Isotope and chemical evidence for secondary phosphate mineralization of grasping spines of Lower Palaeozoic Chaetognatha

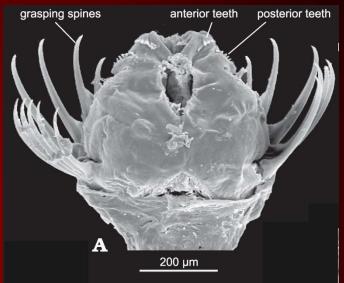
Hubert Wierzbowski¹,

Hubert Szaniawski²,

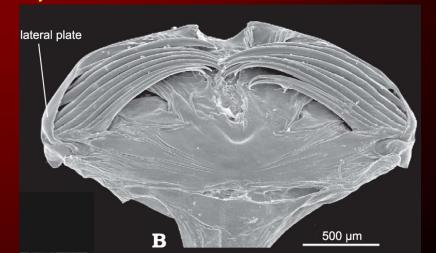
Błażej Błażejowski²

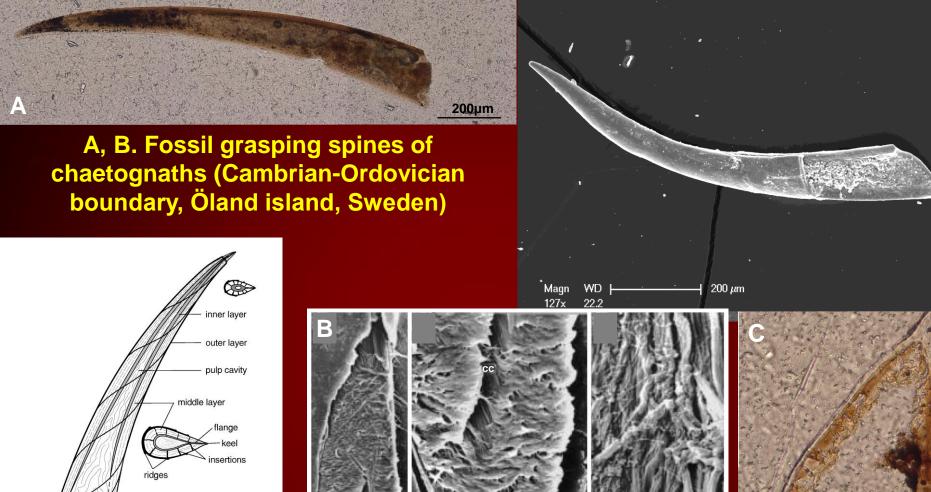
POLSKA AKADEMIA NAUK ALEOBIOLOGII m. Romana Kozłowskiego

¹ Polish Geological Institute – National Research Institute

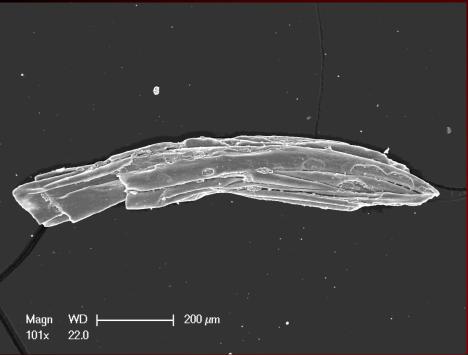

Öland Island, Sweden

Chaetognaths (arrow worms) are small marine, invertebrate creatues that posses a jaw organ with grasping spines



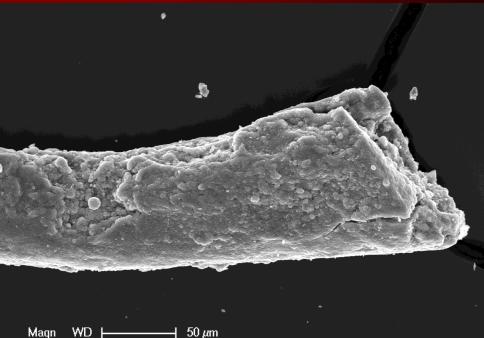

A modern chaetognath - *Spadella cephaloptera* (A) and a head with grasping apparatus of modern *Sagitta* (B; after Wikipedia)

Heads of modern chaetognaths with grasping apparatus in an open (A) and a resting (B) position (after Szaniawski, 2005)

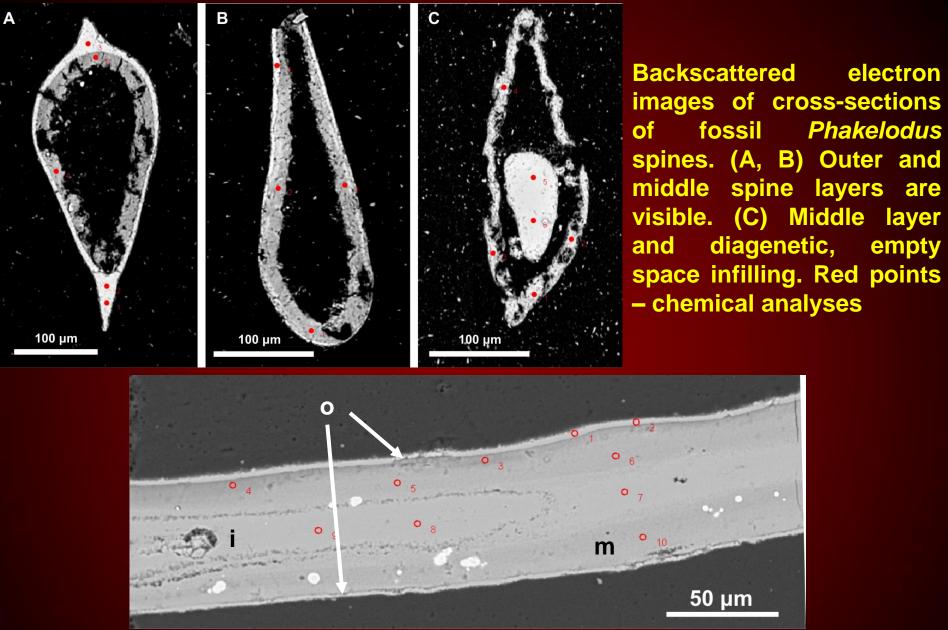

Construction of a grasping spine (A; after Szaniawski, 2002) and crosss-sections through a modern (B; after Doguzhaeva et al. 2002) and a fossil spine (C)

the middle laver

middle layer

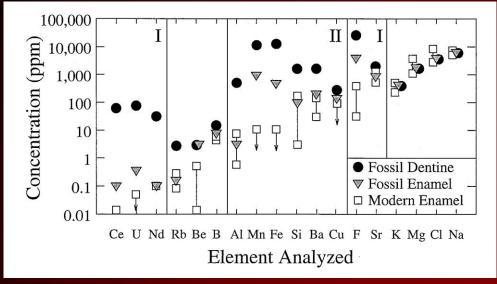

A

20µm



Fragment of a *Phakelodus* grasping apparatus (Cambrian–Ordovician boundary, Öland island, Sweden).

The root area of a grasping spine of *Phakelodus* with large apatite crystals of presumable diagenetic origin (Cambrian–Ordovician bounda-ry, Öland island, Sweden).



377x 22.1

Backscattered electron image of a longitudinal section of fossil a *Phakelodus* spine. Outer (o) and middle (m) spine layers as well as empty space infilling (i) are visible. Red points – chemical analyses

Elemental concetrations

Concentrations of selected elements in well-preserved and altered mammal teeth (after Kohn et al. 1999).

Elemental concentrations in conodonts (*Cordylodus, Palmatolepsis*) and grasping spines of *Phakelodus*. Middle layer and diaganetic infillings of the spines show elevated F, S and decreased Ca, P and Sr contents (electron microprobe analyses – CAMECA SX100)

Palmato	lepsis	s_sum	nmary											20	
(wt. %)	Na	F	Si	Al	Ca	Р	Fe	Mn	Ва	Sr	S	0	Total]	
Albid c	rown											- 510			
Mean	0.3	2.9	0.0	0.0	38.9	18.2	0.0	0.0	0.0	0.6	0.1	39.3	100.4]	
Hyaline	crow	n													
Mean	0.4	3.1	0.0	0.0	37.9	15.5	0.2	0.0	0.1	0.2	0.4	35.6	93.4		
		· · · · · · · · · · · · ·								·				-	
Cordylo	dus sı	umma	iry											_	
(wt. %)	Na	F	Si	Al	Ca	Р	Fe	Mn	Ва	Sr	S	0	Total		
Albid c	rown													-	
Mean	0.4	3.0	0.0	0.2	38.8	17.4	0.0	0.0	0.0	0.7	0.0	38.4	98.9		
· · · · · · · · · · · · · · · · · · ·														-	
Phakelo	dus_s	umm	ary												
(wt. %)	Na	F	Si	Al	Са	Р	Fe	Mn	Ва	Sr	S	CI	Mg	0	Total
Outer la	yer														
Mean	0.3	2.4	0.0	0.0	39.2	17.1	0.1	0.0	0.0	0.2	0.2	0.1	0.0	38.3	97.9
Middle	ayer														
Mean	0.3	3.6	0.0	0.0	35.1	15.2	0.2	0.0	0.0	0.0	0.4	0.1	0.1	34.4	89.6
Diagene	tic in	filling													

0.0

0.0

0.4

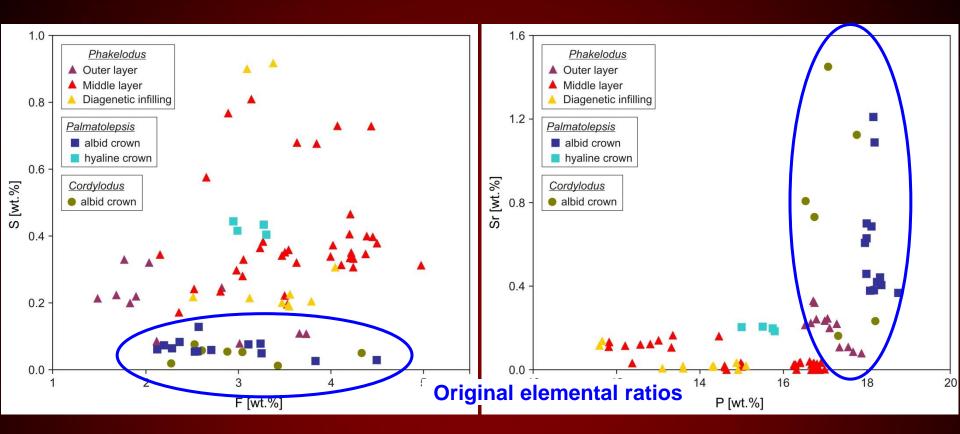
0.0

0.0

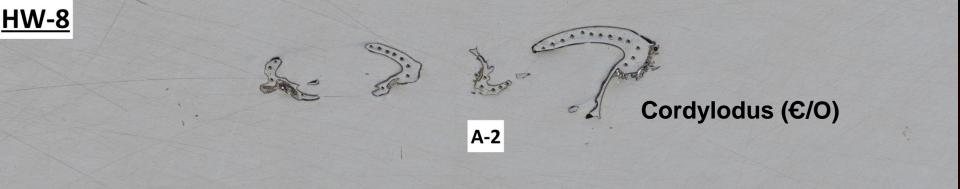
33.0

87.8

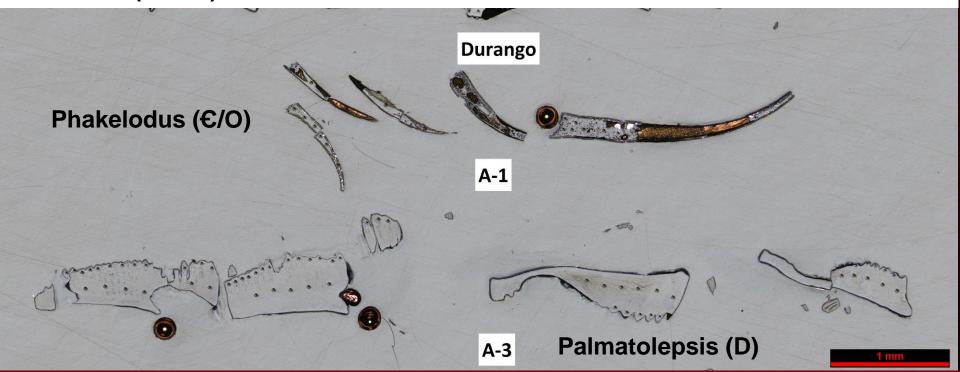
0.1 36.6 13.7 0.1 0.0


0.2

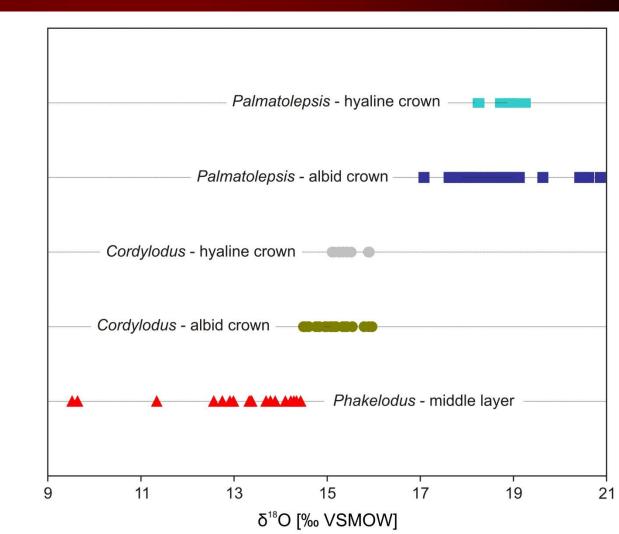
Mean


3.4

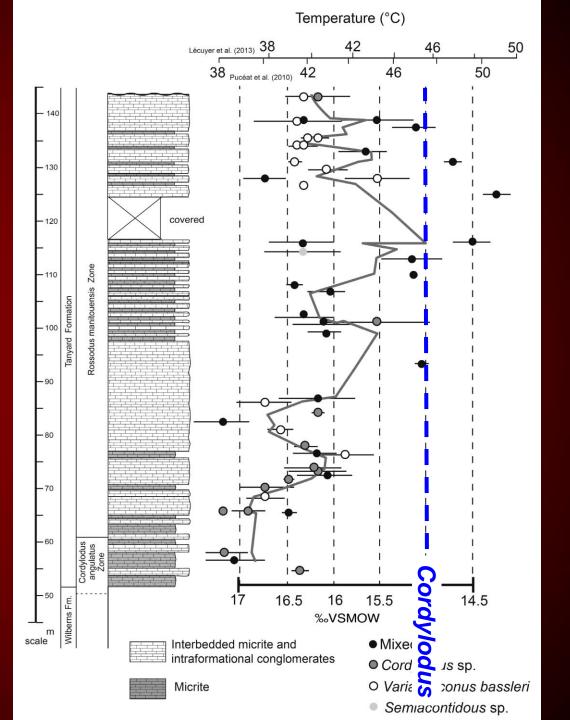
0.1


Results of chemical analyses using an electron microprob (CAMECA SX100)

Elemental concentrations in conodonts (*Cordylodus, Palmatolepsis*) and grasping spines of *Phakelodus*. Middle layer and diaganetic infillings of the spines show elevated S (and partly F) and decreased P and Sr contents. The outer layer of *Phakelodus* and albid crowns of conodonts have similar elemental concetrations (electron microbe analyses –CAMECA SX100)


Measured ¹⁸O/¹⁶O ratio was calibrated to Durango 3 ($\delta^{18}O = 9.8\%$ VSMOW). S.E. of spot measurements was between 0.1 to 0.3‰. S.D. of analyses of the Durango 3 was 0.16‰ (n = 16).

Reflected light image of chaetognath grasping spines (A1) and conodonts (A2, A3) analysed for δ^{18} O values using a SHRIMP IIe/MC ion microprobe


Ph	akelodus (€/O)		Cordylo	dus (€/O)			Palmato	lepsis (D)	
	Middle layer		Albid		Hyaline		Albid		Hyaline
	δ ¹⁸ O (‰VSMOW)		δ ¹⁸ Ο (‰VSMOW)		δ ¹⁸ O (‰VSMOW)		δ ¹⁸ O (‰VSMOW)		δ ¹⁸ O (‰VSMOW)
Min	9.5	Min	14.5	Min	15.1	Min	17.1	Min	18.2
Mean	13.0	Mean	15.1	Mean	15.4	Mean	18.7	Mean	18.8
Max	14.4	Max	16.0	Max	15.9	Max	20.9	Max	19.3

Ion microprobe (SHRIMP **Ile/Mc)** analyses have shown low δ^{18} O values of the middle layer of **Phakelodus** grasping spines (ca. 13‰ VSMOW) which are much lower than those of coeval Cordylodus conodonts. This proves a diagenatic origin of **Phakelodus** oxygen isotope signal.

CAMBRIAN		EARLY ORDOVICIAN	DOVICIAN
		Tremadocian	an
		Skullrockian Stage	Stage
C. lindstromi- C. proavus	lapetognathus	C. angulatus	R. manitouensis
MooreHollow Group	w Group	Ellenber	Ellenberger Group
Wilberns Formation	ormation	Tanyard	Tanyard Formation
San Saba Member	ember	Thread	Threadgill Member
		Study	Study interval

Lower Ordovician conodont δ^{18} O values from USA (after Quinton et al. 2018). The measured δ^{18} O values of *Cordylodus* (ca. 15‰ VSMOW) match a part of the trend, whereas much lower *Phakelodus* δ^{18} O values (ca. 13‰ VSMOW) are of clear diagenetic origin.

Phakelodus

- Apatite grasping spines of Lower Palaeozoic chaetognaths reveal major morphological and microstructural differences from conodonts and a resemblance to modern chaetognath spines built of chitin.
- Chemical analyses of the grasping spines conducted by an electron microprobe have shown diaganetic signatures of their middle layer and internal infillings. The outer layer of grasping spines has, in turn, elemental concentrations similar to those of conodonts.
- Results of microsampling of the grasping spines using a SHRIMP IIe/MC ion microprobe have shown low δ¹⁸O values (ca. 13‰ VSMOW) of their middle layer and confirmed its diagenetic origin.
- Although a thin, outer apatite layer of grasping spines of Palaeozoic chaetognaths, might have been precipitated during the animal growth or during very early submarine diagenetic processes it is too thin to form the sole structural support. The rest of the spines were presumable built of chitin or chitin-apatite complexes and underwent pervasive diagenetic phosphatization.