WYNIKI BADAŃ GEOFIZYCZNYCH

Sylwia KIJEWSKA, Edyta NOWAK-KOSZLA

SEJSMIKA

Obszar w promieniu 10 km od otworu Piła 1/IG 1 został pokryty rzadką siecią profili sejsmicznych, wykonanych w większości na początku lat 80. XX w., przy czym słabsze rozpoznanie jest na północny wschód od otworu. Jedynie dwa nowsze profile pozyskano w 1998 r.

Interpretacji strukturalnej poddano profil sejsmiczny T0040182 (fig. 38) o rozciągłości SW–NE, wykonany w 1982 r. przez Geofizykę Toruń na zlecenie Biura Geologicznego "Geonafta" PGNiG w Warszawie. Ogólnie obraz falowy jest dobrej jakości, jednak są również widoczne strefy o niejednoznacznym zapisie, np. w obrębie stropu czerwonego spągowca, czy w części przekroju obejmującej najpłycej zarejestrowane horyzonty do ok. 300–400 ms, które mają bardzo niską rozdzielczość.

Wykonany w otworze pomiar krzywej akustycznej umożliwił wyliczenie sejsmogramu syntetycznego w celu dowiązania profilu sejsmicznego do danych otworowych. Interpretacja pozwoliła na korelację stropu utworów: jury środkowej, jury dolnej, triasu górnego, triasu środkowego, triasu dolnego, permu – w tym stropu cechsztynu i czerwonego spągowca.

Identyfikacja stropu osadów karbonu nie była możliwa, z powodu bardzo słabej jakości danych i braku ciągłości jakiegokolwiek horyzontu sejsmicznego pod cechsztynem, którego wysokoprędkościowe osady pochłaniają znaczną część energii. Prześledzono natomiast strop czerwonego spągowca, który interpretowany był po minimum refleksu. Utwory te są w wielu miejscach zuskokowane, a w części SW przekroju sejsmicznego przebieg dyslokacji jest niepewny z powodu braku ciągłości horyzontu, na którą prawdopodobnie miały wpływ efekty tektoniki solnej. Zauważalne w tej części profilu liczne drobne antykliny i synkliny, mogą mieć założenia na niewielkich uskokach. Dwa wyraźnie zaznaczające się dodatnie horyzonty sejsmiczne (kolor czarny, zob. fig. 38), widoczne bezpośrednio nad stropem czerwonego spągowca oraz jeden obserwowany w połowie miąższości cechsztynu są efektem

Fig. 38. Interpretacja fragmentu czasowego profilu sejsmicznego T0040182

Linie czerwone wyznaczają uskoki

A part of interpreted time seismic section T0040182

obecności wysokoprędkościowych osadów anhydrytu. Otwór Piła 1/IG 1 przewiercił SW skrzydło antykliny opartej na poduszce solnej. Układ wyżej zalegających refleksów sejsmicznych pokazuje brak wyklinowań i ścienień warstw, co wskazuje na to, że struktura powstała nie wcześniej niż w późnej jurze środkowej. Dokładna ocena czasu powstania nie jest możliwa ze względu na silną erozję polaramijską, która sięgnęła w tym obszarze osadów jury środkowej.

Utwory triasu dolnego są reprezentowane głównie przez iłowce i mułowce, które nie dały wyraźnej odpowiedzi sejsmicznej. Jednak mniej więcej w połowie miąższości tych osadów zaznacza się horyzont o dodatniej amplitudzie, który można wiązać z warstwą piaskowców. W stropie stwierdzono natomiast pakiet iłowców z wkładkami węglanowymi, które mogły spowodować wzmocnienie sygnału na obrazie sejsmicznym. W wyżej zalegających utworach triasu środkowego w pionie widoczny jest zmienny obraz falowy. Profil warstwy w spągowej części składa się przede wszystkim z wapieni, od których śledzą się wyraźne granice refleksyjne, natomiast wyżej zalegające osady, reprezentowane głównie przez mułowce i iłowce rozdzielone miejscami piaskowcami, nie dają tak mocnych amplitud fali sejsmicznej. Granica pomiędzy osadami triasu górnego i jury dolnej została wyznaczona w obrębie pakietu naprzemianległych warstw piaskowców, iłowców oraz mułowców nie wyróżnia się w znaczący sposób na obrazie sejsmicznym. W obrębie utworów triasu górnego jest jednak widoczny silny dodatni refleks, pochodzący od dolomitycznych iłowców i iłowców z anhydrytem, których współczynnik odbicia jest wyraźnie wyższy w porównaniu z sąsiednimi iłowcami. Widoczne w NE części przekroju zmniejszenie miąższości warstw na fragmencie sąsiedniej antykliny wskazuje na to, że ruch soli zaczął się już w tym czasie.

Strop jury środkowej wyznacza regionalna powierzchnia erozyjna, która powstała po późnokredowo–paleoceńskiej inwersji bruzdy śródpolskiej (Krzywiec, 2002). Wyrównała ona powierzchnię, na której osadziły się utwory paleogenu, neogenu i czwartorzędu. Najpłytsze horyzonty sejsmiczne są bardzo rozmyte, nieciągłe lub całkowicie brak jest zapisu na obrazie falowym. Jest to spowodowane ograniczeniami technologicznymi i metodyką badań, stosowaną w tamtym okresie.

Sara WRÓBLEWSKA, Marcin ŁOJEK

GEOFIZYKA OTWOROWA

Charakterystykę pomiarów geofizyki otworowej z otworu Piła 1/IG 1 wykonano na podstawie dokumentacji wynikowej otworu badawczego Piła 1/IG 1 (Żelichowski, 1985a) oraz scyfrowanych danych geofizycznych w formacie LAS ze zbioru CBDG PIG-PIB. Pomiary wykonano w okresie 25.11.1982–30.04.1984 r. przez Zakład Geofizyki Toruń we współpracy z Bazami Geofizyki Wiertniczej w Pile i Toruniu.

Otwór Piła 1/IG 1 wykonany został w ramach "Projektu dla wierceń badawczych na obszarze basenu Permskiego Niżu Polski" realizowanego przez Z.O.G.G.N. "Geonafta" przy współudziale z przedsiębiorstwami w Pile, Wołominie i Zielonej Górze. W projekcie przewidziano realizację kolejnych 8 otworów wiertniczych w celu dalszego badania budowy geologicznej utworów permu i jego podłoża w celu określenia rozwoju litologicznego i facjalnego, warunków zbiornikowych, jak i możliwości akumulacji ropy naftowej i gazu ziemnego.

Głównym założeniem badań geofizycznych w ramach projektu było:

- określenie litologii i stratygrafii przewierconych utworów;
- wydzielenie warstw posiadających właściwości zbiornikowe;
- szacunkowe określenie parametrów warstw zbiornikowych;
- wydzielenie warstw zawierających bituminy;
- wytypowanie horyzontów do opróbowania;
- określanie stanu technicznego otworu.

Zakres wykonanych badań geofizycznych

Pomiary geofizyki otworowej wykonano w interwale głęb. 0,0–4867,0 m w postaci siedmiu odcinków pomiarowych. Pomiary prowadzono przy użyciu aparatury produkcji radzieckiej typu AKSŁ-7 dla profilowań elektrycznych, PRK-62 dla radiometrycznych, oraz SPAK-4 dla akustycznych.

- Podstawowy zestaw pomiarowy obejmował:
- profilowanie oporności potencjałowe (POp);
- profilowanie oporności gradientowe (POg);
- profilowanie potencjałów naturalnych (PS);
- profilowanie naturalnego promieniowania gamma (PG);
- profilowanie neutron-gamma (PNG, lgPNG);
- profilowanie średnicy otworu (PŚr);
- profilowanie krzywizny otworu (PK);
- profilowanie gamma-gamma gęstościowe (PGG);
- boczne profilowanie oporności (BSO).

Do kompletu pomiarów podstawowych dołączono także litologiczny profil geofizyczny. Ponadto, wykonano badania uzupełniające:

- sterowane profilowanie oporności (POst, lgPOst);
- sterowane mikroprofilowanie oporności (mPOst, lgmPOst);
- profilowanie akustyczne (T1, T2, PA- Δ T);
- profilowanie temperatury (PTu).
- W otworze wykonywano również pomiary kontrolne w najgłębszej części danego odcinka pomiarowego.
 - Średnica nominalna otworu Piła 1/IG 1 wynosiła 308 mm

w interwale głęb. 253,0–3145,0 m, 216 mm w interwale 3124,0–4346,0 m, oraz 143 mm na głęb. 4346,0–5482,0 m. W tabeli 16 zaprezentowano dokładne interwały głębokościowe wykonanych profilowań geofizyki otworowej (wg spisu wykonanych badań z dokumentacji wynikowej (Żelichowski, 1985a) i informacji zamieszczonych na stronie CBDG) wraz z datą ich wykonania oraz średnicą nominalną otworu podczas realizacji pomiarów. Pogrubioną czcionką oznaczono profilowania, które są dostępne w CBDG w wersji cyfrowej, pozostałe – w Narodowym Archiwum Geologicznym PIG-PIB są jedynie w formie papierowej. Asortyment badań geofizycznych wykonanych w otworze oraz ich jakość zdecydowanie odbiegają od obecnie realizowanych profilowań geofizyki wiertniczej i standardu ich jakości. Badania realizowane w latach 80. XX w., a także istniejące w tym czasie możliwości sprzętowe, uniemożliwiały szczegółowe rozpoznanie profilu wiercenia.

Digitalizacja i normalizacja profilowań geofizycznych

Wyniki profilowań geofizycznych zarejestrowano w formie analogowej w większości w skali głębokościowej 1:500. Profilowanie mPŚr zostało wykonane w skali 1:200, PTu natomiast w skali 1:1000. Część pomiarów, obejmujących w głównej mierze profilowania średnicy, radiometryczne,

Tabela 16

Wykaz badań geofizyki otworowej wykonanych w otworze Piła 1/IG 1

PŚr (CALI) – profilowanie średnicy; mPŚr – mikroprofilowanie średnicy otworu; PG (GR) – profilowanie gamma; PK – profilowanie krzywizny odwiertu; POg – sondowanie oporności gradientowe; POp – sondowanie oporności potencjałowe; POst (LL3) – profilowanie oporności sterowane (laterolog); PNNnt (NECN) – profilowanie neutron-neutron nadtermiczne; PS (SP) – profilowanie potencjałów naturalnych; PAdt (DT) – profilowanie akustyczne interwałowe; PAtl (T1) – profilowanie akustyczne T1; PAt2 (T2) – profilowanie akustyczne T2; PNG (NEGR) – profilowanie neutron-gamma; PAc – pomiar akustyczny stanu zacementowania rur okładzinowych;
PT – profilowanie temperatury; mPOst – mikroprofilowanie oporności sterowanej; PTu – profilowanie temperatury przy ustalonej równowadze termicznej; lg – wynik profilowania przedstawiony w skali logarytmicznej; pogrubiona czcionka – krzywe dostępne w wersji cyfrowej.

List of well logs performed in the Piła 1/IG 1 borehole.

PG (GR) – gamma ray log; PK – deviation log; PŚr (CALI) – caliper; mPŚr – microcaliper; POp (EL09) – lateral electrical log;
 POg (EN10) – electrical log; POst (LL3) – laterolog; PNNnt (NECN) – epithermal neutron log; PS (SP) – spontaneous potential log;
 PAdt (DT) – interval transit time log; PAt1 (T1) – sonic travel time log (t1); PAt2 (T2) – sonic travel time log (t2); PNG (NEGR) – neutron-gamma log; PAc – CBL casing amplitudę; PT – temperature log; mPOst – microlaterolog (ML); PTu – temperature log; sustained thermal equilibrium; lg – log presented in logarithmic scale; bold – geophysical curves digitalized

Data wykonania pomiaru Date of measurement	Rodzaj pomiaru (skrót) Type of measurment (abbreviated)	Interwał głębokościowy pomiaru [m] Depth interval	Średnica nominalna otworu [mm] Bit Size			
	PŚr	251,00–1478,00				
25.11.1982	mPŚr	1466,00–1478,00				
	POp (B2,5A0,25M)	251,00-2293,00				
	POg (M2,5A0,25B)	251,00-2293,00				
	PS	251,00-2293,00				
	POst + lgPOst	POst + lgPOst 251,00–2293,00				
5-7.01.1983	РА	251,00-2293,00				
	PSr	251,00-2293,00				
	PG	0,00–2292,00				
	PNG + lgPNG	0,00–2292,00				
	РК	25,00-2290,00				
	POp (B2,5A0,25M)	2268,00-2753,00				
	POg (M2,5A0,25B)	2268,00-2753,00				
23-24.02.1983	PS	2268,00-2753,00				
	BSO	2268,00-2753,00				
	POst + lgPOst	2270,00-2753,00				

Data wykonania pomiaru Date of measurement	Rodzaj pomiaru (skrót) Type of measurment (abbreviated)	Interwał głębokościowy pomiaru [m] Depth interval	Średnica nominalna otworu [mm] Bit Size				
	PSr	251,00-2749,00					
	PG	2267,00-2755,00					
	PNG + lgPNG	2267,00-2755,00					
308,00	PA	2267,00-2755,00					
	РТ	2700,00-2750,00					
	РК	2275,00-2750,00					
	POp (B2,5A0,25M)	2740,00-3140,00					
	POg (M2,5A0,25B)	2740,00-3140,00					
	PS	2740,00-3140,00					
	BSO	2740,00-3140,00					
	POst + lgPOst	2740,00-3138,00	308,00				
0 11 04 1002	PŚr	251,00-3140,00					
9–11.04.1983	mPŚr	3040,00 -3140,00					
	РА	2725,00-3140,00					
	PG	2725,00-3140,00					
	PNG + lgPNG	2725,00-3140,00					
	PT	3070,00-3128,00					
	РК	2755,00-3140,00					
14.04.1092	PŚr	3100,00–3146,00					
14.04.1983	mPŚr	3120,00-3146,00					
27.04.1983	РТ	5,00-1710,00					
	POp (B2,5A0,25M)	3125,00-4152,00					
	POg (M2,5A0,25B)	3125,00-4152,00					
	PS	3125,00-4152,00					
	POst + lgPOst	3125,00-4154,00					
21-25.06.1983	PŚr	3125,00-4148,00					
	PG	3115,00-4155,00					
	PNG + lgPNG	3115,00-4155,00					
	РА	3075,00-4155,00					
	РТ	4100,00-4150,00					
	POp (B2,5A0,25M)	4130,00-4342,00	216,00				
	POg (M2,5A0,25B)	4130,00-4342,00					
	PS	4130,00-4342,00					
	POst + lgPOst	4130,00-4342,00					
20.07 2.08 1083	PŚr	3125,00-4342,00					
29.07-2.08.1985	PG	4130,00-4342,00					
	PNG + lgPNG	4130,00-4342,00					
	PA	4130,00-4342,00					
	РТ	4290,00 - 4340,00					
	РК	3125,00-4340,00					
23.09.1983	РА	40,00-4350,00	308,00 216,00 143,00				
	РК	4350,00-4550,00					
	POp (B2,5A0,25M)	4344,00-4867,00	142.00				
5-22.12.1983	POg (M2,5A0,25B)	4344,00-4867,00	143,00				
	BSO	4344,00-4867,00]				

I a D C I a I D Cu	Тa	b e	la	16	cd.
--------------------	----	-----	----	----	-----

Data wykonania pomiaru Date of measurement	Rodzaj pomiaru (skrót) Type of measurment (abbreviated)	Interwał głębokościowy pomiaru [m] Depth interval	Średnica nominalna otworu [mm] Bit Size		
	PS	4344,00–4867,00			
	POst + lgPOst	4344,00-4885,00			
	mPOst + lgmPOst	4344,00-4900,00			
	PŚr	4344,00-4870,00			
5 22 12 1092	PG	4320,00-4900,00			
5-22.12.1985	PNG + lgPNG	4320,00-4900,00			
	PGG	4320,00-4995,00			
	РА	4344,00–4886,00			
	РТ	4838,00-4888,00	143,00		
	РК	4350,00-4950,00			
	BSO	4780,00–5386,00			
	lgPOst	4780,00–5389,00			
	PGG	4780,00–5383,00			
28-30.04.1984	PG	4780,00–5381,00			
	PNG + lgPNG	4780,00-5383,00			
	PŚr	4330,00-5382,00			
	РК	4900,00–5390,00			
22.06.1984	РТи		308,00 216,00 143,00		

akustyczne oraz wybrane elektrometryczne, została zdigitalizowana w ramach prac interpretacyjnych PIG-PIB w latach 90. XX w., związanych z uzupełnianiem bazy CBDG o badania geofizyki otworowej. Część pomiarów, głównie profilowanie naturalnego promieniowania gamma (PG) oraz profilowanie neutron-gamma (PNG) połączono, oraz poddano normalizacji. Zastosowana w trakcie prac metodyka standaryzacji profilowań radiometrycznych została opisana w pracach Szewczyka (1998, 2000). Scyfrowane odcinkowe i połączone (composite log) dane geofizyczne dla otworu Piła 1/IG 1 w formacie LAS (Log ASCII Standard) znajdują się w Centralnej Bazie Danych Geologicznych (nr identyfikacyjny 27886). Graficzne zestawienie dostępnych, zdigitalizowanych pomiarów geofizycznych w zestawieniu z uproszczonym profilem stratygraficznym zamieszczono na figurze 39. Ponadto, na figurze 40 zobrazowano dostępne profilowania połączone i znormalizowane: średnicy, naturalnego profilowania gamma, neutron-gamma, akustyczne czasu interwałowego oraz wybrane pomiary elektrometryczne.

Ocena stanu jakości otworu

Zastosowanie niekalibrowanej aparatury pomiarowej znacząco utrudnia wiarygodną analizę danych geofizycznych. Wynika to przede wszystkim z odmiennych parametrów technicznych stosowanych przed 1990 r. sond oraz z rejestracji pomiarów radiometrycznych (PG, PNG oraz GGDN) w niestandardowych jednostkach (imp/min). Istotną różnicą zauważalną podczas interpretacji krzywych niekalibrowanych, szczególnie gestościowych jest wzrost wartości (imp/ min) w skałach o niższych gęstościach objętościowych i odpowiednio jej spadek w skałach gęstych. Tego typu wskazania są wynikiem metody pomiarowej stosowanej w sondach gęstościowych, których działanie oparte jest na pomiarze różnicy pomiędzy promieniowaniem gamma generowanym przez sondę, a promieniowaniem wtórnym, docierającym do umieszczonego w niej detektora. Uzyskana różnica jest efektem pochłaniania energii, powstałej w wyniku rozpraszania comptonowskiego, zachodzącego w wyniku kolizji cząstek gamma z elektronami zawartymi w skale. Ubytek energii cząstek gamma jest więc tym wyższy, im wyższa jest gęstość elektronowa skały, która jest ściśle związana z jej gęstością objętościową. Procedura pomiarowa w sondach stosownych współcześnie jest tożsama, jednak wynik uzyskiwany przez detektor jest automatycznie konwertowany do wartości standardowych 2-3 g/cm3. Podobna zależność dotyczy również profilowania neutron-gamma, gdzie podwyższona zawartość wodoru w skale wywołuje obniżone wartości na krzywej NEGR, odwrotnie do współcześnie stosowanych profilowań neutronowych. Profilowania są ponadto obarczone błędami, wynikającymi ze złego stanu technicznego części otworu.

Ocenę stanu technicznego ścian przeprowadzono na podstawie profilowania średnicy (PŚr/CALI), dostępnego dla znaczącej części analizowanego otworu (głęb. 251,0–5382,0 m). Na odcinku głęb. 251,0–1067,5 m, w obrębie kompleksu piaszczysto-mułowcowego uszkodzenia ścian są nieznaczne i osiągają maksymalnie 52 mm w stosunku do średnicy nominalnej (308 mm). W interwale głęb. 1067,5–2570,2 m, w obrębie skał ilasto-mułowcowych, występują największe kawerny i wymycia sięgające od kilku do maksymalnie 315 mm (głęb. 1578,0 m). Na pozostałym odcinku poza dwoma, mniej stabilnymi interwałami na głęb. 4345,0–4574,74 m oraz 4850,9–4987,2 m, średnica otworu jest stabilna i zbliżona do średnicy nominalnej. Ponadto, wraz ze wzrostem głębokości zaobserwowano stopniowe zmniejszanie średnicy otworu w obrębie soli kamiennych (od 271,87 mm do 200,32 mm przy średnicy nominalnej 214 mm). Jest to najprawdopodobniej spowodowane wzrostem

Fig. 39. Schematyczne zestawienie głębokościowe zdigitalizowanych badań geofizycznych wykonanych w otworze Piła 1/IG 1

Rodzaje profilowań geofizycznych: CALI – profilowanie średnicy otworu; GR – profilowanie naturalnej promieniotwórczości gamma; NEGR – profilowanie neutron-gamma; GGDN – profilowanie gamma-gamma gęstościowe; SP – profilowanie potencjałów samoistnych; EL – gradientowe profilowanie oporności (EL 02; EL 03; EL 09; EL 14; EL18; EL 26); EN – potencjałowe profilowanie oporności (EN10; EN16); LL3 – sterowane profilowanie oporności; T1 – czas interwałowy T1; T2 – czas interwałowy T2; DT – profilowanie akustyczne czasu interwałowego; ML – średni laterolog

Schematic depth presentation of digitalized well logging measurements performed in the Piła 1/IG 1 borehole

Well logging types: CALI – caliper; GR – gamma ray log; NEGR – neutron-gamma log; GGDN – density log; SP – spontaneous potential log; EL – lateral conventional electrical log (EL 02; EL 03; EL 09; EL 14; EL 26); EN 10 – normal conventional electrical log; LL3 – laterolog; T1 – interval time T1; T2 – interval time T2; DT – compressional slowness; ML – middle laterolog

Fig. 40. Zestawienie dostępnych połączonych i znormalizowanych profilowań geofizycznych w otworze Piła 1/IG 1

CALI_C – profilowanie średnicy; GR_S – unormowane profilowanie gamma; NEGR_C – profilowanie neutron-gamma; DT_C – profilowanie akustyczne czasu interwałowego; EN10_C – profilowanie oporności o krótkim zasięgu radialnym; EL09_C – profilowanie oporności o długim zasięgu radialnym

Presentation of merged and normalized geophysical well logs available for Piła 1/IG 1 borehole

 $CALI_C - caliper log; \ GR_S - normalized natural gamma ray log; \ NEGR_C - neutron-gamma ray log; \ DT_C - sonic - compressional slowness; \\ EN10_C - conventional gradient resistivity logs shallow; \\ EL09_C - conventional gradient resistivity logs deep$

ciśnienia litostatycznego wraz z głębokością otworu, powodującego intensywniejsze płynięcie soli kamiennych i zaciskanie otworu wraz ze wzrostem głębokości. Pomniejszanie średnicy jest również widoczne w mułowcowo-piaszczystych kompleksach karbonu oraz czerwonego spągowca, gdzie poza ciśnieniem związanym z głębokością może ono wynikać z osadzania się osadu z filtratu płuczki (tzw. *mud cake*) na ścianach przepuszczalnych piaskowców.

Profilowanie krzywizny otworu Piła 1/IG 1 zostało wykonane na odcinku głęb. 25,0-5390,0 m. Do głęb. 2950,0 m krzywizna otworu jest nieznaczna i osiąga maksymalnie 2° (głęb. 2650,0 m). Azymuty w tym odcinku zmieniają się natomiast w granicach $21-51^{\circ}$. Na odcinku głęb. 2975,0-4550,0 m otwór jest pionowy. Największe skrzywienie obserwuje się w interwale 4575,0-5390,0 m, w którym kąt krzywizny rośnie od $0^{\circ}15'$ (głęb. 4575,0 m) do 5° (głęb. 5300,0 m), który to pomiar utrzymuje się do głębokości 5390,0 m. Azymuty w odcinku głęb.4575,0-5390,0 m zmieniają się w zakresie $250-350^{\circ}$.

W otworze Piła 1/IG 1 wykonano również profilowanie temperatury w warunkach ustalonej równowagi cieplnej dla interwału głęb. 10,0–5260,0 m. Celem analizy było wyznaczenie wartości gradientu geotermicznego. Średnio, gradient geotermiczny dla otworu Piła 1/IG 1 wynosi 2,9°C/100 m, a średni stopień geotermiczny Hśr = 34,5 m/°C. Wartości gradientu dla poszczególnych poziomów stratygraficznych przedstawiono w tabeli 17.

Opracowanie wyników badań geofizyki wiertniczej

Interpretacja pomiarów geofizyki otworowej w otworze Piła 1/IG 1 została wykonana dla znacznej części otworu (głęb. 251,0–5382,0 m). Umożliwiła ona dokładniejsze rozpoznanie przewiercanych utworów wraz z wyróżnieniem horyzontów potencjalnie perspektywicznych.

Każdy z interwałów stratygraficznych poddanych analizie wykazuje odmienne właściwości geofizyczno-petrofizyczne. W obrębie skał jurajskich występują w głównej mierze skały klastyczne z przewagą piaskowców o bardzo dobrych właściwościach zbiornikowych. Dlatego też dolna granica pomiędzy ilasto-mułowcowymi osadami kajpru, a piaskowcami formacji zagajskiej odznacza się znaczącym spadkiem naturalnego profilowania gamma, potencjałów samoistnych oraz oporności. Spadek zailenia jest również obserwowany poprzez wzrost wartości na krzywej neutron-gamma (imp/ min). W obrębie profilu jury dolnej najwyższe zawartości piaskowców (obniżone wartości naturalnego promieniowania gamma, potencjałów samoistnych i oporności) wykazują formacje zagajska, ostrowiecka, drzewicka i borucicka. W obrębie formacji skłobskiej i gielniowskiej zawartość skał mułowcowych i heterolitów nieznacznie przeważa nad skałami piaszczystymi. W formacji ciechocińskiej natomiast dominują skały drobnoklastyczne. Horyzonty piaszczyste jury dolnej wykazują dobry potencjał zbiornikowy, co zostało potwierdzone w trakcie prób złożowych.

Skały jury środkowej charakteryzują się podwyższonymi w stosunku do piaskowców jury dolnej wartościami naturalnego promieniowania gamma oraz obniżonymi wartościami na krzywej neutron-gamma. Jest to najprawdopodobniej spowodowane wzrostem zailenia skał środkowojurajskich lub zmianą ich składu mineralnego w stosunku do skał dolnojurajskich. Podwyższone wartości oporności wraz ze wzrostem na krzywej SP mogą natomiast sugerować występowanie wtórnych cementów w porach piaskowców.

Skały kajpru i retyku charakteryzują się przeważnie słabymi właściwościami zbiornikowymi. W tym interwale

Tabela 17

Gradient geotermiczny dla poszczególnych przedziałów stratygraficznych w otworze Piła 1/IG 1

Geothermal gradient for individual stratigraphic intervals in the Piła 1/IG 1 borehole

Stratygrafia Stratigraphy	Interwał [m] Depth interval	Gradient geotermiczny [°C/100 m] geothermal gradient
Kenozoik/Cenozoic	10,0–185,0	5,0
Jura/Jurassic	185,0–1068,5	1,5
Trias – kajper Triassic – Keuper	1068,5–1262,0	3,3
Trias – kajper Triassic – Keuper	1262,0–1874,0	3,6
Trias – wapień muszlowy <i>Triassic – Muschelkalk</i>	1874,0–2080,5	3,0
Trias – pstry piaskowiec Triassic – Buntsandstein	2080,5–3099,0	3,3
Perm – cechsztyn Permian – Zechstein	3099,0-4384,9	1,6
Perm – czerwony spągowiec Permian – Rotliegend	4384,9–5260,0	2,5

dominują skały ilaste i mułowcowe z pojedynczymi wkładkami skał piaszczystych, gipsów i anhydrytów. Wysoka zawartość skał drobnoklastycznych jest przyczyną intensywnego obsypywania się ścian otworu. Wśród skał ilasto-mułowcowych wydzielono 2 interwały piaszczyste o korzystniejszych właściwościach zbiornikowych na głęb. 1112,0–1122,5 m, w obrębie warstw wielichowskich, oraz 1479,0–1469,0 m (piaskowiec trzcinowy). Interwał piaskowca trzcinowego w trakcie przeprowadzonych prób złożowych został uznany za perspektywiczny, a jego średnia przepuszczalność wynosi 188 mD (Żelichowski, 1985a).

Profil wapienia muszlowego w otworze Piła 1/IG 1 jest dość jednorodny. Skały węglanowe występujące w tym interwale stratygraficznym charakteryzują się obniżonymi wskazaniami na krzywej naturalnego promieniowania gamma w granicach 40–70 API. Wartości DT natomiast oscylują w okolicach 50–60 us/ft w zależności od stopnia zailenia i zdolomityzowania wapienia. Pojedyncze wkładki margli wykazują podwyższone wskazania na krzywej GR (>70 API) oraz czasu interwałowego (>60 us/ft). Wpływ minerałów ilastych powoduje obniżenie oporności warstw marglistych i zailonych, w porównaniu do skał czysto węglanowych. Skały te charakteryzują się obniżonymi wskazaniami na krzywej neutron-gamma.

Skały pstrego piaskowca wykazują duże zróżnicowanie litologiczne. W najniższej części profilu (formacja. bałtycka) dominują iłowce z pojedynczymi wkładkami mułowców. Profil formacji bałtyckiej geofizycznie jest jednorodny. Wartości promieniowania gamma wynoszą 87–156 API, a DT 72–74 us/ft. Formacja pomorska wykazuje mniejsze zailenie w porównaniu do niżej leżącej formacji bałtyckiej. Spąg formacji zaznacza się występowaniem pakietu piaszczysto-heterolitowego, który stopniowo przechodzi w skały sekwencji ilasto-mułowcowej, w obrębie której występują wkładki dolomitów. Dolomity wyraźnie odróżniają się od drobnoklastycznego tła poprzez obniżone wskazania naturalnego promieniowania gamma i potencjałów samoistnych oraz podwyższone (imp/min) wartości NEGR. W obrębie wyżej leżącej "formacji" ilastej dominują skały mułowcowo-ilaste z podrzędnymi wkładkami piaskowców o charakterystycznie obniżonych wartościach naturalnego promieniowania gamma oraz podwyższonych wartościach NEGR. Interwały piaszczyste pstrego piaskowca posiadają generalnie niekorzystne właściwości zbiornikowe potwierdzone testami złożowymi.

W obrębie cechsztynu dominują sole kamienne i anhydryty charakteryzujące się bardzo niskimi wskazaniami na

Kinga BOBEK

krzywej naturalnego promieniowania gamma. Podwyższone wartości występują jedynie w interwałach zailonych. Miejscami są anomalnie zawyżone w obrębie silnie promieniotwórczych soli potasowych. Sól kamienną charakteryzują również stałe wartości czasu interwałowego w przedziale 64-66 us/ft, nieznacznie wzrastające w obrębie skał zailonych. Anhydryty wyraźnie odróżnia od soli obniżona wartość DT wynosząca 48-53 us/ft. Wartości oporności w skałach ewaporatowych zarówno soli, jak i anhydrytów są wysokie i względnie stałe (650-800 ohmm) z nieznacznymi spadkami w obrębie interwałów zailonych. W sekwencjach cechsztynu wyróżniono trzy horyzonty węglanowe: wapień cechsztyński (Cal), dolomit główny (Ca2), oraz dolomit płytowy (Ca3). Interwały węglanowe wyróżniają się w sekwencji ewaporatowej podwyższonymi wartościami naturalnego promieniowania gamma, czasu interwałowego, oraz potencjałów samoistnych przy jednoczesnym spadku oporności. Żaden z interwałów węglanowych jednak nie wykazał korzystnych właściwości zbiornikowych.

Skały czerwonego spągowca w otworze Piła 1/IG 1 są reprezentowane przez kompleks wulkanitowy formacji wielkopolskiej oraz sekwencję skał osadowych zaliczoną do formacji Drawy i Noteci. W spągowym odcinku kompleksu wulkanitowego występują bazalty przechodzące stopniowo w skały pośrednie o składzie riodacytów. Zmiana składu mineralnego jest widoczna na krzywych geofizycznych poprzez stopniowy wzrost naturalnego promieniowania gamma tych skał spowodowany wzrastającą zawartością skaleni alkalicznych i/lub łyszczyków w górę profilu. Osadowa sekwencja formacji Drawy i Noteci składa się głównie ze skał ilastopiaszczystych z pojedynczymi wkładkami piaskowców o niewielkiej miąższości, często scementowanych minerałami węglanowymi o niekorzystnych właściwościach zbiornikowych.

Podsumowanie

Badania geofizyczne wykonane w otworze Piła 1/IG 1 spełniły planowane założenia. Wykonana analiza właściwości geofizycznych skał pozwoliła uszczegółowić profil litologiczny oraz wytypować potencjalne horyzonty zbiornikowe. W wyniku przeprowadzonych badań ustalono, że w profilu otworu Piła 1/IG 1 najlepsze parametry zbiornikowe wykazują piaskowce jury dolnej oraz triasowy piaskowiec trzcinowy. W profilu nie występują poziomy perspektywiczne pod kątem występowania nagromadzeń węglowodorów.

WYNIKI POMIARÓW PRĘDKOŚCI ŚREDNICH

Pomiary prędkości średnich, czyli pionowe profilowanie sejsmiczne (PPS) dla otworu Piła 1/IG 1 zostały wykonane w 1983 r; przez grupę sejsmometrii wiertniczej Geofizyki Toruń w miejscowości Kotuń. Prace pomiarowe wykonano aparaturą CS-5-G oraz sondą geofonową typu HT w interwale głęb. 117,0–5157,0 m z odstępami co 15 m. Prace strzałowe przeprowadzono z trzech punków wzbudzenia (PW) rozmieszczonych w następujący sposób:

PW1	d = 50 m	$A = 290^{\circ}$	N = 0 m;
PW2	<i>d</i> = 100 m	$A = 10^{\circ}$	N = 0 m;
PW3	<i>d</i> = 100 m	$A = 140^{\circ}$	N = 0 m;

gdzie:

- d-odległość punktu wzbudzenia od głębokiego odwiertu;
- A azymut mierzony w punkcie głębokiego odwiertu w kierunku punktu wzbudzenia;
- N niwelacja punktu wzbudzenia w stosunku do wylotu głębokiego odwiertu.

Redukcję głębokości do pionu wykonano przy pomocy programu emo. Wykorzystany pogram obliczeniowy zakładał jednorodność ośrodka, a więc prostoliniowy przebieg promienia sejsmicznego i jest opracowany w dwóch wersjach: z uwzględnieniem krzywizny otworu i bez jej uwzględniania w zależności od wielkości odchylenia otworu od pionu. Głębokość zredukowaną przeliczono do poziomu wynoszącego 0 m n.p.m., podczas gdy wysokość wylotu otworu wynosi 93 m. Po wprowadzeniu poprawek głębokościowych, wprowadzono poprawki czasowe, przeliczając czas obserwowany na czas poprawiony.

W kolejnym etapie prowadzonych obliczeń wykonano konieczną redukcję otrzymanych wartości czasu poprawionego do pionu dla poszczególnych punktów wzbudzania, zwanych dalej t_r l, t_r 2 oraz t_r 3. W przypadku otworu Piła 1/IG 1 wspomnianą redukcję wykonano za pomocą następującego wzoru:

$$t_r = \frac{h + N}{h + N + D}$$

gdzie:

 t_r – czas zredukowany;

- h głębokość rejestracji;
- N niwelacja punktu wzbudzenia w stosunku do wylotu głębokiego odwiertu;
- D odległość punktu wzbudzenia od odwiertu.

Uzyskane wartości h_r (głębokość zredukowana) oraz t_r finalnie posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{\dot{s}r} = \frac{h_r}{t_r}$$

Uzyskane wartości t_r 1, t_r 2, t_r 3, t_r oraz V_{sr} zostały zestawione w tabeli 18.

Zestaw otrzymanych wyników stanowił podstawę konstrukcji krzywych prędkości średnich (fig. 41A) oraz hodografu pionowego (fig. 41B). Krzywa prędkości średnich została utworzona na podstawie obliczeń prowadzonych z wykorzystaniem średniej wartości czasu zredukowanego z trzech punków wzbudzenia (t_r). Uzyskany hodograf pionowy wskazuje na systematyczny wzrost czasu rejestracji wraz ze wzrostem głębokości pomiaru. Na krzywej prędkości średnich pierwotnie zaobserwowano drobne szumy, mogące wskazywać na występowanie drobnych błędów pomiarowych. W celu wyeliminowania możliwego wpływu zaobserwowanych szumów na ostateczne wyniki, w późniejszym etapie analiz zastosowano wygładzanie metodą średniej ruchomej.

Ta	b	el	a	18

Zestawienie wartości czasów pomierzonych z trzech punktów wzbudzenia (t, 1, t, 2 i t, 3), średniej wartości czasu zredukowanego (t,) oraz odpowiadającej mu wartości prędkości średniej (V_s) dla danej glębokości (h)

Time measured from three shot points $(t_r l, t_r 2, t_r 3)$, reduced time (t_r) and values of the average velocity (V_{tr}) for a measured depth (h)

<i>h</i> [m]	$t_r l$ [s]	$t_r 2 [s]$	<i>t_r</i> 3 [s]	t_r [s]	V_{sr} [m/s]
117	0,058	0,061	0,060	0,060	2007,393
132	0,064	0,067	0,066	0,066	2031,519
147	0,071	0,073	0,071	0,072	2055,176
162	0,077	0,078	0,076	0,077	2106,075
177	0,082	0,083	0,082	0,082	2157,333
192	0,086	0,088	0,086	0,087	2204,834
207	0,091	0,092	0,091	0,091	2245,742
222	0,097	0,098	0,096	0,097	2285,347
237	0,102	0,104	0,102	0,103	2314,838
252	0,107	0,109	0,106	0,107	2335,501
267	0,113	0,115	0,111	0,113	2355,519
282	0,119	0,120	0,118	0,119	2372,606
297	0,124	0,125	0,124	0,124	2385,102
312	0,130	0,131	0,130	0,130	2397,642
327	0,136	0,136	0,135	0,136	2412,733
342	0,141	0,141	0,141	0,141	2427,699
357	0,146	0,146	0,146	0,146	2444,022
372	0,151	0,151	0,151	0,151	2460,308
387	0,156	0,157	0,156	0,156	2476,605
402	0,161	0,162	0,161	0,161	2491,845
417	0,166	0,167	0,166	0,166	2506,125
432	0,171	0,172	0,171	0,171	2522,467
447	0,176	0,177	0,176	0,176	2537,022
462	0,181	0,181	0,180	0,181	2552,606
477	0,186	0,187	0,185	0,186	2568,325
492	0,190	0,192	0,189	0,190	2583,330
507	0,195	0,196	0,194	0,195	2597,504
522	0,200	0,201	0,199	0,200	2611,991
537	0,204	0,206	0,203	0,204	2624,909
552	0,208	0,211	0,209	0,209	2636,415
567	0,213	0,215	0,214	0,214	2648,245
582	0,218	0,220	0,219	0,219	2659,474
597	0,223	0,224	0,224	0,224	2671,053
612	0,228	0,228	0,228	0,228	2682,918
627	0,232	0,233	0,233	0,233	2696,639
642	0,236	0,238	0,237	0,237	2709,152
657	0,240	0,242	0,241	0,241	2719,720
672	0,245	0,247	0,246	0,246	2731,340
687	0,250	0,252	0,251	0,251	2741,814

<i>h</i> [m]	<i>t_r l</i> [s]	<i>t_r</i> 2 [s]	<i>t_r</i> 3 [s]	t_r [s]	V_{sr} [m/s]	<i>h</i> [m]	<i>t_r 1</i> [s]	<i>t_r</i> 2 [s]	<i>t_r</i> 3 [s]	t_r [s]	V_{sr} [m/s]
702	0,254	0,256	0,255	0,255	2749,734	1362	0,443	0,445	0,444	0,444	3067,457
717	0,258	0,261	0,260	0,260	2758,096	1377	0,447	0,449	0,448	0,448	3073,553
732	0,263	0,266	0,265	0,265	2767,567	1392	0,451	0,453	0,452	0,452	3079,541
747	0,268	0,271	0,269	0,269	2775,303	1407	0,455	0,457	0,456	0,456	3085,424
762	0,273	0,275	0,273	0,274	2784,096	1422	0,459	0,461	0,460	0,460	3091,205
777	0,278	0,279	0,278	0,278	2793,318	1437	0,463	0,465	0,464	0,464	3097,325
792	0,282	0,283	0,282	0,282	2802,917	1452	0,467	0,469	0,468	0,468	3103,782
807	0,286	0,288	0,287	0,287	2810,941	1467	0,470	0,473	0,472	0,472	3110,573
822	0,290	0,292	0,292	0,291	2819,987	1482	0,474	0,476	0,476	0,475	3117,264
837	0,295	0,297	0,297	0,296	2828,093	1497	0,478	0,480	0,479	0,479	3123,856
852	0,299	0,301	0,301	0,300	2837,214	1512	0,482	0,484	0,483	0,483	3129,913
867	0,304	0,305	0,305	0,305	2846,684	1527	0,486	0,488	0,487	0,487	3136,290
882	0,308	0,309	0,309	0,309	2856,570	1542	0,490	0,492	0,491	0,491	3142,141
897	0,312	0,313	0,313	0,313	2865,572	1557	0,493	0,495	0,495	0,494	3147,906
912	0,316	0,318	0,318	0,317	2874,931	1572	0,497	0,499	0,499	0,498	3153,586
927	0,320	0,323	0,322	0,322	2883,441	1587	0,501	0,503	0,503	0,502	3158,769
942	0,324	0,327	0,326	0,326	2891,124	1602	0,505	0,507	0,507	0,506	3163,026
957	0,329	0,331	0,330	0,330	2899,783	1617	0,509	0,511	0,512	0,511	3167,212
972	0,333	0,336	0,334	0,334	2908,805	1632	0,513	0,515	0,516	0,515	3171,330
987	0,337	0,340	0,338	0,338	2917,596	1647	0,517	0,519	0,520	0,519	3174,977
1002	0,341	0,344	0,342	0,342	2925,073	1662	0,521	0,523	0,524	0,523	3178,976
1017	0,345	0,348	0,346	0,346	2931,819	1677	0,525	0,527	0,529	0,527	3182,910
1032	0,350	0,353	0,351	0,351	2937,279	1692	0,529	0,531	0,533	0,531	3186,387
1047	0,355	0,358	0,355	0,356	2940,945	1707	0,533	0,535	0,537	0,535	3189,805
1062	0,360	0,362	0,360	0,361	2943,388	1722	0,538	0,539	0,541	0,539	3194,348
1077	0,365	0,367	0,365	0,366	2946,836	1737	0,542	0,543	0,545	0,543	3199,994
1092	0,369	0,372	0,370	0,370	2950,198	1752	0,545	0,547	0,548	0,547	3206,736
1107	0,374	0,376	0,374	0,375	2953,991	1767	0,548	0,550	0,551	0,550	3214,573
1122	0,379	0,380	0,379	0,379	2959,255	1782	0,551	0,553	0,554	0,553	3223,486
1137	0,383	0,385	0,383	0,384	2965,430	1797	0,555	0,556	0,557	0,556	3232,689
1152	0,387	0,389	0,387	0,388	2973,491	1812	0,558	0,559	0,560	0,559	3241,790
1167	0,391	0,393	0,391	0,392	2983,434	1827	0,561	0,562	0,563	0,562	3250,790
1182	0,394	0,396	0,394	0,395	2993,717	1842	0,564	0,565	0,566	0,565	3260,079
1197	0,397	0,400	0,397	0,398	3003,331	1857	0,567	0,568	0,569	0,568	3270,417
1212	0,401	0,404	0,401	0,402	3011,796	1872	0,570	0,571	0,572	0,571	3280,656
1227	0,405	0,408	0,406	0,406	3018,593	1887	0,572	0,573	0,574	0,573	3290,797
1242	0,410	0,412	0,411	0,411	3024,246	1902	0,575	0,576	0,577	0,576	3300,841
1257	0,414	0,416	0,415	0,415	3029,771	1917	0,578	0,579	0,580	0,579	3310,790
1272	0,418	0,420	0,419	0,419	3034,244	1932	0,581	0,582	0,583	0,582	3319,498
1287	0,422	0,424	0,423	0,423	3039,587	1947	0,584	0,585	0,586	0,585	3327,740
1302	0,427	0,429	0,428	0,428	3044,813	1962	0,587	0,588	0,589	0,588	3335,896
1317	0,431	0,433	0,432	0,432	3049,926	1977	0,591	0,591	0,592	0,591	3343,965
1332	0,435	0,437	0,436	0,436	3054,929	1992	0,594	0,594	0,595	0,594	3351,950
1347	0,439	0,441	0,440	0,440	3061,250	2007	0,597	0,597	0,598	0,597	3359,106

<i>h</i> [m]	<i>t_r 1</i> [s]	$t_r 2 [s]$	<i>t_r</i> 3 [s]	$t_r[\mathbf{s}]$	V_{sr} [m/s]		<i>h</i> [m]	<i>t_r l</i> [s]	$t_r 2 [s]$	<i>t_r</i> 3 [s]	$t_r[\mathbf{s}]$	V_{sr} [m/s]
2022	0,600	0,600	0,601	0,600	3365,078		2682	0,740	0,743	0,744	0,742	3612,894
2037	0,603	0,604	0,605	0,604	3370,974		2697	0,743	0,746	0,747	0,745	3617,508
2052	0,607	0,609	0,609	0,608	3375,694		2712	0,747	0,750	0,750	0,749	3621,759
2067	0,610	0,612	0,612	0,611	3380,343		2727	0,750	0,753	0,753	0,752	3626,293
2082	0,614	0,616	0,616	0,615	3385,668		2742	0,754	0,756	0,756	0,755	3630,787
2097	0,617	0,619	0,619	0,618	3392,405		2757	0,757	0,759	0,759	0,758	3635,566
2112	0,620	0,622	0,622	0,621	3399,069		2772	0,760	0,762	0,762	0,761	3639,671
2127	0,623	0,625	0,625	0,624	3406,400		2787	0,763	0,766	0,765	0,765	3643,741
2142	0,626	0,628	0,628	0,627	3412,938		2802	0,767	0,770	0,768	0,768	3647,773
2157	0,629	0,632	0,631	0,631	3419,407		2817	0,770	0,773	0,772	0,772	3651,140
2172	0,633	0,635	0,635	0,634	3425,807		2832	0,773	0,776	0,775	0,775	3654,789
2187	0,636	0,638	0,638	0,637	3431,070		2847	0,777	0,779	0,779	0,778	3658,412
2202	0,639	0,641	0,641	0,640	3436,631		2862	0,780	0,782	0,782	0,781	3661,694
2217	0,643	0,645	0,645	0,644	3442,847	ĺ	2877	0,784	0,785	0,786	0,785	3664,323
2232	0,646	0,648	0,648	0,647	3447,941		2892	0,787	0,789	0,790	0,789	3666,930
2247	0,649	0,651	0,651	0,650	3452,973		2907	0,791	0,793	0,793	0,792	3669,505
2262	0,653	0,655	0,655	0,654	3459,015		2922	0,795	0,797	0,796	0,796	3672,671
2277	0,656	0,658	0,658	0,657	3463,948		2937	0,798	0,800	0,799	0,799	3675,814
2292	0,659	0,661	0,661	0,660	3468,473		2952	0,801	0,803	0,802	0,802	3679,238
2307	0,663	0,665	0,665	0,664	3474,000		2967	0,804	0,807	0,806	0,806	3683,245
2322	0,666	0,669	0,668	0,668	3479,469		2982	0,807	0,810	0,810	0,809	3687,217
2337	0,669	0,672	0,671	0,671	3484,535		2997	0,810	0,813	0,813	0,812	3691,155
2352	0,672	0,675	0,674	0,674	3489,563		3012	0,813	0,816	0,816	0,815	3695,971
2367	0,675	0,678	0,678	0,677	3494,884		3027	0,816	0,819	0,819	0,818	3701,055
2382	0,679	0,682	0,682	0,681	3500,149		3042	0,818	0,822	0,822	0,821	3706,103
2397	0,682	0,685	0,685	0,684	3505,360		3057	0,821	0,825	0,825	0,824	3711,116
2412	0,685	0,688	0,688	0,687	3510,522		3072	0,824	0,828	0,828	0,827	3715,200
2427	0,688	0,691	0,691	0,690	3516,659		3087	0,827	0,831	0,831	0,830	3718,655
2442	0,692	0,694	0,694	0,693	3522,741		3102	0,831	0,835	0,835	0,834	3721,487
2457	0,695	0,697	0,697	0,696	3528,769		3117	0,834	0,839	0,838	0,837	3723,996
2472	0,698	0,700	0,700	0,699	3534,743		3132	0,838	0,842	0,842	0,841	3726,184
2487	0,701	0,703	0,703	0,702	3541,002	ĺ	3147	0,841	0,845	0,846	0,844	3728,653
2502	0,704	0,706	0,706	0,705	3547,208		3162	0,844	0,849	0,849	0,847	3731,391
2517	0,707	0,709	0,709	0,708	3553,362		3177	0,848	0,853	0,852	0,851	3734,693
2532	0,710	0,712	0,712	0,711	3559,463		3192	0,851	0,856	0,855	0,854	3737,971
2547	0,713	0,715	0,715	0,714	3565,513		3207	0,854	0,859	0,858	0,857	3741,223
2562	0,716	0,718	0,718	0,717	3571,513		3222	0,857	0,863	0,861	0,860	3744,745
2577	0,719	0,721	0,721	0,720	3577,133		3237	0,860	0,867	0,864	0,864	3747,377
2592	0,722	0,724	0,724	0,723	3582,704		3252	0,864	0,870	0,867	0,867	3749,696
2607	0,725	0,728	0,727	0,727	3588,227		3267	0,868	0,874	0,871	0,871	3751,993
2622	0,728	0,731	0,730	0,730	3593,377	1	3282	0,872	0,877	0,874	0,874	3754,272
2637	0,731	0,734	0,733	0,733	3598,481	1	3297	0,876	0,880	0,877	0,878	3756,814
2652	0,734	0,737	0,737	0,736	3603,545		3312	0,880	0,883	0,880	0,881	3760,193
2667	0,737	0,740	0,740	0,739	3608,564	1	3327	0,883	0,886	0,883	0,884	3763,831
L						1	L					

<i>h</i> [m]	$t_r l$ [s]	$t_{r} 2 [s]$	<i>t_r</i> 3 [s]	$t_r[s]$	V_{ir} [m/s]	<i>h</i> [m]	$t_r l$ [s]	$t_{r} 2 [s]$	<i>t_r</i> 3 [s]	$t_r[s]$	$V_{\rm sr}$ [m/s]
3342	0,886	0,889	0,886	0,887	3767,165	4002	1,034	1,036	1,037	1,036	3864,416
3357	0,889	0,892	0,889	0,890	3770,195	4017	1,038	1,039	1,041	1,039	3866,206
3372	0,893	0,895	0,893	0,894	3773,201	4032	1,041	1,042	1,044	1,042	3867,983
3387	0,896	0,899	0,897	0,897	3775,066	4047	1,045	1,045	1,047	1,046	3869,998
3402	0,899	0,903	0,899	0,900	3776,908	4062	1,048	1,049	1,050	1,049	3872,492
3417	0,902	0,907	0,905	0,905	3778,739	4077	1,051	1,053	1,053	1,052	3875,458
3432	0,905	0,910	0,908	0,908	3780,832	4092	1,054	1,056	1,056	1,055	3878,898
3447	0,908	0,914	0,912	0,911	3782,903	4107	1,057	1,058	1,058	1,058	3882,809
3462	0,912	0,917	0,915	0,915	3786,067	4122	1,060	1,060	1,061	1,060	3886,946
3477	0,915	0,920	0,918	0,918	3789,207	4137	1,062	1,063	1,064	1,063	3890,578
3492	0,918	0,922	0,922	0,921	3792,331	4152	1,065	1,066	1,067	1,066	3893,217
3507	0,921	0,925	0,925	0,924	3795,162	4167	1,069	1,070	1,070	1,070	3895,354
3522	0,925	0,929	0,928	0,927	3797,428	4182	1,073	1,073	1,074	1,073	3896,751
3537	0,929	0,932	0,932	0,931	3799,672	4197	1,076	1,076	1,078	1,077	3898,133
3552	0,933	0,935	0,936	0,935	3801,894	4212	1,079	1,080	1,082	1,080	3899,988
3567	0,936	0,938	0,939	0,938	3804,642	4227	1,082	1,083	1,085	1,083	3902,312
3582	0,939	0,941	0,942	0,941	3807,376	4242	1,085	1,086	1,088	1,086	3905,340
3597	0,942	0,944	0,945	0,944	3810,095	4257	1,088	1,089	1,091	1,089	3909,072
3612	0,945	0,948	0,949	0,947	3812,259	4272	1,090	1,092	1,093	1,092	3913,261
3627	0,948	0,952	0,953	0,951	3814,403	4287	1,093	1,095	1,095	1,094	3917,909
3642	0,952	0,956	0,956	0,955	3816,526	4302	1,095	1,098	1,097	1,097	3922,774
3657	0,955	0,959	0,959	0,958	3819,167	4317	1,097	1,101	1,099	1,099	3927,142
3672	0,958	0,962	0,962	0,961	3822,058	4332	1,100	1,104	1,101	1,102	3931,253
3687	0,961	0,965	0,965	0,964	3825,198	4347	1,103	1,107	1,104	1,105	3934,869
3702	0,964	0,969	0,968	0,967	3827,791	4362	1,106	1,110	1,107	1,108	3937,755
3717	0,967	0,972	0,972	0,970	3829,841	4377	1,109	1,113	1,110	1,111	3940,624
3732	0,970	0,976	0,976	0,974	3831,351	4392	1,112	1,116	1,114	1,114	3943,477
3747	0,974	0,979	0,980	0,978	3832,847	4407	1,114	1,119	1,117	1,117	3946,315
3762	0,978	0,983	0,983	0,981	3834,071	4422	1,117	1,122	1,120	1,120	3949,138
3777	0,982	0,986	0,986	0,985	3835,545	4437	1,120	1,125	1,123	1,123	3952,415
3792	0,986	0,989	0,990	0,988	3837,267	4452	1,123	1,128	1,126	1,126	3955,442
3807	0,990	0,992	0,993	0,992	3839,236	4467	1,126	1,130	1,129	1,128	3958,453
3822	0,993	0,995	0,997	0,995	3841,191	4482	1,129	1,133	1,132	1,131	3961,449
3837	0,996	0,999	1,000	0,998	3843,902	4497	1,132	1,136	1,135	1,134	3964,430
3852	0,999	1,003	1,003	1,002	3846,596	4512	1,135	1,139	1,138	1,137	3967,161
3867	1,001	1,006	1,006	1,004	3849,275	4527	1,138	1,142	1,141	1,140	3969,879
3882	1,004	1,009	1,010	1,008	3851,684	4542	1,141	1,145	1,144	1,143	3972,351
3897	1,008	1,012	1,013	1,011	3853,827	4557	1,144	1,148	1,147	1,146	3975,039
3912	1,012	1,015	1,017	1,015	3855,443	4572	1,147	1,151	1,151	1,150	3977,714
3927	1,016	1,018	1,021	1,018	3856,798	4587	1,149	1,154	1,154	1,152	3980,375
3942	1,020	1,021	1,024	1,022	3858,139	4602	1,152	1,157	1,157	1,155	3983,022
3957	1,024	1,025	1,027	1,025	3859,723	4617	1,155	1,160	1,160	1,158	3985,887
3972	1,027	1,029	1,030	1,029	3861,298	4632	1,158	1,163	1,163	1,161	3988,735
3987	1,030	1,033	1,033	1,032	3862,614	4647	1,161	1,166	1,166	1,164	3991,796

<i>h</i> [m]	<i>t_r 1</i> [s]	$t_r 2 [s]$	<i>t_r</i> 3 [s]	$t_r[\mathbf{s}]$	V_{sr} [m/s]
4662	1,164	1,169	1,168	1,167	3994,616
4677	1,167	1,172	1,170	1,170	3997,195
4692	1,171	1,175	1,173	1,173	3999,762
4707	1,175	1,178	1,176	1,176	4002,087
4722	1,178	1,181	1,179	1,179	4004,172
4737	1,181	1,184	1,182	1,182	4006,473
4752	1,185	1,187	1,184	1,185	4008,089
4767	1,188	1,190	1,187	1,188	4009,695
4782	1,192	1,193	1,193	1,193	4011,067
4797	1,195	1,196	1,196	1,196	4012,206
4812	1,198	1,200	1,199	1,199	4013,335
4827	1,201	1,204	1,202	1,202	4014,909
4842	1,204	1,207	1,205	1,205	4015,809
4857	1,207	1,211	1,209	1,209	4016,262
4872	1,211	1,215	1,213	1,213	4016,491
4887	1,215	1,219	1,217	1,217	4016,055
4902	1,219	1,222	1,221	1,221	4015,839

<i>h</i> [m]	<i>t_r 1</i> [s]	<i>t_r</i> 2 [s]	<i>t_r</i> 3 [s]	$t_r[\mathbf{s}]$	V_{sr} [m/s]
4917	1,223	1,226	1,225	1,225	4016,278
4932	1,227	1,229	1,228	1,228	4017,152
4947	1,230	1,232	1,231	1,231	4018,240
4962	1,233	1,235	1,235	1,234	4019,327
4977	1,236	1,239	1,238	1,238	4020,622
4992	1,240	1,243	1,242	1,242	4021,478
5007	1,243	1,246	1,245	1,245	4022,114
5022	1,246	1,250	1,249	1,248	4022,530
5037	1,250	1,254	1,252	1,252	4023,801
5052	1,254	1,257	1,256	1,256	4024,850
5067	1,257	1,260	1,258	1,258	4026,319
5082	1,260	1,264	1,261	1,262	4028,207
5097	1,263	1,267	1,264	1,265	4030,513
5112	1,266	1,270	1,267	1,268	4032,594
5127	1,269	1,273	1,270	1,271	4034,246
5142	1,272	1,276	1,273	1,274	4035,230
5157	1,276	1,280	1,277	1,278	4036,105

Przetwarzanie danych w kolejnym kroku obliczeniowym polegało na przeliczeniu czasu i prędkości do poziomu odniesienia i interpolacji otrzymanych wartości dla stałych przedziałów głębokości, co 20 m (w przedziale głęb. 20-5140 m). Następnie otrzymane wartości dodatkowo przetworzono poprzez zastosowanie filtra ze splotem trójkątnym. Zastosowana filtracja pozwoliła na usunięcie przypadkowych odchyleń wynikających z niedokładności pomiaru oraz zniwelowanie skoków wartości spowodowanych zaokrągleniem otrzymanych wyników czasu pomierzonego do 1 ms przy pierwszym wygładzeniu. Dzięki powtarzaniu wymienionych operacji w ostatecznym zbiorze danych pozostały wyłącznie załamania hodografu odpowiadające zmianom prędkości w kolejnych warstwach. Powstałe zbiory danych obejmujące przetworzone czasy pomiarów po redukcji do poziomu odniesienia, posłużyły do wyznaczenia odpowiadających im finalnych prędkości średnich.

Wymienione wyżej informacje są zawarte w banku danych prędkościowych utworzonych w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do CBDG (baza otworowa, pliki typu .las).

 $t_{r} - \text{średni czas zredukowany; } V_{\text{śr}} - \text{prędkość średnia; } h - głębokość. Symbole stratygraficzne: Q - czwartorzęd; Ng - neogen; Pg - paleogen; J_{2a} - aalen; J_{1t} - toark; J1p - pliensbach; J_{1s} - synemur; J_{1h} - hetang; Tr_{Kp} - kajper; Tr_{Wm} - wapień muszlowy; Tr_{Pp} - pstry piaskowiec; P_{Z4} - cechsztyn 4; P_{Z3} - cechsztyn 3; P_{Z2} - cechsztyn 2; P_{Z1} - cechsztyn 1; P_{cs} - czerwony spągowiec$

Average seismic velocity (A) and travel-time curve (B) in the Piła 1/IG1 borehole (reference level 0 m a.s.l.)

 t_r – average reduced time; V_{sr} – average velocity; h – depth; Stratigraphical symbols: Q – Quaternary; Ng – Neogene; Pg – Paleogene; J_{2a} – Aalenian; J_{1r} – Toarcian; J_{1p} – Pliensbachian; J_{1s} – Sinemurian; J_{1h} – Hettangian; Tr_{Kp} – Keuper; Tr_{Wm} – Muschelkalk; Tr_{Pp} – Buntsandstein; P_{Z4} – Zechstein 4; P_{Z3} – Zechstein 3; P_{Z2} – Zechstein 1; P_{Cs} – Rotliegend

Wykryte różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zamianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano w celu wyznaczenia granic poszczególnych kompleksów prędkościowych w miejscach maksymalnych bezwzględnych różnic czasu wygładzonego. Granice te zostały wyznaczone poprzez identyfikację lokalnych minimów i maksimów otrzymanych z pochodnej funkcji prędkości średniej. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom prędkości warstw kompleksów o prędkościach istotnie różnych od średnich prędkości warstw sąsiednich.

Wszystkie wymienione powyżej obliczenia oraz graficzna prezentacja wyników zostały wykonane z wykorzystaniem przygotowanego w tym celu modułu obliczeniowego w języku Python.

Wyniki przeprowadzonych obliczeń zawierające wartości prędkości wygładzonych (V_w) , prędkości interwałowych (V_i) oraz prędkości kompleksowych (V_k) zestawiono w tabeli 19, natomiast krzywe tych prędkości przedstawiono na figurze 42. Powyższe wykresy zestawiono z profilem stratygraficznym, co pozwoliło na powiązanie otrzymanych zmian prędkości z kompleksami litostratygraficznymi przekroju geologicznego w otworze.

Interpretację otrzymanych krzywych prędkościowych rozpoczęto od utworów paleogenu (rupel), gdzie otrzymano pierwsze wartości prędkości interwałowych, kompleksowych i wygładzonych. Pierwszy istotny skok średniej prędkości kompleksowej z 2162,60 m/s do 2743,86 m/s zaobserwowano na głęb. 160,0 m, co jest związane z przejściem fali sejsmicznej przez granicę pomiędzy mułowcami i iłowcami formacji mosińskiej i drobnoziarnistymi piaskowcami formacji czempińskiej. W utworach jury środkowej (aalen) i dolnej (toark-hetang) jest widoczny systematycz ny wzrost wartości prędkości średniej dla kolejnych kompleksów predkościowych: (1) w interwale głeb. 300,0-400,0 m ze średnią prędkością równą 2872 m/s, co odpowiada utworom piaskowcowo-mułowcowym toarku, (2) na głęb. 420,0–580,0 m, gdzie średnia prędkość wynosi 3122 m/s, złożonym z heterolitów dolnego toarku i górnego pliensbachu, (3) w interwale głęb. 600,0-700,0 m, o średniej prędkości 3273 m/s, odpowiadający piaskowcom i mułowcom formacji goleniowskiej pliensbachu dolnego, (4) na głęb. 720,0-840,0 m, o średniej prędkości wynoszącej 3354 m/s i odpowiadający piaskowcom i mułowcom synemuru, (5) w interwale głęb. 860,0–1020,0 m o średniej prędkości 3476 m/s obejmującym utwory piaskowcowo-mułowcowe hetangu. Na granicy pomiędzy jurą i triasem zaznacza się niewielki spadek średniej prędkości kompleksowej z 3476 m/s do 3441 m/s, co jest związane z przejściem fali sejsmicznej z piaskowców synemuru do warstw ilastych kajpru górnego, które charakteryzują się generalnie niższymi prędkościami. Wzrost średniej prędkości jest widoczny w obrębie kajpru środkowego na głęb. 1160,0 m, co jest wiązane najpewniej z występowaniem wkładek piaskowcowych. Istotny wzrost prędkości kompleksowej z 3676 m/s do 3847 m/s zaobserwowano na granicy pomiędzy warstwami gipsowymi górnymi a piaskowcem trzcinowym, co jest prawdopodobnie efektem występowania wkładek drobnokrystalicznego anhydrytu podnoszących średnią prędkość kompleksu. Kolejny wzrost prędkości kompleksowej z 3847 m/s do 4021 m/s zaobserwowano na głęb. 1600,00 m, co odpowiada

Tabela 19

Zestawienie wartości glębokości (*h*), prędkości interwałowej (V_i), prędkości kompleksowej (V_k) oraz prędkości wygladzonej (V_u)

Collation of depth (*h*), interval velocity (V_i), complex velocity (V_k), and smoothed velocity (V_w) values

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]
20	2058,884	2162,601	-
40	2058,884	2162,601	2025,829
60	2058,884	2162,601	2066,970
80	2058,884	2162,601	2127,660
100	2058,884	2162,601	2208,724
120	2459,722	2162,601	2307,47
140	2459,722	2162,601	2417,357
160	2459,722	2162,601	2527,327
180	2459,722	2743,861	2624,672
200	2459,722	2743,861	2698,691
220	2768,933	2743,861	2745,933
240	2768,933	2743,861	2770,275
260	2768,933	2743,861	2780,674
280	2768,933	2743,861	2788,039
300	2768,933	2871,995	2799,748
320	2871,995	2871,995	2820,079
340	2871,995	2871,995	2849,815
360	2871,995	2871,995	2886,836
380	2871,995	2871,995	2928,472
400	2871,995	2871,995	2971,547
420	3065,322	3122,212	3013,410
440	3065,322	3122,212	3052,27
460	3065,322	3122,212	3086,658
480	3065,322	3122,212	3116,236
500	3065,322	3122,212	3141,690
520	3194,990	3122,212	3164,557
540	3194,990	3122,212	3185,474
560	3194,990	3122,212	3205,642
580	3194,990	3122,212	3225,806
600	3194,990	3273,215	3244,646
620	3273,215	3273,215	3260,781
640	3273,215	3273,215	3272,519
660	3273,215	3273,215	3279,495
680	3273,215	3273,215	3283,803
700	3273,215	3273,215	3288,392
720	3321,376	3354,485	3296,251
740	3321,376	3354,485	3308,793
760	3321,376	3354,485	3326,403
780	3321,376	3354,485	3349,523
800	3321,376	3354,485	3376,952
820	3446,612	3354,485	3406,575

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]]	<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]
840	3446,612	3354,485	3436,131		1740	4278,624	4020,828	4195,951
860	3446,612	3476,749	3462,904	1	1760	4278,624	4020,828	4362,05
880	3446,612	3476,749	3485,535	1	1780	4278,624	4020,828	4535,662
900	3446,612	3476,749	3501,401	1	1800	4278,624	4020,828	4702,010
920	3486,264	3476,749	3507,234	1	1820	4967,710	4971,105	4848,485
940	3486,264	3476,749	3502,320	1	1840	4967,710	4971,105	4963,395
960	3486,264	3476,749	3486,143	1	1860	4967,710	4971,105	5038,418
980	3486,264	3476,749	3460,208		1880	4967,710	4971,105	5070,351
1000	3486,264	3476,749	3429,061	1	1900	4967,710	4971,105	5058,809
1020	3397,201	3476,749	3399,915	1	1920	4880,429	4971,105	5011,275
1040	3397,201	3441,985	3381,520	1	1940	4880,429	4971,105	4936,443
1060	3397,201	3441,985	3381,806	1	1960	4880,429	4971,105	4844,961
1080	3397,201	3441,985	3405,125	1	1980	4880,429	4971,105	4750,030
1100	3397,201	3441,985	3451,251	1	2000	4880,429	4557,193	4663,092
1120	3599,971	3441,985	3514,321	1	2020	4556,847	4557,193	4593,477
1140	3599,971	3441,985	3582,303		2040	4556,847	4557,193	4548,556
1160	3599,971	3681,343	3641,992		2060	4556,847	4557,193	4530,011
1180	3599,971	3681,343	3681,546	1	2080	4556,847	4557,193	4532,578
1200	3599,971	3681,343	3696,174	1	2100	4556,847	4557,193	4548,556
1220	3666,630	3681,343	3690,718	1	2120	4568,713	4557,193	4566,210
1240	3666,630	3681,343	3673,095		2140	4568,713	4562,824	4576,659
1260	3666,630	3681,343	3654,971		2160	4568,713	4562,824	4576,135
1280	3666,630	3676,606	3644,979]	2180	4568,713	4562,824	4565,689
1300	3666,630	3676,606	3646,308]	2200	4568,713	4562,824	4549,591
1320	3699,730	3676,606	3659,652]	2220	4524,682	4562,824	4533,605
1340	3699,730	3676,606	3682,224		2240	4524,682	4587,624	4522,329
1360	3699,730	3676,606	3711,264		2260	4524,682	4587,624	4516,712
1380	3699,730	3676,606	3742,865		2280	4524,682	4587,624	4519,263
1400	3699,730	3676,606	3775,009		2300	4524,682	4587,624	4530,524
1420	3837,151	3846,682	3805,537		2320	4600,874	4587,624	4549,591
1440	3837,151	3846,682	3832,152		2340	4600,874	4587,624	4576,659
1460	3837,151	3846,682	3853,193		2360	4600,874	4587,624	4613,078
1480	3837,151	3846,682	3865,481		2380	4600,874	4587,624	4657,662
1500	3837,151	3846,682	3867,350		2400	4600,874	4587,624	4708,652
1520	3825,701	3846,682	3859,141		2420	4831,385	4587,624	4762,472
1540	3825,701	3846,682	3841,352		2440	4831,385	4879,477	4814,636
1560	3825,701	3846,682	3816,794		2460	4831,385	4879,477	4861,449
1580	3825,701	3846,682	3790,751		2480	4831,385	4879,477	4897,759
1600	3825,701	4020,828	3768,252		2500	4831,385	4879,477	4920,654
1620	3792,332	4020,828	3755,516		2520	4907,253	4879,477	4929,144
1640	3792,332	4020,828	3759,752		2540	4907,253	4879,477	4923,683
1660	3792,332	4020,828	3787,162		2560	4907,253	4879,477	4906,771
1680	3792,332	4020,828	3842,828		2580	4907,253	4879,477	4880,429
1700	3792,332	4020,828	3930,818		2600	4907,253	4879,477	4847,897
1720	4278,624	4020,828	4049,813		2620	4762,585	4879,477	4812,899

Tabela 19 cd. $V_w [m/s]$

4513,654

4513,654

4513,145

4513,145

4512,126 4506,534

4494,382 4474,273

4448,399

4423,311

4405,772

4400,440

4408,199

4425,268

4444,938

4457,818

4457,818

4445,926

4426,737

4407,228 4397,054

4404,316

4433,115

4484,305

4554,771

4637,681

4720,878 4788,699

4830,918

4844,374

4838,515

4832,669

4845,548

4891,171

4972,650

5080,010

5193,456

5286,809

5337,603 5342,594

5309,969

5255,551

5198,181

5149,994

5114,435

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]		<i>h</i> [m]	V_i [m/s]	V_k [m/s]
2640	4762,585	4879,477	4777,831		3540	4513,043	4512,975
2660	4762,585	4699,984	4744,958		3560	4513,043	4512,975
2680	4762,585	4699,984	4714,202		3580	4513,043	4512,975
2700	4762,585	4699,984	4685,487		3600	4513,043	4512,975
2720	4610,845	4699,984	4657,662		3620	4494,988	4471,272
2740	4610,845	4561,524	4629,094		3640	4494,988	4471,272
2760	4610,845	4561,524	4598,23		3660	4494,988	4471,272
2780	4610,845	4561,524	4563,085		3680	4494,988	4471,272
2800	4610,845	4561,524	4525,399		3700	4494,988	4471,272
2820	4459,309	4561,524	4488,330		3720	4412,478	4471,272
2840	4459,309	4504,505	4457,818		3740	4412,478	4412,819
2860	4459,309	4504,505	4440,004		3760	4412,478	4412,819
2880	4459,309	4504,505	4437,542		3780	4412,478	4412,819
2900	4459,309	4504,505	4455,335		3800	4412,478	4412,819
2920	4583,372	4504,505	4494,887		3820	4448,596	4412,819
2940	4583,372	4504,505	4550,108		3840	4448,596	4442,223
2960	4583,372	4504,505	4614,675		3860	4448,596	4442,223
2980	4583,372	4504,505	4676,722		3880	4448,596	4442,223
3000	4583,372	4693,514	4721,993		3900	4448,596	4442,223
3020	4693,514	4693,514	4741,022		3920	4415,206	4442,223
3040	4693,514	4693,514	4728,691		3940	4415,206	4506,704
3060	4693,514	4693,514	4690,432		3960	4415,206	4506,704
3080	4693,514	4693,514	4636,606		3980	4415,206	4506,704
3100	4693,514	4693,514	4580,327		4000	4415,206	4506,704
3120	4504,505	4489,562	4535,147		4020	4671,369	4506,704
3140	4504,505	4489,562	4504,505		4040	4671,369	4506,704
3160	4504,505	4489,562	4487,323		4060	4671,369	4506,704
3180	4504,505	4489,562	4480,287		4080	4671,369	4834,713
3200	4504,505	4489,562	4478,782		4100	4671,369	4834,713
3220	4487,323	4489,562	4480,789		4120	4842,615	4834,713
3240	4487,323	4489,562	4483,802		4140	4842,615	4834,713
3260	4487,323	4489,562	4488,330		4160	4842,615	4834,713
3280	4487,323	4489,562	4494,887		4180	4842,615	4983,803
3300	4487,323	4489,562	4499,438		4200	4842,615	4983,803
3320	4479,885	4481,625	4497,92		4220	5127,679	4983,803
3340	4479,885	4481,625	4488,834		4240	5127,679	4983,803
3360	4479,885	4481,625	4474,773		4260	5127,679	4983,803
3380	4479,885	4481,625	4460,801		4280	5127,679	5303,914
3400	4479,885	4465,781	4452,36		4300	5127,679	5303,914
3420	4472,872	4465,781	4452,855		4320	5272,593	5303,914
3440	4472,872	4465,781	4462,791		4340	5272,593	5303,914
3460	4472,872	4465,781	4478,782		4360	5272,593	5303,914
3480	4472,872	4465,781	4494,382		4380	5272,593	5303,914
3500	4472,872	4512,975	4506,534		4400	5272,593	5059,961
3520	4513,043	4512,975	4512,635		4420	5085,694	5059,961
				-			-

's]	<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]
54	4800	4638,649	4363,514	4437,049
67	4820	4296,455	4363,514	4365,859
49	4840	4296,455	4363,514	4305,705
56	4860	4296,455	4363,514	4261,666
18	4880	4296,455	4363,514	4237,737
13	4900	4296,455	4363,514	4235,045
47	4920	4302,186	4363,514	4250,345
80	4940	4302,186	4363,514	4278,075
47	4960	4302,186	4363,514	4314,995
02	4980	4302,186	4363,514	4359,198
50	5000	4302,186	4363,514	4410,143
11	5020	4578,755	4363,514	4470,273
83	5040	4578,755	4363,514	4540,295
01	5060	4578,755	4363,514	4616,805
76	5080	4578,755	4363,514	4693,183
44	5100	4578,755	4805,382	4759,638
16	5120	4805,436	4805,382	4805,382
12	5140	4805,436	4805,382	_

Tabela 19	cd.
-----------	-----

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{W} [m/s]
4440	5085,694	5059,961	5090,354
4460	5085,694	5059,961	5073,567
4480	5085,694	5059,961	5059,449
4500	5085,694	5059,961	5047,956
4520	5034,486	5059,961	5038,418
4540	5034,486	5059,961	5032,713
4560	5034,486	5059,961	5031,447
4580	5034,486	5059,961	5032,080
4600	5034,486	5059,961	5031,447
4620	4969,932	4853,191	5022,602
4640	4969,932	4853,191	5001,250
4660	4969,932	4853,191	4964,011
4680	4969,932	4853,191	4909,783
4700	4969,932	4853,191	4843,201
4720	4638,649	4853,191	4765,876
4740	4638,649	4853,191	4682,744
4760	4638,649	4853,191	4599,816
4780	4638,649	4853,191	4516,712

zmianie litologii w obrębie interwału odpowiadającemu warstwom gipsowym dolnym, gdzie następuje przejście z ciemnoszarych iłowców z anhydrytem do iłowców dolomitycznych o generalnie wyższych prędkościach. Największy kontrast prędkościowy w badanym otworze (wzrost prędkości kompleksowej z 4021 m/s do 4971 m/s) zaobserwowano na głęb. 1820,0 m, która odpowiada granicy pomiędzy kajprem a wapieniem muszlowym i przejściu fali sejsmicznej z nisko prędkościowych mułowców do wysoko prędkościowych piaskowców wapnistych. Wyraźny spadek prędkości kompleksowej z 4971 m/s do 4557 m/s zaobserwowano natomiast na głęb. 1980,0 m, w obrębie wapienia muszlowego dolnego, gdzie w obrębie wapieni o wysokich prędkościach pojawiają się szare iłowce o niskich prędkościach. W interwale głębokościowym odpowiadającym formacjom pstrego piaskowca, wyraźny kontrast prędkościowy został zaobserwowany na głęb. 2440,0 m (granica pomiędzy "formacją" ilastą - ogniwo świdwińskie a formacją pomorską – ogniwo trzebiatowskie), gdzie w obrębie utworów ilasto--mułowcowych pojawiają się piaskowce wapniste o wyższych prędkościach. Monotonna ilasto-mułowcowa budowa pstrego piaskowca dolnego powoduje brak wyraźnych kontrastów prędkościowych, jednak jest możliwe zaobserwowanie systematycznego spadku prędkości kompleksowej, związanego ze zwiększającym się udziałem frakcji ilastych i spadkiem zawartości skał węglanowych. Wyraźny kontrast prędkości kompleksowej względem otoczenia widoczny jest na głęb. 3000,0-3100,0 m, co jest związane z przejściem fali sejsmicznej z formacji triasowych do utworów mułowcowo-anhydrytowych formacji rewalskiej (najwyższy perm), która następnie przechodzi do soli kamiennych cyklotemu PZ4. W obrębie utworów i na granicach pomiędzy cyklotemami PZ4, PZ3 i PZ2 nie zaobserwowano wyraźnych kontrastów prędkościowych co wynika najprawdopodobniej z wyraźnej dominacją soli kamiennych i niewielkim udziałem anhydrytu i dolomitów w całkowitej miąższości kompleksu obejmującego wymienione cyklotemy. Wyraźny wzrost prędkości (z 4507 m/s do 4835 m/s) jest widoczny natomiast w spągu cyklotemu PZ2, gdzie sól kamienna najstarsza (Na2) przechodzi w anhydryt podstawowy (A2), dolomit główny (Ca2) oraz anhydryt górny (A1g) cyklotemu PZ1, które generalnie charakteryzują się wyższymi prędkościami niż sole kamienne. Kolejny wyraźny wzrost średniej prędkości fali sejsmicznej zaobserwowano na granicy kompleksów prędkościowych odpowiadających najstarszej soli kamiennej (Na1), gdzie średnia prędkość wyniosła 4893 m/s oraz anhydrytowi dolnemu (A1d), gdzie średnia prędkość kompleksu wzrasta do 5303 m/s. Wyraźny spadek prędkości zaobserwowano natomiast na głębokości 4400,0 m, gdzie średnia dla kompleksu spada do 5060 m/s. Głębokość ta odpowiada interwałowi granicy pomiędzy anhydrytem dolnym (Ald) a wapieniem cechsztyńskim (Cal) i łupkiem miedzionośnym (T1), wyznaczonej w profilu stratygraficznym. W obrębie utworów górnego czerwonego spągowca wyznaczono w sumie 4 kompleksy prędkościowe: (1) na głęb. 4440,0– 4620,0 m, o średniej prędkości 5060 m/s odpowiadający utworom piaszczystym i mułowcowym formacji Noteci, (2) w interwale głęb.4620,0-4780,0 m, o średniej prędkości wynoszącej 4853 m/s zbudowany głównie z utworów mułowcowo-ilastych z domieszką piaskowców (najniższa część formacji Noteci), (3) w interwale głęb. 4780,0-5100,0 m o wyraźnie niższej wartości prędkości średniej wynoszącej 4363 m/s złożony z brunatnoczerwonych mułowców, iłowców i piaskowców (formacja Drawy) i (4) w interwale głęb. 5100,0–5140,0 m o średniej prędkości 4805 m/s zbudowany głównie z drobnoziarnistych piaskowców (formacja Drawy). Wyraźny spadek prędkości pomiędzy kompleksami na granicy 4780,0 m jest spowodowany najprawdopodobniej przejściem z głównie piaszczy-

Fig. 42. Wykresy prędkości interwałowych (V_i) ; prędkości kompleksowych (V_k) i prędkości wygładzonych (V_w) dla otworu Piła 1/IG 1 (poz. odn. 0 m n.p.m.)

h – głębokość. Symbole stratygraficzne: Q – czwartorzęd; Ng – neogen; Pg – paleogen; J_{2a} – aalen; J_{1t} – toark; J_{1p} – pliensbach; J_{1s} – synemur; J_{1h} – hetang; Tr_{Kp} – kajper; Tr_{wm} – wapień muszlowy; Tr_{Pp} – pstry piaskowiec; P_{z4} – cechsztyn 4; P_{z3} – cechsztyn 3; P_{z2} – cechsztyn 2; P_{z1} – cechsztyn 1; P_{cs} – czerwony spągowiec

Interval velocity (V_i) ; complex velocity (V_k) and smoothed velocity (V_w) in the Piła 1/IG 1 borehole (reference level 0 m a.s.l.)

h – depth; Stratigraphical symbols: Q – Quaternary; Ng – Neogene; Pg – Paleogene; J_{2a} – Aalenian; J_{1t} – Toarcian; J_{1p} – Pliensbachian; J_{1s} – Sinemurian; J_{1h} – Hettangian; Tr_{Kp} – Keuper; Tr_{Wm} – Muschelkalk; Tr_{Pp} – Buntsandstein; P₂₄ – Zechstein 4; P₂₃ – Zechstein 3; P₂₂ – Zechstein 2; P₂₁ – Zechstein 1; P_{cs} – Rotliegend

stych utworów wyższej części górnego czerwonego spągowca (formacja Noteci) do zdominowanej przez brunatnoczerwone mułowce górnej partii formacji Drawy (zob. fig. 8).

Otrzymane wyniki oraz przeprowadzona analiza pozwala na potwierdzenie założenia, że prędkość fali obliczona jako pochodna czasu zależy bezpośrednio od zmian litologicznych warstw przewierconych otworem Piła 1/IG 1 i odzwierciedla budowę geologiczną obszaru w jego otoczeniu. Wyznaczone wartości prędkości kompleksowej pozwalają ponadto na identyfikację najwyraźniejszych odbić refleksyjnych w profilach sejsmicznych i ich prawidłowe dowiązanie do odpowiednich jednostek litologicznych. W badanym otworze do takich odbić należy zaliczyć wyraźny kontrast prędkościowy na granicy pomiędzy kajprem a wapieniem muszlowym, relatywnie wyraźne odbicie w obrębie środkowego pstrego piaskowca, wysoki kontrast prędkościowy pomiędzy spągiem pstrego piaskowca i stropem cechsztynu, granicę pomiędzy anhydrytem dolnym (Ald) a wapieniem cechsztyńskim (Cal) i łupkiem miedzionośnym (T1) oraz wyraźny ujemny refleks widoczny w górnej partii formacji Drawy w czerwonym spągowcu.

Opracowany materiał stanowi niezbędny wkład do uaktualnienia modeli prędkościowych, niezbędnych do prawidłowego opracowania interpretacji sejsmicznych w obrębie otworu Piła 1/IG 1 i jego najbliższego otoczenia. Wyniki przeprowadzonych pomiarów prędkości, sięgające do głęb. 5157,0 m pozwolą na wykonanie korelacji i przyporządkowanie poziomów refleksyjnych na przekrojach geologicznych poszczególnym piętrom i granicom w obrębie permu i mezozoiku.

Olga ROSOWIECKA

OBRAZ GRAWIMETRYCZNY I MAGNETYCZNY

Grawimetria

Pierwsze pomiary grawimetryczne w rejonie otworu badawczego Piła 1/IG1 zostały wykonane na przełomie lat 40. i 50. ubiegłego wieku (Piątkowski, 1948; Janczewski, 1951; Reczek, 1955, 1957). Pomiary te były realizowane ze średnim zagęszczeniem 0,2 pkt/km² (zdjęcie o charakterze regionalnym). Ze względu na jakość zachowanej dokumentacji, pomiary te nie kwalifikują się, niestety, do cyfrowania. Natomiast scyfrowane zostały kolejne zdjęcia o charakterze regionalnym, w rejonie niecki łódzkiej – zdjęcie o zagęszczeniu 0,8 pkt/km² (Stolarek i in., 1958) i w rejonie Oborniki – Czarnków – zdjęcie o zagęszczeniu 1 pkt/km² (Grzywacz, 1958).

W latach 60. XX w. przystąpiono do realizacji zdjęcia półszczegółowego. Zdjęcia obejmujące rejon synklinorium szczecińsko-mogileńskiego (Duda, Bochnia, 1968) oraz antyklinorium pomorskie (Reczek, Kruk, 1970; Zdziarska i in., 1973) zostały wykonane ze średnim zagęszczeniem 2 pkt/km². W efekcie pojawiły się pierwsze opracowania interpretujące charakter zmian pola grawitacyjnego (Jamrozik, 1968, 1971; Soćko, 1976; Dąbrowska, 1986; Petecki, 1988; Wybraniec i in., 1998).

Wszystkie zdjęcia półszczegółowe zostały scyfrowane i zunifikowane w systemie IGSN 71, w ramach realizacji "Atlasu grawimetrycznego Polski" (Królikowski, Petecki, 1995). Anomalie grawimetryczne zostały wyznaczone według formuły GRS80. Współrzędne wszystkich pomiarów były określane w układzie Borowa Góra.

Na figurze 43 zamieszczono mapę anomalii grawimetrycznych w redukcji Bouguera, skonstruowaną na podstawie bazy danych opracowanej na potrzeby realizacji "Atlasu grawimetrycznego Polski" (Królikowski, Petecki, 1995). Zgodnie z podziałem na jednostki grawimetryczne przyjętym w "Atlasie..." otwór Piła 1/IG 1 znajduje się w obrębie wyżu pomorskiego. Na południowy zachód od otworu przebiega granica wyżu pomorskiego z niżem szczecińsko-mogileńsko-miechowskim. Granicę tę stanowi oś wysokiego gradientu przebiegającego od Zatoki Pomorskiej na wysokości Wolina w kierunku południowo-wschodnim do Chodzieży i Żnina (fig. 44). Jednocześnie ta oś pozostaje w doskonałej korelacji z przebiegiem granicy pomiędzy antyklinorium środkowopolskim a synklinorium szczecińsko-miechowskim. Przedłużenie gradientu po stronie niemieckiej to tzw. gradient uskoku transeuropejskiego (Grosse i in., 1990). Dominujący udział w tworzeniu wyżu pomorskiego ma podłoże podpermskie (Grobelny, Królikowski, 1988). Potwierdzają to wyniki modelowania dwuwymiarowego wzdłuż profilu BMT-5 (Petecki w: Stefaniuk i in., 2008).

Fig. 43. Mapa anomalii grawimetrycznych w redukcji Bouguera; gęstość redukcji 2,67 g/cm³ (na podst. Królikowski, Petecki, 1995) Bouguer gravity anomaly map; reduction density 2.67 g/cm³ (after Królikowski, Petecki, 1995)

Na mapie gradientu poziomego (fig. 44) zostały uwypuklone dodatkowo drobne formy związane prawdopodobne z utworami kenozoiku. Półkoliste pasmo gradientu w południowo-wschodniej części mapy jest związane z nagromadzeniem moreny czołowej (z gliną zwałową), w otoczeniu której znajdują się lżejsze piaski i żwiry lodowcowe (Dąbrowski, Olejnik, 2005). W podobny sposób można zapewne tłumaczyć linijną anomalię gradientu o rozciągłości SW–NE, znajdującą się na południowy wschód od otworu Piła 1/IG 1, ale niekorelującą się z żadnym wydzieleniem zaznaczonym na arkuszu Szczegółowej Mapy Geologicznej Polski (Chmal, 2007).

Magnetyka

Zdjęcie półszczegółowe, wykonane magnetometrami protonowymi, mierzącymi całkowite natężenie ziemskiego pola magnetycznego T, wykonano w rejonie otworu Piła 1/IG 1 w ramach realizacji pierwszej części tematu: Polska zachodnia, centralna i południowo-wschodnia (Kosobudzka, 1988, 1991, 1993). Jest to zdjęcie o zagęszczeniu 2,5 pkt/km².

Obraz magnetyczny został opisany przez Peteckiego i Rosowiecką (2017). Otwór Piła 1/IG 1 znajduje się w obrębie tzw.

0 5000 10000 15000 20000 km

Biała plama to miejsca (bagna), gdzie nie wykonano pomiarów, ze względu na dostępność terenu

Horizontal gradient of gravity anomalies map (after Petecki, Rosowiecka, 2017)

White spot indicates inaccessible area (swamps), where geophysical measurements were not performed

południowo-zachodniej prowincji magnetycznej, geologicznie obejmującej zasięgiem fanerozoiczną platformę zachodnioeuropejską. Prowincja ta charakteryzuje się stosunkowo niską intensywnością anomalii magnetycznych (znacznie niższą niż w prowincji północno-wschodniej odpowiadającej zasięgiem platformie wschodnioeuropejskiej). W jej obrębie można wydzielić dwa rejony, rozdzielone wyraźną strefą gradientową: Szczecin–Stargard Szczeciński–Piła–Inowrocław, która jest widoczna na figurze 45. Na północ od strefy gradientowej występują wydłużone anomalie równoległe do struktury synklinorium pomorskiego. Na południowy-zachód od strefy gradientowej pole magnetyczne o ujemnych wartościach jest niemal zupełnie pozbawione większych anomalii lokalnych. Ten spokojny obraz pola magnetycznego na zachód od linii Teisseyre'a-Tornquista może wskazywać na głęboko położony strop podłoża magnetycznego, przykryty grubą warstwą niemagnetycznych skał osadowych. Oszacowany na podstawie analizy widma mocy strop źródeł magnetycznych w tym rejonie występuje na średnich głębokościach ok. 18,5 km (Petecki, 2001).

Fig. 45. Mapa anomalii magnetycznych ΔT (na podst. Petecki, Rosowiecka, 2017)

Fig. 45. Magnetic anomaly map ΔT (after Petecki, Rosowiecka, 2017)

Jerzy NAWROCKI, Jacek GRABOWSKI

WYNIKI BADAŃ PALEOMAGNETYCZNYCH UTWORÓW CZERWONEGO SPĄGOWCA

Wstęp

Badania paleomagnetyczne w otworze Piła 1/IG 1 podjęto głównie dla określenia położenia górnej granicy megachronu odwrotnego namagnesowania Kiaman (Facer, 1981), którą jest zmiana polarności pola geomagnetycznego Ziemi z odwrotnej na normalną. Miejsce to jest nazywane inwersją Illawarra (Irving, Parry, 1963; Pechersky, Khramov, 1973). Nie wykluczano również, że w obrębie megachronu Kiaman uda się zidentyfikować strefy z krótkotrwałym występowaniem pola geomagnetycznego o polarności normalnej. Wyniki tych badań oraz badań magnetostratygraficznych dwóch innych otworów, zawierających skały z pogranicza permu i triasu, przedstawiono w opracowaniu archiwalnym (Nawrocki, Grabowski, 1990). W późniejszym czasie zweryfikowano ustalony w otworze Piła 1/IG 1 wzór zmian polarności magnetycznej, identyfikując dane pochodzące z fragmentów rdzenia o nieprawidłowej orientacji góra-dół, a także grupując dane o różnej wiarygodności w odpowiednich kategoriach jakości (Nawrocki, 1997). Położenie inwersji Illawarra w polskiej części basenu czerwonego spągowca badano również w otworach wiertniczych Czaplinek IG 1 i Objezierze IG 1 (op. cit.). Analizy paleomagnetyczne czerwonych osadów klastycznych permu i dolnego triasu były pierwszymi analizami skał starszych od czwartorzędu w Państwowym Instytucie Geologicznym.

Zakres i metodyka badań paleomagnetycznych

Próbki do badań paleomagnetycznych w postaci 88 fragmentów rdzenia wiertniczego, orientowano przestrzennie tylko góradół. Jedynym parametrem wyznaczającym polarność magnetyczną była więc tutaj inklinacja. Wartości charakterystyczne inklinacji dla wczesnego permu miejsca badań wynoszą 10-25° (Torsvik i in., 2012), czyli są wystarczająco wysokie, by zdefiniować polarność dawnego pola geomagnetycznego i jej zmiany. Badany fragment otworu obejmował interwał głęb. 5227,0-4389,0 m, w którym czerwony spągowiec był reprezentowany przez czerwone, hematytowe piaskowce, mułowce i iłowce. Z każdego fragmentu rdzenia wycięto diamentową koronką od 3 do 5 cylindrycznych próbek o średnicy 25 mm i wysokości 22 mm. Żeby usunąć wtórne składowe namagnesowania i jednocześnie rozpoznać strukturę naturalnej pozostałości magnetycznej, każdą próbkę stopniowo rozmagnesowano termicznie w niemagnetycznym piecu własnej konstrukcji, umieszczonym w wielowarstwowym ekranie wykonanym z permaloju przez Instytut Metali Nieżelaznych w Gliwicach. Pomiary natężeń składowych NRM wykonywano przy pomocy magnetometru rotacyjnego JR-4 (Geofizyka Brno). Podatność magnetyczną próbek określano z wykorzystaniem mostka KLY-2 (Geofizyka Brno). Badania podatności, jak również analizy termomagnetyczne nośników namagnesowania wykonano w Instytucie Geofizyki Polskiej Akademii Nauk (dr E. Król). Do obliczeń statystycznych, zmierzających do wyodrębnienia składowych NRM i w konsekwencji inklinacji charakterystycznych, stosowano program oparty na algorytmie Kirschvinka (1980). Liczba próbek z danego fragmentu rdzenia, w których zdefiniowano permską składową namagnesowania, a także sposób zdefiniowania tej składowej - czy to za pomocą dopasowania linii do wektorów odjętych, czy też tylko jako stabilny punkt końcowy ścieżki rozmagnesowania decydowały o kwalifikacji polarności do trzech kategorii jakości. I tak polarność zdefiniowaną w co najmniej dwóch próbkach z jednego fragmentu rdzenia, gdzie kierunek charakterystyczny określano za pomocą metodą dopasowania linii, kwalifikowano jako polarność pierwszej kategorii. Druga kategoria jakości różniła się tylko sposobem definiowania kierunku charakterystycznego, który tutaj był wyznaczany jako stabilny punkt końcowy. Trzecia kategoria jakości była wprowadzana wówczas, gdy kierunek charakterystyczny był określany jedną z tych dwu metod, ale polarność udało się zdefiniować tylko w jednej próbce z danego fragmentu rdzenia wiertniczego (zob. fig. 11).

Wyniki badań

Zasadniczym nośnikiem namagnesowania badanych skał jest hematyt, o czym świadczą charakterystyczne temperatury całkowitego rozmagnesowania próbki, odnotowane na krzywych termomagnetycznych (fig. 46), a także w wyniku termicznego rozmagnesowania poszczególnych próbek (fig. 47). Temperatury te zawierają się w przedziale 600-700°C. W próbkach iłowców w trakcie wygrzewania w temperaturach wyższych niż 500°C zanotowano znaczący wzrost podatności magnetycznej (fig. 46), co najprawdopodobniej było efektem przeobrażenia minerałów ilastych w magnetyt, który jest minerałem o znacznie wyższej podatności magnetycznej niż hematyt. Zjawisko to uniemożliwiało w tej części próbek wiarygodną interpretację wyników pomiarów uzyskiwanych na ostatnich poziomach rozmagnesowania termicznego. Najprawdopodobniej roztwory o temperaturze przekraczającej 100°C na głębokości ponad 4 km spowodowały częściowe lub całkowite przemagnesowanie badanych skał, manifestujące się obecnością składowej pozostałości magnetycznej o stromej inklinacji. W większości próbek oczekiwana składowa permska została wyodrębniona dopiero w temperaturach wyższych niż 550°C. Zgodnie z oczekiwaniem, wśród otrzymanych permskich kierunków charakterystycznych dominują kierunki o ujemnej inklinacji (fig. 48). W dolnej części badanego profilu wyraźnie zaznacza się niemal jednolita strefa z odwrotną polarnością dawnego pola geomagnetycznego (fig. 49). Niestety zapis magnetostratygraficzny w najwyższej części formacji drawskiej jest bardzo fragmentaryczny i niskiej jakości.

Stąd tylko z pewnym prawdopodobieństwem tę część osadów, zawierających zapis głównie odwrotnej polarności magnetycznej (od głęb. 5227,0 m do głęb. 4680,0 m) można zaliczyć do megachronu Kiaman. Skały leżące powyżej tej strefy charakteryzuje zmienna polarność pola geomagnetycznego, typowa dla megachronu Illawarra.

Podsumowanie

Pomimo silnego przemagnesowania skał czerwonego spągowca z otworu Piła 1/IG 1 w większości próbek udało się wyodrębnić permską, pierwotną składową pozostałości magnetycznej i odtworzyć zmiany polarności ówczesnego pola geomagnetycznego, które stały się podstawą konstrukcji skali magnetostratygraficznej. Wskazana w otworze Piła 1/IG 1 pozycja granicy megachronów Kiaman i Illawarra (dolna część formacji noteckiej: głęb. 4680,0 m) przez część badaczy została przyjęta (Słowakiewicz i in., 2009; fig. 49). Badania rdzenia osadów czerwonego spągowca z otworu Czaplinek IG 1 (Nawrocki, 1997) wykazały jednak obecność dobrze zdefiniowanej zony o normalnej polarności w obrębie niżej ległej formacji drawskiej, w miejscu gdzie w otworze Piła 1/IG 1 nie uzyskano wiarygodnych danych. Stąd ta walna granica magnetostratygraficzna o wieku ok. 266,5 mln lat została ulokowana w innych pracach (Nawrocki, 1997; Hounslow, Balabanov, 2018) właśnie tutaj (fig. 49). W korelacji chronostratygraficznej część formacji Drawy, zawierająca wspomnianą granicę, odpowiadałaby pograniczu roadianu i wordianu. Zdefiniowany w otworze Piła 1/IG 1 koniec strefy odwrotnej polarności z zamykającym badany profil fragmentem o zmiennej polarności pola geomagnetycznego należałoby korelować zatem z wucziapingiem (Hounslow, Balabanov, 2018; fig. 49). W Niemczech odwrócenie Illawarra zostało zidentyfikowane w najniższej części górnego czerwonego spągowca w obrębie ogniwa parchim (Menning i in., 1988).

Fig. 46. A. Krzywe termomagnetyczne pierwszego (1) i drugiego wygrzewania (2) próbki 31 z otworu Piła 1/IG 1 B. Krzywa zmian podatności magnetycznej z biegiem wzrostu temperatury sporządzona dla próbki 81 z otworu Piła 1/IG 1 C. Analogiczna krzywa sporządzona dla próbki 32 z otworu Piła 1/IG 1

I – natężenie namagnesowania; I₀ – początkowa wartość natężenia namagnesowania; K – podatność magnetyczna; K₀ – początkowa wartość podatności magnetycznej; T – temperatura

A. Thermomagnetic curves of first (1) and second heating (2) of sample 32 taken from Piła 1/IG 1 borecore B. Changes of magnetic susceptibility versus temperature in sample 81 from Piła 1/IG 1 borecore C. The same type of graph prepared for sample 32 from Piła 1/IG 1 borecore

I – intensity of magnetization; I_o – initial value of intensity of magnetization; K – magnetic susceptibility; K_o – initial value of magnetic susceptibility; T – temperature

Fig. 47. A. Projekcja sferyczna ścieżek rozmagnesowania próbek P88; P44; P34; P71 i P78 z otworu Piła 1/IG 1
B. Projekcja sferyczna z permskimi kierunkami charakterystycznymi wyodrębnionymi ze skał czerwonego spągowca, które nawiercono w otworze Piła 1/IG 1. Otwarte/wypełnione kółka oznaczają kierunki o inklinacji ujemnej/dodatniej C. Ortogonalna projekcja ścieżek rozmagnesowania (rysunek górny) oraz względny spadek natężenia naturalnej pozostałości magnetycznej poczas rozmagnesowania termicznego (rysunek dolny) dla próbek P20 i P71

A. Stereographic projection of demagnetization paths for samples P88; P44; P34; P71 and P78 from Piła 1/IG 1 borecore
 B. Stereographic projection of Permian characteristic paleomagnetic directions that were isolated from Rotliegend rocks drilled in Piła 1/IG 1 borehole. Open/filled circles represent the directions with negative/positive inclination C. Orthogonal projection of femagnetization paths (upper diagram) and relative deacrease of natural remanent magnetization intensity during thermal treatment (lower diagram) for samples P20 and P71

Na figurze przedstawiono także alternatywną korelację Słowakiewicza i in. (2009)

Composite magnetostratigraphic scheme prepared on the background of magnetic polarity changes in the Rotliegend rocks from Piła 1/IG 1 and Czaplinek IG 1 borecores; and its correlation with the global magnetostratigraphic scale (Hounslow, Balabanov, 2018)

Alternative magnetostratigraphic correlation of Słowakiewicz et al. (2009) is also presented

