### WYNIKI BADAŃ GEOFIZYCZNYCH

#### Michał Grzegorz ROMAN

#### WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

#### ZAKRES WYKONANYCH BADAŃ

W otworze Nieświń PIG 1 pomiary geofizyki wiertniczej wykonano w 7 odcinkach pomiarowych. Badania wykonywane były przez grupy karotażowe Geofizyki Toruń z Bazy Geofizyki Otworowej w Wołominie od 2.01.1990 r. do 23.08.1990 r. Pomiar wykonano analogowymi aparaturami, następnie w latach dziewięćdziesiątych część profilowań zostało scyfrowanych. Scyfrowane dane pomiarowe znajdują się w formacie plików LAS w Centralnej Bazie Danych Geologicznych (numer identyfikacyjny CBDG otworu 16013, nazwa: "Nieświń PIG-1"), oryginalne analogowe materiały znajdują się w Narodowym Archiwum Geologicznym pod nr 132615.

Do dokumentacji otworu Nieświń PIG 1 załączono następujące pomiary (w nawiasach podano skróty stosowane w plikach .las w CBDG ("\_C" oznacza profilowanie kompozytowe powstałe z połączenia badań odcinkowych):

- profilowanie średnicy otworu PŚr (CALI, CALI\_C to profilowanie w odcinku 1998–2259 m było zarejestrowane błędnie – poprawiona wersja przedstawiona jest na figurze 4),
- profilowanie naturalnej promieniotwórczości gamma PG (GR),
- profilowanie neutron-gamma PNG (NEGR),
- profilowanie gamma-gamma PGG (GGDN),
- profilowanie neutron-neutron PNN (CNL),
- profilowanie potencjałów samoistnych PS (SP),
- profilowanie oporności PO sondami o rozstawach: A0,4M0,1N (EL02), A1,0M0,1N (EL03), A2,0M0,5N (EN10\_C, EL09 lub EL07), A4,0M0,5N (EL14), A8,0M1,0N (EL26), N6,0M0,5A (EL09\_C, EN10 lub EN 20),
- sterowane profilowanie oporności POst (LL3 w postaci analogowej dostępne często tylko w postaci krzywej zlogarytmowanej),

- sterowane mikroprofilowanie oporności mPOst (ML- w postaci analogowej dostępne często tylko w postaci krzywej zlogarytmowanej),
- profilowanie akustyczne PA (T1, T2, DT),
- profilowanie cementomierzem akustycznym PAc, PACt2 (PAc, CBT2),
- profilowanie temperatury przy ustalonej równowadze temperatury PTu (TEMU),
- profilowanie krzywizny otworu PK.

W tabeli 23 przedstawiono dokładne interwały wykonanych profilowań geofizyki otworowej wraz z datą ich wykonania i ówczesną głębokością (wg miary geofizycznej), nominalną średnicą otworu (lub średnicą rur). Część profilowań zaznaczonych kursywa została scyfrowana z krokiem próbkowania 0,25 m i jest dostępna w CBDG w postaci 133 plików o rozszerzeniu .BKR (pliki tekstowe, zawierające pojedyncze profilowania kompatybilne z systemem GEOFLOG - Szewczyk, 1996) oraz 19 plików formatu .las (pliki tekstowe zawierające zestandaryzowany nagłówek z informacjami o otworze i odcinku, grupujący część/całość krzywych z odcinka pomiarowego kompatybilny ze współcześnie stosowanymi programami zachodniej produkcji<sup>1</sup>), zawierających odcinkowe, źródłowe pomiary, dwa pliki .las z pomiarami połączonymi i/lub znormalizowanymi oraz dwa pliki .las, zawierające wyniki pomiarów prędkości średnich. We wszystkich ww. plikach głębokości podano w metrach pod poziomem morza wg miary geofizycznej, nie uwzględniając poprawki na skrzywienie otworu.

Połączone i znormalizowane wyniki profilowania naturalnej promieniotwórczości gamma i neutron-gamma przedstawiono na figurze 4. Znajduje się na niej również między innymi profilowanie średnicy otworu wiertniczego z oznaczonymi za pomocą strzałek głębokościami łączenia

<sup>&</sup>lt;sup>1</sup> W niektórych przypadkach, aby plik ten mógł być wczytany do bazy danych programu, pliki należy zmodyfikować poprzez usunięcie odstępu pomiędzy znakami "~A", znajdującymi się nad oznaczeniami poszczególnych kolumn ("DEPTH" itd.) a tymi oznaczeniami, tak aby znalazły się one w jednej linii i były oddzielone jedną spacją. Niezgodność wynika prawdopodobnie z istnienia różnych wersji standardu .las.

#### Tabela 23 cd.

#### Tabela 23

## Wykaz badań geofizycznych wykonanych w otworze Nieświń PIG 1 załączonych do dokumentacji wynikowej (stan na 2017 r.)

List of well logs from the Nieświń PIG 1 borehole attached to the final well report (state for 2017)

| Odcinek badaństrefowych<br>Interval of zonal measurments | Data wykonania badań<br>Date of measurment | Głębokość otworu [m]<br>i średnica nominalna otworu<br>(lub rury) [mm]<br>Borehole depth [m] and<br>borehole (or pipe) nominal<br>diameter [mm] | Symbol pomiaru (badania)<br>Symbol of measurment | Interwał głębokościowy<br>badań<br>Measurment depth interval<br>[m] |  |
|----------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|--|
| 1                                                        | 2                                          | 3                                                                                                                                               | 4                                                | 5                                                                   |  |
|                                                          |                                            |                                                                                                                                                 | PŚr                                              | 24-230                                                              |  |
|                                                          | 2.01                                       | 222                                                                                                                                             | PO: N6.0M0.5A                                    | 24-227                                                              |  |
| 1                                                        | 2.01.                                      | 233<br>/38 mm                                                                                                                                   | PO: A2.0M0.5N                                    | 24-227                                                              |  |
|                                                          | 1770                                       | 456 1111                                                                                                                                        | PS                                               | 24-230                                                              |  |
|                                                          |                                            |                                                                                                                                                 | РК                                               | 5-230                                                               |  |
| 2                                                        | 3.08.<br>1990                              | 2356<br>(244 mm)                                                                                                                                | РК                                               | 750–2346                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PG                                               | 0-735                                                               |  |
|                                                          |                                            |                                                                                                                                                 | PNG                                              | 0-735                                                               |  |
|                                                          |                                            |                                                                                                                                                 | PO: N6.0M0.5A                                    | 230-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PO: A2.0M0.5N                                    | 230-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PO: A0.4M0.1N                                    | 520-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PO: A1.0M0.1N                                    | 520-715                                                             |  |
|                                                          | 25–26.01.<br>1990                          | 735<br>311 mm                                                                                                                                   | PO: A2.0M0.5N                                    | 520-715                                                             |  |
| 3                                                        |                                            |                                                                                                                                                 | PO: A4.0M0.5N                                    | 520-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PO: A8.0M1.0N                                    | 520-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | POst                                             | 520-730                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PŚr                                              | 230-728                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PS                                               | 230-715                                                             |  |
|                                                          |                                            |                                                                                                                                                 | РК                                               | 200-725                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PA                                               | 230-729                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PGG                                              | 230-728                                                             |  |
|                                                          |                                            |                                                                                                                                                 | PG                                               | 660-1251                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PGG                                              | 660-1250                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PNG                                              | 660-1251                                                            |  |
|                                                          | 20_21.03                                   |                                                                                                                                                 | PŚr                                              | 660-1251                                                            |  |
| 4                                                        | 1990                                       | 1252                                                                                                                                            | PS                                               | 660-1251                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PA                                               | 660-1250                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: N6.0M0.5A                                    | 660-1245                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: A2.0M0.5N                                    | 660-1245                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: A0.4M0.1N                                    | 660-1243                                                            |  |
| 4                                                        |                                            |                                                                                                                                                 | PO: A1.0M0.1N                                    | 660-1243                                                            |  |
|                                                          |                                            | -21.03.<br>1990 1252                                                                                                                            | PO: A2.0M0.5N                                    | 660-1243                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: A4.0M0.5N                                    | 660–1243                                                            |  |
|                                                          | 20–21.03.<br>1990                          |                                                                                                                                                 | PO: A8.0M1.0N                                    | 660–1243                                                            |  |
|                                                          |                                            |                                                                                                                                                 | POst                                             | 660-1250                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PK                                               | 700–1250                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: N6.0M0.5A                                    | 230-1245                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PO: A2.0M0.5N                                    | 230-1245                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PS<br>DÉ                                         | 230-1251                                                            |  |
|                                                          |                                            |                                                                                                                                                 | PSr                                              | 200–1251                                                            |  |

| 1 | 2                 | 3                     | 4                      | 5                                                                                                                                                                                                                                                                                                                           |
|---|-------------------|-----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                   |                       | PG                     | 1200-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PGG                    | 1200-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PNG                    | 1200-1758                                                                                                                                                                                                                                                                                                                   |
|   | 9–10.05.<br>1990  |                       | PO: N6.0M0.5A          | 1200-1753                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A2.0M0.5N          | 1200-1753                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A0.4M0.1N          | 1190-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A1.0M0.1N          | 1190-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A2.0M0.5N          | 1190-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   | 1758                  | PO: A4.0M0.5N          | 1190-1757                                                                                                                                                                                                                                                                                                                   |
| 5 |                   |                       | PO: A8 0M1 0N          | 1190-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | POst                   | 1190-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PA                     | 1200-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PŚr                    | 1200-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | DK                     | 1200-1757                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PÉ "                   | 200 1778                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | 1 51<br>DO: N6 0M0 5 4 | 200-1778                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PO: N0.0M0.5A          | 230-1751                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | FU: A2.000.50          | 230-1/31                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       |                        | 303-1/38                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PG                     | 1/00-18/2                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PGG                    | 1/00-18/2                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PNG                    | 1/00-18/2                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: N6.0M0.5A          | 1/00-1867                                                                                                                                                                                                                                                                                                                   |
|   |                   | 1872                  | PA                     | 1700–1872                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PS                     | 1700–1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PSr                    | 1700-1872                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PK                     | 1725-1870                                                                                                                                                                                                                                                                                                                   |
|   | 22–23.05.<br>1990 |                       | POst                   | 1700-1870                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | mPOst                  | 1700-1871                                                                                                                                                                                                                                                                                                                   |
| 6 |                   |                       | PO: A0.4M0.1N          | 1700–1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A1.0M0.1N          | 1700-1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A2.0M0.5N          | 1700-1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A4.0M0.5N          | 1700-1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A8.0M1.0N          | 1700-1867                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: N6.0M0.5A          | 230-1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PO: A2.0M0.5N          | 230-1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PObj                   | 231–1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PS                     | 234-1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PI                     | 530-1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PŚr                    | 194–1872                                                                                                                                                                                                                                                                                                                    |
|   |                   |                       | PG                     | 1820-2265                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PGG                    | 1868-2265                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PNG                    | 1820-2265                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: N6.0M0.5A          | 1868-2260                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A2.0M0.5N          | 1700–1867<br>1700–1872<br>1700–1872<br>1700–1872<br>1725–1870<br>1700–1870<br>1700–1870<br>1700–1867<br>1700–1867<br>1700–1867<br>1700–1867<br>1700–1867<br>230–1872<br>230–1872<br>231–1872<br>233–1872<br>233–1872<br>234–1872<br>1820–2265<br>1868–2265<br>1868–2260<br>1868–2265<br>1868–2265<br>1868–2265<br>1868–2265 |
|   |                   |                       | PŚr                    | 1868-2259                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | РК                     | 1850-2265                                                                                                                                                                                                                                                                                                                   |
|   |                   | 2266<br>216 mm        | PS x 2                 | 1868-2265                                                                                                                                                                                                                                                                                                                   |
| 7 | 19-20.06          |                       | PO: A0.4M0.1N          | 1868-2260                                                                                                                                                                                                                                                                                                                   |
|   | 19–20.06.<br>1990 |                       | PO: A1.0M0.1N          | 1868-2260                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A2 0M0 5N          | 1868-2260                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A4 0M0 5N          | 1868_2260                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | PO: A8 0M1 0N          | 1868_2260                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | POst                   | 1868-2200                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | mDOst                  | 1000-2204                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       |                        | 1820 2264                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | rA<br>DC               | 1820-2204                                                                                                                                                                                                                                                                                                                   |
|   |                   |                       | rG                     | 1800-2265                                                                                                                                                                                                                                                                                                                   |
|   | 10.07             | (0. 1972              | PININ                  | 1810-2265                                                                                                                                                                                                                                                                                                                   |
| 8 | 19.06.            | (0-18/2  m: 244  mm;) | PAc                    | 0-1868                                                                                                                                                                                                                                                                                                                      |
|   | 1990              | 0–233 m. 340 mm)      |                        |                                                                                                                                                                                                                                                                                                                             |

| 1  | 2               | 3              | 4                               | 5         |
|----|-----------------|----------------|---------------------------------|-----------|
| 9  | 03.08.          |                | PŚr x 3                         | 2245-2343 |
|    | 1990            |                | РК                              | 2250-2343 |
|    |                 |                | PG                              | 2200-2343 |
|    |                 |                | PGG                             | 2200-2343 |
|    |                 |                | PO: N6.0M0.5A                   | 2200-2337 |
|    |                 |                | PO: A2.0M0.5N                   | 2200-2337 |
|    |                 |                | PNG                             | 2200-2343 |
|    |                 |                | PA                              | 2200-2340 |
|    |                 |                | PŚr                             | 2200-2343 |
|    |                 | 2343<br>216 mm | PO: A0.4M0.1N                   | 2210-2337 |
|    | 7–8.08.<br>1990 |                | PO: A1.0M0.1N                   | 2210-2337 |
| 10 |                 |                | PO: A2.0M0.5N                   | 2210-2337 |
| 10 |                 |                | PO: A4.0M0.5N                   | 2210-2337 |
|    |                 |                | PO: A8.0M1.0N                   | 2210-2337 |
|    |                 |                | POst                            | 2210-2339 |
|    |                 |                | mPOst                           | 2210-2339 |
|    |                 |                | PS                              | 1868-2343 |
|    |                 |                | PO: N6.0M0.5A                   | 1868-2337 |
|    |                 |                | PO: A2.0M0.5N                   | 1868-2337 |
|    |                 |                | PŚr                             | 1837–2343 |
|    |                 |                | PG                              | 2210-2343 |
|    |                 |                | PNN                             | 2210-2343 |
| 11 | 23.08.<br>1990  |                | PTu (po 10<br>dniach stójki) x2 | 25-2343   |

odcinków badań, średnica nominalna wiercenia oraz profilowania oporności i akustyczne. Profilowanie neutrongamma i profilowanie gamma znormalizowano z użyciem metodyki opisanej w pracy Szewczyka i in. (2001). Ponadto, w otworze Nieświń PIG 1 profilowanie gamma zostało zestandaryzowane *post factum* (zrekalibrowane) do jednostek [API] i połączone z użyciem metodyki opisanej w pra-

Tabela 23 cd.

PG – profilowanie naturalnej promieniotwórczości gamma, PNG – profilowanie neutron-gamma, PS – profilowanie naturalnych potencjałów, PO – klasyczne profilowanie oporności (A,B – elektrody prądowe, M – elektroda pomiarowa, odległości między elektrodami w metrach), PK – profilowanie krzywizny otworu, PŚr – profilowanie średnicy, PTu – profilowanie temperatury w ustalonych warunkach termicznych, PNN – profilowanie neutron-neutron, PI – profilowanie indukcyjne, POst – sterowane profilowanie oporności (laterolog), mPOst – sterowane mikroprofilowanie akustyczne, PAc – profilowanie cementomierzem akustycznym. Pogrubiono czcionkę w wypadku profilowań dostępnych w formie cyfrowej.

PG – gamma ray log, PNG – neutron-gamma ray log, PS – spontaneous potential log, PO – conventional electrical log (A,B – current electrodes, M – measurement electrode, distances between electrodes are expressed in meters), PK – deviation log, PŚr – caliper, PTu - temperature log in stable conditions, PNN – neutron log, PI – induction log, POst – laterolog, mPOst – microlaterolog, PGG – gamma-gamma log, PA – acoustic log, PAc – cement bound log. The font has been bolded in the case of digitalized curves.

cy Szewczyka (2000a) – krzywa GR\_S w pliku "niel\_s. las" dostępnym w CBDG.

W zasobach CBDG znajdują się również 244 wyniki oznaczeń na próbkach rdzenia, wykonywane w czasie wiercenia oraz 9 wykonanych prawdopodobnie później (być może inną metodyką): porowatości efektywnych i całkowitych oraz przepuszczalności w kierunku poziomym i pionowym. Ponadto zarówno dla próbek rdzenia, jak i okruchowych określano zawartość kalcytu i dolomitu (Szewczyk, 2005). Dla otworu Nieświń PIG 1 obliczono również średnie gęstości przewierconych warstw skalnych z poszczególnych okresów na podstawie 910 oznaczeń gęstości (Rosowiecka i in., 2011). Wyniki części tych oznaczeń zaprezentowano na figurze 4.

#### OCENA JAKOŚCI DANYCH

Generalnie jakość wykonanych pomiarów jest dobra (Tracz, 1991), należy jednak pamiętać o ograniczeniach stosowanego ówcześnie sprzętu oraz analogowych metod rejestracji:

- wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane, jednostki, w których rejestrowano te profilowania to impulsy na minutę;
- wykonane w otworze klasyczne pomiary oporności w wariantach potencjałowym i gradientowym mierzą pozorne oporności skał;
- proces cyfrowania analogowo zarejestrowanych krzywych powoduje zwiększenie niepewności pomiaru. Możliwe są również błędy grube – zauważono np. podpisanie cyfrowej wersji krzywych potencjałowego profilowania oporności (normal – w zasobach CBDG oznaczane jako EN) jako profilowanie gradientowe (lateral

 EL), scyfrowanie niewiarygodnego (Tracz, 1991) pomiaru średnicy i włączenie go do krzywych kompozytowych (plik "nie10.las" w zasobach CBDG).

Większe rozmycia ścian otworu wpływały na jakość rejestrowanych pomiarów geofizyki wiertniczej (zwłaszcza radiometrii) w interwałach: 0–97, 735–990, 1350–1522, 1559–1726, 1981–2260, 2327–2336 m (silne rozmycie soli cechsztyńskiej). Otwór nie osiągnął zakładanej głębokości 3000 m z uwagi na ciągłe i bardzo intensywne zaciskanie ścian na jego spodzie (Kowalczewski i in., 1991b). Prawdopodobnie z tego samego powodu nie wykonano pomiarów geofizycznych w jego dolnej części (ryzyko przechwycenia sond pomiarowych).

Profilowanie krzywizny otworu zostało pomierzone z krokiem 25 m w całym profilu odwiertu, a następnie ręcznie scyfrowane, przeliczone<sup>2</sup> (metodą stycznych) i zwi-

<sup>&</sup>lt;sup>2</sup> Operacje te wykonano w pełni cyfrowo. Jest to jedne z pierwszych sposobów wykorzystania techniki komputerowej w pomiarach geofizyki wiertniczej w Polsce (w dodatku wykonany na sprzęcie krajowej produkcji) – z uwagi na brak możliwości cyfrowej rejestracji krzywych, pozostałe pomiary (wyma-gające mniejszego kroku próbkowania) były interpretowane tradycyjnymi, "analogowymi" metodami.

zualizowane. Profilowanie krzywizny otworu nie wykazało odchylenia od pionu do głęb. 750 m. W pozostałym odcinku nie zarejestrowano znaczących odchyleń od pionu (maksymalnie wyniosły one 3°45", zwykle nie przekraczały 2°), odejście otworu od punktu początkowego wyniosło w rzucie poziomym 42,93 m, otwór jest – generalnie rzecz biorąc – pochylony w kierunku południowo-zachodnim (Fifielska, Król, 1990).

Wszystkie wykonane pomiary (a co za tym idzie, ich interpretacje) są obciążone zmianami średnic otworu. Efekt ten jest najwyraźniej widoczny w miejscach zmiany nominalnej średnicy wiercenia (patrz fig. 4) czy w interwale 1982–2261 m. Znaczne rozmycia ścian otworu były tam spowodowane stosowaniem solno-skrobiowej płuczki, która rozpuszczała przewiercone pokłady soli kamiennej. Poniżej głębokości 1881 m, na zapis sond geofizyki otworowej, duży wpływ ma wysoka mineralizacja płuczki. Zniekształcenia te są najsilniejsze w przypadku pomiarów elektrometrycznych (zmniejszenie pseudooporności) oraz sond neutronowych (intensywniejsza absorpcja neutronów przez chlor zawarty w płuczce).

#### INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

W otworze tym, co najmniej czterokrotnie analizowano dane geofizyki wiertniczej (Nowak, Płachta, 1990; Tracz, 1991; Nowak, Kubik, 2003; Szewczyk, 2005).

W dwóch pierwszych opracowaniach skupiono się na wydzieleniu kompleksów litologicznych (litostratygraficznych) oraz ustaleniu parametrów zbiornikowych i nasycenia kolektorów, korzystając przy tym bezpośrednio z nieskalibrowanych pomiarów. Niestety, w każdym z analizowanych poziomów kolektorskich, uzyskano 100% nasycenie przestrzeni porowej wodą złożową. Należy tu zaznaczyć iż, w tekście dokumentacji Tracz (1991) dość dokładnie opisano metodykę interpretacji.

W pracy Nowaka i Kubika (2003) skupiono się na precyzyjnym przetworzeniu (uzgodnienie głębokościowe profilowań, poprawki na warunki otworowe) i zrekalibrowaniu dostępnych profilowań (przeliczenia imp/min na jednostki fizyczne w pomiarach radiometrycznych, eliminacja zjawiska zaniku cykli w profilowaniu akustycznym), a następnie wykonano kompleksową interpretację litologiczno-złożową za pomocą programu ANALIT-PLUS (wersja ANAL NC/n). Parametry dostosowywano indywidualnie w odcinkach interpretacyjnych, mierzących zwykle kilka, kilkadziesiąt metrów. Obliczony profil posłużył do konstrukcji syntetycznego profilowania czasu interwałowego, na podstawie którego skonstruowano sejsmogram syntetyczny, korzystając z programu SynTool Pakietu Open Works firmy Landmark. Uzyskane wyniki posłużyły do konwersji czasowo-głębokościowej wykonywanego zdjęcia sejsmicznego. Wyniki interpretacji, w postaci cyfrowej, zostały prawdopodobnie zdeponowane u wykonawcy zdjęcia - firmy Geofizyka Kraków, niedawno przejętej przez Geofizykę Toruń.

W ramach prac finansowanych przez NFOŚiGW w PIG-PIB wykonano analizę za pomocą systemu GEOFLOG (Szewczyk, 2005). Dane dotyczące litologii, zestawione z profilowaniem naturalnej promieniotwórczości gamma i profilowaniem neutron-gamma, zostały skalibrowane z oznaczeniami porowatości efektywnej i gęstości na próbkach (łącznie 149<sup>3</sup> oznaczeń). Uwzględnienie litologii i porowatości efektywnej pozwala stwierdzić czy dana warstwa ma charakter zbiornikowy czy też jest warstwą izolacyjną (Górecki, 2006).

Gęstość objętościowa została obliczona dla całego profilu za pomocą wzoru:

$$\rho = \rho_m (1 - \Phi - V_{sh}) + \rho_w \Phi + \rho_{sh} V_{sh}$$

gdzie:

- ρ<sub>m</sub> gęstość szkieletu skalnego ustalona za pomocą typu litologii,
- porowatość całkowita wyznaczona na podstawie profilowania neutron gamma poprawionego na wpływ zailenia i skalibrowanego do próbek,
- V<sub>sh</sub> procent objętościowy minerałów ilastych ustalony na podstawie profilowania gamma,

$$\rho_w$$
 – gęstość wody,

 $\rho_{sh}$  – gęstość minerałów ilastych.

Trafność wyboru parametrów sterujących była kontrolowana poprzez porównanie, obliczonej na podstawie modelu litologicznego, krzywej czasu interwałowego fali P (DT) z rzeczywistymi wartościami DT pomierzonymi sondą akustyczną w otworze (średni błąd kwadratowy pomiędzy tymi wartościami zestawionymi na wykresie krzyżowym a linią trendu dla całego profilu otworu wyniósł R=0,783). W interwałach o znacznym zaileniu (por. fig. 4), bądź zeszczelinowanych (można się ich spodziewać przy dnie otworu) sposób ten może zawodzić z uwagi na zjawisko tzw. zaniku cykli (przeskoku faz – [ang.] *cycle skipping*).

10 dni po zakończeniu wiercenia dwukrotnie zrealizowano profilowanie temperatury w warunkach uznanych ówcześnie za ustalone. Wyraźne odbieganie temperatury przypowierzchniowej, ekstrapolowanej z profilowania temperatury ustalonej, od średniorocznej temperatury pomierzonej na podstawie danych meteorologicznych (GST = 9,1°C), jak i nieregularny charakter zarejestrowanych wartości temperatur, szczególnie w górnej części otworu, świadczy o braku całkowitej stabilizacji warunków termicznych w otworze. Otwór wiertniczy Nieświń PIG 1

<sup>&</sup>lt;sup>3</sup> Rozbieżność z podaną wcześniej liczbą dostępnych analiz wynika prawdopodobnie z wykonania ich w późniejszym okresie.

znajduje się w północno-wschodniej części dodatniej anomalii strumienia cieplnego, w której centrum leży otwór Radwanów IG 1. Obliczona, na podstawie opisanego wcześniej modelu litologicznego, gęstość strumienia cieplnego wynosi ok. 83,0 mW/m<sup>2</sup>. Dokładna metodyka obliczeń opisana jest w pracy Szewczyka i Gientki (2009). Temperatura ustabilizowana na głębokości ok. 1500 metrów, tj. poza zasięgiem głębokościowym glacjalnych zmian klimatycznych, wynosi ok. 48°C.

#### Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

#### **OPRACOWANIE POMIARÓW SEJSMOMETRYCZNYCH**

Sprawozdanie z pomiarów sejsmometrycznych w otworze wiertniczym Nieświń PIG 1, wykonanych przez Grupę Sejsmometrii Wiertniczej, obejmuje prędkości sejsmiczne, pionowe profilowanie sejsmiczne i profilowanie akustyczne. Wyniki zostały opracowane w lutym 1991 r. przez Wydział Sejsmometrii Wiertniczej Polskiego Górnictwa Naftowego i Gazownictwa w Geofizyce Kraków.

Prace pomiarowe w otworze Nieświń PIG 1 wykonano aparaturą SN-338 sondą pięciogeofonową z interwałem pomiarowym 20 m metodą dynamitową z trzech punktów wzbudzania (PW) usytuowanych w różny sposób.

Dla 1 punktu wzbudzania (PW 1) przyjęto odległość od głębokiego otworu 105 m i azymut mierzony w punkcie głębokiego otworu w kierunku PW 35 stopni. Dla punktu wzbudzania 2 (PW 2) przy takim samym azymucie odległość PW od głębokiego otworu wynosiła 335 m. Punkt wzbudzania 3 (PW 3) usytuowano w odległości 110 m od głębokiego otworu przy azymucie różnym od dwóch pozostałych wynoszącym 140 stopni. Niwelacja, czyli wysokość względna PW w stosunku do wylotu otworu wiertniczego, dla wszystkich punktów wynosi 0 m. Wykształcenie litologiczne warstw przypowierzchniowych w przedziale głębokościowym 0–16 m zostało określone jako piasek, glina i żwir zailony oraz w interwale 16–27 m jako margiel.

Dobór odpowiednich warunków wzbudzania poprzedziło mikroprofilowanie prędkości, wykonane dla trzech punktów strzelania. Interwał pomiarowy wynosił 0–2340 m, przy głębokości końcowej otworu 2356 m. Poziom odniesienia pomiarów przyjęto zgodnie z wysokością wylotu głębokiego otworu geologicznego, tj. 255 m n.p.m.

W ramach prac dokumentacyjnych profilowania akustycznego sporządzono załącznik graficzny kalibracji krzywej profilowania akustycznego w otworze zawierający:

- wykres ΔT po kalibracji,
- wykres krzywej różnicowej,
- wykresy prędkości warstwowych (V<sub>w</sub>) i współczynników odbicia po I i II stopniu uśrednienia – w skali głębokościowej,
- wykresy prędkości warstwowych i współczynników odbicia po I i II stopniu uśrednienia – w skali czasowej,
- hodograf  $Tv_a$  z punktami kalibracji.

pretacji krzywych wg Szewczyka (2005) oraz końcowe wyniki interpretacji w wydzielonych poziomach kolektorskich wg Tracza (1991).

Na figurze 4 zestawiono wybrane wyniki ciągłej inter-

Dostępne wyniki interpretacji wskazują na brak obecności węglowodorów w całym profilu odwiertu. Kwestią otwartą pozostaje oczywiście najniższa część odwiertu – zaciskanie się ścian otworu uniemożliwiło wykonanie wielu pomiarów, a co za tym idzie ich wiarygodną interpretację.

Dodatkowo opracowano załącznik zawierający wykres Vw i współczynników odbicia w skali sekcji czasowej uzupełniony w przedziale 0-233 m prędkością kompleksową (V<sub>k</sub>) uzyskaną z prędkości średnich z PW 3.

Obliczenia wykonano na maszynie cyfrowej EMR-6135. Głębokość zredukowaną wyznaczono wg wzoru:

$$h_r = h_{pom} - h_{odr}$$

gdzie:

- *h<sub>r</sub>* głębokość zredukowana punktu pomiarowego do poziomu odniesienia [m],
- h<sub>pom</sub> głębokość zanurzenia geofonu głębinowego [m],
- *h*<sub>odn</sub> głębokość poziomu odniesienia [m] (z uwzględnieniem niwelacji i głębokości strzelania).

Redukcję czasów do pionu wykonano metodą, która zakłada jednorodność ośrodka od punktu wybuchu do głębokości zanurzania geofonu wg wzoru:

$$t_r = \frac{h_r}{\sqrt{h_r^2 - d^2}} \cdot t_\rho$$

gdzie:

 $t_r$  – czas zredukowany [s],

- *h<sub>r</sub>* głębokość zredukowana punktu pomiarowego do poziomu odniesienia [m],
- $t_p$  czas poprawiony [s],
- d odległość punktu strzałowego PS od głębokiego otworu [m].

Poprawki czasowe liczono wg wzoru:

$$d_t = \frac{h - h_{odn}}{V_o}$$

gdzie:

- h = głębokość strzelania [m],
- V<sub>o</sub> prędkość fali w utworach przypowierzchniowych w strefie małych prędkości (SMP), która dla otworu wiertniczego Nieświń PIG 1 wynosi 1650 m/s.

Wartości  $h_r$ i  $t_r$  posłużyły do obliczenia prędkości średnich ( $V_{\text{śr}}$ ) zgodnie ze wzorem:

$$V_{\rm sr} = \frac{h_r}{t_r}$$

Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego. Charakter zmian prędkości w funkcji głębokości zilustrowano w odpowiednich tabelach i na wykresach. Zestaw wartości  $h_r$ ,  $t_r$  i ( $V_{\rm sr}$ ) zestawiono w tabeli (tab. 24). Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 56A) i hodografu pionowego (fig. 56B). Wykres prędkości średnich i hodograf pionowy stanowią graficzne uśrednienie krzywych uzyskanych z trzech punktów wzbudzania. Do takiego postępowania upoważniał stosunkowo mały rozrzut pomierzonych wielkości przy wzbudzaniu z trzech różnych punktów. Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać systematyczny wzrost prędkości wraz ze wzrostem głębokości.

Pomiar pionowego profilowania sejsmicznego (PPS) w otworze Nieświń PIG 1 wykonano z trzech punktów wzbudzania, których odległości od głębokiego otworu wynosiły odpowiednio: 105, 335 i 110 m. Zarejestrowane na taśmach magnetycznych wyniki pomiarów opracowano na centrali cyfrowej MS-421 w systemie SYSIS z zastosowaniem filtracji 50 Hz i filtracji splotowej 10/20 – 42/48, otrzymując sejsmogram zbiorczy PPS. Obróbkę wstępną wykonano sposobem demultipleksacji przy kroku próbkowania 200/100 m/s.

Dla dokładniejszej korelacji fal wykonano filtrację wielokanałową na kierunkach "+–", "+" oraz "–". W metodyce opracowania wykorzystano następujące funkcje: Dystant, Centrage, Filtre, Normalis, Egadyn, D Boude, F Boude. W celu dokładniejszego dowiązania głębokościowego i czasowego fal odbitych wprowadzono do sejsmogramu zbiorczego PPS poprawki dodatkowe, uzyskując sekcję czasową PPS w skali 2T.

W celu uzyskania lepszej rozdzielczości obrazu falowego zastosowano na sekcji czasowej PPS filtrację wielokanałową oraz filtrację wachlarzową.

Opracowując wyniki pomiaru PPS do analizy, wzięto pod uwagę następujące materiały:

- sejsmogramy zbiorcze PPS z PS 1, PS 2 i PS 3,
- czasowe przekroje sejsmiczne wykonane na podstawie PPS – z PS 1, PS 2 i PS 3.

Otrzymane wyniki są dosyć niskiej jakości. Na sejsmogramach zbiorczych (np. fig. 57), zarejestrowanych dla poszczególnych PS, można zidentyfikować następujące refleksy:

- na czasie ok. 0,62 s z głęb. ok. 960 m słaby refleks, pochodzący z utworów kajpru dolnego,
- na czasie ok. 0,73 s z głęb. ok. 1120 m refleks związany ze spagiem środkowego wapienia muszlowego,
- na czasie ok. 0,81 s z głęb. ok. 1340–1360 m refleksy, pochodzące z pogranicza pstrego piaskowca górnego (retu) i pstrego piaskowca środkowego,
- na czasie ok. 0,91 s z głębokości ok. 1550 m refleks związany z utworami środkowego pstrego piaskowca,

- na czasie ok. 1,18 s z głębokości ok. 2120 m refleks, pochodzący z utworów cechsztynu (najstarsza sól kamienna Na1),
- na czasach ok. 1,45 s i 1,56 s grupa refleksów związanych z utworami karbonu, położonymi poniżej dna głębokiego otworu.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości pomierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp miedzy punktami pomiarowymi. Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich z zadaniem obliczenia prędkości interwałowych, bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono, wyrównując zmierzone czasy, zredukowane do pionu, przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, co 20 m. Następnie czasy te wygładzono specjalnym programem, przez zastosowanie operacji splotu z filtrem trójkatnym, stosując 20 razy filtry 0,25 i 0,50. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych, wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych. Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów, spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory, obejmujące przetworzone czasy pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości predkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonych w latach 90. XX wieku w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do Centralnej Bazy Danych Geologicznych PIG-PIB.

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych. Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe

#### Tabela 24

#### Zestawienie wartości głębokości (*h*), średniego czasu zredukowanego ( $t_r$ ) i prędkości średnich ( $V_{sr}$ )

Depth (*h*), reduced time  $(t_r)$  and average velocity  $(V_{st})$  values

| <i>h</i> [m] | t [s]    | $V_{c}$ [m/s] | <i>h</i> [m] | <i>t</i> [s] | V [m/s] |
|--------------|----------|---------------|--------------|--------------|---------|
| 20           | 0.027000 | 1010          | 1200         | 0 365667     | 3282    |
| 40           | 0.034667 | 1154          | 1200         | 0 368667     | 3309    |
| 60           | 0.043000 | 1395          | 1240         | 0 373333     | 3321    |
| 80           | 0.049667 | 1611          | 1260         | 0.377000     | 3342    |
| 100          | 0.056333 | 1775          | 1280         | 0.382667     | 3345    |
| 120          | 0,063000 | 1905          | 1300         | 0,386333     | 3365    |
| 140          | 0,069333 | 2019          | 1320         | 0,389667     | 3388    |
| 160          | 0,076333 | 2096          | 1340         | 0,395000     | 3392    |
| 180          | 0,082667 | 2177          | 1360         | 0,399000     | 3409    |
| 200          | 0,088667 | 2256          | 1380         | 0,405000     | 3407    |
| 220          | 0,094333 | 2332          | 1400         | 0,409333     | 3420    |
| 240          | 0,100333 | 2392          | 1420         | 0,413333     | 3435    |
| 260          | 0,107000 | 2430          | 1440         | 0,418333     | 3442    |
| 280          | 0,114000 | 2456          | 1460         | 0,422667     | 3454    |
| 300          | 0,119000 | 2521          | 1480         | 0,428333     | 3455    |
| 320          | 0,124000 | 2581          | 1500         | 0,433000     | 3464    |
| 340          | 0,129333 | 2629          | 1520         | 0,437667     | 3473    |
| 360          | 0,135333 | 2660          | 1540         | 0,441667     | 3487    |
| 380          | 0,141667 | 2682          | 1560         | 0,446000     | 3498    |
| 400          | 0,148333 | 2697          | 1580         | 0,451667     | 3498    |
| 420          | 0,155000 | 2710          | 1600         | 0,456000     | 3509    |
| 440          | 0,162333 | 2710          | 1620         | 0,460333     | 3519    |
| 460          | 0,168667 | 2727          | 1640         | 0,465333     | 3524    |
| 480          | 0,174667 | 2748          | 1660         | 0,470000     | 3532    |
| 500          | 0,180333 | 2773          | 1680         | 0,4/4333     | 3542    |
| 520          | 0,184667 | 2816          | 1/00         | 0,4/9333     | 354/    |
| 540          | 0,190667 | 2832          | 1720         | 0,483333     | 3559    |
| 580          | 0,196000 | 2857          | 1740         | 0,488007     | 3501    |
| 600          | 0,202333 | 2807          | 1780         | 0,493000     | 3581    |
| 620          | 0,207007 | 2009          | 1800         | 0,497000     | 3586    |
| 640          | 0.212555 | 2927          | 1820         | 0,502000     | 3590    |
| 660          | 0,225000 | 2933          | 1840         | 0,511000     | 3601    |
| 680          | 0.231667 | 2935          | 1860         | 0 515000     | 3612    |
| 700          | 0.236667 | 2958          | 1880         | 0.518667     | 3625    |
| 720          | 0.242333 | 2971          | 1900         | 0.521333     | 3645    |
| 740          | 0,248667 | 2976          | 1920         | 0,524667     | 3659    |
| 760          | 0,253333 | 3000          | 1940         | 0,527667     | 3677    |
| 780          | 0,259333 | 3008          | 1960         | 0,530333     | 3696    |
| 800          | 0,265333 | 3015          | 1980         | 0,534000     | 3708    |
| 820          | 0,271333 | 3022          | 2000         | 0,538000     | 3717    |
| 840          | 0,276667 | 3036          | 2020         | 0,541333     | 3732    |
| 860          | 0,283333 | 3035          | 2040         | 0,545000     | 3743    |
| 880          | 0,289667 | 3038          | 2060         | 0,549000     | 3752    |
| 900          | 0,295667 | 3044          | 2080         | 0,553333     | 3759    |
| 920          | 0,301000 | 3056          | 2100         | 0,557333     | 3768    |
| 940          | 0,306667 | 3065          | 2120         | 0,562333     | 3770    |
| 960          | 0,312333 | 3074          | 2140         | 0,566667     | 3776    |
| 980          | 0,318667 | 3075          | 2160         | 0,570333     | 3787    |
| 1000         | 0,323667 | 3090          | 2180         | 0,574667     | 3794    |
| 1020         | 0,328333 | 3107          | 2200         | 0,578333     | 3804    |
| 1040         | 0,33200/ | 3120          | 2220         | 0,583333     | 3800    |
| 1000         | 0,33/000 | 2152          | 2240         | 0,58/000     | 2015    |
| 1080         | 0.34200/ | 3132          | 2200         | 0,592555     | 2013    |
| 1100         | 0,34300/ | 3162          | 2200         | 0,57/333     | 2825    |
| 1120         | 0,340333 | 3213          | 2300         | 0.605222     | 3023    |
| 1140         | 0,35355  | 3220          | 2340         | 0,003333     | 3847    |
| 1180         | 0.361333 | 3266          | 25-10        | 0,000555     | 1 501   |
| 1.00         | 0,001000 | 5-00          | 1            |              |         |



Average seismic velocity (A) and travel-time curve (B) (reference level 255.0 m a.s.l.)

o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości, obliczonych z czasów wygładzonych, odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi. Zestawienie uśrednionych wartości  $V_w$  (prędkości wygładzone),  $V_i$  (prędkości interwałowe) i  $V_k$  (prędkości kompleksowe), obliczonych z czasów wygładzonych, zawarto w tabeli 25. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 58. Zestawienie wykresów prędkości z profilem geologicznym wiercenia umożliwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze.

Charakterystyczną cechą wszystkich trzech krzywych prędkości jest ich wyraźna kilkudzielność. Pierwszy kompleks prędkościowy, o wartości średniej 2050 m/s, w profilu geologicznym otworu obejmuje utwory kenozoiku i najwyższą część jury dolnej do głęb. około 130 m, odpowiadającej zaleganiu przysuskiej formacji rudonośnej. Kontrast prędkości o wartości ~1150 m/s, zanotowany przy spągu tej formacji, wyznacza do głęb. 510 m następny kompleks jurajsko-triasowy, o średnich prędkościach kompleksowych, zawierających się w granicach 3000–3250 m/s. Obejmuje on jurę dolną, kajper górny oraz część warstw ze Studziannej kajpru środkowego, tworząc jeden przedział osadów o podobnym wykształceniu litologicznym w postaci naprzemianległych serii generalnie mułowcowo-iłowcowo--piaszczystych. Prędkościowa granica między jurą a triasem – kajprem pokrywa się na wykresach z głębokością stropu kajpru, przyjętą w profilu litostratygraficznym otworu. Wyznaczona niedużym kontrastem prędkości 250 m/s świadczy o zbliżonym składzie litologicznym w stosunku do nadległego. Od tego miejsca aż do głęb. 1070 m utwory kajpru środkowego, dolnego i górnego wapienia muszlowego tworzą kompleks, w którym można wyróżnić trzy odcinki o prędkościach kompleksowych w m/s kolejno: 3500 (dolna część warstw ze Studziannej), 3250 (warstwy gipsowe dolne), 3700 (dolna część warstw gipsowych dolnych, kajper dolny, wapień muszlowy górny). Zastanawiający jest spadek prędkości w interwale głęb. 750-822 m, odpowiadającym warstwom gipsowym dolnym, gdzie, z powodu obecności siarczanów, powinien nastąpić jej wzrost, a nie



Fig. 57. Pionowe profilowanie sejsmiczne (PPS) (poz. odn. 255,0 m n.p.m.)

Vertical Seismic Profiling (VSP) (reference level 255.0 m a.s.l.)

spadek. Powodem takiej sytuacji może być fakt, że siarczany występują tu w obrębie osadów ilowcowo-mułowcowych, a nie węglanów, jak ma to miejsce w przypadku wapienia muszlowego środkowego czy anhydrytu górnego (A1g) sekwencji cechsztynu. Wzrost prędkości na głębokości 860 m, może wiązać się ze zmianą litologii osadów z iłowcowo-mułowcowych na węglanowe – margle dolomityczne i wapienie. Dodatkowo na krzywej prędkości kompleksowej zaznacza się anomalna strefa w okolicach głęb. 650–700 m (warstwy gipsowe górne) o zaniżonych prędkościach około 3100 m/s, która nie znajduje potwierdzenia na wykresie prędkości interwałowych. Należy zauważyć, że w zakresie występowania utworów od formacji skłobskiej jury dolnej do warstw gipsowych dolnych kajpru wzrost prędkości z głębokością jest minimalny. Na ok. 730 m odcinku, obejmującym cały ten interwał, prędkość kompleksowa wzrasta tylko o 450 m/s z 3250 do 3700 m/s. Wyniki pozwalają przyjąć dla ww. odcinka profilu jedną średnią wartość prędkości kompleksowej około 3400 m/s. Najczęściej obniżenie prędkości wskazuje na wzrost obecności materiału ilastego, a wyższe wartości reprezentują zwiększony udział piaskowców.

Charakterystyczny dla tego otworu jest bardzo duży, wywołany kontrastem prędkości 1000 m/s na głęb. około 1070 m, skokowy wzrost prędkości kompleksowej do 4800 m/s. Wartość ta dotyczy ok. 240 m profilu, obejmują-

# Tabela 25Zestawienie wartości głębokości (h), uśrednionych prędkości interwałowych (Vi), prędkości kompleksowej (Vk)i prędkości wygładzonej (Vw), obliczonych z czasu wygładzonego

Depth (*h*), averaged interwal velocity  $(V_i)$ , complex velocity  $(V_k)$  and smoothed velocity  $(V_w)$  values calculated from smoothed time

| <i>h</i> [m] | <i>V<sub>i</sub></i> [m/s] | $V_k$ [m/s] | $V_w$ [m/s] | <i>h</i> [m] | <i>V<sub>i</sub></i> [m/s] | $V_k$ [m/s] | $V_w$ [m/s] |
|--------------|----------------------------|-------------|-------------|--------------|----------------------------|-------------|-------------|
| 20           | 1878                       | 2041        | 1905        | 1200         | 4909                       | 4799        | 4909        |
| 40           | 1878                       | 2041        | 1928        | 1220         | 4758                       | 4799        | 4860        |
| 60           | 1878                       | 2041        | 1940        | 1240         | 4758                       | 4799        | 4800        |
| 80           | 1878                       | 2041        | 2153        | 1260         | 4758                       | 4799        | 4730        |
| 100          | 1878                       | 2041        | 2394        | 1280         | 4758                       | 4799        | 4654        |
| 120          | 2864                       | 2041        | 2631        | 1300         | 4758                       | 4799        | 4579        |
| 140          | 2864                       | 3192        | 2835        | 1320         | 4414                       | 4327        | 4506        |
| 160          | 2864                       | 3192        | 2992        | 1340         | 4414                       | 4327        | 4438        |
| 180          | 2864                       | 3192        | 3104        | 1360         | 4414                       | 4327        | 4378        |
| 200          | 2864                       | 3192        | 3182        | 1380         | 4414                       | 4327        | 4330        |
| 220          | 3297                       | 3192        | 3240        | 1400         | 4414                       | 4327        | 4295        |
| 240          | 3297                       | 3192        | 3287        | 1420         | 4262                       | 4327        | 4272        |
| 260          | 3297                       | 3192        | 3324        | 1440         | 4262                       | 4327        | 4258        |
| 280          | 3297                       | 3192        | 3351        | 1460         | 4262                       | 4327        | 4254        |
| 300          | 3297                       | 3192        | 3361        | 1480         | 4262                       | 4327        | 4257        |
| 320          | 3298                       | 3192        | 3351        | 1500         | 4262                       | 4327        | 4266        |
| 340          | 3298                       | 3192        | 3322        | 1520         | 4287                       | 4327        | 4276        |
| 360          | 3298                       | 3192        | 3282        | 1540         | 4287                       | 4327        | 4286        |
| 380          | 3298                       | 3192        | 3244        | 1560         | 4287                       | 4507        | 4293        |
| 400          | 3298                       | 3277        | 3221        | 1580         | 4287                       | 4507        | 4297        |
| 420          | 3287                       | 3277        | 3222        | 1600         | 4287                       | 4507        | 4301        |
| 440          | 3287                       | 3277        | 3249        | 1620         | 4319                       | 4507        | 4305        |
| 460          | 3287                       | 3277        | 3300        | 1640         | 4319                       | 4507        | 4313        |
| 480          | 3287                       | 3277        | 3365        | 1660         | 4319                       | 4507        | 4322        |
| 500          | 3287                       | 3277        | 3430        | 1680         | 4319                       | 4507        | 4334        |
| 520          | 3510                       | 3502        | 3485        | 1700         | 4319                       | 4507        | 4351        |
| 540          | 3510                       | 3502        | 3519        | 1720         | 4456                       | 4507        | 4375        |
| 560          | 3510                       | 3502        | 3531        | 1720         | 4456                       | 4507        | 4411        |
| 580          | 3510                       | 3502        | 3525        | 1820         | 5145                       | 4507        | 4838        |
| 600          | 3510                       | 3502        | 3506        | 1840         | 5145                       | 4507        | 5039        |
| 620          | 3465                       | 3502        | 3484        | 1860         | 5145                       | 4507        | 5265        |
| 640          | 3465                       | 3502        | 3465        | 1880         | 5145                       | 4507        | 5489        |
| 660          | 3465                       | 3090        | 3454        | 1900         | 5145                       | 5676        | 5679        |
| 680          | 3465                       | 3090        | 3451        | 1900         | 5746                       | 5676        | 5799        |
| 700          | 3465                       | 3090        | 3454        | 1920         | 5746                       | 5676        | 5830        |
| 720          | 3449                       | 3454        | 3458        | 1960         | 5746                       | 5676        | 5776        |
| 740          | 3449                       | 3238        | 3458        | 1980         | 5746                       | 5676        | 5658        |
| 760          | 3449                       | 3238        | 3451        | 2000         | 5746                       | 5676        | 5502        |
| 780          | 3449                       | 3238        | 3436        | 2020         | 5113                       | 5676        | 5333        |
| 800          | 3449                       | 3238        | 3419        | 2040         | 5113                       | 4810        | 5171        |
| 820          | 3408                       | 3440        | 3403        | 2060         | 5113                       | 4810        | 5031        |
| 840          | 3408                       | 3692        | 3395        | 2080         | 5113                       | 4810        | 4919        |
| 860          | 3408                       | 3692        | 3399        | 2100         | 5113                       | 4810        | 4836        |
| 880          | 3408                       | 3692        | 3420        | 2120         | 4726                       | 4810        | 4778        |
| 900          | 3408                       | 3692        | 3458        | 2120         | 4726                       | 4810        | 4737        |
| 980          | 3660                       | 3692        | 3825        | 2160         | 4726                       | 4810        | 4705        |
| 1000         | 3660                       | 3692        | 3973        | 2180         | 4726                       | 4810        | 4679        |
| 1020         | 4380                       | 3692        | 4137        | 2200         | 4726                       | 4810        | 4660        |
| 1020         | 4380                       | 3692        | 4311        | 2200         | 4710                       | 4810        | 4656        |
| 1040         | 4380                       | 3692        | 4484        | 2220         | 4719                       | 4810        | 4675        |
| 1080         | 4380                       | 4799        | 4641        | 2240         | 4719                       | 4810        | 4724        |
| 1100         | 4380                       | 4799        | 4770        | 2200         | 4710                       | 4810        | 4707        |
| 1120         | 4909                       | 4799        | 4864        | 2200         | 4719                       | 4810        | 4877        |
| 11/10        | 4909                       | 4799        | 4922        | 2300         | 4600                       | 4788        | 49/1        |
| 1160         | 4900                       | 4700        | 4944        | 2320         | 4600                       | 4780        | 4851        |
| 1180         | 4909                       | 4700        | 4938        | 2340         | 1000                       | 7700        | 1001        |
| 1100         | 7707                       | 1,77        | 7750        |              |                            |             |             |



Fig. 58. Wykresy prędkości wygładzonych  $(V_w)$ , interwałowych  $(V_i)$  i kompleksowych  $(V_k)$  (poz. odn. 255,0 m n.p.m.)

Smoothed velocity  $(V_w)$ , interval velocity  $(V_i)$  and complex velocity  $(V_k)$  (reference level 255.0 m a.s.l.)

cego wapień muszlowy środkowy, wapień muszlowy dolny oraz większą część retu. Takie odwzorowanie w pomiarach sugeruje dwudzielność wapienia muszlowego: odcinek górny, odpowiadający górnemu wapieniowi oraz dolny, obejmujący środkowy i dolny wapień muszlowy oraz ret do głęb. 1310 m. Wysokie wartości prędkości kompleksowej w dolnym odcinku omawianego interwału wynikają z dominujących tu serii węglanowych (wapienie i dolomity), zawierających anhydryty. Także w przypadku krzywej prędkości interwałowej zaznacza się wzrost wartości na odcinku odpowiadającym utworom dolnego wapienia muszlowego. Od głęb. 1310 m następuje stopniowy spadek wartości na krzywych prędkościowych. Kompleks 535 m, o wartościach zawartych w przedziale 4350-4500 m/s, odpowiada w profilu geologicznym najniższym warstwom retu, utworom pstrego piaskowca środkowego oraz stropowej serii terygenicznej cechsztynu, co oznacza (potwierdza) podobne mułowcowo-iłowcowo-piaszczyste wykształcenie litologiczne tych osadów. Nieznaczny kontrast na głęb. około 1550 m może być związany ze wzrostem ilości piaskowców ku spagowi pstrego piaskowca.

Utwory cechsztyńskie charakteryzują się najbardziej zróżnicowanym obrazem na wszystkich wykresach prędkościowych. Krzywa prędkości kompleksowych wydziela odcinek górny, o prędkości 4500 m/s, odpowiadający wspomnianej już stropowej serii terygenicznej i cyklotemu trzeciemu (PZ3). Wykres prędkości interwałowych z większą dokładnością odwzorowuje złożoną budowę cechsztynu, wydzielając precyzyjnie zarówno strop, jak i spąg cyklotemu PZ3. Na głęb. 1890 m, wyznaczającej przejście do cyklotemu drugiego PZ2, obserwuje się gwałtowny wzrost wartości prędkości kompleksowej do 5700 m/s, najwyższej zanotowanej w całym profilu otworu. Kontrast predkości, wyznaczającej 140 m odcinek profilu, wynosi ~1200 m/s. Podkreśla go też "maksimum" na krzywej prędkości interwałowej, zlokalizowane w warstwach anhydrytowych Alg. Na głęb. około 2030 m, w obrębie najstarszej soli kamiennej (Nal) występuje kolejna zmiana gradientu, wyrażona ujemnym kontrastem prędkości. Do końca pomiaru prędkość kompleksowa wynosi 4800 m/s.

Obliczone prędkości interwałowe, prędkości kompleksowe, a także dane o przekroju litologiczno-stratygraficznym otworu pozwoliły na wydzielenie sześciu kompleksów o możliwie jednolitej i zbliżonej charakterystyce prędkościowej. Zestawienie tych kompleksów podające głębokości dolnych granic kontrastów prędkościowych, odpowiadające im średnie prędkości kompleksowe oraz ew. interwał zmian prędkości w ich obrębie przedstawia się następująco:

- Kz + J<sub>1</sub> (formacja zarzecka) do głęb. 130 m 2050 m/s,
- J<sub>1</sub> + Tk<sub>3-1</sub> + Tm<sub>3</sub> do głęb. 1070 m 3400 m/s przy interwale zmian 3200–3700 m/s,
- $\text{Tm}_2 \text{ i } \text{Tm}_1 + \text{ret} (\text{Tp}_3) \text{ do glęb. } 1310 \text{ m} 4800 \text{ m/s},$
- Tp<sub>3-1</sub> + PZt do głęb. 1845 m 4400 m/s przy interwale zmian 4350–4500 m/s,
- PZ3+PZ1(Na1+A1d+Ca1) do głęb. 2340 m 4750 m/s (zmienność 4500–4800 m/s),
- PZ2 + PZ1 (A1g+BrA1) w głęb. 1890–2030 m 5700 m/s.

Z zestawienia i analizy materiałów pochodzących z wyników pomiarów PPS (m.in. fig. 57) wynika, iż granice wyraźnych kontrastów prędkości korelują się z granicami litologiczno-stratygraficznymi. Jedna z najbardziej wyraźnych granic kontrastu prędkości występuje w triasie między wapieniem górnym i środkowym. Wzrost prędkości kompleksowej wynosi tu 1100 m/s. Na sejsmogramach zbiorczych z pomiarów PPS wyznaczono refleksy pochodzące z kajpru dolnego oraz ze spągu środkowego wapienia muszlowego, które korelują się z granicami wyznaczonymi na krzywych prędkości interwałowych. Podobnie odbicia z pogranicza retu i środkowego pstrego piaskowca znajdują odzwierciedlenie na wykresie prędkości interwałowych. Refleks pochodzący z utworów cechsztynu koreluje się z granicą kontrastu na krzywej interwałowej w miejscu odpowiadającym najstarszej soli kamiennej.

Prędkość, jako pochodna czasu, jest zależna od zmian w profilu geologicznym przewierconych warstw. Ilość możliwych do rozróżnienia warstw zależy od kontrastu właściwości sprężystych między utworami nadległymi i podścielającymi oraz stosunku miąższości danej warstwy do interwału jaki określa prędkość. Obserwowane kontrasty prędkości są efektem zmian w wykształceniu litologicznym poszczególnych ogniw litostratygraficznych. Efektem tego jest określenie granic między nimi. Otrzymane wyniki stanowią znaczący materiał do uaktualnienia modelu prędkości, niezbędnego do prawidłowego głębokościowego opracowania materiałów sejsmicznych z rejonu wiercenia Nieświń PIG 1 i jego otoczenia. Uwzględnienie w rozkładach prędkości wyników z pomiarów w otworze wiertniczym Nieświń PIG 1, sięgających prawie 2340 m, ułatwia korelację i przyporządkowanie poziomów refleksyjnych na przekrojach do poszczególnych pięter permo-mezozoiku i karbonu.