WYNIKI BADAŃ MATERII ORGANICZNEJ I WĘGLOWODORÓW

Barbara MASSALSKA, Marcin JANAS

BADANIA GEOCHEMICZNE MATERII ORGANICZNEJ METODĄ ROCK-EVAL

WSTĘP

Charakterystyka geochemiczna materii organicznej w otworze Bibiela PIG 1 opiera się na badaniach aparatem pirolitycznym Rock-Eval. W sumie przeanalizowano 262 próbek geologicznych stanowiących fragmenty rdzeni wiertniczych. Reprezentowały one głównie mułowce, iłowce i wapienie, przypisane wiekowo do dewonu, ordowiku oraz ediakaru.

Realizacja otworu związana była ze słabym rozpoznaniem utworów neoproterozoiku i wczesnego paleozoiku w północno wschodniej części bloku górnośląskiego. Liczne przesłanki geologiczne wskazywały na podwyższony potencjał wystąpienia węglowodorów w mułowcach i iłowcach niższego paleozoiku. Wyniki badań geochemicznych opublikowano w ramach dokumentacji wynikowej otworu (Janas, 2017) oraz przedstawiono w tab. 53 niniejszego opracowania.

Analiza pirolityczna Rock-Eval jest powszechną metodą wstępnego badania potencjalnych skał macierzystych dla węglowodorów. Zarys metodyki badań został przedstawiony w pracach polskich i zagranicznych autorów, np.: Kotarba i Szafran (1985), Behar i in. (2001), McCarthy i in. (2011). Badanie aparatem Rock-Eval dostarcza wielu parametrów i wskaźników geochemicznych, które stosowane są do interpretacji własności skał macierzystych takich jak typ kerogenu, potencjał węglowodorowy czy dojrzałość termiczna materii organicznej.

WYNIKI BADAŃ

Dewon

Utwory dewonu przebadano sześcioma próbkami, pochodzącymi z głęb. 240,5–279,9 m. Średni odstęp między próbkami w profilu wynosił 5,3 m (1,4-15,8 m). Są to skały ilasto-dolomityczno-piaskowcowe, w których całkowita zawartość węgla organicznego waha się w przedziale 0,33-0,81% wag. skały (mediana TOC = 0,5% wag.). Wartości wskaźnika TOC próbek z głęb. 256,3-274,6 m przekraczają 0,5% wag. i tym samym spełniają one w niewielkim stopniu minimalne kryterium macierzystości. Zawartość wolnych węglowodorów jest znikoma i zawiera się w przedziale 0,03–0,13 mg HC/g skały (mediana S1 = 0,05 mg HC/g skały). Potencjał generacyjny próbek, wyrażony wartością parametru S2, jest bardzo niski i wynosi od 0,14 do 0,42 mg HC/g skały (mediana S2 = 0,23 mg HC/g skały). T_{max} zawiera się w przedziale 447–466°C (mediana $T_{max} = 462$ °C), wskazując na dojrzałość termiczną materii organicznej odpowiadającej oknu gazowemu (fig. 80A). Wartości wskaźnika wodorowego w przedziale 27-73 mg HC/g TOC (mediana HI = 63 mg HC/g TOC) oraz pozycja wyników na diagramach klasyfikacyjnych typu kerogenu (fig. 80B, C, D) sugeruje obecność kerogenu typu IV (próbki z głęb. 256,3 i 260,6 m) oraz mieszanego kerogenu typu III/IV (próbki z głęb. 240,5, 273,2, 274,6 i 279,9 m). Wskaźnik nasycenia ropą naftową (mediana OSI = 9 mg HC/g TOC) nie wskazuje na obecność węglowodorów pochodzących z migracji w badanych skałach.

Przebadane skały dewonu posiadają niski potencjał węglowodorowy (fig. 80E). Nie stanowią zatem skał macierzystych o znaczeniu przemysłowym. Obecnie, z rozproszonego w nich kerogenu (kerogen typu IV oraz kerogen typu III/ IV), generowane mogą być co najwyżej niewielkie ilości węglowodorów gazowych. Dojrzałość termiczna tych skał jest stosunkowo wysoka (okno gazowe), co świadczy o w dużym stopniu wyczerpanym potencjale do generowania węglowodorów ciekłych omawianych skał i rezydualny charakter zawartego w nich kerogenu.

Ordowik

Skały ordowiku przebadano za pomocą 68 próbek pochodzących z głęb. 285,6–706,9 m. Próbki zostały pobrane w odstępach od 0,6 do 25,5 m (średnio co 4,4 m). Są to skały ilasto-mułowcowe o całkowitej zawartości węgla oscylującej

Tabela 53

		5												
	S1	S2	S3	T _{max}	HI	OI	TOC	PC	RC	MinC	PI	OSI	n	
Dewon Devonian														
min.	0,03	0,14	0,07	447 (447)	27	12	0,33	0,02	0,31	0,0	0,1	4		
maks.	0,13	0,42	0,19	466 (466)	73	42	0,81	0,05	0,78	7,9	0,4	36	6	
med.	0,05	0,23	0,10	463 (463)	63	17	0,55	0,03	0,52	0,1	0,1	9		
Ordowik Ordovician														
min.	0,03	0,06	0,05	318 (446)	32 (32)	9 (9)	0,03	0,01	0,01	0,0	0,1	8		
maks.	0,27	0,77	1,10	490 (487)	438 (122)	255 (189)	1,46	0,25	1,40	3,3	0,6	133	68	
med.	0,07	0,20	0,14	461 (466)	68 (67)	57 (53)	0,29	0,04	0,23	0,3	0,3	25		
Ediakar Ediakaran														
min.	0,01	0,02	0,03	299 (560)	17 (25)	7 (7)	0,01	0,00	0,01	0,0	0,1	5		
maks.	0,38	0,85	2,13	611 (576)	325 (64)	1862 (887)	2,02	0,13	1,91	7,0	0,5	200	188	
med.	0,02	0,05	0,12	338 (570)	103 (38)	284 (74)	0,05	0,01	0,03	0,2	0,3	50		

Wyniki analizy Rock-Eval

S1 - wolne węglowodory (mg HC/g skały); S2 - węglowodory generowane w trakcie pirolizy (mg HC/g skały); S3 - CO₂ związane z materią organicz-

The results of Rock-Eval analysis

ną (mg CO_2 /g skały); T_{max} – temperatura maksymalnego generowania węglowodorów (°C), wartości T_{max} podane w nawiasach są skorygowane przez nieuwzględnienie wyników próbek, w których S2 < 0,2 mg HC/g skały oraz tych, w których T_{max} < 400°C; HI – wskaźnik wodorowy (mg HC/g TOC), wartości HI podane w nawiasach są skorygowane przez nieuwzględnienie wyników próbek, w których TOC < 0,2% wag.; OI - wskaźnik tlenowy (mg CO_2 /g TOC), wartości OI podane w nawiasach są skorygowane przez nieuwzględnienie wyników próbek, w których TOC < 0,2% wag.; TOC – całkowity węgiel organiczny (% wag.); PC - węgiel organiczny podatny na proces pirolizy (% wag.); RC - węgiel organiczny rezydualny (% wag.); MinC - węgiel mineralny (wt%); PI - wskaźnik produktywności; OSI - wskaźnik nasycenia ropą naftową (mg HC/g TOC); n - liczba przeanalizowanych próbek

S1 – free hydrocarbons (mg HC/g rock); S2 – hydrocarbons generated during pyrolysis (mg HC/g rock); S3 – CO₂ organic source (mg CO₂/g rock); T_{max} – temperature of maximum hydrocarbon generation (°C), T_{max} values given in brackets are corrected by eliminating results in which S2 < 0,2 mg HC/g rock and T_{max} < 400°C; HI – hydrogen index (mg HC/g TOC), HI values given in brackets are corrected by eliminating results in which TOC < 0,2 wt%; OI – oxygen index (mg CO₂/g TOC), OI values given in brackets are corrected by eliminating results in which TOC < 0,2 wt%; TOC - total organic carbon (wt%); PC - pyrolyzable organic carbon (wt%); RC - residual organic carbon (wt%); MinC - mineral carbon (wt%); PI - production index; OSI - oil saturation index (mg HC/g TOC). n - numer of samples tested

w granicach 0,03-1,46% wag. (mediana TOC = 0,29% wag.). Minimalne kryterium macierzystości (TOC $\geq 0.5\%$ wag.) spełniają jedynie pojedyncze wkładki ciemno zabarwionych iłowców rozmieszczonych na różnych głębokościach profilu ordowiku (7 próbek). Tak zwane wolne węglowodory, wyrażone parametrem S1, mieszczą się w przedziale 0,03-0,27 mg HC/g skały (mediana S1 = 0.07 mg HC/g skały). Parametr S2 waha sie od 0,06 do 0,77 mg HC/g skały (mediana S2 = 0.20 mg HC/g skały, wskazując na znikomy potencjał generacyjny omawianych skał (fig. 80E). Interpretując dojrzałość termiczną materii organicznej, nie uwzględniono wyników próbek, w których wartość S2 była niższa od 0,2 mg HC/ g skały oraz T_{max} niższych od 400°C. Skorygowany zakres wartości parametru T_{max} wyniósł 446-487°C (mediana T_{max} = 466°C). Są to wartości odpowiadające oknu gazu mokrego/ kondensatowego. W celu interpretacji wartości wskaźników HI oraz OI zostały również skorygowane poprzez wyeliminowanie próbek, w których TOC < 0,2% wag. Wartości wspomnianych wskaźników po skorygowaniu wnosiły odpowiednio 32-122 mg HC/g TOC oraz 9-189 mg CO₂/g TOC. Są to wartości sugerujące obecność kerogenów typu III i IV w omawianych skałach. Diagramy klasyfikacyjne typu kerogenu (fig. 80B, C, D) wskazują na przewagę prób zawierających jałowy kerogen typu IV.

Pomimo obecności kilku wkładek wzbogaconych w węgiel organiczny utwory ordowiku w otworze nie posiadają potencjału generacyjnego. Rozproszona w skale materia organiczna to przede wszystkim kerogen typu IV z możliwą domieszką kerogenu typu III w niektórych próbkach. Dojrzałość termiczna tych skał odpowiada oknu gazowemu, co sugeruje w dużym stopniu wyczerpany potencjał do generowania węglowodorów ciekłych omawianych skał.

Fig. 80. Wykres: A – T_{max} w profilu głębokościowym otworu; B – HI vs. OI (diagram klasyfikacyjny typu kerogenu); C – HI vs. T_{max} (diagram klasyfikacyjny typu kerogenu); D – S2 vs. TOC (diagram klasyfikacyjny typu kerogenu); E – S2 vs. TOC (diagram klasyfikacyjny potencjału węglowodorowego skał macierzystych)

Cross-plot of: A – T_{max} against the borehole depth profile; B – HI vs. OI (kerogen type classification diagram); C – HI vs. T_{max} (kerogen type classification diagram); D – S2 vs. TOC (kerogen type classification diagram); E – S2 vs. TOC (source rock hydrocarbon potential classification diagram)

Ediakar

Profil geochemiczny skał ediakaru składa się z 188 wyników badań próbek skał ilasto-mułowcowych, pobranych z głęb. 735,7–1650,0 m, w odstępach średnio co 5 m (0,4–57,1 m). Utwory te charakteryzują się wartościami TOC od 0,01 do 2,02% wag. (mediana TOC = 0,05% wag.), przy czym jedynie 8 próbek charakteryzuje się zawartością całkowitego węgla organicznego większą niż 0,2% wag. W obrębie całego profilu ediakaru wyróżnić można jedynie trzy wkładki ciemnych iłowców, których wartości TOC przekraczają 0,5% wag. Zawartość wolnych weglowodorów w omawianych skałach waha się od 0,01 do 0,38 mg HC/g skały. Wartość parametru S2 wynosi 0,02-0,85 mg HC/g skały, świadcząc o niskim potencjale generacyjnym skał (fig. 80E). Zakres wartości T_{max} próbek, których wartość parametru S2 < 0,2 mg HC/g skały (3 próbki) wynosi 560–576°C. Tak wysokie wartości parametru wskazują na stopień przeobrażenia termicznego, odpowiadającym fazie przejrzałej (metagenezie). Wartości wskaźnika wodorowego i wskaźnika tlenowego w próbkach, których wartość TOC przekracza 0,2% wag. (8 próbek), są najbardziej wiarygodne. HI waha się w tych próbkach w granicach 25–65 mg HC/g TOC (mediana HI = 38 mg HC/g TOC), zaś OI w granicach 7–887 mg CO₂/g TOC (mediana OI = 74 mg CO₂/g TOC), wskazując na obecność kerogenu typu IV. Interpretację tę potwierdzają wyniki analizy próbek ediakaru znajdujące się na diagramach klasyfikacyjnych typu kerogenu (fig. 80B, C, D).

Utwory ediakaru w otworze to skały niemacierzyste, które za wyjątkiem kilku wkładek zawierają znikome ilości materii organicznej. Są to skały o bardzo wysokim stopniu dojrzałości termicznej, o całkowicie wyczerpanym pierwotnym potencjale generacyjnym. Obecny w skałach ediakaru kerogen to jałowy kerogen typu IV. Biorąc pod uwagę znikome wartości TOC, skały te najprawdopodobniej również pierwotnie nie posiadały możliwości generowania znaczących ilości węglowodorów.