WYNIKI BADAŃ GEOFIZYCZNYCH

Jan SZEWCZYK

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ W OTWORZE WIERTNICZYM POLIK IG 1

ZAKRES WYKONANYCH BADAŃ

Badania z zakresu geofizyki wiertniczej wykonano w okresie od 19 listopada 1987 r. do 28 października 1988 r. Badania te zostały przeprowadzone standardowymi aparaturami analogowymi produkcji rosyjskiej przez Geofizykę Toruń. Wykonano je w 10 podstawowych odcinkach tzw. badań strefowych. Jakość zacementowania rur okładzinowych sprawdzano pomiarem akustycznym (PAc). Po zakończeniu wiercenia, po ok. 12 dobach od zatrzymania cyrkulacji płuczki wiertniczej, w zarurowanej drożnej części profilu otworu wykonano profilowanie temperatury w warunkach zbliżonych do ustabilizowanych (PT). W odcinkach profilu odsłoniętych poniżej rur okładzinowych były prowadzone tzw. pomiary ujednolicające (PS, Pśr). Do pomiarów wykorzystano aparatury analogowe z rejestracją wyników na taśmach pomiarowych każdorazowo w skali głębokościowej 1:500.

W tabeli 16 zestawiono wszystkie przeprowadzone badania wraz z informacją na temat ich rodzaju, daty oraz odcinków głębokościowych, w których je wykonano.

Wyniki źródłowych danych pomiarowych, zarejestrowane w formie analogowej, zostały w pierwszej połowie lat 90. zdigitalizowane oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych – CBDG (Szewczyk i in., 2001).

W ramach prac interpretacyjnych związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne, tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowania neutronowe (PNG lub PNN), unormowano oraz połączono w obrębie całego otworu. Opis metodyki powyższych prac znajduje się w opracowaniu archiwalnym Szewczyka i in. (2001).

Tabela 16

Pomiary geofizyczne w otworze wiertniczym Polik IG 1

Well logs in the Polik IG 1 borehole

Odcinek badań strefowych Measurement zone number	Interwał głębokościowy badań Depth interval [m]	Data pomiaru Date of measurement	Głębokość otworu podczas wykonywania badań Borehole depth during measurement [m]	Typ badań (skróty) Type of measurement (abbreviated)
1	2	3	4	5
1	0,0–396,0	17.01.1986	402,0	PS Pśr PG, PGG, PNG P0x2 PK. SOx4, LL3
2	296,0-1435,0 1200,0-1434,0	20.02.1986	1439,0	POx2, PS SOx5.POst
3	200,0–1948,0 1350,0–1948,0	19.03.1986	1957,0	PG, PGG, PNG, Pśr, P0x2 PA(ΔΤ,Τ1,Τ2), PK, POst SOx4
4	1880,0–2460,0 296,0–2460,0	19.04.1986	2465,0	PG, PGG, PNG, Pśr, P0x2 PO, Psr
5	2400,0-3240,0 296,0-3248,0	05.08.1986	3253,0	PG, PGG, PNG, Pśr, P0x2 Pśr, PS

1	2	3	4	5
6	3190,0–3775,0 6,0–3240,0	30.09.1986	3787,0	PG, PGG, PNG, Pśr, P0x2,PAPAc
7	3700,0-4108,8	20.11.1986	4102,0	PG, PGG, PNG, Pśr, P0x2SOx4, TN
8	3070,0-4099,0	16.12.1986	4256,0	PAc
9	3028,0-4088,0	06.03.1987	4582,0	PAc
10	4025,0-4590,0	24.02.1987	4582,0	PG, PGG, PNG, PA, Pśr, POx5,POst
11	0,0-4100,0	19.03.1987	4582,0	РТ

Tabela 16 cd.

W tabeli 17 przedstawiono nazwy zbiorów danych cyfrowych odnoszące się do poszczególnych zdigitalizowanych danych wraz z informacją na temat gęstości cyfrowania traktowanej jako nominalna dokładność procesu cyfrowania. W odniesieniu zarówno do wyników badań odcinkowych, jak i do danych połączonych i unormowanych, ich wyniki zestawiono w postaci plików w formacie LAS (Log ASCII Standard).

Tabela 17

Zestawienie plików zawierających dane cyfrowe z otworu wiertniczego Polik IG 1

Nazwa pliku File name	Data pomiaru Date of measurement	Interwał badań Interval of measurements	Liczba punków pom. Number of points	Śred. krok pom. Average sampling rate [m]	Typ przyrządu Tool's name	Głebokośc otworu Depth [m]
1	2	3	4	5	6	7
PLK11GK.BKR	17.01.1986	343,04–395,00	201	0,25851	SP-62	402,00
PLK11NK.BKR		344,97–396,01	171	0,29848	SP-62	402,00
PLK11PG.BKR		0,00–396,02	1583	0,25017	SP_62	402,00
PLK11PN.BKR		0,04–395,99	1536	0,25778	SP-62	402,00
PLK11RL.BKR		10,02–395,99	1005	0,38405	M2.5A0.25B	402,00
PLK11RS.BKR		10,00–395,99	973	0,39670	B2.5A0.25M	402,00
PLK11SR.BKR		0,02–396,01	752	0,52658	KS-3	402,00
PLK12SR.BKR	20.02.1986	2,50-396,00	805	0,48882	KS-3	402,00
PLK13PS.BKR		296,03-1435,01	2294	0,49650		1439,00
PLK13R0.BKR		1200,03-1435,01	564	0,41663	M0.5A0.1B	1439,00
PLK13R1.BKR		1200,02-1435,01	587	0,40032	M1.0A0.1B	1439,00
PLK13R2.BKR		1200,01–1435,01	598	0,39298	M2.5A0.25B	1439,00
PLK13R4.BKR		1200,00-1435,01	576	0,40800	M4.0A0.5B	1439,00
PLK13R8.BKR		1200,01–1434,99	565	0,41589	M8.0A1.0B	1439,00
PLK13RL.BKR		296,03-1435,03	2780	0,40971	M2.5A0.25B	1439,00
PLK13RS.BKR		296,02-1435,01	2818	0,40418	B2.5A0.25M	1439,00
PLK13RT.BKR		1200,00-1435,01	457	0,51425		1439,00
PLK13SR.BKR		296,00-1435,02	1835	0,62072		1439,00
PLK14GK.BKR	19.03.1986	1887,00–1948,03	267	0,62000	SP-62	
PLK14NK.BKR		1896,00-1948,03	220	0,22800	SP-62	1957,00
PLK14PA.BKR		296,01-1948,01	5515	0,23650	SPAK	1957,00
PLK14PG.BKR		200,02-1948,04	7259	0,29955	SP-62	1957,00
PLK14PN.BKR		200,02-1948,01	6922	0,24081	SP-62	1957,00

Summary of digized well logs from the Polik IG 1 borehole

Tabela 17 cd.

1	2	3	4	5	6	7
PLK14PS.BKR	19.03.1986 cd.	295,02–1948,01	3019	0,25253	-	1957,00
PLK14R0.BKR		1350,02–1948,01	1659	0,54753	M0.5A0.1B	1957,00
PLK14R1.BKR		1350,02–1947,98	1622	0,36045	M1.0A0.1B	1957,00
PLK14R2.BKR		1350,00–1948,03	1566	0,36866	M2.5A0.25B	1957,00
PLK14R4.BKR		1350,03–1948,01	1562	0,38188	M4.0A0.5B	1957,00
PLK14R8.BKR		1350,02–1948,01	1497	0,38283	M8.0A1.0B	1957,00
PLK14RL.BKR		295,02-1948,01	3180	0,39946	M2.5A0.25B	1957,00
PLK14RS.BKR		295,02-1948,01	4245	0,51981		1957,00
PLK14RT.BKR		295,02–1948,04	3603	0,45579	KS-3	1957,00
PLK14SR.BKR		295,99–1947,00	5043	0,45879	SPAK	1957,00
PLK14T1.BKR		295,98–1947,02	4873	0,32739	SPAK	1957,00
PLK14T2.BKR		0,00–298,00	686	0,33900	AKC	1957,00
PLK15AR.BKR	19.04.1986	0,02–298,01			АКС	2465,00
PLK15AS.BKR		0,03–296,98	663	0,43400	AKC	2465,00
PLK15AT.BKR		2410,01–2459,98	702	0,44900	SP_62	2465,00
PLK15GK.BKR		2408,03-2460,03	209	0,42300	SP-62	2465,00
PLK15NK.BKR		1880,02–2455,03	201	0,23900	SPAK	2465,00
PLK15PA.BKR		1880,02–2459,96	1953	0,25800	SP-	2465,00
PLK15PG.BKR		296,01–2459,00	2380	0,29400		2465,00
PLK15PS.BKR		1880,01–2457,00	5503	0,24300		2465,00
PLK15R0.BKR		1880,01–2457,01	1561	0,39300	M0.5A0.1B	2465,00
PLK15R1.BKR		1880,03–2457,02	1548	0,37000	M1.0A0.1B	2465,00
PLK15R2.BKR		1880,00–2457,04	1593	0,37200	M2.5A0.25B	2465,00
PLK15R4.BKR		1880,02–2457,01	1145	0,36200	M4.0A0.5B	2465,00
PLK15R8.BKR		1880,02–2456,98	1624	0,50400	M8.0A1.0B	2465,00
PLK15RL.BKR		1880,01–2456,99	1492	0,35600	M2.5A0.25B	2465,00
PLK15RS.BKR		1880,03–2457,03	1409	0,39000	B2.5A0.25M	2465,00
PLK15RT.BKR		295,99–2459,00	1911	0,41000	-	2465,00
PLK15SR.BKR		1880,02–2455,03	3539	0,30200	KS-3	2465,00
PLK15T1.BKR		1879,99–2455,01	1634	0,61100	SPAK	2465,00
PLK15T2.BKR		3190,03-3240,04	1762	0,35100	SPAK	2465,00
PLK16GK.BKR	15.08.1986	3190,05-3239,99	208	0,240	SP-62	3253,00
PLK16NK.BKR		2400,04-3239,04	198	0,32635	SP-62	3253,00
PLK16PA.BKR		2400,04-3240,02	3003	0,24043	SPAK	3253,00
PLK16PG.BKR		2400,03-3240,01	3416	0,25222	SP-62	3253,00
PLK16PN.BKR		296,02–3247,96	3257	0,27939	SP-62	3253,00
PLK16PS.BKR		2399,98-3235,00	4044	0,24590		3253,00
PLK16R0.BKR		2400,00-3236,01	1582	0,25790	M0.5A0.1B	3253,00
PLK16R1.BKR		2400,03-3236,00	4530	0,72996	M1.0A0.1B	3253,00
PLK16R2.BKR		2400,02-3236,00	2109	0,52845	M2.5A0.25B	3253,00
PLK16R4.BKR		2400,01-3235,95	2285	0,18455	M4.0A0.5B	3253,00
PLK16R8.BKR		2400,00-3239,96	2108	0,39638	M8.0A1.0B	3253,00
PLK16RL.BKR		2400,04-3240,01	2195	0,36586	M2.5A0.25B	3253,00

Tabela 17 cd.

1	2	3	4	5	6	7
PLK16RS.BKR	15.08.1986	2400,02–3239,99	2088	0,39656	B2.5A0.25M	3253,00
PLK16RT.BKR	cd.	296,01-3238,96	5733	0,38267	KS-3	3253,00
PLK16SR.BKR		2399,97–3239,99	2693	0,40228	SPAK	3253,00
PLK16T1.BKR		2400,01–3239,98	3112	0,35774	SPAK	3253,00
PLK16T2.BKR		6,01–3240,03	8452	0,51334		3253,00
PLK17AA.BKR	30.09.1986	6,02–3240,00	7610	0,31193	SAPK	3787,00
PLK17AT.BKR		3730,02–3770,03		0,26991	SPAK	3787,00
PLK17GK.BKR		3238,99–3775,02	102	0,38263	SP_62	3787,00
PLK17MT.BKR		3730,03–3769,98	1132	0,42496	ABK-3	3787,00
PLK17NK.BKR		3219,96-3774,99	124	0,39225	SP-62	3787,00
PLK17PA.BKR		3190,03–3775,02	1761	0,47352	SPAK	3787,00
PLK17PG.BKR		3190,00–3775,00	2449	0,32218	SP-62	3787,00
PLK17PN.BKR		3238,98-3773,00	2430	0,31518	SP-62	3787,00
PLK17R0.BKR		3239,02-3773,01	1180	0,23887	M0.5A0.1B	3787,00
PLK17R1.BKR		3239,02–3773,01	1214	0,24074	M1.0A0.1B	3787,00
PLK17R2.BKR		3239,02-3773,05	1370	0,45256	M2.5A.25B	3787,00
PLK17R4.BKR		3247,00-3775,01	1294	0,43986	M4.0A0.5B	3787,00
PLK17R8.BKR		3239,03-3772,01	1269	0,38977	M8.0A1.0B	3787,00
PLK17RL.BKR		3239,02-3775,04	1374	0,41270	M2.5A0.25B	3787,00
PLK17RS.BKR		3239,00-3775,00	1220	0,41608	B2.5A0.25M	3787,00
PLK17RT.BKR		3235,02-3770,00	1268	0,38790	ABK-3	3787,00
PLK17SR.BKR		3239,03-3775,01	892		KS-3	3787,00
PLK17T1.BKR	-	3238,98-3775,03	1693	0,43936	SPAK	3787,00
PLK17T2.BKR		3699,97–4097,00	1590	0,42271	SPAK	3787,00
PLK18GG.BKR	20.11.1986	3699,98–3775,04	1492	0,59975	SP-62	4102,00
PLK18GK.BKR		3724,99–3789,97	309	0,31659	SP-62	4102,00
PLK18NK.BKR		3699,98-4101,97	242	0,33714	SP-62	4102,00
PLK18PA.BKR		3700,04-4104,98	1273	0,26611		4102,00
PLK18PG.BKR		3699,96-4106,97	1475	0,24291	SP-62	4102,00
PLK18PN.BKR		4002,00-4108,98	1536	0,26851	SP-62	4102,00
PLK18PT.BKR		3700,00-4097,02	245	0,31579		4102,00
PLK18R1.BKR		3700,05-4096,98	1037	0,27454	A1.0M0.1N	4102,00
PLK18R2.BKR		3700,04–4097,00	1008	0,26498	A2.0M0.5N	4102,00
PLK18R4.BKR		3699,97–4097,02	921	0,43665	A4.0M0.5N	4102,00
PLK18R8.BKR		3229,96-4099,99	990	0,38285	A8.0M1.0N	4102,00
PLK18RT.BKR		3235,01-4099,96	1610	0,39378	ABKT	4102,00
PLK18SR.BKR		3700,00-4099,98	2020	0,43101	SKP-1	4102,00
PLK18T1.BKR		3700,03-4099,99	1357	0,40106		
PLK18T2.BKR		3070,03-4100,01	1187	0,54039	-	
PLK19A1.BKR	_	3070,00-4100,04	2252	0,42819		4102,00
PLK19A2.BKR		3070,02-4080,02	2952	0,29475		4102,00
PLK19T2.BKR		3028,02-4088,04	2522	0,33695		4102,00

1	2	3	4	5	6	7
PLK1AA1.BKR			2750	0,45736		4256,00
PLK1AC1.BKR		3028,02-4088,02	2762	0,34893		4256,00
PLK1AC2.BKR		3028,01-4086,97	3000	0,40048		4256,00
PLK1BPT.BKR		0,04-4100,04	8638	0,38546	TEG-60	4582,00
PLK1CPG.BKR		3700,03–3799,98	411	0,38400		
PLK1CPG.BKR		3700,02-3800,02	338	0,29500		
PLK10GG.BKR	24.02.1987	4031,00-4584,00	2364	0,37512	SP-62	4582,00
PLK10GK.BKR		4025,01-4068,00	176	0,47465	SP-62	4582,00
PLK10NK.BKR		4025,02-4072,99	204	0,24319	SP-62	4100,00
PLK10PA.BKR		4074,99-4575,04	1500	0,29586		3824,00
PLK10PG.BKR		4025,00-4585,01	2076	0,23393	SP-62	3824,00
PLK10PN.BKR		4025,00-4583,99	2240	0,24426	SP-62	4584,00
PLK10PT.BKR		4380,00-4590,00	437	0,23515		4584,00
PLK10R0.BKR		4078,04-4574,01	2103	0,33337	A0.4M0.1N	4584,00
PLK10R1.BKR		4080,00-4574,00	2555	0,26975	A1.0M0.1N	4584,00
PLK10RL.BKR		4080,05-4573,96	2507	0,24955	A2.0M0.5N	4584,00
PLK10R4.BKR		4081,02-4574,02	2376	0,48055	A4.0M0.5N	4584,00
PLK10R8.BKR		4087,02-4574,04	1404	0,23584	A8.0M1.0N	4584,00
PLK10RT.BKR		4064,98-4571,99	1693	0,19335	ABKT	4584,00
PLK10RS.BKR		4077,97–4573,98	1939	0,19701	N6.0M0.5A	4584,00
PLK10SR.BKR		4074,99-4570,02	1147	0,20749	KS-3	4584,00
PLK10T1.BKR		4075,02-4569,99	1339	0,34688		4584,00
PLK10T2.BKR		4075,01-4574,99	1271	0,29947		4584,00

Tabela 17 cd.

PROFIL LITOLOGICZNY ORAZ POROWATOŚCIOWY

Na figurze 31 przedstawiono wyniki unormowanych i połączonych wartości naturalnego promieniowania gamma, a także profilowania średnicy otworu ze wskazaniem głębokości połączenia poszczególnych odcinków badań. Pokazano równocześnie wiertniczy profil litologiczny (LITO), ze wskazaniem odcinków rdzeniowanych z zaznaczeniem uzyskanej ilości rdzeni wiertniczych. Normowanie profilowań naturalnego promieniowania gamma została oparta na opracowanej przez autora statystyczno-stratygraficznej standaryzacji profilowań tego typu (Szewczyk, 2000a). Wyniki unormowanych profilowań podawane są w przyjętych umownych, porównywalnych jednostkach, określonych jako API_PGI, zdefiniowanych w wymienionej pracy.

Zastosowana autorska procedura normowania pozwala teoretycznie na uzyskiwanie porównywalności wyników profilowań naturalnego promieniowania między wynikami z różnych otworów wiertniczych niezależnie od warunków technicznych wykonywania badań (średnice wierceń, aktywność płuczki, typ aparatury). Zlecane są dalsze systematyczne prace badawcze nad doskonaleniem zastosowanej tu metody normowania.

PROFILE WŁAŚCIWOŚCI PETROFIZYCZNYCH

Ważnym elementem interpretacyjnym była wykonywana *post factum* kalibracja stosowanych w badaniach sond radiometrycznych (Szewczyk, 1998a, 2001). Uzyskiwane tym sposobem informacje pozwalają na obliczenie objętościowego profilu litologicznego (VOL) badanych profili wierceń z uwzględnieniem istniejącego opisu litologii oraz wyników badań parametrów petrofizycznych uzyskiwanych na podstawie badań laboratoryjnych. W zastosowanej procedurze interpretacyjnej przyjęto 3-składnikowy model objętościowy skały (przestrzeń porowa + zailenie + szkielet skały). Poprawność przyjmowanych parametrów metodycznych oraz wybieranych tzw. głębokościowych odcinków metodycznych (o stałych parametrach interpretacyjnych) oceniano metodą iteracyjną. Wszystkie opisane procedury realizowano w ramach autorskiego programu interpretacyjnego GEOFLOG (Szewczyk, 1994).

Na wykresie profilowania średnicy otworu wskazano miejsca połączeń poszczególnych odcinków badań. Wskazano odcinki rdzeniowane wraz z informacją na temat uzysku rdzenia

Composed normalised values of natural gamma radiation logs

The graph indicates the caliper log with depth of joined various log runs. It also presents the profile of stratigraphic and lithological sections with cores intervals with information on the yields of the core

PROFIL POROWATOŚCI ORAZ GĘSTOŚCIOWY

Porowatość, głównie skał osadowych, ma szczególnie silnie wpływ na parametry fizyczne skał. Brak kalibracji i standaryzacji sond radiometrycznych, stosowanych w przeszłości w większości otworów wiertniczych praktycznie do końca lat 80. XX w., wpływa na bardzo ograniczone możliwości stosowania wielu metod w uzyskiwaniu ilościowego opisu parametrów petrofizycznych skał, jak np. porowatość, gęstość, przepuszczalność. W ramach prowadzonych prac badawczych zostały opracowane i wdrożone metody kalibracji *post factum* korzystające przede wszystkim z wyników laboratoryjnych tych parametrów, a także informacji związanych z litologią badanych skał (Szewczyk, 1998b). Miarą poprawności uzyskiwanych wyników jest ich spójna statystyczna, ogólna zgodność z obserwowanymi wartościami porowatości, gęstości, przewodności cieplnej oraz prędkości fali akustycznej.

Na figurze 32 przedstawiono profil obliczonej tym sposobem porowatości całkowitej dla otworu Polik IG 1, zestawiony z wynikami laboratoryjnych określeń tego parametru, zarówno porowatości całkowitej, jak i efektywnej.

Na figurze 33 przedstawiono zestawienie wyników obliczeń odpowiednio gęstości objętościowej w stanie

Fig. 32. Porowatość całkowita określona na podstawie badań geofizycznych

Symbolami oznaczono wyniki badań laboratoryjnych porowatości całkowitej (trójkąty) oraz porowatości efektywnej (kółka)

Profile of calculated total porosity after geophysical data

The laboratory data of total porosity (triangles) and effective porosity (circles)

powietrzno-suchym (Go) oraz nasyconym (GoW). Metodyka obliczeń tych parametrów została omówiona w pracy autora (Szewczyk, 2000b). Na wspominanej figurze zaprezentowano również wyniki badań laboratoryjnych gęstości objętościowej w stanie powietrzno-suchym, jak również gęstości właściwej.

Wyniki ujęte na figurach 32 i 33, podobnie jak wyniki z blisko 300 innych głębokich otworów wiertniczych z ob-

szaru głównie Niżu Polskiego, uzyskanych w analogiczny sposób, były dotychczas wykorzystywane m.in. przy opracowywaniu atlasów energii geotermalnej (Górecki i in., 2006), opracowaniu mapy strumienia cieplnego Polski (Szewczyk, Gientka, 2009) oraz opracowań związanych z sekwestracją CO_2 czy z oceną potencjału energetycznego tzw. suchych gorącym skał (*Hot Dry Rocks*).

Fig. 33. Obliczona na podstawie badań geofizycznych gęstość objętościowa w stanie powietrzno-suchym (Go) oraz nasyconym (GoW)

Symbolami oznaczono wyniki badań laboratoryjnych gęstości objętościowej w stanie powietrzno-suchym

Profile of calculated dry bulk density (Go) and wet bulk density (GoW) after geophysical data interpretation The laboratory data of dry bulk density (triangles), are shown

PRĘDKOŚĆ FAL AKUSTYCZNYCH

Kolejnym ważnym elementem prac interpretacyjnych wykonanych dla otworu Polik IG 1 było obliczenie prędkości fal akustycznych (DTS). W przypadku archiwalnych otworów badawczych pozbawionych pomiarów akustycznych (praktycznie dotyczy to wszystkich otworów wykonanych przed rokiem 70. XX w.) była to ważna informacja, niezbędna m.in. do właściwej interpretacji badań sejsmicznych, np. przy konstrukcji sejsmogramów syntetycznych. W przypadku istnienia pomiarów akustycznych (DT), a taka sytuacja występuje w otworze Polik IG 1, miarą zgodności opracowanego objętościowego modelu porowatościowolitologicznego (VOL) z wynikami bezpośredniej rejestracji jest zgodność obydwu typów wyników. Występujące zaniki wstępnych faz fal akustycznych w pomiarach typu DT, powszechnie spotykane w pomiarach z lat 80. i 90. XX w., a także inne błędy pomiarowe i kalibracyjne powodują, że stosowany tu wzorzec odniesienia nie jest doskonały. Jako dodatkową informację stosuje się w tym przypadku tzw. pseudoakustyczne profilowanie sejsmiczne (DT_VSP). Na figurze 34 przedstawiono zestawienie wszystkich trzech informacji dla profilu otworu wiertniczego Polik IG 1.

Wszystkie trzy informacje odnoszące się do prędkości fal akustycznych mają zbliżony charakter. Zaletą obliczonych wartości DTS jest brak zakłóceń pomiarów związanych z powszechnym występowaniem tzw. zaniku faz w rejestrowanych jej wartościach za pośrednictwem pomiaru DT.

OCENA HYDROGEOLOGICZNA

Jednym z ważnych celów badawczych otworu Polik IG 1 było określenie warunków występowania w nim warstw wodonośnych. Na figurze 35A przedstawiono, obok geofizycznego warstwowego profilu litologicznego, wyniki obliczeń porowatości, uśrednione dla wydzielonych warstw litologicznych. Warstwy o dobrych właściwościach zbiornikowych występują wyłącznie w utworach młodszego mezozoiku do spągu utworów jury dolnej.

Na figurze 35B zaprezentowano zestawienie mineralizacji wód podziemnych uzyskane na podstawie wykonanych badań z wynikami badań mineralizacji dla obszaru Niżu Polskiego (Bojarski, 1996; Szewczyk, 2007).

CHARAKTERYSTYKA TERMICZNA

Po zakończeniu prac wiertniczych, po upływie ok. 12 dni od zakończenia cyrkulacji płuczki wiertniczej, w otworze Polik IG 1 wykonano profilowanie temperatury w warunkach zbliżonych do ustabilizowanych. Wyraźne odbieganie obserwowanej wartości temperatury strefy przypowierzchniowej od temperatury podpowierzchniowej gruntu (GST, ground surface temperature), określanej na podstawie danych meteorologicznych, wskazuje na obecność znacznego zaburzenia stanu równowagi termicznej w otworze w okresie wykonywania pomiaru temperatury. Dla obszaru, na którym znajduje się otwór Polik IG 1 wartość GST jest równa ok. 8,81°C (Szewczyk, 2005).

Poza pomiarem temperatury w warunkach zbliżonych do ustabilizowanych, w otworze Polik IG 1 wykonano pomiary temperatury maksymalnej (BHT) w warunkach nieustalonej równowagi termicznej dla siedmiu głębokości:

Głębokość [m]	1435	1948	2459	3241	3775	4102	4582
Temperatura (BHT) [°C]	39	48	50	72	85	98	99,4

Pomiary miały ciągły charakter i wykonywano je termometrami elektrycznymi w przydennej części otworu. Nieznany jest dokładny czas miedzy ustaniem cyrkulacji płuczki wiertniczej w otworze a wykonywaniem pomiarów temperatury (w przybliżeniu mógł on wynosić od 2 do 4 dób). Wartości temperatury maksymalnej są przedstawione na figurze 36B.

Określenie objętościowego modelu litologiczno-porowatościowego skał profilu otworu wiertniczego stworzyło warunki do obliczeń przewodności cieplnej (Szewczyk, 2001; Szewczyk, Gientka, 2009). Profil obliczonych powyższym sposobem wartości przewodności cieplnych przedstawiono na figurze 36. Niezależnie od powyższych wartości określonych dla całego profilu, w 2006 r. zostały przeprowadzone przez M. Wróblewską punktowe laboratoryjne badania tego parametru. Badania te wykonano metodą skanera optycznego na próbkach rdzeniowych w stanie powietrzno-suchym w roku 2006. Prowadzono je po blisko 20 latach od wydobycia rdzenia, czego konsekwencją było m.in. lokalnie bardzo duże odbieganie oznaczeń wartości przewodności cieplnej od wartości rzeczywistej tego parametru dla warunków naturalnych, tj. pełnego nasycenia przestrzeni porowej skał (vide fig. 36)¹.

Ze względu na niepełną stabilizację termiczną profilu otworu wiertniczego, w odniesieniu profilowania temperatury (T), wprowadzono korekty eliminujące zakłócenia związane z tym czynnikiem, uzyskując jego wartość zbliżoną do wartości temperatury ustabilizowanej.

¹ Ze względu na drastycznie odmienne pod względem przewodności cieplnej właściwości wody czy minerałów skałotwórczych od przewodności powietrza wypełniającego przestrzeń porową (odpowiednio dla wody i powietrza 0,59 i 0,03 W/m°K), niepełne wypełnienie tej przestrzeni wodą prowadzi do wyraźnego zaniżenia wartości tego parametru dla całej badanej próbki (*vide* Szewczyk, Gientka, 2009).

Lewy panel - obliczona wartość gęstości objętościowej (GoW)

Graph of sonic travel time evaluated after direct sonic logs (DT – grey curve), calculated on the basis of the litho-porosity model of rocks (DTS – blue curve) and calculated from vertical seismic profiling (DT_VSP – red curve)

Left panel - calculated wet bulk density (GoW)

Fig. 35. A. Warstwy izolujące i zbiornikowe w profilu otworu oraz ich średnia porowatość efektywna w strefie objętej badaniami hydrogeologicznymi. Wskazano interwały badań hydrogeologicznych i podstawowe ich wyniki. Q – wielkość dopływu [m³/h], TDS – mineralizacja [g/dm³]. B. Mineralizacje wód podziemnych uzyskana w badanych odcinkach na tle mineralizacji wód z obszaru Niżu Polskiego, z obliczoną wartością średnią metodą najmniejszych kwadratów (Szewczyk, 2007)

A. Aquifers and confined beds with their averaged effective porosity. It was shown tested intervals and main results. Q – inflow of groundwater [m³/h], TDS – total mineralization [g/dm³]. B. Mineralization of water obtained in the course of hydrogeological investigations in the Polik IG 1 borehole, the background variability of groundwater mineralization in the Polish Lowlands. Shown is the average materialization of these waters calculated using least squares method

Fig. 36. Charakterystyka termiczna otworu wiertniczego Polik IG 1

A – obliczony profil przewodności cieplnej (TC) wraz z wartościami tego parametru określonymi na podstawie badań laboratoryjnych (kółka); B – zarejestrowana wartość temperatury (T) dla warunków zbliżonych do ustalonych, T_{corr} – temperatura ustabilizowana (po korekcie), T_s – temperatura syntetyczna (paleotemperatura) obliczona na podstawie przewodności termicznej skał (TC), BHT – temperatura maksymalna zarejestrowana w trakcie badań strefowych w warunkach nieustabilizowanych, ΔT – amplituda zmian klimatycznych okresu zlodowacenie wisły *vs* holocen

Thermal characteristics of the Polik IG 1 borehole

A – calculated thermal conductivity of rock-forming profile (TC) and values this parameter after laboratory investigation (circles); B – geothermal data: T – recorded temperature for semi stable condition, T_s – temperature synthetic calculated on the basis of thermal conductivity of rocks, T_{corr} – corrected stable temperature, BHT – the maximum temperature zone, GST – ground surface temperature, ΔT – subsurface calculated Weischselian vs Holocene temperature amplitude

W odniesieniu do wartości pomiaru ustabilizowanego (T_{corr}) w jego części znajdującej się na głębokości większej niż 2000 m, tj. poza zasięgiem głębokościowym oddziaływania glacjalnych zmian klimatycznych, przeprowadzono normowanie wartości tzw. profilowania temperatury syntetycznej (T_s) , obliczonej na podstawie przewodności cieplnej skał tworzących profil otworu wiertniczego. Metodykę obliczeń parametrów termicznych oraz procedurę normowania opisano we wcześniejszych pracach autora (Szewczyk, 2002; Szewczyk, Gientka, 2009). Na figurze 6B przedstawiono zestawienie wymienionych wcześniej pomiarów termicznych wraz z zarejestrowanymi wartościami temperatury maksymalnej (BHT) oraz obliczonym profilem wartości przewodności cieplnej (TC). Widoczne różnice między obliczonymi wartościami T_s a wynikami pomiaru temperatury T_{corr} , sięgające ok.

+18°C, są efektem wpływy zmian klimatu między zlodowacenie wisły a współczesnym klimatem okresu holoceńskiego. Obliczona została zarówno wartość gęstości wgłębnego strumienia cieplnego (Q = 57,3 mW/m²), wartość paleotemperatury przypowierzchniowej dla okresu zlodowacenia wisły (GSTH = -10,3°C), paleomiaższość permafrostu dla końcowego okresu ostatniego glacjału (Hp = 320 m), jak i niezaburzona wartość temperatury dla głęb. 2000 m (T₂₀₀₀ = 62,5°C).

Otwór Polik IG 1 znajduje się strefie niskiej wartości strumienia cieplnego, charakterystycznego dla obszaru platformy prekambryjskiej. W otworze obserwuje się bardzo dobrze udokumentowane istnienie efektu zmian temperatury, wywołanej zmianami klimatycznymi okresu glacjalnego zlodowacenia wisły a współczesnym interglacjałem holoceńskim.

PODSUMOWANIE

Wyniki badań geofizycznych wykonanych w otworze Polik IG 1 stanowia istotny element rozpoznania utworów piętra osadowego na badanym obszarze. W rezultacie wykonanych prac interpretacyjnych uzyskano rozpoznanie całego profilu wiercenia Polik IG 1 pod względem jego podstawowych właściwości petrofizycznych, tj. porowatości, gęstości, przewodności cieplnej, a także prędkości fal akustycznych. Uzyskano pełne rozpoznanie pola termicznego, określając nie tylko wartość wgłębnego strumienia cieplnego i ustabilizowanej temperatury, lecz także obliczono wielkość efektu paleoklimatycznego, który jest w sposób bardzo jednoznaczny obserwowany w omawianym otworze. Stopień szczegółowości wykonanych prac interpretacyjnych, a także postawiony cel badawczy - uzyskania podstawowej wiedzy na temat uproszczonego modelu litologiczno-petrofizycznego skał występujących w profilu – pozwalają na traktowanie otrzymanych wyników jako wstępnego, autorskiego wariantu interpretacyjnego. Niezbędny jest dalszy systematyczny rozwój metodyki prac interpretacyjnych ukierunkowanych na kompleksową interpretację archiwalnych danych geofizycznych, co umożliwi uzyskanie sukcesywnego, pełniejszego rozpoznania profilu otworu Polik IG 1.

Zdecydowana większość wykonanych na obszarze Polski otworów wiertniczych zbadano za pomocą analogowych aparatur geofizycznych z zastosowaniem bardzo ograniczonego zakresu metod badawczych, w tym niekalibrowanych sond pomiarowych. Taki też charakter miały badania wykonane w otworze Polik IG 1. Nowe informacje na temat budowy geologicznej będą w głównej mierze bazować na właściwej interpretacji już istniejących danych archiwalnych – głównie z już istniejących otworów wiertniczych. Uzyskane dane stanowią i będą stanowić w przyszłości bardzo cenny materiał faktograficzny do analiz metodycznych związanych z badaniami utworów pokrywy osadowej na Niżu Polskim.

Katarzyna SOBIEŃ

INTERPRETACJA DANYCH SEJSMICZNYCH

Otwór wiertniczy Polik IG 1 jest zlokalizowany w obrębie niecki płockiej i jest jednym z nielicznych otworów w tym rejonie, gdzie nawiercono utwory kambryjskie. W najbliższym otoczeniu otworu znajdują się jedynie dwie linie sejsmiczne 2D, pomierzone w latach 80. XX w.

Interpretowany profil sejsmiczny T0150681 przebiega w kierunku NE–SW i wykonany został w 1981 r. w ramach tematu sejsmicznego w rejonie Rypin–Wyszogród (Jurek i in., 1982). Najnowszy reprocessing i reinterpretacja tego profilu pochodzą z 2013 r. (Kwietniak i in., 2014).

Profil otworu Polik IG 1 pozwolił na identyfikację stratygraficzną następujących horyzontów sejsmicznych: stropu kambru, ordowiku, spągu i stropu cechsztynu, triasu, jury środkowej i górnej oraz kredy dolnej (fig. 37). Brak zapisu lub jego niska jakość w najwyższej części profilu może być związany z parametrami akwizycji dostosowanymi do głębszego celu poszukiwawczego.

Słaba jakość sygnału i ciągłość głęboko zlokalizowanych horyzontów sejsmicznych spowodowała, że śledzenie odbić od stropu kambru i ordowiku jest hipotetyczne (zielone linie przerywane). Układ odbić pozwala jednak na określenie kierunku zapadania tych utworów, jak również syluru ku SW. Brak utworów dewonu i karbonu jest związany z obecnością luki erozyjnej, dlatego bezpośrednio na utworach syluru leży perm. Nieznaczna miąższość permu (czerwonego spągowca) uniemożliwia jego wyróżnienie w obrazie sejsmicznym.

Miąższość utworów cechsztynu nieznacznie rośnie w kierunku SW (w kierunku centrum basenu cechsztyńskiego), przy czym charakterystyczna jest wewnętrzna zmienność facjalna tego kompleksu. Dodatkowo w skrajnej SW części profilu być może zaznacza się obecność niedużej struktury solnej.

Utwory mezozoiku leżą horyzontalnie. Nie zaznaczają się wyraźne zmiany miąższości, natomiast w utworach triasu oraz jury lokalna zmienność i brak ciągłości horyzontów wynika zapewne ze zmienności facjalnej i obecności luk sedymentacyjno-erozyjnych. Dostępna jakość profilu nie pozwala na jednoznaczne prześledzenie obecności dyslokacji. W centralnej i SW części profilu być może utwory triasu i jury dolnej są przecięte uskokiem (czarna linia przerywana). W tym rejonie, zapewne nad podniesioną niewielką strukturą solną w cechsztynie, odnotować można lokalną zmianę miąższości utworów triasu.

Fig. 37. Interpretacja profilu sejsmicznego T0150681

Linie przerywane oznaczają niepewność interpretacji, objaśnienia w tekście

Seismic interpretation of a section T0150681

Dashed lines - interpretation uncertainties, explanations in the text

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

OPRACOWANIE WYNIKÓW POMIARÓW ŚREDNICH PRĘDKOŚCI SEJSMICZNYCH

Sprawozdanie z pomiarów sejsmometrycznych w głębokim, geologicznym otworze wiertniczym Polik IG 1 obejmuje średnie prędkości sejsmiczne i profilowanie akustyczne. Pomiary zostały wykonane przez Grupę Sejsmometrii Wiertniczej. Opracowanie zostało zrealizowane w kwietniu 1987 r. przez Geofizykę Toruń Polskiego Górnictwa Naftowego i Gazownictwa.

Prace pomiarowe przeprowadzono metodą bezdynamitową, aparaturą CS-50 i sondą 7-geofonową typu NT. Interwał pomiarowy wynosił 15 m. Prace prowadzono z trzech punktów wzbudzania (PW), przyjmując dla wszystkich niwelację, tj. ich wysokość względną w stosunku do wylotu otworu wiertniczego na poziomie 0 m. Odległości punktów wzbudzania od głębokiego otworu zostały określone odpowiednio dla PW1 na 60 m, dla PW2 – 100 m i dla PW3 – 50 m. Azymut mierzony w punkcie głębokiego otworu w kierunku PW1 wynosił 40°, dla PW2 – 140° i dla PW3 – 240°.

Dobór odpowiednich warunków wzbudzania poprzedziło mikroprofilowanie prędkości. Wyniki wspólne dla PW 1, 2 i 3 charakteryzują następujące wartości: $H_0 =$ 4,6 m, $V_0 = 500$ m/s, $H_1 = 0$ m i $V_2 = 2000$ m/s.

Pomiar czasu przyjścia fali sejsmicznej do geofonu głębinowego wykonano do głęb. 4530 m, czyli obejmuje prawie cały profil głębokościowy otworu, wynoszący 4584 m.

Poziom wylotu głębokiego otworu wynosi 115 m n.p.m. Natomiast poziom odniesienia pomiaru przyjęto na wysokości 100 m n.p.m., czyli poniżej strefy małych prędkości (SMP). Prędkość w SMP dla tego otworu wynosi 2000 m/s.

Obliczenia obejmujące m.in. redukcję głębokości, czasów i poprawki czasowe wykonano na maszynie EMR-6135. Głębokość zredukowaną wyznaczono wg wzoru:

$$h_r = h_{pom} - h_{odn}$$

gdzie:

h_r – głębokość zredukowana punktu pomiarowego do poziomu odniesienia [m];

*h*_{pom} – głębokość zanurzenia geofonu głębinowego [m];

*h*_{odn} – głębokość poziomu odniesienia [m] (z uwzględnieniem niwelacji i głębokości wzbudzania).

Redukcję czasów do pionu wykonano metodą, która zakłada jednorodność ośrodka od punktu wzbudzania do głębokości zanurzania geofonu, czyli prostoliniowy przebieg promienia sejsmicznego, według następującego wzoru:

$$t_r = \frac{h_r}{\sqrt{h_r^2 + d^2}} \cdot t_p$$

gdzie:

 t_r – czas zredukowany [s];

h_r – głębokość zredukowana punktu pomiarowego do poziomu odniesienia [m];

 t_p – czas poprawiony [s];

d – odległość punktu wzbudzania PW od głębokiego otworu [m]

Poprawki czasowe liczono wg wzoru:

$$d_t = \frac{h - h_{odn}}{V_o}$$

gdzie:

- *h* głębokość wzbudzania [m];
- V_o prędkość fali w utworach przypowierzchniowych w strefie małych prędkości (SMP), która dla otworu wiertniczego Polik IG 1 wynosi 2000 m/s.

Wartości h_r i t_r posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{\acute{s}r} = \frac{h_r}{t_r}$$

Obliczenia wykonano za pomocą odpowiedniego programu komputerowego. Program obliczeń jest opracowany w dwóch wersjach: bez uwzględnienia i z uwzględnieniem krzywizny otworu, w zależności od wielkości odchylenia otworu od pionu stosuje się odpowiednią wersję programu.

Charakter zmian prędkości w funkcji głębokości zilustrowano w odpowiednich tabelach i na wykresach. Zestaw wartości h_r , t_r i (V_{sr}) zestawiono w tabeli 18. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 38A) i hodografu pionowego (fig. 38B). Wykres prędkości średnich i hodograf pionowy stanowią graficzne uśrednienie krzywych uzyskanych z trzech punktów wzbudzania. Do takiego postępowania upoważniał stosunkowo mały rozrzut pomierzonych wielkości przy wzbudzaniu z trzech różnych punktów. Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać systematyczny wzrost prędkości wraz z głębokością. W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości zastosowano sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp miedzy punktami pomiarowymi. Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich z zadaniem obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując zmierzone czasy zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości co 20 m. Następnie czasy te wygładzono specjalnym programem przez zastosowanie operacji splotu z filtrem trójkatnym, stosując 20 razy filtry 0,25 i 0,50. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych. Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów, spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone czasy pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonych w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do Centralnej Bazy Danych Geologicznych PIG-PIB.

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych. Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi. Zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe) i V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawarto w tabeli 19. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 39. Zestawienie wykresów prędkości z profilem geologicznym wiercenia umożliwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze. Korelacja wymaga uwzględnienia podanych wcześniej różnic w poziomach odniesienia: wylotu głębokiego otworu (115 m n.p.m.) i załączonych wyników pomiarów prędkości sprowadzonych do 100 m n.p.m.

W otworze Polik IG 1 średnie wartości prędkości kompleksowej są bardzo zróżnicowane. Kompleks pierwszy o prędkości 2150 m/s obejmuje utwory kenozoiku oraz górne warstwy mastrychtu. Na głęb. ok. 370 m w osadach mastrychtu obserwuje się kontrast prędkości, który rozpoczyna serię, jak wynika z informacji otworowych, wapienną lub wapienno-marglistą kredy górnej. Charakteryzuje się ona kilkoma kolejnymi stopniami systematycznego wzrostu prędkości wraz z głębokością od 2300 do 3550 m/s. Korelując z danymi stratygraficznymi wiercenia, prędkości niższe występują w przedziale odpowiadającemu położeniu utworów mastrychtu i kampanu, a wyższe - dotyczą osadów koniaku, turonu i cenomanu. Na głębokości związanej z warstwami przyspągowymi santonu obserwuje się wzrost prędkości do wartości 2850 m/s. Natomiast na głęb. ok. 1100 m w wyniku kontrastu prędkości 700 m/s wielkość ta osiąga ww. liczbę 3550 m/s.

Na głęb. 1210 m, tj. w pobliżu granicy stratygraficznej kredy górnej z dolną, na wynikach profilowania prędkości zaznacza się pierwsze obniżenie wartości do 3200 m/s, która charakteryzuje oprócz utworów kredy dolnej, również miejsca nawiercenia w otworze skał tytonu i kimerydu jury górnej. Krzywa prędkości interwałowej wydziela odrębne odcinki głębokościowe o różnych wartościach przypisanych odpowiednio: niższych utworom kredy dolnej i wyższych dla tytonu i kimerydu. Zmiana ta zanotowana na granicy kredy i jury podkreśla różnice wykształcenia litologicznego tych osadów.

Poniżej na wykresach zaznacza się wyraźnie zarówno stropowa, jak i spągowa granica prawie 390-metrowej wapiennej serii oksfordu. Górna granica na głęb. ok. 1510 m jest utożsamiana z najwyższym w całym profilu zanotowanym kontrastem prędkości wynoszącym 1050 m/s, który powoduje wzrost wartości do 4250 m/s. Dolną granicę kompleksu wyznacza obniżenie wartości do 3550 m/s na głęb. ok. 1900 m wywołane ujemnym kontrastem prędkości 650 m/s.

Począwszy od tej głębokości, na wykresach obserwuje się prawie jednolity pakiet prędkościowy, odpowiadający w profilu stratygraficznym wiercenia utworom jury środkowej i dolnej oraz triasu górnego o łącznej miąższości 740 m. Odznacza się on zbliżonymi wartościami prędkości 3550–3675 m/s, aż do głęb. ok. 2650 m. Prędkość wyższa 3675 m/s dotyczy interwału głębokościowego 2210– 2370 m, który w profilu geologicznym wiercenia wydziela utwory jury dolnej – synemur i hetang. Dodatkowo krzywa prędkości interwałowych podkreśla kontrasty prędkościowe występujące na głębokościach korelujących się ze stropem i spągiem jury dolnej. Ponadto wykres ten wykazuje dwudzielność przedziału odpowiadającego utworom triasu górnego, wyróżniając część górną o niższych wartościach prędkości w stosunku do części dolnej, co należy wiązać ze zmianami zachodzącymi w składzie litologicznym poszczególnych warstw. Wzrost prędkości w dolnym odcinku może oznaczać większy udział piaskowców czy też warstw gipsowych.

Kolejny kontrast prędkości określony liczbą 600 m/s notuje się na ww. głęb. 2650 m, korelowanej z wyznaczonym w otworze stropem wapienia muszlowego. Od tego miejsca do głęb. 3070 m utwory triasu środkowego (wapień muszlowy), górnego i środkowego pstrego piaskowca oraz częściowo dolnego pstrego piaskowca tworzą 420-metrowy kompleks charakteryzujący się wysoką prędkością 4100-4150 m/s. Niżej wyznaczona w przedziale głębokościowym 3070-3250 m warstwa 180-metrowa o mniejszej w stosunku do nadkładu prędkości 3900 m/s obejmuje, jak wskazuje powiązanie z danymi wiercenia, pozostałe utwory dolnego pstrego piaskowca oraz cechsztyńską stropową serię terygeniczną PZt i cyklotemem PZ4 cechsztynu. Uwzględniając korelację krzywych prędkości sejsmicznych z profilem stratygraficznym głębokiego wiercenia, kompleks cechsztyński wyróżnia się w stosunku do ww. nadległego wzrostem prędkości o 700 m/s. Zakres zmian stopniowego wzrostu parametru prędkości w obrębie utworów cechsztynu o miąższości 540 m, zdominowanych w profilu geologicznym wiercenia przez utwory solne, wynosi od 3900 przez 4600 do 5300 m/s. Prędkość najwyższa - 5300 m/s, podkreśla wpływ utworów anhydrytu. Zanotowane różnice w prędkościach interwałowych jeszcze w większym stopniu odwzorowują serie solne i anhydrytowe. Ostatni kompleks związany z utworami ilasto-mułowcowymi syluru, iłowcowo-marglistego ordowiku i ~oddziału 3 (kambr środkowy) w granicach pomiaru, tj. do głęb. 4530 m, cechuje się wskazaniami na krzywych prędkościowych w obrębie całego przedziału utrzymanymi na poziomie 4800-5050 m/s. Początkowo do głęb. ok. 4210 m, która w podziale chronostratygraficznym odpowiada kontaktowi ludlowu i wenloku, obserwuje się podwyższenie wartości parametru prędkości, zarejestrowane kilkoma kolejnymi stopniami wzrostu. Od tej głębokości następuje ponowne obniżanie prędkości z ujemną anomalią zanotowaną na głęb. ok. 4410 m. Jest to miejsce kontaktowe osadów wenloku i landoweru (między formacją z Pelplina a formacją z Pasłęka).

Wykresy prędkości wygładzonych, interwałowych i kompleksowych odwzorowują złożony profil geologiczny otworu Polik IG 1. Prędkość, jako pochodna czasu, jest zależna od zmian w profilu geologicznym przewierconych warstw. Liczba możliwych do rozróżnienia warstw zależy od kontrastu właściwości sprężystych między utworami nadległymi i podścielającymi oraz stosunku miąższości danej warstwy do interwału jaki określa prędkość. Obserwowane kontrasty prędkości są efektem zmian w wykształceniu litologicznym poszczególnych ogniw litostratygraficznych. W rezultacie daje to możliwość określenia granic między nimi. Na krzywych można wyznaczyć szereg kompleksów o dosyć jednolitej i zbliżonej charakterystyce prędkościowej, które znajdują też odzwierciedlenie w pomiarach sejsmicznego profilowania akustycznego (PA) wykonanego w tym otworze w interwale głębokościowym kreda–jura–trias.

W odniesieniu do podziału stratygraficznego omawianego otworu są to następujące średnie wartości prędkości kompleksowych (w zaokrągleniu do 50 m/s):

- kenozoik (Q + Pg) 2150 m/s;
- kreda górna K₂ charakteryzująca się kilkoma wzrastającymi stopniowo wartościami od 2300 do 2850 i 3550 m/s;
- kreda dolna $K_1 3250 \text{ m/s};$
- jura górna J₃ charakteryzująca się dwoma prędkościami 3200 m/s (tytan i kimerydy) i 4250 m/s (oksford);
- jura środkowa J₂ i dolna J₁ 3600 m/s;
- trias górny $T_3 3550$ m/s;

- trias środkowy T₂ + pstry piaskowiec górny i środkowy T_{p2} - 4150 m/s;
- pstry piaskowiec dolny T_{p1} + stropowa seria terygeniczna PZt i cechsztyn PZ4 – 3900 m/s;
- cechsztyn PZ3, PZ2, PZ1 charakteryzujący się stopniowym wzrostem wartości od 4600 (dla utworów z przewagą serii solnych) do 5300 m/s (dla serii anhydrytowych);
- sylur S + ordowik O i ∼oddział 3 (kambr środkowy C₂) średnia wartość 4950 m/s ze zmianą znaku gradientu na głęb. ok. 4210 m.

Otrzymane wyniki stanowią znaczący materiał do uaktualnienia modelu prędkości, niezbędnego do prawidłowego głębokościowego opracowania materiałów sejsmicznych z rejonu wiercenia Polik IG 1 i jego otoczenia. Uwzględnienie w rozkładach prędkości wyników z pomiarów w otworze wiertniczym Polik IG 1, sięgających 4530 m, ułatwi korelację i przyporządkowanie poziomów refleksyjnych, wyznaczonych na przekrojach do poszczególnych pięter permo-mezozoiku i górnego paleozoiku.

Fig. 38. Wykres prędkości średnich (A) i hodograf pionowy (B) (poziom odniesienia 100,0 m n.p.m.)

 t_r – średni czas zredukowany, $V_{\acute{s}r}$ – prędkość średnia, h – głębokość

Average seismic velocity (A) and travel-time curve (B) (reference level 100.0 m a.s.l.)

 t_r - average reduced time, V_{sr} - average velocity, h - depth

Fig. 39. Wykresy prędkości wygładzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) (poziom odniesienia 100,0 m n.p.m.)

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_k) (reference level 100.0 m a.s.l.)

Tabela 18

Zestawienie wartości głębokości (h), średniego czasu zredukowanego (t_r) i prędkości średnich (V_{sr})

h [m]	t _r [s]	V_{sr} [m/s]	<i>h</i> [m]	t _r	V_{sr} [m/s]
1	2	3	1	2	3
15	0,005000	1260	600	0,269333	2228
30	0,013000	1370	615	0,275000	2236
45	0,021000	1455	630	0,280667	2245
60	0,027333	1820	645	0,286333	2253
75	0,034000	1845	660	0,292000	2260
90	0,042333	1865	675	0,297667	2268
105	0,050333	1875	690	0,302667	2280
120	0,058000	1900	705	0,307667	2291
135	0,064333	1925	720	0,313333	2298
150	0,071333	1930	735	0,318333	2309
165	0,078000	1965	750	0,323333	2320
180	0,085000	1965	765	0,329000	2325
195	0,092000	1970	780	0,334667	2331
210	0,098667	1975	795	0,340000	2338
225	0,105333	1981	810	0,346000	2341
240	0,112333	1998	825	0,351667	2346
255	0,120000	2105	840	0,357667	2349
270	0,127000	2126	855	0,363000	2355
285	0,135000	2111	870	0,369000	2358
300	0,142667	2103	885	0,374667	2362
315	0,149667	2105	900	0,380667	2364
330	0,156333	2111	915	0,386667	2366
345	0,163000	2117	930	0,392667	2368
360	0,169667	2122	945	0,398000	2374
375	0,176000	2131	960	0,402667	2384
390	0,182333	2139	975	0,406667	2398
405	0,188333	2150	990	0,410667	2411
420	0,195000	2154	1005	0,414667	2424
435	0,201667	2157	1020	0,419333	2432
450	0,208667	2157	1035	0,423000	2447
465	0,214667	2166	1050	0,427000	2459
480	0,221000	2172	1065	0,431000	2471
495	0,227333	2177	1080	0,434333	2487
510	0,233667	2183	1095	0,437667	2502
525	0,240333	2184	1110	0,441667	2513
540	0,245667	2198	1125	0,445667	2524
555	0,251667	2205	1140	0,450000	2533
570	0,257333	2215	1155	0,454333	2542
585	0,263333	2222	1170	0,458333	2553

Depth (*h*), reduced time (t_r) and average velocity (V_{sr}) values

Tabela	18	cd.

1	2	3
1185	0,462333	2563
1200	0,466667	2571
1215	0,471667	2576
1230	0,477000	2579
1245	0,482000	2583
1260	0,487667	2584
1275	0,493333	2584
1290	0,498667	2587
1305	0,503667	2591
1320	0,508333	2597
1335	0,513333	2601
1350	0,518667	2603
1365	0,523667	2607
1380	0,527667	2615
1395	0,531667	2624
1410	0,537000	2626
1425	0,542333	2628
1440	0,547333	2631
1455	0,552333	2634
1470	0,557000	2639
1485	0,561333	2645
1500	0,564667	2656
1515	0,568000	2667
1530	0,571667	2676
1545	0,574667	2689
1560	0,577667	2701
1575	0,580667	2712
1590	0,584000	2723
1605	0,587333	2733
1620	0,590667	2743
1635	0,594333	2751
1650	0,598000	2759
1665	0,602000	2766
1680	0,606000	2772
1695	0,609667	2780
1710	0,613000	2790
1725	0,616333	2799
1740	0,620667	2803

1	2	3
1755	0,624000	2813
1770	0,627333	2821
1785	0,630333	2832
1800	0,633667	2841
1815	0,636667	2851
1830	0,640000	2859
1845	0,643667	2866
1860	0,647000	2875
1875	0,650333	2883
1890	0,653667	2891
1905	0,657667	2897
1920	0,662000	2900
1935	0,666000	2905
1950	0,670333	2909
1965	0,674667	2913
1980	0,679333	2915
1995	0,684000	2917
2010	0,688333	2920
2025	0,692333	2925
2040	0,697000	2927
2055	0,701667	2929
2070	0,706000	2932
2085	0,710000	2937
2100	0,714333	2940
2115	0,718667	2943
2130	0,723000	2946
2145	0,727333	2949
2160	0,732000	2951
2175	0,736333	2954
2190	0,740333	2958
2205	0,744333	2962
2220	0,748000	2968
2235	0,751667	2973
2250	0,755667	2978
2265	0,759667	2982
2280	0,763667	2986
2295	0,767667	2990
2310	0,771667	2994

Tabela 18 cd.

٦

1	2	3
2325	0,775667	2997
2340	0,780000	3000
2355	0,784000	3004
2370	0,788333	3006
2385	0,792333	3010
2400	0,796667	3013
2415	0,801000	3015
2430	0,806000	3015
2445	0,811000	3015
2460	0,815333	3017
2475	0,819333	3021
2490	0,823667	3023
2505	0,828000	3025
2520	0,832667	3026
2535	0,837000	3029
2550	0,841333	3031
2565	0,845667	3033
2580	0,850000	3035
2595	0,854333	3037
2610	0,858000	3042
2625	0,861333	3048
2640	0,865333	3051
2655	0,869333	3054
2670	0,872333	3061
2685	0,875667	3066
2700	0,878667	3073
2715	0,882000	3078
2730	0,885667	3082
2745	0,889333	3087
2760	0,893333	3090
2775	0,897333	3092
2790	0,901333	3095
2805	0,904667	3101
2820	0,908333	3105
2835	0,912000	3109
2850	0,916000	3111
2865	0,919333	3116
2880	0,923000	3120

1	2	3
2895	0,927000	3123
2910	0,930000	3129
2925	0,933333	3134
2940	0,937333	3137
2955	0,940667	3141
2970	0,944000	3146
2985	0,947333	3151
3000	0,951000	3155
3015	0,954667	3158
3030	0,958000	3163
3045	0,961667	3166
3060	0,965333	3170
3075	0,969333	3172
3090	0,973667	3174
3105	0,977667	3176
3120	0,982000	3177
3135	0,986667	3177
3150	0,991000	3179
3165	0,995333	3180
3180	0,999333	3182
3195	1,003000	3185
3210	1,006667	3189
3225	1,010000	3193
3240	1,014000	3195
3255	1,017000	3201
3270	1,020000	3206
3285	1,023000	3211
3300	1,026000	3216
3315	1,028667	3223
3330	1,031667	3228
3345	1,034667	3233
3360	1,038333	3236
3375	1,041333	3241
3390	1,045000	3244
3405	1,048667	3247
3420	1,052333	3250
3435	1,056000	3253
3450	1,059333	3257

161

Tabela 18 cd.

3465 1,062333 3262 3480 1,065333 3267 3495 1,068000 3272 3510 1,070333 3279 3525 1,072667 3286 3540 1,075667 3291 3555 1,079667 3293 3570 1,083333 3295 3585 1,086667 3299 3600 1,09333 3302 3615 1,098333 3314 3645 1,098333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3343 3720 1,11133 3347 3735 1,114000 3353 3765 1,11833 3343 3750 1,11667 3358 3765 1,119667 3353 3780 1,123000 3366 3795 1,132333 3374	1	2	3		
3480 1,065333 3267 3495 1,068000 3272 3510 1,070333 3279 3525 1,072667 3286 3540 1,075667 3291 3555 1,079667 3293 3570 1,083333 3295 3585 1,086667 3299 3600 1,09333 3302 3615 1,09333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,11133 3347 3735 1,114000 3353 3765 1,11667 3358 3765 1,112300 3366 3795 1,12000 3370 3810 1,12333 3374 3825 1,13533 3382	3465	1,062333	3262		
3495 1,068000 3272 3510 1,070333 3279 3525 1,072667 3286 3540 1,075667 3293 3555 1,079667 3293 3570 1,083333 3295 3585 1,086667 3299 3600 1,09333 3302 3615 1,098333 3314 3645 1,098333 3314 3645 1,098333 3314 3645 1,098333 3323 3660 1,10133 3323 3660 1,10133 3323 3660 1,10133 3323 3675 1,104000 3329 3690 1,106333 3343 3720 1,11133 3347 3735 1,114000 3353 3765 1,116667 3363 3770 1,123000 3366 3795 1,126000 3370 3810 1,12333 3374	3480	1,065333	3267		
3510 1,070333 3279 3525 1,072667 3286 3540 1,075667 3291 3555 1,079667 3293 3570 1,08333 3295 3585 1,086667 3299 3600 1,09333 3302 3615 1,09333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,104000 3329 3690 1,10133 3343 3720 1,111333 3347 3735 1,114000 3353 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,12333 3374 3825 1,13233 3378 3840 1,13533 3382	3495	1,068000	3272		
3525 1,072667 3286 3540 1,075667 3291 3555 1,079667 3293 3570 1,08333 3295 3585 1,086667 3299 3600 1,090333 3302 3615 1,09333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3660 1,101333 3343 3705 1,108333 3343 3715 1,111333 3347 3750 1,11667 3358 3765 1,119667 3363 37750 1,12000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,138667 3386 3870 1,14333 3391 3885 1,144333 3395 3900 1,147667 3402	3510	1,070333	3279		
3540 1,075667 3291 3555 1,079667 3293 3570 1,08333 3295 3585 1,086667 3299 3600 1,090333 3302 3615 1,09333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3343 3705 1,108333 3343 3720 1,11133 3347 3735 1,114000 3353 3765 1,119667 3363 37750 1,11667 3363 3765 1,119667 3363 37750 1,123000 3366 3795 1,126000 3370 3810 1,12333 3374 3825 1,132333 3382 3855 1,13667 3386 3870 1,14133 3391	3525	1,072667	3286		
3555 1,079667 3293 3570 1,083333 3295 3585 1,086667 3299 3600 1,090333 3302 3615 1,093333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3660 1,101333 3343 3705 1,108333 3343 3705 1,108333 3343 3720 1,111333 3347 3735 1,11000 3353 3765 1,116667 3358 3765 1,11667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,12333 3374 3825 1,132333 3382 3840 1,13533 3391 3885 1,144333 3395 3900 1,147667 3398	3540	1,075667	3291		
3570 1,083333 3295 3585 1,086667 3299 3600 1,090333 3302 3615 1,093333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3765 1,119667 3363 3765 1,12000 3366 3795 1,12000 3366 3795 1,12000 3370 3810 1,129333 3374 3825 1,13233 3378 3840 1,135333 3382 3855 1,14133 3391 3885 1,144333 3395 3900 1,147667 3402 3930 1,154333 3405	3555	1,079667	3293		
35851,086667329936001,090333330236151,093333330636301,095333331436451,098333331936601,101333332336751,104000332936901,106333333537051,108333334337201,111333334737351,114000335337651,116667335837651,119667336337801,123000336637951,126000337038101,129333337438251,138667338638701,14333339138851,144333339138851,144333339539001,147667340239301,154333340539451,157333341339751,160003418	3570	1,083333	3295		
3600 1,090333 3302 3615 1,093333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3366 3795 1,123000 3366 3795 1,126000 3370 3810 1,12333 3374 3825 1,132333 3382 3840 1,135333 3382 3855 1,14333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409	3585	1,086667	3299		
3615 1,093333 3306 3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,11133 3347 3735 1,114000 3353 3765 1,116667 3358 3765 1,116667 3363 37750 1,116667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,144333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 <td>3600</td> <td>1,090333</td> <td>3302</td>	3600	1,090333	3302		
3630 1,095333 3314 3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3382 3840 1,135333 3382 3855 1,144333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3409 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418 <td>3615</td> <td>1,093333</td> <td>3306</td>	3615	1,093333	3306		
3645 1,098333 3319 3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3750 1,11667 3358 3750 1,11667 3363 3750 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,144333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3945 1,160333 3413 3975 1,163000 3418	3630	1,095333	3314		
3660 1,101333 3323 3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3770 1,116667 3358 3750 1,116667 3363 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3382 3840 1,135333 3382 3855 1,14133 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3409 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3645	1,098333	3319		
3675 1,104000 3329 3690 1,106333 3335 3705 1,108333 3343 3705 1,111333 3347 3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,14433 3391 3885 1,14433 3391 3885 1,14433 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418 2000 1,16667 3402	3660	1,101333	3323		
36901,106333333537051,108333334337201,111333334737351,114000335337501,116667335837651,119667336337801,123000336637951,126000337038101,129333337438251,132333337838401,135333338238551,144333339138851,144333339539001,147667339839151,150667340239301,154333340539451,16333341339751,163000341820001,1656773422	3675	1,104000	3329		
3705 1,108333 3343 3720 1,111333 3347 3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418 3000 1,166677 3422	3690	1,106333	3335		
3720 1,111333 3347 3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,150667 3402 3930 1,157333 3409 3945 1,157333 3413 3975 1,160000 3418	3705	1,108333	3343		
3735 1,114000 3353 3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,14333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3409 3945 1,160333 3413 3975 1,163000 3418	3720	1,111333	3347		
3750 1,116667 3358 3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3409 3945 1,160333 3413 3975 1,163000 3418	3735	1,114000	3353		
3765 1,119667 3363 3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3405 3945 1,160333 3413 3975 1,163000 3418	3750	1,116667	3358		
3780 1,123000 3366 3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,160333 3413 3975 1,163000 3418	3765	1,119667	3363		
3795 1,126000 3370 3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,157333 3405 3945 1,160333 3413 3975 1,163000 3418	3780	1,123000	3366		
3810 1,129333 3374 3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3795	1,126000	3370		
3825 1,132333 3378 3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3810	1,129333	3374		
3840 1,135333 3382 3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3825	1,132333	3378		
3855 1,138667 3386 3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3840	1,135333	3382		
3870 1,141333 3391 3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3855	1,138667	3386		
3885 1,144333 3395 3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3870	1,141333	3391		
3900 1,147667 3398 3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3885	1,144333	3395		
3915 1,150667 3402 3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3900	1,147667	3398		
3930 1,154333 3405 3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3915	1,150667	3402		
3945 1,157333 3409 3960 1,160333 3413 3975 1,163000 3418	3930	1,154333	3405		
3960 1,160333 3413 3975 1,163000 3418 2000 11/55000 2400	3945	1,157333	3409		
<u>3975 1,163000 3418</u>	3960	1,160333	3413		
2000 11(5((7 2422	3975	1,163000	3418		
3423	3990	1,165667	3423		

1	2	3
4005	1,168667	3427
4020	1,171667	3431
4035	1,174667	3435
4050	1,178000	3438
4065	1,181333	3441
4080	1,184333	3445
4095	1,187333	3449
4110	1,190333	3453
4125	1,193000	3458
4140	1,195667	3463
4155	1,198333	3467
4170	1,201333	3471
4185	1,204333	3475
4200	1,207000	3480
4215	1,210000	3483
4230	1,213000	3487
4245	1,216333	3490
4260	1,219667	3493
4275	1,223333	3495
4290	1,226667	3497
4305	1,229667	3501
4320	1,232000	3506
4335	1,234333	3512
4350	1,237333	3516
4365	1,240333	3519
4380	1,243333	3523
4395	1,246333	3526
4410	1,250000	3528
4425	1,253667	3530
4440	1,256667	3533
4455	1,259667	3537
4470	1,262667 3540	
4485	1,265667 3544	
4500	1,269000	3546
4515	1,272000	3550

Zestawienie glębokości (*h*) i uśrednionych wartości prędkości interwałowej (V_i), prędkości kompleksowej (V_k), prędkości wygladzonej (V_w) obliczonych z czasu wygladzonego

Depth (h), averaged interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values calculated from smoothed time

h	Vi	V_k	V_w		h	Vi	V_k	V_w
[m]	[m/s]	[m/s]	[m/s]		[m]	[m/s]	[m/s]	[m/s]
1	2	3	4		1	2	3	4
20	2121	2126	1905		760	2731	2726	2728
40	2121	2126	2126		780	2731	2726	2705
60	2121	2126	2115		800	2731	2726	2683
80	2121	2112	2107		820	2687	2862	2668
100	2121	2112	2105		840	2687	2862	2665
120	2118	2112	2108		860	2687	2862	2679
140	2118	2112	2116		880	2687	2862	2716
160	2118	2112	2123		900	2687	2862	2780
180	2118	2126	2128		920	3061	2862	2871
200	2118	2126	2127		940	3061	2862	2989
220	2126	2126	2124		960	3061	2862	3129
240	2126	2126	2121]	980	3061	2862	3279
260	2126	2159	2122		1000	3061	2862	3428
280	2126	2159	2131		1020	3660	3570	3560
300	2126	2159	2150		1040	3660	3570	3662
320	2223	2159	2176		1060	3660	3570	3724
340	2223	2159	2208]	1080	3660	3570	3741
360	2223	2159	2241		1100	3660	3570	3714
380	2223	2307	2271		1120	3485	3570	3649
400	2223	2307	2297		1140	3485	3570	3555
420	2355	2307	2320		1160	3485	3570	3444
440	2355	2307	2342		1180	3485	3570	3327
460	2355	2307	2365		1200	3485	3570	3217
480	2355	2508	2392		1220	3047	3217	3123
500	2355	2508	2422		1240	3047	3217	3051
520	2508	2508	2455]	1260	3047	3217	3006
540	2508	2508	2490		1280	3047	3217	2988
560	2508	2508	2527		1300	3047	3217	2992
580	2508	2508	2564]	1320	3068	3217	3012
600	2508	2508	2601]	1340	3068	3217	3044
620	2685	2508	2637]	1360	3068	3217	3083
640	2685	2508	2673]	1380	3068	3217	3130
660	2685	2726	2706]	1400	3068	3217	3188
680	2685	2726	2732]	1420	3451	3217	3266
700	2685	2726	2748		1440	3451	3217	3370
720	2731	2726	2753		1460	3451	3217	3505
740	2731	2726	2745		1480	3451	3217	3669
				-	-			

Tabela 19 cd.

1	2	3	4		1	2	3	4
1500	3451	3217	3850		2340	3567	3675	3592
1520	4181	3217	4027		2360	3567	3675	3543
1540	4181	4250	4175		2380	3567	3560	3497
1560	4181	4250	4274		2400	3567	3560	3457
1580	4181	4250	4317		2420	3423	3560	3429
1600	4181	4250	4312		2440	3423	3560	3414
1620	4230	4250	4277		2460	3423	3560	3412
1640	4230	4250	4235		2480	3423	3560	3425
1660	4230	4250	4203		2500	3423	3560	3452
1680	4230	4235	4193		2520	3596	3560	3493
1700	4230	4235	4206		2540	3596	3560	3550
1720	4300	4235	4240		2560	3596	3560	3624
1740	4300	4235	4285		2580	3596	3560	3714
1760	4300	4235	4329]	2600	3596	3560	3816
1780	4300	4224	4357]	2620	4039	3560	3922
1800	4300	4224	4355]	2640	4039	3560	4021
1820	4164	4224	4317	1	2660	4039	4134	4100
1840	4164	4224	4240		2680	4039	4134	4149
1860	4164	4224	4133		2700	4039	4134	4167
1880	4164	4224	4007]	2720	4123	4134	4159
1900	4164	4224	3877		2740	4123	4134	4135
1920	3619	3544	3753		2760	4123	4134	4108
1940	3619	3544	3647		2780	4123	4118	4090
1960	3619	3544	3563		2800	4123	4118	4083
1980	3619	3544	3503		2820	4129	4118	4092
2000	3619	3544	3465		2840	4129	4118	4112
2020	3450	3544	3446		2860	4129	4118	4140
2040	3450	3544	3440		2880	4129	4118	4170
2060	3450	3544	3445		2900	4129	4118	4198
2080	3450	3544	3458		2920	4203	4125	4218
2100	3450	3544	3479		2940	4203	4125	4224
2120	3566	3544	3507		2960	4203	4125	4212
2140	3566	3544	3542		2980	4203	4125	4178
2160	3566	3544	3585		3000	4203	4125	4121
2180	3566	3544	3630		3020	3918	4125	4046
2200	3566	3544	3672		3040	3918	4125	3960
2220	3712	3675	3706		3060	3918	4125	3873
2240	3712	3675	3724		3080	3918	3890	3800
2260	3712	3675	3726		3100	3918	3890	3750
2280	3712	3675	3710]	3120	3814	3890	3733
2300	3712	3675	3681]	3140	3814	3890	3755
2320	3567	3675	3640]	3160	3814	3890	3818
				-				

Tabela 19 cd.

1	2	3	4]	1	2	3	4
3180	3814	3890	3918		3860	4906	4923	4883
3200	3814	3890	4049		3880	4906	4923	4879
3220	4397	3890	4200		3900	4906	4923	4888
3240	4397	3890	4354]	3920	4937	4923	4906
3260	4397	4595	4492		3940	4937	4923	4928
3280	4397	4595	4596]	3960	4937	4923	4950
3300	4397	4595	4653		3980	4937	4978	4968
3320	4626	4595	4665]	4000	4937	4978	4979
3340	4626	4595	4644]	4020	5016	4978	4988
3360	4626	4595	4610]	4040	5016	4978	5000
3380	4626	4595	4587]	4060	5016	5035	5020
3400	4626	4665	4589]	4080	5016	5035	5049
3420	4717	4665	4623]	4100	5016	5035	5081
3440	4717	4665	4682		4120	5087	5069	5106
3460	4717	4665	4752]	4140	5087	5069	5112
3480	4717	4665	4815]	4160	5087	5069	5095
3500	4717	4867	4856		4180	5087	5069	5057
3520	4898	4867	4873]	4200	5087	5069	5008
3540	4898	4867	4878		4220	4942	5069	4963
3560	4898	4867	4892]	4240	4942	4938	4932
3580	4898	5073	4933		4260	4942	4938	4922
3600	4898	5073	5009		4280	4942	4938	4933
3620	5256	5073	5114		4300	4942	4938	4950
3640	5256	5073	5229		4320	4926	4938	4961
3660	5256	5073	5329		4340	4926	4917	4953
3680	5256	5302	5389]	4360	4926	4917	4924
3700	5256	5302	5395		4380	4926	4917	4882
3720	5213	5302	5350]	4400	4926	4917	4838
3740	5213	5302	5269]	4420	4778	4778	4801
3760	5213	5302	5172]	4440	4778	4778	4777
3780	5213	5302	5078		4460	4778	4778	4765
3800	5213	4923	4999]	4480	4778	4778	4760
3820	4906	4923	4941		4500	4778	4778	4540
3840	4906	4923	4904					