WYNIKI BADAŃ GEOFIZYCZNYCH

Michał ROMAN

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

W otworze wiertniczym Narol IG 1 wykonano badania geofizyczne w ośmiu odcinkach pomiarowych. Badania były prowadzone przez Zakład Geofizyka Kraków, Oddział Geofizyki Wiertniczej Lublin Przedsiębiorstwa Badań Geofizycznych Warszawa i Geofizykę Toruń, w okresie od 30.05.1986 r. do 26.08.1987 r. Do pomiarów wykorzystano standardową aparaturę produkcji radzieckiej; pomiar upadomierzem zrealizowano prototypowym urządzeniem skonstruowanym przez Geofizykę Kraków. Wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane; jednostki, w których rejestrowano te profilowania, to impulsy na minutę. Scyfrowane dane pomiarowe z otworu Narol IG 1 znajdują się w formacie plików LAS w Centralnej Bazie Danych Geologicznych (numer identyfikacyjny CBDG otworu 9088, nazwa Narol PIG-1).

W otworze Narol IG 1 wykonano następujące pomiary (w nawiasach podano skróty stosowane w CBDG):

- profilowanie średnicy otworu PŚr (CALI);
- profilowanie naturalnej promieniotwórczości gamma PG (GR);
- profilowanie neutron-gamma PNG (NEGR);
- profilowanie gamma-gamma PGG (GGDN);
- profilowanie neutron-neutron nadtermiczny PNNnt (CNL);
- profilowanie potencjałów samoistnych PS (SP);
- sterowane profilowanie oporności (laterolog) POst (LL3);
- sterowane mikroprofilowanie oporności mPOst (ML);
- profilowanie akustyczne PA czasu interwałowego fali P (DT);
- profilowanie temperatury przy nieustalonej równowadze temperatury PTn (TEMN);
- profilowanie temperatury przy ustalonej równowadze PTu;
- profilowanie oporności PO sondami: A0.5M0.1N (EL02), A1.0M0.1N (EL03), A2.5M0.25N (EL09), A4.0M0.5N (EL14), A5.28M0.82N (EL18), B2.5A-0.25M, N2.5M0.25A (EN10);
- profilowanie upadu warstw PUW;

- profilowanie krzywizny otworu PK;
- profilowanie cementomierzem akustycznym PAC (A1, A1 2, TEMC, CBT2).

W tabeli 21 przedstawiono dokładne interwały głębokościowe wykonanych profilowań geofizyki otworowej (wg rzeczywistej zawartości materiałów analogowych, z pominięciem fragmentów pomiarów w zarurowanej części otworu) wraz z datą ich wykonania i ówczesną głębokością i średnicą otworu.

W otworze Narol PIG 2 badania geofizyczne prowadzono w pięciu odcinkach pomiarowych (z uwzględnieniem profilowania gamma). Badania były wykonywane przez Bazę Geofizyki Wiertniczej w Wołominie Geofizyki Toruń Przedsiębiorstwa Geofizyki Morskiej i Lądowej Górnictwa Naftowego w Toruniu lub PGGN-Toruń), w okresie od 29.10.1989 r. do 27.04.1991 r. Do pomiarów wykorzystano standardową aparaturę produkcji radzieckiej. Wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane, jednostki w których rejestrowano te profilowania to impulsy na minutę. Scyfrowane dane pomiarowe znajdują się w formacie plików LAS w Centralnej Bazie Danych Geologicznych (numer identyfikacyjny CBDG otworu 9106, nazwa Narol PIG-2; CBDG, 2014).

W otworze Narol PIG 2 wykonano następujące pomiary (w nawiasach podano skróty stosowane w CBDG):

- profilowanie średnicy otworu PŚr (CALI);
- profilowanie naturalnego promieniowania gamma PG (GR);
- profilowanie neutron-gamma PNG (NEGR);
- profilowanie gamma-gamma PGG (GGDN);
- profilowanie neutron-neutron PNN (CNL, NTCN);
- profilowanie potencjałów samoistnych PS (SP);
- sterowane profilowanie oporności (laterolog) POst (LL3);
- sterowane mikroprofilowanie oporności mPOst (ML);
- profilowanie indukcyjne PI (IL);
- profilowanie akustyczne PA czasu interwałowego fali P (DT);

Tabela 21

Wykaz badań geofizyki otworowej wykonanych w otworze wiertniczym Narol IG 1

List of well logs from the Narol IG 1 borehole

Data wykonania badań Date of measurement	Rodzaj wykonanych badań (skrót) Type of measurement (abbreviated)	Interwał głębokościowy badań [m] Interwał głębokościowy badań	Głębokość otworu podczas wykonywania badań wg miary wiertniczej [m] Well depth during measurement – driller's depth	Średnica nominalna otworu [mm] Caliper		Data wykonania badań Date of measurement	Rodzaj wykonanych badań (skrót) Type of measurement (abbreviated)	Interwał głębokościowy badań [m] Interwał głębokościowy badań	Głębokość otworu podczas wykonywania badań wg miary wiertniczej [m] Well depth during measurement – driller's depth	Średnica nominalna otworu [mm] Caliper				
1	2	3	4	5		1	2	3	4	5				
	PO: B2,5A0,25M	24–398					PŚr	399–1560						
	PO:		-			PG	1180-1555							
	A2,5M0,25N	24–398	-			24–26.07.1986	PNG	1180-1555	1560	308				
30.05.1986	PS ×2	24–394	400	/38			РК	1175–1560						
50.05.1980	PŚr	24–398	400	450		PA: T1, T2, DT	399–1550							
	PG	8–398	-			PO: N2,5M0,25A	1557–2116							
	PNG	8–398	-				PO:	1557–2116						
	РК	0–395					A2,5M0,25N							
4.06.1986	PTn	22–391	400				PO: A0,5M0,1N	1557–2115						
	PGG	0-390		otwór zarurowany			PO: A1,0M0,1N	1557–2115						
	PAC	10-410				22-24 09 1986	PO: A4,0M0,5N	1557–2115	2126					
	PO: B2,5A0,25M	399–1230								22 21.09.1900	PO: A5,28M0,82N	1557–2115	2120	
	PO:	399–1230					PS×2	1557–2116						
	A2,5M0,25N		-				PŚr	1557–2116		216				
27–28.06.1986	PS×2	399–1230	1235				PG	1500–2116						
	PSr	399–1230	-				PNG	1500–2116						
			-	308			РК	1500-2110						
			-			29.09.1986	PK – wadliwe	1500–2175	2180					
				-		4.10.1986	РК	1900–2220	2225					
	PO: B2,5A0,25M	1180–1557				22.10.1986	РК	2200-2415	2418					
24–26.07.1986	PO: A2,5M0,25N	399–1557	1560			19-21.12.1986	PO: N2,5M0,25A	2000–2665	2666					
	PS ×2	399–1557					PO: A2,5M0,25N	1559–2665	2000					

1	2	3	4	5	1	2	3	4	5
	POst	1559–2000				PŚr	3140-3295		
	mPOst	1559–2000				PG	2770-3239		
	PS ×2	1559–2660			11-12.06.1987	PNG	2770-3297	3299	
10 21 12 1096	PŚr	1599–2662	2000			PGG	2803-3295		
19-21.12.1980	PG	200-2658	2000			РК	2750-3300		
	PNNnt	1559–2660			30.06.1987	PŚr	2790-3352	3361	
	PGG	1559–2000				PO:	3246-3400		
	РК	2000–2660				N2,51V10,25A			
07.02.1987	PUW	1559–2374	2792			PO: A2,5M0,25N	2802-3400		
	PO: N2,5M0,25A	2600–2805		216		PO: A0,5M0,1N	3250-3400		
	PO:	1557 2905				PO: A1,0M0,1N	3250-3400		1.41
	A2,5M0,25N	1557-2805				PO: A4,0M0,5N	3250-3400		141
	PS ×2	1557–2805				PO:	3250-3400		
16 10 02 1087	PŚr	1557–2804	2810		26–29.07.1987	A5,201010,021N			
10-19.02.1987	PG	2600-2800	2810			PS x 2	2812–3399	3404	
	PNNnt	2600-2800				PŚr	2803-3401		
	РК	2600–2805				PŚr	3300-3400		
	PA: T1, T2, DT	1557–1960				PG	3249-3394		
	PAC	80-1557				PNG	3260-3398		
	PO:	2802 2200				PGG	3250-3401		
	N2,5M0,25A	2803-3299				РК	3250-3395		
11-12.06.1987	PO: A2,5M0,25N	2803–3299	3299	141	20.08.1987	PTu (no 10 dn. stóiki)	2-3410		
	PS ×2	2803-3298				(po to un stojki)			atruáz
	PŚr	2803-3296			25–26.08.1987	PAC	1396–2803	3404	zarurowan

Tabela 21 cd.

PG - profilowanie naturalnej promieniotwórczości gamma, PNG - profilowanie neutron-gamma, PGG - profilowanie gamma-gamma, PNNnt - profilowanie neutron-neutron nadtermiczny, PS - profilowanie naturalnych potencjałów, PO - profilowanie oporności (A, B - elektrody pomiarowe; M - elektroda pomiarowa, odległości między elektrodami w metrach), PK - profilowanie krzywizny otworu, PŚr - profilowanie średnicy, POst - sterowane profilowanie oporności (laterolog), mPOst - sterowane mikroprofilowanie oporności, PUW - profilowanie upadu warstw, PTu - profilowanie temperatury w ustalonych warunkach termicznych, PTn - profilowanie temperatury w nieustalonych warunkach termicznych, PA - profilowanie akustyczne (DT - czas interwałowy; T1, T2 - czasy dojścia fali P do nadajników 1 i 2), PAC - profilowanie cementomierzem akustycznym. Pogrubiono czcionkę w wypadku profilowań dostępnych w formie cyfrowej

PG - gamma ray log, PNG - neutron-gamma ray log, PGG - gamma-gamma ray log, PNNnt - epithermal neutron-neutron ray log, PS - spontaneous potential log, PO - conventional electrical log (A, B - current electrodes; M - measurement electrode, distances between electrodes are expressed in metres), PK - deviation log, PŚr - caliper, POst - laterolog, mPOst - microlaterolog, PUW - dipmeter, PTu - temperature log in stable conditions, PTn - temperature log in unstable conditions, PA - acoustic log (DT - transit time; T1, T2 - P wave travel time at detector 1 and 2), PAC - cement bond log. The font has been bolded in the case of digitalized curves

- profilowanie oporności PO sondami: A0.5M0.1N (EL02), A1.0M0.1N (EL03), A2.5M0.25N (EL09), A4.0M0.5N (EL14), A5.28M0.82N (EL18), B2.5A0.25M, N2.5M0.25A (EN10);
- profilowanie krzywizny otworu PK;
- profilowanie cementomierzem akustycznym PAC (CBA, CBAA).

W tabeli 22 przedstawiono dokładne interwały głębokościowe przeprowadzonych profilowań geofizyki otworowej wraz z datą ich wykonania, ówczesną głębokością oraz średnicą otworu.

Połączone i znormalizowane wyniki profilowania gamma dla obu otworów przedstawia figura 54. Znajdują się na niej również profilowania średnicy otworów wiertniczych z oznaczonymi za pomocą strzałek głębokościami łączenia odcinków badań. Profilowanie gamma znormalizowano zgodnie z metodyką opisaną w pracy Szewczyka (2000a), a profilowanie neutronowe – w pracy Szewczyka i in. (2001).

Tabela 22

Wykaz badań geofizyki otworowej wykonanych w otworze wiertniczym Narol PIG 2

List of well logs from the Narol PIG 2 borehole

Data wykonania badań Date ofmeasurement	Rodzaj wykonanych badań (skrót) Type of measurement (abbreviated)	Interwał głębokościowy badań [m] Interwał głębokościowy badań	Głębokość otworu podczas wykonywania badań wg miary wiertniczej [m] Well depth during measurement – driller's depth	Średnica nominalna otworu [mm] Caliper	Data wykonania badań Date ofmeasurement	Rodzaj wykonanych badań (skrót) Type of measurement (abbreviated)	Interwał głębokościowy badań [m] Interwał głębokościowy badań	Głębokość otworu podczas wykonywania badań wg miary wiertniczej [m] Well depth during measurement – driller's depth	Średnica nominalna otworu [mm] Caliper
1	2	3	4	5	1	2	3	4	5
	PŚr	2–215				PO: A4,0M0,5N	1340–1935		
29.10.1989	РК	5-210	215	438		PO: A8,0M1,0N	1340–1935		
	PO: A2,0M0,5N	15–215				POst	1340–1940		
	PŚr	311,5–1390				PG	1340–1940		
	РК	200–1390				PO: N6,0M0,5A	1340-1936		
	PO: A2,0M0,5N	311,5–1390				PO: A2,0M0,5N	1340-1936		
	PO: A6,0M0,5N	311,5–1390			27–28.03.1990	PNG	1340–1940	2752,0	
12-14.01.1990	PS x 2	311,5–1395	1395	311		PGG	1340–1940		216
	PG	0–1395				PA: T1, T2, DT	1340–1940		
	PNG	0-1395				PŚr	311,5–1941		
	PGG	311,5–1395				PS x 2	311,5–1941		
	PA: T1, T2, DT	311,5–1395				PI	311,5–1941		
	PO: A0,4M0,1N	1340–1935				РК	1925–1350		
27–28.03.1990	PO: A1,0M0,1N	1340–1935	2752,0	216	2 7 07 1000	POst	1939–2836	2020	
	PO: A2,0M0,5N	1340–1935			5-7.07.1990	PO: A0,4M0,1N	1938,5–2831	2038	

Tabela 22 cd.

1	2	3	4	5	
	PO: A1,0M0,1N	2760-3207			
1 25.09.1990 7.11.1990 5-6.03.1991	PO: A2,0M0,5N	2760-3207			
	PO: A4,0M0,5N	2760-3207	3213		
	PO: A8,0M1,0N	2760-3207			
	PI	2760-3191			
7.11.1990	PŚr	1938–3217	3212		
	PO: A1,0M0,1N	3181–3355			
	PO: A4,0M0,5N	3181–3355			
	PG	3140-3365	22.66		
5-6.03.1991	PNG	3140-3365	3366		
	PŚr	3181–3366			
	РК	3150-3360			
	PŚr	3182–3652			
	PObj	3182–3652			
	PS x 2	3182–3652			
	PGG	3182–3652			
	PG	3145-3652		1.41	
	PO: N6,0M0,5A	3182–3646		141	
	PO: A2,0M0,5N	3182–3646			
24 26 04 1001	PNG	3145-3652	2(52		
24–26.04.1991	PO: A0,4M0,1N	3182–3646	3032		
	PO: A1,0M0,1N	3182-3646			
	PO: A2,0M0,5N	3182–3646			
	PO: A4,0M0,5N	3182–3646			
	PO: A8,0M1,0N	3182–3646			
	POst	3182-3652			
	PA: T1, T2, DT	3182-3652			
	PO: A2,0M0,5N PO: A4,0M0,5N PO: A8,0M1,0N PI PSr PO: A1,0M0,1N PO: A4,0M0,5N PG PSr PK PK PSr PK PSr PK PSr PC PSr PC PSr PC PO: N6,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A1,0M0,1N PO: A1,0M0,1N PO: A1,0M0,1N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A2,0M0,5N PO: A4,0M0,5N PO: A8,0M1,0N PO: A8,0M1,0N POst PA: T1, T2, DT PK PAC	3325-3650			
27.04.1991	PAC	1790–3182	3650	216	

1	2	3	4	5
	PO: A1,0M0,1N	1938,5–2831		
	PO: A2,0M0,5N	1938,5–2831		
	PO: A4,0M0,5N	1938,5–2831		
	PO: A8,0M1,0N	1938,5–2831		
	123PO: A1,0M0,1N1938,5-2831PO: A2,0M0,5N1938,5-2831PO: A4,0M0,5N1938,5-2831PO: A4,0M0,5N1938,5-2831PO: A4,0M0,5N1938,5-2831PO: A4,0M0,5N1938,5-2830PSr1938,5-2830PSr1938,5-2830PO: N6,0M0,5N1938,5-2830PO: N6,0M0,5N1938,5-2830PS x 21938,5-2830PG1890-2836PG1890-2836PS x 21938,5-2830PSr2780-3192PK1900-2835PK1900-2835PSr2780-3192PO: N6,0M0,5A2780-3192PO: N6,0M0,5N2780-3192PO: N6,0M0,5N2780-3192PO: N6,0M0,5N2780-3192PO: N6,0M0,5N2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3192PGG2780-3197PGG2780-3197PK2800-3190PK2800-3190PK2800-3190			
	PŚr	1938,5–2837		
3-7.07.1990	PA: T1, T2, DT	1938,5–2837		
	PO: N6,0M0,5A	1938,5–2830	2838	
	PO: A2,0M0,5N	1938,5–2830		
	PS x 2	1938,5–2836		
	PG	1890–2836		
	PO: A1,0M0,1N PO: A2,0M0,5N PO: A4,0M0,5N PO: A8,0M1,0N PI PSr PA: T1, T2, DT PG PNN PGG PK POSr POS POS POS PO: N6,0M0,5A PO: N6,0M0,5A <	1890–2838		
	PO: 1938,5-2831 PO: A2,0M0,5N 1938,5-2831 PO: A4,0M0,5N 1938,5-2831 PO: A8,0M1,0N 1938,5-2831 PO: A8,0M1,0N 1938,5-2831 PO: A8,0M1,0N 1938,5-2831 PO: A8,0M1,0N 1938,5-2831 PO: A8,0M0,5N 1938,5-2837 PO: N6,0M0,5A 1938,5-2830 PO: N6,0M0,5A 1938,5-2830 PO: N6,0M0,5N 1938,5-2830 PO: N6,0M0,5N 1938,5-2830 PO: N6,0M0,5N 1938,5-2830 PO: N6,0M0,5N 1938,5-2830 PG 1890-2838 PG PNN 1890-2838 PG PK 1900-2835 PK PO: N6,0M0,5A 2780-3192 PO: N6,0M0,5A 2780-3192 PO: N6,0M0,5A 2780-3192 PO: N6,0M0,5A 2780-3192 PO: N6,0M0,5A 2780-3192 <th></th> <th></th>			
	PK	1900–2835		
	PŚr	2780-3192		
	PObj	2780-3192		
	PA: T1, T2, DT	2780-3192		
	PO: N6,0M0,5A	2780-3186		
	PO: A2,0M0,5N	2780-3186		
21 22 00 1000	PS x 2	2780-3197	2107	
21-23.09.1990	PG	2780-3196	5197	
	PNN	2770-3192		
	PGG	2780-3197		
	РК	2800-3190		
	PNG	2780-3196		
	РАС	30–1938		
25.09.1990	POst	2770-3213	3212	
23.09.1990	PO: A0,4M0,1N	2760-3207	3213	

PI – profilowanie indukcyjne; pozostałe objaśnienia przy tabeli 21

PI – induction log; for explanations see Table 21

Fig. 54. Unormowane wartości profilowania gamma i profilowanie średnicy (strzałkami zaznaczono miejsca połączeń odcinków pomiarowych)

Normalized values of the natural gamma ray log and caliper (arrows indicate connection points between individual log runs)

PROFIL LITOLOGICZNY

Opracowano dwa warstwowe profile litologiczne – jeden na podstawie opisów profilu wiertniczego z rdzeni wiertniczych oraz z próbek okruchowych, a drugi – danych geofizycznych. W tabeli 23 zestawiono różnice pomiędzy głębokościami stropów bądź spągów warstw zidentyfikowanych i przyporządkowanych w obydwu wymienionych profilach. Zestawienia te obejmują stosunkowo wąskie zakresy głębokościowe (zwłaszcza w otworze Narol IG 1). Maksymalne wielkości tych różnic w otworze Narol IG 1 nie przekraczają 2 m, a w otworze Narol PIG 2 sięgają maksymalnie do 3,6 m. W porównaniu do innych archiwalnych otworów wiertniczych z tego okresu przesunięcia te mają typowe wartości. Różnice te występują we wszystkich, nawet współcześnie wykonywanych otworach wiertniczych i są

Tabela 23

Różnice glębokości stropów bądź spągów warstw wyznaczanych różnymi metodami dla obu otworów

Depth shift table of driller's depth and measured depth for both wells

	Narol IG 1		
Głębokości stropu/ Depth to th	Różnica głębokości [m]		
wg opisu rdzenia i zwiercin driller's depth	wg opisu rdzeniawg geofizykii zwiercinotworowejdriller's depthmeasured depth		
3194,0 3192,8		1,2	
3198,2	3196,3	1,9	
3204,3	3203,1	1,2	
3261,0	3259,5	1,5	
3269,1 3268,0		1,1	
3286,5	3285,1	1,4	

Głębokości stropu/ Depth to tł	Różnica głębokości [m]	
wg opisu rdzenia i zwiercin driller's depth	wg opisu rdzeniawg geofizykii zwiercinotworowejdriller's depthmeasured depth	
1355,9	1355,9 1357,7	
1363,0	1365,1	-2,1
1370,0	1372,8	-2,8
1612,0	1609,9	2,1
2895,3	2896,7	-1,4
3307,2	3305,9	1,3
3310,2	3310,1	0,1
3609,0	3612,6	-3,6

spowodowane niedokładnościami pomiaru długości przewodu wiertniczego oraz kabli geofizycznych stosowanych w pomiarach. Błąd ten wynika z różnego stopnia rozciągania kabli geofizycznych o kilkukilometrowej długości. Innym źródłem różnic głębokości warstw litologicznych jest niepełny uzysk rdzenia i związane z tym niejednoznaczności przyporządkowania głębokości powstający podczas prac wiertniczych. Z uwagi na te różnice, a także ograniczoną reprezentatywność próbek (objętości próbek są znikome wobec objętości warstw skalnych), wszelkie korelacje profilowań geofizyki otworowej z wynikami badań laboratoryjnych próbek rdzenia muszą mieć charakter statystyczny i są obciążone błędem.

W trakcie ustalania warstwowego oraz objętościowego profilu litologicznego opartego na danych geofizycznych uwzględniono wielkość wzajemnych przesunięć omawianych grup danych.

PROFIL POROWATOŚCIOWY I GĘSTOŚCIOWY

Proces obliczenia porowatości oraz gęstości objętościowej poprzedzono podziałem profilu na tzw. odcinki metodyczne, w których obrębie ustalono stałe określające spodziewany zakres zmienności parametrów interpretacyjnych lub wartości tych parametrów. Dla obu omawianych otworów wybrano 10 takich odcinków metodycznych. Poprawność wyboru odcinków oraz przypisanych im parametrów określano iteracyjnie. Miarą ich poprawności była statystyczna zgodność uzyskiwanych wyników z wynikami odpowiadających im rezultatów badań laboratoryjnych lub parametrów geofizycznych określanych innymi metodami badawczymi, np. średnimi prędkościami sejsmicznymi (tzw. sejsmiczna prędkość pseudoakustyczna DT_VSP).

Na figurze 55 przedstawiono profile zailenia, porowatości całkowitej i gęstości objętościowej dla obu otworów. Analizę wykonano za pomocą systemu GEOFLOG (Szewczyk, 1996; Szewczyk, Gientka, 2009). Dane dotyczące litologii zestawione z profilowaniem naturalnej promieniotwórczości gamma i profilowaniem neutron-gamma skalibrowano z oznaczeniami porowatości całkowitej i gęstości objętościowej na próbkach (łącznie 260 oznaczeń w otworze Narol IG 1 i 380 oznaczeń w otworze Narol PIG 2).

Gęstość objętościową ρ w stanie nasycenia wodą obliczono ze wzoru:

$$\rho = \rho_{\rm m} \left(1 - \Phi - V_{\rm sh} \right) + \rho_{\rm w} \Phi + \rho_{\rm sh} V_{\rm sh}$$

gdzie:

- $\begin{array}{ll} \rho_{m} & -\mbox{gestość szkieletu skalnego ustalona za pomocą typu } \\ & \mbox{litologii, [g/cm^{3}];} \end{array}$
- porowatość całkowita wyznaczona na podstawie profilowania neutron-gamma poprawionego na wpływ zailenia i skalibrowanego do próbek, [%];
- V_{sh} procent objętościowy minerałów ilastych ustalony na podstawie profilowania gamma, [%];
- ρ_{w} gęstość wody, [g/cm³];
- ρ_{sh} gęstość minerałów ilastych, [g/cm³].

Narol IG 1

obliczone na podstawie danych geofizyki otworowej, zestawione z oznaczeniami w próbkach (punkty)

Volume of shale, porosity and bulk density of dry and water-saturated rocks (solid lines) calculated from the well logs juxtaposed to the laboratory analysis (points)

Narol PIG 2

Fig. 56. Mineralizacja wód podziemnych badanych poziomów zbiornikowych (kwadraty – Narol IG 1, kółka – Narol PIG 2) na tle mineralizacji wód Niżu Polskiego (pozostałe punkty) i ich trendu z głębokością (linia ciągła)

Groundwater mineralization of the tested aquifers (squares – Narol IG 1, disks – Narol PIG 2) against the groundwater mineralization in the Polish Lowlands (the remaining points) and its trend with depth (solid line)

Figura 56 pokazuje całkowitą mineralizację wód pobranych z dwu głębokości w obrębie ?jednej warstwy wodonośnej z otworu Narol IG 1 oraz z trzech głębokości (od 3182 do 3324 m) z jednej warstwy wodonośnej w otworze Narol PIG 2 na tle mineralizacji wód z innych otworów odwierconych na Niżu Polskim. Obserwowane wartości mineralizacji w otworze Narol PIG 2 są nieco mniejsze od średnich wartości mineralizacji obserwowanych na podobnych głębokościach na obszarze Niżu Polskiego.

CHARAKTERYSTYKA TERMICZNA

Profilowania temperatury przeprowadzono tylko w otworze Narol IG 1 w dwu odcinkach pomiarowych (w nawiasach podano przyjęte w opracowaniu oznaczenie pomiaru): 22–391 m (PTn) i 2–3410 m (PTu).

Pierwszy pomiar wykonano w nieustabilizowanych warunkach termicznych (PTn), drugi – w warunkach częściowej stabilizacji termicznej (PTu). Pomiar ten przeprowadzono po 10 dobach od ustania cyrkulacji płuczki wiertniczej w otworze. Celem wykonania tego pomiaru było m.in. określenie wielkości gęstości wgłębnego strumienia cieplnego (Q). Ponadto w otworze w odcinkach poszczególnych badań strefowych wykonano pomiary temperatury maksymalnej w nieustalonych warunkach termicznych w ich strefie przydennej (ang. BHT).

Widocznym brakiem pełnej stabilizacji termicznej pierwszego z wymienionych pomiarów jest odbieganie temperatury rejestrowanej w strefie przypowierzchniowej wynoszącej ok. 13,2°C od średniej wieloletniej klimatycznej temperatury (GST) tej strefy dla rejonu otworu wiertniczego (Szewczyk, 2005). Średnia wartość temperatury strefy przypowierzchniowej (GST) dla rejonu otworu Narol IG 1 wynosi ok. +8,80°C. Obserwowana różnica między

wyżej wymienionymi wartościami temperatury - wynosząca 4,4°C-w stosunku do obserwowanych w innych otworach wiertniczych na obszarze Polski jest niewielka. Część górna profilu jest nagrzewana, a część dolna wychładzana przez cyrkulującą praktycznie w obiegu zamkniętym płuczkę wiertniczą. W procesie obliczeń wielkości strumienia cieplnego wprowadzono poprawkę ograniczająca wielkość zaburzenia warunków termicznych. Na figurze 57 przedstawiono wartość poprawionego profilowania temperatury (T_{corr}), a także pomiaru zarejestrowanego profilu temperatury w warunkach ustalonych (PTu) oraz pomiarów wartości temperatury maksymalnej w strefie przydennej w ramach poszczególnych odcinków pomiarowych (BHT). Określenie objętościowego modelu litologiczno-porowatościowego skał profilu otworu stworzyło warunki do obliczeń przewodności cieplnej (TC) (Szewczyk, 2000b; Szewczyk, Gientka, 2009). Na podstawie profilu przewodności cieplnej obliczono profilowanie paleotemperatury syntetycznej (T_s) dla okresu glacjalnego. Pokazano również współczesną wartość temperatury strefy przypowierzchniowej (GST) oraz obliczoną wartość średnią tej strefy dla zlodowacenia wisły (GSTH).

Powyższe rozważania pozwalają na obliczenie średniej wartości gęstości strumienia wgłębnego dla otworu Narol IG 1, która wynosi 68,4 mW/m². Metodykę obliczeń tego parametru przedstawiono w pracy Szewczyka i Gientki (2009).

Obliczona wartość gęstości strumienia cieplnego (Q = 68,6 mW/m²) dla otworu Narol IG 1 jest typową dla obserwowanych na obszarze niecki puławskiej według podziału Narkiewicza i Dadleza (2008).

Opracowanie danych geofizyki wiertniczej wykonano m.in. w programie Techlog, który został udostępniony PIG--PIB przez Schlumberger Information Solutions w celu prowadzenia prac naukowo-badawczych.

Fig. 57. Charakterystyka termiczna otworu wiertniczego Narol IG 1

PTu – profilowanie temperatury w warunkach ustalonych, T_{corr} – poprawione profilowanie temperatury, T_s – obliczone profilowanie paleotemperatury dla okresu glacjalnego, GST – średnia temperatura strefy przypowierzchniowej na podstawie pomiarów meteorologicznych, GSTH – średnia temperatura strefy przypowierzchniowej w okresie zlodowacenia wisły, Q – gęstość strumienia cieplnego, TC – przewodność cieplna, BHT – temperatura na dnie otworu

Thermal data from the Narol IG 1 borehole

PTu – temperature log in stable condition, T_{corr} – corrected temperature log, T_s – synthetic paleotemperature log calculated for last glacial period, GST – average ground surface temperature from meteorological measurements, GSTH – average ground surface temperature for last glacial period, Q – heat flow density, TC – thermal conductivity, BHT – bottom hole temperature measurements

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

WYNIKI POMIARÓW SEJSMOMETRYCZNYCH

OTWÓR WIERTNICZY NAROL IG 1

Sprawozdanie z pomiarów sejsmometrycznych w otworze wiertniczym Narol IG 1 wykonanych przez Grupę Sejsmometrii Wiertniczej 2D/Kw obejmuje profilowanie prędkości średnich oraz pionowe profilowanie sejsmiczne (PPS). Wyniki zostały opracowane w styczniu 1988 r. przez Wydział Sejsmometrii Wiertniczej Polskiego Górnictwa Naftowego i Gazownictwa Geofizyki Kraków.

Prace pomiarowe w otworze wykonano przy użyciu aparatury SERCEL SN-338 oraz sondy pięciogeofonowej zaprojektowanej w Zakładzie Geofizyki Górnictwa Naftowego. Rejestracji dokonano na taśmach cyfrowych i papierze oscylograficznym. Sejsmogramy oscylograficzne wykorzystano do opracowania prędkości średnich. Interwał pojedynczego pomiaru (odległość między kanałami) wynosił 20 m. W celu doboru odpowiednich warunków wzbudzania wykonano mikroprofilowanie otworów strzałowych oraz określono ich dynamikę. W rezultacie prace strzałowe prowadzono z dwóch punktów strzałowych (PS) usytuowanych w sposób następujący:

PS	Odległość d [m]	Azymut A [°]	Niwelacja N [m]	Poziom odniesienia <i>P.O</i> . [m]
1	135	105°	0	wylot głębokiego otworu = 0
2	800	105°	10	wylot głębokiego otworu = 0

gdzie:

d – odległość PS od głębokiego otworu;

- A azymut mierzony w punkcie głębokiego otworu w kierunku PS;
- N wysokość względna PS w stosunku do wylotu otworu wiertniczego.

Wzbudzania dokonywano za pomocą dynamitu o średniej wielkości ładunku MW 0,7 kg. Całkowity interwał pomiarów z PS1 i z PS2 wynosił 0–3380 m, przy głębokości końcowej otworu 3404 m. Jakość otrzymanych materiałów oceniono na dobrą i dostateczną.

Poziom odniesienia pomiarów przyjęto zgodnie z wysokością wylotu głębokiego otworu geologicznego, tj. 270 m n.p.m.

Obliczenia obejmujące m.in. redukcję głębokości, czasów i poprawki czasu wykonano na maszynie EMR-6135.

Głębokość zredukowaną wyznaczono wg wzoru:

$$h_r = h_{\text{pom.}} - h_{\text{odn}}$$

gdzie:

 $h_{\rm pom}$ – głębokość zanurzenia geofonu głębinowego,

 h_{odn.} – poziom odniesienia (z uwzględnieniem niwelacji i głębokości strzelania). Redukcję czasu wykonano metodą, która zakłada jednorodność ośrodka od punktu wybuchu do głębokości zanurzania geofonu wg wzoru:

$$t_r = \frac{h_r}{\sqrt{h_r^2} + d^2} \cdot t_p$$

gdzie:

 t_p – czas poprawiony;

d - odległość PS od głębokiego otworu.

Poprawki czasu liczono wg wzoru:

$$d_t = \frac{h - h_{\text{odn.}}}{V_o}$$

gdzie:

h – głębokość strzelania;

V_o – prędkość fali w utworach przypowierzchniowych w strefie małych prędkości (SMP), która dla otworu Narol IG 1 wynosiła 1600 m/s.

Czas zredukowany obliczono przy założeniu jednorodności ośrodka od punktu wybuchu do głębokości zanurzenia geofonu. Pozwoliło to na dokonanie redukcji czasu do pionu. Wartości h_r i t_r posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{\dot{s}r} = \frac{h_r}{t_r}$$

Do obliczeń wykorzystano odpowiedni program komputerowy. Charakter zmian prędkości w funkcji głębokości ilustrują tabela 24 i figura 58. Wszystkie wartości h_r , t_r i V_{sr} zestawiono w tabeli 24. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 58A) i hodografu pionowego (fig. 58B). Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią, a także na stały, systematyczny wzrost prędkości wraz z głębokością.

Taśmy z zapisem cyfrowym z pomiarów PPS opracowano w Centrali Cyfrowej MS-421. Opracowanie to obejmowało obróbkę wstępną (DSF) oraz obróbkę w systemie SYSIS. Obróbkę wstępną dokonano sposobem demultipleksacji, przy kroku próbkowania 200/100 ms.

Obróbka w systemie SYSIS obejmuje następujący cykl prac: na wstępie wykonanie sejsmogramu zbiorczego w "prostym" zapisie oraz uporządkowanie rejestracji, następnie centrowanie zapisu (F. CENTRAGE), normalizacja zapisu (F. NORMALIS), filtracja "50" Hz (filtr wycinający, typ filtru rekurencyjny zastosowany dwukrotnie), filtracja zasadnicza (filtr splotowy) 7/15, wyrównanie dynamiki (F. EGADYN).

W wyniku powyższych operacji otrzymano właściwie opracowany sejsmogram zbiorczy.

W celu dokładniejszej korelacji fal odbitych i wyeliminowania tła zakłóceń wykonano sumowanie kierunkowe na bazie czterech kanałów z zastosowaniem wielokanałowej filtracji kierunkowej. Sumowanie przeprowadzono w kierunkach "+" i "–". Użyto następującego zestawu funkcji do filtracji kierunkowej:

LIRE,	EXE,	ECRI,
FMC	FMC	FMC

W etapie końcowym nałożono sumy "+" i "-".

W celu dokładniejszego dowiązania głębokościowego i czasowego zaobserwowanych fal odbitych wykonano na podstawie pomiarów PPS sekcję czasową PPS (2T). Sekcja ta powstała w wyniku zastosowania odpowiednich poprawek pozycyjnych z wykorzystaniem maszyny cyfrowej. Sekcję przeprowadzono na sejsmogramach zbiorczych PPS z wybraną filtracją. Dla stworzenia lepszych możliwości rozdzielczych fal odbitych i eliminacji zakłócających na czasowej sekcji PPS zastosowano filtr wachlarzowy. Po zastosowaniu filtru obraz falowy jest wyraźniejszy, ale wymaga bardzo ostrożnej interpretacji, ponieważ czasami nie tylko fale odbite ulegają wzmocnieniu, ale również niektóre fale zakłócające, stwarzając wrażenie, że są fragmentarycznymi falami odbitymi. W celu dalszego polepszenia rozdzielczości fal odbitych zastosowano filtrację wielokanałową.

Porównania wyników otrzymanych z PPS z wynikami sejsmiki powierzchniowej dokonano na podstawie zestawienia z fragmentem profilu sejsmicznego.

Przy analizie wyników pomiarów PPS wzięto pod uwagę następujące materiały: wykres zbiorczy V_{sr} , sejsmogram zbiorczy PPS z PS1 i PS2 oraz czasowy przekrój sejsmiczny wykonany na podstawie PPS z PS1 i PS2.

Do wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano wygładzanie wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp między punktami pomiarowymi.

Podany sposób zastosowano do wygładzania wartości czasu z pomiarów prędkości średnich do obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono przez wyrównanie zmierzonych wartości czasu zredukowanego do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu

Fig. 58. Wykres prędkości średnich (A) i hodograf pionowy (B) w otworze wiertniczym Narol IG 1

 V_{sr} – prędkość średnia, t_r – średni czas zredukowany, h – głębokość; Km – mastrycht, Kcp – kampan, Kst – santon, Kcn – koniak, Kt – turon, Kc + al3 – cenoman + alb górny, K₁ – kreda dolna, J₃t – jura górna, tytor; J₃km – jura górna, kimeryd; J₃o – jura górna, oksford; J₂ – jura środkowa, S – sylur, O – ordowik, \mathcal{C}_3 – kambr górny

Average seismic velocity (**A**) and travel-time diagram (**B**) in Narol IG 1 borehole (reference level 270.0 m a.s.l.)

 V_{sr} – average velocity, t_r – average reduced time, h – depth; Km – Maastrichtian, Kcp – Campanian, Kst – Santonian, Kcn – Coniacian, Kt – Turonian, Kc + al3 – Cenomanian + Upper Albian, K₁ – Lower Cretaceous, J₃t – Upper Jurassic, Tithonian; J₃km – Upper Jurassic, Kimmeridgian; J₃o – Upper Jurassic, Oxfordian; J₂ – Middle Jurassic, S – Silurian, O – Ordovician, ε_3 – Upper Cambrian

odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, co 20 m. Następnie uzyskane wartości czasu wygładzono przy pomocy specjalnego programu przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtry 0,25 i 0,50. Przekształcenia te, usuwające przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, posłużyły do przygotowania materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zmniejszone zostają przypadkowe skoki wartości czasu spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób

Tabela 24

Zestawienie wartości głębokości (h), czasu zredukowanego (t_r), i prędkości średnich (V_{sr}) w otworze wiertniczym Narol IG 1

Depth (h), reduced time (t_r) and average velicity (V_{sr}) values in the Narol IG 1 borehole

			-	-		
<i>h</i> [m]	$\begin{bmatrix}t_r\\\mathbf{s}\end{bmatrix}$	V_{sr} [m/s]		<i>h</i> [m]	<i>t</i> _{<i>r</i>} [s]	V_{sr} [m/s]
1	2	3	1	1	2	3
20	0,0125	1600	1	740	0,2905	2547
40	0,0235	1702	1	760	0,2965	2563
60	0,0330	1818	1	780	0,3035	2570
80	0,0415	1928		800	0,3100	2581
100	0,0510	1961	1	820	0,3175	2583
120	0,0610	1967		840	0,3255	2581
140	0,0685	2044		860	0,3330	2583
160	0,0765	2092]	880	0,3405	2584
180	0,0840	2143		900	0,3465	2597
200	0,0925	2162		920	0,3545	2595
220	0,0995	2211		940	0,3610	2604
240	0,1080	2222		960	0,3670	2616
260	0,1150	2261		980	0,3725	2631
280	0,1245	2249		1000	0,3775	2649
300	0,1300	2308		1020	0,3850	2649
320	0,1375	2327		1040	0,3900	2667
340	0,1455	2337		1060	0,3960	2677
360	0,1545	2330		1080	0,4015	2690
380	0,1615	2353		1100	0,4065	2706
400	0,1690	2367		1120	0,4100	2732
420	0,1760	2386		1140	0,4150	2747
440	0,1820	2418		1160	0,4200	2762
460	0,1910	2408		1180	0,4230	2790
480	0,1975	2430		1200	0,4265	2814
500	0,2050	2439		1220	0,4305	2834
520	0,2125	2447		1240	0,4335	2860
540	0,2195	2460		1260	0,4390	2870
560	0,2280	2456		1280	0,4420	2896
580	0,2340	2479		1300	0,4465	2912
600	0,2425	2474		1320	0,4510	2927
620	0,2480	2500		1340	0,4555	2942
640	0,2565	2495		1360	0,4590	2963
660	0,2615	2524		1380	0,4640	2974
680	0,2675	2542]	1400	0,4675	2995
700	0,2755	2541	1	1420	0,4710	3015
720	0,2845	2531	1	1440	0,4760	3025

Tabela 24 cd.

	1	2	3		1	2	3
ĺ	1460	0,4805	3039	1	2240	0,6495	3449
	1480	0,4850	3052		2260	0,6535	3458
	1500	0,4895	3064		2280	0,6580	3465
	1520	0,4935	3080		2300	0,6635	3466
ſ	1540	0,4975	3095		2320	0,6660	3483
	1560	0,5005	3117		2340	0,6700	3493
	1580	0,5045	3132		2360	0,6755	3494
	1600	0,5075	3153		2380	0,6810	3495
	1620	0,5120	3164		2400	0,6860	3499
Ī	1640	0,5155	3181		2420	0,6915	3500
	1660	0,5200	3192		2440	0,6970	3501
	1680	0,5245	3203		2460	0,7015	3507
ĺ	1700	0,5280	3220		2480	0,7060	3513
ĺ	1720	0,5320	3233		2500	0,7110	3516
ĺ	1740	0,5355	3249		2520	0,7145	3527
Ĩ	1760	0,5385	3268		2540	0,7190	3533
	1780	0,5430	3278		2560	0,7235	3538
	1800	0,5490	3279		2580	0,7290	3539
	1820	0,5525	3294		2600	0,7360	3533
	1840	0,5560	3309		2620	0,7425	3529
	1860	0,5600	3321		2640	0,7480	3529
	1880	0,5640	3333		2660	0,7515	3540
	1900	0,5685	3342		2680	0,7560	3545
	1920	0,5720	3357		2700	0,7615	3546
	1940	0,5750	3374		2720	0,7655	3553
	1960	0,5815	3371		2740	0,7700	3558
	1980	0,5865	3376		2760	0,7760	3557
	2000	0,5950	3361		2780	0,7800	3564
	2020	0,5995	3369		2800	0,7840	3571
	2040	0,6040	3377		2820	0,7900	3570
	2060	0,6095	3380		2840	0,7940	3577
	2080	0,6140	3388		2860	0,7985	3582
	2100	0,6190	3393		2880	0,8030	3587
	2120	0,6250	3392		2900	0,8070	3594
	2140	0,6275	3410		2920	0,8110	3600
	2160	0,6310	3423		2940	0,8140	3612
	2180	0,6350	3433		2960	0,8180	3619
	2200	0,6395	3440		2980	0,8215	3628
	2220	0,6445	3445		3000	0,8250	3636

1	2	3
3020	0,8285	3645
3040	0,8325	3652
3060	0,8365	3658
3080	0,8405	3664
3100	0,8445	3671
3120	0,8490	3675
3140	0,8530	3681
3160	0,8555	3694
3180	0,8600	3698
3200	0,8635	3706

1	2	3
3220	0,8660	3718
3240	0,8690	3728
3260	0,8745	3728
3280	0,8795	3729
3300	0,8835	3735
3320	0,8875	3741
3340	0,8920	3744
3360	0,8970	3746
3380	0,9030	3743

NAROL IG 1 poz. odn. pom. 270 m n.p.m. 1000 2000 3000 4000 5000 0 Km V_w, V_i, V_k [m/s] 500 Kcp Kst 1000 Kcn Kt Kc+al3 J 1500 J₃km J30 J۶ 2000 prędkość wygładzona S smoothed 2500 velocitv prędkość interwałowa interval velocity 3000 predkość 0 V kompleksowa

complex velocity

Objaśnienia na figurze 58

63

H [m]

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_k) in Narol IG 1 borehole (reference level 270.0 m a.s.l.)

powstają dodatkowe zbiory obejmujące przetworzone wartości czasu pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w utworzonym w latach 90. XX wieku w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych banku danych prędkościowych, który został przekazany do Narodowej Bazy Danych Geologicznych PIG-PIB.

Różnice wartości czasu pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n + 1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczone z czasu wygładzonego odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Dla profilu otworu Narol IG 1 zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe), V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawiera tabela 25. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 59.

Wzbogacenie wykresów prędkości profilem geologicznym wiercenia pozwala na bezpośrednie powiązanie zmian prędkości z kompleksami litologiczno-stratygraficznymi w otworze. Na zestawieniu obserwuje się duże różnice parametru prędkości charakteryzującego główne utwory występujące w otworze.

Tabela 25

Zestawienie uśrednionych wartości prędkości interwałowej (V_i), prędkości kompleksowej (V_k) i prędkości wygładzonej (V_w) obliczonych z czasu wygładzonego w otworze Narol IG 1

Averaged interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values calculated from smoothed time in the Narol IG 1 borehole

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	<i>V</i> _w [m/s]	<i>h</i> [m]	V_i [m/s]	V_k [m/s]	<i>V</i> _w [m/s]
1	2	3	4	1	2	3	4
20	2020	2078	1879	700	2869	2862	2876
40	2020	2078	1981	720	2854	2862	2870
60	2020	2078	2038	740	2854	2862	2862
80	2020	2078	2109	760	2854	2862	2851
100	2020	2078	2188	780	2854	2862	2837
120	2367	2078	2268	800	2854	2862	2824
140	2367	2592	2345	820	2845	3302	2816
160	2367	2592	2412	840	2845	3302	2821
180	2367	2592	2467	860	2845	3302	2843
200	2367	2592	2511	880	2845	3302	2884
220	2576	2592	2545	900	2845	3302	2946
240	2576	2592	2571	920	3157	3302	3023
260	2576	2592	2590	940	3157	3302	3111
280	2576	2592	2605	960	3157	3302	3205
300	2576	2592	2616	980	3157	3302	3303
320	2651	2592	2628	1000	3157	3302	3405
340	2651	2592	2641	1020	3717	3302	3514
360	2651	2592	2657	1040	3717	3302	3638
380	2651	2592	2675	1060	3717	3302	3783
400	2651	2592	2693	1080	3717	3302	3950
420	2719	2592	2708	1100	3717	3302	4137
440	2719	2592	2719	1120	4591	3302	4337
460	2719	2592	2725	1140	4591	3302	4534
480	2719	2592	2728	1160	4591	4878	4712
500	2719	2592	2733	1180	4591	4878	4853
520	2771	2771	2741	1200	4591	4878	4943
540	2771	2771	2756	1220	4940	4878	4980
560	2771	2771	2778	1240	4940	4878	4973
580	2771	2771	2804	1260	4940	4878	4938
600	2771	2771	2831	1280	4940	4878	4892
620	2869	2862	2855	1300	4940	4878	4849
640	2869	2862	2871	1320	4788	4815	4816
660	2869	2862	2879	1340	4788	4815	4794
680	2869	2862	2880	1360	4788	4815	4777

Tabela 25 cd.

1	2	3	4	1	2	3	4
1380	4788	4815	4762	2180	4521	4458	4589
1400	4788	4815	4747	2200	4521	4458	4571
1420	4773	4815	4737	2220	4497	4458	4543
1440	4773	4815	4742	2240	4497	4458	4514
1460	4773	4815	4768	2260	4497	4458	4486
1480	4773	4815	4822	2280	4497	4458	4452
1500	4773	4815	4901	2300	4497	4458	4402
1520	5089	4815	4993	2320	4221	4458	4336
1540	5089	4815	5079	2340	4221	4458	4256
1560	5089	4913	5143	2360	4221	4458	4177
1580	5089	4913	5173	2380	4221	4092	4116
1600	5089	4913	5173	2400	4221	4092	4082
1620	5115	4913	5153	2420	4113	4092	4079
1640	5115	4913	5125	2440	4113	4092	4100
1680	5115	4913	5080	2460	4113	4092	4129
1700	5115	4913	5061	2480	4113	4092	4145
1720	4985	4913	5037	2500	4113	4092	4131
1740	4985	4913	5004	2520	3972	4092	4081
1760	4985	4913	4968	2540	3972	4092	4006
1780	4985	4913	4933	2560	3972	4092	3929
1800	4985	4913	4906	2580	3972	4210	3871
1820	4779	4913	4880	2600	3972	4210	3848
1840	4779	4913	4842	2620	3963	4210	3866
1860	4779	4913	4774	2640	3963	4210	3919
1880	4779	4913	4663	2660	3963	4210	3993
1900	4779	4913	4510	2680	3963	4210	4071
1920	4100	4913	4331	2700	3963	4210	4139
1940	4100	4913	4155	2720	4248	4210	4191
1960	4100	3992	4006	2740	4248	4210	4231
1980	4100	3992	3905	2760	4248	4210	4266
2000	4100	3992	3861	2780	4248	4210	4308
2020	4012	3992	3875	2800	4248	4210	4364
2040	4012	3992	3940	2820	4617	4210	4442
2060	4012	3992	4044	2840	4617	4210	4544
2080	4012	3992	4174	2860	4617	4210	4670
2100	4012	3992	4311	2880	4617	4210	4813
2120	4521	4458	4435	2900	4617	4210	4962
2140	4521	4458	4528	2920	5217	5228	5101
2160	4521	4458	4578	2940	5217	5228	5214

1	2	3	4
2960	5217	5228	5287
2980	5217	5228	5315
3000	5217	5228	5304
3020	5222	5228	5268
3040	5222	5228	5226
3060	5222	5228	5194
3080	5222	5217	5186
3100	5222	5217	5206
3120	5285	5217	5248
3140	5285	5217	5294
3160	5285	5092	5322

1	2	3	4
3180	5285	5092	5309
3200	5285	5092	5239
3220	4848	5092	5116
3240	4848	5092	4955
3260	4848	5092	4776
3280	4848	5092	4598
3300	4848	4264	4435
3320	3411	4264	4295
3340	3411	4264	4188
3360	3411	4264	4120
3380	3411	4264	3741

Przebieg krzywych pomiarowych interwałowych i kompleksowych na głębokościach korelujących się z utworami kredy górnej (mastrychtu i kampanu) jest dość monotonny. Średnie prędkości kompleksowe odpowiadające skałom mastrychtu wykazują dwudzielność i wynoszą odpowiednio dla górnego 120-metrowego odcinka 2100 i 2600 m/s dla dolnej 130-metrowej części obejmującej też górne warstwy kampanu. W interwale odpowiadającym pozostałym utworom kampanu średnia wartość prędkości interwałowej i kompleksowej wynosi 2800 m/s. Przy przejściu do leżących niżej utworów, na głębokości ok. 800 m, rysuje się kontrast prędkości pozwalający na wzrost wartości do 3300 m/s, która charakteryzuje kompleks utworów santonu, koniaku i górnych warstw turonu. W przedziale tym prędkości interwałowe są bardziej zróżnicowane, przedstawiają schodkowy wzrost wraz z głębokością, uwidoczniając dwa kontrasty prędkości dla santonu i granicę stratygraficzną koniak-turon, co należy wiązać ze zmianami litologicznymi w składzie tych utworów. Następny, najsilniejszy w całym obrazie krzywych kontrast prędkości kompleksowej występuje na głębokości ok. 1150 m i wynosi 600 m/s. Korelacja z profilem geologicznym otworu pozwala stwierdzić, że pokrywa się z przystropowymi utworami turonu i wyznacza poniżej średnią prędkość kompleksową ok. 4900 m/s aż do głębokości ok. 1950 m, odpowiadającej spągowi utworów jury środkowej. Ten 800-metrowy kompleks o prawie stałej prędkości kompleksowej na krzywej interwałowej wykazuje urozmaicony obraz i podkreśla poszczególne kontrasty prędkościowe. Najwyraźniejsze z nich odpowiadają granicom: turon, spąg turonu-strop cenomanu, kimeryd (akcentują różnice prędkości na głębokości ok. 1550 m), oksford (z pokazaniem zmian prędkości na głębokości ok. 1800 m) oraz kelowej i baton jury środkowej. Opisane powyżej wyniki odzwierciedlają wpływ wykształcenia litologicznego kompleksu kredowo-jurajskiego na rozkład prędkości sejsmicznych pomierzonych w otworze.

Znaczne obniżenie wartości średniej prędkości kompleksowej do 4000 m/s na głębokości ok. 1950 m wiąże się z kontrastem prędkości wynoszącym ok. 900 m/s, któremu towarzyszy przejście utworów mezozoiku w utwory sylurskie.

Kompleks utworów sylurskich charakteryzuje duża miąższość utworów wykształconych dość monotonnie głównie w postaci utworów mułowcowo-ilastych. W ich obrębie można wyróżnić na wykresie prędkości kompleksowych granice kontrastów na głębokościach ok.: 2100, 2380, 2570 i 2920 m, wyznaczające pięć serii o średnich prędkościach odpowiednio: 4000, 4450, 4100, 4200 i 5250 m/s. Na podstawie korelacji wydzielonych kompleksów z profilem geologicznym można stwierdzić, że kontrast prędkości na głębokości ok. 2100 m odpowiada występowaniu stropowych warstw siedleckich, a granica kontrastu na głębokości ok. 2920 m – w przybliżeniu granicy stratygraficznej ludlow– wenlok.

Wykres prędkości interwałowych uszczegóławia powyższe relacje, podkreślając m.in. granice: na głębokości ok. 2380 m, w obrębie warstw siedleckich oraz związaną z kontrastem prędkości na głębokości ok. 2800 m, tj. głębokości kontaktu warstw siedleckich i utworów ludlowu. Wysoka wartość kompleksowej prędkości ok. 5250 m/s obejmuje w profilu stratygraficznym otworu najniższe utwory syluru: wenloku i landloweru oraz górna część ordowiku do głębokości ok. 3160 m. Na krzywej prędkości interwałowej jest to głębokość niższa, w przybliżeniu 3220 m, bliższa granicy odpowiadającej w profilu litologiczno-stratygraficznym kontaktowi spąg ordowiku-strop kambru. Dolną serię utworów ordowiku oraz górne warstwy kambru charakteryzuje na krzywej prędkości kompleksowej wartość niższa – ok. 5100 m/s. Następne, obserwowane na głębokości ok. 3300 m, zmniejszenie wartości do 4250 m/s dotyczy niższej części profilu utworów kambryjskich, co obrazuje zmianę parametru prędkości w obrębie utworów kambru, zaakcentowana ujemnym kontrastem ok. 850 m/s.

285

Objaśnienia na figurze 58

Vertical Seismic Profiling (VSP) PS2 (reference level 270 m a.s.l.) in Narol IG 1 borehole

For explanations see Figure 58

Dodatkowych informacji dostarczają wyniki pomiaru PPS, aczkolwiek obraz falowy zarejestrowany zarówno na PS1, jak i PS 2 (fig. 60) jest zakłócony. Dodatkowo na PS 1 można zaobserwować falę o prędkości 1580 m/s zakłócającą odbicia pochodzące z utworów syluru i kambru. Refleksy te, zaznaczające się na PS 1 i PS 2, rejestrują się na czasie ok. 1,68 s i głębokości ok. 3080 m, na pograniczu przyspągowej strefy syluru i stropowej kambru, przy współczynniku odbicia k = 1,51 oraz czasie ok. 1,71 s i głębokości ok. 3400 m w obrębie kambru. Zakłócony obraz falowy powoduje, że odbicia można śledzić tylko odcinkowo.

Podsumowując, interpretacja przedstawionych wyników pozwala na wydzielenie pięciu głównych kompleksów prędkościowych, obejmujących: I. Utwory kredowe do głęb. 1150 m o prędkościach zawartych w granicach 2100–3300 m/s, z podziałem na granicy kampan–santon na dwa podkompleksy o wartościach odpowiednio ok. 2700 i 3300 m/s.

II. Utwory kredowe i jurajskie o średniej prędkości 4900 m/s.

III. Utwory sylurskie, charakteryzujące się średnią prędkością 4200 m/s.

IV. Dolne części profilu syluru od głęb. 2800 m, utwory ordowiku i górne części profilu kambru o średniej wartości ok. 5200 m/s. V. Pozostałe utwory kambryjskie o średniej prędkości 4250 m/s.

Powyższe wyniki są odzwierciedleniem wykresu prędkości średnich (fig. 58A), na którym zwraca uwagę duży gradient prędkości w początkowym 150-metrowym odcinku krzywej, po czym stopniowy wzrost wartości z załamaniem na głębokości ok. 1100 m i zmniejszeniem kąta nachylenia na głębokości ok. 2000 m oraz z niewielkim odchyleniem przebiegu w końcowym odcinku wykresu.

OTWÓR WIERTNICZY NAROL PIG 2

Sprawozdanie z pomiarów sejsmometrycznych w otworze wiertniczym Narol PIG 2, wykonanych przez Grupę Sejsmometrii Wiertniczej, obejmuje profilowanie prędkości średnich, pionowe profilowanie sejsmiczne (PPS) i profilowanie akustyczne (PA). Wyniki zostały opracowane w sierpniu 1991 roku przez Wydział Sejsmometrii Wiertniczej Polskiego Górnictwa Naftowego i Gazownictwa Geofizyki Kraków.

Prace pomiarowe w otworze Narol PIG 2 wykonano aparaturą SN-338 i sondą pięciogeofonową z interwałem pomiarowym 20 m, metodą dynamitową z trzech punktów strzelania (PS) usytuowanych następująco:

PS	Odległość d [m]	Azymut A [°]	Niwelacja N [m]	Poziom odniesienia <i>P.O.</i> [m]
1	140	45	0–3 3–37	glina margiel z wkładkami piaskowca
2	490	45	0-8 8-30 30-38	piasek margiel piaskowiec
3	160	305	0-2 2-32	glina margiel

gdzie:

- *d* odległość PS od głębokiego otworu;
- A azymut mierzony w punkcie głębokiego otworu w kierunku PS;
- N wysokość względna PS w stosunku do wylotu otworu wiertniczego.

Maksymalna głębokość pomiarów wynosiła 3300 m przy głębokości końcowej otworu 3652 m. Poziom odniesienia pomiarów przyjęto zgodnie z wysokością wylotu otworu geologicznego, tj. 305 m n.p.m.

Obliczenia redukcji głębokości i czasu wykonano na maszynie cyfrowej EMR-6135, wykorzystując zależności analogiczne jak dla otworu wiertniczego Narol IG 1.

Prędkość fali w utworach przypowierzchniowych w strefie małych prędkości (SMP) wynosi 1500 m/s.

Pomiar pionowego profilowania sejsmicznego (PPS) wykonano z trzech punktów wzbudzania. Zarejestrowane na taśmach magnetycznych wyniki pomiarów opracowano w systemie SYSIS z zastosowaniem filtracji 50 Hz i filtracji splotowej 5/15–42/48, otrzymując sejsmogram zbiorczy PPS. Dla dokładniejszej korelacji fal wykonano filtrację wielokanałową na kierunkach "+ –", "+" oraz "–". W celu dokładniejszego dowiązania głębokościowego i czasowego fal odbitych wprowadzono do sejsmogramu zbiorczego PPS poprawki dodatkowe, uzyskując sekcję czasową PPS w skali 2T. Dla uzyskania lepszej rozdzielczości obrazu falowego zastosowano na sekcji czasowej PPS filtrację wielokanałową oraz filtrację wachlarzową.

Profilowanie akustyczne przeprowadzono w interwale pomiarowym 0–3652 m.

Zakres opracowania obejmował: wykres ΔT po kalibracji, wykres krzywej różnicowej, wykresy prędkości warstwowych (V_w) i współczynników odbicia po I i II stopniu uśrednienia – w skali głębokościowej i czasowej oraz hodograf T_{Va} z punktami kalibracji.

Dodatkowo opracowano wykres V_w i współczynników odbicia w skali sekcji czasowej.

Profilowanie akustyczne w przedziale 315–3652 m wykonano sondami SPAK 4 i SKANG, a w przedziale 0–315 m profilowanie uzupełniono prędkością kompleksową (V_k) uzyskaną z pomiarów prędkości średnich z PS 1.

Wszystkie wartości h_r , t_r i V_{st} . zestawiono w tabeli 26. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 61A) i hodografu pionowego (fig. 61B). Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać stały, systematyczny wzrost prędkości wraz z głębokością.

Na krzywej prędkości średnich (fig. 61A) zwraca uwagę bardzo duży gradient prędkości w początkowym odcinku odpowiadającym utworom mastrychtu. Następnie wykres biegnie dość jednostajnie do głębokości ok. 1000 m, od której notuje się szybszy wzrost prędkości wraz z głębokością, aż do wartości prawie 2000 m. Od tego miejsca gradient prędkości maleje, utrzymując się prawie na stałym poziomie, aż do końcowego odcinka krzywej, gdzie na głębokości ok. 3300 m ponownie zwiększa swą wartość.

Powyższy rozkład prędkości średnich znajduje odzwierciedlenie na obliczonych i przedstawionych na wykresach prędkościach wygładzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) (fig. 62).

Tabela 26

Zestawienie wartości głębokości (h), czasu zredukowanego (t_r), i prędkości średnich (V_{sr}) w otworze wiertniczym Narol PIG 2

Depth (h), reduced time (t_r) and average velicity (V_{sr}) values in the Narol PIG 2 borehole

			_			
<i>h</i> [m]	t _r [s]	V_{sr} [m/s]		<i>h</i> [m]	t _r [s]	V_{sr} [m/s]
1	2	3		1	2	3
20	0,0240	833		740	0,3060	2418
40	0,0337	1188		760	0,3127	2431
60	0,0430	1395		780	0,3197	2440
80	0,0523	1529		800	0,3267	2449
100	0,0613	1630	1	820	0,3330	2462
120	0,0707	1698		840	0,3397	2473
140	0,0793	1765		860	0,3467	2481
160	0,0870	1839	1	880	0,3537	2488
180	0,0943	1908		900	0,3607	2495
200	0,1007	1987]	920	0,3677	2502
220	0,1077	2043		940	0,3757	2502
240	0,1150	2087		960	0,3813	2517
260	0,1227	2120		980	0,3867	2534
280	0,1320	2121		1000	0,3910	2558
300	0,1407	2133		1020	0,3973	2567
320	0,1487	2152		1040	0,4023	2585
340	0,1557	2184		1060	0,4080	2598
360	0,1630	2209		1080	0,4133	2613
380	0,1700	2235		1100	0,4183	2629
400	0,1787	2239		1120	0,4227	2650
420	0,1870	2246		1140	0,4277	2666
440	0,1957	2249		1160	0,4320	2685
460	0,2043	2251		1180	0,4360	2706
480	0,2123	2261		1200	0,4397	2729
500	0,2203	2269		1220	0,4440	2748
520	0,2277	2284		1240	0,4480	2768
540	0,2347	2301		1260	0,4520	2788
560	0,2420	2314		1280	0,4567	2803
580	0,2493	2326		1300	0,4613	2818
600	0,2563	2341		1320	0,4657	2835
620	0,2637	2351		1340	0,4707	2847
640	0,2707	2365		1360	0,4747	2865
660	0,2777	2377		1380	0,4797	2877
680	0,2847	2389		1400	0,4843	2891
700	0,2923	2395		1420	0,4880	2910
720	0,2990	2408		1440	0,4917	2929

Tabela 26 cd.

1	2	3		1	2	3
1460	0,4963	2942		2240	0,6603	3392
1480	0,4997	2962		2260	0,6647	3400
1500	0,5033	2980		2280	0,6687	3410
1520	0,5070	2998		2300	0,6737	3414
1540	0,5103	3018		2320	0,6793	3415
1560	0,5140	3035		2340	0,6840	3421
1580	0,5187	3046		2360	0,6883	3429
1600	0,5220	3065		2380	0,6940	3429
1620	0,5253	3084		2400	0,7000	3429
1640	0,5290	3100		2420	0,7043	3436
1660	0,5333	3113]	2440	0,7087	3443
1680	0,5366	3130]	2460	0,7127	3452
1700	0,5413	3140		2480	0,7170	3459
1720	0,5443	3160		2500	0,7210	3467
1740	0,5477	3177		2520	0,7253	3474
1760	0,5520	3188]	2540	0,7307	3476
1780	0,5560	3201]	2560	0,7350	3483
1800	0,5600	3214]	2580	0,7393	3490
1820	0,5647	3223]	2600	0,7420	3504
1840	0,5673	3243		2620	0,7457	3514
1860	0,5710	3257		2640	0,7500	3520
1880	0,5753	3268		2660	0,7537	3529
1900	0,5800	3276		2680	0,7577	3537
1920	0,5843	3286		2700	0,7620	3543
1940	0,5887	3296		2720	0,7667	3548
1960	0,5940	3300		2740	0,7703	3557
1980	0,5990	3306		2760	0,7740	3566
2000	0,6047	3308		2780	0,7783	3572
2020	0,6093	3315		2800	0,7827	3578
2040	0,6140	3322		2820	0,7873	3582
2060	0,6190	3328		2840	0,7920	3586
2080	0,6247	3330		2860	0,7960	3593
2100	0,6297	3335		2880	0,8000	3600
2120	0,6340	3344		2900	0,8047	3604
2140	0,6387	3351		2920	0,8097	3606
2160	0,6433	3358		2940	0,8137	3613
2180	0,6473	3368		2960	0,8180	3619
2200	0,6520	3374		2980	0,8213	3628
2220	0,6560	3384		3000	0,8240	3641

1	2	3
3020	0,8277	3649
3040	0,8317	3655
3060	0,8360	3660
3080	0,8407	3664
3100	0,8453	3667
3120	0,8497	3672
3140	0,8540	3677
3160	0,8580	3683
3180	0,8623	3688
3200	0,8677	3688
3220	0,8713	3695
3240	0,8753	3701
3260	0,8803	3703
3280	0,8843	3709
3300	0,8883	3715
3320	0,8933	3716
3340	0,8963	3726

1	2	3
3360	0,8983	3740
3380	0,9023	3746
3400	0,9053	3756
3420	0,9093	3761
3440	0,9123	3771
3460	0,9153	3780
3480	0,9193	3785
3500	0,9223	3795
3520	0,9253	3804
3540	0,9283	3813
3560	0,9323	3818
3580	0,9353	3828
3600	0,9383	3837
3620	0,9413	3846
3640	0,9443	3855
3652	0,9463	3859

Tabela 26 cd.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano podobny sposób wygładzania wartości pomiarów geofizycznych, jak w przypadku otworu wiertniczego Narol IG 1. Zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe), V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawiera tabela 27.

Porównanie wykresów prędkości z profilem geologicznym otworu wiertniczego ułatwia powiązanie zmian prędkości z wydzielonymi w otworze kompleksami litologiczno-stratygraficznymi.

Do głębokości ok. 130 m średnia wartość prędkości kompleksowej wynosi ok. 1800 m/s. Po czym następuje jej stopniowy wzrost kolejno do wartości: 2500-2550 m/s w interwale głębokościowym 130-570 m, 2850 m/s do głęb. 850 m i 3150 m/s w przedziale 850–1000 m. Podobnie utrzymuje się krzywa prędkości interwałowych. Korelacja z profilem litologiczno-stratygraficznym otworu wskazuje na związek tych zmian z wykształceniem litologicznym utworów kredy górnej, w którym do głębokości ok. 150 m dominują opoki stopniowo przechodzące w margle i margle ilaste. Ta dość monotonnie zbudowana seria zalega do wymienionej głębokości ok. 1000 m. Na tym poziomie obserwuje się bardzo duży kontrast prędkości kompleksowej wynoszący ok. 1100 m/s, powodujący wzrost wartości do 4250 m/s i obejmujący swym zasięgiem ok. 300-metrowy pakiet do głębokości ok. 1300 m. W podziale stratygraficznym wyróżniają się tu utwory koniaku-turonu, w których profilu dominują wapienie i wapienie margliste. Dalsze wyniki zaprezentowane na wykresach upoważniają do wydzielenia dwóch kompleksów o prędkościach wzrastających do 4650 m/s oraz 5300 m/s i miąższościach odpowiednio 150 i 200 m. Granice tych serii wyznaczają głębokości: 1300-1450 i 1450-1650 m. Porównanie z profilem litologiczno-stratygraficznym otworu pozwala stwierdzić, że wyższy przedział koreluje się z kompleksem utworów: cenoman (kreda górna)-kreda dolna-jura górna; natomiast niższy - z utworami kimerydu. Zależności te podkreślają różnice w wykształceniu litologicznym wymienionych kompleksów. Poniżej, do głębokości ok. 1900 m, obserwuje się kompleks charakteryzujący się prędkością zmniejszoną w stosunku do nadległej do wartości 5000 m/s, któremu odpowiadają dolne warstwy kimerydu oraz utwory oksfordu (jury górnej) i jury środkowej. Zróżnicowane prędkości w utworach kimerydu należy wiązać z ich zmiennym składem litologicznym, który stanowią górna seria utworów dolomitowych i dolna warstwa terygeniczna.

Granice między kimerydem i oksfordem oraz między jurą górną i środkową zaznaczają się na wykresie niewyraźnie i tylko na krzywej prędkości interwałowej, co świadczy o dużym podobieństwie skał pod względem prędkości przebiegu w nich fal sejsmicznych.

Na głębokości ok. 1920–1930 m, oscylującej wokół granicy stratygraficznej jura–sylur, notuje się ujemny kontrast prędkościowy powodujący obniżenie wartości z 5000 do

Fig. 61. Wykres prędkości średnich (A) i hodograf pionowy (B) w otworze wiertniczym Narol PIG 2

Objaśnienia na figurze 58

Average seismic velocity (A) and travel-time diagram (B) in Narol PIG 2 borehole (reference level 305.0 m a.s.l.)

For explanations see Figure 58

4150 m/s. Wartość ta nieznacznie wzrasta do 4400 m/s na głębokości ok. 2170 m i ponownie się obniża do 4200 m/s na głębokości ok. 2310 m. Na podstawie porównania z profilem litologiczno-stratygraficznym otworu stwierdzono, że ten wydzielony do głębokości ok. 2500 m kompleks odpowiada serii monotonnych utworów iłowcowo-mułowcowych z udziałem piaskowców. Od tego poziomu wzrost prędkości kompleksowej utrzymujący się w interwale wartości 4750-4950 m/s obejmuje w profilu stratygraficznym otworu: dolną część syluru, ordowik i górną część kambru do głębokości ok. 3350 m, wskazując na zmiany litologiczne tych utworów. Zmiany te obrazuje dokładniej wykres prędkości interwałowych, podkreślając granice kontrastu na głębokości odpowiadającej kontaktowi skał syluru i ordowiku oraz w utworach ordowiku, które rozdziela na warstwy górne, środkowe i dolne. Na wymienionych głębokości zaznacza się dwudzielność krzywych prędkości zarówno kompleksowej, jak i interwałowej, co objawia się znacznym wzrostem prędkości z wartości 4800 do 5900 m/s i kolejnym na głębokości ok. 3500 do 6300 m/s. Dotyczy to przewierconych utworów kambru.

Fig. 62. Wykresy prędkości wygładzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) w otworze wiertniczym Narol PIG 2

Objaśnienia na figurze 58

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_i) in Narol PIG 2 borehole (reference level 305.0 m a.s.l.)

For explanations see Figure 58

Istotnych informacji o istnieniu granic refleksyjnych dostarczają wyniki pomiaru PPS – pionowego profilowania sejsmicznego.

Przy analizie pomiarów PPS wzięto pod uwagę następujące materiały:

- wykres zbiorczy V_{sr} ;
- sejsmogramy zbiorcze PPS z PS 1, PS 2 i PS 3;
- czasowe przekroje sejsmiczne wykonane na podstawie PPS – z PS 1, PS 2 i PS 3.

Zestawienie uśrednionych wartości prędkości interwałowej (V_i), prędkości kompleksowej (V_k) i prędkości wygładzonej (V_w) obliczonych z czasu wygładzonego w otworze Narol PIG 2

Averaged interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values calculated from smoothed time in the Narol PIG 2 borehole

h			V_w
[m]	[m/s]	[m/s]	[m/s]
1	2	3	4
20	1710	1817	1590
40	1710	1817	1641
60	1710	1817	1748
80	1710	1817	1884
100	1710	1817	2039
120	2360	1817	2194
140	2360	2512	2335
160	2360	2512	2449
180	2360	2512	2530
200	2360	2512	2574
220	2571	2512	2588
240	2571	2512	2582
260	2571	2512	2567
280	2571	2512	2553
300	2571	2512	2543
320	2524	2512	2537
340	2524	2512	2531
360	2524	2512	2522
380	2524	2512	2510
400	2524	2512	2499
420	2517	2568	2493
440	2517	2568	2498
460	2517	2568	2517
480	2517	2568	2549
500	2517	2568	2590
520	2693	2568	2635
540	2693	2568	2680
560	2693	2568	2718
580	2693	2847	2750
600	2693	2847	2774
620	2815	2847	2793
640	2815	2847	2808
660	2815	2847	2822
			·]

h	Vi	V_k	V_w
[m]	[m/s]	[m/s]	[m/s]
1	2	3	4
680	2815	2847	2837
700	2815	2847	2853
720	2892	2847	2870
740	2892	2847	2886
760	2892	2847	2901
780	2892	2847	2912
800	2892	2847	2920
820	2946	2847	2925
840	2946	2847	2931
860	2946	3134	2945
880	2946	3134	2973
900	2946	3134	3021
920	3248	3134	3094
940	3248	3134	3189
960	3248	3134	3301
980	3248	3134	3420
1000	3248	3134	3540
1020	3820	4244	3656
1040	3820	4244	3767
1060	3820	4244	3879
1080	3820	4244	3998
1100	3820	4244	4125
1120	4432	4244	4260
1140	4432	4244	4394
1160	4432	4244	4513
1180	4432	4244	4605
1200	4432	4244	4658
1220	4624	4244	4672
1240	4624	4244	4653
1260	4624	4244	4615
1280	4624	4244	4571
1300	4624	4645	4536
1320	4581	4645	4523

Tabela 27 cd.

1	2	3	4		1	2	3	4
1340	4581	4645	4537		2120	4366	4148	4267
1360	4581	4645	4582	1	2140	4366	4148	4344
1380	4581	4645	4655	1	2160	4366	4407	4412
1400	4581	4645	4753	1	2180	4366	4407	4463
1420	5032	4645	4867	1	2200	4366	4407	4487
1440	5032	4645	4988]	2220	4390	4407	4478
1460	5032	5278	5102		2240	4390	4407	4438
1480	5032	5278	5201		2260	4390	4407	4373
1500	5032	5278	5274	1	2280	4390	4407	4296
1520	5339	5278	5321	1	2300	4390	4407	4221
1540	5339	5278	5346		2320	4147	4214	4160
1560	5339	5278	5353		2340	4147	4214	4125
1580	5339	5278	5350		2360	4147	4214	4122
1600	5339	5278	5341		2380	4147	4214	4152
1620	5306	5278	5328		2400	4147	4214	4209
1640	5306	5278	5314	1	2420	4409	4214	4287
1660	5306	5021	5300	1	2440	4409	4214	4373
1680	5306	5021	5283	1	2460	4409	4214	4458
1700	5306	5021	5261	1	2480	4409	4832	4535
1720	5185	5021	5236	1	2500	4409	4832	4606
1740	5185	5021	5206		2520	4797	4832	4678
1760	5185	5021	5172	1	2540	4797	4832	4757
1780	5185	5021	5131		2560	4797	4832	4841
1800	5185	5021	5082		2580	4797	4832	4919
1820	4843	5021	5014		2600	4797	4832	4981
1840	4843	5021	4923	1	2620	4989	4832	5014
1860	4843	5021	4806		2640	4989	4832	5016
1880	4843	5021	4669		2660	4989	4832	4993
1900	4843	5021	4525]	2680	4989	4832	4953
1920	4232	5021	4386	1	2700	4989	4832	4906
1940	4232	4148	4265	1	2720	4787	4832	4858
1960	4232	4148	4168		2740	4787	4832	4811
1980	4232	4148	4098		2760	4787	4741	4763
2000	4232	4148	4056	1	2780	4787	4741	4718
2020	4078	4148	4040	1	2800	4787	4741	4677
2040	4078	4148	4049	1	2820	4659	4741	4647
2060	4078	4148	4078	1	2840	4659	4741	4635
2080	4078	4148	4127	1	2860	4659	4741	4646
2100	4078	4148	4191	1	2880	4659	4741	4683
L	1	1	1	1		L	1	L

2	3	4	1	2
4659	4741	4748	3280	4824
4956	4741	4836	3300	4824
4956	4741	4933	3320	558
4956	4741	5018	3340	558
4956	4965	5068	3360	558
4956	4965	5066	3380	558
4869	4965	5012	3400	558
4869	4965	4924	3420	603
4869	4965	4823	3440	603
4869	4965	4733	3460	603
4869	4800	4664	3480	603
4609	4800	4620	3500	603
4609	4800	4598	3520	625
4609	4800	4595	3540	625
4609	4800	4607	3560	625
4609	4800	4633	3580	625
4824	4800	4681	3600	625
4824	4800	4753	3620	643
4824	4800	4856	3640	643

Tabela 27 cd.

1	2	3	4
3280	4824	4800	4993
3300	4824	4800	5159
3320	5583	4800	5344
3340	5583	4800	5529
3360	5583	5903	5695
3380	5583	5903	5826
3400	5583	5903	5918
3420	6037	5903	5980
3440	6037	5903	6023
3460	6037	5903	6058
3480	6037	5903	6093
3500	6037	6283	6132
3520	6259	6283	6140
3540	6259	6283	6135
3560	6259	6283	6129
3580	6259	6283	6124
3600	6259	6283	6118
3620	6435	6283	6110
3640	6435	6283	6100

Otrzymane wyniki są stosunkowo niskiej jakości, szczególnie dla PS 1 i PS 2. Dla PS 3 (fig. 63) obserwowane refleksy lepiej się korelują. Różnice te mogą być spowodowane usytuowaniem PS 1 i PS 2 na innym azymucie niż PS 3.

Dla PS 1 można zidentyfikować następujące refleksy:

- na czasie ok. 0,92 s, głęb. 1380 m, refleks pochodzący ze stropu utworów jury górnej;
- na czasie ok. 1,15 s, głęb. 1880 m, refleks pochodzący z utworów jury środkowej;
- na czasie ok. 1,1565 s, głęb. 2780 m, refleks pochodzący z utworów stropowych ordowiku;
- na czasie ok. 1,665 s, głęb. 3020 m, refleks pochodzący z warstw stropowych kambru.

Na sejsmogramie zbiorczym zarejestrowanym dla PS 2 obserwuje się:

- na czasie ok. 1,10 s, głębokość ok. 1500 m, refleks pochodzący z utworów jury górnej,
- na czasie ok. 1,26 s, głębokość ok. 2100 m, refleks pochodzący z utworów syluru.

Na sejsmogramie zbiorczym zarejestrowanym dla PS 3 koreluje się prawdopodobnie dwufazowy refleks na czasie ok. 0,965 i ok. 1,0 s z głębokości odpowiednio ok. 1400 i 1480 m – oba z utworów stropowych jury górnej, oraz obserwuje się dwa refleksy o następującym dowiązaniu:

- na czasie ok. 1,09 s, głębokość ok. 1720 m, refleks pochodzący z warstw jury górnej (z warstw stropowych oksfordu);
- na czasie ok. 1,19 s, głębokość ok. 1960 m, refleks pochodzący z warstw stropowych syluru.

Podobnie jak w otworze wiertniczym Narol IG 1, wyniki w otworze Narol PIG 2 upoważniają do wydzielenia pięciu głównych kompleksów prędkościowych obejmujących:

I. Utwory kredy, do głębokości ok. 1000 m, o prędkościach zawartych w interwale wartości 1800–3150 m/s, z wydzieleniem dolnego podkompleksu o prędkości 3150 m/s.

II. Utwory kredy dolnej i jury, z podziałem na granicy tyton–kimeryd na dwa podkompleksy o wartościach średnich: ok. 4450 i 5150 m/s.

III. Utwory syluru górnego o średniej prędkości 4250 m/s.

IV. Dolne utwory syluru, od głęb. 2500 m, utwory ordo-

wiku i kambru górnego o średniej wartości 4800 m/s. V. Pozostałe utwory kambru o średniej wartości ok.

6100 m/s.

Objaśnienia na figurze 58

Vertical Seismic Profiling (VSP) PS3 (reference level 305 m a.s.l.) in Narol PIG 2 borehole

For explanations see Figure 58