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ABSTRACT

The four papers summarized in this thesis deal with the Archean and earliest 
Paleoproterozoic granitoid suites observed in the Suomussalmi district, eastern 
Finland. Geologically, the area belongs to the Kianta Complex of the Western 
Karelian Terrane in the Karelian Province of the Fennoscandian shield. The 
inherited zircons up to 3440 Ma old together with Sm–Nd and Pb–Pb data con-
firm the existence of previously anticipated Paleoarchean ‘protocrust’ in Suo-
mussalmi. The general timeline of granitoid magmatism is similar to that of the 
surrounding areas. TTG magmatism occurred in three distinct phases: ca 2.95 
Ga, 2.83–2.78 Ga and 2.76–2.74 Ga. In Suomussalmi the TTGs sensu stricto 
(K2O/Na2O < 0.5) belong to the low-HREE type and are interpreted as partial 
melts of garnet amphibolites, which did not significantly interact with mantle 
peridotites. Transitional TTGs (K2O/Na2O > 0.5), present in Suomussalmi and 
absent from surrounding areas, display higher LILE concentrations, but other-
wise closely resemble the TTGs sensu stricto and indicate that recycling of felsic 
crust commenced in Suomussalmi 200 Ma earlier than in surrounding areas.

The youngest TTG phase was coeval with the intrusion of the Likamännik-
kö quartz alkali feldspar syenite (2741 ± 2 Ma) complex. The complex contains 
angular fragments of ultrabasic rock, which display considerable compositional 
heterogeneity and are interpreted as cumulates containing clinopyroxene (gener-
ally altered to actinolite), apatite, allanite, epidote, and albite. The quartz alkali 
feldspar syenite cannot be regarded as alkaline sensu stricto, despite clear alka-
line affinities. Within Likamännikkö there are also calcite carbonatite patches, 
which display mantle-like O- and C-isotope values, as well as trace element 
characteristics consistent with a magmatic origin, and could thus be among the 
oldest known carbonatites in the world. Sanukitoid (2.73–2.71 Ga) and quartz 
diorite suites (2.70 Ga) overlap within error margins and display compositional 
similarities, but can be differentiated from each other on the basis of higher 
Ba, K2O and LREE contents of the sanukitoids. The Likamännikkö complex, 
sanukitoids and quartz diorites are interpreted as originating from the metaso-
matized mantle and mark the diversification of the granitoid clan after 200 Ma 
of evolution dominated by the TTG suite.

Widespread migmatization and the intrusion of anatectic leucogranitoids as 
dykes and intrusions of varying size took place at 2.70–2.69 Ga, following col-
lisional thickening of the crust. The leucogranitoids and leucosomes of migma-
tized TTGs are compositionally alike and characterized by high silica contents 
and a leucocratic appearance. Due to compositional overlap, definitive discrimi-
nation between leucogranitoids and transitional TTGs requires isotope datings 
and/or knowledge of field relationships. Leucogranitoids represent partial melts 
of the local TTGs, both the sensu stricto and transitional types, mostly derived 
under water fluxed conditions, with possible fluid sources being late sanukitoids 
and quartz diorites as well as dehydrating lower crust.

The Paleoproterozoic 2.44–2.39 Ga A-type granitoids of the Kianta Com-
plex emplaced in an extensional environment are linked to the coeval and more 
widespread mafic intrusions and dykes observed over most of the Archean nu-
cleus of the Fennoscandian shield. The A-type intrusions in the Suomussalmi 
area are interpreted as partial melts of the Archean lower crust and display 
differences in composition and magnetite content, which indicate differences in 
the composition and oxidation state of the source.
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1  INTRODUCTION

With respect to plate tectonics, how far back in 
time can we use the principle of uniformatism; the 
present is the key to the past? Is there a point in 
geological time when the modern key no longer 
opens the lock and uniformatism can thus no 
longer be applied? One such point interpreted as 
marking a change in plate tectonics is the Neoar-
chean, indicated for example by the appearance of 
the first carbonatites and alkaline intrusives (Sut-
cliffe et al. 1990, Blichert-Toft et al. 1995, Zozulya 
et al. 2007, 2009, Chakhmouradian et al. 2008, 
Lukkarinen, 2008, Paper II), the main phase of 
sanukitoid (high-Mg granitoids) activity for refer-
ences, see Heilimo et al. 2011) and the assembly 
of the first supercraton(s) (Bleeker 2003). The no-
tability of this purported Neoarchean change is 
under dispute; was it merely related to a gradual 
steepening of the subduction angle (Martin & 
Moyen 2002, Martin et al. 2010) or to a funda-
mental change from crustal growth dominated by 
the melting of mafic lower crust, thickened either 
tectonically (Condie 2005) or by magmatic un-
derplating (Bédard 2006, Smithies & Champion 
2007), to one dominated by subduction zone mag-
matism. Further questions arise from the causes 
of the change: did it result from gradual cooling 
of the Earth (Martin et al. 2005) or was it abrupt-
ly triggered by an outside force, for example by a 
giant impact (Hansen 2007).

Prior to the Neoarchean, granitoid magmatism 
mainly consisted of TTG (Tonalite-Trondhjemite-
Granodiorite) suite rocks, which are commonly 
interpreted as partial melts of basaltic rocks un-
der varying pressures, resulting in notable differ-
ences in trace element compositions (Martin 1987, 
Martin et al. 2005, Condie 2005, Halla et al. 2009, 
Moyen 2009, 2011), although fractional crystal-
lization of mantle-derived melts is presented as 
an alternative model in some areas (Kleinhans et 
al. 2003, Samsonov et al. 2005). It is commonly 
envisioned that the hotter Archean mantle led to 
subduction at a lower angle and partial melting 

of the subducting slab instead of melting of the 
metasomatised mantle wedge, as in modern sys-
tems. Martin et al. (2005) concluded that the grad-
ual steepening of the subduction angle during the 
Archean can be observed as rising Mg#, Cr, and 
Ni levels in TTGs caused by increasing interaction 
with the progressively thickening mantle wedge. 
Simultaneously, Sr, CaO and Na2O concentra-
tions rose as melting depth increased to pressures 
outside the stability field of plagioclase. Andean 
adakites, formed in a geodynamic setting in which 
an abnormally hot oceanic plate is subducted and 
partially melted, have been regarded as potential 
modern analogues of Archean TTGs (Martin 
1993, Martin et al. 2005). This analogue between 
TTGs and adakites has also been questioned due 
to significantly higher mantle compatible element 
levels in the latter, and it has been argued that the 
Archean TTGs are melts from lower crust thick-
ened either tectonically (Smithies 2000, Condie 
2005) or through magmatic underplating (Bédard 
2006, Champion & Smithies 2007). The low angle 
subduction hypothesis has also been challenged 
due to the lack of negative buoyancy of the pre-
sumably hotter Archean oceanic plate and thus 
the lack of slab pull (van Thienen et al. 2004). Nu-
merical models suggest that in the case of a hot 
Archean mantle the subduction, if  it occurred, was 
steep angled (van Hunen & van den Berg 2008). 
Smithies et al. (2003) suggested a model of flat 
subduction, although it is closer to underthrusting 
than subduction. This involves progressive thick-
ening and stacking of the oceanic lithosphere un-
til the lower parts partially melt to generate TTG 
magmas, which is followed by delamination of the 
eclogite residue. Numerical models of Cooper et 
al. (2006) showed that such stack piles could form 
and develop over downwelling areas of mantle 
convection cells and in favorable conditions could 
be stabilized to form cratons.

As outlined above, the models for TTG genesis 
do not necessarily involve plate tectonics resem-
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bling the modern system, unlike the ones for sa-
nukitoids (high-Mg granitoids), which are linked 
to subduction in slightly variable ways (Moyen et 
al. 2003, Lobach-Zhuchenko et al. 2005, Heilimo 
et al. 2010a, Martin et al. 2010). Heilimo et al. 
(2010a) suggested a model involving, in addition 
to the commonly interpreted metasomatism of 
the mantle wedge by fluids and melts from the 
subducting slab, a second phase of metasoma-
tism by alkaline fluids following slab break off. 
Sanukitoids typically yield Neoarchean ages, with 
some slightly older examples (see references in 
Heilimo et al. 2011), and two explanations are of-
fered: either that by the Neoarchean the subduc-
tion angle had steepened enough to allow room 
for interaction between melts and fluids from the 
subducting slab and the mantle wedge (Martin et 
al. 2010), or alternatively they mark the beginning 
of widespread subduction as whole. Since the 
original, rather strict, sanukitoid definition (Stern 
et al. 1989), the term has commonly been used in 
a wider sense, leading to the concept of a sanuki-
toid suite for Archean granitoid rocks with higher 
than average contents of MgO, Cr, Ni, K2O/Na2O, 
Sr and Ba (Heilimo et al. 2010a). Some mantle-
derived quartz diorites superficially resemble the 
sanukitoids, but do not share all the pertinent 
characteristics, possibly due to less intense meta-
somatism of the source area in the mantle Steen-
felt et al. 2005, Mueller et al. 2010, Paper I). The 
alkaline rocks and carbonatites that appear in the 
Neoarchean are also typically linked to variably 
metasomatized mantle melted during or follow-
ing subduction (Sutcliffe et al. 1990, Blichert-Toft 
et al. 1995, Chakhmouradian et al. 2008, Zozulya 
et al. 2009, Paper II). The two-phase metasoma-
tism model of Heilimo et al. (2010a), inherently 
involving a heterogeneous metasomatised lith-
ospheric mantle, has the potential to explain the 
existence of coeval, but compositionally differing 
mantle-derived granitoids (Papers I, II). However, 
in the Yilgarn Craton the alkaline rocks have been 
interpreted to result from intracrustal melting fol-
lowing delamination of lower crust and metaso-
matization of the source (Smithies & Champion 
1999).

The last major group of Archean granitoids 
comprises the leucogranitoids, which are com-
monly found as the final voluminous phase of 
magmatism in Archean cratons. Leucogranitoids 
are commonly interpreted to result from continen-
tal collisions leading to partial melting of pre-ex-
isting crust, in most cases predominantly consist-
ing of TTGs and in some cases of metasediments 
with an insignificant role of juvenile input from 
mantle (Sylvester 1994, Sawyer 1998, Kampunzu 

et al. 2003, Käpyaho et al. 2006, Manya et al. 
2007, Paper III). However, both laboratory results 
(Lopez et al. 2005) and natural systems (Almeida 
et al. 2010) suggest that input from and interac-
tion with mantle-derived melts, i.e. sanukitoids, 
is in certain cases necessary to explain all of the 
compositional characteristics of leucogranitoids.

The Archean–Proterozoic transition also marks 
the appearance of the first A-type granitoids, the 
oldest Neoarchean examples being from southern 
Africa (Moore et al. 1993: 2785 Ma), northern 
Brazil (Sardinha et al. 2006: 2743 Ma) and Kola 
(Zozulya et al. 2005: 2680–2620 Ma), whereas early 
Paleoproterozoic examples are known from Fin-
land (Lauri & Mänttäri 2002, Paper IV: 2.44–2.39 
Ga) and China (Zhang et al. 2007: 2410 and 2340 
Ma). Like their younger counterparts, these earli-
est examples are typically associated with mantle 
upwelling following pauses of varying length af-
ter major collisional events. Although the exact 
mechanism of A-type granitoid genesis remains 
unresolved (Martin 2006, Bonin 2007), their ap-
pearance at the Archean–Proterozoic boundary, 
slightly after the introduction of sanukitoids and 
alkaline rocks, must be taken into account when 
considering the changes in plate and mantle dy-
namics at that time.

Since the first isotope age determinations in 
Finland (Kouvo 1958, Wetherill et al. 1962), the 
Archean of Finland has been the target of exten-
sive geochronological as well as geochemical stud-
ies. The pioneering work mainly in the Kuhmo 
area (Jahn et al. 1980, Hyppönen 1983, Martin 
et al. 1983, 1984, Martin 1985, 1987a, 1987b, 
Querre 1985, Barbey & Martin 1987, Martin & 
Barbey 1988, Vaasjoki 1988, Luukkonen 1988a, 
1992) answered numerous questions, both local 
and global, in addition to raising new ones. The 
beginning of the new millennium marked a new 
surge of interest in the Finnish Archean (Halla 
2002, 2005, Lauri et al. 2006, 2011, Käpyaho et al. 
2006, 2007, Käpyaho 2006, 2007, Kontinen et al. 
2007, Papunen et al. 2009, Heilimo et al. 2010a, 
2011, Papers I–III). The foundation to this thesis 
was laid when the Geological Survey of Finland 
(GTK) decided to commence bedrock mapping 
in northeast Kainuu in 2003. This subarea of the 
Finnish Archean had been more thoroughly stud-
ied only in areas belonging to the ore potential 
Tipasjärvi-Kuhmo-Suomussalmi greenstone belt 
(henceforth TKSB) (Engel & Dietz 1989, Vaas-
joki et al. 1999, Luukkonen et al. 2002, Papunen 
et al. 2009), but had otherwise remained largely 
unstudied since the 1:400 000 bedrock mapping 
performed in the 1950s (Matisto 1954, 1958, En-
kovaara et al. 1952, 1953). Earlier work on grani-



9

The prehistory of Suomussalmi, eastern Finland;  
the first billionyears as revealed by isotopes and the composition of granitoid suites

toids had concerned only single samples and small 
subareas near TKSB (Martin et al. 1983, 1984, 
Martin 1985, Querre 1985, Käpyaho et al. 2007). 
The idea to use the material collected during bed-
rock mapping for separate articles and finally this 
thesis evolved during the first mapping summer 
(2003) and the following winter.

Papers I–IV present varying aspects of the 
Archean and earliest Proterozoic geology of the 

Kianta Complex and especially the Suomussalmi 
area, a previously relatively unstudied part with 
both similarities and differences compared to the 
adjacent areas. These new data together with pre-
viously published data were used to evaluate and 
discuss possible settings of genesis for different 
types of granitoids within the Kianta Complex 
and especially in Suomussalmi from the Mesoar-
chean to the earliest Paleoproterozoic times. 

2  SAMPLING, METHODOLOGY, TERMINOLOGY

2.1  Sampling

Sampling for the original papers was mainly car-
ried out during and in connection with the field-
work (during 2003–2006) for the bedrock map of 
Northeast Kainuu (Mikkola 2008). For Paper IV, 
part of the material was collected by the second 
author in 2007 based on his own earlier fieldwork 
(Kontinen 1989). In Paper I, some zircons from 

previous age samples were used to achieve better 
areal and temporal coverage. Sampling for south-
ern and northern parts of the study area of Paper 
III had earlier been done in connection with pre-
vious projects (Räsänen et al. 2004, Käpyaho et 
al. 2006).

2.2  Methodology

All whole-rock analyses (Papers I–IV) were per-
formed in GTK’s geochemistry laboratory, later 
Labtium Ltd, using X-ray fluorescence (XRF) 
and inductively coupled plasma mass spectrom-
etry (ICP-MS), plus a carbon analyzer for total 
carbon. A detailed description of the methods 
can be found from Rasilainen et al. (2007). Mi-
croanalyses reported in Paper II were performed 
using GTK’s Cameca SX100 electron microprobe 
in Espoo, and a description of the method is pro-
vided in the appendix of Paper II. VG Sector 54 
thermal ionization mass spectrometer (TIMS) at 
the Espoo laboratory of GTK was used for the 
multigrain zircon U-Pb analyses and whole-rock 
Sm-Nd isotope analyses (Papers I, II, IV) to de-
termine the crystallization ages and crustal resi-
dence times of the granitoids, respectively. TIMS 
procedures are described in the appendix of Pa-

per I. Cameca II IMS 1270 secondary ion mass 
spectrometer (SIMS) at the Museum of Natural 
History of Sweden, Stockholm, was used for zir-
con single-grain U-Pb age determinations and 
O-isotope analyses of the same spots (Paper I). 
Laser ablation multicollector inductively coupled 
plasma mass spectrometer (LA-MC-ICPMS) at 
GTK in Espoo (SIGL facility, i.e. Finland Iso-
tope Geosciences Laboratory) was used for sin-
gle-grain U-Pb age determinations in Paper IV, 
which also includes a detailed description of the 
applied method. The isotope ratios of C and O 
in calcite used in Paper II were measured using a 
Thermo Finnigan DeltaPLUS Advantage isotope 
ratio mass spectrometer at the Department of Ge-
osciences and Geography, University of Helsinki; 
the method is described in the appendix of Paper 
II.

2.3  Terminology

The subdivision of the Archean nucleus of the 
Fennoscandian shield used in this synopsis, as well 
as in the original papers, follows that of Hölttä et 
al. (2008) (Fig. 1), which divides it into five prov-
inces: Murmansk, Kola, Belomorian, Karelian 
and Norrbotten. The Karelian Province (hereafter 

Karelia) is further subdivided into the Vodlozero, 
Central Karelian and Western Karelian terranes 
(hereafter Western Karelia). The Kianta Complex 
(hereafter Kianta) is one of the three complexes 
of Western Karelia, the two other being Iisalmi 
and Pudasjärvi.
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Figure 1. Main map showing the geological complexes of the Western Karelian terrane, one of which is the Kianta Complex. 
Also shown are the study areas of Papers I and III, together with the locations of the Likamännikkö complex (Paper II) and 
the 2.44–2.39 Ga A-type granitoids (Paper IV). Geological subdivision according to Hölttä et al. (2008). Basemap simplified 
from Koistinen et al. (2001). In the inset the Archean provinces of the Fennoscandian shield are shown.
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The definition of Martin et al. (2005) is used for 
the TTGs, i.e. these are characterized by low Mg# 
and low concentrations of compatible trace ele-
ments Cr and Ni, as well as high Na2O and SiO2 
and K2O/Na2O < 0.5. For those samples fulfill-
ing other criteria but having K2O/Na2O > 0.5, the 
term ‘transitional TTG’ of Champion and Smith-
ies (2001) is used. TTG sensu lato (hereafter s.l.) 
is used to refer to both TTGs and transitional 
TTGs. TTGs in this study are subdivided into 
low-HREE and high-HREE types according to 
Halla et al. (2009). This subdivision reflects the 
melting depth, low-HREE TTGs being the prod-
uct of partial melting under higher pressure with-
in the garnet stability field and high-HREE TTGs 
under lower pressure, outside the garnet stability 

field. For sanukitoids, the criteria of Heilimo et 
al. (2010a) are used, i.e. SiO2 = 55–70 wt %, K2O 
= 1.5–5.0 wt %, K2O/Na2O = 0.5–3.0, MgO = 
1.5–9.0 wt %, Mg# = 45–65, Ba+Sr ≥ 1400 ppm 
and (Gd/Er)N = 2–6. Quartz diorites resemble the 
sanukitoids but are differentiated from them by 
the lower Ba, K2O, Cr, Ni, Mg# and (La/Sm)N of 
the former (Paper I). The term leucogranitoid is 
used to refer to both the ca 2.7 Ga leucosomes, 
dykes and intrusions, which are distinctly rich in 
SiO2, commonly over 72 wt %, and poor in FeOt 
and MgO, although compositional overlap with 
the transitional TTGs exists (Paper III). The no-
menclature of Papunen et al. (2009) is used for the 
rock units of the TKSB.

3  REVIEW OF THE PAPERS

3.1  Paper I

Paper I presents isotopic and geochemical data 
from all observed Archean granitoid suites from 
Suomussalmi, excluding compositional data for 
the leucogranitoids. Isotope methods include 
TIMS and SIMS zircon U-Pb ages, as well as O-
isotope data from zircons. Whole-rock Sm-Nd 
data were used to evaluate the crustal residence 
times of the granitoids. The aim of this paper was 
to study the differing granitoid types with mul-
tiple methods to evaluate their possible tectonic 
settings and age distribution. Single grain age 
determinations confirmed the existence of crust 
older than 3.0 Ga previously interpreted based 
on Sm-Nd and Pb-Pb isotope data. Ca 2.95 Ga 
TTGs s.l., coeval with oldest parts of the TKSB 
and previously known east of the greenstone belt, 
were also recognized west of it. A major period 

of TTG s.l. magmatism in Suomussalmi was at 
2.83–2.78 Ga, an age span similar to that further 
south in Kuhmo. The next TTG phase took place 
at 2.76–2.74 Ga and was followed by a pause of 
ca 20 Ma prior to the intrusion of the sanukitoid 
suite. Sanukitoids show partial temporal overlap 
with the quartz diorites and are also coeval with 
one transitional TTG sample. Migmatization of 
the older rocks and intrusion of anatectic leu-
cogranitoids took place at 2.71–2.67 Ga. Prior to 
2.78 the data support TTG s.l. genesis via partial 
melting of crust thickened either via underplat-
ing or tectonic stacking. After 2.75 Ga the domi-
nance of TTGs s.l. ends with the introduction of 
sanukitoids, quartz diorites and leucogranitoids, 
possibly indicating the involvement of a subduc-
tion environment.

3.2  Paper II

Paper II describes the geology, geochemistry as 
well as Sm-Nd whole-rock and carbonate O and C 
data of the Likamännikkö complex from western 
Suomussalmi (Fig. 1). This Neoarchean (TIMS 
zircon U-Pb age 2741 ± 2 Ma) quartz alkaline 
feldspar syenite intrusion with P2O5-rich ultraba-
sic fragments and carbonatite patches has alka-
line affinities, but cannot be considered as alkaline 
sensu stricto. The complex is interpreted to consist 
of two or more silicate magma pulses and the ul-
trabasic fragments as cumulates of older magma 

pulse(s), containing apatite, clinopyroxene, albite 
and epidote as cumulating phases, brecciated by 
younger pulse(s). Carbonatite patches are most 
likely products of separate carbonatite magmas. 
Alternatively, they could be result of magma im-
miscibility, but carbohydrothermal residue and 
sedimentary enclave alternatives can be ruled out. 
The age of the carbonatite patches could not be 
determined exactly, but all three rock types yield-
ed similar Sm-Nd characteristics. The quartz al-
kali feldspar syenite has a certain resemblance to 
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the sanukitoid suite, but cannot be regarded as a 
member of it: the intrusion is also 20 Ma older 
than the known sanukitoids within Kianta. How-
ever, the rock types in Likamännikkö are inter-
preted as products of mantle metasomatized in 

possibly similar process(es) to those responsible 
for modifying the sanukitoid source, i.e. subduc-
tion-related fluids/melts and/or asthenospheric 
upwelling.

3.3  Paper III

Paper III describes the geochemistry of the 2.7 
Ga leucogranitoid dykes and stocks as well as 
migmatite leucosomes from the northern half  of 
Kianta (Fig. 1). The data together with previously 
published isotope results were used to evaluate 
the possible sources of these rocks. Leucograni-
toids are interpreted to be mainly partial melts of 
local TTGs s.l. In some cases, middle and lower 
crust amphibolites can also be regarded as poten-
tial sources. Paragneisses, sanukitoids and quartz 
diorites can be ruled out as a significant source, 
based on spatial distribution, geochemistry and 

isotopes. However, crystallizing sanukitoids and 
quartz diorites could have liberated fluids, which 
would have lowered the melting point of TTGs. 
Another possible fluid source could have been 
metamorphic dehydration of the lower crust. 
Pathways for migrating fluids and melts were pro-
vided by crustal-scale shear zones. Compositional 
heterogeneity, especially in trace elements, of the 
leucogranitoid suite, are attributed to heteroge-
neities of the source, variable residue mineralogy 
and feldspar accumulation.

3.4  Paper IV

Paper IV presents geochemical and U-Pb age data 
(TIMS and LA-MC-ICPMS) on Paleoprotero-
zoic A-type granitoid intrusions and associated 
dykes intruding Kianta. The aim of the paper was 
to study the general aspects of these granitoids, 
which at the same time display both consanguin-
ity and differences in geophysical properties and 
composition. The data clearly demonstrate that 
the intrusives have ages between 2.43 and 2.39 Ga 
and belong to the Paleoproterozoic Tuliniemet 
suite, which thus extends over longer time span 
and larger area than previously known. The in-

trusions and dykes have clear A-type characters, 
including a negative Eu anomaly as well as high 
HREE, Fe/Mg, and Nb values: more precisely, 
they belong to the A2 type, interpreted to result 
from the partial melting of pre-existing crus-
tal rocks. Based on available data, the differing 
magnetic properties as well as compositional dif-
ferences in the intrusions are related to the vari-
able properties of their sources, and are not due 
to differences in fractionation processes or post-
crystallization events.

4  DISCUSSION

4.1 Archean and early Paleoproterozoic events in Suomussalmi and their continuations  
in northern Kianta

The well-known field geology of Suomussalmi, 
together with extensive geochemical and isotopic 
data from the different granitoid suites, allows 
evaluation of the potential sources and settings 
of each suite. Based on new and pre-existing data, 
several distinct phases can be recognized in the 
crustal evolution of Suomussalmi and Kianta as 
a whole. Some of these phases, at least the young-
est ones, probably have their continuations on the 
neighboring complexes. These phases are summa-

rized in the text below and in Figure 2.

4.1.1  Indications for >3 Ga bedrock

No rocks older than 3 Ga have been observed in 
Kianta. Based on isotope data, however, their lo-
cal existence has at least been anticipated (Luuk-
konen 1992). Sm-Nd data from northern Kianta 
(Luukkonen 2001, Käpyaho et al. 2006, Lauri et 
al. 2006, Paper I) as well as Pb-Pb data from Suo-
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Figure 2. Summary of age data for granitoid rocks of Kianta (Papers I–IV, Luukkonen 1989, Vaasjoki et al. 1999, Halla 2002, 
Käpyaho et al. 2006, 2007, Lauri et al. 2006, 2011, Heilimo et al. 2011). Periods of activity within and detrital zircon data of 
the Tipasjärvi-Kuhmo-Suomussalmi greenstone belt (TKSB) according to Huhma et al. (2010). Siikalahti intrusion (A1719) 
is excluded from the main sanukitoid phase due to poorly constrained age (Käpyaho 2007). A1926 is the new age sample from 
the Loso diorite (Kontinen & Huhma, unpublished data) setting the minimum age of deposition of the protoliths of Nurmes-
type paragneisses at 2715 Ma. Age of mafic layered intrusions and associated dykes drawn based on Alapieti (1982). Error 
bars with question marks at one end mark samples yielding only minimum or maximum age estimates. Roman numbers after 
a sample number refer to the original papers summarized in this thesis.
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mussalmi (Vaasjoki et al. 1999), both indicating 
prolonged crustal residence times for the source, 
together with inherited zircons aged up to 3.44 Ga 
(Paper I, Lauri et al. 2011) are sufficient evidence 
and the existence of such a ‘protocrust’ seems in-
evitable. 

4.1.2  2.95 Ga, the first TTG and volcanic event

The 2.95 Ga event in Kianta is marked by the 
Luoma group volcanic rocks of the TKSB (Vaas-
joki et al. 1999, Luukkonen et al. 2002) and oldest 
generation of TTGs (Käpyaho et al. 2007, Paper 
I). These rocks are of limited areal extent and met 
within and near the TKSB in its northern parts. 
Käpyaho (2007) concluded that by 2.94 Ga sialic 
crust existed at least east of the TKSB, but new 
data demonstrate that it is present on both sides 
(Paper I). The fragmentary data concerning these 
2.95 Ga rocks do not allow detailed interpretation 
of their tectonic setting.

4.1.3  2.93–2.85 Ga, silence

There is only one age sample with an age be-
tween 2.93 and 2.85 Ga in the whole of Kianta: 
a 2.87 Ga mafic rock from the eastern branch of 
the TKSB in Suomussalmi (Huhma et al. 2010). 
Furthermore, only few detrital zircons from par-
agneisses (Kontinen et al. 2007) and some inher-
ited zircons from leucogranitoids (Paper I) yield 
ages falling in this bracket. It is uncertain whether 
the ages of these zircons are indeed crystallization 
ages of so far unknown rocks in the area, or an 
artifact of Archean lead loss producing concord-
ant but meaningless ages (Paper I). In the case of 
the paragneisses, the detrital zircons could have 
been derived from the Central Karelian terrain 
(Käpyaho 2007), as well as from unknown Ar-
chean fragment(s) separated from Karelia during 
Paleoproterozoic rifting. Nevertheless it seems ev-
ident that, if  not absent, magmatic activity in Suo-
mussalmi and the whole Kianta Complex at this 
time was insignificant. This has been previously 
noted from the Kuhmo area (Käpyaho 2007).

4.1.4  2.83–2.78 Ga, the main magmatic event

It is well established that 2.83–2.78 Ga was a ma-
jor crust-forming phase in Kianta, indicated by 
both TTGs s.l. (Vaasjoki et al. 1999, Käpyaho 
et al. 2006, 2007, Lauri et al. 2006, Paper I) and 
volcanic rocks that comprise the majority of the 
TKSB (Hyppönen 1983, Huhma et al. 2010) (Fig. 
2). Some of the older rocks record this younger 
event as a strong metamorphic event, causing at 

least local anatexis (Luukkonen 1989, Käpyaho 
et al. 2007, Paper I). Despite similarities in crys-
tallization ages, clear differences are also present 
between different areas of Kianta. Samples from 
Suomussalmi typically yield older tDM model ages 
than their counterparts from Kuhmo, this is true 
for both the TTGs s.l. (Käpyaho et al. 2006, Pa-
per I) and the volcanic rocks (Huhma et al. 2010). 
Transitional TTGs suggesting a stronger input 
from felsic material are present in Suomussalmi 
(Paper I) and absent from Kuhmo (Käpyaho 
2006). TTGs of this age group from both sides 
of the TKSB belong to the low-HREE type (Pa-
per I), and asymmetry like that observed in Kos-
tomuksha seems to be absent. In Kostomuksha, 
the asymmetrical distribution of low-HREE and 
high-HREE TTGs has been interpreted as evi-
dence for a subduction setting (Samsonov et al. 
2005). Relatively low and uniform δ18O (5.78–
6.08) values together with the fact that TTGs 
from Suomussalmi show no compositional indi-
cations of interacting with the mantle wedge dur-
ing ascent favor a source in the lower crust, rather 
than a subduction setting, for the TTGs (Paper 
I). If  the lower crust melting hypothesis for these 
low-HREE TTGs (Halla et al. 2009, Paper I) is 
valid, the observed differences between Suomus-
salmi and Kuhmo areas could be a result of older 
rocks in the source area and/or contamination 
from older crust during ascent. In the case of slab 
melt origin, only the contamination hypothesis 
would be valid.

According to Huhma et al. (2010), the main 
mafic-ultramafic volcanic activity within the 
TKSB is coeval with the TTGs, instead of being 
slightly younger (2.79–2.77 Ga) as suggested by 
Papunen et al. (2009). The overlapping ages of 
felsic plutonism (lacking signs of subduction) and 
mafic-ultramafic volcanism fit an interpretation 
of the TTGs having been generated from crust, 
thickened either through stacking or underplat-
ing, and the mafic-ultramafic sequence represents 
partial melts from upwelling mantle (Paper I). Al-
ternatively, the TKSB could be interpreted as an 
allochthonous piece of oceanic plateau. However, 
as the Sm-Nd ages of the volcanic rocks show the 
same areal variation as the underlying granitoids, 
i.e. older in the north, this seems unlikely. 

4.1.5  Subtle magmatic activity at 2.78–2.76

In Suomussalmi and also within the whole Kianta 
Complex, the 2.83–2.78 Ga crust forming event is 
followed by a distinct pause in or period of low 
magmatic activity lasting ca 20 Ma (Fig. 2).
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4.1.6  2.76–2.65 Ga: Diversity of granitoids follo-
wed by metamorphism

After 2.76 Ga, Kianta was intruded by late TTGs 
(Luukkonen 2001, Käpyaho et al. 2006,  Paper 
I), with the locus of magmatic activity east of 
the TKSB. All of these late TTGs belong to the 
low-HREE group (Käpyaho 2006, Paper I) and 
have been interpreted as partial melts of garnet 
bearing amphibolites, either from the subducting 
slab (Paper I) or thickened lower crust (Halla et 
al. 2009,  Paper I). 

The 2741 ± 2 Ma Likamännikkö quartz alkali 
feldspar syenite, hosting ultrabasic cumulate frag-
ments and carbonatite patches, represents atypi-
cal Neoarchean mantle-derived magmatic rock 
(Paper II). The cumulate assemblage consisted of 
clinopyroxene, commonly altered to amphibole, 
epidote, albite and prominent amounts of fluora-
patite, with a whole-rock P2O5 content of up to 
13.5 wt %. The carbonatite patches are likely to 
be products of separate carbonatite magma or 
alternatively a result of magma immiscibility, 
and they are possibly among the oldest known 
carbonatites, although their exact age could not 
be established. The quartz alkali feldspar syenite 
has certain sanukitoid affinities, but cannot be re-
garded as a member of the suite; furthermore, it 
is 20 Ma years older than the known sanukitoids 
in Suomussalmi (Heilimo et al. 2011, Paper I). 
During recent bedrock mapping east and south 
of Kuhmo, several syenitoid intrusions have been 
located (Mikkola & Paavola, unpublished data), 
and it seems that the Likamännikkö complex is 
not a unique feature, but part of a wider suite.

Based on differences in age and composition, 
Lobach-Zhuchenko et al. (2005) suggested that 
the sanukitoid intrusions of Karelia form two dis-
tinct zones: a younger western and an older east-
ern zone. Recent single grain ages (Heilimo et al. 
2011) clarified the age division of sanukitoids in 
Finland by showing that the majority of the in-
trusions belong to the ca 2.72 Ga western sanuki-
toid zone, and only the intrusions in the Ilomantsi 
area belong to the ca 2.74 Ga eastern zone. The 
Siikalahti intrusion is younger at 2683 ± 9 Ma 
(Käpyaho et al. 2006), but the quality of the age 
can be questioned (Käpyaho 2007). It must also 
be noted that zircons from Siikalahti yielded δ18O 
values (Paper I: 8.50 ± 0.51‰) distinctly differ-
ent from the lower values of other Western Ka-
relian sanukitoids (Heilimo et al. 2010b: δ18O = 
5.02–6.58‰), and the intrusion should therefore 
be treated as atypical for the area. Sanukitoid 
activity was partly coeval with another mantle-
derived rock group: quartz diorites, a group with 

some sanukitoid affinities, but also differences, 
such as lower levels of Ba, K2O, Cr, Ni, Mg# 
and (La/Sm)N that prevent their inclusion in the 
sanukitoid suite (Paper I). Regionally, the quartz 
diorites are more common in Pudasjärvi and the 
northern half  of Iisalmi, whereas sanukitoids are 
more voluminous in Kianta, although both types 
are present there.

Sanukitoids, quartz diorites and the Likamän-
nikkö complex all are interpreted as melts from 
the subcontinental mantle modified during and 
possibly also after subduction (Lobach-Zhuchen-
ko et al. 2005, Halla 2005,  Heilimo et al. 2010a, 
Papers I, II). Active Neoarchean arc systems 
existed in the Central Karelian area (Sorjonen-
Ward & Luukkonen 2005, Bibikova et al. 2005), 
but the exact link between them and the coeval 
granitoids of Kianta remains unresolved. If, for 
example, the 2.75 Ga TTGs were derived from a 
subducting slab, why do they not display evidence 
of interaction with the mantle wedge (e.g. high 
Cr, Ni, Mg#) during ascent (Paper I), like modern 
adakites, which are interpreted as slab melts (Con-
die 2005). However, their location predominantly 
east of the TKSB, relatively close to the Central 
Karelian terrane, could indicate derivation from 
a slab subducting below Kianta. If  the TTGs 
were derived from thickened crust, a viable model 
should answer the question of how the thickening 
was connected to the events further east. It should 
also be born in mind that the answer to the genesis 
of at least some of the mantle-derived granitoids 
could alternatively have been linked to events in 
the west instead of the east, and thus related to 
rock units lost during the Paleoproterozoic break-
up of the Archean craton.

Close to 2.7 Ga, Nurmes-type paragneisses 
derived from turbidite wackes with MORB-type 
volcanic intercalations were thrust on top of Ki-
anta as a result of continent-continent collision 
(Kontinen & Paavola 2006, Kontinen et al. 2007). 
Coevally, or nearly coevally, Kola collided with 
Karelia, leaving the Belomorian in between (Vo-
lodichev et al. 2004). Together, these collisions 
thickened the crust and resulted in widespread 
migmatization and intrusion of leucogranitoids 
(Luukkonen 1988b, Käpyaho et al. 2006, 2007, 
Lauri et al. 2006, 2011, Papers I, III). Based on 
new age determination of the Loso diorite (Kon-
tinen & Huhma unpublished data: 2715 ± 2 Ma) 
cross-cutting the Nurmes-type paragneisses, the 
deposition of the turbidite wackes, migmatization 
and the leucogranitoid magmatism are not coeval 
(Fig. 2), as the minimum age of the paragneiss 
protolith deposition and onset of collisional tec-
tonics is shifted from 2700 Ma (Kontinen et al. 



16

Geological Survey of Finland
Perttu Mikkola

2007) to 2715 Ma. Due to this more precise age 
of the Loso diorite, the Änäkäinen alkaline intru-
sion must be regarded as syncollisional and thus 
belonging to a different tectonic setting than the 
30 Ma older and clearly pre-collisional Likamän-
nikkö complex, contrary to the interpretation in 
Paper II. This adjusted sequence of events, where 
crustal thickening and partial melting follow each 
other, instead of being coeval, also better explains 
the heat budget of the leucogranitoid event by al-
lowing time for the thickened crust to sufficiently 
heat via radioactive decay. The majority of the 
leucogranitoids were produced by water-fluxed 
melting of TTGs s.l., possible fluid sources be-
ing late sanukitoids, quartz diorites and dehydra-
tion reactions of lower crust (Paper III). Some 
of the leucogranitoids could have been derived 
from middle and lower crust amphibolites, such 
as those observed in Iisalmi as uplifted blocks 
that were partially melted at 2.7 Ga (Nehring et 
al. 2009). As melting commenced during active 
deformation, the generated melts concentrated 
in crustal scale shear zones, leaving relatively un-
deformed and unmigmatized elongated domains 
in between. Zircons older than the hosting meso-
some observed in some migmatite leucosomes in-
dicate that the melting cannot be regarded as fully 
in situ (Paper I). 

4.1.7  2.65–2.40 Ga: Silence ending in mafic and 
felsic magmatism

After 2.5 Ga, 2.45 Ga in Kianta, the whole Ar-
chean nucleus of the Fennoscandian Shield was 
intruded by voluminous mafic layered intru-
sions (Alapieti 1982, Amelin et al. 1995, Lobach-
Zhuchenko et al. 1998, Iljina & Hanski 2005) as 
well as small volume carbonatites (Lokhov et 
al. 2009). This event is also evidenced by A-type 
granitoids aged 2.44–2.39 Ga (Luukkonen 1988b, 
Lobach-Zhuchenko et al. 1998, Lauri & Mänttäri 
2002, Paper IV). In Kianta the A-type granitoids 
belong to two geochemically differing groups: 
Kynsijärvi stock in Taivalkoski is interpreted as 
a product of assimilation and fractional crystal-
lization (A1-type of Eby 1992) (Lauri & Mänttäri 
2002), while other representatives are products 
of partial melting of local Archean basement 
(A2-type of Eby 1992) (Paper IV). A2-type intru-
sives do not form a homogeneous group, but have 
compositional differences and differing magnetic 
properties that cannot be interpreted as a result 
of late stage crystallization processes, metamor-
phism or post-crystallization alteration: rather, 
they were caused by compositionally differing 

sources within the heterogeneous Archean base-
ment (Paper IV).

Based on zircon saturation temperatures, the 
2.7 Ga leucogranitoids were derived from dis-
tinctly lower temperature melting than the A2-
type granitoids (Papers III, IV), and thus these 
suites could have been derived from the same 
source area, yielding the second melt generation 
due to the raised temperature. This derivation of 
A-type granitoids from a source that has already 
experienced one melting event is a common, yet 
criticized (Martin 2006) hypothesis. If  these two 
granite suites share their source rocks, they must 
have been metasomatized after the first melting 
to be able to produce two generations of melts, 
both enriched in i.e. K2O, Ba and Th. In Kianta, 
these two suites probably had differing sources, as 
the leucosomes in TTGs and leucogranite dykes/
stocks resemble each other compositionally (Pa-
per III), suggesting that both were melted under 
similar conditions and the generated melts did not 
experience significant ascent prior to crystalliza-
tion. Furthermore, there is no evidence for pen-
etrative and widespread alteration of the Archean 
rocks at the current erosion level (Mikkola 2008, 
Paper I). Obviously, this model of different sourc-
es does not exclude a possible metasomatism of 
the sources of the A-type granitoids to increase 
their melt fertility, especially if  the lower crust was 
dehydrated at 2.7 Ga (Paper III).

The Paleoproterozoic bimodal event shows 
considerable similarities with the mid-Proterozoic 
rapakivi magmatism in South Finland (Paper IV), 
which might provide additional insights into the 
reasons and mechanism underlying both of these 
events. An interesting question is the distribution 
of the A1- and A2-types within Kianta, and why 
the A2-type intrusions are concentrated in Kuhmo 
and Suomussalmi, where the coeval mafic mag-
matism at the current erosion level is of limited 
volume. This could be related, for example, to dif-
ferences in the extensional tectonics; in Suomus-
salmi and Kuhmo, under weaker extension, the 
majority of the mafic magma would have intra-
plated lower crustal levels, and beneath an insulat-
ing ‘lid’ of felsic crust effectively heated their sur-
roundings, resulting in a larger degree of partial 
melting and the genesis of the A2-type granites. In 
Taivalkoski, under stronger extension, majority 
of the mafic magmas would have reached higher 
crustal levels and their heat was more effective-
ly conducted to the surface, resulting in a lower 
degree of partial melting and the generation of 
A1-type intrusives via assimilation and fractional 
crystallization processes.
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4.2  Kianta as part of the Western Karelian terrane

Rocks older than 3 Ga in Western Karelia are few 
and far apart, but known from the Pudasjärvi and 
Iisalmi Complexes and inferred in Kianta, clearly 
the oldest observed one being the 3.5 Ga Siurua 
gneiss (Fig. 1) in Pudasjärvi (Mutanen & Huhma 
2003). In Iisalmi, granulite mesosome and gneiss 
samples yield ages in the range of 3.2–3.1 Ga 
(Paavola 1986, Mänttäri & Hölttä 2002), but low-
er crustal xenoliths from kimberlites also indicate 
the existence of 3.5 Ga crust there (Peltonen et al. 
2006). Regarding the next age group, outside Ki-
anta the only known rock aged 2.95 Ga is a felsic 
granulite from Pudasjärvi (Mutanen & Huhma 
2003) near the old Siurua gneiss (Fig. 1). With re-
spect to the voluminous TTG magmatism in Ki-
anta at 2.8 Ga, only one representative of this age 
group has been located from the Pudasjärvi Com-
plex (Lauri et al. 2011) and none from the Iisalmi 
Complex. The lack or low volume of ~2.8 Ga plu-

tonic rocks in the other complexes can be either an 
artefact of inadequate sampling of the TTG suite 
or a true phenomenon. However, volcanic rocks 
from the Oijärvi greenstone belt within the Pudas-
järvi complex yield ages similar to those from the 
TKSB, i.e. 2.80 and 2.82 Ga (Huhma et al. 2010). 
Based on current knowledge, all of the three com-
plexes of Western Karelia have a geological his-
tory extending, at least in places, into the Paleo-
archean, but their mutual relationships cannot be 
constrained prior to 2.75 Ga, after which they dis-
play similar evolution from mantle-derived rocks 
to migmatization and the intrusion of anatectic 
leucogranitoids, followed by an extended period 
of high-grade metamorphism (Mänttäri & Hölttä 
2002, Mutanen & Huhma 2003, Käpyaho 2006, 
Heilimo et al. 2011, Lauri et al. 2011, Paper I).

4.3  Suomussalmi and Kianta in the global context

In a global context, the Suomussalmi area con-
tributes interestingly to Archean crustal evolu-
tion by containing, in a relatively small (~6000 
km2) area, a nearly complete set of granitoid 
suites described from Archean cratons globally, 
and within them evidence of geological history 
spanning 1 Ga from Paleoarchean to the earliest 
Paleoproterozoic. As the versatility of the TTG 
s.l. suite, and Archean granitoid suites in general, 
is increasingly recognized (Steenfelt et al. 2005, 
Moyen et al. 2007, Champion & Smithies 2007, 
Halla et al. 2009, Almeida et al. 2011, Heilimo et 
al. 2011, Moyen 2011, Papers I, II), it is becoming 
difficult to force, for example, the genesis of all the 
TTG s.l. subtypes and their appearance combina-
tions into a single tectonic setting. Therefore, it is 
possible that we should not be looking for ‘the’ 
place for TTG genesis, but instead for a tectonic 
framework that allows TTG genesis in a variety 
of settings (Moyen 2011).

The low-HREE and high-HREE TTGs dis-
play variable mutual relations by being coeval 
and areally overlapping each other, for example 
in the East Pilbara Terrane (Champion & Smith-
ies 2007) and the Carajás Province (Almeida et al. 
2011), whereas in Suomussalmi and in the major-
ity of the Kianta Complex only the low-HREE 
type is present (Paper I). In the Barberton Ter-
rain, low-HREE and high-HREE TTGs alter 
from one period of plutonic activity to another 
(Moyen et al. 2007). According to recent inter-

pretations, the low-HREE TTGs of the Carajás 
Province and the Barberton Terrain represent 
partial melts from subducting slabs, and in the 
case of the two other examples, they represent 
partial melts from the lower crust. Linking differ-
ent TTG types from different areas into a possible 
subduction setting is controversial; Halla et al. 
(2009) interpret, based on data from the Archean 
of Finland, that the high-HREE TTGs are slab 
melts that have interacted with mantle wedge and 
that low-HREE TTGs represent partial melts of 
lower crust, whereas Almeida et al. (2011) inter-
pret the low-HREE TTGs as slab melts and high-
HREE TTGs as a result of lower crustal melting. 
In the case of partial melting of thickened crust, 
the low- and high-HREE TTGs would simply 
represent melting of intra- and underplated mafic 
magmas at different depths, which could possibly 
indicate paleocrustal thicknesses (Champion & 
Smithies 2007).

Transitional TTGs add to the complexity of 
the picture by being an important constituent of 
the major TTG s.l. event(s) in some cases (East 
Pilbara Terrane, Suomussalmi), present but volu-
metrically less significant in some cases (Barber-
ton Terrain), and in some cases lacking (Cara-
jás Province). As the transitional TTGs have 
been interpreted as partial melts of pre-existing 
TTGs, their presence indicates the existence of 
an older nucleus containing abundant felsic ma-
terial (Champion & Smithies 2007, Paper I). In 
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the Carajás Province and the Barberton Terrain, 
examples (Moyen et al. 2007, Almeida et al. 2011) 
where transitional TTGs are missing or insignifi-
cant, the subduction is interpreted to occur be-
neath predominantly mafic protocrust. This could 
mean that if  subduction occurred in the Archean 
it could, for some dynamic reason, only initiate 
under oceanic plateau-type crust (Moyen et al. 
2007, Nair & Chacko 2008, Almeida et al. 2011) 
and not below already formed continental crust, 
where the oceanic crust will be stacked at the base 
of the crust (Smithies et al. 2003, Paper I). If  the 
thickening of the crust occurred via magmatic 
underplating (Bédard 2006, Champion & Smith-
ies 2007), the framework becomes more complex, 
but it should be born in mind that the tectonic 
stacking and magmatic underplating options do 
not exclude each other on global scale. Therefore, 
the Archean tectonic framework could well have 
included all of the above-mentioned settings.

The mostly Neoarchean emergence of mantle-
derived felsic plutonic suites, i.e. syenites, quartz 
diorites and sanukitoids, undoubtedly indicates 
a global change in the tectonic framework by al-
lowing the formation of a variably metasomatized 
mantle source and partial melting of it. The re-
quired metasomatism is now typically attributed 
to the subduction setting (e.g. Blichert-Toft et 
al. 1995, Martin et al. 2005, Steenfelt et al. 2005, 
Heilimo et al. 2010a, Papers I, II), often based on 
modern analogues. The global simultaneousness 
of the appearance of these suites in the Neoar-
chean with two known older examples (Smithies 
& Champion 2000, Oliveira et al. 2009) is interest-
ing in many ways, but especially regarding the in-
terpretations that plate tectonics and subduction 
have been running since Paleoarchean. As the age 
of the subducting slab largely controls the subduc-
tion angle, this would require that in the Archean 
the subducting plates were of roughly similar age, 
so that the subduction angles steepened globally 
at the same time to allow the enough room for ef-
ficient interaction between melts and fluids from 
the subducted slab. Alternatively, the simultane-
ousness of the appearance would fit the model of 
super events (Condie 1998) consisting of ‘mantle 
avalanches’, i.e. subducted slabs piled up at the 
660-km seismic discontinuity sank through it and 
resulted in a surge of mantle upwellings. Thus, the 
trigger could be global instead of more local, i.e. 
slab break-off (Lobach-Zhuchenko et al. 2008, 
Heilimo et al. 2010a), which would explain the 
sudden emergence of mantle-derived granitoids 
in general, not only the sanukitoids. The volu-
metrically minor TTG s.l. rocks coeval with or im-
mediately following sanukitoid activity are likely 

to be products of lower crustal melting triggered 
by heating caused by upwelling magmas (Paper I, 
Almeida et al. 2010).

Regarding nomenclature, the most problematic 
of the Archean granitoid suites are the leucocrat-
ic granitoids, referred to here as leucogranitoids, 
presenting significant crustal recycling at cratoni-
zation stages of each individual craton, The leu-
cogranitoids are given names that change from 
location to location, reflecting the local variety in 
mineralogy and chemistry. Examples include po-
tassic leucogranite and leucogranodiorite-granite 
suites in the Carajás Province (Almeida et al. 
2010), K-rich granites in Tanzania (Manya et al. 
2007) and biotite-granites and two-mica granites 
in the Dharwar Craton (Moyen et al. 2003). A 
number of these leucogranitoids could be clas-
sified as transitional TTGs (Almeida et al. 2010, 
Paper III), but not all, as for example the leu-
cogranitoids of Kianta include samples with REE 
patterns displaying extreme positive Eu anoma-
lies and low REE levels, or alternatively non-
fractionated REE patterns with strongly negative 
Eu anomalies (Paper III). The inclusion of such 
samples into the transitional TTG suite would 
contradict the common view that TTGs display 
fractionated REE patterns with modest or no Eu 
anomalies and at least a certain degree of LREE 
enrichment (Martin et al. 2005, Moyen 2011).

The appearance of A-type granitoids near the 
Archean-Proterozoic boundary also has implica-
tions for plate and mantle dynamics, just like the 
appearance of sanukitoids, quartz diorites and 
syenites 100–300 Ma earlier. Kianta experienced 
voluminous mafic magmatism close to 2.8 Ga (Pa-
punen et al. 2009, Huhma et al. 2010) and again 
at 2.44 Ga (Alapieti 1982), but only the latter 
event also includes A-type granites. However, both 
events are interpreted in fundamentally similar 
ways: upwelling mantle partially melted and the 
melts intruded into, and extruded onto, continen-
tal crust in an extensional environment (Iljina & 
Hanski 2005, Papunen et al. 2009). One possible 
explanation is that in the Archean event most of 
the mafic magmas reached the surface and thus did 
not heat the crust sufficiently to partially melt it. 
This could be due to the small size of the continen-
tal fragments prior to the 2.7 Ga amalgamation, 
so that the small fragments extended too easily in 
response to the upwelling mantle due to the lack 
of sideways support and resistance provided by the 
larger Archean fragment at 2.44 Ga. An alterna-
tive explanation would be the lack of penetrative 
fenitization to enhance the melt fertility and to 
alter the source compositions prior to the mantle-
derived melts, features interpreted as prerequisites 
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for A-type granitoids (Martin 2006). This lack of 
metasomatism by alkaline fluids is also manifested 
by the lack of carbonatites and truly alkaline rocks 

prior to the Neoarchean and, if  the two phase 
metasomatism model of Heilimo et al. (2010a) is 
correct, also by the lack of sanukitoids.

4.4  Further research

More detailed studies of the quartz diorite suite 
of Western Karelia could reveal further insights 
into the mechanism(s) responsible for Neoarchean 
mantle metasomatism, both locally and globally. 
The studies should include both geochemical as-
pects and age determinations to better constrain 
the time frame of their emplacement in respect to 
the sanukitoid magmatism.

Regarding the leucogranitoid suite, the next 
step forward would be to globally determine 
the compositional limits of transitional TTGs, 
or whether all rocks interpreted as derived from 
TTGs qualify as transitional TTGs. Such a us-
age would, however, make the latter a new ‘waste 
bin’ name. After a certain consensus is reached on 
transitional TTGs, the subdivision and study of 
the ‘left over’ leucogranitoids could provide addi-

tional insights to the last phases of cratonization.
The age of the felsic volcanism within the TKSB 

is reasonably well established and correlates with 
the observed ages of the surrounding TTGs. A 
study of the trace element geochemistry of these 
volcanic rocks could provide answers concerning 
their relationship with the surrounding granitoids, 
a point also raised by Käpyaho (2007).

Paleoproterozoic A-type granitoids are so far 
known from Kianta, while the coeval mafic dykes 
and intrusions are also known from the Pudas-
järvi Complex (Fig. 1). This could be either a real 
situation or an artifact of less intense studies. If  
the difference is real, study of it could provide in-
sights into the subtle differences controlling the 
genesis or non-genesis of A-type granitoids in 
general.

5  CONCLUSIONS

Sm-Nd and Pb-Pb isotopic data as well as U-Pb 
ages of inherited zircons (up to 3440 Ma) demon-
strate that a Paleoarchean ‘protocrust’ has existed 
in the northern parts of Kianta. The oldest actual 
rocks in Kianta are 2.95 Ga TTGs s.l. and vol-
canic rocks, all located in areas with evidence for 
the existence of Paleoarchean ‘protocrust’. 

TTGs from Suomussalmi belong to the low-
HREE type and are compositionally consistent 
with partial melting of garnet-bearing amphi-
bolites, and show no obvious signs of interac-
tion with the mantle. The presence of transitional 
TTGs in Suomussalmi indicates that recycling of 
pre-existing felsic rocks already commenced, at 
least locally, at 2.95 Ga. Based on the composi-
tional and age data from the granitoid suites, the 
Tipasjärvi-Kuhmo-Suomussalmi greenstone belt 
does not form a suture dividing Kianta into sepa-
rate units.

Ca 2.75 Ga marks a shift in Kianta from grani-
toid magmatism consisting solely of TTGs s.l. to 
one with varying compositional types: TTGs s.l., 
sanukitoids, quartz diorites, alkaline rocks and 
leucogranitoids. This could be linked to a shift in 
granitoid genesis from lower crustal partial melt-
ing to modern-style subduction involving partial 

melting of variably enriched mantle.
The 2741 ± 2 Ma old Likamännikkö quartz 

alkali feldspar syenite has alkaline affinities and 
presents a whole new Neoarchean rock type in 
Karelia. The associated carbonatite patches are 
potentially among the oldest known carbonatites 
on Earth.

The main migmatization event occurred at 
2.7 Ga as a result of collisional tectonics. Leu-
cosomes are partly mobile and not fully in situ 
melts. As melting occurred during active defor-
mation, melts and melting concentrated in crustal 
scale shear zones, leaving elongated domains of 
unmigmatized rocks in between. The leucograni-
toids of the northern Kianta Complex are com-
positionally similar to the leucosomes in TTGs 
s.l. and are interpreted to represent mainly partial 
melts of the TTG suite granitoids.

The Paleoproterozoic A-type granite magma-
tism within Kianta extended over a longer time 
span (2.44–2.39 Ga) and a larger area than previ-
ously known. The suite shows compositional dif-
ferences that are inherited from a heterogeneous 
source area. Heat required for the partial melting 
was carried by the coeval mafic magmas.
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dealing with Archean and earliest Proterozoic granitoids from 
northern parts of the Kianta Complex. Results show that the 
geological history in the area extends into the Paleoarchean and 
that crustal recycling already commenced in the Mesoarchean. 
Prior to 2750 Ma the granitoid activity was dominated by TTG 
(tonalite-trondhjemite-granodiorite) suite intrusions. Between 2750 
and 2700 Ma, most of the granitoids were derived from variably 
metasomatized mantle, probably indicating the beginning of 
subduction. Close to 2700 Ma the older granitoids were variably 
migmatized and intruded by anatectic leucogranitoids. The next 
phase of magmatic activity in the area followed 250 Ma later, when 
A-type granitoids linked to the coeval mafic magmatism intruded the 
Archean complex.  
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