WSTĘP

Ryszard HABRYN, Dominika SIERADZ, Adam WÓJCICKI

CEL, LOKALIZACJA OTWORU I PARAMETRY WIERCENIA

Celem wiercenia Czerwony Potok PIG 1 było uzyskanie informacji o warunkach termicznych w masywie granitoidowym Karkonoszy, w rejonie Szklarska Poręba–Huta i pozyskanie próbek do badań laboratoryjnych na potrzeby opracowania termicznego modelu polskiej części plutonu Karkonoszy. Docelowo wiercenie miało posłużyć wskazaniu obszarów perspektywicznych do ewentualnej lokalizacji obiektów wykorzystujących zamknięte systemy geotermiczne (*Hot Dry Rocks*), z których można by odzyskiwać ciepło.

Otwór Czerwony Potok PIG 1 jest zlokalizowany w województwie dolnośląskim, w powiecie jeleniogórskim, w miejscowości Szklarska Poręba, w rejonie Szklarska Poręba–Huta, w plutonie Karkonoszy w Sudetach (fig. 1, 2). Współrzędne geograficzne otworu wynoszą: szerokość – 50°49'36,43"N, długość – 15°30'01,38"E, i wysokość –

Fig. 1. Lokalizacja otworu wiertniczego Czerwony Potok PIG 1 na tle mapy topograficznej w skali 1:10 000 (CODGiK, 1998) Location map of the Czerwony Potok PIG 1 borehole against the part of topographic map in 1:10 000 scale (CODGiK, 1998)

Fig. 2. Fragment uproszczonej mapy tektonicznej Sudetów (Mazur i in., 2010; zmienione)

Fragment przedstawia geologię masywu karkonosko-izerskiego. ISB – synklinorium śródsudeckie, KIM – masyw karkonosko-izerski, KMB – metamorfik kaczawski, LM – masyw łużycki, NSB – niecka północnosudecka, PŁZ – pasmo łupkowe Zgorzelca, US – uskok śródsudecki. Oznaczenia wiekowe: Pt – proterozoik, Pz – paleozoik, Cm – kambr, D – dewon, C – karbon

A fragment of a simplified tectonic map of the Sudetes (Mazur et al., 2010; revised)

The fragment presents the geology of the Karkonosze-Izera Massif. ISB – Intra-Sudetic Basin, KIM – Karkonosze-Izera Massif, KMB – Kaczawa Metamorphic Belt, LM – Lusatian Massif, NSB – North Sudetic Basin, PŁZ – Görlitz Slate Belt, US – Intra-Sudetic Fault. Age assignments: Pt – Proterozoic, Pz – Paleozoic, Cm – Cambrian, D – Devonian, C – Carboniferous

723,30 m n.p.m. Wiercenie przeprowadzono w ramach realizacji zadania badawczego pn. "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (*Hot Dry Rocks*) w Polsce" (Wójcicki, 2013), realizowanego na zlecenie Ministerstwa Środowiska i finansowanego ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej, którego celem było wskazanie obszarów i struktur geologicznych o najkorzystniejszych warunkach dla tego typu instalacji na terenie całej Polski, w tym w skałach magmowych i metamorficznych obszaru sudeckiego.

Podstawą do wykonania wiercenia był "Projekt prac geologicznych na wykonanie otworu badawczego Czerwony Potok PIG 1 w Szklarskiej Porębie dla przedsięwzięcia inwestycyjnego p.n. "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (*Hot Dry Rocks*) w Polsce" (Bujakowski i in., 2011) oraz aneks do tego projektu, zmieniający pierwotną lokalizację otworu.

Otwór został odwiercony przez firmę Hydropolwiert Sp. z o.o. na zlecenie Państwowego Instytutu Geologicznego – Państwowego Instytutu Badawczego (PIG--PIB), kierownikiem wiercenia był Stanisław Herbut. Na terenie wiertni zainstalowano polowe laboratorium, w którym wykonywano podstawowe czynności i obserwacje dozoru geologicznego sprawowanego przez geologów z PIG-PIB: Ryszarda Habryna i Magdalenę Pańczyk (Habryn, 2012).

Otwór Czerwony Potok PIG 1 jest otworem płytkim, a jego docelowa głębokość wyniosła 201,0 m. Wiercenie, wykonane w okresie listopad-grudzień 2011 r., było w pełni rdzeniowane, z czego uzysk rdzenia to ponad 95%. Pozyskano również dane karotażowe i temperaturowe, zaś rdzenie zostały sprofilowane i wykonano szczegółowe badania laboratoryjne wybranych (w sumie 27) próbek skał. Badania geofizyki otworowej zostały ukierunkowane w szczególności na pomiary temperatury w górotworze oraz analizy potencjału generacyjnego ciepła radiogenicznego związanego z obecnością uranu, toru i potasu w granitoidach masywu Karkonoszy. Analizy laboratoryjne próbek skał obejmowały analizy petrograficzno-mineralogiczne, chemiczne, badania fizykochemiczne i petrofizyczne. Została wykonana także pełna dokumentacja fotograficzna rdzeni, zaś same rdzenie przekazane zostały do Narodowego Archiwum Geologicznego i znajdują się w Magazynie Rdzeni w Kielnikach k. Częstochowy (Habryn, 2012).

Dominika SIERADZ, Adam WÓJCICKI

REGIONALNE TŁO GEOLOGICZNE

Wiercenie otworu Czerwony Potok PIG 1, w podziale regionalnym Polski zlokalizowane zostało w intruzji granitoidowej Karkonoszy położonej w masywie karkonosko--izerskim w obrębie bloku dolnośląskiego. Jest to północna część masywu czeskiego, w obrębie sudeckiego segmentu internidów waryscyjskiego pasma orogenicznego Europy Środkowej, w strefie saksońsko-turyngijskiej (Żelaźniewicz, Aleksandrowski, 2008; Żelaźniewicz i in., 2011; Stupnicka, Stempień-Sałek, 2016; Gaidzik, Żaba, 2017) (fig. 2).

W sensie geograficznym, na blok dolnośląski składają się Sudety Zachodnie i Środkowe oraz Przedgórze Sudeckie. Sudety są górami zrębowymi, zaś swoją obecną górską rzeźbę zawdzięczają działającym w neogenie ruchom tektonicznym, które doprowadziły do podziału całego bloku dolnośląskiego na dwie mniejsze jednostki: blok sudecki i przedsudecki (Żelaźniewicz i in., 2011; Stupnicka, Stempień-Sałek, 2016).

Granice bloku dolnośląskiego wyznaczają, na NE – strefa uskokowa Odry oraz na SW–uskoki wchodzące w strefę uskokową górnej Łaby. Na południu wychodnie skał przykryte są sukcesją północno-czeskiej niecki kredowej, zaś na wschodzie nikną pod skałami osadowymi synklinorium śródsudeckiego. Zachodnia granica z masywem łużyckim jest płynna i opiera się tylko na odmianie litologicznej skał budujących oba masywy (Żelaźniewicz i in., 2011).

Budowa bloku dolnośląskiego jest mozaikowa i składa się z wielu mniejszych jednostek, tzw. terranów, rozdzielonych bardzo głębokimi dyslokacjami. Ponieważ każdy fragment bloku ma inną budowę geologiczną, ich korelacja jest niezwykle trudna. Na tę mozaikę miały wpływ skomplikowane i wieloetapowe procesy tektoniczne stowarzyszone z magmatyzmem i metamorfizmem oraz erozją. W obszarze bloku wyróżnia się dwa piętra strukturalne - pierwszy to prekambryjsko-paleozoiczny (skały przeobrażone epi-, mezo- i katametamorficznie oraz skały intruzywne) oraz górnokarbońsko-kenozoiczny (w większości skały osadowe i wulkaniczne). Wspomniane ruchy tektoniczne w kenozoiku doprowadziły do odsłonięcia skał starszych w części sudeckiej (wyniesionej) oraz pogrzebanie pod skałami kenozoiku obu pięter w części przedsudeckiej (zrzuconej) (Stupnicka, Stempień-Sałek, 2016).

Wiek, geneza i ewolucja Sudetów w tym bloku dolnośląskiego były i nadal są żywo dyskutowane (Oberc, 1972; Don, 1984, 1995; Chaloupsky i in., 1988; Oliver i in., 1993; Cymerman, 2000; Kryza i in., 2004, 2007, 2014; Mazur i in., 2007, 2010; Adwankiewicz i in., 2010; Stupnicka, Stempień-Sałek, 2016 za Teisseyre'm i in., 1957; Cymerman, 2017; Kowalski, 2021). Obecne opracowania przychylają się do teorii mikrokontynentów – drobnych terranów, które odrywały się od krawędzi Gondwany od końca kambru do początku ordowiku (Cymerman, 2000; Kryza i in., 2004; Żelaźniewicz, Aleksandrowski, 2008; Mazur i in., 2010; Żelaźniewicz i in., 2011; Stupnicka, Stempień-Sałek, 2016). W czasie ruchów waryscyjskich nastąpiło ich dalsze fałdowanie związane z dokowaniem do południowej krawędzi Laurosji połączonej z Awalonią. Pod koniec orogenezy dużą rolę odgrywały procesy intruzywne, a co za tym idzie powstanie batolitów granitoidowych (Kryza i in., 2004; Stupnicka, Stempień-Sałek, 2016). W paleogenie i neogenie w skutek orogenezy alpejskiej nastąpiło odmłodzenie starych struktur tektonicznych, wydźwignięcie Karkonoszy i Gór Izerskich oraz podział masywu na bloki. Masyw sudecki został potrzaskany i doszło do blokowego wypiętrzenia jego fragmentów, zaś w oligocenie powstały intruzje bazaltów, z których część dotarła na powierzchnię, a część zastygła pod powierzchnią w postaci żył i kominów (Stupnicka, Stempień-Sałek, 2016).

Masyw karkonosko-izerski zajmuje największy obszar zachodniej części bloku. Graniczy on z czterema głównymi jednostkami tektonicznymi różniącymi się pod względem historii geologicznej, litologii oraz struktury. Od N i NE poprzez uskok śródsudecki graniczy z Kaczawskim łupkowo-zieleńcowym pasmem fałdowym. Zbudowane jest ze zmetamorfizowanych 350-340 mln lat temu skał wieku od dolnego kambru po dolny karbon (Želaźniewicz i in., 2011; Mochnacka i in., 2015). Od E graniczy z synklinorium północnosudeckim - jednostką powstałą w wyniku inwersji basenu sedymentacyjnego, w którym można obserwować wychodnie skał osadowych wypełnienia niecki od najwyższego karbonu (wizen) po górną kredę (Żelaźniewicz i in., 2011; Mochnacka i in., 2015). Od S i SE graniczy poprzez system uskoków z synklinorium śródsudeckim - zaliczanym do części środkowej bloku dolnośląskiego. Jego powstanie związane było z dwuetapową inwersją basenu sedymentacyjnego, zaś sedymentacja z przerwami trwała od wczesnego karbonu po wczesny trias i po długiej przerwie, również w późnej kredzie (Żelaźniewicz, Aleksandrowski, 2008). Na N masyw karkonosko-izerski graniczy z masywem łużyckim, a ich granica nie jest tektoniczna lecz wyznaczona na podstawie różnic litologicznych skał budujących obie jednostki.

Masyw karkonoski jest zbudowany z plutonu granitoidowego zajmującego centralną część i osłony metamorficznej podzielonej na cztery jednostki tektoniczne: izersko-kowarską, Ještědu, południowych Karkonoszy i Leszczyńca (Mochnacka i in., 2015; Gaidzik, Żaba, 2017) (fig. 2). Wiek plutonu karkonoskiego określany jest na 300– 320 mln (karbon) (Gaidzik, Żaba, 2017 za m.in. Kryza i in., 2014; Kusiak i in., 2014; Mochnacka i in., 2015).

Granit karkonoski intrudował pod koniec orogenezy waryscyjskiej tworząc pluton karkonoski w centralnej części masywu karkonosko-izerskiego, dzieląc go na dwie części o odmiennej litologii. Intruzja od północy kontaktuje intruzyjnie z serią gnejsową, zaś od południa i wschodu kontaktuje z średnio i niskometamorficznymi seriami osadowo-wulkanogenicznymi (Żelaźniewicz i in., 2011; Żelaźniewicz, Aleksandrowski, 2008).

Z uwagi na warunki geologiczne, wiercenie do głębokości 8,0 m prowadzono gryzerem ($\varphi = 216$ mm). Z tego interwału (0,0–8,0 m) pobrano próbki okruchowe. Poniżej 8,0 m, do głębokości 201,0 m wiercono koronką diamentową $\varphi = 132$ mm (tab. 1) i w tym interwale prowadzono rdzeniowanie. Średnica otrzymanego rdzenia wynosi 100 mm. Otwór został zarurowany jedynie w przedziale głębokości 0,0–4,0 m rurą wstępną $\varphi = 168$ mm w korku cementowym (Habryn, 2012).

Po dwumiesięcznej stójce związanej z pomiarem temperatury w warunkach ustalonych, otwór Czerwony Potok PIG 1 (styczeń–luty 2012 r.) został częściowo zlikwidowany w przedziale głębokości 75–201 m p.p.t., poprzez zacementowanie. Do likwidacji tego odcinka zużyto 2,07 ton cementu. W otworze pozostał odcinek rur $\emptyset = 168,3$ mm, od głębokości 0,0 do 4,0 m. Następnie w ramach prac związanych z adaptacją otworu do sieci obserwacyjno-badawczej wód podziemnych (SOBWP) odizolowano dopływ do otworu wód rumoszowych poprzez szczelne (paker + zacementowanie) postawienie dodatkowej kolumny rur grubościennych PVC DN $\varphi = 110$ mm, długości 10 m, zabezpieczono otwór obudową stalową i oznaczono jako urządzenia PSH. Jednocześnie PSH uzyskało, z końcem lutego 2012 r., zgodę Burmistrza Szklarskiej Poręby na użytkowanie części terenu działki wokół otworu Czerwony Potok PIG 1, będącej własnością miasta (Habryn, 2012).

Tabela 1

Parametry wiercenia Czerwony Potok PIG 1

Parameters of the Czerwony Potok PIG 1 borehole

Przedział głębokości [m] Depth range	Narzędzia wiertnicze Drilling tools	Średnica [mm] Diameter	Średnica końcowa otworu [mm] Bottom borehole diameter
0,0-8,0	gryzer	216	216
8,0–201,0	koronka diamentowa	132	132

Ryszard HABRYN, Magdalena PAŃCZYK-NAWROCKA, Adam WÓJCICKI, Marta WRÓBLEWSKA

ZAKRES BADAŃ

Zgodnie z projektem prac geologicznych projekt (Bujakowski i in., 2011) sprofilowano rdzenie (fig. 3) i przeprowadzono szczegółowe badania wybranych próbek skalnych. Sprofilowano rdzenie z przedziału głębokości 8,0– 201,0 m (193 m bieżących), przechowywane w 112 skrzynkach oraz próbki okruchowe z przedziału głębokości 0,0– 8,0 m przechowywane w 3 skrzynkach (Habryn, 2012).

Dla wybranych 27 próbek skalnych wykonano szeroki zakres analiz laboratoryjnych (tab. 2). Badania petrograficzno-mineralogiczne próbek skał (płytek cienkich) wykonano w świetle przechodzącym w celu określenia litologii, tekstury, składu mineralnego i rodzaju przeobrażeń. Wykonano je z użyciem mikroskopu NIKON EC-LIPSE LV100 POL. Dla 8 próbek skał, wytypowanych spośród powyższych, wykonano również badania chemiczne, które obejmowały określenie zawartości pierwiastków głównych i śladowych. Badania petrofizyczne parametrów zbiornikowych próbek skał obejmowały określenie gęstości, porowatości i przepuszczalności skał. Badania parametrów termicznych na próbkach rdzeni obejmowały pomiary przewodności cieplnej, pojemności cieplnej i badanie wielkości produkcji ciepła radiogenicznego, na podstawie oznaczeń zawartości i stężenia aktywności dla wytypowanych izotopów pierwiastków promieniotwórczych – produktów rozpadów promieniotwórczych, odpowiednio szeregu U-238 i Th-232 oraz izotopu K-40.

W otworze Czerwony Potok PIG 1 wykonano pomiary temperatury w trzech etapach: bezpośrednio po wykonaniu wiercenia (warunki termiczne nieustalone) oraz dwukrotnie w warunkach ustalonego reżimu termicznego, w odstępie miesięcznym. Gradient geotermiczny określony na podstawie pomiarów w warunkach ustalonego reżimu termicznego wynosi 0,4°C/10 m dla przedziału głębokości 16–196 m. Jego względne wartość związane są prawdopodobnie m.in. z produkcją zwiększonej ilości ciepła radiogenicznego przez skały. Ponadto, wykonano szereg pomiarów sondami geofizyki otworowej (poza ww. pomiarami temperatury), celem określenia własności fizycznych ośrodka geologicznego w otworze i jego bezpośrednim otoczeniu:

- profilowanie i sondowanie oporności;
- potencjałów naturalnych;
- profilowanie akustyczne;
- profilowanie średnicy otworu;
- profilowanie krzywizny otworu;
- profilowanie oporności płuczki;
- profilowanie neutronowe;
- profilowanie zawartości pierwiastków promieniotwórczych;
- profilowanie spektrometryczne i gamma.

Fig. 3. Przykładowy odcinek rdzenia pobranego z otworu Czerwony Potok PIG 1 (głęb. 151,4–156,4 m; granitoid średnio-grubokrystaliczny; Habryn, 2012)

Example of drill core section collected in the Czerwony Potok PIG 1 borehole (depth 151.4–156.4 m; medium to coarse crystalline granitoid; Habryn, 2012)

Po zakończeniu wiercenia i badań geofizycznych bezpośrednio w otworze, w jego otoczeniu wykonano badania magnetotelluryczne celem rozpoznania wgłębnej budowy geologicznej plutonu karkonoskiego w tym rejonie. Badania wykonano metodą sondowań magnetotellurycznych MT/AMT (4 sondowania) w strefie oddalonej nie więcej niż 300 m od otworu Czerwony Potok PIG 1. Ich lokalizacja wynikła z warunków terenowych i konieczności oddalenia od najpoważniejszego źródła zakłóceń elektromagnetycznych – zelektryfikowanej linii kolejowej w Szklarskiej Porębie (Habryn, 2012; Wójcicki, 2013).

Wyniki i szczegółowa charakterystyka omawianych wyżej badań zostały przedstawione w kolejnych rozdziałach niniejszego opracowania, zaś profil otworu na figurze 4¹.

¹ Figura 4 znajduje się w kieszeni na końcu książki.

Zestawienie próbek rdzeni pobranych do badań z otworu Czerwony Potok PIG 1

Analyzed drill core samples collected in the Czerwony Potok PIG 1 borehole

		Badania petrograficzno-mineralogiczne				Badania petrofizyczne				
Nazwa próbki Głę Sample name I		Petrographic-mineralogical analyzes				Petrophysical analyzes				
	Głębokość Depth [m]				Analizy chemiczne Chemical analyzes	Badania fizykochemicz- ne (izotopowe) Isotopic analyzes	porowatość- -przepuszczal- ność porosity-perme- ability	gęstość objętościowa volumetric density	termiczne	
		optyczna optical microscopy	w mikroobszarze chemical analysis in the micro-area	dyfrakcja rtg X-ray diffraction					pojemność cieplna heat capacity	nai przewodność cieplna thermal conductivity
1	2	3	4	5	6	7	8	9	10	11
CZP1_01	9,0–9,2	+	—	—	—	_	—	—	—	+
CZP1_02	15,2–15,4	+	—	—	—	—	—	—	—	+
CZP1_03	23,65–23,9	+	+	—	—	+	—	_	—	+
CZP1_04	30,2–30,4	+	_	—	—	_	+	+	—	+
CZP1_05	35,7–35,9	+	_	_	_	+	+	+	_	+
CZP1_06	41,1–41,2	+	_	—	_	_	_	—	—	+
CZP1_6A	41,2-41,25	+	+	—	_	_	—	—	_	_
CZP1_07	51,4–51,6	+	_	_	+	+	+	+	_	+
CZP1_08	57,6–57,8	+	_		_	_	+	+	_	+
CZP1_09	64,3-64,5	+	—	—	—	_	+	+	—	+
CZP1_10	70,6–70,7	+	—	—	+	+	+	+	—	+
CZP1_10A	71,5–71,7	+	+	—	—	_	—	—	—	—
CZP1_11	73,2–73,3	—	_	—	—	—	+	+	—	+
CZP1_11A	74,3–74,5	+	+	—	—	—	—	—	—	—
CZP1_12	81,6-81,7	+	_	—	+	+	+	+	+	+
CZP1_13	91,45–91,6	+	+	+						+
CZP1_14	111,0–111,15	+	_				+	+		+
CZP1_15	120,1–120,3	+	_		+	+	+	+	+	+

Tabela 2 cd.

1	2	3	4	5	6	7	8	9	10	11
CZP1_16	134,4–134,6	+	+	_	—	_	+	+	_	+
CZP1_17	139,7–139,9	+	—	—	—	_	+	+	—	+
CZP1_18	153,8–154,0	+	_	_	+	+	+	+	+	+
CZP1_19	169,7–169,85	+	_	—	—	_	+	+	_	+
CZP1_20	186,6–186,8	+	+	_	+	+	+	+	+	+
CZP1_21	187,7–187,9	+	—	_	_	_	+	+	_	+
CZP1_22	190,5–190,7	+	—	_	+	+	+	+	+	+
CZP1_23	192,9–193,1	+	—	_	_	_	+	+	_	+
CZP1_24	200,7–200,85	+	+	_	+	+	+	+	+	+