WYNIKI BADAŃ GEOFIZYCZNYCH

Michał ROMAN

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

W otworze wiertniczym Lębork IG 1 wykonano pomiary geofizyki wiertniczej w sześciu odcinkach pomiarowych. Badania były wykonywane aparaturami analogowymi przez Bazę Geofizyki Kopalnianej w Pile Zakładu Geofizyki Przemysłu Naftowego w Krakowie P. P. Poszukiwań Naftowych w okresie od 9.10.1959 r. do 14.07.1961 r. Pomiary wykonano przy użyciu standardowej aparatury produkcji radzieckiej, następnie w 90. latach XX w. część profilowań scyfrowano. Wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane, jednostki w których rejestrowano te profilowania to impulsy na minutę. Klasyczne pomiary oporności w wariantach potencjałowym i gradientowym mierzą pozorne oporności skał. Scyfrowane dane pomiarowe znajduja sie w formacie plików .las w Centralnej Bazie Danych Geologicznych (nr identyfikacyjny CBDG otworu - 30048, nazwa - Lębork IG-1), część oryginalnych analogowych materiałów znajduje się w Narodowym Archiwum Geologicznym pod nr 67709.

W otworze Lębork IG 1 wykonano następujące pomiary (w nawiasach podano skróty stosowane w CBDG):

profilowanie średnicy otworu PŚr (CALI),

profilowanie naturalnej promieniotwórczości gamma PG (GR),

- profilowanie neutron-gamma PNG (NEGR),

- profilowanie potencjałów samoistnych PS (SP),

profilowanie oporności PO sondami o rozstawach:
M0,5A0,1B (EL02), M1,0A0,1B (EL03), M2,5A0,25B (EL09), M4,0A0,5B (EL14), M8,0A0,5B (EL26), B2,5A-0,25M i M0,25A2,5B (EN10),

– mikroprofilowanie oporności mPO,

-profilowanie oporności płuczki POpł (MRES),

 profilowanie temperatury przy ustalonej równowadze temperatury PTu,

 profilowanie temperatury przy nieustalonej równowadze temperatury PTn,

- profilowanie temperatury po cementowaniu PTc,
- profilowanie krzywizny otworu PK.

W tabeli 21 przedstawiono dokładne interwały głębokościowe wykonanych profilowań geofizyki otworowej (wg rzeczywistej zawartości materiałów analogowych, z pominięciem pomiarów w zarurowanej części otworu) wraz z datą ich wykonania i ówczesną głębokością i średnicą otworu. Niestety oryginalne materiały analogowe z profilowaniami elektrometrii w pierwszym odcinku nie zachowały się, były jednak scyfrowane i dostępne są ich wersje cyfrowe w postaci plików formatu .las w CBDG. Informacje w nagłówkach pozostałych materiałów analogowych były stosunkowo skąpe (a niekiedy ze sobą sprzeczne) i mimo posiłkowania się kartą otworu, ustalenie parametrów otworu nie było możliwe w każdym z odcinków badań.

Połączone i znormalizowane wyniki profilowania gamma przedstawiono na figurze 53. Znajduje się na niej również między innymi profilowanie średnicy otworu wiertniczego z oznaczonymi za pomocą strzałek głębokościami łączenia odcinków badań oraz średnica nominalna wiercenia (wybrano najbardziej prawdopodobny wariant średnicy nominalnej podczas wykonywania pomiarów – informacje w różnych cześciach dokumentacji były ze sobą sprzeczne). Profilowanie gamma znormalizowano przy użyciu metody opisanej w pracy Szewczyka (2000), a profilowanie neutronowe znormalizowano przy użyciu metody opisanej w pracy Szewczyka i in. (2001).

OCENA JAKOŚCI DANYCH

Średnica otworu odbiega od nominalnej średnicy wiercenia w sposób typowy dla ówcześnie wykonywanych otworów, tj. stosunkowo częste są kawerny (zwłaszcza w słabiej skonsolidowanych utworach triasu, rozpuszczalnych utworach permu czy górnej części syluru poniżej głęb. 1398 m, w której najprawdopodobniej źle dobrano parametry wiercenia i płuczki), w przepuszczalnych utworach kenozoicznych i kredowych powstał prawdopodobnie

Tabela 21

Wykaz badań geofizyki otworowej wykonanych w otworze wiertniczym Lębork IG 1

		0				
Data wykonania badań Date of measurement	Rodzaj wykonanych badań (skrót) Type of measurement (abbreviated)	Interwał głębokościowy badań Depth interval [m]	Głębokość otworu podczas wykonywania badań Borehole depth during measurement [m]	Średnica nominalna otworu Caliper		
1	2	3	4	5		
	РК	75,00–538,00				
	PO: M0,5A0,1B (EL02)	51,25-537,25				
- 10 10 50	PO: M1,0A0,1B (EL03)	51,25-539,25				
	PO: M2,5A0,25B (EL09)	52,75-537,75	540,0	do głęb. 51,0 m rury o średnicy		
9.10.1959	PO: M4,0A0,5B (EL14)	55,25–546,75	profilowania krzywizny)	473 mm, poniżej brak danych		
	PO: M8,0A0,5B (EL26)	58,25-549,50				
	PŚr (CALI)	50,50-542,50				
	PS (SP)	54,25-534,75				
	POpł (MRES)	491,75-823,25				
	PO: M0,5A0,1B	530,00-814,00				
-	PO: M1,0A0,1B	530,00-814,00				
	PO: M2,5A0,25B	530,00-814,00				
	PO: B2,5A0,25M	530,00-814,00		do głęb. 523,9 m rury o średnicy 340 mm, poniżej średnica		
11.11.1959	PO: M4,0A0,5B	530,00-814,00	814,4			
	PO: M8,0A0,5B	530,00-814,00		nominalna 308 mm		
	PŚr	530,00-820,00				
	PS	530,00-814,00				
	PNG	5,00-823,00				
	PG	5,00-824,00				
	PG	776,00–1400,00				
4.02.1960	PŚr	526,00-1399,00				
	РК	550,00-1375,00				
	PO: M0,5A0,1B	775,00–1396,00				
	PO: M1,0A0,1B	775,00–1396,00				
	PO: M2,5A0,25B	775,00–1396,00				
	PO: B2,5A0,25M	775,00–1396,00				
6.02.1960	PO: M4,0A0,5B	775,00–1396,00	1206 7	do głęb. 523,9 m rury o średnicy 340 mm, na głęb. 523,9–1300,0 m		
	PO: M8,0A0,5B	775,00–1396,00	1590,7	średnica nominalna – 308 mm, poniżej – 216 mm		
	PS	775,00–1396,00		F		
	PO: M2,5A0,25B	773,00–1340,00				
	PS	773,00–1090,00				
7.02.1960	PTn (po 2 dniach stójki)	8,00–1397,00				
	PO: M2,5A0,25B	510,00-1335,00				
18.02.1960	PŚr	510,00–1087,50				
	PS 510,00–1335,00					

List of well logs from the Lębork IG 1 borehole

PS

РК

PNG

8.05.1961

1	2	3	4	5	
24.05.1960	PTc (33 godz. po cementowaniu)	21,50-1255,50	1619	_	
	PO: M0,5A0,1B	1410,00–2410,00			
-	PO: M1,0A0,1B	1410,00–2410,00	-		
	PO: M2,5A0,25B	1410,00–2410,00	-		
	PO: M0,25A2,5B	1410,00-2410,00	-		
29.09.1960	PO: M4,0A0,5B	1410,00–2410,00	_		
	PO: M8,0A0,5B	1410,00–2410,00	2415,6		
	PŚr	1410,00-2410,00	_		
	PS	1410,00-2410,00	_		
	РК	1400,00-2400,00	_		
20.00.10(0	PNG	747,50–2415,00	_		
30.09.1960	PG	1388,50-2404,00			
	mPO: A0,025M0,025N	1404,00-2480,00			
9.10.1960	mPO: A0,025M	1404,00-2480,00		do głęb. 1406,0 m średnica rur 244 mm, poniżej średnica nominalna 216 mm	
	mPO: A0,025M0,025N	1404,00-2480,00	brak danych		
	mPO: A0,05M	1404,00-2480,00	-		
	POpł	1478,00-2486,50	-		
	PO: M0,5A0,1B	2252,50-2997,50			
	PO: M1,0A0,1B	2252,50-2997,50	-		
	PO: M2,5A0,25B	2252,50-2997,50			
16 17 01 10/1	PO: M0,25A2,5B	2305,00–2997,50			
10-17.01.1901	PO: M4,0A0,5B	2252,50-2997,50			
	PO: M8,0A0,5B	2252,50-2997,50	2000 4 h-h 2004 0		
	POpł	2252,50-2997,50	- 3000,4 lub 3004,0		
	PS	2252,50-2997,50	_		
18.01.1961	PTn (po 2 dniach stójki)	1300,00–1882,50			
19 22 01 1041	PŚr	1400,00–2999,00			
18-22.01.1901	PG	1375,00-3000,00			
22.01.1961	РК	2400,00-3000,00			
	PO: M0,5A0,1B	2947,50-3300,00			
	PO: M1,0A0,1B	2947,50-3300,00			
	PO: M2,5A0,25B	2947,50-3300,00	_		
	PO: B2,5A0,25M	2947,50-3300,00]		
7.05.1961	PO: M4,0A0,5B	2947,50-3300,00	3310,0		
	PO: M8,0A0,5B	2947,50-3300,00]		
	PŚr	2947,50-3300,00]		

2947,50-3300,00

3000,00-3305,00

2301,00-3312,00

3310,0

Tabela 21 cd.

Tabela 21 cd.

1	2	3	4	5	
cd. 8.05.1961	PG	2897,50-3308,50		216 mm	
20.05.1961	PTu (po 12 dniach stójki)	32,00-3306,00	3310.0	210 mm	
14.07.1961	PTc (25 godz. po cementowaniu)	5,00-837,00	-)-	do głęb. 835,8 m średnica rur 168 mm	

PG – profilowanie naturalnej promieniotwórczości gamma, PNG – profilowanie neutron-gamma, PS – profilowanie naturalnych potencjałów, PO – profilowanie oporności (A,B – elektrody prądowe, M – elektroda pomiarowa, odległości między elektrodami w metrach), POpł – profilowanie oporności płuczki (rezistiwimetr), mPO – mikroprofilowanie oporności (A – elektroda prądowa, M, N – elektrody pomiarowe, odległości między elektrodami w metrach), PK – profilowanie krzywizny otworu, PŚr – profilowanie średnicy, PTu – profilowanie temperatury w ustalonych warunkach termicznych, PTn – profilowanie temperatury w nieustalonych warunkach termicznych, PTc – profilowanie temperatury cementowania. Czcionka pogrubiona – profilowania dostępne w formie cyfrowej. Czcionka pochylona – profilowania dostępne tylko w formie cyfrowej, w nawiasach podano ich nazwę w CBDG

PG – gamma ray log, PNG – neutron-gamma ray log, PS – spontaneous potential log, PO – conventional electrical log (A,B – current electrodes, M – measurement electrode, distances between electrodes are expressed in meters), POPI – mud resistivity log, mPO – microlog resistivity (A – current electrode, M,N – measurement electrodes, distances between electrodes are expressed in meters), PK – deviation log, PSr – caliper, PTu – temperature log in stable conditions, PTn – temperature log in unstable conditions, PTc – temperature log of cementation process. BD – lack of data. The font has been bolded in the case of digitalized curves. Italics indicates curves that are available only in digital form, there mnemonics in Central Geologic Database (CBDG) are given in brackets

korek ilasty, przez co średnica jest mniejsza od nominalnej. W pozostałych fragmentach profilu (obejmujących łącznie około połowę profilu), zwłaszcza w jego dolnej części, średnica jest zbliżona do nominalnej.

Profilowanie krzywizny otworu nie wykazało znaczących odchyleń od pionu (maks. 4°30", zwykle nie przekraczały 1–2°), odejście otworu od punktu początkowego wyniosło ok. kilkadziesiąt metrów, otwór jest – generalnie rzecz biorąc – pochylony w kierunku zachodnim.

Profilowanie naturalnej promieniotwórczości PG w dużej części profilu, to jest w interwale głęb. ok. 1740–2960 m, a być może również 3230–3310 m, wykazuje anomalnie niskie wartości w porównaniu do pobliskich otworów przewiercających utwory syluru i ordowiku. Prawdopodobnie powstały one w wyniku niestabilności termicznej używanej wówczas sondy – na dnie otworu temperatura mogła osiągać nawet ok. 980°C, a wczesne wersje sond radiometrycznych (niestety dokładny typ sondy nie został podany) nie były odporne na tak wysokie temperatury. Niestety taki błąd pomiarowy dyskwalifikuje ten pomiar do dalszej interpretacji, co więcej rzutuje on na wiarygodność pozostałych części pomiaru PG, a także może świadczyć o występowaniu podobnych problemów z pomiarami neutron-gamma PNG. W związku z tym w otworze Lębork IG 1 nie przeprowadzono interpretacji litologicznej, porowatościowej czy gęstościowej przewierconych skał.

Pozostające w zasobach CBDG krzywe kompozytowe (połączone krzywe badań odcinkowych) nie zawierają w sobie wszystkich dostępnych badań odcinkowych (np. licząc od góry drugiego odcinka profilowania średnicy i oporności mierzonej sondą potencjałową czy pierwszego odcinka krzywej oporności mierzonej sondą gradientową), ponadto krzywe kompozytowe oporności wydają się mieć inny kształt niż źródłowe dla nich krzywe odcinkowe. W związku z powyższym sporządzono własne krzywe kompozytowe profilowania średnicy oraz oporności.

INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Na figurze 53 zestawiono profilowania średnicy i średnicy nominalnej, naturalnej promieniotwórczości gamma, profilowanie neutron-gamma oraz profilowania oporności w różnych zasięgach radialnych.

Profilowania te wskazują na stosunkowo niskie zailenie w utworach kredowych i kenozoicznych, możliwe występowanie słodkowodnych poziomów wodonośnych w porowatych i przepuszczalnych skałach z tych interwałów głębokości (rozejście się krzywych oporności, obecność korka ilastego). Pomiary radiometryczne w tym odcinku nie są wiarygodne z uwagi na brak decentralizacji sond i dużą średnicę otworu (Jarzyna i in., 1999). Należy tu zwrócić uwagę, że pomiary radiometryczne wykonano prawdopodobnie po poszerzeniu otworu do średnicy ok. 445 mm do głęb. ok. 524 m. Utwory triasu do głęb. ok. 550 m są słabo zailone, poniżej tej granicy zailenie znacząco się zwiększa, co można zauważyć zwłaszcza na krzywych PG i PO.

W utworach permu wyraźnie uwidaczniające się maksima na krzywej PNG skorelowane z PO można powiązać z obecnością czystej soli, ogólnie utwory tego wieku są – poza skrajnie górną i dolną częścią – bardzo słabo zailone.

Utwory syluru charakteryzują się monotonnym wykształceniem, obserwowane anomalie na krzywych radiometrycznych prawdopodobnie są związane z warunkami panującymi w otworze (obecnością kawern/rozmyć, wysoką temperaturą wpływającą na stabilność sondy gamma) oraz łączeniem odcinków pomiarowych (np. anomalia na głęb. ok. 2971 m). Nagłe rozejście się krzywych oporności obserwowane na wkładce na głęb. 2971 m jest związane z błędem popełnionym na etapie cyfrowania i łączenia odcinków pomiarowych (poniżej tej głębokości wykorzystano profilowanie potencjałowe zamiast gradientowego), ponadto w kompozytowych krzywych profilowań oporności brak jest najwyższego odcinka tych pomiarów.

Obniżenie naturalnej promieniotwórczości poniżej głęb. ok. 3240 m jest prawdopodobnie związane z właściwościami słabo zailonych, porowatych (wg PNG) utworów górnej części ordowiku, choć wpływu ewentualnej niestabilności termicznej sondy gamma w tym odcinku nie można wykluczyć.

Wykonane pomiary termiczne w otworze nie zostały scyfrowane, w związku z czym nie przeprowadzono analizy właściwości termicznych ośrodka skalnego. Gęstość strumienia cieplnego dla rejonu tego otworu wiertniczego wynosi ok. 75 mW/m², co jest wartością podwyższoną w stosunku do typowych dla polskiej części platformy wschodnioeuropejskiej (zwykle ok. 50–60 mW/m²) (Szewczyk, Gientka, 2009), zaś maksymalna zarejestrowana na dnie otworu (to jest na głęb. 3310 m p.p.t.) temperatura wyniosła ok. 980°C.

Na figurze 54 pokazano całkowitą mineralizację wód pobranych z dwóch głębokości w obrębie dwóch warstw wodonośnych wieku dolnotriasowego i dolnopermskiego (odpowiednio 530 i 1023 m) na tle mineralizacji wód z innych otworów wykonanych na Niżu Polskim i jej trend wraz z głębokością poboru próbek. Obserwowane wartości mineralizacji (odpowiednio 25,6 i 100,5 g/dm³) w otworze Lębork IG 1 są wyższe od średnich wartości mineralizacji obserwowanych na podobnych głębokościach na obszarze Niżu Polskiego. Różnica ta jest znacząca zwłaszcza dla dolnopermskiego poziomu – całkowita mineralizacja jest tam ponad dwukrotnie większa niż średnia dla tej głębokości z otworów wiertniczych Niżu Polskiego.

Opracowanie danych geofizyki wiertniczej wykonano m.in. w programie Techlog, który został udostępniony PIG--PIB przez Schlumberger Information Solutions w celu prowadzenia prac naukowo-badawczych.

Fig. 54. Mineralizacja wód podziemnych badanych poziomów zbiornikowych (pogrubione punkty) na tle mineralizacji wód Niżu Polskiego (pozostałe punkty) i ich trendu z głębokością (linia ciągła)

Groundwater mineralization of the tested aquifers (bolded points) against the groundwater mineralization in the Polish Lowlands (the remaining points) and it's trend with depth (solid line)

Lidia DZIWIŃSKA, Waldemar JÓŹWIAK

OPRACOWANIE WYNIKÓW POMIARÓW PRĘDKOŚCI ŚREDNICH

Pomiar prędkości średnich w otworze Lębork IG 1 wykonał Dział Geofizyki Poszukiwawczej Poszukiwań Naftowych Geofizyki Przemysłu Naftowego w Krakowie dwuetapowo – w 1960 r. do głęb. 1675 m i w 1961 r. od 1700 do 3250 m.

Pracami objęto serię skał permomezozoiku i syluru. Całkowita głębokość wiercenia zakończonego w ordowiku wynosi 3310 m.

Prace pomiarowe wykonano aparaturą radziecką typu SS-26-51D oraz geofonem głębinowym typu S1s49. Interwał pomiaru ustalona na 25 m, co było podyktowane potrzebą zwiększenia dokładności. Prace strzałowe wykonano z trzech otworów usytuowanych w sposób następujący:

PS1	d = 50 m	$A = 20^{\circ}$
PS2	<i>d</i> = 250 m	$A = 20^{\circ}$
PS3	<i>d</i> = 250 m	<i>A</i> = 100°

gdzie:

PS - punkt strzałowy,

d-odległość punktu strzałowego od głębokiego otworu,

A – azymut kierunku głęboki otwór–punkt strzałowy.

Sytuację otworów strzałowych ustalono na podstawie danych sejsmicznych.

Prace strzałowe wykonano przy użyciu środków wybuchowych dynamitu 1G i zapalników gamma nr 8 umieszczonych w tych samych otworach w 1960 i 1961 r. Wielkość ładunków wybuchowych oraz głębokość strzelania z poszczególnych PS (interwał pomiaru) przedstawiono w tabeli 22.

W celu kontroli głębokości strzelania na poszczególnych punktach strzałowych ustawiono w odległości nie większej niż 5 m geofony korekcyjne K_1 . Do sprawdzenia momentu wybuchu przeznaczony był geofon korekcyjny K_2 .

Dla interwału pomiarowego 25–1675 m pierwsze impulsy od geofonu głębinowego rejestrowano na dwóch równolegle podłączonych kanałach, przy filtracji 0 i wzmocnieniu odpowiednio minimalnym i maksymalnym. Impulsy geofonów korekcyjnych rejestrowano w sposób następujący: geofon korekcyjny K_2 na kanale 3, K_1^1 na kanale 4 i K_1^2 na 5 oraz K_1^3 na kanale 6.

W interwale 1700–3250 m pierwsze impulsy od geofonu głębinowego rejestrowano na trzech równolegle podłączonych kanałach, odpowiednio nr kanału-filtracjawzmocnienie: 1–0–maks., 2–0–min., 3–3–maks.

Zapisy geofonów korekcyjnych rejestrowano w sposób poniższy: geofon korekcyjny K_2 na kanale 4, K_1^1 na kanale 5, K_1^2 na 6 i K_1^3 na kanale 7.

W celu dokładnego rejestrowania momentu wybuchu stosowano specjalny obwód – sposób pętli. Do pomiaru użyto kabel karotażowy, trójżyłowy typu KTO4 o dobrej jakości. Oporność żył w stosunku do masy oraz oporność między żyłami dla głęb. 1675 m wynosiła 1,2 m. Obserwowane zakłócenia na sejsmogramach uznano za spowodowane przez wiatr.

Jakość materiału, a w związku z tym i pewność opracowania końcowego dla poszczególnych punktów strzałowych zestawiono w tabeli 23.

Wartość oceny określa pewność korelacji, jakość i wyrazistość impulsu oraz maksymalny, dopuszczalny błąd w określeniu wstąpienia fali.

Wartości prędkości średnich na podstawie obliczeń z trzech PS, począwszy od czasu 0,3 sek., są prawie identyczne, co potwierdza prawidłowość pomiarów.

Przy ocenie możliwych błędów w określeniu prędkości średnich uwzględniamy błędy w pomiarze spowodowane m.in. założeniem, że ośrodek sejsmiczny charakteryzuje się liniowym wzrostem prędkości.

W celu jednolitego porównania krzywych $V_{sr}(h)$ oraz h(t) poszczególne punkty pomiaru odnosi się do prędkości h_{pom} , tj. głębokości usytuowania geofonu głębinowego od powierzchni ziemi w miejscu głębokiego otworu.

Krzywe prędkości przedstawione na wykresach są zredukowane do przyjętego poziomu odniesienia 12 m n.p.m. przy wysokości głębokiego otworu geologicznego 15 m n.p.m.

Tabela 22

Wielkość ładunków wybuchowych oraz glębokość strzelania z poszczególnych punktów strzałowych

Weight of explosive charges and shooting depths at individual shotpoints

Nr PS No PS	Interwał pomiaru Measurement interval [m]	Wielkość ładunku Weight of explosive charges [kg]	Głębokość strzelania h Shooting depth [m]	Przyjęta średnia głębokość strzelania h _{ośr.} Average shooting depth [m]
1	25–1675	0,2-0,4	2,5–7,0	2,5
	1700-3250	1,0–2,0	2,0-7,0	3,0
2	25-1675	0,2–0,4	3,0-6,0	4,0
	1700-3250	1,0–2,0	2,0-2,5	2,5
2	25-1675	0,2–0,4	3,0-7,0	3,0
3	1700-3250	1,0-2,0	1,0-3,0	3,0

Jakość materiałów sejsmicznych

Seismic data quality

Nr PS	Interwel nomieru	Jakość materiałów/ Material quality				
No PS	Measurement interval [m]	dobra good	dostateczna sufficient	zła bad		
	25-650	-	+	+		
1	675–1675	+	+	-		
	1700–3250	+	-	_		
	25-650	_	_	+		
2	675–1675	+	+	+		
	1700–3250	+	_	_		
	25-650	-	+	+		
3	675–1675	+	+	+		
	1700–3250	_	+	_		

Krzywe te stanowią uśrednienie danych uzyskanych z trzech PS.

Obliczanie czasu redukowanego (t_r) odniesiono do wielkości głębokości redukcji (h_r) , którą określamy wyrażeniem:

$$h_r = h_{pom} - h_{\acute{s}r} + N$$

gdzie:

 h_r – głębokość zredukowana tj. odległość geofonu głębinowego od średniego poziomu strzelania,

 h_{pom} – głębokość zanurzenia geofonu od powierzchni ziemi,

 $h_{\dot{s}r}$ – średni poziom (głębokość) strzelania,

 N – wysokość otworu strzałowego (PS) w stosunku do wylotu głębokiego otworu.

Przy założeniu jednorodności ośrodka od punktu wybuchu do głębokości zanurzenia geofonu głębinowego redukcję czasu obserwowanego (t_{ob}) obliczono wg wzoru:

$$t_r = \frac{h_r}{S} \cdot t_{ob}$$

gdzie:

 t_r – czas poprawiony zredukowany do poziomu odniesienia,

S – droga przebiegu impulsu sejsmicznego wzdłuż promienia:

$$S = \sqrt{(h_r^2 + d^2)},$$

d – odległość PS od głębokiego otworu.

Poprawki czasowe (Δth) na zmianę głębokości strzelania oraz zmianę momentu wybuchu obliczono na podstawie równania:

$$\Delta th = \frac{\Delta h}{V_o} = \frac{h - h_{\acute{s}r}}{V_o}$$

gdzie

h – poziom odniesienia,

 V_o – prędkość początkowa obliczona na podstawie mikrokarotażu lub prędkości w strefie małych prędkości (SMP).

Do obliczenia poprawki Δth , między średnią głębokością wzbudzania a poziomem odniesienia, przyjęto prędkość w SMP – 1550 m/s.

Uzyskane wyniki wykazały zgodność z danymi otrzymanymi metodą opierającą się na uwzględnieniu poprawek czasowych wg wskazań geofonów korekcyjnych tK₁ i tK₂, tj. z czasem poprawionym po wprowadzeniu poprawki uwzględniającej zmianę głębokości strzelania i moment wybuchu.

Wartości h_r i t_r posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{\acute{s}r} = \frac{h_r}{t_r}$$

Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego. Charakter zmian prędkości w funkcji głębokości ilustrują tabele 24 i 25 oraz figury 55 i 56.

Wszystkie wartości h, t_r i V_{sr} zestawiono w tabeli 24. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 55A) i hodografu pionowego (fig. 55B). Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać stały systematyczny wzrost prędkości wraz z głębokością.

Zwraca też uwagę nieregularny przebieg krzywej prędkości średniej w jej początkowej części. Może to wynikać z uśrednienia wartości z trzech PS i wpływu anizotropii, która znajduje większe odzwierciedlenie na mniejszych głębokościach.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości został

Tabela 24

Zestawienie wartości h, t_r, V_{sr}

 h, t_r and V_{sr} values

<i>h</i> [m]	$t_r[s]$	V_{sr} [m/s]]	<i>h</i> [m]	<i>t_r</i> [s]	$V_{\acute{s}r}$ [m/s]
1	2	3	1	1	2	3
97	0,0615	1577		747	0,3440	2172
122	0,0760	1605	1	771	0,3560	2166
147	0,0850	1729	1	772	0,3465	1347
171	0,0930	1839	1	796	0,3600	1371
221	0,1220	1811	1	797	0,3580	2226
222	0,1180	1881]	821	0,3750	2189
246	0,1350	1822		846	0,3860	2192
247	0,1320	1871		847	0,3850	2200
271	0,1470	1844		871	0,3940	2211
272	0,1460	1863		872	0,3920	2224
296	0,1600	1850		897	0,3975	2257
297	0,1595	1862]	921	0,4040	2280
321	0,1760	1824]	922	0,4020	2294
322	0,1725	1867		946	0,4080	2319
346	0,1840	1880		947	0,4100	2310
347	0,1840	1886		971	0,4140	2345
371	0,1920	1932		972	0,4145	2345
372	0,1940	1918		996	0,4210	2366
396	0,1990	1990		997	0,4215	2365
446	0,2260	1973		1021	0,4300	2374
471	0,2350	2004		1022	0,4270	2393
472	0,2420	1950		1046	0,4380	2388
496	0,2500	1984		1047	0,4370	2396
521	0,2640	1973		1071	0,4470	2396
522	0,2630	1985		1072	0,4465	2401
546	0,2730	2000		1096	0,4560	2404
547	0,2705	2022		1097	0,4560	2406
571	0,2800	2039		1121	0,4620	2426
572	0,2790	2050		1122	0,4640	2418
596	0,2880	2069		1146	0,4730	2423
597	0,2850	2095		1147	0,4725	2428
621	0,2960	2098		1171	0,4820	2429
622	0,2990	2080		1172	0,4820	2432
721	0,3400	2121		1196	0,4890	2446
722	0,3390	2130		1221	0,4980	2452
746	0,3500	2131		1222	0,4970	2459

Tabela 24 cd.

1	2	3
1246	0,5050	2467
1247	0,5050	2469
1271	0,5100	2492
1272	0,5130	2480
1296	0,5200	2492
1297	0,5205	2492
1321	0,5280	2502
1322	0,5280	2504
1346	0,5340	2521
1347	0,5365	2511
1371	0,5420	2530
1372	0,5435	2524
1396	0,5520	2529
1397	0,5515	2533
1421	0,5570	2551
1422	0,5595	2542
1444	0,5670	2547
1447	0,5670	2552
1471	0,5730	2567
1472	0,5735	2567
1496	0,5810	2575
1497	0,5820	2572
1521	0,5890	2582
1522	0,5895	2582
1546	0,5970	2590
1547	0,5955	2598
1571	0,6010	2614
1572	0,6030	2607
1597	0,6080	2627
1621	0,6170	2627
1622	0,6170	2629
1646	0,6230	2642
1647	0,6235	2642
1671	0,6300	2652
1672	0,6300	2654
1697	0,6405	2649
1722	0,6495	2651
1747	0,6590	2651
1772	0,6630	2673

1	2	3
1797	0,6720	2674
1822	0,6790	2683
1847	0,6845	2698
1872	0,6915	2707
1897	0,7005	2708
1922	0,7075	2717
1947	0,7105	2740
1972	0,7190	2743
1997	0,7215	2768
2022	0,7325	2760
2047	0,7370	2777
2072	0,7440	2785
2097	0,7485	2802
2122	0,7570	2803
2147	0,7645	2808
2172	0,7700	2821
2197	0,7805	2815
2222	0,7850	2831
2247	0,7915	2839
2272	0,7945	2860
2297	0,8005	2869
2322	0,8070	2877
2347	0,8115	2892
2372	0,8200	2893
2397	0,8245	2907
2422	0,8330	2908
2447	0,8385	2918
2472	0,8445	2927
2497	0,8520	2931
2522	0,8580	2939
2547	0,8630	2951
2572	0,8690	2960
2597	0,8780	2958
2622	0,8850	2963
2647	0,8875	2983
2672	0,8935	2990
2697	0,8995	2998
2722	0,9060	3004
2747	0,9105	3017

1

3022

1	2	3
2772	0,9175	3021
2797	0,9250	3024
2822	0,9270	3044
2847	0,9310	3058
2872	0,9370	3065
2897	0,9465	3061
2922	0,9515	3071
2947	0,9565	3081
2972	0,9620	3089
2997	0,9690	3093

h – głębokość, t_r – średni czas zredukowany, V_{sr} – prędkość średnia

h – depth, t_r – average reduced time, V_{sr} – average velocity

zastosowany sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możli-

Fig. 55. Wykres prędkości średnich (A) i hodograf pionowy (B) (poziom odniesienia 12,0 m n.p.m.)

 t_r – średni czas zredukowany, V_{sr} – prędkość średnia, h – głębokość

Average seismic velocity (A) and travel-time curve (B) (reference level 12.0 m a.s.l.)

 t_r – average reduced time, V_{sr} – average velocity, h – depth

3072 0,9855 3117 3097 0,9905 3127 3122 0,9995 3124 3147 1,0055 3130 3172 1,0115 3136 3197 1,0195 3136 3222 1,0240 3146 3247 1,0330 3143

2

0,9770

0,9810

wości jej wykorzystania jest stały odstęp między punktami pomiarowymi.

Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując zmierzone czasy zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, co 20 m. Następnie czasy te wygładzono specjalnym programem przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtry 0,25 i 0,50. Celem tych przekształceń usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone czasy pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonym w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych, który został przekazany do Centralnej Bazy Danych Geologicznych PIG-PIB.

3

3093

3106

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi. Zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe), V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawiera tabela 25. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 56.

Porównanie wykresów prędkości z profilem geologicznym wiercenia ułatwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze.

Najwyższa część krzywych prędkości średnich interwałowych i kompleksowych zgodnie z obrazem krzywej wygładzonej wykazuje stopniowy, "schodkowy" wzrost wartości od 1750 m/s do 3300 m/s. W podziale stratygraficznym otworu obejmuje ona utwory kenozoiku, kredy, triasu i permu. Analiza wykresów pozwala wydzielić dwa kompleksy górne – charakteryzujący się prędkością kompleksową o wartości ok. 1750 m/s do głęb. ok. 140 m odpowiadający skałom kenozoiku oraz do głęb. ok. 540 m o średniej wartości prędkości kompleksowej 2150 m/s korelujący się w profilu geologicznym otworu z utworami kredowymi i górną serią triasu. Kontrast prędkości miedzy tymi dwoma pakietami wynosi 400 m/s. Wykres prędkości interwałowych w wyżej wymienionym przedziale głębokościowym jest znacznie bardziej urozmaicony, wyróżnia poszczególne warstwy utworów kredowych. Krzywa prędkości kompleksowej odpowiadająca utworom triasowym wykazuje dwudzielność.

Kontrast prędkości ok. 500 m/s wyznacza granicę na głębokości odpowiadającej utworom pstrego piaskowca, wyróżniającymi się podwyższonymi wartościami w stosunku do osadów wyżej leżących. Średnia prędkość ok. 2650 m/s charakteryzuje dolną część triasu i stropowe warstwy cechsztynu do głęb. ok. 800 m. Na tym poziomie wyraźny wzrost wartości do 3300 m/s związany z kontrastem prędkości wynoszącym 650 m/s kontynuuje się do głęb. ok. 1070 m, wydzielając 270-metrową warstwę. Korelacja z profilem geologicznym otworu wskazuje tu na wysokoprędkościowe utwory cechsztynu, które wyznaczają zarówno na krzywej kompleksowej, jak i interwałowej, silne granice. Różnice prędkości w utworach cechsztynu spowodowane zmiennością ich wykształcenia litologicznego pozwalają wyróżnić na wykresie prędkości interwałowych trzy podkompleksy o prędkościach kolejno: 3100, 3650 i 3100 m/s. Pierwszy wyraźny wzrost wartości jest związany ze skałami anhydrytów i najstarszej soli kamiennej, a następny jeszcze wyraźniejszy dotyczy utworów solnych i podścielających je anhydrytowo-wapiennych. Trzeci podkompleks wyraźnie wydziela na głęb. ok. 1020 m granicę w spągowych warstwach cechsztynu, wyznaczoną przejściem w utwory czerwonego spągowca i syluru o znacznie obniżonej prędkości w porównaniu z prędkością leżących wyżej utworów cechsztynu. Zmniejszenie wartości prędkości kompleksowej do ok. 3000 m/s na głęb. ok. 1070 m odpowiednio wyraża górną granicę stratygraficzną warstw ludlowu.

Na głęb. ok. 1200 m obserwuje się ponowny wzrost prędkości kompleksowej do średnio 3300 m/s. Kompleks warstw przyporządkowanych w profilu geologicznym otworu utworom sylurskim do głęb. ok. 3130 m ogólnie charakteryzuje się stopniowym wzrostem wartości prędkości wraz z głęb. od 3000 do 4250 m/s oraz stosunkowo ich niewielkimi zmianami ze względu na małe zróżnicowanie litologiczne osadów. Na takim tle można wyróżnić kilka granic kontrastów prędkościowych, w większości o znaku dodatnim wydzielającym kolejno serie o prędkościach kompleksowych 3300, 3600, 3950, 4100 i 4250 m/s.

Wykres prędkości interwałowych zgodnie z definicją wykazuje częstsze zmiany. W przedziale głęb. 1200-

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_k) (reference level 12.0 m a.s.l.)

Tabela 25

Zestawienie uśrednionych wartości V_i, V_k, V_w obliczonych z czasu wygładzonego

		ŭ		-				
<i>h</i> [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s]		<i>h</i> [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s
1	2	3	4		1	2	3	4
20	1693	1739	1662]	740	2771	2663	2774
40	1693	1739	1662	1	760	2771	2663	2783
60	1693	1739	1704	1	780	2771	2663	2787
80	1693	1739	1762	1	800	2771	2663	2808
100	1693	1739	1830	1	820	3078	3304	2868
120	1961	1739	1899	1	840	3078	3304	2979
140	1961	2135	1959	1	860	3078	3304	3141
160	1961	2135	1998	1	880	3078	3304	3337
180	1961	2135	2015	1	900	3078	3304	3531
200	1961	2135	2013	1	920	3642	3304	3673
220	2017	2135	2005	1	940	3642	3304	3728
240	2017	2135	2001	1	960	3642	3304	3685
260	2017	2135	2011		980	3642	3304	3570
280	2017	2135	2039	1	1000	3642	3304	3418
300	2017	2135	2082	1	1020	3108	3304	3266
320	2190	2135	2135		1040	3108	3304	3136
340	2190	2135	2185	1	1060	3108	3304	3039
360	2190	2135	2222	1	1080	3108	2990	2978
380	2190	2135	2238	1	1100	3108	2990	2949
400	2190	2135	2236	1	1120	2996	2990	2948
420	2243	2135	2226	1	1140	2996	2990	2969
440	2243	2135	2222	1	1160	2996	2990	3005
460	2243	2135	2234	1	1180	2996	2990	3051
480	2243	2135	2271	1	1200	2996	2990	3099
500	2243	2135	2330	1	1220	3186	3298	3145
520	2494	2135	2404	1	1240	3186	3298	3182
540	2494	2135	2480	1	1260	3186	3298	3208
560	2494	2663	2541	1	1280	3186	3298	3223
580	2494	2663	2579	1	1300	3186	3298	3230
600	2494	2663	2595	1	1320	3236	3298	3231
620	2626	2663	2598	1	1340	3236	3298	3231
640	2626	2663	2605	1	1360	3236	3298	3234
660	2626	2663	2626	1	1380	3236	3298	3242
680	2626	2663	2662	1	1400	3236	3298	3258
700	2626	2663	2707	1	1420	3340	3298	3283
720	2771	2663	2749	1	1440	3340	3298	3315

Averaged V_i , V_k and V_w values calculated from smoothed time

Tabela 25 cd.

1	2	3	4		1	2	3	4
1460	3340	3298	3356		2220	4164	3947	4025
1480	3340	3298	3402		2240	4164	3947	4152
1500	3340	3298	3449		2260	4164	3947	4247
1520	3498	3298	3491		2280	4164	3947	4288
1540	3498	3298	3518		2300	4164	3947	4271
1560	3498	3298	3520		2320	4092	3947	4210
1580	3498	3298	3490		2340	4092	3947	4128
1600	3498	3298	3432		2360	4092	3947	4048
1620	3248	3298	3354		2380	4092	4117	3984
1640	3248	3298	3271		2400	4092	4117	3944
1660	3248	3298	3201		2420	3967	4117	3930
1680	3248	3298	3156		2440	3967	4117	3940
1700	3248	3298	3144		2460	3967	4117	3971
1720	3263	3610	3166		2480	3967	4117	4012
1740	3263	3610	3219		2500	3967	4117	4057
1760	3263	3610	3291		2520	4115	4117	4095
1780	3263	3610	3371		2540	4115	4117	4119
1800	3263	3610	3449		2560	4115	4117	4129
1820	3611	3610	3518		2580	4115	4117	4128
1840	3611	3610	3580		2600	4115	4117	4124
1860	3611	3610	3642		2620	4151	4117	4124
1880	3611	3610	3709		2640	4151	4117	4134
1900	3611	3610	3780		2660	4151	4117	4153
1920	3906	3610	3849		2680	4151	4117	4185
1940	3906	3610	3907		2700	4151	4117	4228
1960	3906	3610	3942		2720	4382	4117	4284
1980	3906	3610	3953		2740	4382	4117	4351
2000	3906	3610	3940		2760	4382	4117	4421
2020	3839	3610	3910		2780	4382	4117	4481
2040	3839	3610	3868		2800	4382	4242	4512
2060	3839	3947	3820		2820	4397	4242	4502
2080	3839	3947	3768		2840	4397	4242	4449
2100	3839	3947	3720		2860	4397	4242	4370
2120	3724	3947	3686		2880	4397	4242	4288
2140	3724	3947	3680		2900	4397	4242	4220
2160	3724	3947	3710		2920	4171	4242	4176
2180	3724	3947	3783		2940	4171	4242	4157
2200	3724	3947	3893		2960	4171	4242	4159
				-				

Tabela 25 cd.

1	2	3	4		1	2	3	4
2980	4171	4242	4175		3120	3848	4242	3951
3000	4171	4242	4196		3140	3848	3775	3873
3020	4169	4242	4211		3160	3848	3775	3807
3040	4169	4242	4206		3180	3848	3775	3757
3060	4169	4242	4174		3200	3848	3775	3721
3080	4169	4242	4115		3220	3902	3775	3700
3100	4169	4242	4036		3240	3902	3775	3700

h – głębokość, V_i – prędkość interwałowa, V_k – prędkość kompleksowa, V_w – prędkość wygładzona

h – depth, V_i – interval velocity, V_k – complex velocity, V_w – smoothed velocity

1620 m jest obserwowana tendencja wzrostowa wartości związana z udziałem skał wapiennych z podkreśleniem odcinka 1500–1620 m o prędkości interwałowej 3500 m/s. Poniżej notujemy obniżenie tej prędkości do 3250 m/s. Kontrast prędkości wyznacza na wyżej wymienionej głębokości granicę miedzy górnym kompleksem utworów iłowcowych i iłowcowo-wapnistych a serią niższą – iłowcowomułowcową. Następnie wartości wzrastają z wyraźnym dodatnim kontrastem na głęb. ok. 1920 m, wydzielającym pakiet o prędkości 3900 m/s. Niżej wartości prędkości interwałowej, podobnie jak kompleksowej, oscylują wokół 4100 m/s i w pobliżu tej wartości z lokalnymi anomaliami przebiegają aż do głęb. ok. 3130 m.

Należy zauważyć dodatnie kontrasty na głęb. ok. 2370 m dla prędkości kompleksowej i dodatkowo na 2720 m – dla interwałowej.

Wymienione wyżej zmiany w monotonnie wykształconych iłowcowo-mułowcowych utworach sylurskich nie są duże i należy je przypisać wzajemnej relacji osadów ilastych i mułowcowych. Znaczne obniżenie prędkości kompleksowych do 3775 m/s i towarzyszące im wartości interwałowe na wyżej wymienionej głębokości powodują dwudzielność najniższego odcinka pomiarowego z wyróżnieniem odcinka górnego korelowanego z utworami syluru iłowcowo-mułowcowymi i dolnego z bardziej iłowcowymi. Na podstawie prędkości interwałowych i kompleksowych dla poszczególnych utworów geologicznych otrzymano następujące średnie wartości (w zaokrągleniu do 50 m/s):

- 2750 m/s kenozoik,
- 2150 m/s kreda i górna część triasu,
- 2650 m/s trias dolny i przystropowe warstwy P2,
- 3300 m/s cechsztyn,
- 4100 m/s, z wydzieleniem w dolnym odcinku serii o 3800 m/s – sylur.

Uzyskany model prędkościowy dostarcza danych do wiarygodnej interpretacji głębokościowej granic sejsmicznych w całym kompleksie osadowym w utworach mezozoiku, permu i syluru. Z przedstawionych prędkości kompleksowych wynika, że najkorzystniejsze warunki do powstawania granic odbijających występują w kredzie, w pstrym piaskowcu, w cechsztynie oraz w utworach syluru. Znajduje to odzwierciedlenie w pracach sejsmicznych wykonanych w pobliżu otworu Lębork IG 1. W rejonie otworu granica sejsmiczna wiązana z przystropowymi utworami cechsztynu występuje w formie wyraźnego refleksu dwufazowego. Utwory triasu i kredy na tym obszarze są rejestrowane przez refleksy o mniejszej wyrazistości. Przy zwiększonej rozdzielczości zapisu można wydzielić skały kredy, cechsztyńskie utwory solne i węglanowe oraz sylurskie.

Fig. 53. Unormowane wartości profilowania gamma, profilowanie średnicy i średnicy nominalnej (strzałkami zaznaczono miejsca połączeń odcinków pomiarowych) wraz z profilowaniem neutron-gamma i profilowaniem oporności w krótkim i długim zasięgu radialnym

Normalized values of the natural gamma ray log, caliper and bit size (arrows indicates connection points between individual log runs) combined with neutron-gamma ray log and conventional gradient resistivity logs (shallow and deep)