WYNIKI BADAŃ GEOFIZYCZNYCH

Edyta NOWAK-KOSZLA, Sylwia KIJEWSKA

BADANIA SEJSMICZNE W REJONIE OTWORU MACIEJOWICE IG 1

W rejonie otworu wiertniczego Maciejowice IG 1 w latach 1975-1997 oraz w 2003 r. wykonano kilkanaście profili sejsmiki refleksyjnej 2D. W celu zilustrowania budowy geologicznej analizowanego obszaru wybrano profil sejsmiczny T0380491 (fig. 51), pozyskany w 1991 r. w ramach tematu Wilga-Abramów przez firmę Geofizyka Toruń na zlecenie Polskiego Górnictwa Naftowego i Gazownictwa. Przekrój jest usytuowany w centralnej części północno-zachodniego rejonu basenu lubelskiego i prezentuje budowe geologiczną w bezpośrednim sąsiedztwie otworu Maciejowice IG 1, nie dochodząc do walnych stref dyslokacyjnych położonych dalej ku północnemu wschodowi, tj. nasunięcia Kocka i uskoku Ursynów-Kazimierz Dolny-Wysokie, będącego południowo-zachodnią granicą basenu. Głównym celem badań sejsmicznych 2D, było szczegółowe rozpoznanie budowy geologicznej utworów dewonu, karbonu, cechsztynu oraz mezozoiku (Jurek, 1994). Jakość sygnału prezentowanego profilu jest zadowalająca i pozwoliła na prześledzenie przebiegu wybranych granic refleksyjnych oraz identyfikację uskoków. Dane sejsmiczne dowiązano do danych z otworu Maciejowice IG 1. W ramach prac interpretacyjnych wykonano korelację granic refleksyjnych, związanych ze stropem utworów jury, triasu, permu, karbonu, dewonu i syluru.

Na interpretowanym profilu (fig. 51), w obrębie utworów syluru, dewonu i karbonu, widoczny jest synklinalny układ warstw. Osady syluru, reprezentowane głównie przez iłowce, są najstarszymi utworami nawierconymi w analizowanym rejonie. Przebieg horyzontu sejsmicznego związanego z ich stropem jest hipotetyczny, z uwagi na brak wyraźnego refleksu pochodzącego od tej granicy. W niższej części dewonu obserwuje się wzmocnione odbicia, powstające prawdopodobnie na granicach piaskowców i iłowców lub mułowców. Zinterpretowany strop dewonu górnego stanowi granicę refleksyjną i pokrywa się z powierzchnią erozyjną powstałą na tym obszarze od turneju po wizen środkowy. Górna część profilu dewonu jest wykształcona w postaci osadów marglisto-wapiennych. W profilu utworów karbonu deponowanych od turneju po moskow można zaobserwować liczne horyzonty sejsmiczne, pochodzące od granic związanych z kontaktem osadów piaskowcowo-mułowcowo-ilastych

z węglanowymi w wizeńskiej części profilu, a powyżej kontaktu piaskowców z iłowcami lub mułowcami.

Osady dewonu i karbonu charakteryzują się znacznym zaangażowaniem tektonicznym. Niektóre dyslokacje zidentyfikowane w tych utworach mają swoje założenia w osadach syluru, następnie przecinają dewon oraz niższą część karbonu. Inne są widoczne wyłącznie w dewonie czy karbonie lub w obrębie obu tych systemów. Uskoki przebiegają pod różnymi, czasami znacznymi, kątami upadu. Większość z nich ma charakter odwrócony, obserwuje się też dyslokacje przeciwstawne. Przy niektórych uskokach są widoczne niewielkie nasunięcia. Niektóre z tych uskoków, wchodzących w skład waryscyjskiego piętra strukturalnego, uległy późniejszej reaktywacji.

Utwory permu zalegaja niezgodnie na utworach karbonu i nieznacznie zapadają w kierunku południowo-zachodnim. W osadach permu, triasu i jury stwierdzono obecność kilku dyslokacji, mających swoje założenia w piętrze waryscyjskim, obejmującym utwory przedpermskiego paleozoiku. Utwory mezozoiku w niewielkim stopniu zapadają w kierunku południowo-zachodnim. W obrębie utworów triasu widać kilka odbić, związanych m.in. z kontaktem utworów mułowcowo-ilasto-marglistych z wapieniami oraz wapieni z piaskowcami. W górnej części kompleksu utworów jurajskich widać kilka wyraźnych odbić, związanych z obecnościa wapieni i margli. Obraz falowy w dolnej i środkowej części jury charakteryzuje się mniejszą dynamiką w porównaniu z zapisem obserwowanym w jej górnej części. Dające się prześledzić odbicie o zmiennej dynamice jest związane z kontrastem impedancji akustycznej, pojawiającym się na granicy wapieni i piaskowców. W obrębie utworów kredy widać kilka horyzontów sejsmicznych o różnym stopniu wzmocnienia amplitud. Granice refleksyjne powstały m.in. na kontakcie kredy piszącej i margli oraz margli i wapieni. W utworach kredy zidentyfikowano kilka uskoków.

Składamy serdeczne podziękowania firmie PGNiG S.A. za wyrażenie zgody na wykorzystanie profilu sejsmicznego T0380491 w celu zinterpretowania i zilustrowania budowy geologicznej rejonu otworu Maciejowice IG 1.

Fig. 51. Fragment czasowego profilu sejsmicznego T0380491 wraz z interpretacją

A part of 2D time seismic section T0380491 with interpretation

Sara WRÓBLEWSKA

GEOFIZYKA WIERTNICZA

Opracowanie pomiarów geofizyki wiertniczej wykonanych w otworze Maciejowice IG 1 przeprowadzono na podstawie dokumentacji wynikowej tego otworu badawczego (Żelichowski i in., 1977) oraz scyfrowanych danych geofizycznych w formacie LAS ze zbioru CBDG (Centralnej Bazy Danych Geologicznych, PIG-PIB). Pomiary geofizyczne zostały wykonane w okresie od 22.09.1975 r. do 08.01.1977 r. przez Zakład Badań Geofizycznych PPG Warszawa (Kombinat Geologiczny "Północ"), I Zespół geofizyki wiertniczej w Lublinie, III Zespół Geofizyki Wiertniczej w Poznaniu, Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego Toruń oraz Przedsiębiorstwo Geofizyki Górnictwa Naftowego Kraków. Głównym celem wiercenia Maciejowice IG 1 było zbadanie wykształcenia litologicznego skał karbonu oraz dewonu górnego i środkowego. Ponadto przeanalizowano perspektywiczność tych poziomów stratygraficznych pod kątem występowania w ich obrębie złóż ropy naftowej i gazu ziemnego.

ZAKRES WYKONANYCH BADAŃ GEOFIZYCZNYCH

Pomiary geofizyczne wykonano w siedmiu odcinkach pomiarowych w interwale głęb. 0,0–5057,0 m. Większość z nich zarejestrowano w skali 1 : 500. Wyjątek stanowią pojedyncze odcinki profilowań PG, POst, mPOst oraz PŚr. Pomiary wykonywano przy użyciu aparatury produkcji radzieckiej typu AKSŁ-7. Podstawowy zestaw pomiarowy obejmował:

- profilowanie oporności potencjałowe (POp),
- profilowanie oporności gradientowe (POg),
- profilowanie potencjałów naturalnych (grad PS),
- profilowanie naturalnego promieniowania gamma (PG),
- profilowanie neutron-gamma (PNG),
- profilowanie średnicy otworu (PŚr),
- profilowanie krzywizny otworu (PK),

– pomiar temperatury termometrem maksymalnym (T_{max}) ,

powierzchniowe profilowanie oporności potencjalowe (POP).

Do kompletu pomiarów podstawowych dołączono także pomiary uzupełniające:

- sondowanie oporności gradientowe (SOg),
- sterowane profilowanie oporności (POst),
- mikroprofilowanie oporności sterowane (mPOst),
- profilowanie gamma-gamma gęstościowe (PGG),
- profilowanie neutron-neutron nadtermiczne (PNNnt),
- profilowanie upadu warstw (PUw),
- profilowanie akustyczne (T1, T2, PA Δ T),
- profilowanie temperatury (PTn, PTu).

W interpretacji pomiarów geofizycznych wykorzystano również wyniki badań laboratoryjnych rdzeni, profilowanie gazowe oraz PM. W otworze wykonywano także pomiary kontrolne w najgłębszej części odcinków pomiarowych.

Średnica nominalna wiercenia Maciejowice IG 1 wynosiła 438,0 mm do głębokości 565,0 m, 308,0 mm w interwale 565,0-2820,0 m, 216,0 mm dla głębokości 2820,0-4208,0 m oraz 143,0 mm od 4208,0 do 5059,0 m. W tabeli 35 zestawiono dokładne interwały głębokościowe wykonanych profilowań geofizyki wiertniczej na podstawie spisu wykonanych badań z dokumentacji wynikowej (Żelichowski i in., 1977) oraz informacji dostępnych w CBDG. W tabeli 35 umieszczono również datę ich wykonania oraz średnicę nominalną otworu podczas realizacji pomiarów. Pozostałe pomiary są dostępne w Narodowym Archiwum Geologicznym jedynie w wersji analogowej. Możliwości sprzętowe urządzeń używanych w latach 70. XX w. oraz asortyment stosowanych wtedy badań uniemożliwiały szczegółowe rozpoznanie profilu wiercenia. Jakość pomiarów również zdecydowanie odbiegała od tych, realizowanych współcześnie.

Tabela 35

Wykaz badań geofizyki otworowej wykonanych w otworze Maciejowice IG 1

List of well logs performed in the Maciejowice IG 1 borehole

Data wykonania pomiaruRodzaj pomiaru (skrót)Date of measurementType of measurment (abbreviated)		Interwał głębokościowy pomiaru Depth interval [m]	Średnica nominalna otworu Bit size [mm]
	PG PTn PK	0,0–563,0	
22–23.09.1975	POg POp PSr grad PS	35,0-563,0	438,0
12.11.1975	POg POp PS	665,5–1589,5	
	РК	650,0–1590,0	
14.01.1076	POg grad PS	655,0-2350,0	
14.01.1976	POp PK	1550,0–2350,0	
27.02.1976	PUw	540,0-2825,0	
	POp SOg grad PS PSr PG	500,0–2815,0	308,0
	РК	2300,0-2815,0	
27.02-1.03.1976	PG PŚr	1830,0-2815,0	_
	POst mPOst	557,0-2816,0	
	mPOst PG PŚr	1830,0–2815,0	
10-12.03.1976	PA	35,0-2820,0	
	POg grad PS	2821,0-3950,0	
	SOg POp	3340,0-3950,0	
1 2 07 107(PG	3300,0-3947,0	7
1-3.07.1976	PNG	3300,0-3950,0	216,0
	PŚr	2821,0-3932,0	
	PK	2775,0-3945,0	7
	POst mPOst	3340,0-3948,0	
28-29.08.1976	PA	2800,0-4200,0	1

Tabela 35 cd.

Data wykonania pomiaru Date of measurement	Rodzaj pomiaru (skrót) Type of measurment (abbreviated)	Interwał głębokościowy pomiaru Depth interval [m]	Średnica nominalna otworu Bit size [mm]	
	POg gradPS	- 2821,0-4200,0		
	SOg POp	3900,0-4200,0		
	PNG		_	
	PG	3900,0-4195,0	_	
24–26.08,1976	PSr	2821,0-4192,0	_	
	PNNnt	3390,0-3550,0		
	PK	3900,0-4205,0	216.0	
	POst mPOst	3900,0-4200,0	210,0	
	PGG 2821.0–4195.0		-	
	PSr	- ,,-	_	
1–2.09.1976	PUw	2500,0-4000,0	_	
	POg	_		
	РОр	2821,0-4195,0		
	gradPS			
3-4.11.1976	PŚr			
	PG			
	PNG	4150,0-4605,0		
	PK			
	PŚr	4200,0-5021,0		
	POg	4200,0-5057,0		
	РОр	4550.0.5057.0	143,0	
28-29.12.1976	gradPS	4350,0-5057,0		
	PG	4550.0.5050.0	_	
	PNG	4350,0-5050,0		
	РК	4550,0-5000,0	7	
8.01.1977	PA	2630,0-3990,0	7	
5-6.01.1997	PTu	50,0-5057,0	438,0; 308,0; 216,0; 143,0	

PŚr (CALI) – profilowanie średnicy, PG (GR) – profilowanie gamma, PK – profilowanie krzywizny odwiertu, POg (EL09) – profilowanie oporności gradientowe, POp (EN10) – profilowanie oporności potencjałowe, POst (LL3) – profilowanie oporności sondą 3 – elektr. sterowaną, SOg – sondowanie oporności gradientowe, PNNnt (NECN) – profilowanie neutron-neutron nadtermiczne, PS (SP) – profilowanie naturalnych potencjałów, PA (DT) – profilowanie akustyczne, PNG (NEGR) – profilowanie neutron-gamma, mPOst – mikroprofilowanie oporności sterowane, PT – profilowanie temperatury, PUw – profilowanie upadu warstw

PŚr (CALI) – caliper, PG (GR) – gamma ray log, PK – deviation log, POg (EL09) – lateral electrical log, POp (EN10) – normal electrical log, POst (LL3) – laterolog, SOg – set of resistivity measurements, PNNnt (NECN) – epithermal neutron log, PS (SP) – spontaneous potential log, PA (DT) – acoustic log, PNG (NEGR) – neutron-gamma log, mPOst – microlaterolog (ML), PT – temperature log, PUw – dipmeter

DIGITALIZACJA I NORMALIZACJA PROFILOWAŃ GEOFIZYCZNYCH

Część pomiarów, wykonanych w otworze Maciejowice IG 1, obejmujących w głównej mierze profilowania średnicy, radiometryczne, akustyczne oraz elektrometryczne, poddano cyfryzacji w ramach prac interpretacyjnych PIG-PIB w latach 90. XX w., związanych z uzupełnianiem bazy CBDG o badania geofizyki otworowej. Wybrane pomiary, głównie profilowanie naturalnego promieniowania gamma (PG), połączono oraz poddano normalizacji. Zastosowana w trakcie prac metodyka standaryzacji profilowań radiometrycznych została opisana w pracach Szewczyka (1998, 2000). Scyfrowane odcinkowe i połączone dane geofizyczne (ang. *composite log*) dla otworu Maciejowice IG 1 w formacie LAS (ang. *Log ASCII Standard*) są dostępne w CBDG (nr identyfikacyjny 43514). Graficzne zestawienie dostępnych, zdigitalizowanych pomiarów geofizycznych wraz z uproszczonym profilem stratygraficznym zamieszczono na figurze 52.

Fig. 52. Zestawienie dostępnych połączonych i znormalizowanych profilowań geofizycznych w otworze Maciejowice IG 1

profilowanie średnicy (CALI_C), unormowane profilowanie gamma (GR_S), profilowanie neutron-gamma (NEGR_C), profilowanie akustyczne czasu interwałowego (DT_C) oraz profilowań oporności o krótkim (EN10_C) i długim (EL09_C) zasięgu radialnym

Presentation of merged and normalized geophysical well logs available for Maciejowice IG 1 borehole

caliper log (CALI_C), normalized natural gamma ray log (GR_S), neutron-gamma ray log (NEGR_C), sonic – compressional slowness (DT_C) and conventional gradient resistivity logs shallow (EN10_C) and deep (EL09_C)

OCENA JAKOŚCI DANYCH I STANU OTWORU

Krzywe uzyskane za pomocą niekalibrowanej aparatury pomiarowej sprawiają często wiele problemów interpretacyjnych i tym samym utrudniają wiarygodną analizę danych geofizycznych. Jest to spowodowane odmiennymi parametrami technicznymi stosowanych przed rokiem 1990 sond oraz z rejestracji pomiarów radiometrycznych (PG, PNG, GGDN) w niestandardowych jednostkach (imp/min). Istotną różnicą zauważalną podczas interpretacji krzywych niekalibrowanych, szczególnie gęstościowych, jest spadek wartości (imp/min) w skałach o wyższych gęstościach objętościowych i odpowiednio jej wzrost w skałach mniej gęstych. Tego typu wskazania są wynikiem procedury pomiarowej sond gęstościowych, których działanie jest oparte na pomiarze różnicy pomiędzy promieniowaniem gamma wygenerowanym przez sondę, a promieniowaniem wtórnym, docierającym do umieszczonego w niej detektora. Uzyskana różnica jest wynikiem pochłaniania energii, powstałej w wyniku procesu, zwanego rozpraszaniem comptonowskim, który zachodzi wskutek kolizji cząstek gamma z elektronami zawartymi w skale. Ubytek energii cząstek gamma jest więc tym wyższy, im wyższa jest gęstość elektronowa skały, która jest ściśle związana z jej gęstością objętościową. Procedura pomiarowa stosowana w sondach współczesnych jest tożsama, jednak wynik uzyskiwany przez detektor jest konwertowany do wartości standardowych 2-3 g/cm³. Podobna zależność dotyczy również profilowania neutron-gamma, gdzie podwyższona zawartość wodoru w skale wywołuje obniżone wartości na krzywej NEGR, odwrotnie do współcześnie stosowanych profilowań neutronowych.

Wiele z profilowań jest również obarczone błędami wynikającymi ze złego stanu technicznego ścian otworu. Ocenę jakości ścian przeprowadzono na podstawie profilowania średnicy (PŚr/CALI), które jest dostępne dla znaczącej części analizowanego otworu (35,0–5021,0 m). Największe skawernowanie zaobserwowano w marglisto-wapiennych utworach kredy (max 465,0 mm) oraz ilastych utworach karbonu (330,0–490,0 mm) przy średnicy nominalnej 308,0 mm. W głębszym odcinku, gdzie średnica nominalna wynosiła 216,0 mm, największe wymycia, poza wcześniej wspomnianymi skałami ilastymi karbonu (230,0–320,0 mm), występują również w ilastych, piaszczystych i węglanowych skałach dewonu (230–400 mm) w interwale 3957,0–4155,0 m.

Profilowanie krzywizny w otworze Maciejowice IG 1 wykonano na odcinku 0,0–5000,0 m. Do głęb. 2925,0 m krzywizna otworu jest nieznaczna i osiąga maksymalnie 1°30'. Azymut skrzywienia w tym odcinku zmienia się w przedziale SW–S–SE, a maksymalne odejście od pionu wynosi 27 m w kierunku południowym. Poniżej krzywizna osi wiercenia wzrasta do 2° na głęb. 2925,0 m i 4° na głęb. 3225,0 m. Największe skrzywienie otworu, wynoszące od 4°30' do 5°, zarejestrowano w interwale 3350,0–3600,0 m. Niżej krzywizna otworu maleje i nie przekracza 2–4°. Kierunek odchylenia osi odwiertu zmienia się jedynie nieznacznie. W interwale 2925,0–4350,0 m odchyla się w kierunku SSW, a na odcinku 4350,0–4750,0 m oraz 4750,0– 5055,0 m odpowiednio na S i SW. Całkowite odejście od pionu osi otworu wynosi 148 m przy azymucie 191°.

Stan zacementowania rur okładzinowych w otworze Maciejowice IG 1 różni się w poszczególnych odcinkach pomiarowych. W interwale 35,0-1125,0 m, w rurach 9 5/8", profilowanie akustyczne nie wykazało obecności cementu. Na głębokości 1125,0-2820,0 m jedynie w kilku krótkich odcinkach stan zacementowania można uznać jako dostateczny. Sumaryczna miąższość tych interwałów sięga 52,0 m. Na pozostałym odcinku stan zacementowania oceniono jako słaby (brak cementu) lub śladowy. W interwale 2630,0-3050,0 m orurowania 7" nie zarejestrowano obecności cementu. Na niewielkich odcinkach w interwałach: 3098,0-3495,0; 3495,0-3765,0; 3906,0-3913,0 oraz 3850,0-3990,0 m stopień zacementowania uznano jako dostateczny. Pozostałe odcinki z interwału 3050,0-3990,0 m wykazują śladowe związanie cementu z rurami okładzinowymi. Ocenę stanu zacementowania przeprowadzono przy pomocy profilownia akustycznego.

W celu ustalenia stopnia geotermicznego w otworze Maciejowice IG 1 wykonano również profilowanie temperatury po 7-dobowej stójce w interwale 50,0–5057,0 m. Średni gradient geotermiczny dla otworu wynosi 2,04°C/100 m, a średni stopień geotermiczny $H_{\rm śr}$ = 48,9 m/°C. Wartości gradientu i stopnia geotermicznego dla poszczególnych poziomów stratygraficznych przedstawiono w tabeli 36.

OPRACOWANIE WYNIKÓW BADAŃ GEOFIZYKI WIERTNICZEJ

Interpretację pomiarów geofizyki wiertniczej w otworze Maciejowice IG lwykonano dla całego otworu (0,0– 5057,0 m) w celu:

określenia litologii i stratygrafii przewiercanych skał,

wyróżnienia poziomów posiadających potencjał zbiornikowy,

wydzielenia warstw węgla kamiennego,

wytypowania horyzontów do opróbowania.

Analiza pomogła uszczegółowić profil geologiczny oraz wydzielić horyzonty perspektywiczne pod kątem poszukiwania węglowodorów oraz węgla kamiennego, a tym samym pomogła spełnić podstawowe cele badawcze.

Każdy z analizowanych interwałów stratygraficznych posiada odmienne właściwości geofizyczno-petrofizyczne. W najwyższej części profilu dominują czwartorzędowe piaski, żwiry i gliny oraz neogeńskie mułki i iły miejscami przewarstwione piaskiem. Interwał ten wykazuje zmienne właściwości geofizyczne, związane najprawdopodobniej ze składem mineralogicznym piasków oraz stopniem zailenia osadów. Charakterystycznym interwałem widocznym na

Tabela 36 Gradient i stopień geotermiczny dla poszczególnych wydzieleń stratygraficznych w otworze Maciejowice IG 1

_		-	-	-	-	-		-	-
a 1 1			0 1 1		4			A	
(- a othormol	are diant and	daaraa	tonindi	17/1 0 11	ol atro	transpire inter	vola in the		norahala
Geomerman	gradient and	uegree	101 11101	vititi	ai sua	путарите пист	vais in inc		DICHOIC
	gitterer entre					and approximate the state of th			

Stratygrafia Stratigraphy	Interwał Depth interval [m]	Stopień geotermiczny Geothermal degree [m/ºC]	Gradient geotermiczny Geothermal gradient [°C/100 m]
Czwartorzęd / Quaternary	20,0-45,0	4,4	22,70
Neogen-paleogen / Neogene-Paleogene	45,0-201,5	25,6	3,90
Kreda / Cretaceous	201,5–297,5 297,5–556,0 556,0–1025,5	91,2 103,0 100,0	1,10 0,97 1,00
Jura / Jurassic	1025,5–1225,0 1225,0–1427,5	56,3 80,0	1,78 1,25
Trias Triassic Perm Permian	1427,5–1546,0 1546,0–1612,5 1612,5–1735,0 1735,0–1774,5 1774,5–1846,0	44,0 61,8 67,8 75,0 111,0	2,27 1,62 1,48 1,33 0,90
Karbon / Carboniferous	$\begin{array}{c} 1846,0-2122,0\\ 2122,0-2616,0\\ 2616,0-2928,0\\ 2928,0-3360,0\\ 3360,0-3468,0\\ 3468,0-3504,5\\ \end{array}$	56,0 42,2 41,2 46,2 34,2 41,7	1,77 2,37 2,43 2,21 2,92 2,40
Dewon / Devonian	3504,5–3952,5 3952,5–4415,0 4415,0–4825,0	53,6 50,2 35,6	1,87 1,66 2,80
Dewon-sylur / Devonian-Silurian	4825,0-5057,0	24,3	4,10

krzywej naturalnego promieniowania gamma jest warstwa oligoceńskiego piasku i mułu glaukonitowego na głębokości 85,7–116,0 m. Występowanie glaukonitu, zawierającego w swym składzie znaczne ilości potasu, zaznacza się poprzez wzrost naturalnego promieniowania gamma. Porowata struktura piasków glaukonitowych jest ponadto przyczyną niskich wartości oporności w ich obrębie. W sukcesji paleocenu i najwyższej kredy dominują skały wapnisto--krzemionkowe (gezy i opoki) o zmiennej zawartości węglanu wapnia, krzemionki, glaukonitu i łyszczyków.

W kredzie górnej występują skały węglanowe: margle, wapienie i wapienie margliste przechodzące stopniowo ku górze w kredę piszącą i opokę. Najwyższe wartości naturalnego promieniowania gamma posiadają skały najsilniej zailone – margle i wapienie margliste. Najniższe wartości przyjmują wapienie, opoki i kreda pisząca. Skały węglanowe kredy górnej ze względu na wysoki stopień zailenia i lub dość wysoką porowatość wykazują niskie wskazania na krzywej oporności i neutron–gamma. Jedynym wyjątkiem są występujące w spągu profilu (poniżej 898,5 m) zbite wapienie, których obecność zaznacza spadek na krzywej gamma oraz wzrost wartości neutron–gamma i oporności. W serii marglistej kredy zarejestrowano znaczne powiększenia średnicy otworu.

Wyraźny wzrost wartości na krzywej promieniowania gamma zaznacza się w miejscu występowania warstwy piasków glaukonitowych na głębokości 1005,2–1007,5 m, która stanowi regionalny, reperowy horyzont korelacyjny, będący górną granicą profilu klastycznej kredy dolnej. Reprezentują ją w głównej mierze słabo scementowane piaskowce o podwyższonych wskazaniach naturalnego promieniowania gamma, spowodowanych najprawdopodobniej podrzędnie występującym glaukonitem, muskowitem oraz podwyższonym stopniem zailenia.

System jurajski jest reprezentowany przez skały weglanowe jury górnej oraz klastyczno-węglanowe jury środkowej. Najwyższe wskazania na krzywej naturalnego promieniowania gamma (do 115 API) wykazują skały margliste w najwyższej części profilu (1025,5-1102,5 m). Podwyższone zawartości minerałów ilastych w tym interwale zaznaczają się również spadkiem na krzywych oporności oraz neutron-gamma. Niższa część wapiennego profilu górnojurajskiego oraz wapieni jury środkowej wykazuje zbliżone własności na krzywych geofizycznych. Spadek oporności oraz nieznacznie podwyższone wskazania na krzywej gamma w dolnej części profilu (1420,0-1433,7 m) odpowiadają obecnym w spągu profilu piaskowcom i zlepieńcom jury środkowej oraz najwyższego triasu. Zróżnicowany skład mineralny tych skał z licznymi toczeńcami ilastymi i okruchami skał żelazistych jest najprawdopodobniej powodem podwyższonych (~70 API) wartości naturalnego promieniowania gamma.

Utwory ilasto-mułowcowe kajpru środkowego zaznaczają się w profilu otworu Maciejowice IG 1 wyraźnym wzrostem wartości na krzywej naturalnego promieniowania gamma, połączonym ze spadkiem oporności i wartości neutron–gamma. Jest to odpowiedź na podwyższoną zawartość lamin ilastych w obrębie tego wydzielenia, która nieznacznie różni się od silniej zapiaszczonych leżących niżej skał kajpru dolnego. Profil wapienia muszlowego występujący poniżej jest dość zróżnicowany. Skały węglanowe w tym interwale stratygraficznym przewarstwiają się z piaskowcami wapnistymi, wykazującymi zbliżone właściwości geofizyczne. Na głęb. 1601,5–1612,0 m poniżej wapieni występuje warstwa piaskowca o zmiennych właściwościach petrofizycznych, należąca do pstrego piaskowca. Poniżej wyraźnym wzrostem na krzywej promieniowania gamma i NEGR oraz spadkiem na krzywych oporności zaznacza się pakiet mułowców piaszczystych, które w spągu graniczą z piaskowcami o zmiennych własnościach petrofizycznych zalegającymi na głęb. 1737,5–1774,5 m. Skały piaszczyste triasu oraz strefy przejściowej między permem i triasem o miąższości od kilku do kilkunastu metrów mogą stanowić potencjalne podrzędne zbiorniki dla złóż węglowodorów.

Granica pomiędzy piaszczystymi skałami pogranicza pstrego piaskowca i cechsztynu a węglanami cechsztynu w otworze Maciejowice IG 1 zaznacza się dość niewyraźnie na krzywych geofizyki otworowej. Najlepiej widoczna jest leżąca poniżej wapienia dolomitycznego warstwa mułowców wykazująca podwyższone wartości na krzywych gamma i neutron-gamma oraz zalegający niżej anhydryt, którego charakteryzują najwyższe wskazania oporności i neutron-gamma, przy najniższych wartościach GR (1784,0–1837,0 m). W spągu cechsztynu występuje warstwa dolomitu oraz łupek miedzionośny. Skały węglanowe cechsztynu nie wykazują korzystnych właściwości zbiornikowych.

Skały karbonu w otworze Maciejowice IG 1 są reprezentowane przez miąższy, prawie 1660-metrowy pakiet skał ilasto-piaszczystych ze wzrastającym w dół profilu udziałem skał węglanowych (formacja Huczwy). Wyznaczono w jego obrębie horyzonty piaszczyste o miąższości zwykle od kilku do kilkunastu metrów, wykazujące korzystne właściwości zbiornikowe (np. na głęb. 2925,0– 2950,0 m, fig. 53; por. Sokołowski, ten tom). Porowatości tych interwałów wynoszą średnio kilkanaście procent przy przepuszczalności od kilku do kilku tysięcy mD. Horyzonty piaszczyste charakteryzują obniżone wartości na krzywych naturalnego promieniowania gamma i oporności oraz podwyższone wartości na krzywej neutron–gamma. Poza warstwami piaszczystymi charakterystyczne wskazania na krzywych geofizycznych odpowiadają pokładom węgla kamiennego lub łupków węglistych. Skały te wykazują silne zróżnicowanie zawartości pierwiastków promieniotwórczych. Od bardzo niskich dla czystego węgla kamiennego po bardzo wysokie dla zailonych łupków węglistych bogatych w uran pochodzenia organicznego. Obecność materii organicznej może być przyczyną anomalnie wysokich wskazań na krzywych: neutronowej, oporności oraz akustycznej (czasu interwałowego – DT).

W profilu dewonu górnego dominują skały węglanowe (wapienie, wapienie margliste i wapienie dolomityczne) o rosnącym ku górze stopniu zailenia osadów (fig. 53). Wzrost zawartości minerałów ilastych jest obserwowany zarówno poprzez stopniowy wzrost wartości na krzywej naturalnego promieniowania gamma i krzywej akustycznej, jak i poprzez spadek wartości NEGR. Dewon środkowy i dolny jest zbudowany odpowiednio z mułowców dolomitycznych i skał piaszczysto-ilastych. Piaskowce dewonu wykazują niewielką porowatość i nie posiadają tym samym znaczących właściwości kolektorskich. W najniższej części profilu znajduje się względnie jednolity geofizycznie interwał skał ilasto-mułowcowych syluru, nie posiadający właściwości zbiornikowych.

Badania geofizyczne wykonane w otworze Maciejowice IG 1 spełniły planowane założenia. Wykonana analiza właściwości geofizycznych skał pozwoliła uszczegółowić profil litologiczny oraz wytypować potencjalne horyzonty zbiornikowe. W wyniku przeprowadzonych badań ustalono, że w profilu otworu najlepsze parametry zbiornikowe wykazują pojedyncze interwały piaszczyste i/lub wapniste mezozoiku (trias, jura, kreda) oraz piaskowce karbońskie. Pozostałe skały profilu Maciejowice IG 1 nie wykazują korzystnych właściwości zbiornikowych.

Kinga BOBEK

WYNIKI POMIARÓW PRĘDKOŚCI ŚREDNICH

Opracowanie wyników profilowań prędkości średnich dla otworu Maciejowice IG 1 zostało wykonane przez Zakład Badań Geofizycznych PGG Kombinatu Geologicznego "Północ" z siedzibą w Warszawie w 1977 r. Pomiary w odwiercie wykonano aparaturą T – 1 nr 0.2 oraz sondą 6-geofonową typu GSC – 4 w interwałach 15-metrowych. Prace strzałowe prowadzono z dwóch punków wzbudzenia (PW) rozmieszczonych z uwzględnieniem warunków metodycznych i terenowych, w następujący sposób:

PW1: d = 95 m, A = 215°, N = -1 m PW2: d = 704 m, A = 209°, N = -1 m

gdzie:

d – odległość punktu wzbudzenia od głębokiego odwiertu, A – azymut mierzony w punkcie głębokiego odwiertu w kierunku PW,

N – niwelacja: PW w stosunku do wylotu głębokiego odwiertu.

W celu kontroli głębokości strzelania, w punktach strzałowych ustawiono geofony korekcyjne K_1 w odległości 5 m. Do kontroli momentu wybuchu przy głębokim odwiercie ustawiono geofon korekcyjny K_2 . Pierwsze impulsy sondy zarejestrowano w sześciu kanałach. Po korektach pomiarów i wyeliminowaniu zakłóceń na sejsmogramach, wywołanych rozchodzeniem się fal po rurach i płuczce, wykonano analizę jakości uzyskanych wyników. Do dalszych interpretacji wybrano w sumie 585 sejsmogramów, których jakość oceniono na dobrą lub dostateczną, natomiast

>

Petrophysical model for selected Devonian and Carboniferous interval in Maciejowice IG 1 borehole wyeliminowano 69, których jakość określono jako złą. Objęty pomiarem interwał głębokościowy obejmuje wydzielenia stratygraficzne od czwartorzędu do syluru. Wysokość wylotu otworu wynosi 106 m, natomiast do obliczeń prędkości średnich przyjęto poziom odniesienia pomiaru na wysokości 91 m n.p.m. Procedurę interpretacji uzyskanych wyników rozpoczęto od wprowadzenia poprawek statycznych dla czasu obserwowanego i przeliczenie głębokości zredukowanej do poziomu odniesienia.

Poprawki czasowe wprowadzono z uwzględnieniem zmiany głębokości strzelania dla poszczególnych pomiarów w stosunku do poziomu odniesienia wspólnego dla danych punktów wzbudzenia. Czas obserwowany na sejsmogramach przeliczono na czas poprawiony z wykorzystaniem dwóch metod obliczeniowych. W pierwszej z metod, poprawkę czasu wykonano zgodnie z równaniem:

 $t_{\rm p} = t_{\rm obs} + \Delta t_{\rm h}$

gdzie:

 $t_{\rm p}$ – czas poprawiony,

 $t_{\rm obs}$ – czas obserwowany,

 $\Delta t_{\rm h}$ – poprawka wynikająca ze zmian głębokości strzelania, poziomu odniesienia, miąższości stref małych prędkości, prędkości wewnątrz danej strefy oraz pod nią.

W drugiej metodzie obliczeniowej wykorzystano wskazania geofonów korekcyjnych K_1 i K_2 . Zgodnie z tą metodą, czas poprawiony wyznacza się na podstawie następującej procedury obliczeniowej:

(1) $\Delta tk_1 = tk_1 - t'k_1$ i $\Delta tk_2 = tk_2 - t'k_2$ $\Delta th = \Delta tk_1 - \Delta tk_2$ $t_p = t_{obs} + \Delta th - \Delta tk_2$ gdzie:

 tk_1 , tk_2 – czasy pierwszych impulsów geofonów K_1 , K_2 dla średniej głębokości strzelania,

t' k_1 , t' k_2 – czasy pierwszych impulsów geofonów K₁, K₂ dla innej głębokości strzelania

 $t_p - czas$ poprawiony,

t_{obs} – czas obserwowany.

Po wprowadzeniu poprawek czasowych, wykonano redukcję pomiarów do wybranego punktu odniesienia. Głębokość pomierzoną zredukowano do poziomu odniesienia według wzoru:

 $h_{\rm r} = H - h_{\rm po} + N$

gdzie:

 h_r – głębokość punktu pomiarowego zredukowana do poziomu odniesienia,

 H – głębokość zanurzenia geofonu liczona od wylotu głębokiego odwiertu,

 h_{po} – głębokość do poziomu odniesienia wspólnego dla wszystkich PW liczona od powierzchni ziemi na poszczególnych PW,

 N – wysokość względna PW w stosunku do wylotu głębokiego otworu.

W następnym etapie wprowadzania niezbędnych poprawek wykonano redukcję czasu poprawionego do pionu dla każdego z punktów wzbudzania, zwanych dalej $t_r 1$, $t_r 2$ oraz $t_r 3$. W przypadku otworu Maciejowice IG 1 redukcję wykonano, przyjmując założenie, że w interwale głębokościowym od punktu wzbudzenia do głębokości zanurzenia geofonu ośrodek skalny jest jednorodny. Taki układ oznacza, że spodziewany przebieg promienia sejsmicznego jest prostoliniowy, a czas można zredukować według poniższego wzoru: gdzie:

 $t_r - czas$ zredukowany,

 $h_r - glębokość punktu pomiarowego zredukowana do poziomu odniesienia,$

d – odległość punktu wzbudzenia od głębokiego odwiertu dla danego PW.

Uzyskane wartości h_r oraz t_r finalnie posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

Wszystkie uzyskane wartości $t_r l$, $t_r 2$, t_r oraz V_{sr} zostały zestawione w tabeli 37. Obliczenia prowadzono przy pomocy odpowiedniego programu komputerowego, a uzyskane wyniki zapisano w plikach tekstowych w formacie LAS.

Zestaw otrzymanych wyników stanowił podstawę konstrukcji krzywych prędkości średnich (fig. 54A) oraz

Tabela 37

Zestawienie wartości czasów pomierzonych z trzech punków wzbudzenia (t_r1 i t_r2), średniej wartości czasu zredukowanego (t_r) oraz odpowiadającej mu wartości prędkości średniej (V_{śr}) dla danej glębokości (h)

Time measured from three shot points $(t_r 1, t_r 2)$, reduced time (t_r) and values of the average velocity (V_{sr}) for a measured depth (h)

<i>h</i> [m]	<i>t_r1</i> [s]	<i>t</i> _{<i>r</i>} 2 [s]	t_r [s]	$V_{\acute{s}r}$ [m/s]
15	0	0.01	0.01	1611.111
30	Ő	0.018	0.018	1608.333
45	Ő	0.027	0.027	1599.167
60	0.04	0.035	0.0375	1614.956
75	0.048	0	0.048	1609.748
90	0.057	Ő	0.057	1605,182
105	0.064	0	0.064	1633.569
120	0.073	0	0.073	1678,212
135	0,082	0,073	0,0775	1715,363
150	0,085	0,083	0,084	1749,047
165	0,096	0,091	0,0935	1791,709
180	0,101	0,098	0.0995	1821,7
195	0,104	0,106	0,105	1845,913
210	0	0,111	0,111	1876,972
225	0	0,118	0,118	1904,476
240	0	0,125	0,125	1927,208
255	0	0,131	0,131	1944,663
270	0	0,137	0,137	1963,307
285	0	0,144	0,144	1980,581
300	0	0,15	0,15	1996,176
315	0	0,157	0,157	2007,898
330	0	0,163	0,163	2021,155
345	0	0,17	0,17	2030,991
360	0	0,176	0,176	2042,416
375	0	0,183	0,183	2052,892
390	0	0,189	0,189	2067,01
405	0	0,195	0,195	2076,188
420	0	0,2	0,2	2086,913
435	0	0,208	0,208	2096,942
450	0	0,214	0,214	2106,336
465	0	0,22	0,22	2111,229
480	0	0,226	0,226	2119,738
495	0	0,233	0,233	2129,505
510	0	0,239	0,239	2133,655
525		0,244	0,244	2140,783
540	0	0,253	0,253	2151,005
<u> </u>	0	0,257	0,257	2162,429
5/0	0	0,262	0,262	21/0,545
285	0	0,267	0,267	2193,/11
600		0,27	0,27	2208,013
620		0.282	0,277	2224,34/
645		0,282	0,282	2238,4
660		0,200	0,200	2243,401
675		0,292	0,292	2250,005
600	0	0,299	0,299	2200,303
705	0	0.309	0,309	2273,38

Tabela 37 cd.

Tabela 37 cd.

<i>h</i> [m]	<i>t_r1</i> [s]	<i>t</i> _{<i>r</i>} 2 [s]	t_r [s]	$V_{\acute{s}r}$ [m/s]
720	0	0,313	0,313	2297,031
735	0	0,319	0,319	2306,632
750	0	0,323	0,323	2315,992
765	0	0,329	0,329	2322,204
/80	0	0,335	0,335	2328,248
<u> </u>	0	0,341	0,341	2327,555
825	0	0.356	0.356	2333.064
840	0	0.36	0.36	2340,903
855	0	0,364	0,364	2348,575
870	0	0,367	0,367	2368,963
885	0	0,373	0,373	2388,999
900	0	0,372	0,372	2408,692
915	0	0,376	0,376	2426,765
930	0	0,38	0,384	2448,558
960	0	0.387	0.387	2404,487
975	0	0.39	0.39	2492.077
990	0	0,395	0,395	2502,353
1005	0	0,4	0,4	2509,879
1020	0	0,406	0,406	2522,074
1035	0	0,411	0,411	2531,599
1050	0	0,41	0,417	2543,385
1065	0	0,417	0,417	2557,626
1000	0	0,42	0.42	2567 386
1110	0	0.43	0.43	2569.531
1125	0,444	0,435	0,4395	2570.87
1140	0,451	0,438	0,4445	2574,484
1155	0,453	0,443	0,448	2579,658
1170	0,457	0,447	0,452	2590,588
1185	0,46	0,449	0,4545	2604,767
1200	0,464	0,454	0,459	2616,4/3
1213	0,403	0,457	0,461	2629,091
1230	0.474	0.464	0.469	2656,104
1260	0.477	0.468	0.4725	2667.05
1275	0,48	0,469	0,4745	2680,091
1290	0,484	0,475	0,4795	2692,384
1305	0,488	0,478	0,483	2702,286
1320	0,489	0,483	0,486	2712,545
1335	0,495	0,488	0,4915	2724,888
1365	0,496	0,488	0,495	2735,904
1380	0.506	0.495	0,5005	2760.953
1395	0,507	0,499	0,503	2772,658
1410	0,512	0,501	0,5065	2780,394
1425	0,514	0,505	0,5095	2786,951
1440	0,521	0,511	0,516	2789,625
1455	0,527	0,516	0,5215	2792,712
1470	0,552	0,525	0,5275	2/9/,23
1500	0.538	0.526	0,5305	2807.838
1515	0,543	0,533	0,538	2814.875
1530	0,547	0,539	0,543	2820,756
1545	0,553	0,542	0,5475	2825,438
1560	0,557	0,546	0,5515	2829,086
1575	0 564	0,554	0,554	2828,/08
1590	0,504	0,558	0.501	2820,762
1620	0,578	0,569	0.574	2829 669
1635	0.58	0.572	0,576	2833.518
1650	0,586	0,577	0,5815	2846,69
1665	0,59	0,577	0,5835	2851,022
1680	0	0,583	0,583	2853,313
1695	0,602	0,59	0,596	2857,955
1/10	0,606	0,594	0,6	2860,1
1720	0,009	0,397	0,003	2639,033
1755	0.614	0.605	0.6095	2876,484
1770	0,615	0,612	0,6135	2886,398
1785	0,619	0,615	0,617	2893,894
1800	0,625	0,612	0,6185	2900,351
1815	0,63	0,621	0,6255	2904,894
1830	0,631	0,626	0,6285	2908,904
1040	0,037	0,032	0,0345	2911,8/4
1875	0.645	0.637	0.641	2918.688
1890	0.649	0.645	0.647	2925,633
1905	0,655	0,647	0,651	2932,957
1920	0,656	0,649	0,6525	2938,842
1935	0,659	0,653	0,656	2944,255

<i>h</i> [m]	<i>t_r1</i> [s]	$t_r 2 [s]$	<i>t_r</i> [s]	$V_{\acute{s}r}$ [m/s]
1950	0,664	0,656	0,66	2948,726
1965	0,671	0,662	0,6665	2953,088
1980	0,676	0,609	0.673	2958,136
2010	0,681	0,674	0,6775	2963,241
2025	0,686	0,681	0,6835	2967,876
2040	0,689	0,683	0,686	2971,55
2055	0,695	0,688	0,6915	2979,677
2085	0,7	0,694	0,697	2984,075
2100	0,708	0,702	0,705	2989,293
2115	0,709	0,703	0,706	2993,591
2130	0,713	0,708	0,7105	3002.897
2160	0,721	0,716	0,7185	3007,468
2175	0,725	0,72	0,7225	3011,587
2190	0,728	0,723	0,7255	3015,239
2203	0,737	0,727	0,7305	3024 889
2235	0,74	0,736	0,738	3026,782
2250	0,743	0,739	0,741	3030,277
2265	0,75	0,746	0,748	3035,751
2280	0,755	0,747	0,751	3039,961
2310	0,76	0,755	0,7575	3048,661
2325	0,763	0,76	0,7615	3051,574
2340	0,77	0,762	0,766	3053,615
2355	0,775	0,769	0,772	<u>3055,645</u> 3057,253
2385	0.783	0,776	0,7795	3061.182
2400	0,785	0,783	0,784	3068,613
2415	0,786	0,785	0,7855	3074,03
2430	0	0,787	0,787	3080,19
2445	0.798	0,792	0,792	3090.824
2475	0,8	0,798	0,799	3092,955
2490	0,808	0,803	0,8055	3095,838
2505	0,811	0,806	0,8085	3100,598
2535	0.816	0.812	0.8125	3110.01
2550	0,817	0,817	0,817	3115,041
2565	0,824	0,823	0,8235	3120,789
2580	0,827	0,825	0,826	3123,838
2595	0.836	0,820	0,829	3126,502
2625	0,842	0,842	0,842	3129,094
2640	0,843	0,843	0,843	3131,643
2655	0,845	0,848	0,8465	3136,766
2685	0.851	0.851	0.851	3148.416
2700	0,858	0,857	0,8575	3153,438
2715	0,861	0,858	0,8595	3157,686
2730	0,862	0,865	0,8635	3157,881
2760	0.875	0.874	0.8745	3165.118
2775	0,876	0,874	0,875	3168,142
2790	0,878	0,881	0,8795	3172,937
2805	0.885	0,882	0,883	3183 527
2835	0,886	0,892	0,889	3187,16
2850	0,893	0,893	0,893	3191,826
2865	0,899	0,897	0,898	3193,957
2800	0,902	0,898	0,9	3202 75
2910	0,907	0,907	0,907	3205,887
2925	0,91	0,909	0,9095	3210,028
2940	0,916	0,918	0,917	3216,956
2955	0.91/	0,918	0,91/5	3226 827
2985	0,923	0,92	0,9215	3232,948
3000	0,928	0,927	0,9275	3235,552
3015	0,933	0,93	0,9315	3237,753
3030	0,93/	0,937	0.93/	3239,233
3060	0,942	0,943	0,9425	3243,569
3075	0,946	0,948	0,947	3248,45
3090	0,952	0,952	0,952	3251,921
3105	0,953	0,953	0,953	3257,072
3135	0,956	0,96	0,958	3265,945
3150	0,966	0,963	0,9645	3268,976
3165	0,967	0,968	0,9675	3271,311

Tabela 37 cd.

Tabela 37 cd.

<i>h</i> [m]	<i>t_rl</i> [s]	<i>t</i> _{<i>r</i>} 2 [s]	<i>t</i> _{<i>r</i>} [s]	$V_{\acute{s}r}$ [m/s]
3180	0,972	0,971	0,9715	3273,264
3195	0,974	0,978	0,976	3278,912
3210	0,977	0,979	0,978	3281,849
3223	0.976	0,982	0,979	3290 325
3255	0,989	0	0,989	3293,854
3270	0,992	0,991	0,9915	3295,018
3285	0,995	0,996	0,9955	3298,834
3300	0,999	1,001	1 002	3302,292
3330	1,005	1,005	1,005	3305 526
3345	1,012	1,013	1,0125	3309,569
3360	1,014	1,016	1,015	3314,564
3375	1,015	1,018	1,0165	3318,229
3390	1,017	1,019	1,018	3323,506
3420	1,022	1,025	1,0235	3331.048
3435	1,032	1,031	1,0315	3332,024
3450	1,036	1,031	1,0335	3335,248
3465	1,038	1,04	1,039	3336,852
3480	1,04	1,042	1,041	3340 332
3510	1.047	1,047	1.05	3342,532
3525	1,057	1,052	1,0545	3343,435
3540	1,058	1,058	1,058	3346,551
3555	1,06	1,064	1,062	3350,587
3585	1.067	1.065	1.066	3356.412
3600	1,073	1,071	1,072	3359,142
3615	1,076	1,076	1,076	3361,846
3630	1,08	1,08	1,08	3362,651
3645	1,082	1,083	1,0825	3365,631
3675	1.080	1,088	1,087	3373.085
3690	1,093	1,093	1,093	3376,931
3705	1,094	1,097	1,0955	3381,069
3720	1,097	1,1	1,0985	3388,886
3750	1,105	1,102	1,1025	3403 195
3765	1,105	1,103	1,104	3410,926
3780	1,106	1,105	1,1055	3419,553
3795	1,108	1,108	1,108	3425,064
3825	1,113	1,108	1,1105	3433,020
3840	1,114	1,112	1,112	3446,703
3855	1,116	1,117	1,1165	3453,039
3870	1,117	1,12	1,1185	3459,967
3900	1,12	1,124	1,122	3470.962
3915	1,126	1,127	1,1265	3477,194
3930	1,127	1,13	1,1285	3484,018
3945	1,129	1,131	1,13	3490,199
3900	1,133	1,132	1,1323	3500 334
3990	1,138	1,142	1,14	3504,594
4005	1,139	1,144	1,1415	3508,218
4020	1,144	1,145	1,1445	3510,896
4055	1,149	1,14/	1,148	3514,/92
4065	1,153	1,157	1,155	3520,988
4080	1,157	1,158	1,1575	3522,698
4095	1,161	1,161	1,161	3525,298
4110	1,108	1,105	1,1005	3529,094
4140	1,17	1,100	1,100	3534,516
4155	1,174	1,174	1,174	3535,875
4170	1,177	1,179	1,178	3539,599
4185	1,191	1,18	1,1855	3542,699
4215	1.185	1,185	1.186	3549.461
4230	1,189	1,189	1,189	3555,506
4245	1,194	1,194	1,194	3559,137
4260	1,196	1,197	1,1965	3564 562
4290	1.203	1,199	1.2025	3568.442
4305	1,205	1,206	1,2055	3572,007
4320	1,209	1,208	1,2085	3573,19
4335	1,211	1,212	1,2115	3576,131
4365	1,218	1,210	1,217	3579 622
4380	1,223	1,223	1,223	3581,053
4395	1,228	1,226	1,227	3585,108

<i>h</i> [m]	<i>t_r1</i> [s]	$t_r 2 [s]$	<i>t_r</i> [s]	$V_{\acute{s}r}$ [m/s]
4410	1,229	1,231	1,23	3589,433
4425	1.232	1.23	1.231	3592.29
4440	1.233	1.231	1.232	3595.715
4455	1.239	1.239	1.239	3598.835
4470	1,242	1,242	1,242	3601,35
4485	1.246	1,245	1.2455	3600.954
4500	1,248	1,247	1,2475	3602,589
4515	1,253	1,254	1,2535	3603,067
4530	1,257	1,257	1,257	3602,97
4545	1,26	1,264	1,262	3602,851
4560	1,266	1,267	1,2665	3603,599
4575	1,268	1,269	1,2685	3602,367
4590	1,275	1,271	1,273	3602,83
4605	1,281	1,279	1,28	3603,295
4620	1,282	1,282	1,282	3602,901
4635	1,287	1,286	1,2865	3602,79
4650	1,289	1,291	1,29	3605,481
4665	1,294	1,294	1,294	3607,04
4680	1,296	1,296	1,296	3609,427
4695	1,298	1,302	1,3	3609,871
4710	1,303	1,303	1,303	3610,587
4725	1,31	1,31	1,31	3611,009
4740	1,313	1,314	1,3135	3611,429
4755	1,317	1,315	1,316	3612,385
4770	1,32	1,32	1,32	3613,358
4785	1,323	1,321	1,322	3613,782
4800	1,33	1,328	1,329	3613,651
4815	1,334	1,333	1,3335	3613,788
4830	1,338	1,336	1,337	3612,025
4845	1,343	1,338	1,3405	3612,971
4860	1,35	1,342	1,346	3612,316
4875	1,348	1,348	1,348	3612,189
4890	1,355	1,356	1,3555	3612,588
4905	1,357	1,359	1,358	3613,525
4920	1,359	1,362	1,3605	3612,859
4935	1,366	1,364	1,365	3614,851
4950	1,371	1,369	1,37	3615,514
4965	1,374	1,371	1,3725	3615,116
4980	1,379	1,376	1,3775	3614,983
4995	1,383	1,381	1,382	3615,444
5010	1.386	1.386	1.386	3614.764

hodografu pionowego (fig. 54B). Krzywa prędkości średnich została utworzona z wykorzystaniem wartości średniej czasu zredukowanego z dwóch punków wzbudzenia (t_r). Uzyskany hodograf pionowy wskazuje na zależność między wzrostem głębokości a uzyskanymi wartościami czasu rejestracji i prędkością średnią.

Kolejnym etapem analizy jest wyznaczenie poszczególnych kompleksów prędkościowych, a w szczególności ich wartości średnich, poprzez zastosowanie procedury wygładzenia pomiarów czasu. Zastosowane wygładzenie pozwala na zniwelowanie wpływu przypadkowych skoków wartości pomierzonych, wywołanych błędami pomiarowymi. Otrzymane krzywe wygładzone służą do wyznaczenia stref o maksymalnych gradientach prędkości, odpowiadających granicom kompleksów prędkościowych.

Krzywe prędkości obliczono poprzez wyrównanie otrzymanych czasów zredukowanych do pionu, stosując w tym celu splot z odpowiednim filtrem trójkątnym. Przetwarzanie to, w pierwszym etapie, polegało na przeliczeniu czasu i prędkości do poziomu odniesienia i interpolacji otrzymanych wartości dla stałych przedziałów głębokości, co 20 m (od 20 do 5000 m). Zastosowana procedura filtracyjna pozwoliła na usunięcie przypadkowych odchyleń, wynikających z niedokładności pomiaru oraz zniwelowanie skoków wartości, spowodowanych zaokrągleniem otrzymanych wartości do 1 ms przy pierwszym wygładzeniu. W wyniku powtarzania wymienionych operacji zaokrąglane

Fig. 54. Wykres prędkości średnich (A) i hodograf pionowy (B) otrzymane dla otworu Maciejowice IG 1 (poz. odn. 91 m n.p.m.)

 t_r- średni czas zredukowany, $V_{\rm śr}-$ prędkość średnia, h-głębokość; stratygrafia: Q – czwartorzęd, Ng – neogen, Pg – paleogen, K_2- kreda górna, K_1- kreda dolna, J_3- jura górna, $J_2-\,$ jura środkowa, T_3- trias górny, T_2- trias środkowy, T_1- trias dolny, P – perm, $C_{Pn}-$ karbon, pensylwan, $C_{Ms}-$ karbon, missisip, D_3- dewon górny, D_2- dewon środkowy, D_1- dewon dolny, S – sylur

Average seismic velocity (A) and travel-time curve (B) (reference level 91 m a.s.l.)

 $\begin{array}{l} t_r - average \ reduced \ time, \ V_{sr} - average \ velocity, \ h - depth; \ stratigraphy: \\ Q - Quaternary, \ Ng - Neogene, \ Pg - Paleogene, \ K_2 - Upper \ Cretaceous, \\ K_1 - Lower \ Cretaceous, \ J_3 - Upper \ Jurassic, \ J_2 - Middle \ Jurassic, \ T_3 - Upper \ Triassic, \ T_2 - Middle \ Triassic, \ T_1 - Lower \ Triassic, \ P - Permian, \ C_{Pn} - \\ Carboniferous, \ Pennsylvanian, \ C_{Ms} - Carboniferous, \ Mississippian, \ D_3 - \\ Upper \ Devonian, \ D_2 - Middle \ Devonian, \ D_1 - Lower \ Devonian, \ S - Silurian \end{array}$

są załamania hodografu, odpowiadające zmianom prędkości w kolejnych warstwach. Powstałe, po zastosowaniu opisanej procedury, dodatkowe zbiory danych, obejmujące przetworzone czasy pomiarów po redukcji do poziomu odniesienia, posłużyły do wyznaczenia odpowiadających im prędkości średnich.

Wymienione wyżej informacje, obejmujące wartości filtrów wybrane dla tego otworu oraz pliki LAS, są zawarte w banku danych prędkościowych utworzonym w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do Centralnej Bazy Danych Geologicznych PIG-PIB (CBDG).

Wykryte różnice czasów pomiędzy kolejnymi wygładzeniami są spowodowane zamianami prędkości fali sejsmicznej w kolejnych kompleksach skalnych. Zjawisko to wykorzystano w celu wyznaczenia granic poszczególnych kompleksów prędkościowych w miejscach maksymalnych bezwzględnych różnic czasu wygładzonego n i n + 1 razy. Granice te wyznaczono poprzez identyfikację lokalnych minimów i maksimów funkcji prędkości średniej. Otrzymane średnie wartości prędkości w interwałach pomiędzy kolejnymi punktami przegięcia odpowiadają uśrednionym wartościom kompleksów o prędkościach istotnie różnych od prędkości warstw sąsiednich.

Wszystkie wymienione powyżej obliczenia oraz graficzna prezentacja wyników wykonano z wykorzystaniem przygotowanego w tym celu modułu obliczeniowego (skrypt w języku Python).

Wyniki przeprowadzonych obliczeń, zawierające wartości prędkości wygładzonych (V_w), prędkości interwałowych (V_i) oraz prędkości kompleksowych (V_k), zestawiono w tabeli 38, natomiast krzywe tych prędkości przedstawiono na figurze 55. Powyższe wykresy zestawiono z profilem stratygraficznym, co pozwoliło na powiązanie otrzymanych zmian prędkości z kompleksami chronostratygraficznymi przekroju geologicznego w otworze.

W najwyższej partii profilu otworu obejmującej interwał głębokościowych od 0 do 180 m wyznaczono jeden kompleks prędkościowy ze średnią prędkością równą 1829 m/s, odpowiadający skałom czwartorzędu, neogenu i paleogenu. Poniżej, na głębokości ok. 200 m, zaobserwowano pierwszy

Tabela 38

Zestawienie wartości głębokości (h), prędkości interwałowej (V_i) , prędkości kompleksowej (V_k) oraz prędkości wygładzonej (V_w)

Depth (h), interval velocity (V_i), complex velocity (V_k) and smoothed velocity (V_w) values

h [m] V_i [m/s]		V_k [m/s]	$V_W[m/s]$		
20	0,01	1750,85	1829,53		
40	0,02	1750,85	1829,53		
60	0,04	1750,85	1829,53		
80	0,05	1750,85	1829,53		
100	0,06	1750,85	1829,53		
120	0,07	2045,62	1829,53		
140	0,08	2045,62	1829,53		
160	0,09	2045,62	1829,53		
180	0,10	2045,62	2263,42		
200	0,11	2045,62	2263,42		
220	0,11	2278,84	2263,42		
240	0,12	2278,84	2263,42		
260	0,13	2278,84	2263,42		
280	0,14	2278,84	2263,42		
300	0,15	2278,84	2263,42		
320	0,16	2307,44	2410,20		
340	0,17	2307,44	2410,20		
360	0,18	2307,44	2410,20		
380	0,18	2307,44	2410,20		
400	0,19	2307,44	2410,20		
420	0,20	2396,41	2410,20		
440	0,21	2396,41	2410,20		
460	0,22	2396,41	2410,20		
480	0,23	2396,41	2410,20		
500	0,23	2396,41	2410,20		
520	0,24	2641,66	2410,20		
540	0,25	2641,66	2410,20		
560	0,26	2641,66	2410,20		
580	0,27	2641,66	2784,55		

Tabela 38 cd.

1	я	h	el	я	38	cd.
	••	~	~ .	•••		~~~

			Tabela 38 cd.
<i>h</i> [m]	<i>V_i</i> [m/s]	V_k [m/s]	$V_W[m/s]$
600	0,27	2641,66	2784,55
620	0,28	2796,89	2784,55
640	0,29	2796,89	2784,55
660	0,29	2796,89	2784,55
680	0,30	2796,89	2784,55
700	0,31	2796,89	2784,55
720	0,32	2774,08	2784,55
740	0,32	2774,08	2784,55
760	0,33	2774,08	3010,23
780	0,34	2774,08	3010,23
800	0,34	2774,08	3010,23
820	0,35	3213,57	3010,23
840	0,36	3213,57	3010,23
860	0,36	3213,57	3010,23
880	0,37	3213,57	3010,23
900	0,38	3213,57	3697,40
920	0,38	3697,40	3697,40
940	0,39	3697,40	3697,40
960	0,39	3697,40	3697,40
980	0,40	3697,40	3697,40
1000	0,40	3697,40	3697,40
1020	0,41	3496,99	3630,06
1040	0,41	3496,99	3630,06
1060	0,42	3496,99	3630,06
1080	0,43	3496,99	3630,06
1100	0,43	3496,99	3630,06
1120	0,44	3754,88	3630,06
1140	0,44	3754,88	3630,06
1160	0,45	3754,88	3630,06
1180	0,45	3754,88	3630,06
1200	0,46	3754,88	3630,06
1220	0,46	4222,97	4120,57
1240	0,47	4222,97	4120,57
1260	0,47	4222,97	4120,57
1280	0,48	4222,97	4120,57
1300	0,48	4222,97	4120,57
1320	0,49	4097,19	4120,57
1340	0,49	4097,19	4120,57
1360	0,50	4097,19	4120,57
1380	0,50	4097,19	4120,57
1400	0,51	4097,19	4120,57
1420	0,51	3541,08	4120,57
1440	0,52	3541,08	3350,12
1460	0,52	3541,08	3350,12
1480	0,53	3541,08	3350,12
1500	0,53	3541,08	3350,12
1520	0,54	3224,14	3350,12
1540	0,55	3224,14	3350,12
1560	0,55	3224,14	3350,12
1580	0,56	3224,14	3350,12
1600	0,57	3224,14	3350,12
1620	0,57	3371,20	3350,12
1640	0,58	3371,20	3350,12
1660	0,58	3371,20	3350,12
1680	0,59	3371,20	3350,12
1700	0,60	3371,20	3350,12
1720	0,60	3770,31	3350,12
1740	0,61	3770,31	3798,81
1760	0,61	3770,31	3798,81
1780	0,62	3770,31	3798,81
1800	0,62	3770,31	3798,81
1820	0,63	3739,44	3798,81
1840	0,63	3739,44	3798,81
1860	0,64	3739,44	3716.09
1880	0.64	3739,44	3716.09
1900	0.65	3739.44	3716.09
1920	0.65	3683.65	3683.69
1940	0.66	3683.65	3683.69
1960	0.66	3683.65	3683.69
1980	0.67	3683.65	3683.69
2000	0.68	3683.65	3687.04
2020	0.68	3687.04	3687.04
2040	0,69	3687.04	3687.04
2060	0.69	3687.04	3687.04

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	$V_W[m/s]$
2080	0,70	3687,04	3687,04
2100	0,70	3687,04	3687,04
2120	0,71	3777,43	3775,63
2140	0,71	3///,43	37/5,63
2100	0,72	3///,43	3775.63
2100	0,72	3777.43	3775.63
2220	0,73	3763.50	3775.63
2240	0,74	3763,50	3775,63
2260	0,74	3763,50	3775,63
2280	0,75	3763,50	3775,63
2300	0,76	3763,50	3807,35
2320	0,76	3807,35	3807,35
2340	0,77	3807,35	3807,35
2380	0.78	3807.35	3807.35
2400	0,78	3807,35	3807,35
2420	0,79	4034,05	4036,06
2440	0,79	4034,05	4036,06
2460	0,80	4034,05	4036,06
2480	0,80	4034,05	4036,06
2500	0,81	4034,05	4036,06
2520	0.82	3968.88	4036,06
2560	0.82	3968.88	3947.89
2580	0,83	3968,88	3947,89
2600	0,83	3968,88	3947,89
2620	0,84	3985,33	3947,89
2640	0,84	3985,33	3947,89
2660	0,85	3985,33	3947,89
2680	0,85	3985,33	4046,94
2720	0.86	4111 33	4046.94
2740	0,87	4111.33	4124.14
2760	0,87	4111,33	4124,14
2780	0,88	4111,33	4124,14
2800	0,88	4111,33	4220,89
2820	0,89	4241,24	4220,89
2840	0,89	4241,24	4220,89
2880	0,90	4241,24	4220,89
2900	0,90	4241.24	4285.41
2920	0,91	4291,11	4286,56
2940	0,91	4291,11	4286,56
2960	0,92	4291,11	4286,56
2980	0,92	4291,11	4286,56
3020	0,93	4291,11	4280,50
3040	0.93	4173.10	4169.49
3060	0,94	4173.10	4169.49
3080	0,95	4173,10	4169,49
3100	0,95	4173,10	4169,49
3120	0,96	4225,47	4222,44
3140	0,96	4225,47	4222,44
3180	0,97	4223,47	4222,44
3200	0.98	4225.47	4222.44
3220	0,98	4197,98	4222,44
3240	0,99	4197,98	4222,08
3260	0,99	4197,98	4222,08
3280	0,99	4197,98	4222,08
3300	1,00	4197,98	4222,08
3320	1,00	4281,01	4222,08
3360	1,01	4281.01	4741 56
3380	1.02	4281.01	4241.56
3400	1,02	4281,01	4241,56
3420	1,03	4107,45	4241,56
3440	1,03	4107,45	4241,56
3460	1,04	4107,45	4494,02
3480	1,04	4107,45	4494,02
3500	1,05	4107,45	4494,02
3540	1,05	4098,86	4494,02

Tabela 38 cd.

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_W [m/s]
3560	1,06	4098,86	4494,02
3580	1,07	4098,86	4494,02
3600	1,07	4098,86	4494,02
3620	1,08	4713,65	4494,02
3640	1,08	4713,65	4494,02
3680	1,09	4/13,05	4494,02
3700	1.09	4713.65	4494.02
3720	1.10	6361.73	4494.02
3740	1,10	6361,73	4494,02
3760	1,10	6361,73	6431,28
3780	1,11	6361,73	6431,28
3800	1,11	6361,73	6431,28
3820	1,11	6649,82	6431,28
3860	1,11	6649.82	6431.28
3880	1,12	6649.82	6431.28
3900	1,12	6649,82	6431,28
3920	1,13	5635,39	6431,28
3940	1,13	5635,39	6431,28
3960	1,13	5635,39	6431,28
3980	1,14	5635,39	4752,74
4000	1,14	2635,39	4/52,/4
4020	1,15	4/30,02	4/32,/4
4060	1,15	4756.02	4752.74
4080	1,15	4756.02	4752.74
4100	1,16	4756,02	4752,74
4120	1,17	4674,43	4752,74
4140	1,17	4674,43	4752,74
4160	1,18	4674,43	4752,74
4180	1,18	4674,43	4752,74
4200	1,18	4674,43	4/66,22
4220	1,19	4/66,22	4/66,22
4240	1,19	4766.22	4766.22
4280	1.20	4766.22	4766.22
4300	1,20	4766,22	4766,22
4320	1,21	4596,64	4592,77
4340	1,21	4596,64	4592,77
4360	1,22	4596,64	4592,77
4380	1,22	4596,64	4592,77
4400	1,23	4390,04	4347,83
4440	1.24	4276.06	4347.83
4460	1,24	4276,06	4347,83
4480	1,24	4276,06	4347,83
4500	1,25	4276,06	3799,29
4520	1,26	3791,04	3799,29
4540	1,26	3791,04	3799,29
4300	1,27	3791,04	3700.20
4600	1.28	3791.04	3799.29
4620	1,28	3856.39	3799.29
4640	1,29	3856,39	3799,29
4660	1,29	3856,39	3823,36
4680	1,30	3856,39	3823,36
4700	1,30	3856,39	3823,36
4720	1,51	3/12,45	3823,36
4/40	1,31	3772 45	3823.36
4780	1.32	3772.45	3823.36
4800	1,33	3772,45	3664,35
4820	1,33	3667,97	3664,35
4840	1,34	3667,97	3664,35
4860	1,35	3667,97	3664,35
4880	1,35	3667,97	3664,35
4900	1,30	3667,97	3667.87
4920	1,30	3661 13	3667.87
4960	1 37	3661 13	3667.87
4980	1,38	3661.13	3667.87
5000	1,38	3661,13	3667,87

V_k – Prędkość kompleksowa / complex velocity

V_w – Prędkość wygładzona / smoothed velocity

Fig. 55. Wykresy prędkości interwałowych (V_i), prędkości kompleksowych (V_k) i prędkości wygładzonych (V_w) dla otworu Maciejowice IG 1 (poz. odn. 91 m n.p.m.)

h – głębokość, $V_{\rm \acute{sr}}$ – prędkość średnia; stratygrafia: Q – czwartorzęd, Ng – neogen, Pg – paleogen, K $_2$ – kreda górna, K $_1$ – kreda dolna, J $_3$ – jura górna, J $_2$ – jura środkowa, Tr $_3$ – trias górny, Tr $_2$ – trias środkowy, Tr $_1$ – trias dolny, P – perm, C $_{Pn}$ – karbon, pensylwan, C $_{Ms}$ – karbon, missisip, D $_3$ – dewon górny, D $_2$ – dewon środkowy, D $_1$ – dewon dolny, S – sylur

Interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) for the Maciejowice IG 1 borehole (reference level 91 m a.s.l.)

 $\begin{array}{l} h-depth, \, V_{sr}-average \,\, velocity; \, Stratigraphical \,\, symbols: \, Q-Quaternary, \, Ng-Neogene, \, Pg-Paleogene, \, K_2-Upper \, Cretaceous, \, K_1-Lower \, Cretaceous, \, J_3-Upper \, Jurassic, \, J_2-Middle \, Jurassic, \, T_3-Upper \, Triassic, \, T_2-Middle \, Triassic, \, T_1-Lower \, Triassic, \, P-Permian, \, C_{Pn}-Carboniferous, \, Pennsylvanian, \, C_{Ms}-Carboniferous, \, Mississippian, \, D_3-Upper \, Devonian, \, D_2-Middle \, Devonian, \, D_1-Lower \, Devonian, \, S-Silurian \end{array}$

w profilu wyraźny kontrast prędkościowy, objawiający się wzrostem średniej prędkości z 1829 m/s do 2263 m/s, który jest związany z granicą pomiędzy kredą i paleogenem i zwiększeniem zawartości CaCO₃ w opokach. W interwale głębokościowym odpowiadającym utworom kredy górnej wyznaczono w sumie 5 kompleksów prędkościowych o średnich prędkościach równych odpowiednio: 2263, 2410, 2784, 3010 i 3697 m/s. Wzrost prędkości w pierwszych dwóch kompleksach (z 2263 do 2410 m/s) odpowiada zmianie zawartości CaCO3 w kompleksie kredy piszącej mastrychtu. Granica kolejnych kompleksów prędkościowych (2410 i 2784 m/s) odpowiada natomiast granicy pomiędzy dolnym mastrychtem i kampanem, gdzie następuje zmiana litologii z kredy i margli o stosunkowo niskich prędkościach na wyżej prędkościowe wapienie margliste. Kolejny, niewielki kontrast zaobserwowano na głębokości zbliżonej do głębokości granicy pomiędzy kampanem a santonem i jest on związany najprawdopodobniej ze zmniejszającym się udziałem materiału ilastego w kompleksie wapieni marglistych. Stosunkowo wysoki kontrast prędkościowy (zamiana prędkości średniej z 3010 do 3697 m/s) jest widoczny na głębokości 900 m, odpowiadającej granicy pomiędzy koniakiem górnym i koniakiem dolnym-turonem. Przyczyną dużego wzrostu średniej prędkości jest najpewniej znaczny wzrost zawartości węglanu wapnia w wapieniach marglistych. Granica pomiędzy kredą górną a dolną w profilu prędkości średnich zaznacza się natomiast niewielkim spadkiem średniej prędkości kompleksowej z 3697 na 3630 m/s. Nie zaobserwowano natomiast zmian prędkości na granicy pomiędzy kredą i jurą. Pierwszy wyraźny kontrast prędkościowy w kompleksie jurajskim, objawiający się wzrostem średniej prędkości z 3630 na 4120 m/s zaobserwowano na głębokości 1220 m w obrębie formacji bełżyckiej. Znaczny wzrost średniej prędkości na tej głębokości jest spowodowany przejściem fali sejsmicznej z pylastych wapieni pelitowych do kompleksu wysokoprędkościowych białych wapieni pelitowych bez zanieczyszczeń materiałem ilastym. Znaczny spadek prędkości kompleksowej z 4120 na 3350 m/s zaobserwowano natomiast na głębokości, odpowiadającej w przybliżeniu granicy pomiędzy jurą a triasem, gdzie następuje zmiana litologii z wysokoprędkościowych piaskowców drobnoziarnistych na zlepieńce iłowcowe i iłowce wapniste, charakteryzujące się znacznie niższą prędkością przejścia fali sejsmicznej. W obrębie interwału głębokościowego odpowiadającego utworom triasu, wydzielono tylko jeden kompleks prędkościowy (średnia prędkość równa 3350 m/s), co jest związane z monotonną budową, w której dominują piaskowce z przewarstwieniami iłowców i mułowców. Wyraźna zmiana prędkości kompleksowej z 3350 na 3798 m/s jest natomiast widoczna na głębokości odpowiadającej w przybliżeniu spągowi niewątpliwego triasu, gdzie piaskowce drobno- i średnioziarniste przewarstwione mułowcami i iłowcami ceglastymi przechodzą w drobnoziarniste piaskowce kwarcowe. Granica pomiędzy permem a karbonem zaznacza się niewielkim spadkiem prędkości kompleksowej z 3798 na 3716 m/s. W interwale głębokościowym odpowiadającym sukcesji pensylwanu wyznaczono w sumie 13 kompleksów

prędkościowych o niewielkim zróżnicowaniu średniej prędkości przechodzenia fali, która waha się w granicach od 3716 do 4494 m/s. Jedyny, bardziej wyraźny kontrast prędkościowy wyznaczono na głęb. 2420 m, gdzie średnia prędkość kompleksowa wrasta z 3807 do 4036 m/s, co jest związane z występowaniem węgli i łupków węglowych w formacjach ilasto-piaszczystych. Granica pomiędzy pensylwanem a missisipem nie uwidacznia się w profilu prędkościowym. W obrębie missisipu jest natomiast widoczny kontrast prędkościowy na granicy pomiędzy formacją Terebina i formacją Huczwy, gdzie prędkość kompleksu wzrasta z 4241 do 4494 m/s, co jest związane ze zmianą litologii z piaskowcowo-mułowcowej na marglisto-wapienną. Największy kontrast prędkościowy w badanym profilu otworu zaobserwowano na głębokości 3760 m, gdzie średnia dla prędkość fali zwiększa się z 4494 do 6431 m/s. Głębokość wyznaczonego kontrastu odpowiada granicy pomiędzy formacją bychawską i modryńską dewonu górnego, gdzie następuje zmiana litologii z margli i wapieni marglistych na czyste i zwarte wapienie, charakteryzujące się wysoką prędkością przechodzenia fali sejsmicznej. Wyraźny spadek zarejestrowanej prędkości następuje natomiast na głęb. 3960 m, w obrębie dewonu dolnego, gdzie kompleks zbudowany z wapieni i dolomitów przechodzi w formacje piaskowcowo-iłowcowe o znacznie niższych średnich prędkościach. Ostatnia wyraźna granica kompleksów prędkościowych, widoczna w profilu otworu, została zidentyfikowana na głęb. 4500 m, gdzie następuje wyraźny spadek prędkości kompleksowej z 4347 na 3799 m/s. Prawdopodobną przyczyną tego zjawiska jest zmniejszenie udział wapieni w formacji sycyńskiej. Ostatni kompleks prędkościowy dla analizowanego otworu wyznaczono w zakresie głębokości 4800-5000 m, który obejmuje utwory dewonu dolnego.

Przeprowadzona analiza i otrzymane wyniki prędkości kompleksowych umożliwiają identyfikację najwyraźniejszych odbić refleksyjnych na profilach sejsmicznych i ich późniejsze dowiązanie do odpowiednich jednostek litostratygraficznych. W przypadku badanego otworu, wyraźnie będą widoczne dodatnie refleksy odpowiadające wapieniom marglistym na granicy pomiędzy koniakiem dolnym-turonem i koniakiem górnym, kompleksowi wapieni pelitowych formacji bełżyckiej (jura górna) oraz wyraźny spadek prędkości odpowiadający sukcesji triasu. Najwyraźniejszy dodatni refleks na zdjęciach sejsmicznych będzie widoczny w interwale głębokościowym odpowiadającym kompleksowi zwięzłych wapieni w dewonie górnym.

Wyniki obliczeń wykonanych w ramach tego opracowania pozwolą na uaktualnienie modelu prędkościowego, który jest kluczową częścią opracowania interpretacji sejsmicznych w najbliższym otoczeniu otworu Maciejowice IG 1. Przeprowadzanie pomiarów prędkości średnich do głębokości 5000 m pozwoli na wykonanie korelacji i przyporządkowanie poziomów refleksyjnych na przekrojach sejsmiczno-geologicznych poszczególnym piętrom i granicom w szerokim zakresie wydzieleń stratygraficznych od czwartorzędu do syluru, ze szczególnym uwzględnieniem formacji kredowych, jurajskich i dewońskich.