

S 100 > 2'500 -(5) -(5) Like C, but with such a high yield pressure 
that yielding does not occur(4). 

-(5) -(5) 

Notes: 

(1) This parameter was kept constant in the numerical study as it is of subordinate importance. The actual kI - values 
of the support systems described in the last columns of the table are 74 MPa/m (cases A and A'), 97 MPa/m (cas-
es B' and C') and 114 MPa/m (cases B and C). A sensitivity analysis has shown that a variation of kI in this range 
does not affect the numerical results. 

(2) This value assumes that, by the time the longitudinal slots close, the shotcrete will have developed its final stiff-
ness. 

(3) After the yield phase, the support is set practically rigid (dIII = 35 cm, EL = 30 GPa). 

(4) The assumed yield pressure is only theoretically possible. This support has been simulated only in order to explain 
the model behaviour. 

(5) The parameter is irrelevant for this case. 
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Figures 8d and 8e provide a complete picture of the effect of yield pressure py on the final ground 

loading p(∞) and on the lining convergence u(∞) - u(e), respectively. There are three clear sections 

in the p(∞) vs. py and (u(∞) - u(e)) vs. py relationships: at low yield pressures (Fig. 8d, section 1), 

the amount of over-excavation is completely used up and an additional pressure builds up on the 

lining after the system is set rigid. The lining convergence remains practically constant and equal to 

the deformation margin uy, while the ground load decreases with increasing yield pressure and 

reaches a minimum when the yield pressure is so high that the amount of over-excavation is just 

used up. At higher yield pressures (Fig. 8d, section 2), the squeezing deformations take only a frac-

tion of the available deformation margin; the system comes to equilibrium under the yield pressure 

py and, therefore, the ground loading increases with py. With further increasing yield pressure, the 

deformation margin is utilized less and less, and at some point the system reaches equilibrium just 

before the onset of the yielding phase. From point S on (Fig. 8d, section 3), the yield pressure is no 

longer relevant (the loading and convergence of the support depend only on its initial stiffness).  

It is remarkable that a similar reduction in the final ground pressure can be achieved not only by 

installing a support that is able to accommodate a larger deformation (which is a well-known princi-

ple), but also by selecting a support that yields at a higher pressure (see, e.g., cases A, C and C' in 

Fig. 8d).  

4 Design nomograms 

The relationship between the ground pressure p(∞) and deformation u(∞) at the final equilibrium far 

behind the face is not unique, but depends on the support characteristics, as these will affect the 

stress history of the ground surrounding the tunnel. In general, the ground - support equilibrium 

points are located above the ground response curve. The ground response curve defines the lower 

limits for possible ground - support equilibria and it therefore contains the most favourable equilibri-

um points, because it shows the minimum ground deformation that must take place in order for the 

ground pressure to decrease from its initial value to a given value. It also shows, vice versa, the 

minimum ground pressure at equilibrium for a given ground deformation.  

Under which conditions do the equilibrium points fall on the ground response curve? According to 

the previous Section of this paper, deviations from the ground response curve are associated with 

the final rising branch of the characteristic line of the support and with the increase in radial stress, 

which follows the utilization of the deformation capacity uy of the support. When the ground - sup-

port system reaches equilibrium at the yield pressure py, the history of the radial stress at the exca-

vation boundary is similar to the stress history assumed by the plane strain model and this leads to 

equilibrium points which are located very close to the ground response curve. Since reaching equi-

librium at the yield pressure py necessitates a sufficiently large deformation capacity uy of the sup-

port, the yield pressure should be as high as possible in order to limit the amount of over-

excavation. So, the ideal support system in squeezing ground is one that yields just before the 

ground pressure reaches the bearing capacity of the support.  

Today's realistic yield pressures, however, are in general lower than the feasible long-term bearing 

capacities of tunnel supports. Consequently, if a support were able to accommodate such a large 
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deformation uy that it reached equilibrium at the yield pressure py, then its bearing capacity would 

be under-utilized. In order to bridge the difference between yield pressure and the bearing capacity 

of the support, the deformation margin uy has to be used up completely and the ground pressure 

has to increase above the yield pressure. As explained above, plane strain computations are in this 

case inadequate as the actual equilibrium points are consistently located above the ground re-

sponse curve. An analysis of ground - support interaction must take account of the stress history of 

the ground and this necessitates a spatial analysis. To facilitate the design of yielding supports for 

tunnels through squeezing ground, we carried-out a large number of such analyses and we worked 
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Fig. 9 Normalized ground pressure p(∞)/p0 as a function of the normalized yield deformation uyER/ap0 and of 

the normalized uniaxial strength of the ground fc/p0 for friction angles  = 15 or 20° and for normalized yield 

pressures py/p0 = 0 - 0.08 (other parameters:  = 0.30,  = max (0,  - 20°), e/a = 0.25, akI/ER = akIII/ER = 4) 
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out dimensionless nomograms that cover the relevant parameter range. 

The final ground pressure p() developing upon the support far behind the tunnel face depends in 

general on the material constants of the ground (ER, , fc, , ), on the initial stress p0, on the prob-

lem geometry (tunnel radius a, unsupported span e) and on the support parameters taken from 

Figure 3c (uy, py, kI, kIII):  

  0( ) , , , , , , , , , , ,R c y y I IIIp f E f p a e u p k k     . (1) 
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Fig. 10 Normalized ground pressure p(∞)/p0 as a function of the normalized yield deformation uyER/ap0 and of 

the normalized uniaxial strength of the ground fc/p0 for friction angles  = 25 or 30° and for normalized yield 

pressures py/p0 = 0 - 0.08 (other parameters:  = 0.30,  = max (0,  - 20°), e/a = 0.25, akI/ER = akIII/ER = 4) 
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The number of parameters can be reduced from twelve to nine by performing a dimensional 

analysis and by also taking account of the fact that the displacements of an elasto-plastic medium 

depend linearly on the reciprocal value of the Young’s modulus ER (Anagnostou and Kovári, 1993): 

 
0 0 0 0

( )
, , , , , , , ,y R yc I III

R R

u E pf ak akp e
f

p a p p p a E E
  

 
  

 
 . (2) 

In view of the still large number of variables, a trade-off has had to be made between the com-

pleteness of the parametric study and the cost of computation and data processing. In order to limit 
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Fig. 11 Normalized ground pressure p(∞)/p0 as a function of the normalized yield deformation uyER/ap0 and of 

the normalized uniaxial strength of the ground fc/p0 for friction angle  = 35° and for normalized yield pres-

sures py/p0 = 0 - 0.08 (other parameters:  = 0.30,  = max (0,  - 20°), e/a = 0.25, akI/ER = akIII/ER = 4) 
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the amount of numerical calculations and the number of nomograms, the Poisson’s number of the 

ground was kept constant to = 0.3, while the angle of dilatancy  was taken equal to  - 20° for  

> 20° and to 0° for  < 20° (Vermeer and Borst, 1984). Furthermore, the ratio e/a was kept constant 

to 0.25 in accordance with common round lengths of e = 1 - 1.5 m and typical cross section sizes 

of traffic tunnels (a = 4 - 6 m). Finally, the supports have been assumed to be practically rigid up to 

the onset of the yielding phase as well as after the utilization of the deformation capacity (akI/ER = 

akIII/ER = 4). The initial support stiffness akI/ER is of subordinate importance for the final ground 

pressure, but the assumption of practically rigid behaviour after the deformation phase may lead to 

a considerable overestimation of the ground pressure if the actual stiffness akIII/ER is much lower 

than the value assumed for the numerical calculations. Comparative numerical analyses have 

shown that the error involved in a rigid support assumption is small (an overestimation of ground 

pressure by up to 10-20%) if the normalized final support stiffness akIII/ER is higher than 1-2 or if 

the lining is thicker than a(ER/EL), where a, ER and EL denote the tunnel radius and the Young's 

Modulus of the ground and of the lining, respectively. This condition is fulfilled in most cases of 

tunnelling through squeezing ground. 

The nomograms in Figures 9 to 11 apply to different values of friction angle  and yield pressure py. 

They show the normalized ground pressure p(∞)/p0 as a function of the normalized yield defor-

mation uyER/ap0 and allow an estimation to be made of the amount of deformation that must take 

place in order for the ground pressure to decrease to a technically manageable level. Note that the 

nomograms are based on the assumptions mentioned at the end of Section 1. If the actual condi-

tions deviate from these assumptions, the results should be considered with care. For example, a 

non-hydrostatic stress field or a non-circular cross-section may lead to considerable asymmetric 

convergences or the development of high bending moments in the lining. The nomograms repre-

sent, nevertheless, a valuable decision making aid at least in the preliminary design phase. 

5 Application examples 

Table 3 shows, by means of two practical examples, how to apply the nomograms step by step.  

The first example (Columns 1 to 3) refers to a 250 m deep tunnel. Column 1 applies to a yielding 

support consisting of steel sets with sliding connections that deform at a ground pressure py of 60 

kPa (Rows 15 to 22). For a lining thickness of 30 cm following the deformation phase and a design 

value of 15 MPa for the lining hoop stress s, the final pressure p(∞) amounts to 0.9 MPa (Rows 11 

to 13). In order to reduce the ground pressure to this value, the support should be able to accom-

modate a deformation uy of 33 cm (Rows 23 to 25). This can be realized by arranging six 34 cm 

wide longitudinal slots in the shotcrete shell (Rows 26 and 27).  

Assume now that, in addition to the over-excavation and to the support measures according to 

Column 1, deformable concrete elements of 10 MPa yield strength are applied, thereby increasing 

the yield pressure py to 380 kPa (Column 2, Rows 20 to 22). As the deformable concrete elements 

become practically rigid at a strain y of about 50% (Fig. 2), the support will experience a conver-

gence uy of only 16 cm during the deformation phase (Row 25). For these values of yield pressure 

py and deformation uy, the ground pressure will rise to p(∞) = 0.68 MPa after the deformation phase 
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Table 3 Application examples 

   (a) 250 m deep tunnel  
crossing claystones 

(b) 800 m deep tunnel 
crossing sheared rock 

   1 2 (16) 3 4 5 

1 Tunnel radius a [m] 5   5  
2 Depth of cover H [m] 250   800  

 Ground 
3 Unit weight  [kN/m3] 20   25  

4 Young’s Modulus ER [MPa] 300   1500  

5 Poisson’s ratio [-] 0.3   0.3  

6 Uniaxial compr. strength fc [kPa] 500   2000  

7 Angle of internal friction [º] 25   25  

8 Dilatancy angle [º] 5   5  

9 Initial stress (1) p0 [MPa] 5   20  

10 Normalized compr. strength fc / p0 [-] 0.1   0.1  

 Support after deformation phase 
11 Lining thickness dIII [cm] 30 30 30 50 50 

12 Concrete compress. stress s [MPa] 15 11.3 (15) 15 15 15 

13 Final ground pressure  p() [MPa] 0.9 (2) 0.68 (14) 0.9 (2) 1.5 (2) 1.5 (2) 

14 Normalized ground pressure p() / p0 [-] 0.180 0.135 (13) 0.180 0.075 0.075 

 Support during deformation phase 
15 Steel set spacing b [m] 1.0   1.0  

16 Steel set clear distance b' [m] 0.8   0.8  

17 Friction loop resistance Nf [kN] 150   150  

18 Lining thickness dII [cm] 20   20  

19 Number of friction loops nf [-] 2 2 2 2 4 

20 Yield stress of deform. elem. fy [MPa] 0 10 10 0 10 

21 Max. slot deformation y [-] 100% 50% 50% 100% 50% 

22 Yield pressure of support (3) py [kPa] 60 380 380 60 440 

23 Normalized yield pressure py / p0 [-] 0.012 0.076 0.076 0.003 0.022 

24 Normalized yield deformation Uy [-] 3.9 (4) 2 (12) 1.4 (5) 10 (6) 7 (7) 

25 Yield deformation  uy [cm] 33 (8) 16 (11) 12 (8) 67 (8) 47 (8) 

26 Number of slots n [-] 6 6 6 6 8 

27 Slot size  s [cm] 34 (9) 34 (10) 25 (9) 70 (9) 74 (9) 

Notes: 
(1) p0 = H  
(2) p()  = s dIII / a 
(3) py = Ny / a, where Ny = nf Nf / b + dII b' fy 
(4) Based upon interpolation between nomograms for (, py / p0) = (25°, 0) and (25°, 0.02) in Fig. 10 (curves for fc / p0 

= 0.1, p() / p0 according to Row 14) 
(5) As Note (4) but from nomogram for py / p0 = 0.08 
(6) As Note (4) but from nomogram for py / p0 = 0.00 
(7) As Note (4) but from nomogram for py / p0 = 0.02 
(8) uy = Uy a p0 / ER 
(9) s =2  uy / ( n y ) 
(10) Value taken as in column 1 
(11) uy = n s y / (2  ) 
(12) Uy = uy ER / (a p0)  
(13) From Fig. 10, nomogram for  = 25° and py / p0 = 0.08 (curves for fc / p0 = 0.1, Uy acc. to Row 24) 
(14) p() = p0  (p() / p0)  
(15) s = p() a / dIII 

(16) In this column, the calculation proceeds from bottom to top 
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(Rows 24, 23, 14 and 13). The final hoop stress s in the shotcrete shell is by 33% lower than it 

would be without deformable concrete elements (cf. Columns 1 and 2, Row 12). So, for the same 

amount of over-excavation and for the same number n and size s of longitudinal slots, the applica-

tion of the higher yield pressure support reduces the risk both of a violation of the clearance profile 

during the deformation phase (since only 50% of the deformation margin of 33 cm is used up) and 

of an overstressing of the shotcrete shell after the deformation phase (since the hoop stress s is 

by 33% lower than the design value of 15 MPa).  

Alternatively, for the same final hoop stress (s = 15 MPa), the minimum over-excavation and the 

size of the longitudinal slots can be reduced to 12 cm and 25 cm respectively by applying the high-

er yield pressure support (Column 3, Rows 25 and 27). In addition, the higher yield pressure will 

increase protection against crown instabilities during the deformation phase: Depending on the 

strength and on the structure of the rock mass, structurally-controlled block detachment or stress-

induced loosening of an extended zone around the opening may occur (particularly in the case of a 

yielding support, as it promotes loosening by allowing the occurrence of larger deformations). If the 

resistance of the flexible joints is not sufficiently high, the support will experience settlement under 

the weight of the detached rock mass, with the result that both the over-excavation space and the 

deformation capacity of the support will be used up and therefore the behaviour of the support dur-

ing subsequent squeezing will resemble that of a support based on the resistance principle. In or-

der to safeguard against crown instabilities and to preserve the deformation capacity of the sup-

port, there has to be either a sufficiently high yield pressure (so that the lining does not deform al-

ready under the loosening pressure) or additional support through sufficiently long bolts.  

Example (a) of Table 3 suggests the possibility of a trade-off between, on the one hand, the greater 

structural effort associated with achieving a high yield pressure, and on the other hand a larger 

amount of over-excavation (possibly in combination with more bolting). It should be noted, howev-

er, that such a trade-off may often not be possible. In mechanized tunnelling, for example, the op-

tions for a trade-off are reduced dramatically as the boring diameter largely pre-determines the 

space that is available for support (dIII) and deformation (uy). At the same time, achieving a yield 

pressure py that is higher than the loosening pressure may be difficult for traffic tunnels of large di-

ameter, because the potential size and loading of the loosened zone increases with the size of the 

opening (Terzaghi 1946), while the feasible yield pressure py of the support decreases with the 

tunnel radius a for given lining hoop force Ny (py = Ny/a), and structural detailing and material tech-

nology impose limits on the hoop force Ny. For example, deformable concrete elements of high 

yield strength increase the hoop force Ny but may cause overstressing of the green shotcrete if the 

rock pressure develops quickly. This aspect may be important particularly for mechanized tunnel-

ling, as the daily advance may reach several meters even under adverse conditions.  

Finally, the intensity of squeezing may also constrain the decision space. Columns 4 and 5 of Table 

3 refer to an example with the particularly heavy squeezing conditions that are associated with very 

high overburden and sheared rock of low strength. In the case of a support consisting of steel sets 

with six sliding connections in the deformation phase and a 50 cm thick concrete lining afterwards, 

the required amount of over-excavation uy and the sliding way s of the connections amount to 67 

and 70 cm, respectively (Column 4). By applying a support of higher yield pressure (Column 5, 

Rows 19 and 20), the amount of over-excavation uy can be reduced to 47 cm (Row 25). This con-

vergence would necessitate the application of deformable concrete elements in eight, 74 cm wide 

longitudinal slots (note that the concrete elements can shorten by a maximum of y = 50%). De-
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formable concrete elements of such a size have not been used in practice. The application of sev-

eral smaller elements side by side would reduce the handling difficulties associated with weight, but 

only at the expense of reducing the flexural stiffness of the lining. The latter is important in the case 

of asymmetric squeezing. A larger number of longitudinal slots would involve a very great structural 

effort and would also necessitate closely spaced bolts in order to control the risk of a snap-through 

in the case of non-uniform rock deformation. 

6 Closing remarks 

We have shown that an analysis of the ground – yielding support interaction that takes into account 

the stress history of the ground leads to conclusions which are qualitatively different from those ob-

tained through plane strain analysis. The ground pressure developing far behind the tunnel face in 

a heavily squeezing ground depends considerably on the amount of support resistance during the 

yielding phase. The higher the yield pressure of the support, the lower will be the final load. A tar-

geted reduction in ground pressure can be achieved not only by installing a support that is able to 

accommodate a larger deformation (which is a well-known principle), but also through selecting a 

support that yields at a higher pressure. Furthermore, a high yield pressure reduces the risk of a 

violation of the clearance profile and increases safety level against roof instabilities (loosening) dur-

ing the deformation phase. 

These results are important from the standpoint of conceptual design, even if the range of potential 

project conditions, design criteria and technological constraints does not allow us to make generali-

zations about structural solutions for dealing with squeezing ground. Some basic design considera-

tions have been illustrated through the use of practical examples. Additionally, the nomograms pre-

sented in this paper contribute to the decision-making process, as they allow for a quick assess-

ment of different supports and of their sensitivity with respect to variations in geology. 
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ON A PARADOX OF ELASTO-PLASTIC TUNNEL ANALYSIS 

Abstract: Elasto-plastic tunnel analysis may produce a paradox in the calculation of ground pres-

sure whereby ground pressures appear to increase in relation to higher ground quality. More spe-

cifically, for an overstressed ground in combination with a stiff support, analysis may indicate 

greater loading of the support with a ground of high strength than with a ground of low strength (all 

of the other parameters being equal). This counter-intuitive outcome appears in all of the common 

calculation models (analytical plane strain analysis, numerical plane strain analysis and numerical 

axisymmetric analysis), although it does not correspond either to the ground behaviour that is intui-

tively expected or to ground behaviour observed in the field, thus raising doubts over the predictive 

power of common tunnel design calculations. The present paper discusses the assumptions made 

in the models that are responsible for the paradox: the assumption that ground behaviour is time-

independent (whereas in reality overstressed ground generally creeps) and the assumption that the 

support operates with full stiffness close to the face (which is not feasible in reality due to the na-

ture of construction procedures). When proper account is taken of either or both of these assump-

tions in more advanced models, the paradox disappears. As the models which generate the para-

dox are very commonly used in engineering and scientific practice, the investigations of the present 

paper may be of value, helping the engineer to understand the uncertainties inherent in the models 

and to arrive at a better interpretation of the results they produce. 
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Notation: 

a Tunnel radius 

d Lining thickness 

dS Thickness of the TBM shield 

E Young's modulus of the ground 

EL Young's modulus of the lining 

EL,28 Young's modulus of the lining after 28 days (= EL) 

ES Young's modulus of the TBM shield 

EL(t) Time-dependent Young's modulus of the lining 

e Unsupported span  

f Yield function 

fc Uniaxial compressive strength of the ground 

g Plastic potential 

i Point / interval (defined in Fig. 22) 

j Point / interval (defined in Fig. 22) 

k Lining stiffness 

kI  Support stiffness before the deformation phase of the yielding support 

kj Average stiffness over the integration interval j  

k(i) Stiffness of the fictitious lining layer i 

kS Stiffness of the TBM Shield 

m Point / interval (defined in Fig. 22) 

M Bending moment 

N Hoop force 

p Rock pressure acting upon the lining  

pF Face support pressure 

pI Fictitious internal pressure in the plane strain analysis 

pj Rock pressure at the point j 

( )i
jp  Pressure exerted by layer i at point j  

py Yielding support pressure 

p Final rock pressure acting upon the lining far behind the face 

p(y) Rock pressure acting upon the lining at the axial coordinate y 

r Radial co-ordinate (distance from tunnel axis) 

s Round length in the step-by-step calculations 

t Time 

t95% Time needed in order to reach 95% of the time-dependent deformations  
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u Radial displacement of the ground 

uC Radial convergence of the opening 

e
Cu  Elastic part of the radial convergence of the opening 

p
Cu  Plastic part of the radial convergence of the opening 

uj Radial displacement of the ground at point j  

uoe Amount of over-excavation in case of a yielding support 

uy Axial displacement 

u∞ Final radial displacement of the ground occurring far behind the face 

u(y) Radial displacement of the ground at the axial coordinate y 

u  Radial displacement (unsupported opening) 

v Advance rate of the excavation 

y Axial co-ordinate (distance behind the tunnel face) 

yj Axial co-ordinate of point j  

 

R Overcut between excavation and shield 

pj Increase of pressure over the integration interval j 

ij  Strain rate tensor 

e
ij  Elastic part of the strain rate tensor ij  

p
ij  Inelastic part of the strain rate tensor ij  

η Viscosity

 Stress relief factor 

 Poisson's ratio of the ground 

o Initial stress  

ij Stress tensor

rr Radial stress  

 Angle of internal friction of the ground 

 Dilatancy angle of the ground 

1 Introduction 

Under certain conditions which are frequently encountered in tunnel design, the computational 

models in common use predict that a poor quality ground will be more favourable for tunnel con-

struction than a high quality ground. More specifically, the models suggest that a ground of higher 
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strength develops a greater load upon the lining than the load developed by a low strength ground 

(all of the other parameters being equal). This is clearly contrary to the behaviour that might be ex-

pected both intuitively and on the basis of tunnelling experience, which is that overstressing of the 

lining or severe convergences are associated with ground of poor quality (e.g. Kovári and Staus 

1996). The model behaviour deserves to be called a paradox, i.e. “a seemingly absurd or contra-

dictory statement or proposition which when investigated may prove to be well founded or true” 

(Oxford Dictionary). 

The paradox has been mentioned in passing in a number of older works dealing with the elasto-

plastic analysis of tunnels (Nguyen-Minh and Corbetta (1992), page 86, Nguyen-Minh and Guo 

(1993), page 176, and Guo, (1995), page 90). More recently, it has been noted by Boldini et al. 

(2000) and Graziani et al. (2005), who obtained "unforeseen results” from axisymmetric elasto-

plastic numerical analyses of advancing tunnels, and explained them by means of the conver-

gence-confinement method (“The decrease in the loading in the plastic case is caused by the in-

creased convergence u0 before the installation of the lining, which overshadows the negative effect 

of the flattening of the convergence curve in the plastic range"). Also, Mair (2008) drew basically 

the same conclusion when discussing the results of plane strain analyses ("This is because the 

weaker ground leads to higher deformations occurring ahead of the face prior to installation of the 

lining; the consequence of more ground deformation before installation is a smaller pressure in-

duced on the lining"). Furthermore, Ramoni and Anagnostou (2010) and Lavdas (2010) observed 

the counter-intuitive behaviour of the models with respect to the loading of TBM shields and of 

segmental linings, respectively. 

Although the paradox has been noted by a number of authors, it is, interestingly, neither widely ap-

preciated nor well understood in the broader engineering and scientific community. It may therefore 

perplex the tunnel engineer and raise doubts as to the predictive power of standard tunnel design 

calculations, which makes it deserving of closer investigation. This shall be attempted in the pre-

sent paper. 

Section 2 illustrates the paradox by means of results obtained from the application of commonly-

used computational methods, investigating the conditions under which the paradox occurs and ex-

plaining why the paradox occurs. The computational methods in question are: the convergence-

confinement method (CCM) for the classic, rotationally symmetric, plane-strain tunnelling problem; 

the plane strain numerical analysis for tunnels with an arbitrary cross-section; and the axisymmetric 

analysis for deep cylindrical tunnels. All of these methods exhibit the paradox with respect to the 

rock loading developing upon a stiff lining that is installed close to the face (the higher the rock 

strength, the higher the load), but predict the expected behaviour with respect to convergences (the 

higher the rock strength, the smaller the convergence). 

Even if the reason for the low load predicted in the case of low strength ground is understood (as 

mentioned above, it is the stress relief associated with the yielding of the core ahead of the tunnel 

face), a question remains as to why such behaviour is not exhibited in nature or, in other words: 

what are the specific modelling assumptions that lead to the paradoxical model behaviour. The 

main part of the paper deals with these issues. Section 3 outlines possible reasons for the discrep-

ancy between model behaviour and actual behaviour on the basis of qualitative factors, while Sec-

tions 4 to 8 investigate some of these possible reasons quantitatively and in-depth. Putting it in a 

nutshell, the paradoxical behaviour seen in the model is associated with the commonly-made sim-
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plifying design assumptions that ground behaviour is time-independent (while in reality the ground 

generally creeps, particularly in the case of squeezing) and that the support operates with full stiff-

ness close to the face (while in reality the sequence of excavation and support installation is such 

that deformations inevitably occur). 

2 Unexpected model behaviour 

2.1 Convergence-confinement method 

The convergence-confinement method (CCM) allows the ground pressure to be assessed by 

means of closed-form solutions, and is widely used in engineering practice for preliminary dimen-

sioning of the lining (Panet 1995). The method applies to the rotationally symmetric problem of a 

deep, uniformly supported, circular tunnel crossing a homogeneous and isotropic ground which is 

subject to uniform and hydrostatic initial stress. Under the additional simplifying assumption of 

plane strain conditions, the problem becomes one-dimensional (i.e. all field variables depend solely 

on the distance r from the tunnel axis) and can be solved analytically. The solution can be present-

ed in the form of a so-called “ground response curve”, which shows the relationship between the 

support pressure and the radial displacement of the tunnel boundary. The equations for the case of 

linearly elastic and perfectly plastic ground behaviour according to the Mohr-Coulomb yield criterion 

with a non-associated flow rule (which is the material model assumed throughout the present Pa-

per) can be found, inter alia, in Anagnostou and Kovári (1993). Figure 1a shows the ground re-

sponse curves for an example with the parameters of Table 1 and an uniaxial compressive strength 

fc of 1 or 3 MPa. 

The CCM investigates the interaction between ground and tunnel support graphically by plotting 

the ground response curve and the characteristic line of the lining in one and the same diagram. 

The latter shows the dependency of the radial displacement of the lining on the ground pressure 

acting upon the lining. The inclination of the characteristic line of the support depends on its stiff-

ness k, while the origin of the characteristic line on the displacement axis (e.g., Point A in Fig. 1a) 

accounts for the pre-deformation of the ground, i.e. for the radial displacement that takes place be-

fore lining installation at a distance e behind the face. The pre-deformation occurs partially ahead 

of the tunnel face and partially over the unsupported span. In the computational example of Figure 

1a the simplifying assumption was made that the pre-deformation u(e) follows the longitudinal dis-

placement profile proposed by Chern et al. (1998): 

 
1.7

( ) 1 exp 0.91
e

u e u
a


      

  
, (1) 

where u  and a denote the final unsupported convergence (i.e. the convergence that would occur 

in an unsupported tunnel far behind the face) and the tunnel radius, respectively. Figure 1a shows 

the characteristic lines of the lining for support installed directly at the tunnel face (e = 0, 

u(e)/ u = 30%, dashed lines) or at a distance of e = 3 m behind the face (u(e)/ u = 50%, solid lines). 
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The intersection point of the ground response curve and of the characteristic line (e.g. Point B in 

Fig. 1a) satisfies the conditions of equilibrium and compatibility and shows the ground pressure and 

deformation. It can be seen immediately from Figure 1a that, as a consequence of the smaller pre-

deformations, the predicted ground pressure is higher in the case of a higher strength ground. This 

is clearly contrary to what one might expect intuitively. Figure 1b provides a more complete picture 

of the effect of ground strength fc on final lining pressure. 

In view of the paramount effect of pre-deformation on the final lining pressure, the question arises 

as to whether this unexpected model behaviour might be due to the simplifying assumption of Eq. 

(1), according to which the pre-deformation amounts to a constant fraction of the final unsupported 

convergences (i.e. a fraction which is the same for an elastic and for a highly-stressed ground). A 

similar behaviour can be observed when applying the improved longitudinal displacement profiles 

proposed Vlachopoulos and Diederichs (2009), which in contrast to Chern et al. (1998) consider 

the maximum plastic radius. The paradox persists even when applying the most advanced method 

of pre-deformation estimation, which is the so-called implicit method introduced by Nguyen-Minh 

and Guo (1996) and proposed, inter alia, by AFTES (2002). This method takes into account the lin-

ing stiffness and installation point in addition to the properties of the ground and to the extent of the 

plastic zone. A synopsis of the equations can be found in Cantieni and Anagnostou (2009a). As 

can be seen from the ground – support interaction diagram of Figure 1c, even this more sophisti-

cated analysis method predicts that the load developing in the case of a ground having an uniaxial 

compressive strength of fc = 1 MPa is lower than in the case of fc = 3 MPa. 

Figure 1d shows the results of a parametric study (performed with the CCM in combination with the 

implicit method) on the effect of ground strength fc on final loading at different values of the unsup-

ported span e and of the lining stiffness k. It is interesting to note that the softer the lining and the 

bigger the unsupported span, the less pronounced is the paradox. In conclusion, the reasons for 

this will be discussed later in Section 2.3. 

 

Table 1 Model parameters 

Parameter   Value 

Initial stress  0 10 MPa 

Tunnel radius a 4 m 

Unsupported span e variable 

Ground   

Young’s Modulus  E 1 GPa 

Poisson’s ratio   0.3 

Angle of internal friction   25° 

Dilatancy angle   5° 

Uniaxial compressive strength fc variable 

Lining   

Radial stiffness k 1 GPa/m 0.1 GPa/m 

Young’s modulus EL 30 GPa 10 GPa 

Thickness d 0.53 m 0.16 m 
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2.2 Numerical plane strain analysis 

One might argue that the paradox described above may be interesting from a theoretical point of 

view, but is of minor importance in practical terms because the CCM is anyway an oversimplified 

analytical tool. The purpose of this Section is to emphasize that the fundamental principles of the 

CCM and the conclusions of the last Section apply also to the numerical plane strain analyses that 

are widely used for design purposes in engineering practice. 

For the sake of simplicity and without loss of generality, let us consider again a deep-seated tunnel 

excavated full face under the same conditions as in the last Section (including Table 1, with the lin-

ing characteristics according to the last column). The only difference is that the tunnel cross-section 

is no longer circular, with the consequence that rotational symmetry is lost and the problem has to 

be solved numerically by the finite element method. In order to explain why the paradox persists, 

let us consider how a numerical plane strain analysis proceeds in such a case. In a plane strain 
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Fig. 1 Determination of the final lining pressure by the CCM for different values of the uniaxial compressive 

strength of the ground fc, of the unsupported span e and of the radial stiffness of the lining k. (a) Ground-

support interaction (pre-deformations according to Chern et al. 1998); (b) Final lining pressure as a function of 

the uniaxial compressive strength (pre-deformations according to Chern et al. 1998); (c) Ground-support in-

teraction (pre-deformations according to the implicit method); (d) Final lining pressure as a function of the uni-

axial compressive strength (pre-deformations according to the implicit method) 
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analysis, the three-dimensional tunnel problem is simulated by considering a series of sections 

normal to the tunnel axis (e.g. Panet 1995). In the case of full face excavation, the computation 

consists of three steps. 

The first step concerns the initial state (“State 0”), which prevails far ahead of the face. Depending 

on the available computer code, the initial stress field may be either defined or calculated. 

The second step simulates the development of pre-deformations during the transition from the ini-

tial state to the state prevailing immediately before lining installation (“State 1”) by reducing the ra-

dial stresses (as well as the shear stresses in the case of a non-hydrostatic initial stress field) act-

ing on the tunnel boundary from their initial value 0 to the fictitious internal pressure pI which simu-

lates the supporting effect of the core. The amount of stress relief is usually expressed by the 

stress relief factor λ (0 ≤ λ ≤ 1): 

 pI = (1 – ) 0 . (2) 

A value of λ = 1 (complete stress relief) applies to the case of an unsupported tunnel, while λ = 0 

(no stress relief) applies to the theoretical case where support is installed before excavation. The 

stress relief factor governs the amount of pre-deformation, accounts for the stiffness and for the in-

stallation point of the support and is estimated by one of the methods mentioned in the last Section. 

Figure 2 shows the stress relief factor  (calculated according to the implicit method for the param-

eter values of Table 1) as a function of the uniaxial compressive strength fc. The lower the ground 

strength, the more pronounced will be the yield of the core ahead of the face, the higher will be the 

stress relief factor  and, consequently (cf. Eq. 2), the lower will be the fictitious internal pressure 

pI. 

The third step simulates the transition from State 1 to the final state prevailing far behind the face 

(“State 2”) by activating the finite elements that simulate the support and by setting the tractions at 

the tunnel boundary equal to zero. The resulting values include the final displacement and rock 

load as well as the lining forces (bending moments, hoop forces). A stiff lining that is installed close 

to the face prevents the development of further convergences and thus further stress relief. As a 

consequence, the final lining loading practically corresponds to the radial stress prevailing at the 

tunnel boundary at State 1, i.e. to the internal pressure pI, which, as mentioned above, decreases 

with the strength of the ground. The consequence is that a weak ground develops a lower loading.  
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Fig. 2 Stress relief factor λ as a function of the normalized uniaxial compressive strength fC/0 for the radial 

stiffness of the lining k of 0.1 and 1 GPa/m (other parameters according to Table 1) 
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Figure 3 shows, as an example, the numerical results obtained by the FEM code PLAXIS 

(Brinkgreve 2002) for a non-circular tunnel with the model parameters of Table 1 (lining data ac-

cording to the last column). The stress relief factors were taken from Figure 2 with a stiffness k = 1 

GPa/m. The calculated bending moments and axial forces (although not manageable structurally) 

also illustrate the existence of the paradox. The paradox thus applies not only to analytical solu-

tions that incorporate many simplifications, but also to the widely-used numerical plane strain com-

putational method. 

Ground
deformations

Bending
moments

Normal
forces 9

.6
 m

5.8 m

10 MN/m

1 MNm/m

100 mm

Extent of the
plastic zone

fc = 1 MPa, (λ  = 0.71)

fc = 3 MPa, (λ  = 0.51)  

Fig. 3 Numerically determined distribution, (a), of the hoop force N, (b), of the bending moment M and, (c), of 

the deformation of the tunnel boundary u and, (d), extent of the plastic zone for two values of the uniaxial 

compressive strength fc 
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2.3 Numerical axially symmetric analysis 

On account of the uncertainties introduced by the simplifying assumptions of plane strain analyses 

with respect to pre-deformation (which, as discussed above, is a very important parameter), it is 

reasonable to ask whether the paradox is a problem specifically of the plane strain model or if it al-

so occurs in spatial (i.e., three-dimensional or axisymmetric) analyses which do not involve as-

sumptions about convergences ahead of the face. An additional reason for raising this question is 

that plane strain analyses, in contrast to spatial calculations, do not correctly reproduce the actual 

stress history of the ground, and this may influence the results not only quantitatively but also quali-

tatively (Cantieni and Anagnostou 2009a and 2009b). 

Let us therefore investigate the behaviour of the axially symmetric model of a deep cylindrical tun-

nel. The problem setup is exactly the same as in Section 2.1, the only difference being that we no 

longer make the plane strain assumption. The problem is solved numerically by the so-called 

“steady state method”, a method introduced by Nguyen-Minh and Corbetta (1991) for efficiently 

solving problems with constant conditions in the tunnelling direction by considering a reference 

frame, which is fixed to the advancing tunnel face. A comparison of the steady state method with 

the more widely used “step-by-step method”, which handles the advancing face by deactivating 

and activating the ground and support elements, respectively, was presented recently in this Jour-

nal by Cantieni and Anagnostou (2009a). As discussed by the Authors, the steady state method 

applies to the borderline case of continuous tunnel advance (round length s = 0). 

Figure 4a shows the model. The lining is modelled as an elastic radial support with stiffness k = 

dp/du, where p and u denote its radial loading and radial displacement, respectively. The radial 

stiffness k of a ring-shaped lining is equal to ELd/a2, where a, d, and EL denote its radius, thickness, 

and Young’s modulus, respectively. The longitudinal bending stiffness of the lining will not be taken 

into account. The lining is installed at a distance e behind the tunnel face.  

Figure 4d shows the development of radial stress at r = a (which for y > e is identical with the lining 

loading) along the tunnel for two values of the uniaxial compressive strength of the ground fc. It can 

be easily seen that – analogously to the results of the CCM - both the radial stress ahead of the 

face and the pressure developing upon the lining are lower in the case of the lower strength 

ground, while the deformations (particularly the ones occurring ahead of the face) and the extent of 

the plastic zone are larger (Fig. 4c and 4b, respectively).  

In order to gain more information about the behaviour of the model, a parametric study was per-

formed on the effects of ground strength fc, unsupported length e and lining stiffness k. Figures 5a 

and 5b show the final lining pressure p∞ as a function of the uniaxial compressive strength fc (both 

normalized by the initial stress 0) for a stiff and a soft lining (k = 1 and 0.1 GPa/m, respectively). 

Both diagrams clearly show the counter-intuitive behaviour (the load increasing with the ground 

quality) at unsupported lengths e up to 2 m. Similarly to the CCM (Section 2.1), the stiffer the lining 

and the shorter the unsupported span, the more pronounced is the paradox. 

The lower the strength of the ground, the more will the radial stress in the core ahead of the face 

decrease and, as the lining actually undertakes the role of the core after excavation, the lower will 

be the lining load. If the strength of the ground is high, however, the core ahead of the face will be 

able to sustain a high radial stress and, as a stiff lining that is installed close to the face does not 
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allow for additional deformations and stress relief, a high load will develop upon the lining. On the 

other hand, a low stiffness lining or a long unsupported span allow deformations and stress relief to 

develop behind the face (whatever the strength of the ground) with the consequence that the para-

dox becomes less pronounced. 

As the convergence of the excavated profile is a directly observable phenomenon in tunnelling, un-
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Fig. 4 (a) Axially symmetric model and boundary conditions; (b) extent of the plastic zone; (c) radial displace-

ment u of the ground at the tunnel boundary; (d) radial stress at the tunnel boundary (for y > e = 1 m, the radi-

al stress corresponds to the ground pressure on the lining) 
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like rock pressure (and in fact large convergences are what tunnel engineers associate with poor 

quality ground), it is interesting to check the model behaviour also with respect to deformations. 

Figures 5c and 5d show the convergence uc of the excavated section (uc = u∞ – u(0)) as a function 

of the ground strength fc and of the unsupported span e. It can be seen that the model predictions 

correspond to expectations: the lower the strength, the larger the convergence. This is true also 

concerning the convergence of an unsupported tunnel (Fig. 6). The model behaviour is counter-

intuitive only with respect to the load developing upon the lining. 
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Fig. 5 Effect of the normalized uniaxial compressive strength fC/0, (a), on the normalized final lining pressure 

p∞/0 for a radial lining stiffness k of 1 GPa/m; (b), on the normalized final lining pressure p∞/0 for a radial lin-

ing stiffness k of 0.1 GPa/m; (c), on the normalized convergence uC/a for a radial lining stiffness k of 1 GPa/m; 

and, (d), on the normalized convergence uC/a for a radial lining stiffness k of 0.1 GPa/m 
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Fig. 6 Normalized radial convergence of an unsupported tunnel uC/a as a function of the normalized uniaxial 

compressive strength fC/0 and of the angle of internal friction φ 
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3 Reasons for the discrepancy between model and 

reality 

Although the reason for the unexpected model behaviour is understood, it is still puzzling, why such 

behaviour is not observed in reality. Obviously there must be one or more modelling assumptions 

which contradict what happens in reality and which are responsible for the observed difference be-

tween model behaviour and actual behaviour. The results of the last Section provide useful indica-

tions as to the relevant modelling assumptions. 

The finding that the paradox is due to deformations and to the stress relief associated with the plas-

tic yield of the ground ahead of the face indicates that the modelling assumptions which provide for 

this stress relief may be responsible for the paradox. As explained below under points (i) and (ii) 

there are at least two reasons why the actual deformations of the ground and the stress relief 

ahead of the face may be smaller than in the computational models of Section 2 which show the 

paradoxical behaviour. 

The finding that the paradox occurs particularly under the modelling assumption that a stiff lining is 

installed near the face (and becomes less and less pronounced or disappears when the ground is 

allowed to converge behind the face) indicates that this modelling assumption may be an oversim-

plification. In fact, there are several sources of deviation between the model and reality which are 

associated with the development of deformations behind the face. These deviations may also ex-

plain the difference between the behaviour of the model and actual behaviour, i.e. the absence of 

the paradox in reality. The deformations behind the face may occur intentionally (as in the case of 

yielding supports, see point (iii) below) or unintentionally, for example due to support destruction 

(iv), due to the excavation and support installation sequence (v-vii) or due to the early stiffness of 

the support components (viii). Deformations even occur in cases with a presumably stiff support as 

in the case of a segmental lining in shield tunnelling (ix). 

(i) Time-dependency of the ground behaviour 

The first reason is of a fundamental nature, as it is associated with the rheological properties of the 

ground. Creep is particularly important in the case of overstressed ground (i.e., when the stresses 

reach its bearing capacity) and is therefore also important for the question under consideration. In 

general, plastic yielding develops with a certain delay which is dependent on its rheological proper-

ties. The latter, together with the advance rate, are decisive in terms of the extent of plastic yield 

and the amount of stress relief ahead of the advancing face. The higher the viscosity of the ground 

and the higher the advance rate, the smaller will be the plastic deformations and the stress relief 

and the less pronounced will be the paradox (the effect of the ground strength appears with a delay 

- behind the face). Section 4 confirms this hypothesis by means of numerical computations. 

(ii) Face support or reinforcement 

The second effect is associated with specific measures that are often applied in weak ground in or-

der to stabilize the face or to limit its extrusion. Face bolting increases the bearing capacity of the 

core ahead of the face and, as the reinforced core is able to sustain a higher radial stress, limits 

stress relief. Consequently, the paradox should become less pronounced. Section 5 investigates 
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this hypothesis and shows that the paradox disappears only at very high face support pressures 

that are barely feasible from a technical perspective. 

 (iii) Yielding support 

Yielding supports are installed close to the face and allow the ground to converge under an approx-

imately constant pressure. Figure 7 shows the support measures applied in the case of the yielding 

support developed for the Sedrun Lot of the Gotthard Base Tunnel. As the paradox becomes less 

pronounced or disappears when the ground is allowed to converge behind the face, it is reasonable 

to expect that it will not occur in the case of yielding supports. Section 6 confirms this hypothesis 

quantitatively. The model exhibits the expected behaviour: the higher the strength of the ground, 

the lower the rock pressure and the smaller the convergence. 

 (iv) Damage to the support 

Decreasing ground quality in tunnelling is recognized through increasing convergences. In the case 

of a stiff support, large deformations can only occur if the ground pressure overstresses and dam-

ages the lining (Fig. 8). Damaged support offers only a low or zero resistance to deformations. As 

already discussed (Fig. 6), the model of an unsupported tunnel exhibits the expected behaviour: 

the convergences increase with decreasing ground strength. 

(v) Partial face excavation 

In the case of partial face excavation (e.g. the top heading, bench- and invert-excavation method), 

the stiffness of the support system is low before completing the excavation of the cross-section and 

closing the lining at the invert (A in Fig. 9). The initially low stiffness allows for convergences behind 

the face, which should reduce or even eliminate the paradoxical behaviour (according to the find-

ings of Section 2). 

(vi) Staggered support application  

The construction process is usually such that the application of support measures (steel sets, shot-

crete, bolts) is staggered along the tunnel alignment (Fig. 7, B in Fig. 9). The stiffness of the sup-

deformation phase ~30 m

1 m

10.4 m11.4 m
shotcrete

lining
steel sets
TH 44/70

face bolts

radial bolts

stiff lining

over-excavation

 

Fig. 7 Scheme of the yielding support system realized in the Sedrun Lot of the Gotthard Base Tunnel (after 

Ehrbar and Pfenninger 1999)  
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port system is initially low and increases with the distance from the face. The ground can thus con-

verge in the regions close to the face, thereby reducing or eliminating the paradoxical behaviour.  

(vii) Unsupported span 

According to Figure 5, the cases with an unsupported span of e = 0 yield the most pronounced 

paradox. In conventional tunnelling, an unsupported span of e = 0 is not feasible. Even if all sup-

port components are installed immediately after each excavation round right at the face, the next 

excavation step (s > 0) would temporarily create an unsupported span (C in Fig. 9). Therefore, the 

modelling assumption of e = s = 0 (underlying the curves denoted by e = 0 of Fig. 5), which almost 

entirely prevents the development of convergence behind the face, represents only a theoretical 

limiting case. 

(viii) Stiffness of green shotcrete 

Another possible source of deformations behind the face is the low stiffness of green shotcrete. 

The final Young's modulus of shotcrete is normally reached only after several days. For high ad-

vance rates, the stiffness of the lining is therefore low near the face (D in Fig. 9). Section 7 investi-

gates by means of numerical computations whether the paradox persists when taking this effect 

into account, and shows that it is a rather minor effect. The counter-intuitive model behaviour dis-

appears only at very high advance rates (> 20 m/day). 

(ix) TBM tunnelling 

With respect to TBM tunnelling, the assumptions of e = 0 (no unsupported span) and s = 0 (zero 

round length), which lead to the most paradoxical model behaviour (Fig. 5), seem at a first glance 

to be realistic because of the continuous advance of the shield. However, the design of the ma-

chines always provides a certain “overcut” ∆R between bored profile and shield extrados, which is 

needed for steering the machine (and sometimes also for avoiding jamming of the shield). The 

 

 

Fig. 8 (a) Historical picture of a tunnel with damaged wooden support; (b) reshaped cross-section (in the front 

of the picture) after the support was damaged (in the background of the picture) in the Faido Lot of the 

Gotthard Base Tunnel (courtesy of AlpTransit Gotthard AG, Switzerland) 
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overcut allows the ground to converge behind the face (E in Fig. 9). Additional deformations may 

occur behind the shield even in the presence of a stiff segmental lining, depending on the type and 

on the point of application of the backfill (F in Fig. 9). Section 8 investigates the effects of the over-

cut in more detail and shows that the overcut reduces or even eliminates the paradoxical 

behaviour. 
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support
stiffness

support

stiffness

CB
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A: partial face excavation

B: staggered application of support measures

C: unsupported span after excavation step (e + s)

D: ageing of the shotcrete
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F: non-perfect backfill (no close-fitting between ground and lining)

(a)

(b)
convergences

e

s

y

y

shotcrete

invert shotcrete

(ring closure)

steel sets

 

Fig. 9 Sources of unavoidable deformations during (a) conventional tunnelling and (b) TBM tunnelling 
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4 Effect of creep 

4.1 Computational model 

Time-dependency is taken into account by applying the elasto-viscoplastic creep model after 

Madejski (1960). The inset in Figure 10 shows the micro-mechanical model, which consists of an 
elastic spring in series with a Bingham model. The strain rate ij  is resolved into an elastic and an 

inelastic part:  

 e p
ij ij ij       . (3) 

The elastic part depends linearly on the stress rate (Hooke’s law), while the inelastic part p
ij , 

which represents combined viscous and plastic effects, reads according to the classic formulation 

of Perzyna (1966) as follows: 

 
p
ij

ij

d f g

dt

 
 

 , (4) 

where f, g and η denote the yield function, the plastic potential and the viscosity, respectively. Ac-

cording to this equation, both the deviatoric and the volumetric strains are time-dependent. In con-

trast to more sophisticated time-dependent constitutive models (e.g. the SHELVIP model, 

Debernardi and Barla 2009, and the CVISC model, Itasca 2006), the instantaneous response of the 

assumed material model is purely elastic.  

As the development of plastic deformations takes time, the extent of the plastic zone ahead of the 
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Fig. 10 Problem layout and boundary conditions of the step-by-step numerical model including the sequence 

of the calculation steps and the micro-mechanical material model 
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tunnel face and the magnitude of the pre-deformations also depend on the advance rate. It is easy 

to show (by means of a dimensional analysis) that the response of the model depends on the 

product of the advance rate v and the viscosity (c.f. Bernaud 1991). The effect of a high advance 

rate is equivalent to that of a high viscosity. In the borderline case of an “infinitely” rapid excavation, 

only elastic deformations will occur around the advancing face. In general, the lower the advance 

rate, the larger will be the plastic deformations. 

The ground pressure developing upon the lining is determined by means of a transient stress anal-

ysis based on an axially symmetric model (Fig. 10). The tunnel advance is simulated with 60 exca-

vation steps, each containing an instantaneous advance of s = 1 m, followed by a transient calcula-

tion covering a period of 1 day (overall advance rate v = 1 m/day). Figure 10 shows the sequence 

of excavation and support installation. After 60 steps, tunnel advance is halted and a transient 

analysis is performed in order to study the development of deformations and rock pressures during 

the standstill. The analysis stops when a steady state is reached, i.e. when the extrusion rate of the 

face becomes very small.  

For the purpose of comparison, we also carried out time-independent elasto-plastic computations 

(η = 0). In contrast to Section 2.3, the time-independent problem of the present Section was also 

solved by the step-by-step method, in order to eliminate the effect of the round length s, which is 

equal to zero in the steady state method. 

The calculations have been carried out with the parameters of Table 1, an unsupported span of 

e = 1 m and various viscosity values. Table 2 gives a sense of the numerical values of viscosity  

(a less familiar material constant) by making reference to the response of the relatively simple 

model of a circular unsupported tunnel under plane strain conditions. The time t95% denotes the pe-

riod that must elapse in order that the time-dependent convergence reaches 95% of its final value. 

Details can be found in the Appendix A. 

4.2 Model behaviour 

Figures 11a and 11b show the pressure distribution upon the lining for elasto-plastic (η = 0) and 

elasto-viscoplastic (η = 106 kPa*day) ground behaviour, respectively, and for two values of the uni-

axial compressive strength fc. In contrast to elasto-plastic ground, elasto-viscoplastic ground re-

sponds as expected (the load increases with decreasing ground strength). The reason for the 

model behaviour becomes evident if we consider the radial deformations in the ground ahead of 

Table 2 Response times of a circular unsupported tunnel under plane strain conditions 

Viscosity  [kPa * day] t95% 

103 a few hours to a few days 

104 a few days to a few weeks 

105 a few weeks to a few months 

106 a few months to a few years 

107 several years 
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the face (Fig. 11c and 11d). In contrast to elasto-plastic ground, the radial deformations ahead of 

the face and thus also the stress relief in elasto-viscoplastic ground depend only slightly on the 

ground strength fc, because the short-term response is mainly elastic for the assumed advance rate 

and viscosity. 

Figure 12 shows the results of a parametric study into the effects of viscosity η and ground strength 

fc on the lining pressure developing at a distance of five tunnel diameters behind the face. It can be 

seen that the paradox ceases to exist at viscosities η ≥ 105 kPa*day, i.e. when the response of the 
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Fig. 12 Normalized final pressure on the lining p∞/0 as a function of the normalized uniaxial compressive 

strength fC/0 and of the viscosity η 
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Fig. 11 Development of ground pressure along the tunnel (a) for elasto-plastic ground with time-independent 

response, (b) for an elasto-viscoplastic ground. Radial convergences along the tunnel (c) for elasto-plastic 

ground with time-independent response, (d) for an elasto-viscoplastic ground (c.f. Gioda and Cividini 1996) 
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Fig. 13 Time-development, (a-c), of the face extrusion uy in the Sedrun Lot of the Gotthard Base Tunnel (cour-

tesy of AlpTransit Gotthard AG, Switzerland) and, (d), of the convergence uc in the Saint Martin La Porte tun-

nel (Barla et al. 2008)  
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ground to tunnelling takes at least a few weeks (Table 2). Such a slow response is nothing unusu-

al. For example, Figures 13a to 13c show the time-development of the face extrusion measured 

during excavation standstills at some cross-sections in the northern stretch of the Sedrun Lot, 

which is part of the new Gotthard Base Tunnel. The deformations develop within a period of 1 week 

to 1 month. The convergences recorded in the Saint Martin La Porte tunnel show that the transient 

process may even continue for several months (Fig. 13d). 

In conclusion, as a consequence of the time-dependency of the ground response, the stress relief 

ahead of the face may be much less pronounced than predicted by the simplified time-independent 

computational models. This is sufficient to make the paradox disappear.  

5 Effect of face reinforcement 

5.1 Computational model 

The effect of face reinforcement on the extrusion of the core has been studied intensively for shal-

low (e.g. Wong et al. 2004; Peila 1994) and also for deep tunnels (e.g. Oreste et al. 2004). The re-

inforcement provides an additional confinement for the ground in an axial direction, which increas-

es the bearing capacity of the core, i.e. its ability to sustain a radial pressure, and therefore reduces 

the stress relief, which, as discussed in Section 2, is the main cause of the counter-intuitive behav-

iour. 

The quantitative investigation of these effects is based upon the axially symmetric model of Figure 

4a. The face reinforcement is taken into account in a simplified manner by prescribing a uniform 

pressure pF to the face (cf. inset of Fig. 14).  
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Fig. 14 Final lining load p∞ as a function of the uniaxial compressive strength fc and of the face support pres-

sure pF (all values normalized by the initial stress 0) 
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5.2 Model behaviour 

Figure 14 shows the ground pressure developing upon the lining in the final state far behind the 

tunnel face as a function of the normalized ground strength fc and of the normalized face support 

pressure pF. The higher the face support pressure, the higher will be the final load. The model be-

haviour agrees with the results of Boldini et al. (2000) and Kasper and Meschke (2006), but does 

not seem to support the hypothesis formulated by Lunardi (2000), which postulates that the stress-

es on the lining are lower when the advance core is reinforced. 

As expected on the basis of qualitative factors, the paradox becomes less and less pronounced 

with increasing face pressure and disappears at pressures pF higher than 0.1 – 0.2 σ0. This thresh-

old value is not feasible in the case of deep tunnelling under a high initial stress σ0. Consider, for 

example, a heavy face support consisting of one 300 kN bolt per sqm, thus providing a face pres-

sure pF of 0.3 MPa. In order that the normalized face support pressure pF/σ0 is higher than the 

threshold value of 0.1 - 0.2, the depth of cover should be smaller than about 100 m. Face rein-

forcement is of secondary importance as far as the topic of the present Paper is concerned. 

6 Effect of yielding support 

6.1 Computational model 

The present Section investigates whether the deformations behind the face, which occur intention-

ally by means of a yielding support, eliminate the paradox. For the purpose of the present investi-

gation, the mixed boundary condition presented in the recent paper of Cantieni and Anagnostou 

(2009b) will be applied in order to map the complete behaviour of the yielding support system. The 

response of the yielding support to loading can be approximated by a tri-linear characteristic line 

(Fig. 15a). The first part of the characteristic line is governed by the stiffness kI of the system up to 

the onset of yielding. The second part of the line corresponds to the phase, where the support sys-

tem deforms under a constant pressure py. When the amount of over-excavation uoe is used up, the 

third phase is initialised. The system is made practically rigid (stiffness k), e.g. by applying shot-

crete, with the consequence that an additional pressure accumulates upon the lining. A yielding 

support which consists of sliding steel sets placed every 0.5 m, each offering a sliding hoop re-

sistance of 800 kN (four friction loops offering a sliding resistance of 200 KN each), will provide a 

yielding support pressure py equal to 400 kPa. After the over-excavation gap is used up, a shot-

crete lining is placed, which offers a stiffness k of 1 GPa/m. The stiffness kI is of subordinate im-

portance for the final ground pressure and is taken as 1 GPa/m. With the exception of this bounda-

ry condition, the numerical model is the same as previously (Fig. 4a). 
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6.2 Model behaviour 

Figure 15b shows the ground pressure developing upon the lining in the final state far behind the 

tunnel face as a function of the normalized ground strength fc and of the amount of over-excavation 

uoe. The upper line (uoe = 0) denotes a rigid support installed 1 m behind the face (c.f. line e = 1 m 

in Fig. 5a) and shows the paradox. If a very small theoretical over-excavation uoe of 0.05 m is ap-

plied, the paradox disappears. In the present example, the over-excavation will not be used up 

completely in the case of high amounts of over-excavation. Consider, for instance, an over-

excavation of 0.4 m. The final rock pressure acting upon the lining is equal to the yielding support 

pressure py for all ground strengths, because the over-excavation is not used completely and thus 

the third phase of the system is not reached. (For a detailed analysis of the interaction between 

yielding supports and ground see Cantieni and Anagnostou, 2009b). Figure 15c shows the conver-
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Fig. 15 Normalized convergence uC/a as a function of the normalized uniaxial compressive strength fC/0 and 

of the normalized yield pressure py/0 of the support 
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gences of the opening uC (sum of the convergences of the support and the convergences over the 

unsupported span) as a function of the normalized ground strength fc. The deformations also show 

an intuitive behaviour: lower convergences for increasing ground quality, particularly for cases 

where the over-excavation is not used up. 

In summary, the model of a tunnel with yielding support shows an intuitive behaviour for both the 

rock pressure on the lining and the ground convergences. 

7 Effect of the low stiffness of green shotcrete 

7.1 Computational model 

In general, a shotcrete lining develops its stiffness over time and reaches its long-term stiffness a 

certain distance behind the face. The assumption of a stiff shotcrete lining right from the start is val-

id only for low advance rates. The higher the advance rate, the newer will be the shotcrete and the 

lower its resistance to ground deformations in the vicinity of the face. The time-dependent interac-

tion between shotcrete and the ground has been investigated, e.g. by Graziani et al. (2005), Oreste 

(2003), Boldini et al. (2005) and Pöttler (1990). In the present Section we focus on the question of 

whether the paradox (which, as stated in Section 2, is particularly pronounced in the case of stiff 

linings) persists when taking into account the initially low stiffness of green shotcrete. 

In our computations, the time-dependency of the Young's modulus of shotcrete EL(t) is taken into 

account by adopting the empirical relationship of Chang (1994): 

 ,28 0.6

0.446
( ) / 1.062 expL LE t E

t

   
 

, (5) 

where EL,28 denotes the Young's modulus of shotcrete at 28 days (taken to 30 GPa in the present 

case) and t is the shotcrete age in days. Figure 16a shows the evolution of the normalized Young's 
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Fig. 16 (a) Time-development of the Young's modulus of the shotcrete after Chang (1994); (b) Normalized 

Young's modulus of the shotcrete as a function of the distance from the face and of the advance rate v  
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modulus of the shotcrete over the time, while Figure 16b, which is nothing more than a simple 

transformation of Figure 16a, shows the distribution of the Young's modulus along the tunnel for 

advance rates of 1, 8 and 20 m/day. 

Again, the axially symmetric numerical model of Figure 4a is used and the problem is solved by the 

steady state method. The time-dependency of the shotcrete stiffness (Fig. 16a) or the spatial varia-

tion of the stiffness along the tunnel (Fig. 16b) is taken into account numerically by considering a 

series of superimposed lining layers (see Appendix B for details).  

7.2 Model behaviour 

Figure 17 illustrates the effect of the advance rate v on the distribution of ground pressure along 

the tunnel for a lower and for a higher uniaxial compressive strength fc of the ground, while Figure 

18 provides a more complete picture of these effects on the final lining load. The results agree with 

those of Graziani et al. (2005) concerning the effect of the advance rate on the final lining pressure. 

 

fc = 1 MPa

fc = 3 MPa

v = 0 m/day v = 1 m/day v = 8 m/day v = 20 m/day

fc = 1 MPa

fc = 3 MPa

fc = 1 MPa

fc = 3 MPa

fc = 1 MPa

fc = 3 MPa

p
 [
M

P
a
]

5

4

3

2

1

0
05101520

y [m]

05101520

y [m]

05101520

y [m]

05101520

y [m]

k = 1 GPa/m

e = 1 m

k = 1 GPa/m

e = 1 m

k = 1 GPa/m

e = 1 m

k = 1 GPa/m

e = 1 m

(a) (b) (c) (d)

 

Fig. 17 Development of the ground pressure acting upon the lining for advance rates v of 0 – 20 m/day 
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Fig. 18 Normalized final lining load p∞/0 as a function of the normalized uniaxial compressive strength fC/0 

and of the advance rate v 
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As a consequence of the reduced stiffness of the shotcrete near the face, the counter-intuitive be-

haviour becomes less and less pronounced as the advance rate increase, but nevertheless does 

not disappear even at very high advance rates (20 m/day). Advance rates such as this cannot be 

realized in combination with shotcrete. 

In conclusion, the counter-intuitive model behaviour persists even when taking into account the 

changes to the shotcrete over time.  

8 Effect of the overcut in shield tunnelling 

8.1 Computational model 

We shall next investigate whether the deformations that inevitably occur in shield tunnelling are 

such that the paradox disappears. The computations concern the same axially symmetric computa-

tional model as in Figure 4a. The only difference is the boundary condition at the tunnel wall, which 

in the present case accounts, (i), for the gap existing around the shield due to the overcut R (Fig. 

9b) and, (ii), for the complete radial unloading of the excavation boundary at the installation point of 

the segmental lining immediately behind the shield tail (at y = 8 m). Details concerning the model-

ling of the ground-support interface can be found in Ramoni and Anagnostou (2011). Taking into 

account the modulus of elasticity of the steel (ES = 210 GPa) and assuming a shield thickness of 

dS = 8 cm, the radial stiffness of the shield is taken as kS = 1 GPa/m. 

8.2 Model behaviour 

Figures 19a, b and c show the distribution of the ground pressure along the tunnel (shield up to y = 

8 m, segmental lining for y > 8 m) for an overcut R of 0, 0.15 m and 0.30 m, respectively, and for 
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Fig. 19 Development of the ground pressure p along the tunnel (shield and lining) for two values of the uniaxi-

al compressive strength fc and for an overcut ∆R of 0 - 0.30 m 
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two values of the uniaxial compressive strength fc. Let us consider first the case of zero overcut. 

(As an overcut is always foreseen for the purpose of steering the machine, this case is rather theo-

retical but may occur also in practice in exceptional cases, e.g. due to packing of the gap around 

the shield with fines.) The model behaviour is counter-intuitive in this case (Fig. 19a), in that the 

higher strength ground develops a higher load than the lower strength ground. The paradox is par-

ticularly pronounced in relation to the shield loading and also applies to the lining.  

In the case of an overcut ∆R of 0.15 m or higher, however, the system allows for deformations to 

occur behind the face and thus the paradox disappears. According to Figure 19b, the ground clos-

es the gap and starts to exert a load upon the shield only in the case of the lower strength value (fc 

= 1 MPa). In the case of an even larger overcut (∆R = 0.30 m, Fig. 19c), the gap around the shield 

remains open even for the lower strength value.  

9 Conclusions 

The computational models commonly used for tunnel design predict under certain conditions (i.e. 

support from a stiff lining near to the tunnel face, weak ground, high initial stress) that the load de-

veloping upon the lining increases with the strength of the ground. Such behaviour deserves to be 

called a paradox because it is clearly contrary to what one would expect on the basis of intuition 

and tunnelling experience. The reason for this counter-intuitive behaviour is the stress relief which 

takes place in the ground ahead of the face and which is more pronounced in the case of a low 

strength ground. The decisive simplifying modelling assumptions, i.e. the assumptions which cause 

the difference between model behaviour and actual behaviour, are related: (i), to the rheological 

behaviour of the ground (which is usually neglected in design computations, but is particularly im-

portant in the case of overstressed ground, limiting the extent of stress relief ahead of the face); 

and, (ii), to the stiffness of the support system, which may - due to the nature of construction pro-

cedures - be considerably lower than it is assumed to be in the design calculations. The effects of 

face reinforcement or of the time-dependency of the shotcrete stiffness are of secondary im-

portance with respect to the investigated aspect of the model behaviour.  

The findings of the present Paper illustrate the uncertainties (both quantitative and qualitative) that 

exist in all computational models – even in the very familiar and well-established ones - and em-

phasize the importance of a careful interpretation of the computational results and of a critical re-

view of the underlying modelling assumptions. Taking into account the two main effects mentioned 

above in the design computations eliminates the paradoxical model behaviour. 
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Appendix A of Part III 

Demonstration of the meaning of the viscosity 

In order to demonstrate the meaning of the viscosity values we examine the classic rotationally 

symmetric tunnel problem under plane strain conditions. The constitutive model was presented in 

Section 4, while the model parameters are given in Table 1. 

Starting from the initial state, we first simulate tunnel excavation on the assumption that it occurs 

instantaneously. We then carry out a transient analysis until a steady state is reached. Figure 20 

shows the typical time-development of the convergence. One can see the instantaneous, excava-

tion-induced convergence, which, as explained in Section 4, is purely elastic. As a measure of how 

rapidly the ground responds to tunnel excavation, an arbitrary characteristic time period may be 

adopted – for example, the time t95% that must elapse in order that the time-dependent conver-

gence reaches 95% of its final value. In the example of Figure 20 (viscosity  = 105 kPa * day), this 

time period will be about 15 days long. For dimensional reasons, the characteristic time is propor-

tional to the viscosity  (a viscosity ten times higher will mean that the time taken to reach a given 

deformation will increase by a factor of ten). 
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Fig. 20 Time-development of the convergence of an unsupported circular tunnel under plane strain conditions 
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Fig. 21 Characteristic time t95% as a function of the normalized uniaxial compressive strength fC/0 and of the 

viscosity η (the time axis labels y, m, w, d and h denote year, month, week, day and hour, respectively) 
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Table 2 is based upon the results of a parametric study into the effects of the uniaxial compressive 

strength fc and the viscosity  on the characteristic time t95% (Figure 21). 

Appendix B of Part III 

Numerical modelling of time-dependent support stiffness 

Boundary condition for a lining of constant stiffness 

The resistance of a lining with constant stiffness k is taken into account in the steady state numeri-

cal solution method by imposing (as a boundary condition) a radial pressure p(y) which is propor-

tional to the deformation of the lining at location y and depends therefore not only on the conver-

gence u(y) of the ground but also on its deformation u(e) at the installation point (y = e) of the lining 

(Anagnostou 2007): 

 ( ) ( ( ) ( ))p y k u y u e  . (B-1) 

Boundary condition for a lining of time-dependent stiffness 

In the case of a lining with time-dependent properties, however, the calculation of the pressure 

along the lining has to be carried out by numerical integration in the opposite direction to that of the 

tunnel advance (Anagnostou 2007). Figure 22a shows schematically the integration points and in-

tervals. The pressure pj+1 at point j+1 can be expressed by following equation: 
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Fig. 22 (a) Definition of the lining segments and nodes, (b) Definition of the lining layers 
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where pj+1 denotes the increase in pressure over the integration interval j+1, which extends from 

point j to point j+1: 

 1 1 1( )j j j jp k u u     , (B-3) 

where uj+1-uj is the increase in ground deformation from point j to point j+1, while kj+1 denotes the 

average stiffness over the integration interval j+1: 

 1 2

( )L
j

E t d
k

a
  , (B-4) 

where d is the thickness of the lining, a is the tunnel radius, EL(t) is the Young’s modulus of the lin-

ing (according to Eq. 5) and t is the age of the shotcrete. The latter depends on the distance from 

the face and on the advance rate: 

 1( ) / 2j jy y
t

v


 . (B-5) 

Implementation of the boundary condition in the numerical model 

The boundary condition described by the Eqs. (B-2) to (B-5) is implemented in the numerical model 

by a series of superimposed fictitious lining layers, each having a different stiffness k(i) and starting 

at a different distance behind the face (Fig. 22b): The fictitious lining layer i starts at integration 

point i-1 (and, therefore, the radial displacement ui-1 represents the pre-deformation to be consid-

ered for this layer), contains all integration intervals ≥ i and has a stiffness which is equal to the in-

crease in stiffness from the integration interval i-1 (i.e. the integration interval just before the start-

ing point of the fictitious layer i) to integration interval i (i.e. the first integration interval belonging to 

fictitious layer i): 

 ( )
1

i
i ik k k      (with k0 = 0). (B-6) 

It will subsequently be demonstrated that the superimposed fictitious lining layers defined in this 

way are equivalent to a lining with a time-dependent stiffness, i.e. they provide a total support pres-

sure which is equal to that of Eqs. (B-2) and (B-3). 

Proof 

First of all, one can readily verify that Eq. (B-6) ensures that the total stiffness offered by the super-

imposed fictitious lining layers in an arbitrary interval m is equal to the stiffness km of the shotcrete 

lining over this interval. The total stiffness offered by the superimposed fictitious layers is equal to 

the sum of the stiffnesses of the layers containing the interval m, i.e. of the layers 1 to m. Conse-

quently, the total stiffness is equal to 

  ( )
1

1 1

m m
i

i i m
i i

k k k k
 

    . (B-7) 

As each fictitious lining layer has a constant stiffness, its resistance to deformation can be calculat-

ed on the basis of Eq. (B-1). Taking into account the layer stiffness according to Eq. (B-6), as well 

as the relevant pre-deformation of each layer (which as said above is equal to ui-1 for layer i), the 

pressure exerted by an arbitrary layer i at an arbitrary point j reads as follows: 
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      ( ) ( )
1 1 1

i i
j i i i j ijp k u u k k u u       . (B-8) 

The total pressure at point m is obtained by a summation of the pressures of the layers that contain 

point m, i.e. of the layers 1 to m: 
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Analogously, for point m+1, 
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which agrees with Eqs. (B-2) and (B-3).  

References 

AFTES 2002. Recommandations relatives à la methode convergence-confinement. Association Française des 
Travaux en Souterrain, Groupe de travail n°7 (animé par M. Panet avec la collaboration de A. Bouvard, 
Dardard B, Dubois P, Givet O, Guilloux A, Launay J, Nguyen Minh Duc, Piraud J, Tournery H, Wong 
H). Tunnels et Ouvrages Souterrains 170:79-89 

Anagnostou, G. 2007. Continuous tunnel excavation in a poro-elastoplastic medium. In: Pande, Pietruszczak 
(eds) Numerical Models in Geomechanics (NUMOG X), Rhodes, Greece. Taylor & Francis, pp 183-188 

Anagnostou, G., Kovári, K. 1993. Significant parameters in elastoplastic analysis of underground openings. 
Journal of Geotechnical Engineering 119 (3):401-418 

Barla, G., Bonini, M., Debernardi, D. 2008. Time Dependent Deformations in Squeezing Tunnels. In: The 12th 
International Conference of International Association for Computer Methods and Advances in 
Geomechanics (IACMAG), Goa, India, pp 4265-4275 

Bernaud, D. 1991. Tunnels profonds dans les milieux viscoplastiques: approches expérimentale et numérique. 
PhD Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France 

Boldini, D., Graziani, A., Ribacchi, R. 2000. L’analisi tensio-deformativa al fronte di scavo e nella zona del 
retrofronte. In: Lo scavo meccanizzato delle gallerie, mir2000 - VIII ciclo di conferenze di meccanica e 
ingegneria delle rocce, Torino, Pàtron Editore Bologna, pp 159-216 

Boldini, D., Lackner, R., Mang, H.A. 2005. Ground-Shotcrete Interaction of NATM Tunnels with High 
Overburden. Journal of Geotechnical and Geoenvironmental Engineering July:886-897 

Brinkgreve, R.B.J. 2002. PLAXIS 2D, Version 8. Lisse, Netherlands 

Cantieni, L., Anagnostou, G. 2009a. The effect of the stress path on squeezing behaviour in tunnelling. Rock 
Mechanics and Rock Engineering 42 (2):289–318. doi:10.1007/s00603-008-0018-9 

Cantieni, L., Anagnostou, G. 2009b. The interaction between yielding supports and squeezing ground. 
Tunneling and Underground Space Technology 24 (3):309-322. doi:10.1016/j.tust.2008.10.001 



On a Paradox of Elasto-Plastic Tunnel Analysis 95 

 

Chang, Y. 1994. Tunnel support with shotcrete in weak rock – A rock mechanics study. Ph.D., Royal Institute 
of Technology, Stockholm, Sweden 

Chern, J.C., Shiao, F.Y., Yu, C.W. 1998. An empirical safety criterion for tunnel construction. In: Regional 
Symp. on Sedimentary Rock Engineering, Taipei, Taiwan, pp 222-227 

Debernardi, D., Barla, G. 2009. New Viscoplastic Model for Design Analysis of Tunnels in Squeezing 
Conditions. Rock Mechanics and Rock Engineering (42):259-288. doi:10.1007/s00603-009-0174-6 

Ehrbar, H., Pfenninger, I. 1999. Umsetzung der Geologie in technische Massnahmen im Tavetscher 
Zwischenmassiv Nord. In: Vorerkundung und Prognose der Basistunnels am Gotthard und am 
Lötschberg, Symposium Geologie Alptransit, Zurich, Switzerland. A.A.Balkema Rotterdam Brookfield, 
pp 381-394 

Gioda, G., Cividini, A. 1996. Numerical methods for the analysis of tunnel performance in squeezing rocks. 
Rock Mechanics and Rock Engineering 29 (4):171-193 

Graziani, A., Boldini, D., Ribacchi, R. 2005. Practical estimate of deformations and stress relief factors for 
deep tunnels supported by shotcrete. Rock Mechanics and Rock Engineering 38 (5):345-372 

Guo, C. 1995. Calcul des tunnels profonds soutenus - méthode stationnaire et méthodes approchées. PhD 
Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France 

Itasca 2006. Flac2D 5.0, User’s Manual. Itasca Inc., Minneapolis, USA 

Kasper, T., Meschke, G. 2006. On the influence of face pressure, grouting pressure and TBM design in soft 
ground tunnelling. Tunnelling and Underground Space Technology 21 (2):160-171 

Kovári, K., Staus, J. 1996. Tunnelbau in druckhaftem Gebirge, Falldarstellungen. ETH Zurich, Institut für 
Geotechnik, August 1996  

Lavdas, N. 2010. Einsatzgrenzen von Tübbingausbau beim TBM - Vortrieb in druckhaftem Gebirge. Master 
Thesis, ETH Zurich, Zurich, Switzerland 

Lunardi, P. 2000. The design and construction of tunnels using the approach based on the analysis of 
controlled deformation in rocks and solis. Tunnels & Tunnelling International special supplement, 
ADECO-RS approach (May) 

Madejski, J. 1960. Theory of non-stationary plasticity explained on the example of thick-walled spherical 
reservoir loaded with internal pressure. Archiwum Mechaniki Stosowanej 5/6 (12):775-787 

Mair, R.J. 2008. Tunnelling and geotechnics: new horizons. Géotechnique 58 (9):695-736. doi: 
10.1680/geot.2008.58.9.695 

Nguyen-Minh, D., Corbetta, F. 1991. New calculation methods for lined tunnels including the effect of the front 
face. In: 7th Congress of the ISRM, Achen, pp 1334-1338 

Nguyen-Minh, D., Corbetta, F. 1992. New methods for rock-support analysis of tunnels in elastoplastic media. 
In: McCreath K (ed) Rock Support in Mining and Underground Construction, Sudbury, Canada, 
Balkema, Rotterdam, pp 83-90 

Nguyen-Minh, D., Guo, C. 1993. Sur un principle d' interaction massif-soutenement des tunnels en 
avancement stationnaire. In: Ribeiro, Sousa, Grossmann (eds) Eurock’ 93, Lisboa, Portugal, Balkema, 
Rotterdam, pp 171-177 

Nguyen-Minh, D., Guo, C. 1996. Recent progress in convergence confinement method. In: Barla G (ed) 
Eurock'96, Torino, Italy, Balkema Rotterdam, pp 855-860 

Oreste, P., Peila, D., Pelizza, S. 2004. Face Reinforcement in Deep Tunnels. Felsbau 22 (4):20-25 

Oreste, P. 2003. A procedure for determining the reaction curve of shotcrete lining considering transient 
conditions. Rock Mechanics and Rock Engineering 36 (3):209-236 

Panet, M. 1995. Le calcul des tunnels par la méthode convergence-confinement. Presses de l'école nationale 
des ponts et chaussées, Paris, France 

Peila, D. 1994. A theoretical study of reinforcement influence on the stability of a tunnel face. Geotechnical 
and Geological Engineering 12:145-168 

Perzyna, P. 1966. Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics 9:243-377 



96 Part III 

 

Pöttler, R. 1990. Time-dependent rock - shotcrete interaction. A numerical shortcut. Computers and 
Geotechnics 9:149-169 

Ramoni, M., Anagnostou, G. 2010. Thrust force requirements for TBMs in squeezing ground. Tunnelling and 
Underground Space Technology 25 (4):433-455 

Ramoni, M., Anagnostou, G. 2011. The Interaction Between Shield, Ground and Tunnel Support in TBM 
Tunnelling Through Squeezing Ground. Rock Mech Rock Engng 44 (1):37-61. doi:101007/s00603-010-
0103-8  

Vlachopoulos, N., Diederichs, M.S. 2009. Improved Longitudinal Displacement Profiles for Convergence 
Confinement Analysis of Deep Tunnels. Rock Mech Rock Engng 42:131-146 

Wong, H., Trompille, V., Dias, D. 2004. Extrusion analysis of a bolt-reinforced tunnel face with finite ground-
bold bond strength. Can Geotech J 41:326-341. doi:10.1139/T03-084 



 

 

 

 

PART IV 

 

ON THE VARIABILITY OF SQUEEZING IN TUNNELLING 

The intensity of rock deformations and rock pressures in a tunnel section where there are squeez-

ing conditions may vary over short distances. The variability of squeezing can be traced back to 

heterogeneities of the ground at different scales and with respect both to its mechanical and to its 

hydraulic characteristics. Often the cause of this phenomenon is an advance through a sequence 

of rock zones with different degrees of crushing or shearing. The results of numerical calculations 

indicate that even relatively thin competent rock interlayers may have a pronounced stabilizing ef-

fect. However, even in a macroscopically homogeneous rock mass, a large variation of defor-

mations may be observed. This can be explained theoretically by the fact that the results of ground 

response analyses are highly sensitive to minor changes in rock properties. 
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1 Introduction 

Tunnel excavation in weak rocks may trigger large time-dependent deformations. Often the intensi-

ty of squeezing varies over short distances for one and the same excavation method, temporary 

support, depth of cover and lithology (Kovári 1998). The variability of squeezing makes tunnel con-

struction very demanding as it decreases the predictability of the conditions ahead of the tunnel 

face even after experience has been built up with a specific geological formation during excavation. 

The present paper aims at a better understanding of the observed variability, which can be traced 

back basically to two different causes. On the one hand, relatively small fluctuations in the mechan-

ical and hydraulic properties of a macroscopically homogeneous rock mass may have a major ef-

fect on the developing deformations and pressures. On the other hand, rock structure heterogenei-

ty (even on the scale of few meters) may lead to significant variations in the ground response. Sec-

tion 2 discusses the sensitivity of ground response to small variations in rock mass properties by 

means of computational results and with reference to tunnelling experience, while Section 3 deals 

with the case of a heterogeneous rock mass consisting of alternating weak and hard rock zones. 

2 The sensitivity of ground response 

2.1 Tunnelling experience – Case 1 

As an example of squeezing variability, the northern Tavetsch massif crossed by the new Gotthard 

Base Tunnel at a depth of 800 m is worthy of mention. During mountain formation this zone was 

subjected to intensive tectonic action, resulting in alternating layers of thickness in the range of 

decimetres to decametres, which consist of intact to more or less strongly kakiritic gneisses, slates, 

and phyllites (the term “kakirite” denotes a broken or intensively sheared rock, which has lost a 

large part of its original strength, cf. Schneider 1997). The critical zone was about 1150 m long. 

Squeezing was tackled through a yielding support system (Kovári et al. 2006). In the first half of 

this zone, excavation proceeded through alternating layers of more or less kakiritized rock. The 

layers are oriented perpendicularly to the tunnel axis. Figure 1 shows the horizontal displacements 

of the walls of the two tubes as well as the degree of rock kakiritization. The latter was determined 

based upon a project-specific classification scheme and according to inspections of the exposed 

rock. According to Figure 1, the convergences observed within apparently homogeneous zones 

vary considerably (see, e.g., western tube, ch. 1240 to 1300). On the other hand, a rough correla-

tion exists between the degree of kakiritization, the thickness of the weak zones and the observed 

displacements. It is, for example, remarkable that in a short zone with extreme kakiritization smaller 

convergences occurred than in a similar longer zone (eastern tube ch. 1183 to 1190 and 1255 to 

1285). Furthermore, the deformations occurring in the weakest zones seem to depend also on the 
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quality of the adjacent, more competent rock. So, heterogeneities at different scales are responsi-

ble for the observed variability. 

The variability of the squeezing can be explained quantitatively by means of computational results 

obtained on the basis of a simple rotational symmetric model of a circular opening. The mechanical 

characteristics of the kakiritic rocks have been established by means of a comprehensive laborato-

ry testing program that was carried out in the design stage of the Gotthard Base Tunnel. Particular 

attention was paid to the control of pore water pressure during testing. 

Both consolidated drained and consolidated undrained triaxial compression tests have been carried 

out. Despite the complex and changeable structure of kakiritic rocks, the test results have been 

remarkably uniform and can be approximated satisfactorily by an elastic, perfectly plastic constitu-

tive model using the Mohr- Coulomb yield criterion (Vogelhuber 2007). From the evaluation of 63 

tests, it was possible to derive average strength constants of c = 0.6 MPa and  = 26.7°. The varia-

tion of the friction angle was particularly large (Fig. 2a). Figure 2b illustrates how sensitively the 

model behaviour depends on this parameter. The solid lines apply to the average friction angle and 

show the convergence as a function of the overburden for an unsupported tunnel (p = 0) as well as 

for a high support resistance (p = 2 MPa), while the hatched area shows the effect of a variation of 

the friction angle by ±15% (see Fig. 2a). Accordingly, the variation in the friction angle can have a 

far greater effect on the intensity of squeezing than the depth of cover. The sensitivity of the results 

with respect to the friction angle is particularly noticeable at low support resistances and high 

depths of cover. The next example shows, however, that an extreme squeezing variability is in no 

way limited to deep tunnels. 

 

Fig. 1 Gotthard Base Tunnel, northern Tavetsch massif: Horizontal displacements of the tunnel walls occur-

ring in the part of the tunnel between 5 and 30 m behind the face (by choosing an advance-dependent illustra-

tion the influence of standstills and different advance rates can be reduced as the deformations are, in the 

present case, mainly due to the stress re-distribution associated with the advance of the face) 
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2.2 Tunnelling experience – Case 2 

Case 2 refers to a shallow tunnel constructed in the 1990s in South America. This tunnel had a 

horseshoe cross-section (Fig. 3b) and was excavated full face. In spite of the small overburden (50 

m), convergences of up to 1 m occurred in a 200 m long critical zone consisting of intensively 

sheared graphitic phyllites. (Fig. 3a). 

The very low resistance of the support (open shell without an invert lining, Fig. 3b) applied in com-

bination with the sensitivity of ground behaviour to small variations in the friction angle (which is 

large at low support pressures, Fig. 3c) provides an explanation for the observed large variability of 

squeezing (0 - 10% convergence in a macroscopically homogeneous rock mass). 

 

Fig. 2 (a) Distribution of friction angle (data from Vogelhuber 2007). (b) Convergence u/a as a function of the 

overburden (material constants: Young’s modulus E = 2000 MPa, Poisson’s ratio  = 0.30, friction angle  = 

26.7° ± 15%, cohesion c = 0.6 MPa, dilatancy angle  = 5°) 

 

Fig. 3 Tunnel crossing graphitic phyllites: (a) Horizontal convergence ∆X in the critical zone; (b) Tunnel cross 

section; (c) Sensitivity of the ground response to a variation of the friction angle by 15% 
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2.3 The effects of hydraulic properties 

Laboratory tests, field observations and theoretical considerations show that consolidation pro-

cesses are, in addition to creep, highly important for the time-dependency of squeezing (Vogelhu-

ber et al. 2004). The permeability of the ground governs the rate of the deformations associated 

with the dissipation of excess pore pressures. Squeezing rocks, such as shales, mudstones or al-

tered metamorphic rocks, exhibit very low permeabilities. Thin permeable interlayers may cause, 

however, a substantial acceleration of the deformations as they lead to a shortening of the drain-

age paths. The same applies to the case of alternating layers of weak and hard rock, as the latter 

are often fractured and therefore increase the overall permeability. Consequently, permeability var-

iations occurring within a macroscopically homogeneous rock mass may also lead to significantly 

different squeezing intensities. In the numerical example of Figure 4, the convergence occurring at 

a distance of two diameters behind the tunnel face varies between 1% and 5%, depending on the 

overall permeability. 

3 Heterogeneous rock structures 

As mentioned in Section 2.1, the rock structure that was encountered during excavation of the 

Gotthard Base Tunnel in about the first half of the northern Tavetsch massif was characterized by a 

sequence of weak and competent rock zones striking perpendicularly to the tunnel axis. When 

crossing alternating weak and hard rock zones, shear stresses are mobilized at their interfaces be-

cause the competent rock zones deform less than the weak zones. This so-called “wall-effect” was 

analysed by Kovári & Anagnostou (1995) for the borderline case of rigid competent rock. The inter-

face shear stresses reduce the deformations of a weak zone considerably but, on the other hand, 

the weak ground imposes, via the shear stresses, an additional load on the competent rock. This 

 

Fig. 4 Convergence along a tunnel with yielding support (250 kPa pressure) during continuous excavation 

(advance rate v = 2 m/d, permeability k = 10-10 – 10-8 m/s, Young’s modulus E = 1 GPa, Poisson’s number  = 

0.30, UCS = 0.75 MPa, friction angle  = 25°, dilatancy angle  = 5°, initial stress 0 = 7.5 MPa, initial pore 

pressure p0 = 1 MPa; computational model after Anagnostou 2007) 
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may lead to overstressing of the competent rock and thus reduce or eliminate its stabilizing effect. 

It is obvious, that the thinner the competent rock interlayers, the less they will stabilize the weak 

zones; and, vice versa, the thinner the weak zones are, the less will be the loading imposed by 

them on the competent rock. So, the wall-effect depends, in general, on the thicknesses of the al-

ternating layers as well as on the strength and deformability both of the hard and the weak zones. 

These interactions have been studied through axisymmetric numerical analyses looking at an un-

supported cylindrical tunnel of radius a = 4 m that crosses alternating hard and weak layers of 

thickness h and w, respectively (Figure 5). The numerical model is delimited by the tunnel bounda-

ry (at r = a), the symmetry planes of two adjacent layers (at y = h/2 and –w/2, respectively) and the 

far field boundary (at r = 25 a). The hydrostatic and uniform initial stress 0 was taken to be equal 

to 10 MPa. The excavation was simulated thought a stepwise reduction of the tunnel boundary 

tractions from 0 to zero. The ground was modelled as an isotropic, linearly elastic, perfectly plastic 

material obeying the Mohr-Coulomb yield criterion. The material constants (see caption for Figure 

5) have been chosen on the basis of the results of the investigation programme for the Tavetsch 

massif (Vogelhuber 2000). 

According to Figure 5b, the interface shear stress ry increases from zero (at the free excavation 

boundary) to its maximum value at the boundary of the plastic zone of the weak layer. 

The orientation of the principal stresses of the weak zone indicates an arching effect in the longitu-

dinal direction, which is favourable for the weak layer but leads to the above-mentioned additional 

Fig. 5 Convergence u, plastic zone (hatched area), shear stress ry along the interface of the two zones (y = 

0) and principal stress orientation for (a) w/h = 1, w/a = 0.5; (b) w/h = 0.25, w/a = 0.5; and (c) w/h = 1, w/a = 2 

(material constants: Young’s Modulus Ehard = 10 GPa, Eweak = 1 GPa, Poisson’s ratio = 0.3, friction angle  

= 25°, cohesion chard = 5 MPa, cweak = 0.5 MPa, dilatancy angle  = 5°) 
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loading of the hard rock layer. This can been seen also by comparing the extend of the plastic zone 

developing in the present case (up to r = 1.35 a) with the plastic zones developing in a homogene-

ous ground (for w/a and h/a  , the plastic zone would reach up to r = 3.38 a and r = 1.08 a in the 

weak rock and in the hard rock, respectively).  

A continuous reduction of the hard rock interlayer thickness from case (b) to case (a) has the con-

sequence that the hard rock is getting more and more loaded (larger plastic zone and defor-

mations). The interface shear stresses, the convergences, the stresses and the radius of the plastic 

zone in the weak layer do not change significantly. On the other hand, an increase of the weak 

zone thickness from case (b) to case (c) leads to considerably larger plastification and conver-

gences of the weak rock. The interface shear stresses are also mobilized over a larger area and as 

a consequence the hard rock zone becomes more stressed. It is noticeable that the maximum con-

vergences (at the symmetry plane of the weak zone) depend mainly on the weak zone length. 

Figure 6 shows the results of a parametric study concerning the effects of the layer thicknesses w 

and h. The diagram shows the maximum convergence umax (normalized by the convergence uw,2D 

that would develop in a very long weak zone) as a function of the thickness of the weak zone w/a. 

The values on the ordinate axis can be seen as a convergence reduction factor associated with the 

wall-effect. The latter is considerable for weak zones even as thick as about four diameters (w/a < 

8 or w = 40 m for a normal traffic tunnel cross-section). With decreasing thickness of the hard 

zones, the wall-effect becomes less pronounced but it is still considerable at h/w = 1/16.  

We examined, furthermore, how thin the alternating hard and weak zones must be in order that the 

convergence along the tunnel becomes approximately uniform. Figure 7 applies to alternating lay-

ers of equal thickness (h = w) and shows the ratio of minimum to maximum convergence (a meas-

ure for the convergence uniformity) as a function of the normalized layer thickness. At w/a = h/a = 

1/2 (point A) the variation in convergence is still considerable (umin / umax ≈ 1/3): In a tunnel with a 

diameter of 10 m, the convergences would vary by a factor of three within 2 to 3 m (an interesting 

result particularly when taking into account the fact that monitoring stations are usually 5 – 10 m 

apart).  

 

Fig. 6 Maximum convergence umax normalized by the plane strain convergences uw,2D developing in a long 

weak zone (uw,2D = 447 mm) for different layer thicknesses 
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It should be noted that the computational model assumes perfectly plastic behaviour for competent 

rock as well. Brittle failure and strength loss of the competent rock due to overstressing (Fig. 5) 

would reduce the wall-effect, thereby leading to more uniform and also larger convergences. The 

presence of a lining would probably also increase the uniformity. 

4 Conclusions 

The frequently observed phenomenon of squeezing variability can be traced back to heterogenei-

ties of the ground on different scales and with respect both to its mechanical and to its hydraulic 

characteristics. The results of numerical calculations indicate that even relatively thin competent 

rock interlayers may have a pronounced stabilizing effect.  
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PART V 

 

INTERPRETATION OF CORE EXTRUSION MEASUREMENTS IN 

TUNNELLING THROUGH SQUEEZING GROUND 

Abstract: Squeezing intensity in tunnelling often varies over short distances, even where there is 

no change in the excavation method or lithology. Reliable predictions of the ground conditions 

ahead of the face are thus essential in order to avoid project setbacks. Such predictions would en-

able adaptations to be made during construction to the temporary support, to the excavation di-

ameter and also to the final lining. The assessment of the behaviour of the core ahead of the face, 

as observed by means of extrusion measurements, provides some indications as to the mechanical 

characteristics of the ground. If the ground exhibits a moderate time-dependent behaviour, a pre-

diction of the convergences is feasible, provided that the interpretation of the core extrusion takes 

into account the effects of the support measures. If the ground behaviour is pronouncedly time-

dependent, however, convergence predictions become very difficult, because the extrusion of the 

core depends on the short-term characteristics of the ground, which may be different from the long-

term properties that govern the final convergences. The case histories of the Gotthard Base Tunnel 

and of the Vasto tunnel show that there is a weak correlation between the axial extrusions and the 

convergences of the tunnel. In order to identify potentially weak zones on the basis of extrusion 

measurements, careful processing of the monitoring data is essential, in order to take account of 

the effects of tunnel support and time, and to eliminate errors caused by the monitoring process. 



 

 

 

 

 

 



Interpretation of Core Extrusion Measurements in Tunnelling through Squeezing Ground 109 

 

 

 

Notation: 

a Tunnel radius 

AF Area of the tunnel face 

d Distance between tunnel face and measuring point on the tunnel axis 

dc Distance between tunnel face and measuring point on the tunnel boundary 

E Young's modulus of the ground 

e Unsupported span  

fi() Function (i = 1, 2, 3, …) 

f Yield function 

fc Uniaxial compressive strength of the ground 

g Plastic potential 

H Overburden 

k Radial stiffness of a ring-shaped lining 

Li,t Distance between the reference point R and point i (i = A, B) at time t 

Li,0 Initial distance between the reference point R and point i (i = A, B) 

p(y) Radial pressure at the tunnel boundary 

po Initial stress  

py Yield pressure of the tunnel support 

r Radial co-ordinate (distance from tunnel axis) 

s Round length in the step-by-step calculations 

S Face advance (multiple of s) 

t Time 

u Displacement of the ground  

ur Radial displacement of the ground at the tunnel boundary 

uc Radial ground displacement developing behind the face (convergence) 

uy Axial displacement of the ground at the tunnel axis 

uy,i Axial displacement of the point i at the tunnel axis (i = A, B, O, R) 

v Advance rate of the excavation 

y Axial co-ordinate 

yi Axial co-ordinate of Point i (i = A, B) 

yF Axial co-ordinate of the tunnel face 

 

uy,A(d,S) Change in axial displacement of point A caused by a face advance of S (d denotes 
the distance of point A from the face after the face advance) 

y Axial strain of the ground at the tunnel axis 
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y,AB(d) Average axial strain of the ground between the points A and B, whereby Point A is 
located at distance d ahead of the face. 

t,c Tangential ground strain at the tunnel boundary developing behind the face (conver-
gence normalized by the tunnel radius) 

εt,c Change in tangential ground strain at the tunnel boundary for a specific face ad-
vance 

LA,t Change in the distance of point A from reference point R at time t 

LB,t Change in the distance of point B from reference point R at time t 

ij  Strain rate tensor 

e
ij  Elastic part of the strain rate tensor ij  

p
ij  Inelastic part of the strain rate tensor ij  

η Viscosity 

 Poisson's ratio of the ground 

r Radial stress  

 Angle of internal friction of the ground 

 Dilatancy angle of the ground 

1 Introduction 

Squeezing intensity can vary greatly over short distances even where there is no change in the ex-

cavation method, temporary support, depth of cover or lithology (Kovári 1998). This variability 

makes tunnelling in squeezing ground very demanding, as it decreases the predictability of the 

conditions ahead of the face even after some experience has been gained with a specific geologi-

cal formation during excavation. The variability can be traced back to two different reasons 

(Cantieni and Anagnostou 2007): (i) rock structure heterogeneity (even on the scale of few meters) 

may lead to significant variations in the ground response; and, (ii), small fluctuations in the me-

chanical and hydraulic properties of a macroscopically homogeneous rock mass may have a major 

effect on the development of deformations and pressures. 

Uncertainties concerning rock structure heterogeneity can be reduced by advance probing. How-

ever, the uncertainties concerning ground response will remain. Therefore, the prediction of 

squeezing intensity represents one of the most difficult challenges when tunnelling through squeez-

ing ground. A timely prediction of the conditions ahead of the face would enable adaptations to be 

made during construction to the temporary support, excavation diameter and final lining. A number 

of authors have therefore attempted to identify early indicators of ground quality on the basis of 

field measurements. Steindorfer (1998) proposed a method of predicting changes in rock mass 

quality ahead of the face based on the displacement vector orientations obtained by geodetic 

measurements in the tunnel. Jeon et al. (2005) underpinned the method theoretically by means of 
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numerical computations, but pointed out that it is very difficult to make a prediction under complex 

geological conditions. Sellner (2000) proposed a method of predicting the displacement of the tun-

nel boundary based on Sulem et al. (1987). This method requires an estimation to be made of the 

ground convergences ahead of the face, however, and this can be done only by estimating the pa-

rameters of the function defined by Sulem et al. (1987) on the basis of experiences. 

Despite improvements in the theoretical assessment of the squeezing phenomenon, and despite 

the experiences gained with different construction methods, there are still no reliable methods of 

prediction available. 

The analysis of deformation measurements in the ground ahead of the face seems to be promising 

with regard to ground response predictions, as the radial loading and axial extension of the core 

ahead of the face can be seen as a large scale in-situ test.  

Figure 1 shows the mechanism leading to face extrusion schematically. The ground core ahead of 

the face loses its axial confinement as the tunnel face approaches. The loss of confinement reduc-

es the radial resistance of the ground core, and the core thus deforms due to the radial load r ex-

erted by the surrounding ground. In squeezing ground, the core yields under the radial loading and 

extrudes into the opening. The magnitude of the extrusion depends on the mechanical properties of 

the ground, the depth of cover and the support measures applied at the tunnel circumference and 

at the tunnel face. If the ground exhibits a time-dependent behaviour (either due to creep or to con-

solidation) the extrusion will depend also on the rate of advance and on the duration of any stand-

stills. 

In the past, extrusion measurements have been used mostly to control face stability. Lunardi 

(1995) first used such measurements in squeezing ground for the assessment of both face stability 

and the expected convergences. A recent case history showing a correlation between the extru-

sions, the convergences and the overburden is the Pianoro tunnel (Lunardi and Gatti 2010). 

The extrusion of the face during a standstill in squeezing ground can be from several centimetres 

to decimetres (cf. Cantieni and Anagnostou 2011), but it is not problematic in conventional tunnel-

ling as long the face remains stable (Kovári 1998). In TBM tunnelling, the excavation speed is nor-

mally high enough to avoid jamming of the cutter head during regular TBM operation, as the ex-

truding ground is excavated as part of the boring process. Immobilization may, however, occur dur-
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Fig. 1 Schematic mechanism of core extrusion 



112 Part V 

 

 

 

ing a standstill (Ramoni and Anagnostou 2010). Extreme extrusions have been observed, for ex-

ample, during the construction of the Gilgel Gibe II Tunnel in Ethiopia. After encountering a fault 

zone, the face extruded very quickly (40 to 60 mm/hour), and pushed back the TBM for about 60 

cm (De Biase et al. 2009). 

The present paper investigates whether it is possible to predict the ground response to tunnelling 

by assessing the axial extrusion of the core ahead of the face. The paper starts with a review of the 

analytical, empirical and numerical approaches proposed in the literature for the quantitative as-

sessment of core extrusion (Section 2). Section 3 briefly sets out the methods for monitoring extru-

sion, discusses some aspects of data processing and reviews monitoring results from case histo-

ries found in the literature. Section 4 investigates theoretically, by means of numerical analyses, 

the possibility of using extrusion data as an early indicator of tunnel convergence. Finally, extrusion 

and convergence measurements from the Gotthard Base Tunnel are presented and discussed in 

detail with regard to the predictability of ground response (Section 5).  

2 Computational methods for estimating extrusion  

Based on a spherical model of the tunnel face (Egger 1980) and on undrained ground behaviour, 

Mair (2008) introduced so-called “influence lines”, which show the increase in axial displacement of 

a point ahead of the face due to the advancing face. Wong et al. (2000a) proposed spherical mod-

els for the determination of face extrusions, incorporating the effect of face reinforcement using 

bolts. However, the extrusions determined through laboratory experiments could not be reproduced 

by the analytical solution (Trompille 2003). Analytical approaches may allow a fast assessment to 

be made of extrusions, but the numerous simplifications (e.g. spherical face, disregard of the actual 

stress state) limit their predictive power. 

Lunardi (2000) proposed a relation between extrusion and the radial displacements that occur 

ahead of the face (so-called pre-convergences), based on a volume balance of the ground ahead 

of the face (neglecting the dilatancy that often accompanies plastic yielding). The determination of 

the pre-convergences allowed him to calibrate the ground response curve and thus estimate the 

final lining loading by means of the convergence confinement method. 

Hoek (2001) presented an approach obtained by curve-fitting of the numerical results for the axial 

and tangential strains in function of the internal support pressure. In case of an unsupported tunnel, 

the equations lead to a constant ratio of 1.5 between the tangential and the axial strains. Lee and 

Rowe (1990) presented, also based on numerical computations, a relationship between the extru-

sion of the face and the face support pressure for a tunnel with a rigid lining up to the face. 

Kovári and Lunardi (2000) and Bernaud et al. (2009) investigated the influence of face bolting on 

the extrusion of the face by means of axisymmetric numerical computations. Peila (1994) and 

Oreste et al. (2004) investigated the deformation behaviour and face stability of shallow and deep 

tunnels, respectively, by means of three-dimensional numerical models. The face reinforcement 

was modelled with horizontal pipes embedded in the ground ahead of the face. 
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The ground may respond faster or slower to tunnel excavation, depending on its rheological prop-

erties. Slow ground response may reduce the extrusion of the core significantly, thus making it dif-

ficult to predict squeezing intensity (Barla 2009). The time-dependency of ground behaviour in 

squeezing ground can be traced back to two mechanisms: consolidation and creep (cf. Anagnostou 

and Kovári 2005). Ghaboussi and Gioda (1977) showed by means of numerical computations for a 

visco-elastic ground behaviour that the radial displacements of the ground ahead of the face de-

pend (among other parameters) both on the advance rate and on the viscosity of the ground. Myer 

et al. (1981) illustrated the effect of the advance rate on the axial strain ahead of the face by means 

of physical models. According to their experimental results, the faster the advance, the smaller the 

extrusion of one and the same material will be. A comprehensive spatial numerical investigation for 

a tunnel advance in visco-plastic ground was carried-out by Bernaud (1991). Pellet et al. (2009) no-

ticed substantial face extrusion when using Lemaitre's visco-plastic damage model. Anagnostou 

(2007b) showed for the case of a water bearing, low permeability ground that the extrusion of the 

tunnel face depends on the permeability and on the advance rate (all other parameters remaining 

constant).  

3 Extrusion measurements 

3.1 Measurement methods 

The axial deformations of the ground ahead of the face are monitored usually by means of sliding 

micrometers (Kovári et al. 1979). The sliding micrometer allows high precision measurements of 

the strain distribution along a line ahead of the face with a resolution of 1 m intervals. The main 

disadvantage of the sliding micrometer is the time consuming measuring procedure, which inter-

feres with excavation work at the face (Steiner and Yeatman 2009). The sliding micrometer has 

been applied successfully under both non-squeezing and squeezing conditions (e.g. Lunardi and 

Focaracci 1999). As experienced in the Gotthard Base Tunnel (Tavetsch intermediate massif sec-

tion), however, its application may be problematic under heavily squeezing conditions (damaged 

due high water or rock pressure; Thut et al. 2006).  

A recent development that resolves the above-mentioned problems is the so-called Reverse-Head-

extensometer (RH-extensometer) (Thut et al. 2006; Steiner 2007). In contrast to the normal exten-

someters (which are used for measuring the radial displacements of the ground in tunnelling), the 

measuring head of the RH-extensometer, which includes the data logger, is installed at the end of 

a borehole far ahead of the face, thus allowing a continuous monitoring of deformations with little 

obstruction to the excavation work (Figure 2a). The communication cable which is used for data 

readout is located in a central tube and can be accessed at the face (Steiner and Yeatman 2009).  

The data recorded by means of sliding micrometers or extensometers ahead of the face requires 

careful processing in order to avoid erroneous results. Two sources of error will be discussed in the 

next section. 
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3.2 Data processing  

The interpretation of the monitoring data should account for the effects (i) of the reference point 

displacement and, (ii), of the zero reading (Figure 2b and 2c, respectively). 

Sliding micrometers measure the length changes of the intervals defined by the successive meas-

uring points. As discussed by Kovári (1998), Wong et al. (2000b) and Trompille (2003), the total 

displacements of the measuring points (e.g., the displacement uy,A of point A) can be determined 

by summing the length changes of the successive intervals, provided that the displacement uy,R of 

the reference point (which is located at the deepest point of the borehole) is known (e.g. by meas-

uring it independently with an overlapping measuring device) or it can be assumed to be practically 

zero (which is true only if it is located outside the influence zone of the advancing tunnel face): 
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Fig. 2 a) Scheme of the RH-extensometer (after Thut et al. 2006); b) ”Non-fixed reference point” limitation; c) 

Limitation concerning the “zero reading” 
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where LA,t denotes the sum of the length changes of the intervals between the point A and the 

reference point R. Similar remarks apply to RH-extensometers, the only difference being that these 

instruments measure directly the length change of the intervals defined by the measuring points 

(e.g. point A) and the reference point R.  

The uncertainties associated with a non-fixed reference point are irrelevant for the distribution of 

the axial strain εy. An interpretation of the observed behaviour in terms of strain εy (rather than in 

terms of displacement) is therefore advantageous, and provides a better picture of the ground. The 

sliding micrometers measure the length changes of successive 1 m long intervals, thus leading di-

rectly to the strain distribution along the measuring line. In the case of RH-extensometers, the 

strain profile can easily be calculated from the measured length changes. The average strain y,AB 

over the interval defined by measuring points A and B reads as follows (Figure 3a): 
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Fig. 3 a) Definition of the axial displacement uy and strain y; b) Definition of the increase in axial displacement 

uy and in strain y due to a face advance by S 
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A further limitation is imposed by the time and location of the zero reading (Figure 2c). If the meas-

uring device is installed too close to the face (i.e. within its influence zone) the measured data will 

apply only to the changes in extrusion taking place after the installation of the measuring device 

(Lunardi and Focaracci 1999). 

The effects mentioned reduce the length of the measuring line that can be used for the assessment 

of ground displacements considerably. As discussed by Wong et al. (2000b), in the case of one 

single measuring device installed right at the face, the affected length of the measuring line 

amounts to two times the influence length of the tunnel face. The ”non-fixed reference point”- and 

the “zero reading”-effects can be avoided by an appropriate arrangement of the measuring lines or 

by a specific way of analysing the data. 

The problem concerning the displacement of the reference point can be by-passed either by in-

stalling a series of extensometers with sufficient overlapping lengths (Steiner and Yeatman 2009) 

or by analysing the axial strains εy rather than the axial displacements uy. 

The “zero reading”-effect can be avoided by installing the extensometer a sufficient distance from 

the face in undisturbed ground, or by installing a series of overlapping extensometers (the new ex-

tensometer must be installed before the influence zone of the advancing tunnel face reaches the 

reference point of the preceding extensometer). When analysing, the error associated with a “zero 

reading” can also be avoided by considering the increase in axial strains ∆εy or the increase in dis-

placement ∆uy (Figure 3b) caused by a face advance of S (rather than considering the total re-

sponse of the ground to tunnelling). 

3.3 Case histories 

Extrusion measurements have been performed in a number of tunnel projects in the recent years 

(Table 1). Some selected cases will be discussed below. 

Tartaiguille tunnel 

The Tartaiguille tunnel will be looked at as a first example. It forms part of the French high-speed 

railway line between Lyon and Marseilles (Paulus 1998). The tunnel was constructed between 

1995 and 1998. Its length is 2338 m and the maximum overburden amounts to 137 m. The tunnel 

crosses several Cretaceous formations. The section of the tunnel, which is investigated in the pre-

sent paper, is located in marly clays of the so-called “lower Stampien”. Figure 4a shows the geolog-

ical longitudinal profile of the tunnel. The tunnel was excavated full face (AF = 180 m2) with 90 fi-

breglass bolts for face reinforcement (between chainage 495 m and 1370 m). More detailed de-

scriptions of the project can be found elsewhere (e.g. Lunardi 2008; Wong et al. 2000b). The extru-

sion of the face was monitored by sliding micrometers. The present case study discusses the ex-

trusions between chainage 1251 m and 1215 m (rectangle in Figure 4a). The excavation advances 

in the direction of the decreasing chainage. 
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Figure 4b shows the axial displacement assuming a fixed reference point and the longitudinal sec-

tion of the tunnel at the position of the installation of the sliding micrometer. Additionally, the figure 

also shows the cross section of the tunnel. The maximum extrusion uy at the face increases for the 

first six readings and remains constant afterwards. Figure 4c shows the so-called influence lines of 

the axial displacements uy (assuming a fixed reference point). They show, analogously to the influ-

ence lines known from structural engineering, the axial deformation uy (or strain y) of a point in the 

function of its distance d to the approaching face. According to Wong et al. (2000b) the first 15 

measuring points (the upper diagram of Figure 4c) and the last 15 (the lower diagram of Figure 4c) 

measuring points do not show the correct displacements uy profile of the ground, due to the “zero 

reading”-effect and to the “fixed reference point”-effect, respectively (cf. Section 3.2), and therefore 

cannot be used for data interpretation. 

 

 

Table 1 Tunnel projects with extrusion monitoring documented in the literature 

Tunnel References 

Tartaiguille Wong et al. 2000b; Wong et al. 2004 

Wong and Trompille 2000 

Lunardi 1999, 2008 

Raticosa Boldini et al. 2004 

Bonini et al. 2009 

Lunardi and Focaracci 1999 

Barla et al. 2004 

Lunardi et al. 2009 

Barla 2005 

Vasto Lunardi and Focaracci 1997 

Lunardi 1998 

Saint Martin La Porte access gallery (Lyon-Turin 

Base Tunnel) 

Russo et al. 2009 

 

Marinasco Barla and Barla 2004 

San Vitale Cosciotti et al. 2001 

Rossi 1995 

Lunardi and Bindi 2004 

Osteria Barla 2005 

Barla et al. 2004 

Bois de Peu (France) Eclaircy-Caudron et al. 2009 

Sedrun Lot of the Gotthard Base Tunnel Steiner and Yeatman 2009 

Steiner 2007 

 



118 Part V 

 

 

 

 

(a)

0

5

10

15

20

25

30

u
y
 [
m

m
]

35

0.000

0.002

0.004

0.006

0.008

εy

0

5

10

15

20

25

30

35

u
y
 [
m

m
]

0

5

10

15

20

25

30

35

051015202530

u
y
 [
m

m
]

d [m]

0.000

0.002

0.004

0.006

0.008

εy

(c) (d)

0.000

0.002

0.004

0.006

0.008

εy

(e)

0.000

0.001

0.002

0.003

0.004

Δ
εy

0.000

0.001

0.002

0.003

0.004

Δ
εy

0.000

0.001

0.002

0.003

0.004

510

d [m]

Δ
εy

051015202530

d [m]

0 500 1000 1500 2000 2500

150

100

0

o
v
e

rb
u

rd
e

n
 [
m

]

50

chainage [m]

Upper SampienuS

Marly clays of the lower SampienlS

Albian sandstoneAs

Aptian blue marlsAm

uS lS
As

Am

stretch under consideration

0

5

10

15

20

25

30

35

12151225123512451255

u
y
 [
m

m
]

y [m]

14.02.98
15.02
15-16.02
17.02
17-18.02
18.02
18-19.02
19.02
24.02
25.02
26.02
27.02
27-28.02
28.02

(b)

1247
1246
1245
1244
1243
1242

1241

1240

1239

1238

1237

y [m] =

1226
1225
1224
1223
1222

1221
1220
1219
1218
1217
1216
1215

1229
1228
1227

y [m] =

1236
1235
1234
1233
1232
1231
1230

y [m] =

 

Fig. 4 a) Longitudinal geological profile of the Tartaiguille tunnel (after Wong and Trompille 2000) and tunnel 

stretch under consideration (rectangle); b) Axial displacement uy as a function of the chainage y for different 

dates and positions of the face yF (after Wong et al. 2000b) (the chainage of the first value of the extrusion uy 

corresponds to the position of the face) as well as longitudinal and cross section of the tunnel (after Lunardi 

1999); c) Influence line of the axial displacements uy of the measuring points (the notation of the measuring 

points denotes their y-coordinates); d) Axial strain εy of the ground between the measuring points as a func-

tion of their distance to the face d; e) Influence line of the change in axial strain εy caused by the face ap-

proaching from a distance of 10 m to a distance of 5 m 
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As discussed in Section 3.2, the “fixed reference point”-effect can be avoided by analysing the axial 

strains εy and not the axial displacements uy. Figure 4d shows the influence lines of the axial strain 

εy. Such an illustration makes it possible to incorporate the measuring points between chainage 

y = 1229 m and y = 1215 m (the lower diagram of Figure 4d) in the analysis. 

The influence lines of Figure 4d show that the ground response to excavation is variable. The 

measuring points 1223, 1225, 1227, 1229 and 1231, for instance, show a high increase in the 

strain for the advance from 5 m to 3 m, and a subsequent decrease in the strain for the advance 

from 3 m to 1 m. This behaviour may be caused either by a heterogeneous rock structure (layers of 

different ground quality perpendicular to the tunnel axis) or by the effect of staggered face rein-

forcement. Both may cause the observed expansion and subsequent recompression of the ground. 

An analysis of the change in strain ∆εy due to a specific face advance makes it possible to incorpo-

rate and compare all measuring points (cf. Section 3.2). The curves between the vertical dashed 

lines in Figure 4d define the strain portion generated during the face advance from d = 10 m to 

d = 5 m for every ground interval ahead of the face. By comparing these strain portions (Figure 4e), 

different behaviours of the core can be distinguished. The strain ∆εy developed during the face ad-

vance of 5 m amounts to about 0.001 for the intervals up to y = 1235 m. In the subsequent intervals 

y = 1234, 1233, 1232, 1230, 1226, 1224, 1222, 1221, 1220 and 1218 m, the strain increases to 

about 0.002. There seems to be a change either in ground quality or in support measures after 

chainage y = 1235 m, causing an increase in extrusion ahead of the face. Some of the intervals 

especially in the lower diagram of Figure 4e even show a decrease in strain due to a face advance 

(e.g. y = 1229 m). This behaviour may be caused, as already mentioned above, by rock structure 

heterogeneities or by the effect of staggered face reinforcement. 

Raticosa tunnel 

The Raticosa tunnel is part of the Bologna to Florence high-speed railway line, which crosses the 

Apennine range (Lunardi and Focaracci 1999). The tunnel has a length of about 10.5 km and the 

maximum overburden is about 500 m. The section under investigation is located near the northern 

portal and was excavated full face (AF = 160 m2) in 1998 (Figure 5a). The tunnel was excavated 

from the northern portal through a landslide area, formed of intensely tectonised clay shales (Bonini 

et al. 2009). The overburden ranged from a few meters to 100 m. The face was reinforced with 60 

fibre-glass bolts, which had a length of 20 m and were installed every 10 m of face advance. After 

excavating, in steps of about 1.5 m, steel sets (at 1 m spacings) and shotcrete were applied. The 

final lining invert was cast within a distance of about one tunnel diameter from the face. The final 

concrete lining was completed in a distance of about 30 - 40 m behind the face. The extrusion of 

the face was monitored with a sliding micrometer of 30 m length. Only 6 extrusion measurements 

are available (including the zero reading). 

Figure 5b shows the axial displacement profile assuming a fixed reference point as well as the lon-

gitudinal and cross section of the tunnel. A break from the 6th to the 15th July 1998 at face position 

10 m and a subsequent face advance from 10 m to 12 m generated a major extrusion (Figure 5b). 

The extrusion probably developed over time during the standstill. Note, furthermore, that the sub-

sequent face advance from 12 m to 15 m caused only very limited deformations. The installation of 

heavy face reinforcement during the break could be the reason for the limited axial displacements. 
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The lack of information with regard to the executed sequence of face support installation makes it 

not possible to verify this conclusion.  

According to the reading of the 4th July 1998 (face position at 6.1 m) the zone of influence is about 

19 m (Figure 5b). The large zone of influence is evident also in Figure 5c, which shows the influ-

ence lines of the axial displacements uy (assuming a fixed reference point). The total value of the 

extrusion uy cannot be determined for most points, because the zero reading was done when the 
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Fig. 5 a) Longitudinal geological profile of the Raticosa tunnel (after Lunardi and Focaracci 1999) with the 

tunnel stretch under consideration (rectangle); b) distribution of the axial displacement uy as a function of the 

chainage y for different dates (and positions of the face yF) (after Bonini et al. 2009) as well as longitudinal 

and cross section of the tunnel (after Boldini et al. 2004); c) Axial displacements uy of the measuring points as 

a function of their distance to the face d; d) Influence lines of the axial strain εy (the notation of the intervals 

denotes the y-coordinate of their first points); e) Influence lines of convergences at the chainages 30+113 m 

(y = 14 m) and 30+123 m (y = 24 m) 
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ground had already experienced deformations (note the influence zone extends up to 18 m – 19 m 

ahead of the face!) and because the records for the face advance after yF = 14.8 m are missing. 

According to the definition of Wong et al. (2000b) the usable length of this extensometer is reduced 

to zero. However, if we take account of the strains (instead of the displacements), more data can 

be used (cf. Section 3.2). Figure 5d shows the influence lines of the strains εy. A comparison of the 

increase in strains does not yield more information because there are no readings after face posi-

tion of yF = 15 m. A detailed interpretation of the data is very difficult because there are only a few 

readings. It is therefore possible to recognise only pronounced changes in extrusion. 

The convergences were monitored at two cross sections (denoted by “a” and “b” in Figure 5b). Fig-

ure 5e shows the convergences uc measured between the measuring points 1 and 5 at these two 

cross sections as a function of the distance from the face dc. Both cross sections show approxi-

mately the same development of the convergences. The convergences stabilize (at about 40 mm 

only) after the installation of the invert (Bonini 2003). As shown later in Section 4 by means of nu-

merical calculations, the extrusion does not provide any useful indication as to the convergence in 

case of stiff linings which are installed close to the face, because in such cases the convergences 

are almost independent of the ground quality.  

Vasto tunnel 

The Vasto tunnel is part of the railway line from Ancona to Bari. The tunnel has a length of about 

6.2 km and maximum overburden of 135 m. The main part of the tunnel crosses complex for-

mations consisting of a silty, clayey constitution, stratified with thin sandy intercalations and con-

taining sizeable water bearing sand lenses. The excavation work began in 1983 and was stopped 

after several incidences in 1990. In 1992 the work continued with a new design concept, which also 

incorporated extrusion measurements. The tunnel was excavated full-face (AF ≈ 120 m2). The face 

was reinforced by 55 fibre-glass bolts and horizontal jet-grouting was performed in advance around 

the future tunnel (Lunardi and Bindi 2004). A detailed description of the project can be found in Lu-

nardi and Focaracci (1997). 

Figure 6a shows the longitudinal profile of the tunnel and the approximate location of the monitored 

stretch. Both extrusion- and convergence- measurements are available for this tunnel. Figure 6b 

shows the cross section and the longitudinal section of the tunnel (including the axial sliding mi-

crometer and the location of convergence measurements a, b, and c) and the extrusion profiles as-

suming a fixed reference point recorded during face advance. After the excavation passed 

chainage y = 3 m, the extrusion profiles show a considerable increase in displacement. Further-

more, it is remarkable that, on the one hand, the maximum extrusions of the first three recordings 

(the curves for yF = 1, 2 or 3 m) are relatively small, but on the other hand the profiles indicate a 

very large influence zone of the face (extending up to 15 - 20 m ahead of the face). The large zone 

of influence can also be seen in Figure 6c, which shows the influence lines of the axial displace-

ments uy (assuming a fixed reference point). However, the influence lines of the axial strain εy indi-

cate a much smaller influence zone (about 9 m, Figure 6d). A closer examination of the extrusion 

profiles confirms this conclusion (the distances of the measuring points far ahead of the face re-

main practically constant - the displacement profiles are practically horizontal). The difference be-

tween the zone of influence indicated by the displacements and by the strains is probably due to 

measuring inaccuracies. 
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The convergences were monitored at three cross sections (denoted by “a”, “b” and “c” in Figure 

6b). Figure 6e shows the convergences uc measured at these three cross sections as a function of 

the distance from the face. The convergences at the chainages y = 3 m (point b) and y = 6 m (point 

c) increased after the face passed chainage y = 8 m. According to Lunardi and Focaracci (1997), 

these results indicate that the face support reduces both the extrusion and the convergences. As 

shown later in Section 4 by means of numerical calculations, a lighter face support should lead 

theoretically to bigger extrusions (particularly in the case of a low overburden) but smaller conver-

gences. The data documented in the literature is not sufficient for establishing the reason for the 
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Fig. 6 a) Longitudinal geological profile of the Vasto tunnel (after Lunardi 2000) and stretch under considera-

tion (rectangle); b) axial displacement uy as a function of the chainage y for different positions of the face yF 

(Lunardi and Focaracci 1997) as well as longitudinal and cross section of the tunnel (after Lunardi 2000); c) 

Influence lines of axial displacements uy of a measuring point at chainage y; d) Influence lines of axial strain εy 

over the intervals between the measuring points at chainage y and (y + 1 m); e) Influence lines of conver-

gences at the chainages y = -1, 3 and 6 m 
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observed increase in convergences with certainty. The large convergences monitored (> 0.3 m) in-

dicate that the lining was not installed immediately behind the face. An increase in the distance be-

tween the face and the lining installation (or a decreasing ground quality after chainage y = 8 m) 

would also lead to larger convergences.  

4 Theoretical aspects  

4.1 Introduction 

The present section analyses the response of the core ahead of the face by means of numerical 

computations in order to understand better the observed behaviour, and to investigate whether 

there is a correlation between the extrusions and the convergences. The numerical analyses take 

into account the effects of support (face support, yielding support or stiff support) and ground prop-

erties (e.g. strength, deformability, rheology and heterogeneity). As a reference, the case of an un-

supported tunnel crossing a homogeneous ground with time-independent behaviour will be dis-

cussed first. 

4.2 An unsupported tunnel in homogeneous ground 

4.2.1 Numerical model 

For the numerical analysis of the deformation behaviour of the core ahead of the face, an axisym-

metric model of a deep, unsupported, cylindrical tunnel crossing a homogeneous and isotropic 

ground which is subject to uniform and hydrostatic initial stress will be considered (Figure 7). The 

mechanical behaviour of the ground is modelled as linearly elastic and perfectly plastic according 

to the Mohr-Coulomb yield criterion, with a non-associated flow rule. The angle of dilatancy ψ was 

taken equal to φ – 20° for φ > 20° and to 0° for φ ≤ 20° (cf. Vermeer and de Borst 1984). According 

to comparative calculations, the angle of dilatancy does not affect the relationship between the ex-

symmetry axis

300 m 100 m

100 m

y

ra = 4 m

ground (E, ν, fc, φ, ψ)

tunnel face

po

 

Fig. 7 Axisymmetric model and boundary conditions 



124 Part V 

 

 

 

trusions and the convergences significantly, because an increase of the angle of dilatancy will in-

crease both the extrusions and the convergences. Table 2 summarizes the parameters of the 

model. The numerical solution of the axisymmetric tunnel problem has been obtained by means of 

the finite element method. The problem is solved numerically by the so-called “steady state meth-

od”, a method introduced by Nguyen-Minh and Corbetta (1991) for efficiently solving problems with 

constant conditions in the tunnelling direction by considering a reference frame which is fixed to the 

advancing tunnel face. A comparison of the steady state method with the more widely used step-

by-step method, which handles the advancing face by deactivating and activating the ground and 

support elements respectively, can be found in Cantieni and Anagnostou (2009a). 

In order to save computation and data processing time, some general properties of the solutions of 

elasto-plastic tunnel problems will be taken into account in the numerical analyses. The displace-

ment u of the boundary of an unsupported opening in linearly elastic (according to Hooke’s law) 

and perfectly plastic ground (obeying the Mohr–Coulomb yield criterion and a non-associated flow 

rule) depends on the material constants of the ground (E, , fc, , ), on the initial stress p0 and on 

the problem geometry (in the present case the tunnel radius a of the cylindrical tunnel): 

  1 c 0u f E, , f , , , p , a    .  (3) 

The parameters can be reduced by means of a dimensional analysis and by normalizing the dis-

placements by the reciprocal value of the Young’s modulus E (c.f. Anagnostou and Kovári 1993): 

 c
2

0 0

fuE
f , , ,

ap p
  
 

  
 

 .  (4) 

With reference to the spatial model of an advancing tunnel, both the radial displacements at the 

tunnel face ur(yF) (Figure 1) and the final radial displacements far behind the face ur(∞) can be ex-

pressed by Eq. 4: 

 cr F
3

0 0

fu ( y )E
f , , ,

ap p
  
 

  
 

 ,  (5) 

Table 2 Model parameters 

Parameter   Value 

Initial stress  p0 10 MPa 

Tunnel radius a 4 m 

Ground   

Young’s Modulus  E 1 GPa 

Poisson’s ratio   0.3 

Angle of internal friction   variable 

Dilatancy angle    - 20° for  > 20°; 0° for  ≤ 20° 

Uniaxial compressive strength fc variable 
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The convergence of the opening uc is according to Eq. 5 and 6: 

 c cr r F
4 3 5

0 0 0

u fu ( ) u ( y )
E E f f f , , ,

ap ap p
  
  

     
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 .  (7) 

The axial displacement uy at a location y can be expressed as: 

 y c
6

0 0

u E f y
f , , , ,

ap p a
  
 

  
 

 .  (8) 

The axial strains εy at the tunnel axis are obtained as: 

 

c
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y 00 0 c
y 6
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f y
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 .  (9) 

The change in axial strain ∆εy at any location due to a face advance of S can be expressed by a 

similar equation (cf. Figure 3b): 

 c
y 7

0 0

fE y S
f , , , , ,

p p a a
   

 
  

 
 .  (10) 

Figure 3 shows the longitudinal profiles of the displacement uy, strain y and strain increase y due 

to a face advance of S. The indexes A and B denote points on the tunnel axis. In homogeneous 

ground, the absolute position on the axial co-ordinate y is not relevant, and only the distance to the 

face d has to be considered. The expressions for the displacements and strains can thus be simpli-

fied to:uy(d),y(d) and y(d,S). 

4.2.2 Numerical results 

Deformed shape of the face 

Figure 8a shows the curved shape of the deformed face for different normalized uniaxial compres-

sive strengths fc/p0. As expected, the maximum extrusion appears in the centre of the face. Figure 

8b shows that the extrusion of the face y(0) is about constant for uniaxial strengths higher than 

0.8p0. The maximum extrusion increases strongly for uniaxial strengths lower than about 0.4p0.  

Figure 8c shows the radial displacements of the tunnel boundary uc = ur(∞) – ur(yF) (cf. Figure 1) as 

a function of the normalized uniaxial strength fc/p0. The curve shows a similar development to Fig-

ure 8b with respect to the uniaxial compressive strength of the ground, thus suggesting a strong 

correlation between these two variables. 
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Fig. 8 Unsupported tunnel. a) Deformed shape of the face as a function of the normalized uniaxial compres-

sive strength fc/p0; b) Normalized extrusion of the centre of the face uy(0)*E/(a*p0) as a function of the normal-

ized uniaxial strength fc/p0; c) Normalized convergences uc*E/(a*p0) as a function of the normalized uniaxial 

strength fc/p0 
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Displacements and strains along the tunnel axis 

Figure 9a shows the axial displacements uy(y) at the tunnel axis ahead of the face (extrusion pro-

file) for different normalized uniaxial compressive strengths fc/p0. Both the magnitude of the dis-

placements and the region ahead of the face influenced by the excavation increase with decreas-

ing strength. Figure 9b shows the axial strains y(y) at the tunnel axis. The strain decreases with 
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Fig. 9 Unsupported tunnel. Longitudinal distribution of a) Normalized axial displacements uy*E/(a*p0), b) 

strains y*E/p0 and c) increase of strain y(S)*E/p0 caused by a face advance of S = a/4  
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the distance y to the face. It is remarkable that the strain is constant in the region close to the face 

(y < 0.25a to 0.5a). This behaviour can be traced back to the arching effect ahead of the face (the 

centre of the face is not stressed by the surrounding ground). This behaviour also becomes evident 

when considering the increase in strain y(y) due to a face advance of S = 1 m (Figure 9c). The 

centre of the core, at a distance of a/4 ahead of the face, is not influenced significantly by the face 

advance. The biggest increase in strain occurs at a distance y of about 0.5a - a ahead of the face. 

In homogeneous ground the extrusion profiles of Figure 9 are identical to the influence lines of the 

extrusion. The diagrams of Figure 9 can be read as influence lines by replacing the axial coordinate 

y with the distance to the face d. 

Relationship between extrusion and convergences 

The radial displacements occurring in the tunnel can be expressed by the tangential strain which 

develops at the tunnel boundary behind the tunnel face: 

 r r F
t ,c

u ( ) u ( y )

a


 
  ,  (11) 

where ur(∞) and ur(yF) denote the final radial displacement of the ground occurring far behind the 

face and the radial displacement of the ground at the face, respectively. 

Figure 10 shows the tangential strain t,c as a function of the axial strain at the centre of the face 

y(0) for different values of the normalized uniaxial compressive strength fc/p0 and of the friction an-

gle . The conditions that lead to high axial strains at the face lead also to larger convergences of 

the tunnel (see Figures 8b and 8c). As the relationship is unique, prediction is theoretically possi-

ble. The dashed lines in Figure 10 show that most values are in the range of t,c /y(0) = 1 to 2. 

Figure 11a shows the ratio t,c /y(0) as a function of the normalized uniaxial compressive strength 

fc/p0. Each curve clearly consists of four sections: 

I fc/p0 ≥ 2 

II 0.8 < fc/p0 < 2 

III 0.3 < fc/p0 < 0.8 

IV fc/p0 < 0.3 

Section I, which concerns high strength to initial stress ratios, concerns elastic behaviour, and is 

therefore characterized by a constant ratio εt,c /εy(0) of about 1.75. When the uniaxial strength de-

creases to values lower than fc/p0 = 2, plastic yielding occurs around the tunnel, while the central 

portion of the core ahead of the face remains in the elastic domain as long as the ratio of fc/p0 is 

higher than 0.8 (Figure 11b). The axial strains thus remain approximately constant in section II, 

while the tangential strains increase with decreasing uniaxial strength. At fc/p0 ratios lower than fc/p0 

= 0.8, the plastic zone comprises the entire core ahead of the face (Figure 11b). The extrusion of 

the core is then due mainly to the developing plastic strains, which increase with decreasing 

ground strength (section III). In section IV, the convergence to extrusion ratio increases rapidly with 

decreasing compressive strength. The reason is that for fc/p0 < 0.3 the plastic zone continues to in-

crease in the radial direction around the tunnel but not ahead of the face (Figure 11b).  
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Fig. 10 Unsupported tunnel. Normalized tangential strain t,c*E/p0 over normalized axial strain at the centre of 

the face y(0)*E/p0 
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Fig. 11 Unsupported tunnel. a) Ratio of normalized convergence to axial strain as a function of the normalized 

uniaxial compressive strength fc/p0; b) Extent of the plastic zone 
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The parts mentioned above are similar to the cases distinguished by Panet (1995, 2009) using the 

stability coefficient N = 2p0/fc: 

fc/p0 > 1 (N<2) No plastic zone ahead of the tunnel face 

0.4 < fc/p0 < 1 (2<N<5) The plastic zone comprises only part of the tunnel face  

fc/p0 < 0.4 (N>5) Large plastic zone comprising the entire tunnel face 

The dashed lines in Figure 11a also show that most cases have a ratio t,c /y(0) between 1 and 2. 

Only in case of very poor ground does the ratio increase to over 3. The ratio of t,c /y(0) = 1.5 pro-

posed by Hoek (2001) is therefore a good approximation.  

4.3 The effect of a yielding support 

Under severe squeezing conditions, yielding supports are used to reduce the rock pressure on the 

lining. In the present section, the yielding support is modelled in a simplified way by assigning a 

constant pressure (which is taken to be equal to the yield pressure py of the support) on the tunnel 

boundary. For alternative models and a detailed analysis of the interaction of yielding supports with 

squeezing ground see Cantieni and Anagnostou (2009b). 

By introducing the normalized yielding pressure py/p0 as an additional parameter in Eq. 9 the axial 

strains of the ground at the tunnel axis can be expressed by the following function: 

 yc
y 8
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pfE y
f , , , , ,

p p a p
   

 
  
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 .  (12) 

The numerical model is identical to the model of Figure 7, with the difference that the pressure py is 

applied as a boundary condition to the tunnel boundary (inset of Figure 12).  

According to Figure 12, the higher the yield pressure py of the support, the lower will be the tangen-
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Fig. 12 Tunnel with yielding support. Normalized convergence t,c E/p0 over normalized axial strain at the cen-

tre of the face y(0)*E/p0  
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tial strain t,c and the axial strain at the centre of the face y(0). The reduction in the tangential strain 

t,c is more pronounced. The curve flattens for increasing yield pressures py. At very high ratios of 

yield pressure to initial stress (py > 0.1p0), the curve is so flat that the axial strains do not provide 

any indication as to the magnitude of the convergences. Such high py/p0 - ratios are, however, fea-

sible only in tunnels with overburdens lower than 100 m. The yield pressure of the support system 

applied in the squeezing section of the Sedrun Lot of the Gotthard Base Tunnel was equal to about 

0.01p0. For such realistic py/p0 – ratios, the normalized convergence t,c is approximately equal to 

the axial strain at the centre of the face y(0) (remember that, according to the last section, unsup-

ported tunnels exhibit t,c/y-ratios between 1 and 2). 

4.4 The effect of a stiff support 

The stiff support is modelled as an elastic radial support with stiffness k. The radial stiffness k of 

the ring-shaped lining is equal to ELd/a2, where a, d, and EL denote its radius, thickness, and 

Young’s modulus, respectively. The longitudinal bending stiffness of the lining will not be taken into 

account. The resistance of the lining with the stiffness k is taken into account as a boundary condi-

tion of the model by imposing a radial pressure p(y) which is proportional to the displacement of the 

lining at location y and depends therefore not only on the radial ground displacement ur(y) but also 

on its displacement ur(e) at the installation point (y = e) of the lining (Anagnostou 2007a): 

 r rp( y ) k(u ( y ) u (e))    (for y > e).  (13) 

The parameters k and e have to be considered in addition to the parameters of Eq. 5. The axial 

strains of the ground at the tunnel axis can thus be expressed as follows (c.f. Eq. 13): 

 c
y 9

0 0

fE y e a k
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p p a a E
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  (14) 

The numerical model is identical to the model of Figure 7, with the exception of the boundary condi-

tion of the tunnel boundary (Eq. 13). 

Figures 13a and 13b show that the installation of a stiff support close to the face reduces the mag-

nitude of the extrusion, but does not affect the extent of the region ahead of the face influenced by 

the excavation. 

The presence of a lining predictably hinders the development of convergences considerably (Fig-

ure 13c). The closer the lining is installed to the face, the smaller will be the convergences. For lin-

ings which are installed very close to the face (e < a), the t,c versus y the curves are so flat that 

the extrusion does not provide any useful indication as to the convergence. 

4.5 The effect of face reinforcement 

The presence of a face reinforcement was considered in a simplified manner by prescribing a uni-

form pressure on the face pF (cf. Dias and Kastner 2005). The effect of face support was investi-
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gated only for the case of a stiff lining (see Section 4.4). As an additional parameter, the normal-

ized face pressure pF/p0 must be taken into account in the parameters of Eq. 14: 

 c F
y 10

0 0 R 0

f pE y e a k
f , , , , , , ,

p p a a E p
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 
  

 
 .  (15) 

The numerical model is identical to the model of Figure 7 with the boundary conditions at the tunnel 

boundary and at the face according to the inset of Figure 14a. The analysis considers an unsup-
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Fig. 13 Tunnel with stiff support. Longitudinal distribution a) of the normalized axial displacements uy*E/(a*p0) 

and b) of the strains y*E/p0; c) Normalized tangential strain t,c*E/p0 over normalized axial strain at the centre 

of the face y(0)*E/p0  
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ported length of e = a/2. 

Figures 14a and 14b show that a high support pressure pF leads to smaller extrusion, but does not 

affect the influence zone of the advancing face (which extends up to about one diameter ahead of 

the face). Figure 14c shows that for high face support pressures pF (> 0.2 p0), which, however, are 
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Fig. 14 Tunnel with stiff support and face support. Longitudinal distribution a) of the normalized axial dis-

placements uy*E/(a*p0) and b) of the strains y*E/p0; c) Normalized tangential strain t,c *E/p0 over normalized 

axial strain at the centre of the face y(0)*E/p0  
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feasible only in shallow tunnels, the extrusion of the face does not depend significantly on the 

ground strength and cannot be used as an indicator of ground quality. It is remarkable that the 

higher the face support pressure, the bigger will be the convergences developing over the unsup-

ported span e. 

4.6 The effect of ground rheology 

4.6.1 Computational model 

Squeezing ground often exhibits a pronouncedly time-dependent response to tunnelling. The de-

formations in a cavity may continue for several weeks or even months after excavation. As different 

time scales are relevant for the core extrusion (a short term phenomenon) and for the convergence 

(a long term phenomenon), it is interesting to investigate extent to which the rheological behaviour 

of the ground might influence the correlations between these two manifestations of squeezing be-

haviour. 

This issue will be analysed here with the aid of transient stress analyses based on an axisymmetric 

model of an unsupported tunnel (Figure 15a). The tunnel advance is simulated with 60 excavation 

steps, each containing an instantaneous advance of s = 1 m, followed by a transient calculation 

that simulates a standstill period of 1 day. The overall advance rate is therefore v = 1 m/day. For 

the purpose of comparisons, the time-independent problem (zero viscosity) was also solved by the 

step-by-step method. The results are slightly different from those presented in Section 4.2.2, where 

the same problem was solved using the steady state method, which by definition assumes a con-

tinuous excavation, i.e. a round length s of zero (Cantieni and Anagnostou 2009a).  

The time-dependency of the ground behaviour is considered according to the elasto-viscoplastic 

creep model after Madejski (1960), which introduces only one additional parameter to the parame-

ters used in the preceding elasto-plastic computations. The micro-mechanical model consists of an 
elastic spring in series with a Bingham model (inset of Figure 15a). The strain rate ij  is resolved 

into an elastic and an inelastic part:  

 pe
ij ij ij       . (16) 

The elastic part depends, according to Hooke’s law, linearly on the stress rate, while the inelastic 

part p
ij , which represents combined viscous and plastic effects, reads according to the classic 

formulation of Perzyna (1966) as follows: 

 
p
ij

ij

d f g

dt



 





 , (17) 

where f, g and η denote the yield function, the plastic potential and the viscosity, respectively. 

The calculations have been carried out for different values of the viscosity η. Table 2 shows the 

other model parameters. 
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Fig. 15 a) Problem layout, boundary conditions of the step-by-step numerical model and sequence of the cal-

culation steps (inset: micromechanical material model); b) Axial strains at the centre of the face y(0) as a 

function of the normalized uniaxial strength fc/p0; c) Tangential strain at the tunnel boundary t,c as a function 

of the axial strain at the centre of the face y(0), the normalized viscosity *v/(a*p0) and the normalized uniaxi-

al compressive strength fc/0 
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Due to the time dependency of the material behaviour, the displacements of the problem under 

consideration (Figure 15a) depend in general on the following parameters:  

  11 c 0u f E, , f , , , , p , a, s,t     ,  (18) 

where s denotes the round length and t the time taken by each excavation round. By considering 

the gross advance v (= s/t) as an independent parameter instead of the round duration t and by 

performing a dimensional analysis, one obtains the following expression for the convergence uc 

and for the axial strain y at the face: 

 c c
12

0 0 0

u fE s v
f , , , , , ,

a p p a a p


  
 

  
 

 ,  (19) 

 c
y 13

0 0 0

fE s v
f , , , , , ,

p p a a p


   

 
  

 
 .  (20) 

According to these equations, the response of the model depends on the product of the advance 

rate v and the viscosity (cf. Bernaud 1991). The effect of a high advance rate is equivalent to that 

of a high viscosity. In the borderline case of an “infinitely” rapid excavation, only elastic defor-

mations will occur ahead of the advancing face. 

4.6.2 Numerical results 

Figure 15b shows the axial displacements of the centre of the face uy(0) immediately after the ex-

cavation step as a function of the normalized uniaxial compressive strength fc/p0 and of the dimen-

sionless parameter v/ap0. The curve for v/ap0 = 0 applies to time-independent ground behaviour. 

The extrusion of the core is, particularly for low ground strengths, strongly influenced by the vis-

cosity. Viscosity significantly reduces the axial strain at the face, because the development of the 

plastic strains needs more time than is temporarily available in the vicinity of the advancing tunnel 

face.  

Figure 15c shows the tangential strains at the tunnel boundary t,c as a function of the axial strains 

at the face y(0):  

•  The viscosity  of the ground influences the convergence only slightly. The higher the viscosity, 

the greater will be the convergence. This is because the pre-deformation of the ground ur(yF) is 

small when the viscosity is high, while the final total radial displacement of the ground develop-

ing far behind the face ur(∞) is independent of the viscosity and the advance rate in the case of 

an unsupported tunnel (Bernaud 1991) and was therefore calculated with the time-independent 

plane strain closed-form solution of Anagnostou and Kovári (1993). 

•  As a consequence of the viscous behaviour (which is decisive mainly for the deformations 

ahead of the face) the ratios of convergence to axial displacement are in general higher than in 

the case of time-independent behaviour. The rule established in Section 4.2.2 (ratio t,c/y = 1 – 

2) is valid only if the dimensionless parameter v/(ap0) is lower than about 2.5. In the case of a 

400 m deep traffic tunnel (a = 5 m, p0 = 10 MPa) and of a gross advance rate v of 2 m/d, this 

condition leads to  < 62500 kPa*day, which is typical for materials that respond within a few 

weeks (Cantieni and Anagnostou 2011).  
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At very high viscosities  and advance rates v, the axial strain at the face does not depend sig-

nificantly on the uniaxial compressive strength fc of the ground, because the strains developing 

ahead of the face are almost entirely elastic. In such cases it is impossible to predict the con-

vergences of the opening on the basis of the observed extrusion. Consider, for instance, the 

curve v/(ap0) = 250. The convergence t,c *a varies between 0.05a and 0.20a for one and the 

same axial strain of about 0.01. Also the viscosity  itself represents a source of uncertainty. For 

an axial strain of 0.025, for example, the convergence may vary with a factor of about 7 for vis-

cosities between v/(ap0) = 2.5 and 25. Such inaccurate predictions are useless from the practi-

cal point of view. 

In conclusion, if the ground behaviour is time-dependent, the fact that the core extrusion is low 

does not necessarily mean that the convergences will be small. On the other hand, large core ex-

trusions are always associated with poor ground quality. One could also say that a large extrusion 

represents a sufficient, but not a necessary, condition for large convergences to occur. 

4.7 Entering into a fault zone 

4.7.1 Numerical Model 

The present section investigates numerically the evolution of core extrusion and convergence when 

tunnel advance approaches and enters into an extended, lower quality fault zone, which strikes 

perpendicularly to the tunnel axis.  

The purpose of the present analysis was to find if it is possible at least in principle to recognize a 

fault zone before entering into it on the basis of the observed extrusion, and if the magnitude of the 

extrusions provides a useful indication as to the magnitude of the later convergences. Similar nu-

merical analyses have been carried out by (cf. Jeon et al. 2005), but these were investigating an-

other question (the possibility of early fault identification on the basis of observed changes in the 

orientation of the displacement vectors). 

The considered axisymmetric numerical model (Figure 16a) includes a transition zone between the 

competent rock and the fault zone, where the deformability and strength parameters decrease 

gradually (Figure 16b). The excavation was simulated step by step. The 200 m long tunnel was ex-

cavated in 100 steps, every excavation step having a length of s = 2 m. The calculations have been 

carried out using the parameters of Table 2 and the deformability and strength parameters of Fig-

ure 16b. 

4.7.2 Results 

Figure 17a shows the distribution of the axial strain y along the tunnel axis for different positions yF 

of the advancing face. The axial strain ahead of the face is similar for all of the excavation steps up 

to a point that is 4 m ahead of the first change in ground properties at y = 0. The shape of the next 

curve (yF = -2 m) deviates from the preceding one. The strain 2 m to 3 m ahead of the face is sig-
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nificantly higher than for preceding excavation steps. The strain ahead of the face increases con-

tinuously during the subsequent excavation steps. 

Figure 17b shows the influence lines of the average axial strain y,AB for some selected intervals 

with a length of 0.5 m (every curve in Figure 17b applies to another interval AB, see inset of Figure 

17b). The intervals starting before yA = -2 m exhibit the same increase in strain for the approaching 

face. The influence zone of the excavation extends up to about 4 m ahead of the face. The interval 

starting at yA = 0 (i.e. at the begin of the transition zone) shows a more pronounced increase of the 

strains, starting when the advancing face comes to within about 4 m of the interval. The proximate 

intervals all show a more pronounced increase in the strains again due to the approaching face. 

After passing the transition zone, the influence lines tend to show the same characteristics. The in-

fluence zone of the face increases from initially 4 m to 8 m. 

Figure 17c shows the radial displacements uc of selected “measuring” points on the tunnel bounda-

ry as a function of their distance from the face. The convergence increases with the advancing 

face. The maximum convergence increases continuously for the measuring points in the transition 

zone and in the first 50 m of the fault zone. The increase in the maximum convergences despite 

the uniform ground conditions prevailing within the fault zone is due to the so-called “wall-effect”. 
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Fig. 16 Fault zone. a) Axisymmetric numerical step-by-step model and boundary conditions; b) Detail of the 

transition zone with a gradual decrease in the deformability and strength parameters, including the definition 

of the chainage y and of the strain intervals AB 
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The wall-effect describes the stabilizing effect of competent ground on weak ground. The interface 

shear stresses between the competent and the weak ground reduce the deformations of the weak 

zone. The wall-effect was analysed by Kovári and Anagnostou (1995) for the borderline case of rig-

id competent rock and by Cantieni and Anagnostou (2007) for the case of competent rock having a 
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Fig. 17 a) Axial strain y profiles for all face positions between y = -8 and 38 m; b) Influence lines of the axial 

strain εy; c) Influence lines of the radial displacements uc of selected points on the tunnel boundary  
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elasto-plastic ground behaviour. 

The influence lines of the extrusions and the convergences (Figures 17b and 17c) correlate with 

each other. Cross sections exhibiting large extrusions also experience high convergences after ex-

cavation. A fault zone can thus be detected by monitoring the extrusion of the core ahead of the 

face (unless the ground exhibits a markedly time-dependent behaviour, see last section). 

In a last step, we investigate whether it is possible to predict the convergences (including all spatial 

effects associated with the fault zone) on the basis of the monitored extrusions, by applying the 

simple rule established in Section 4.2.2. (Section 4.2.2 showed for the case of homogeneous 

ground, that the ratio of the convergence t,c to the axial strain at the centre of the face y(0) is in 

most cases between 1 and 2.) Figure 18a compares the convergences uc obtained by the numeri-

cal computation with the convergences which have been estimated on the basis of the extrusions 

assuming a ratio t,c /y(0) of 1, 1.5 or 2. The diagram shows that the assumption of t,c /y(0) = 1.5 

leads to convergences which agree very well with the actual convergences. Figure 18b, where the 

tangential strains t,c are plotted against the axial strains at the face y(0), shows that most points 

are grouped in the vicinity of the line t,c /y(0) = 1.5. 
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Fig. 18 a) Comparison of the ground convergences uc (= t,c*a) at chainage y with the convergences calculat-

ed on the basis of the face extrusions y(0) with the ratios t,c /y(0) of 1, 1.5 and 2; b) Tangential strain t,c  

over axial strain at the centre of the face y(0) for all chainages y in the fault zone model 
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5 Gotthard Base Tunnel 

5.1 Introduction 

The present case history investigates the data monitored during the construction of the western 

tunnel of the new Gotthard Base Tunnel, which crosses the northern intermediate Tavetsch-

formation (so-called TZM formation) and the adjacent Clavaniev zone (referred to as “CZ” in Figure 

19). In this section of the tunnel, squeezing conditions had been expected from the planning phase. 

For this reason, the geological survey included an inclined, exploratory borehole SB 3.2, which was 

over 1700 m deep and which passed through the problematic series of rocks (Figure 19b). The 

core samples retrieved from the boring were used to carry out a laboratory testing programme in 

order to investigate the strength and deformation properties of the weakest zones. The testing pro-

gram was carried out at the Institute for Geotechnical Engineering of the ETH Zurich (Vogelhuber 

2007) and also continued during construction of the tunnels with rock samples retrieved by horizon-

tal drillings performed from the tunnel face (Anagnostou et al. 2008). 

The aim of the present case history is to investigate whether there is a correlation between the ex-

trusion of the core and the convergences of the tunnel and, accordingly, if it would have been pos-

sible to predict the convergences with the monitored extrusions. The present case history will focus 

on two tunnel reaches. The first reach reaches from chainage 1690 m to chainage 1780 m of the 

western tube excavated northwards (NW tube). The second reach starts at chainage 1980 m and 

ends at chainage 2140 m of the NW tube (Figure 19b). In both reaches, the extrusion of the core 

has been monitored with a series of RH-extensometers (Thut et al. 2006). 

5.2 Geology 

The tunnel crosses the northern TZM formation and the Clavaniev zone for about 1150 m at a 

depth of 800 m (Figure 19b). The Clavaniev zone denotes the tectonically intensively sheared 

southern part of the Aar-massif between the Aar-massif and the TZM formation (cf. Schneider 

1997). The Clavaniev zone was encountered over about 120 m at the end of the advance before 

entering into the competent rocks of the Aar-massif. Both, the TZM formation and the Clavaniev 

zone are characterized by alternating layers (having a thickness in the range of decimetres to dec-

ametres) of intact and more or less kakiritic gneisses, slates, and phyllites. The term “kakirite” de-

notes a broken or intensively sheared rock, which has lost a large part of its original strength (cf. 

Schneider 1997; Vogelhuber 2007). The orientation of the layers to the tunnel axis varies from per-

pendicular to parallel.  
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5.3 Construction method 

The tunnel has been excavated full-face. Squeezing was tackled through a yielding support system 

consisting of two rings of sliding steel sets (TH 44/70) lying one upon the other and connected by 

friction loops (Ehrbar and Pfenninger 1999; Kovári et al. 2006; Kovári and Ehrbar 2008). Figure 19c 

shows the longitudinal and the cross section of the yielding support system. In the tunnel reaches 

under investigation, the radial over-excavation (which is required for accommodating the 

deformations) was either 0.5 m or 0.7 m, the cross section area AF = 101 or 122 m2, respectively, 

and the spacings of the steel sets 0.66 m or 0.5 m, respectively. Between 125 m and 190 m of ra-

dial bolts with a length of 8 m were installed per meter of the tunnel over the whole circumference. 

 

Fig. 19 a) Gotthard Base Tunnel: schematic representation of the longitudinal geological section with the 

squeezing TZM-Formation (after Kovári 2009); b) Detail of the TZM formation (after Vogelhuber 2007) show-

ing the Aare massif (AM), the Clavaniev zone (CZ), the northern TZM formation (TZM-N), the southern TZM 

formation (TZM-S) and the two reaches under consideration; c) Longitudinal and cross section of the yielding 

support system realized in the northern TZM formation (after Ehrbar and Pfenninger 1999) 
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The face was supported by about 50 to 60 bolts with a length of 12 m to 18 m and having an over-

lap of about 6 m. After the rate of convergence slowed down, a shotcrete ring of 0.5 m was applied 

(normally at a distance of about 30 m behind the face). 

5.4 Monitoring 

The core extrusion was monitored by 4 RH-extensometers in the first reach (TZM formation) and 7 

RH-extensometers in the second reach (Clavaniev zone). The RH-extensometers were placed at 

the axis of the tunnel. They had a length of 24 m and overlapped 4 m to 8 m with the preceding 

ones. The position of the measuring head and the six measuring points of each extensometer with 

respect to the tunnel alignment are shown at the bottom of Figure 25. 

The convergences of the opening were monitored optically with 5 or 7 points per cross section. The 

distance between the monitored cross sections was between 5 m and 20 m. The exact location and 

the number of monitored points per cross section along the tunnel alignment are shown at the bot-

tom of Figure 25. 

5.5 Data analysis 

Primary data 

Figures 20a and 20b show the primary data obtained by the RH-extensometers of reaches 1 and 2, 

respectively. The variation in the extrusion rate (note the wavelike shape of the curves in Figure 20) 

indicates that the ground exhibits a time-dependent behaviour. Every excavation step accelerates 

the development of the extrusions before they slow down until the next excavation step again ac-

celerates the rate of deformations. The extrusions monitored consist of the time-independent extru-

sions due to the stress redistribution after each excavation step, and the time-dependent extrusions 

due to rock creep and consolidation processes. After an excavation step, the extrusions continue 

for several days. For instance, the last measuring point of extensometer 5 at chainage 2090 m of 

reach 2 shows the extrusion that developed at a distance of 4 m ahead of the face during a stand-

still of 30 days (curve B in Figure 20b). The extrusion rate is almost zero after 30 days and acceler-

ates when the excavation is restarted. The measurements indicate that 95% of the final extrusion is 

reached after about 20 days. This indicates a viscosity  of about 104 to 105 kPa*day (cf. Cantieni 

and Anagnostou 2011). 

In order to assess the behaviour of the ground along the tunnel it is necessary to compare defor-

mations that occur under similar conditions and, more specifically, during the same period of time. 

As the duration of the advance halts was variable along the tunnel reaches, the comparability of the 

final extrusion values would be questionable. Therefore, the present analysis considers only the 

extrusions developing during the excavation round and the subsequent 10 hours. Figure 20c shows 

the way the extrusions have been determined from the example of the axial displacements. 
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Fig. 20 a) Extrusions uy over time for the measuring points of reach 1 of the NW tube; b) Extrusions uy over 

time for the measuring points of reach 2 of the NW tube; c) Exemplary determination of the extrusions on the 

example of curve A of Fig. 20a 
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Influence lines 

Due to the low spatial resolution of the monitored profile (the relatively small number of measuring 

points) and to the large number of readings, the most meaningful way to present the monitoring da-

ta is to plot influence lines.  

Figures 21 and 22 show the influence lines of the axial strain y (taking account of the extrusion 

generated by face advances and during the 10 hours following each advance) for all extensome-

ters. The characteristics of the influence lines are similar for all extensometers. The observation 

that the strains increase continuously until d = 0, contradicts with the theoretical predictions, ac-

cording to which the strain should not increase close to the advancing face (Figure 9b). The reason 

for the different behaviour is the length of the interval (4 m). The average strain over a 4 m long in-

terval increases until the face reaches the interval (d = 0), even if the strain locally close to the face 

remained constant over the last meters.  

Variations in the magnitude of the strain, as well as in the extent of the influence zone of the ad-

vancing face, indicate changes in the quality of the core ahead of the face (the support measures 

are assumed to be constant). Figure 21 shows the influence lines of the axial strain y over tunnel 

reach 1. The last interval of extensometer 3 shows an increase (at about 11 m) in the strain earlier 

than the other intervals (at about 7 m) of the same extensometer. The influence lines of extensom-

eter 4 confirm this trend.  

Consider now the maximum strain, i.e. the strain developing up to the time point where the face 

reaches the first measuring point (d = 0). It is possible to distinguish 3 cases: Most measurements 

show maximum strains of 0.03. Exceptions with lower maximum strains are the interval 1709.8 m 

of extensometer 1, 1737.7 m of extensometer 3 and 1769.7 m of extensometer 4. The interval 

1721.8 m of extensometer 1 shows a considerably higher maximum strain than all other intervals. 

The intervals 1713.8 m and 1717.8 m also seem to tend to such high values. But at d = 3 m the 

strain suddenly decreases with the approaching face. A decrease in strain indicates an axial re-

compression of the rock over the considered interval. This behaviour cannot be traced back to the 

effect of a heavier face support, because this effect is very small at the actual initial stress level 

(see curve 0.01p0 in Figure 14b). Besides measuring errors, this behaviour could be due to the 

presence of a very strong ground interlayer perpendicular to the tunnel axis, which hinders the axial 

deformation and thus recompresses the weak ground further away from the face.  

Figure 22 shows the influence lines of the axial strain y over tunnel reach 2. Extensometer 6 clear-

ly shows that the influence zone of the considered intervals increases continuously. This observa-

tion provides an indication of decreasing ground quality (as shown later, the convergences also in-

crease in this portion). Extensometers 3 and 4 appear to be in a more competent rock than the 

others. The influence zone of the face is considerably less extended (about 6 m) than in most of 

the other intervals of tunnel reach 2 (between 8 m and 12 m) and the extrusion values are also 

lower (2%). In the next section we will see that also the convergences are lower in this tunnel por-

tion. 
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Fig. 21 Influence lines of axial strain εy for the intervals between the measuring points at chainage y and 

(y + 4 m) of extensometer 1 to 4 of reach 1 
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Fig. 22 Influence lines of axial strain εy for the intervals between the measuring points at chainage y and 

(y + 4 m) of extensometer 1 to 7 of reach 2 
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Extrusions vs. convergences 

Subsequently, the longitudinal distribution of the extrusion will be compared with the distribution of 

the convergences. In order to obtain comparable values, the analysis considers as a measure of 

the extrusion the strain that develops due to the advance of the face from a distance of 6 m to a 

distance of 2 m in respect of each ground interval (see the strain portion between the vertical 

dashed lines in the diagram of extensometer 1 in Figure 21 and the upper part of Figure 23). The 

face advance specified above (from 6 m to 2 m behind the measuring point) was determined so 

that as many measuring points as possible could be used for the analysis. 

The radial displacement of the tunnel crown will be used as a measure of the convergence. In or-

der to get comparable values, the analysis takes account of only a specific portion of the monitored 

displacements, occurring due to a face advance of 25 m. More specifically, we consider the dis-

placement that develops as the distance of the face to the monitoring section increases from 5 m to 

30 m, see lower part Figure 23. This interval was chosen because the latest zero reading of a 

measuring point in the reaches under consideration was done about 5 m behind the face, and be-

cause the shotcrete ring is applied at a distance of about 30 m from the face. Figure 24 shows the 

radial displacements ur of the crown for different cross sections as a function of their distance to 

the face dc. Most of the curves of Figure 24 show convergences (in respect of a face advance from 

5 m to 30 m ahead of the monitored point) of between 0.06 and 0.08 m. 

Figure 25 shows the axial strain and the radial displacements of the crown along tunnel reaches 1 

and 2. The figure includes only the measuring points which worked properly during the monitored 

face advance. (Some measuring points failed because the bar which connects the measuring point 

with the measuring head, was damaged by face bolt drillings.) In addition to the convergences and 

30 m

ur(yA - yF = 5)

ur(yA - yF = 30)

5 m

6 m

2 m

uA uB

yA yByF

y

A-A

A-A

 

Fig. 23 Way of determining of the accumulated strain εy ahead of the face for the advance of the face from 6 

m to 2 m ahead of each measuring point and the radial displacements of the crown ur of the tunnel generat-

ed due to a face advance of 25 m  
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extrusions, Figure 25 also illustrates information about the geology, construction method and moni-

toring setup. The convergences of tunnel reach 2 exhibit a weak correlation with the extrusions. 

The decrease in the convergences before reaching chainage 2050 m, and the subsequent increase 

in the convergences were indicated by a decrease and an increase in the extrusions. The change 

in convergences appeared even without a significant change in the geology, construction method 

or overburden. Also, the decrease and increase in convergences around chainage 2090 m are in-

dicated by a decrease and a subsequent increase in the extrusions. 

No correlation can be observed between the convergences and the extrusions in tunnel reach 1. 

The decrease in the convergences after chainage 1745 m could not be predicted by the extrusions. 

One reason for the non-correlation may be the arrangement of the monitoring stations. In alternat-

ing layers of weak and hard rock the variation in convergences can be significant even over short 

distances and can thus not be monitored completely if the distance between the monitoring stations 
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Fig. 24 a) Convergences as a function of the distance to the face dc; a) for reach 1 and b) for reach 2 
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is large (Cantieni and Anagnostou 2007). 

Figure 26 shows the normalized displacement of the tunnel crown (t,c = uc/a) as a function of the 

axial strain y of the core for the two tunnel reaches. The points from tunnel reach 2 are roughly 

grouped around a slightly inclined straight line. Note that the deformations plotted in Figure 26 are 

not the total deformations, but only the deformations that developed due to the specific face ad-
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including information about the actual geology, the support measures applied and the monitoring setup 
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Fig. 26 Normalized displacement of the tunnel crown uc/a at the tunnel crown as a function of the axial strain 

εy for reaches 1 and 2 
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vances mentioned above. For this reason, Figure 26 cannot be compared directly to the similar di-

agrams of Section 4, which consider the total deformations. A qualitative comparison is neverthe-

less possible. The relationship between the extrusions and the convergences is similar to the rela-

tionship between the numerical results for a yielding support shown in Figure 12 and for the stiff 

support shown in Figure 13, where the convergences do not vary significantly compared to the ex-

trusions. This behaviour seems reasonable because the support system applied is a yielding sup-

port, which is set rigidly at a distance of about 30 m (e/a = 5) behind the face. Furthermore, the big 

variation in the extrusions indicates that the effect of the time-dependency of the ground and of the 

face support is of subordinate importance in the present case history (cf. Figures 14 and 15). For a 

ground viscosity  between 104 and 105 kPa*day, an advance rate of v = 1 m/day and an initial 

stress of p0 = 20 MPa the normalized viscosity v/(ap0) is between 0.08 and 0.8. According to Fig-

ure 15, such viscosities influence the extrusions only slightly. 

6 Conclusions 

The extrusion of the core is affected by ground quality, the initial stress state and the construction 

method. Stiff supports which are installed close to the face reduce the magnitude of the extrusions, 

as do yielding supports to a lesser extent. Face reinforcement also reduces the magnitude of ex-

trusions. However, the effect of yielding supports and face support on extrusion is less pronounced 

in deep tunnels. 

It is theoretically possible to predict ground response when the ground exhibits only a moderately 

time-dependent behaviour. The time-independent numerical analysis of tunnelling into a fault zone 

showed that the convergences can be estimated by means of extrusion measurements. 

Pronounced time-dependent ground behaviour makes it very difficult to predict the ground re-

sponse, because the extrusions are governed by short-term behaviour, while the final ground re-

sponse is characterised by long-term behaviour. A large extrusion represents a sufficient, but not a 

necessary, condition for large convergences to occur.  

The analysis of the extrusions by means of the axial strains instead of the axial displacements 

makes it possible to use a longer portion of the measuring device, because the error introduced by 

a non-fixed reference point can be avoided. It is possible to use an even longer portion of the 

measuring device if the increase in strains due to the specific face advance is analysed. Such an 

analysis is also independent of the deformations which the ground experiences before the installa-

tion of the measuring device. 

The case history of the Gotthard Base Tunnel shows that there is only a weak correlation between 

the axial extrusions and the convergences of the tunnel. 
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Conclusions and Outlook 

Three-dimensional and axially symmetric computational models produce more reliable results than 

plane strain models which take account only of a cross section of the tunnel. The use of plane 

strain models is essential, however, because they allow a rapid assessment to be made of the 

ground behaviour with the little information available in the preliminary design stages and, of 

course, also because they are less costly. However, when using such models one should always 

be aware of their inherent limitations. 

Part I of the thesis showed that, in the case of elasto-plastic material behaviour, an axisymmetric 

model that takes into account the sequence of excavation and lining installation will always lead to 

ground response points above the plane strain ground response. This is due to the inability of the 

plane strain model to map the radial stress reversal that follows the installation of the lining. The 

convergence–confinement method, even in combination with advanced methods of pre-

deformation estimation, underestimates the ground pressure and deformation, particularly for stiff 

linings, long unsupported spans, and heavily squeezing ground with highly non-linear material be-

haviour. The inherent weakness of any plane strain analysis is that it cannot reproduce at one and 

the same time both the deformations and the pressures. This is relevant from the design stand-

point, particularly for heavily squeezing conditions that require a yielding support in combination 

with an over-excavation: in this case, one needs reliable estimates of the deformations that must 

occur in order for the squeezing pressure to be reduced to a pre-defined, technically manageable 

level. In cases where the question of deformation is of secondary importance, however, a plane 

strain analysis in combination with an implicit method of pre-deformation estimation will suffice. For 

support completion close to the face, the differences in the ground pressures obtained by the dif-

ferent methods of analysis are not important from a practical point of view. 

Part II investigated an important practical consequence of the Part I results. Part II showed that an 

analysis of the interaction between ground and yielding support that takes into account the stress 

history of the ground leads to conclusions which are qualitatively different from those obtained 

through plane strain analysis. The ground pressure developing far behind the tunnel face in a heav-

ily squeezing ground depends considerably on the amount of support resistance during the yielding 

phase. The higher the yield pressure of the support, the lower will be the final load. A targeted re-

duction in ground pressure can be achieved not only by installing a support that is able to accom-

modate a larger deformation (which is a well-known principle), but also through selecting a support 

that yields at a higher pressure. Furthermore, a high yield pressure reduces the risk of a violation of 

the clearance profile and increases safety levels in terms of roof instabilities (loosening) during the 

deformation phase. 

These results are important from the standpoint of conceptual design, even if the range of potential 

project conditions, design criteria and technological constraints does not allow us to make generali-

zations about structural solutions for dealing with squeezing ground. Some basic design issues are 

illustrated through the use of practical examples. Additionally, the nomograms presented in Part II 

contribute to the decision-making process, as they make it possible to produce a quick assessment 

of different supports and of their sensitivity with respect to variations in geology. 
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Part III investigated a paradox of elasto-plastic tunnel analysis. The computational models com-

monly used for tunnel design predict that under certain conditions (i.e. support from a stiff lining 

near to the tunnel face, weak ground, high initial stress) the load developing upon the lining will in-

crease with the strength of the ground. Such behaviour deserves to be called a paradox because it 

is clearly contrary to what one would expect on the basis both of intuition and tunnelling experi-

ence. The reason for this counter-intuitive behaviour is the stress relief which takes place in the 

ground ahead of the face and which is more pronounced in the case of a low strength ground. The 

decisive simplifying modelling assumptions, i.e. the assumptions which cause the difference be-

tween model behaviour and actual behaviour, are related: (i), to the rheological behaviour of the 

ground (which is usually neglected in design computations, but is particularly important in the case 

of overstressed ground, limiting the extent of stress relief ahead of the face); and, (ii), to the stiff-

ness of the support system, which may - due to the nature of the construction procedures - be con-

siderably lower than it is assumed to be in the design calculations. By taking into account the two 

main effects mentioned above in the design computations, it is possible to eliminate the paradoxi-

cal model behaviour. 

Part IV showed that the frequently observed phenomenon of squeezing variability can be traced 

back to heterogeneities of the ground on different scales and with respect both to its mechanical 

and to its hydraulic characteristics. In the case of a heterogeneous ground structure, the results of 

numerical calculations indicate that even relatively thin competent rock interlayers may have a pro-

nounced stabilizing effect. 

Part V showed that the extrusions of the core ahead of the tunnel face are affected by ground 

quality, the initial stress state and also by the construction method. Stiff supports, which are in-

stalled close to the face, and to a lesser extent also yielding supports, reduce the magnitude of the 

extrusions. Face reinforcement also reduces the magnitude of extrusions. However, the effect of 

yielding supports and face supports on the extrusion is limited in deep tunnels. A prediction of the 

ground response is theoretically possible in ground with a moderate time-dependent behaviour. 

The time-independent numerical analysis of tunnelling into a fault zone showed that the conver-

gences can be estimated by means of the extrusion measurements. Pronounced time-dependent 

ground behaviour makes it very difficult to predict the ground response, however, because the ex-

trusions are governed by the short-term behaviour, while the final ground response is characterised 

by the long-term behaviour. One can say that large extrusions represent a sufficient, but not nec-

essary condition for large convergences of the profile. The analysis of the extrusions by means of 

the axial strains instead of the axial deformations allows us to use a longer portion of the measur-

ing line, because the error introduced by the displacement of the reference point can be avoided. 

An even longer portion of the measuring device may be used if the increase in strains due to a 

specific face advance is analysed. Such an analysis is additionally independent of the deformations 

which the ground experiences before the installation of the measuring device. It is shown by means 

of case histories that there is a weak correlation between the axial extrusions and the convergenc-

es of the tunnel. 

The findings of the present thesis illustrate the uncertainties (both quantitative and qualitative) that 

exist in all computational models - even in the very familiar and well established ones - and em-

phasize the importance of a careful interpretation of the computational results and of a critical re-

view of the underlying modelling assumptions. The scientific discussion initiated by Li (2009) and 

the response by Cantieni and Anagnostou (2009) highlighted the importance of the findings of the 
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present thesis, because it showed that the notion of a ground response curve and the method of 

characteristic lines are deeply entrenched in conceptual thinking and that the differences between 

the plane strain model and the spatial models are not fully understood either in engineering prac-

tice or in the theoretical field.  

There are still a number of open questions concerning ground response in squeezing ground which 

merit further investigation. 

The first group of open questions concerns the constitutive models of the ground. Most of the nu-

merical analyses of the thesis have been made with the assumption of a linearly elastic, perfectly 

plastic constitutive model. This assumption may oversimplify the constitutive behaviour of some 

squeezing rocks but it is, however, the most common model used in engineering practice. Vo-

gelhuber (2007) showed, for instance, that the mechanical behaviour under triaxial testing condi-

tions of the rocks encountered in the squeezing section of the Sedrun Lot of the Gotthard Base 

Tunnel corresponds well with a linearly elastic and perfectly plastic behaviour. On the other hand, 

the triaxial tests performed with samples from the planed Gibraltar tunnel area show a completely 

different behaviour (cf. Anagnostou 2008 and Anagnostou et al. 2010c). The determination of ad-

vanced constitutive models for such rocks is currently under investigation at the ETH Zurich, as 

well as the examination of basic aspects of the ground response to tunnelling when incorporating 

advanced constitutive models. 

The time-dependency of ground behaviour was handled by using an elasto-viscoplastic constitutive 

model. The next step is to investigate either the effect of consolidation or the effect of consolidation 

in combination with creep in order to understand their effect on the deformations and stresses in 

the vicinity of the face and on the final equilibrium reached far behind the face. Investigations in this 

field have been carried out by Ramoni and Anagnostou (2010) with respect to the effect of consoli-

dation on TBM shield loading. 

Squeezing ground is associated with large displacements and strains. The Cauchy small strain as-

sumption, which is normally used in the finite element method, is not valid for such high strains 

(>10%). An investigation into the effects of large strain approaches on the ground response by 

means of spatial computations would help to improve our knowledge of the interaction between 

supports and squeezing ground. 

A further open question concerns the constitutive model of the shotcrete. The shotcrete applied in 

squeezing ground experiences high deformations before reaching its final strength. The response 

of young shotcrete to a high strain rate and the effect of such a loading on the final properties of the 

shotcrete merit an in-depth experimental investigation. 

Another important open question concerns the face stability of deep tunnels. The mechanism be-

hind face instability in deep tunnels is still not well understood. A failure mechanism which reaches 

the ground surface (often used in shallow tunnels) seems not to be appropriate for deep tunnels. 

The investigation of face stability by means of second order mechanisms seems to be a more ap-

propriate approach. Also, the time-dependency of face stability (often defined by the so-called 

“stand-up time”) requires an in-depth investigation for both creeping ground and low-permeability 

water-bearing ground. Initial investigations into face stability in water-bearing ground, with an em-

phasis on the effects of advance drainage, have been carried out within the framework of the as-

sessments for the Lake Mead No 3 intake tunnel in Nevada, USA (Anagnostou et al. 2010a and 
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2010b). Further investigations are in progress at the ETH Zurich into the static effects, feasibility 

and execution of drainage in tunnelling. 
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