WYNIKI BADAŃ CHEMICZNYCH I IZOTOPOWYCH

Przedstawione w niniejszym rozdziale informacje pochodzą z materiałów zamieszczonych w dokumentacjach Habryn (2012) oraz Wójcicki (2013), skąd wybrano rezultaty badań najistotniejsze z punktu widzenia niniejszego opracowania. Scharakteryzowano badania chemiczne (zawartość pierwiastków i izotopów w próbkach skał) oraz fizykochemiczne (skład izotopowy, w szczególności wybrane izotopy dla 3 pierwiastków – potasu, uranu i toru). Próbki, dla których wykonano omawiane poniżej analizy laboratoryjne, zestawiono w tabeli 2.

Magdalena PAŃCZYK-NAWROCKA

BADANIA CHEMICZNE PRÓBEK SKAŁ

Badania chemiczne próbek skał zostały przeprowadzone na podstawie wyników badań mikroskopowych, obejmujących analizę petroteksturalną i mineralogiczną, przy czym wytypowano reprezentatywne próby skał magmowych do analiz chemicznych obejmujących oznaczenie stężenia zarówno pierwiastków głównych, jak i śladowych. Analizy chemiczne całych skał z uprzednim stopieniem ich z boranem litu zostały wykonane w laboratorium ALS--Chemex w Kanadzie, na zlecenie PIG-PIB. Pierwiastki główne (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) oraz pierwiastki śladowe (Ba, Co, Cr, Cu, Ga, Hf, Mo, Nb, Ni, Pb, Rb, Sn, Sr, Ta, Th, Tl, U, V, W, Y, Zn, Zr i REE bez Pm) zostały oznaczone metodą emisyjnej spektrometrii atomowej ze wzbudzeniem plazmowym (ICP-AES). Wyniki analiz zestawiono w tabeli 7.

Granitoidy z otworu Czerwony Potok PIG 1 charakteryzują się wysokimi zawartościami SiO₂ (74,7-77,5% wag.) z wyjatkiem próbki CZP1 15. Jest to przeobrażony średniokrystaliczny biotytowy granit pochodzący z bezpośredniego sąsiedztwa strefy uskokowej, zawierający ok. 68% wag. SiO₂. Próbki charakteryzują się wysoką zawartością K₂O (4,26-5,46% wag.) i zróżnicowaną Al₂O₃ (9,77–17,15% wag.). Na diagramie R1-R2 (fig. 10 A; De la Roche i in., 1980) badane próby plasują się w polu granitów i alkalicznych granitów (blisko granicy), natomiast na diagramie Middlemost (1994, fig. 10 B) w polu granitów, z wyjatkiem przeobrażonej próbki, która lokuje się w polu kwarcowych monzonitów. Badane skały nie odbiegają składem chemicznym od granitoidów z kamieniołomu Szklarska Poręba Huta, których szczegółowa analiza geochemiczna i petrogenetyczna jest przedstawiona m.in. w pracach Słaby i Martina (2005, 2008).

Magdalena PAŃCZYK-NAWROCKA, Marta WRÓBLEWSKA

BADANIA IZOTOPOWE PRÓBEK SKAŁ

Do badań wytypowano 10 reprezentatywnych próbek granitoidów z otworu Czerwony Potok PIG 1. Do oznaczenia zawartości i aktywności promieniotwórczej wykorzystano naturalne promieniotwórczych ²³⁸U i ²³²Th oraz promieniowanie gamma izotopu ⁴⁰K. W szeregu uranowo-radowym (główny naturalny izotop ²³⁸U) najbardziej intensywne linie gamma emitują izotopy ²¹⁴Pb (242,0 keV, 295,2 keV, 352,9 keV) oraz ²¹⁴Bi (609,3 keV, 1120,3 keV i 1764,4 keV); w szeregu torowym (główny izotop ²³²Th) natomiast izotopy ²²⁸Ac (911,2 keV i 968,8 keV), ²¹²Bi (727,2 keV), ²¹²Pb (238,8 keV) i ²⁰⁸T1 (583,2 keV). Izotop ⁴⁰K emituje promieniowanie gamma o energii 1460,8 keV. Pomiary widm promieniowania gamma przeprowadzono w Instytucie Chemii i Techniki Jądrowej w Warszawie, przy użyciu spektrometru gamma z detektorem firmy OR-TEC typ GEM-90205-P o zdolności rozdzielczej 1,9 keV i względnej wydajności 92.4% dla linii 1332 keV izotopu ⁶⁰Co. Detektor umieszczono w domku osłonowym zbudowanym z cegieł ołowianych o grubości 10 cm i wyłożony wewnątrz warstwą kadmu i miedzi elektrolitycznej. Natężenia poszczególnych linii promieniowania gamma wyznaczano przy pomocy programu komputerowego Gamma-Vision firmy ORTEC.

Czas pomiaru badanych próbek o masie ~175 g wynosił ok. 24 h. Do analizy zawartości i stężenia aktywności naturalnych izotopów promieniotwórczych wykorzystano linie

Tabela 7

Zestawienie wyników analiz chemicznych wybranych próbek skał z otworu Czerwony Potok PIG 1

Results of chemical analyzes of selected drill core samples of the Czerwony Potok PIG 1 borehole

Wskaźnik Indicator	Jednostka Unit	Numer próbki Sample number									
		CZP1_7	CZP1_10	CZP1_12	CZP1_15	CZP1_18	CZP1_20	CZP1_22	CZP1_24		
SiO ₂	%	75,7	76,2	77,5	68,3	74,7	77,5	76,8	75,1		
TiO ₂	%	0,33	0,12	0,11	0,2	0,2	0,19	0,15	0,2		
Al ₂ O ₃	%	12,95	12,25	12,45	17,15	12,8	12	9,77	12,6		
Fe ₂ O ₃	%	2,12	0,9	0,93	2,3	1,34	1,48	1,76	1,39		
MnO	%	0,05	0,02	0,01	0,08	0,05	0,04	0,06	0,04		
MgO	%	0,61	0,2	0,38	0,84	0,38	0,54	1,74	0,36		
CaO	%	1,19	0,76	0,23	0,21	1,06	0,58	1,17	0,84		
Na ₂ O	%	3,1	3,39	3,1	5,59	3,6	2,98	0,87	3,36		
K ₂ O	%	4,49	4,7	4,98	5,46	4,26	4,74	4,52	4,82		
P ₂ O ₅	%	0,1	0,02	0,03	0,09	0,05	0,05	0,04	0,06		
LOI	%	1,1	0,67	1,1	1,3	1,08	1,21	2,46	0,89		
Total	%	101,78	99,24	100,83	101,55	99,56	101,33	99,35	99,7		
Ba	ppm	287	71,1	96,7	240	225	188	106	256		
Co	ppm	7,6	13,1	9	5	12,1	11,2	12,2	13,8		
Cr	ppm	10	<10	<10	10	10	10	<10	10		
Cu	ppm	<5	28	26	<5	<5	<5	<5	<5		
Ga	ppm	19,5	19,1	18,1	24,6	20	18,4	15,6	18,3		
Hf	ppm	5,3	4	3,5	5,2	4,3	4,3	3,3	4,1		
Мо	ppm	<2	<2	<2	2	<2	<2	<2	<2		
Nb	ppm	19	16,5	24	17,5	18,2	20	14	17,2		
Ni	ppm	5	<5	<5	<5	<5	<5	<5	<5		
Pb	ppm	29	49	22	20	35	21	5	35		
Rb	ppm	246	298	312	349	296	289	273	290		
Sn	ppm	12	10	10	26	15	13	9	12		
Sr	ppm	117,5	36,7	27,6	39,1	88,9	41,5	14,5	85,1		
Та	ppm	3,5	5,6	4,6	3,7	3,9	4,3	2,5	3,4		
Th	ppm	26,9	28,5	24,5	29,8	28	23,7	21,5	28,5		
Tl	ppm	0,9	1,1	1,2	1,5	1	1	0,9	1		
U	ppm	9,22	25	14,7	3,74	21,3	7,87	7,22	14,35		
V	ppm	27	7	8	17	14	14	11	14		
W	ppm	25	72	53	16	59	52	53	66		
Y	ppm	35	44,7	41,6	29,2	35,9	35,6	26,7	28,3		
Zn	ppm	40	19	17	49	27	28	35	27		
Zr	ppm	154	80	75	132	107	108	83	104		
La	ppm	19,9	13,3	13,2	15,7	21,6	17,8	15,9	21,2		
Ce	ppm	48	31,3	30,5	33,9	44,6	36,3	32,4	43,9		
Pr	ppm	5,15	4,32	4,25	4,04	5,42	4,51	4,13	5,34		
Nd	ppm	20,3	17,8	16,9	15,5	20,8	17	16,1	20		
Sm	ppm	5,1	5,47	5	4,01	5,1	4,46	4,03	4,78		
Eu	ppm	0,59	0,28	0,29	0,39	0,45	0,39	0,37	0,45		
Gd	ppm	4,73	5,49	4,97	3,84	4,67	4,28	3,79	4,14		
Tb	ppm	0,89	1,06	1,01	0,71	0,87	0,83	0,67	0,73		
Dy	ppm	5,61	6,83	6,83	4,58	5,56	5,41	4,21	4,57		
Но	ppm	1,16	1,41	1,45	0,94	1,13	1,15	0,87	0,93		
Er	ppm	3,42	4,23	4,41	2,82	3,44	3,41	2,51	2,68		
Tm	ppm	0,58	0,74	0,76	0,48	0,58	0,59	0,4	0,45		
Yb	ppm	3,94	5,14	5,21	3,35	4,01	4,12	2,63	3,2		
Lu	ppm	0,58	0,8	0,77	0,53	0,6	0,64	0,39	0,48		

Fig. 10. Wykresy klasyfikacyjne według De la Roche i innych, 1980 (A) oraz Middlemosta, 1994 (B)

Objaśnienia: 1 – alkaliczne gabro; 2 – gabro; 3 – sjenogabro; 4 – monzogabro; 5 – gabrodioryt; 6 – sjenodioryt; 7 – monzonit; 8 – monzodioryt; 9 – dioryt; 10 – kwarcowy monzonit; 11 – tonalit; 12 – granodioryt; 13 – granit; 14 – alkaliczny granit

Classification diagrams after według De la Roche et al., 1980 (A) i Middlemost, 1994 (B)

Explanations: 1 – alkaline gabbro; 2 – gabbro; 3 – syenogabbro; 4 – monzogabbro; 5 – gabbrodiorite; 6 – syenodiorite; 7 – monzonite; 8 – monzodiorite; 9 – diorite; 10 – quartz monzonite; 11 – tonalite; 12 – granodiorite; 13 – granite; 14 – alkakline granite

351,9 keV i 609,3 keV dla ²³⁸U; linie 583,3 keV i 911,2 keV dla ²³²Th oraz linię 1460,8 keV dla ⁴⁰K. Przedstawione wyniki pomiarów są średnią wyników określonych dla poszczególnych linii w przypadku ²³⁸U i ²³²Th. Do kalibracji ilościowej spektrometru gamma użyto certyfikowanych materiałów odniesienia przygotowanych przez Międzynarodową Agencję Energii Atomowej w Wiedniu. Promieniowanie tła, w którym występują linie gamma mierzonych izotopów, było kontrolowane i zostało uwzględnione w obliczeniach wyników analiz.

Na podstawie oznaczonej zawartości uranu, toru i potasu obliczono aktywność promieniotwórczą stosując wyznaczone specyficzne aktywności (Nir-El, 1997) dla poszczególnych izotopów:

- ²³⁸U 12347,5 Bq na gram pierwiastka uranu;
- 232 Th 4057,4 Bq na gram pierwiastka toru;
- 40 K 31,00 Bq na gram pierwiastka potasu.

Granice wykrywalności dla przedstawionego sposobu pomiarów wynoszą: 0,3 ppm dla uranu, 0,8 ppm dla toru, 0,03% dla potasu oraz 3 Bq/kg dla 226Ra, 3 Bq/kg dla 232Th, 9 Bq/kg dla 40K.

Wyniki analiz zawartości i aktywności promieniotwórczej uranu, toru i potasu przedstawiono w tabeli 8.

Tabela 8

Wyniki analiz zawartości uranu, toru i potasu oraz ich aktywności promieniotwórczej w badanych próbach z otworu Czerwony Potok PIG 1

Results of analyses of uranium, thorium and potassium content and its specific radioactivity in selected core samples of the Czerwony Potok PIG 1 borehole

Numer próbki		Zawartość		Aktywność promieniotwórcza [Bq/kg]			
Sample number		Content		Specific radioactivity			
	U [ppm]	Th [ppm]	K [%]	Ra-226	Th-232	K-40	
CZP1_3	8,58	23,8	4,34	105,9	96,9	1347	
CZP1_5	7,22	24,4	4,20	89,1	99,0	1301	
CZP1_7	8,45	25,8	3,95	104,3	104,7	1224	
CZP1_10	27,7	27,4	4,12	342,5	111,3	1278	
CZP1_12	23,2	25,5	4,19	286,1	103,5	1297	
CZP1_15	6,34	31,3	4,95	78,2	127,1	1535	
CZP1_18	20,0	29,2	3,69	247,0	118,5	1145	
CZP1_20	5,70	24,5	3,84	70,3	99,3	1190	
CZP1_22	5,68	24,5	4,17	70,1	99,2	1293	
CZP1_24	18,7	31,0	3,90	231,4	125,7	1209	