Jadwiga WAGNER

WYNIKI BADAŃ HYDROGEOLOGICZNYCH

Prezentowane wyniki badań hydrogeologicznych w otworze Chełmek IG 1 obejmują badania laboratoryjne próbek skał pobranych z rdzenia wiertniczego oraz polowe badania poziomów wodonośnych, które przeprowadzono w trakcie wiercenia oraz po jego zakończeniu. Celem badań laboratoryjnych było określenie podstawowych własności fizycznych i hydrogeologicznych skał karbońskich, natomiast bezpośrednie badania hydrogeologiczne miały na celu ustalenie zawodnienia i ocenę parametrów hydrogeologicznych poziomów piaskowcowych w profilu karbonu. Do opróbowania wytypowano siedem poziomów piaskowcowych wodonośnych, zgodnie z projektem sporządzonym przez Różkowskiego i Wagner (1987).

WYNIKI BADAŃ WŁAŚCIWOŚCI FIZYCZNYCH I HYDROGEOLOGICZNYCH SKAŁ

W celu określenia podstawowych własności fizycznych i hydrogeologicznych skał wykonano oznaczenia następujących parametrów: ciężaru objętościowego, wilgotności, porowatości efektywnej, przepuszczalności i odsączalności grawitacyjnej (tab. 52). Badaniom poddano 107 próbek płonnych skał osadowych karbonu (zlepieńce – 1, piaskowce – 90, mułowce – 12, iłowce – 4). Badania te wykonano w laboratorium polowym, na próbkach rdzenia odpowiednio przygotowanych do aparatury pomiarowej, pobranych w trakcie wiercenia (Wagner, 1988).

<u>Ciężar objętościowy</u> skał oznaczono na 103 próbkach skał, w zakresie 2,02–3,00? G/cm³, pobranych z głęb. 82,00–2168,30 m. Piaskowce w poszczególnych seriach litostratygraficznych: serii mułowcowej (2,20–2,52 G/cm³), górnośląskiej serii piaskowcowej (2,20 G/cm³) i serii paralicznej (2,30–2,84 G/cm³) mają na ogół mniejsze wartości niż skały krakowskiej serii piaskowcowej (2,02–3,00? G/cm³) (tab. 52).

Wilgotność oznaczono na 77 próbkach skał, w zakresie 0,74–9,72%, pobranych z głęb. 230,00–2168,30 m. Zakres zmienności wilgotności skał dla próbek z profilu krakowskiej serii piaskowcowej (1,90–9,72% piaskowiec i 2,30– 8,15% mułowiec) jest większy niż dla próbek skał z pozostałych serii: serii mułowcowej (1,28–5,46% piaskowiec i 1,00– 1,84% mułowiec, 0,80–2,33% iłowiec), górnośląskiej serii piaskowcowej (3,42% piaskowiec) i serii paralicznej (1,00– 3,76% piaskowiec, 0,74–2,41% mułowiec) (tab. 52).

Porowatość efektywną oznaczono na 101 próbkach skał, w zakresie 0,53–19,00%, pobranych z głęb. 82,00–2168,30 m. Profil krakowskiej serii piaskowcowej budują piaskowce głównie (95%) o średniej i dużej porowatości (2,98–22,07%). W profilu górnośląskiej serii piaskowcowej (głęb. 1431,25– 1455,3 m) wykonano 1 ozn. – 15,73% świadczące o dużej porowatości badanych skał. Profil serii mułowcowej budują piaskowce głównie (ponad 70%) o dużej porowatości (2,70– 19,00%) oraz skały o małej porowatości: piaskowiec (2,70%) mułowiec (1,07%) i iłowiec (2,04–4,02%). Profil serii paralicznej budują skały o małej i średniej porowatości w zakresie 0,53–9,75% (w tym piaskowiec 1,33–9,75%, mułowiec 0,53–9,30%, iłowiec 1,59%). Wartości średnie (przeciętne) porowatości efektywnej zmniejszają się wraz z malejącym uziarnieniem skał klastycznych. Porowatość efektywna skały zależy od rodzaju spoiwa, konsolidacji spękań oraz rozwarstwień w skałach (tab. 52).

Odsączalność grawitacyjną oznaczono na 60 próbkach skał zwięzłych pobranych z rdzenia z głęb. 82,00–2168,30 m. Wartość tego parametru waha się w zakresie 0,0050–0,0762 (czyli 0,50–7,62%) (tab. 52), w tym: piaskowce (0,0057– 0,0762), mułowce (0,0039–0,0366), iłowce (0,0050–0,0144) (tab. 53).

Przepuszczalność skał oznaczono na 98 próbkach metodą podciśnieniową (tab. 52). Współczynnik przepuszczalności wszystkich skał waha się w zakresie <0,10–1000,00 mD. Przepuszczalność ma charakter "słabej" wg klasyfikacji własności filtracyjnych skał (Pazdro, 1977) dla: skał krakowskiej serii piaskowcowej (14 ozn. znajduje się w zakresie 105–1000 mD, tj. 23% oznaczeń stanowi "słaba" przepuszczalność), skał górnośląskiej serii piaskowcowej (1 ozn. na poziomie 660 mD – "słaba" przepuszczalność), dla skał mułowcowej serii (brak), dla skał serii paralicznej (brak) – jednak są to najwyższe wartości oznaczeń w profilu otworu. Wartości wszystkich oznaczeń pozwalają zaklasyfikować poddane oznaczeniom skały do wykazujących własności filtracyjne skał: nieprzepuszczalnych (25 ozn. <0,1 mD i 12

249

Tabela 52

Zestawienie parametrów fizycznych skał karbońskich

Physical parameters of Carboniferous rocks

	X 1. 1. 1. 1.	Głebokość	Ciężar obj.	Wilgotność	Porowatość	Przepuszczalność	Odsączalność
Lp.	Litologia*	Depth	Weight by	Humidity	efektywna Effective peresity	podciśnieniowa Vacuum pormospilit	grawitacyjna Gravity drainaga gapagity
	Lithology	[m]	[G/cm ³]	[%]	[%]	[mD]	
1	2	2	4	5	6	7	8
1	PSC rzn	82.00	2 43		7 78	0.34	0.0114
2	ZLP	160.80	2 39		12.30	0.23	*,****
3	PSC śr	199 70	2,39		14 60	4 80	0.0310
4	PSC gr	217 50	2,29		14 30	80.00	0,0310
5	PSC rzn	224 30	2,20		10.70	4 80	
6	MLC	230.00	2,13	2 30	772	0.67	
7	PSC śr	247.00	2,58	2,50	6.26	0.22	
/ 	PSC rzp	247,00	2,33		12.11	0.44	0.0122
0	PSC ér	201,10	2,32	2.00	21.44	128.00	0,0122
10	PSC SI	280,70	2,03	2,00	20,00	60.00	
10	PSC SI	280,70	2,07	1.00	20,00	<0.1	
11	PSC SI	292,10	2,42	1,90	4,47	~0,1	0.0274
12	PSC SI	290,30	-		17.62	-	0,0274
13	PSC rzn	302,20	2,15		20.64	20,00	
14	PSC fZn	313,50	2,08		20,64	80,00	
15	PSC gr	318,00	2,49		6,32	0,92	0.0156
16	PSC dr	326,30	2,32		10,69	0,22	0,0156
17	PSC rzn	334,30	2,09		19,80	1000	0.0070
18	PSC dr	339,50	3,00?		2,98	<0,1	0,0076
19	PSC dr	348,60	2,43		5,89	<0,1	
20	PSC śr	349,30	2,22		15,1	3,30	0,0264
21	PSC dr	354,90	2,18		17,06	7,70	
22	PSC śr	360,50	2,15		18,38	5,50	0,0200
23	PSC bgr	367,00					
24	PSC bgr	375,30					
25	PSC rzn	380,90	2,51		7,06	0,27	0,0112
26	PSC dr	386,00	2,27		14,14	1,28	0,0127
27	PSC bgr	396,80					
28	PSC rzn	404,80	2,43		4,72	1,28	0,0232
29	PSC gr	409,60	2,18		16,69	5,80	
30	PSC gr	417,40	2,16		17,34	7,80	0,0322
31	PSC gr	424,50	2,23		14,90	1,55	
32	PSC rzn	437,00	2,21		16,44	6,60	0,0279
33	PSC śr	448,10	2,34		17,70	14,00	
34	PSC rzn	468,40	2,07		20,42		0,0474
35	PSC śr	482,00	2,14		17,74	33,0	
36	PSC gr	495,20	2,05		19,56		0,0331
37	PSC śr	507,30	2,02		22,07	141,0	
38	PSC śr	532,50	2,09		19,86	400,00	0,0762
39	PSC gr	547,00	2,03		21,54	216,50	
40	PSC rzn	569,20	2,09		20,1	82,80	
41	PSC śr	582,30	2,26		3,49	<0,1	0,0143
42	MLC	608,70	2,38		17,27	218,00	0,0366
43	PSC rzn	630,00	2,09		20,05	220,00	
44	PSC śr	640,00	2,46		6,98	0,14	0,0085
45	PSC gr	664,00	2,12		17,86	310,00	
46	PSC śr	680,00	2,17		16,18	16,00	0,0297
47	PSC gr	698,70	2,10		17,68	45,50	
48	PSC śr	719,50	2,12		18,05	145,00	0,0693
49	PSC bgr	740,80	2,16		17,28	25,00	0,0507
50	PSC dr	762,20	2,32		10,55	0,43	0,0095
51	PSC rzn	782,60	2,11		17,52	920,00	0,0706
							*

Tabela 52 cd.

1	2	3	4	5	6	7	8
52	PSC śr	806,00	2,26		13,70	3,80	0,0089
53	PSC rzn	830,20	2,23		14,23	105,00	0,0487
54	PSC rzn	851.20	_			_	0.0451
55	PSC rzn	871.10	2.21		15.91	82.00	0.0403
56	PSC śr	890.00	2.20		15.38	42.50	0.0395
57	PSC gr	911.40	2.22		14.83	24.00	0.0171
58	PSC gr	930.60	2.25		14.67	43.00	0.0526
59	PSC śr	961.00	2.29		11.81	7.40	0.0161
60	PSC rzn	984.60	2.25		14,10	121,00	0,0592
61	PSC śr	1006.60	2.29		13,91	_	0,0208
62	PSC śr	1023,00	2,29		13,76	2,90	0,0132
63	PSC dr	1036,70	2,47		7,90	178,00	0,0057
64	PSC rzn	1053,00	2,28		14,02	28,50	0,0294
65	PSC śr	1070,50	2,20		16,28	260,00	0,0560
66	PSC śr	1091,30	2,26		14,47	6,75	0,0204
67	PSC śr	1114,30	2,43		10,61	1,62	0,0164
68	PSC gr	1133,20	2,43		8,15	1,14	0,0087
69	ILC	1157,80	2,48		4,02	0,22	0,0144
70	PSC dr	1174,00	2,32		13,67	4,45	0,0176
71	PSC dr	1199,50	2,09		19,00	41,50	0,0771
72	MLC	1225,40			-	_	
73	PSC rzn	1244,30	2,27		14,16	85,00	0,0334
74	ILC	1273,40	2,54		2,04	0,10	0,0050
75	ILC	1301,40	2,56		2,20	4,85	
76	PSC śr	1332,05	2,25		14,52	6,80	
77	PSC śr	1343,15	2,23		14,24	24,50	
78	PSC dr	1367,30	2,36		7,12	0,16	0,0083
79	PSC dr	1388,40	2,52		2,70	1,21	
80	MLC	1421,25	2,56		1,07	0,10	0,0043
81	PSC śr	1440,90	2,20	3,42	15,73	660,00	-
82	PSC dr	1470,40	2,30	3,76	9,75	0,19	0,0083
83	PSC dr	1501,20	2,51	2,72	4,58	<0,10	
84	PSC dr	1531,10	2,46	2,13	4,59	<0,10	0,0075
85	MLC	1555,80	2,58	1,93	1,76	<0,10	
86	PSC dr	1563,85	2,43	2,85	6,84	<0,10	0,0080
87	MLC	1570,65	2,60	1,78	1,08	<0,10	
88	PSC dr	1589,15	2,41	2,57	5,93	<0,10	0,0075
89	MLC	1618,50	2,60	1,44	0,95	<0,10	0.0046
90	PSC dr	1645,70	2,52	1,64	5,30	<0,10	0,0046
91	PSC dr	1669,90	2,37	2,51	9,11	<0,1	0,0080
92	MLC	1693,80	2,63	1,37	4,67	<0,1	0.0054
93	MLC	1/13,00	2,64	1,31	9,30	<0,1	0,0054
94	DSC dr	1/54,50	2,59	1,44	1,39	<0,1	0.0078
93	PSC dr	1/65,/0	2,51	2,18	4,33	<0,1	0,0078
90	PSC di	1813,30	2,03	2 21	0.10	0.16	0.0067
97	PSC de	1855.00	2,30	3,51	^{7,17} 5 57	<0.1	0,0007
90	MLC	1890.90	2,64!	2 41	2.28	<0,1	0.0039
100	PSC dr	1933.00	2,59	1 30	2,20	<0.1	0,0007
101	PSC śr	1966 20	2,53	1,30	2.41	<0.1	0.0063
102	PSC śr	1992.80	2.38	2.75	6.48	0.19	0.0074
103	MLC	2028.00	2,70	0,74	0,53	<0.1	-,,-
104	MLC	2055,20	2.62	1,72	0,55	0.27	
105	PSC dr	2096,50	2,53	2,14	3,67	<0,1	0,0048
106	PSC dr	2127,00	2,60	2,75	2,94	<0,1	0,0062
107	PSC dr	2168,30	2,52	2,16	2,81	<0,1	

* skróty litologii skał jak w tabelach 8 i 9 / lithological abbreviations as in Tables 8 and 9

Parametry fizyczne poszczególnych typów litologicznych skał karbońskich

Właściwość	Wartość	Skała Lithological type							
Parameter	Value	iłowce claystones	mułowce mudstones	piaskowce sandstones	zlepieńce conglomerates				
	Min. [%]	1,59	0,53	2,14	12,30				
Effective porosity	Maks. [%]	4,02	17,27	22,07	12,30				
	Liczebność / Population	4	12	74	1				
	Min. [-]	0,0050	0,0039	0,0048	-				
Odsączalność grawitacyjna Gravity drainage canacity	Maks. [-]	0,0144	0,0366	0,0706	-				
orarny aramage capacity	Liczebność / Population	2	5	53	_				
Przepuszczalność	Min. [mD]	<0,1*	<0,1	<0,1	0,23				
podciśnieniowa	Maks.[mD]	4,85	14,80	1000	0,23				
Vacuum permeability	Liczebność / Population	4	12	82	1				

Physical parameters of individual lithological types of Carboniferous rocks

* Wśród 25 oznaczeń <0,1 aż 20 oznaczono dla skał serii paralicznej

* from 25 samples <0,1, 20 were taken from the Paralic Series

ozn. 0,1– <1 mD), półprzepuszczalnych (39 ozn. 1–100 mD) oraz o "słabym" charakterze przepuszczalności (15 ozn. 100–1000 mD) Uzyskane wartości świadczą, że poddane badaniom laboratoryjnym skały profilu karbonu mają bardzo zróżnicowany charakter przepuszczalności, od skał praktycznie nieprzepuszczalnych do skał o "słabej" przepuszczalności (Pazdro, 1977).

WYNIKI BEZPOŚREDNICH POLOWYCH BADAŃ HYDROGEOLOGICZNYCH

BADANIA HYDROGEOLOGICZNE (ZAPIĘCIE PRÓBNIKA ZŁOŻA) WYKONANE W TRAKCIE WIERCENIA

Celem prac było uzyskanie przypływu płynu złożowego z wytypowanych i udostępnianych do badań poziomów. W trakcie wiercenia przeprowadzono trzykrotne opróbowanie wód złożowych metodą zapięcia próbnika złoża. Próbnik rurowy złoża typu Halliburton 3 został zapięty w utworach serii paralicznej na głęb.: 1506,00–1658,80 m (IP), 1799,50–1863,00 m (IIP) i 2071,00–2116,90 m (IIIP). Parametry techniczne i wyniki badań próbnikiem złoża przedstawiono w tabelach 54 i 55. Podczas badań zastosowano depresję 100% oraz metodę jednokrotnego odcięcia przypływu (fig. 34a, b, c).

W trakcie pierwszego opróbowania (IP) w czasie 70 minut do przewodu dopłynęło 2274 litrów płynu złożowego, czyli 1,949 m³/godz., przy ciśnieniu złożowym 165,3 at., ustabilizowane lustro płynu (obliczone) na głęb. 43 m p.p.t. (fig. 34a). Pobrano płyn złożowy do analizy (M(Sp) niewiarygodna – 40,3 g/dm³, tab. 55, fig. 35). W trakcie drugiego opróbowania (IIP) w czasie 60 minut do przewodu dopłynęło 20 litrów płuczki (fig. 34b) (brak tj. "–" tab. 55, fig. 35).

W czasie trzeciego (IIIP) opróbowania prowadzonego przez 90 minut nie uzyskano przypływu płynu złożowego, do przewodu wpłynęło tylko 165 litrów płuczki. Pobrano płyn złożowy do analizy (fig. 34c) (M(Sp) niewiarygodna 70,3 g/dm³ tab. 55, fig. 35).

Interwały IIP (fig. 34b) i IIIP (fig. 34c) cechują się niekorzystnymi warunkami kolektorskimi. Określenie parametrów złożowych w obu badaniach IIP i IIIP było niemożliwe. Mineralizacja ogólna (sucha pozostałość) (M(Sp)) oznaczona w próbnikach IP i IIIP jest niewiarygodna w porównaniu z mineralizacją ogólną (sucha pozostałość) oznaczoną w wyniku badań wykonanych z użyciem łyżki wiertniczej. Medium, które dopłynęło do próbników to mieszanina płynu złożowego i filtratu płuczki.

BADANIA HYDROGEOLOGICZNE (ZAPIĘCIE PRÓBNIKA ZŁOŻA, KOMPRESOROWNIE I ŁYŻKOWANIE) WYKONANE PO ZAKOŃCZENIU WIERCENIA

Po zakończeniu wiercenia i wykonaniu badań geofizycznych przystąpiono do bezpośrednich polowych badań hydrogeologicznych w otworze. Celem tych badań było ustalenie zawodnienia poziomów piaskowców karbońskich *in situ* w strefie przyotworowej oraz określenie parametrów hydrogeologicznych wytypowanych poziomów wodono-

Parametry techniczne opróbowania próbnikiem złoża

Głębokość opróbowania	Głębokośc Technie	i techniczne cal depth	I okres p I flood ti	rzypływu de period	I okres odbudowy I reconstruction period		
Sampling interval [m]	paker [m]	manometr manometer [m]	ciśnienie pressure [at]	czas time [min]	ciśnienie pressure [at]	czas time [min]	
1506,0–1658,8 depresja 100% depression 100%	1506,0	1508,0	63,7–116,2	70	116,2–161,4	50	
1799,5–1863,0 depresja 100% depression 100%	1799,5	1803,0	2,6-3,2	60	3,2–111,2	120	
2071,0–2116,9 brak danych no data	2071	2074	4,1–13,1	90	13,1-44,8	60	

Technical parameters of the hydrogeological sampling

Tabela 55

Wyniki opróbowania próbnikiem złoża

Results of the hydrogeological sampling

	V	Vydajność Discharge		Ciśnienie		Efektywny		Promień	
Głębokość opróbowania Sampling interval [m]	uzysk obtained [m ³ /h] mineralizacja mineralization [g/dm ³]	potencj.* potential [m³/h]	średnia averag [m ³ /24h]	złożowe (ekstrapol) Formation pressure [at]	Zwierciadło wody (obliczone) Groundwater level [m p.p.t.]	współczynnik przepuszcz Effective hydraulic conductivity [mD]	Wartość skin efektu Skin effect	zasıęgu badania Radius of test coverage [m]	
1506,0–1658,8	1,949	4,8* 7,0**	46,8	165,3	43,0	0,7	2,2	15,8	
1799,5–1863,0	0,020	_	_	_	_	_	_	_	
2071,0-2116,9	0,110	_	-	_	_	_	_	_	

* – wydajność potencjalna liczona metodą Hornera; ** – wydajność potencjalna po usunięciu uszkodzenia (w warunkach kopalnianych); "–" – brak lub bardzo słaby przypływ płynu złożowego z filtratem płuczki/ filtratu płuczki do próbnika, dlatego określenie parametrów złożowych było niemożliwe * – potential discharge calculated by the Horner method; ** – potential discharge after removal of damage (in the mining conditions); "–" – lack or very weak flow of formation water with mud filtrate or mud filtrate, determination of reservoir parameters was impossible

śnych ośrodka szczelinowo-porowego: wydajności, ciśnienia hydrostatycznego, przepuszczalności skał zbiornikowych, własności fizykochemicznych wód w badanych poziomach oraz składu izotopowego wód. W zakres badań polowych wchodziły:

- przeprowadzenie próbnego sczerpywania w warunkach ustalonego dopływu (najpierw zastosowano kompresor a następnie łyżkę wiertniczą);
- przeprowadzenie pomiaru głębokości i stabilizacji zwierciadła wody;
- pobranie próbki wody w celu: określenia składu fizykochemicznego (tab. 56a, b i 57a, b), składu izotopowego (tab. 58), obecności i stężenia metali ciężkich (tab. 59) oraz składu gazowego (tab. 60).

Przed przystąpieniem do badań otwór częściowo zlikwidowano, wykonując cementację na głęb. 2254,30–1418,00 m. Badania hydrogeologiczne wykonano w czterech poziomach. Schemat badań ilustruje figura 35.

Opróbowany poziom 1192,0–1418,0 m (seria mułowcowa)

Badania polowe przeprowadzono po częściowej likwidacji otworu do głęb. 1418,00 m, w odcinku otworu poniżej rur (but rur 1192,0 m). W celu wzbudzenia przypływu płynu złożowego z badanego poziomu zastosowano kompresor VH-200. Przy pomocy kompresora wykonano oczyszczenie otworu, zapuszczając przewód do buta rur na głęb. 1234,40 m. Sczerpano ok. 75 m³ płynu, do ustalenia zasolenia wody złożowej na poziomie 193 g/dm³. Następnie, w dniach 23– 24.10.1985 r., za pomocą łyżki wiertniczej sczerpano ok.

1799.5–1863.0 m

Fig. 34c. Opróbowanie poziomu zbiornikowego 2071,0-2116,9 m (IIIP)

Testing of reservoir interval 2071.0-2116.9 m

24,75 m³ płynu złożowego. W wyniku sczerpywania pomiarowego, z głęb. 200,0 m p.p.t, uzyskano wydajność Q = 2,56 m³/h, przy depresji s = 93,8 m. Następnie wykonano stabilizację zwierciadła wody złożowej na głęb. 96,2 m p.p.t. Po zakończeniu stabilizacji zwierciadła pobrano próbkę wody do analiz: fizykochemicznej (tab. 56a), metali ciężkich (tab. 59), gazowej (tab. 60), i izotopowej (tab. 58). Pozyskany płyn złożowy to 23,3% solanka reprezentująca typ chemiczny Cl–Na (temperatura wody na powierzchni 15,5°C) (tab. 56a, fig. 35). Po zakończeniu badań otwór zlikwidowano na głęb. 1418,0–1020,0 m.

Opróbowany poziom 920,0–980,0 m (krakowska seria piaskowcowa)

Przed wykonaniem badań przeprowadzono perforację zagęszczoną rur okładzinowych 6 5/8" na odcinku 920,0– 980,0 m, w którym miąższość sumaryczna piaskowców odsłoniętych w profilu wynosi ok. 54 m. W dniach 9–11.11.1985 r. wykonano oczyszczenie otworu metodą sczerpywania – sczerpano ok. 46 m³ solanki. Następnie wykonano sczerpywanie pomiarowe z głęb. ok. 500 m, podczas którego uzyskano wydajność Q = 1,4 m³/h, przy szacunkowej depresji s = 325,6 m. Stabilizacji zwierciadła wody złożowej nie prowadzono. Następnie pobrano próbkę wody złożowej do analiz: fizykochemicznej (tab. 56b), metali ciężkich, gazowej i izotopowej. Jest to 17,9% solanka reprezentująca typ chemiczny Cl–Na, temperatura wody na powierzchni 16,0° C (tab. 56b, fig. 35). Po zakończeniu badań otwór zlikwidowano przez cementację na głęb. 800,0–1020,0 m.

Opróbowany poziom 700,0–750,0 m (krakowska seria piaskowcowa)

W celu udostępnienia i wzbudzenia przypływu przeprowadzono zagęszczoną perforację rur osłonowych 6 5/8" na odcinku 700,0–750,0 m. Odsłonięto piaskowce o łącznej miąższości ok. 50 m. W dniach 26–28.11.1985 r. sczerpano ok. 47 m³ solanki. Po ustaleniu się szacunkowego zasolenia wody złożowej na poziomie 87 g/dm³ i położeniu zwierciadła dynamicznego na głęb. 485 m p.p.t. wykonano sczerpywanie pomiarowe. Sczerpywaniem pomiarowym uzyskano wydajność Q=1,3 m³/h, przy szacunkowej depresji s=362,6 m. Stabilizacji zwierciadła wody złożowej nie prowadzono. Następnie pobrano próbkę wody do analiz: fizykochemicznej

Fig. 35. Schemat opróbowania otworu wiertniczego Chelmek IG 1

Testing scheme of the Chełmek IG 1 borehole

Tabela 56b

Skład chemiczny wody pobranej z poziomu 920,0–980,0 m Results of chemical analysis of water sampled at 920.0–980.0 m

Składnik		Zawartość								
Component		Content	1							
	[mg/dm ³]	[%mval]								
	Kationy									
	Cat	ions	,							
Na ⁺	ok. 50731	2206,798	78,722							
K^+	0	0	0							
Ca ²⁺	2902	144,809	5,165							
Mg ²⁺	5495	451,689	16,113							
Fe og	-	-	-							
NH ⁴⁺	-	-	-							
razem	59128	2803 29	100.00							
total	57120	2005,29	100,00							
	An	iony								
	An	ions	1							
Cl-	102000	2876,4	97,277							
SO_4^{2-}	3564,4	74,139	2,507							
HCO ₃ -	ok.385	6,275	0,212							
Br-	-	-								
J-	-	-								
razem	1059494	2956 814	99 99							
total	100010,1	2,200,017	,,,,,							
łącznie sum of all	165077,4	_	-							

Tabela 56aSkład chemiczny wody pobranej z poziomu 1192,0–1418,0 mResults of chemical analysis of water sampled at 1192.0–1418.0 m

Zawartość Składnik Content Component [mg/dm³] [mval/dm3] [%mval] Kationy Cations 78,227 Na⁺ ok. 69681 3031,123 0 K^+ 0 0 Ca^{2+} 4870 243,013 6,271 Mg^{2+} 7306,9 600,627 15,501 Fe og _ _ _ Mn²⁺ _ _ _ razem 81857,9 99,99 3874,763 total Aniony Anions ok. 138000 98,67 Cl-3891,6 $\overline{SO_4^{2-}}$ 1820,9 37,874 0,96 14,404 HCO, 883,7 0,37 Br⁻ _ _ _ Jrazem 140704,6 3943,87 99,99 total łacznie 222562,5 _ _ sum of all

Tabela 57a

Skład chemiczny wody pobranej z poziomu 700,0–750,0 m

Results of chemical analysis of water sampled at 700.0-750.0 m

Składnik		Zawartość Content							
Component	[mg/dm ³]	[%mval]							
	Kat	iony							
	Cat	ions							
Na ⁺	31230	1358,505	77,53						
K^+	820,0	20,91	1,193						
Ca ²⁺	2222,4	110,897	6,329						
Mg ²⁺	3186,0	261,889	14,946						
Fe og	_	-	-						
Mn ²⁺	_	_	-						
razem total	37458,4	1752,20	100,00						
	Ani	iony							
	An	ions							
Cl-	63000	1776,6	95,57						
SO_4^{2-}	3378,0	70,262	3,779						
HCO ₃ -	738	12,029	0,647						
F-	-	-							
Br-	-	-							
J-	-	-							
razem total	67116,0	1858,891	100,00						
łącznie sum of all	104574,4	_	-						

Tabela 57b

Skład chemiczny wody pobranej z poziomu 550,0–600,0 m

Results of chemical analysis of water sampled at 550.0–600.0 m

Składnik	Zawartość Content							
Component	[mg/dm ³]	[%mval]						
	Kat	iony						
	Cat	ions						
Na ⁺	ok. 22700	987,45	79,49					
K+	0	0	0					
Ca ²⁺	1480,9	73,89	5,95					
Mg ²⁺	2199,0	180,758	14,55					
Fe og	-	-	-					
NH ⁴⁺	-	_	_					
razem total	26379,9	1242,1	99,99					
	Ani An	ony ions						
Cl-	ok. 43000	1212,6	95,06					
SO4 ²⁻	2672	55,58	4,35					
HCO ₃ -	ok.450	7,33	0,58					
Br-	-	-						
J-	-	-						
razem total	46122	1275,51	99,99					
łącznie sum of all	72501,9	_	_					

Aktywność radionuklidów w wodach podziemnych

Interwał głębokości Depth interval [m]	Data poboru wód i sposób udostępnienia Date of sampling and completion	Aktywność izotopów radu ²²⁶ Ra Radium isotopes activities ²²⁶ Ra [kBq/m ³]	Aktywność izotopów radu ²²⁸ Ra Radium isotopes activities ²²⁸ Ra [kBq/m ³]
1192–1418	25.10.1985 otwór bosy barefoot completion	17,92±2,01	5,30±1,89
920–980	11.11.1985 perforacja perforation	11,49±1,34	4,22±1,27
700–750	28.11.1985 perforacja perforation	2,13±0,28	1,00±0,25
550-600	12.12.1985 perforacja perforation	4,75±0,49	1,64±0,47

Activity of radionuclides in ground waters

(tab. 57a, fig. 35), metali ciężkich, gazowej i izotopowej. Jest to 11,3% solanka Cl–Na (temperatura wody na powierzchni 16,5°C). Po zakończeniu badań otwór zlikwidowano przez cementację na głęb. 650,0–800,0 m.

Opróbowany poziom 550,0–600,0 m (krakowska seria piaskowcowa)

Przed przystąpieniem do badań przeprowadzono zagęszczoną perforację rur osłonowych 6 5/8" na odcinku 550,0–600,0 m, miąższość sumaryczna odsłoniętych piaskowców w profilu – 49,9 m. W dniach 26–28.11.1985 r. wykonano oczyszczenie otworu – sczerpano ok. 56 m³ solanki. Po ustaleniu szacunkowego zasolenia wody złożowej na poziomie 74 g/dm³ i po ustaleniu zwierciadła dynamicznego na głęb. 220 m p.p.t. wykonano sczerpywanie pomiarowe. Sczerpywaniem pomiarowym uzyskano wydajność Q=2,1 m³/h, przy szacunkowej depresji s=71,4 m. Następnie wykonano stabilizację zwierciadła wody solanki na głęb. 148,6 m p.p.t. Wtedy pobrano próbkę wody do analizy fizykochemicznej (tab. 57b, fig. 35), metali ciężkich, gazo-

Stężenia metali ciężkich w wodach

Tabela 59

Concentrations of heavy metals in ground waters

Głębokość Depth [m]	Cr	Cu	Ni	Cd	Pb	Mn	Co	Zn
1192–1418	0,1	0,1	0,8	0,2	-	2,0	0,9	0,15
920-980	0,05	0,15	0,6	0,75	1,5	-	-	0,15
700–750	0,05	0,15	0,3	0,45	1,4	-	_	0,3
550-600	0,05	0,25	0,4	0,2	_	0,45	0,7	0,4

wej i izotopowej. Jest to 7,5% solanka Cl–Na (temperatura wody na powierzchni 11,5°C). Po skończeniu badań polowych otwór zlikwidowano przez cementację do wierzchu.

Promieniotwórczość wód – aktywność radionuklidów w wodach podziemnych

Pomiary aktywności radionuklidów w wodach podziemnych (tab. 58) wykonano w spektrometrze scyntylacyjnym Rack Beta III firmy LKB, metodą ciekłych scyntylatorów, w Laboratorium radiometrii Głównego Instytutu Górnictwa w Katowicach. Z uwagi na fakt, że pobrano wody do badań w 4 kwartale 1985 r., a oznaczenia wykonano w 1996 r., przypuszcza się że początkowe stężenie ²²⁸Ra w badanych próbkach było wyższe, z uwagi na czas połowicznego rozpadu ²²⁸Ra 6,7 lat – aktywność do czasu wykonania oznaczeń spadła dwukrotnie. Przy znacznie większych aktywnościach ²²⁶Ra nie można jednoznacznie oznaczyć aktywności ²²⁸Ra. Wartości ilorazu ²²⁸Ra i ²²⁶Ra są mało wiarygodne.

Wyniki aktywności radionuklidów i stężeń metali ciężkich zostały szczegółowo omówione w publikacji Wagner (1998). Tabele 58 i 59 zawierają informacje dotyczące otworu Chełmek IG 1, zawarte w tabelach tej publikacji.

W otworze Chełmek IG 1, wśród zbadanych wód (tab. 58), występują wody słabo radowe (1,00–2,13 kBq/m³) i wody średnio radowe (4,22–17,92 kBq/m³), według klasyfikacji wód radowych (Pazdro, 1977). Aktywność radionuklidów w badanych wodach podziemnych w otworze Chełmek IG 1 zestawiono w tabeli 58.

Stężenia metali ciężkich w wodach

Analiza stężeń metali ciężkich w wodach podziemnych (Cr, Cu, Ni, Cd, Pb, Mn, Co, Zn), zaliczanych do nieorganicznych substancji niebezpiecznych, wykazała że stężenia

Wyniki analiz chemicznych próbek gazu z odgazowania próbek wody

Głęb. pobrania próbki Depth of sampling		Skład chemiczny gazu w % objętościowych Chemical composition of gas in vol %									Zawartość CH_4 Content of CH_4
[m]	CH ₄	C ₂ H ₆	C ₃ H ₈	C_4H_{10}	N ₂	CO	CO ₂	H ₂	0 ₂	He	[cm ³ /l]
550,0-600,0	1,24	0,005	0,00	0,00	76,20	0,00	4,17	0,23	18,16	0,000	1,61
700,0–750,0	0,10	0,00	0,00	0,00	74,43	0,096	6,48	0,52	18,36	0,000	0,13
920,0-980,0	0,66	0,002	0,00	0,00	70,17	0,26	11,45	1,40	16,06	0,000	0,43
1192,0-1418,0	0,85	0,00	0,00	0,00	75,73	0,00	4,12	0,14	19,15	0,000	1,28

The results of chemical analyses of the gas samples of degassing of water samples

miedzi, kadmu, ołowiu i cynku w kilku przypadkach przekraczały kilkakrotnie dopuszczalne wartości wskaźników zanieczyszczeń w ściekach wprowadzanych do wód i do gleb: Cu – 0,05; Cd – 0,1; Pb – 0,05; Zn – 0,2 mg/dm³, według obowiązujących w tym czasie aktów prawnych (RMŚ, 1991). Wartości stężeń metali ciężkich w badanych wodach podziemnych w 1985 r. zestawiono w tabeli 59.

Obserwacje parametrów płuczki wiertniczej

Podczas głębienia otworu notowano sporadyczne ucieczki płuczki:

- na głęb. 81,0–82,0 m, w średnio- i gruboziarnistych piaskowcach o spoiwie ilasto-żelazistym, obserwowano całkowity zanik płuczki;
- na głęb. ok. 135 m, w różnoziarnistych piaskowcach, zlepieńcach o spoiwie żelazistym, obserwowano ucieczkę 40 m³ płuczki;

- na głęb. ok. 1518 m, w drobnoziarnistych piaskowcach, zwięzłych o spoiwie ilastym, obserwowano ucieczkę ok. 2 m³ płuczki;
- niewielkie przypływy płynu złożowego obserwowano na głęb. 1811 m – 1,5 m³, jak i 1825 m – 2 m³.

Podczas wiercenia płuczka była rozrzedzona, jednak pomiarów ww. nie prowadzono w sposób ciągły.

W trakcie wiercenia prowadzono ciągłe profilowanie gazowe obiegu płuczki. W laboratorium stacjonarnym Katowickiego Przedsiębiorstwa Geologicznego wykonano 4 szczegółowe analizy chemiczne próbek gazu uzyskanego z odgazowania próbek wód podziemnych, uzyskanych z badań polowych. W składzie chemicznym mieszaniny gazów przeważa: azot (70,17–76,20% objętości), tlen (16,06– 19,15%), i dwutlenek węgla (4,12–11,45%). Zawartość metanu kształtuje się w przedziale od 0,13–1,61 CH₄ cm³/litr płuczki (tab. 60).

PODSUMOWANIE

W laboratorium polowym wykonano badania własności fizycznych i hydrogeologicznych skał karbońskich na 107 próbkach pobranych z rdzenia. Wartości oznaczeń wskazują na skały o szerokim spektrum wartości przepuszczalności (wykonanej metoda podciśnieniową), od skał nieprzepuszczalnych do skał o słabym charakterze przepuszczalności (<0,1–1000 mD), a jednocześnie na skały o głównie małej i średniej porowatości efektywnej oraz na ogół małej odsączalności grawitacyjnej.

W czasie głębienia otworu przeprowadzono badania hydrogeologiczne w otworze przy pomocy próbnika złoża na głęb.: 1506,0–1658,8; 1799,5–1863,0 i 2071,0–2116,9 m. Natomiast po zakończeniu głębienia otworu wykonano cztery badania hydrogeologiczne na czterech głęb.: 1192,0–1418,0 m – przy użyciu kompresora i łyżki wiertniczej w otworze "bosym" oraz tylko łyżki wiertniczej na trzech głębokościach (920,0–980,0; 700,0–750,0 i 550,0–600,0 m) – przy zagęszczonej perforacji rur osłonowych.

Poddane badaniom polowym karbońskie poziomy wodonośne wykazały charakter subartezyjski. Pozyskane badaniami w otworze wody złożowe to 7,5–23,376% solanki reprezentujące typ chemiczny Cl–Na. Wysoki stopień zmetamorfizowania solanek (rNa/rCl = 0,764–0,878) świadczy o wodach reliktowych, silnie przeobrażonych w trakcie długotrwałych procesów geologicznych, wodach, które w złożu pozostają w warunkach skutecznej i długotrwałej izolacji od powierzchni ziemi.