WYNIKI BADAŃ GEOFIZYCZNYCH

Teresa ADAMCZAK-BIAŁY

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

CEL BADAŃ

Przedstawiony opis pomiarów w zakresie geofizyki otworowej i ich wyników wykonano na podstawie "Dokumentacji wynikowej otworu badawczego Bodzanów IG 1" (Dokumentacja..., 1982) oraz zbiorów scyfrowanych danych pomiarowych znajdujących się w zasobach CBDG.

Badania geofizyczne w otworze Bodzanów IG 1 przeprowadzono w okresie 04.01.1980–09.06.1982. Wykonawcą pomiarów były Przedsiębiorstwo Poszukiwań Nafty i Gazu – Wołomin oraz Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego – Toruń. Baza Geofizyki Wiertniczej – Wołomin przeprowadziła badania na głęb.: 0–2105 m i 2420–3126 m, a Baza Geofizyki Wiertniczej – Toruń w interwałach: 2070–2475 oraz 3060–5850 m.

Celem badań geofizycznych wykonanych w otworze było:

- określenie profilu litologicznego i stratygraficznego;
- wydzielenie poziomów zbiornikowych;
- określenie parametrów kolektorskich wybranych poziomów zbiornikowych oraz ocena charakteru nasycenia;
- określenie stanu technicznego odwiertu;
- inne bieżące potrzeby wiercenia.

ZAKRES BADAŃ

Pomiary geofizyczne zrealizowano na głęb. 0–5850 m w formie badań na 14 odcinkach pomiarowych. Badania przeprowadzono przy użyciu aparatury analogowej produkcji radzieckiej typu: AKSŁ7, AKSŁ-64. Pomiary radiometryczne wykonano sondami: SP-62, GNG-2, LSE-3 i DRST, nie posiadającymi standaryzacji i kalibracji, natomiast akustyczne przyrządami typu: SPAK-4/3, PA-202 i USBA-DA. Dla pomiarów radiometrycznych, akustycznych i elektrycznych wykonywano pomiar kontrolny w interwale kilkudziesięciu metrów, zazwyczaj w najgłębszej części badanego odcinka otworu.

Podstawowy zestaw pomiarowy stanowiły:

- profilowanie średnicy otworu PŚr;
- profilowanie krzywizny otworu PK;
- profilowanie gamma PG;
- profilowanie neutron-gamma PNG;
- profilowanie gamma-gamma PGG;
- profilowanie potencjałów naturalnych PS;
- profilowanie oporności PO:
- potencjałowe;
- gradientowe;

- profilowanie akustyczne PA;
 - profilowanie temperatury dna odwiertu PT;
- punktowy pomiar oporności i temperatury płuczki.

Profilowanie potencjałów naturalnych oraz pomiar średnicy przeprowadzono każdorazowo do buta rur dla prześledzenia zmian zachodzących w otworze.

Podstawowy komplet badań geofizycznych został rozszerzony od głęb. 1694 m, traktowanej w trakcie wiercenia jako strop jury górnej.

Począwszy od głęb. 1694 m wykonano sterowane profilowanie oporności. W odcinkach charakteryzujących się silnym zmineralizowaniem płuczki wiertniczej (utwory cechsztyńskie, interwał: 4060–4517 m) profilowanie sterowane stanowi podstawowy pomiar do oceny oporności właściwej poziomów węglanowych. W obrębie tego odcinka głębokościowego zrealizowano również profilowanie oporności długimi sondami gradientowymi o rozstawach A4.0M0.5N i A8.0M1.0N oraz profilowanie oporności krótką sondą gradientową A1.0M0.1N. Wykonane pomiary stanowią źródło informacji o oporności niezmienionej części warstwy oraz o oporności strefy filtracji. Są tym samym użyteczne przy określeniu charakteru nasycenia cechsztyńskich poziomów zbiornikowych.

W odcinkach, w których płuczka wiertnicza była słabo zmineralizowana (1694–4060 m, 4520–5420 m) wykonano pełne sondowanie oporności. Stosowano następujące rozstawy sond: M0.5A0.1B, M1.0A0.1B, M2.5A0.25B, M5.7A-0.4B, M8.0A1.0B lub A0.5M0.1N, A1.0M0.1N, A2.0M0.5N, A4.0M0.5N, A8.0M1.0N. Profilowanie indukcyjne użyteczne przy płuczce o niskiej mineralizacji dla określenia oporności właściwej zrealizowano jedynie na głęb. 4520–4835 m.

Poniżej głęb. 4500 m, z uwagi na wysoką temperaturę i ciśnienie panujące w odwiercie, wystąpiły poważne trudności w wykonaniu podstawowych pomiarów geofizycznych. Dlatego też poniżej tej głębokości zestaw badań nie zawsze jest kompletny. Na głęb. 5420–5850 m nie wykonano pełnego sondowania oporności. Zarejestrowano jedynie krzywe oporności sodnami A1.0M0.1N, A2.0M0.5N i N0.5M2.0A. W interwale 5160–5510 m brak profilowania gamma-gamma. Na odcinku 5530–5850 m, ze względu na trudne warunki panujące w otworze, nie wykonano profilowania akustycznego prędkości. Pomiaru tego brakuje również z głęb. 4060–4900 m – z powodu awarii sondy lub jego odrzucenia ze względu na złą jakość.

Z uwagi na możliwości techniczne aparatury w niektórych interwałach pomiarowych zastosowano zamiennie zamiast sondy potencjałowej o rozstawie B2.5A0.25M sondę potencjałową o rozstawie N8.5M0.5A lub N2.0M0.5A. Podobnie zamiast sondy gradientowej o rozstawie M2.5A0.5B użyto sondę A2.0M0.5N. W otworze praktycznie brak pomiaru sterowanego mikroprofilowania oporności; w górnej części profilu otworu ze względu na dużą średnicę i brak odpowiedniego sprzętu, a w dolnych częściach z powodu trudnych warunków panujących w otworze. Pomiar ten wykonano na głęb. 4300–4517 m, ale przyrządem niedostosowanym do średnicy otworu. Dlatego też może on być wykorzystany jedynie do interpretacji jakościowej.

W celu stworzenia charakterystyki termicznej otworu przeprowadzono odcinkowe pomiary temperatury dna odwiertu oraz wykonano profilowanie temperatury w interwale 0–5805 m przy ustalonej równowadze termicznej po zakończeniu wiercenia i 14-dniowej stójce.

Wyniki pomiarów temperatury dna odwiertu prezentuje tabela 37. Profilowanie temperatury w warunkach ustalonych wykorzystano do obliczenia stopni i gradientów geotermicznych.

W tabeli 38 zaprezentowano interwały głębokościowe profilowań geofizyki otworowej (wg dostępności materiałów w formie papierowej w Centralnym Archiwum Geologicznym – CAG) wykonanych w otworze Bodzanów IG 1 wraz z datą ich realizacji oraz głębokością i średnicą otworu podczas prowadzenia pomiarów.

Ograniczony zestaw pomiarów geofizycznych wykonanych w niniejszym otworze oraz ich jakość zdecydowanie odbiegają od asortymentu obecnie realizowanych pomiarów geofizyki wiertniczej i standardu ich jakości.

DIGITALIZACJA I NORMALIZACJA PROFILOWAŃ GEOFIZYCZNYCH

Wyniki źródłowych danych pomiarowych zostały zarejestrowane w formie analogowej w podstawowej skali głębokościowej 1: 500. Sterowane profilowanie oporności (POst) oraz profilowanie neutron-gamma (PNG) wykonano w skali liniowej i logarytmicznej.

Część badań obejmujących głównie pomiary radiometryczne, akustyczne oraz wybrane elektrometryczne została w późniejszych latach zdigitalizowana. W ramach prac interpretacyjnych wykonanych w PIG-PIB w latach 90. XX w. związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne, tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowanie neutron-gamma (PNG), unormowano oraz połączono w obrębie profilu całego otworu Bodzanów IG 1. Zastosowana metodyka normowania i standaryzacji profilowań radiometrycznych została opisana w pracach Szewczyka (1998, 2000).

Wyniki zdigitalizowanych danych pomiarowych w formacie LAS (Log ASCII Standard), unormowane i połączone dla całego profilu badanego otworu (ang. composite logs), znajdują się w CBDG. W bazie brak natomiast wyników digitalizacji źródłowych, nieprzetworzonych danych pomiarowych uzyskanych w trakcie badań odcinkowych.

Na figurze 48 zaprezentowano uogólniony profil stratygraficzny wraz z wynikami unormowanych i połączonych w profilu całego otworu wartości profilowania naturalnego promieniowania gamma, profilowania neutron-gamma oraz

Tabela 37

Wartości temperatury maksymalnej (BHT)

Bottom Hole Temperature (BHT)

Głęb. Depth [m]	2475,0	2816,0	3126,0	3485,0	3830,0	4060,0	4305,0	4518,0	4843,0	5162,0	5412,5
Temperatura Temperature [°C]	41,5	72,5	87	94,5	103,5	107	112	110,5	130,5	141	150,5

Tabela 38

Wykaz badań geofizyki otworowej

List of well logs

Data wykonania badań Date of measurement	Rodzaj pomiaru (skrót) Type of measurement (abbreviated)	Interwał głebokościowy pomiaru Depth interval [m]	Głębokość otworu podczas wykonywania pomiarów Borehole depth during measurements [m]	Średnica otworu Caliper [mm]	
1	2	3	4	5	
_	PK	25,00-1370,00			
4.01.1980	PSr	88,50-1370,00	- 1376,00	438,00	
	PSr	89,00-1703,00			
	PGG	89,00–1704,00	-		
	PG	0,00–1704,00	-		
	PNG	0,00–1704,00			
6-8.02.1980	POg, POp	89,00-1704,00	1720,00	438,00	
	PS	89,00-1704,00	_		
	PA	89,00–1704,00			
	РК	1350,00-1700,00			
13.02.1980	PSr	89,00-1711,00	1720,00	438,00	
19.02.1980	РТс	0,00-1423,00	1720,00	438,00	
	РК	1700,00-1800,00			
6.03.1980	PSr	1690,00-1804,00	1814,00	308,00	
	РОр	1690,00-1804,00			
	PAc	1,00-1694,00			
	PSr	1694,00-2103,50			
	PGG	1694,00-2105,00			
	PG	1650,00-2105,00			
	PNG	1650,00-2105,00			
17-19.03.1980	POg, POp	1694,00-2105,00	2112,00	308,00	
	PS	1694,00-2105,00			
	BSO (6 x PO, PS, PŚr)	1694,00-2105,00			
	РК	1750,00-2100,00			
	РА	1694,00-2105,00			
	POst	1694,00-2105,00			
10.04.1090	PSr 1694,00–2472,00		249(00	208.00	
10.04.1980	PS	1694,00-2472,00	2480,00	308,00	
	PSr	1694,00-2472,00			
	PG	2050,00-2475,00			
	PNG	2050,00-2472,00			
	PGG	2070,00-2475,00			
10 12 04 1090	POg, POp	2070,00-2475,00	2486.00	208.00	
10-12.04.1980	РК	2050,00-2475,00	2480,00	508,00	
	BSO (5 x PO, POst)	2070,00-2475,00			
	PA	2070,00-2475,00			
	РТ	2288,00-2475,00			
	POst	2070,00-2475,00			
	PSr	1694,00-2812,00			
	PGG	2420,00-2816,00			
	PG	2420,00-2816,00			
	PNG	2420,00-2816,00			
29.04-1.05.1980	POg, POp	2420,00-2816,00	2827.00	308.00	
	PS	2420,00-2816,00		200,00	
	BSO (6 x PO, PS, PŚr)	2420,00-2816,00	_		
	РК	2450,00-2800,00	_		
	PSr	1694,00-2812,00	_		
	PT	2725,00-2818,00			

labela 38 cd.	Ta	b e	la	38	cd.
---------------	----	-----	----	----	-----

1	2	2	4	-
1	2	3	4	5
	POL	2750,00-3126,00	-	
2-5.06.1980	PGG	2750,00-3126,00	- 3135,00	308,00
	PG	2750,00-3125,00	-	
	PNG PO- PO-	2/50,00-3125,00		
	POg, POp	2750,00-3125,00	-	
	PS	2/50,00-3126,00	-	
	PK	2775,00-3125,00	-	
	BSO (5 x PO, PSr)	2/60,00-3126,00	-	
2-5.06.1980	PA	2400,00-3126,00	3135,00	308,00
	POst	2400,00–3126,00	-	
	POg	1697,00–3126,00	-	
	PSr	1720,00–3126,00	-	
	PS	1700,00–3126,00	-	
	РТ	3038,00-3127,00		
	PSr	3050,00-3480,00	4	
	PG	3060,00-3480,00	4	
20, 21,09,1090	PNG	3056,00-3480,00	_	
29-31.08.1980	PGG	3052,00-3295,00	_	
	POg	3009,00-3500,00		308,00
	POp	3100,00–3486,00		
	РК	3075,00-3450,00		
	PT	3388,00-3515,00		
	PS	1694,00–3480,00		
31.08.1980	PA	3100,00–3480,00	3492.00	308.00
51.00.1700	PSr	PSr 1694,00–3480,00		500,00
12.09.1980	BSO (5 x PO)	3100,00–3557,00	3570,00	308,00
	PSr	3411,00–3834,00		
	PG	3420,00–3835,00		
	PNG	3420,00–3835,00		
	PGG	3410,00–3835,00		
	POg, POp	3511,00–3825,00		
29-31.10.1980	PT	3700,00–3858,00	3838.00	308.00
	РК	3425,00-3830,00		508,00
	BSO (5 x PO)	3515,00-3825,00		
	PGG	3245,00-3836,00		
	POst	3245,00-3836,00		
	PSr	1694,00–3834,00		
	PS	1694,00–3834,00		
	PSr	3750,00-4060,00		
	PG	3767,00-4065,00		
	PNG	3770,00-4065,00		
	PGG	3757,00-4065,00		
	POg, POp	3760,00-4060,00		
	PS	3750,00-4064,00		
12-14.12.1980	РТ	3980,00-4060,00	4075,00	308,00
	РК	3775,00-4060,00	1	
	BSO (6 x PO)	3790,00-4060,00	1	
	POst	3790,00-4060,00	1	
	PA	3430,00-4064,00	1	
	PSr	1685,00-4060,00	1	
	PS	1690,00-4060,00	1	

Ta	b	el	a	3	8	c d	•
----	---	----	---	---	---	-----	---

1	2	3	4	5
	PSr	4060,00-4312,00		
	PG	4000,00-4337,00		
	PNG	4000,00-4337,00		
22.03.1981, 27.03.1981,	PGG	4060,00-4335,00	4342,00	216,00
28.03.1981	POst	4060,00-4305,00		
	POg, POp	4060,00-4305,00		
	РК	4000,00-4300,00		
27 20 02 1001	SSO (3 x PO)	4060,00-4305,00	1212.00	216.00
27-28.03.1981	РА	4060,00-4325,00	4342,00	216,00
	PSr	4060,00-4517,00		
7-9.05.1981	PG	4236,00-4517,00	4526,00	216,00
	PNG	4236,00-4517,00		
	PGG	4238,00-4517,00		
	POg, POp	4300,00-4517,00		
	РТ	4213,00-4473,00		
7-9.05.1981	РК	4275,00-4510,00	4526,00	216,00
	POst	4300,00-4517,00		
	mPOst	4300,00-4517,00		
	SSO (POg + POst + mPOst)	4300,00-4517,00		
4.06.1981	PAc	20,00-3926,00	4526,00	216,00
	PSr	4520,00-4840,00		
	PG	4450,00-4840,00		
	PNG	4440,00-4840,00		
	PGG	4450,00-4840,00		
	POg, POp	4520,00-4840,00		
5-7.09.1981	PS	4520,00-4840,00	4845,00	143,00
	РТ	4750,00-4848,00		
	POst	4520,00-4835,00		
	РК	4500,00-4835,00		
	BSO (6 x PO, POst, PI)	4520,00-4835,00		
	PA	4520,00-4840,00		
7.09.1981	PAc	3922,00-4520,00	4845,00	143,00
	PSr	4765,00-5160,00		
	PG	4767,00-5160,00		
	PNG	4767,00-5160,00		
	PGG	4765,00-5160,00		
12 15 10 1001	POg, POp	4767,00-5155,00	51(7.00	142.00
13-13.10.1981	PS	4520,00-5160,00	5107,00	145,00
	PT	5050,00-5162,00		
	BSO (6 x PO, POst)	4800,00-5155,00		
	POst	4520,00-5160,00		
	PSr	4520,00-5160,00		
	PSr	5050,00-5420,00		
	PG	5050,00-5420,00		
	PNG	5050,00-5420,00		
	POg, POp	5050,00-5420,00		
8-10.01.1982	PS	4520,00-5420,00	5444,00	143,00
	РТ	5305,00-5412,50		
	РК	4775,00-5440,00		
	BSO (6 x PO)	5050,00-5420,00		
	PSr	4520,00-5420,00		
	PA	4900,00-5530,00		
3.02.1982	PSr	4520,00-5300,00	5532,00	143,00
	РК	5400,00-5425,00		

1	2	3	4	5
	PSr	5335,00-5840,00		
	PG	5335,00-5842,00		143,00
	PGG	5510,00-5850,00		
	PNG	5350,00-5850,00		
6 10 05 1092	POg	5428,00-5847,00	5854.00	
0-10.03.1982	РОр	5540,00-5847,00	3834,00	
	PS	4520,00-5840,00		
	РК	5050,00-5850,00		
	POst	4520,00-5850,00		
	PSr	4520,00-5840,00		
0.06.1092	PTu	0,00-5805,00	5845.00	142.00
9.00.1982	РК	0,00–5850,00	3843,00	143,00

Tabela 38 cd.

PK – profilowanie krzywizny otworu; PSr – profilowanie średnicy; PG – profilowanie naturalnej promieniotwórczości gamma; PGG – profilowanie gamma-gamma; PNG – profilowanie neutron-gamma; PS – profilowanie potencjałów naturalnych; PO – profilowanie oporności (POg – gradientowe; POp – potencjałowe); BSO – boczne sondowanie oporności; SSO – skrócone sondowanie oporności; POst – sterowane profilowanie oporności; mPOst – mikroprofilowanie temporności sterowane; PI – profilowanie indukcyjne; PA – profilowanie akustyczne; PAc – profilowanie cementomierzem akustycznym; PTc – profilowanie temperatury cementowania; PT – profilowanie temperatury w warunkach nieustabilizowanych; PTu – profilowanie temperatury w ustalonych warunkach termicznych

PK – deviation log; PSr – caliper; PG – gamma ray log; PGG – density log; PNG – neutron-gamma ray log; PS – spontaneous potential log; PO – conventional electrical log (POg – lateral; POp – normal); BSO – set of resistivity measurement; SSO – set of resistivity measurement; POst – laterolog; mPOst – microlaterolog; PI – induction log; PA – sonic log; PAc – cement bond log; PTc – temperature log of cementation process; PT – temperature log in unstable conditions; PTu – temperature log in stable conditions

wybranych pomiarów elektrometrycznych. Zamieszczono również rezultaty pomiaru średnicy otworu wiertniczego ze wskazaniem, za pomocą strzałek, głębokości łączenia poszczególnych odcinków pomiarowych.

STAN TECHNICZNY OTWORU

W ramach oceny stanu technicznego otworu wykonano profilowanie krzywizny i profilowanie średnicy otworu. Stan zacementowania odwiertu badano przy pomocy profilowania temperatury i profilowania akustycznego.

Na podstawie pomiarów krzywizny wykonanych odcinkowo w trakcie wiercenia zaobserwowano, że skrzywienie otworu zmienia się w sposób skokowy. Nie wiąże się tego z problemami natury technologicznej wiercenia a przyczyn upatruje się w zmianach geologicznych (można wnioskować o zmianach litologii, zapadania warstw). Zasadnicze zmiany azymutu skrzywienia występują na głęb. 3725 m oraz 5000 m. Całkowite odejście osi otworu od pionu przy głęb. 5850 m wynosi 171,2 m, a sumaryczny azymut skrzywienia wynosi 50,91°.

Zmiany średnicy otworu Bodzanów IG 1 wiążą się ze zmianami litologicznymi. Powiększenie średnicy obserwuje się w skałach ilastych (rozmywane przez strumień płuczki), w soli kamiennej (związane z jej wysoką rozpuszczalnością) oraz w szczelinowatych wapieniach i dolomitach.

OPRACOWANIE WYNIKÓW BADAŃ GEOFIZYKI WIERTNICZEJ

W trakcie wykonywania wiercenia oraz po jego zakończeniu wykonawcy pomiarów geofizycznych z Przedsiębiorstwa Geofizyki Morskiej i Lądowej Górnictwa Naftowego – Toruń przeprowadzili prace interpretacyjne uzyskanych wyników badań. Jakościowa i ilościowa analiza uzyskanych danych geofizycznych pozwoliła zrealizować cele postawione przed badaniami geofizycznymi w otworze Bodzanów IG 1 i umożliwiła tym samym dokładniejsze poznanie przewierconych utworów. Na jej podstawie określono m.in. profil litologiczny, wydzielono poziomy zbiornikowe oraz dokonano oceny ich własności kolektorskich. Rezultaty opracowania badań odcinkowych oraz dokumentacja końcowa pomiarów geofizycznych są dostępne w dokumentacji wynikowej otworu (Dokumentacja..., 1982). Prace interpretacyjne profilowań geofizyki wiertniczej z prezentowanego otworu wykonano również w latach 2009–2010 w PIG-PIB na potrzeby realizacji tematu "Rozpoznanie formacji i struktur do bezpiecznego geologicznego składowania CO_2 wraz z ich programem monitorowania". Ich celem była ocena zdolności formacji wodonośnych triasu, jury dolnej i środkowej oraz kredy dolnej do zatłaczania CO_2 . W tym celu wydzielono formacje wodonośne oraz formacje stanowiące dla nich uszczelnienie i określono ich własności petrofizyczne (https://skladowanie.pgi.gov.pl/twi-ki/bin/view/CO2/WynikiPrac).

Na figurze 49 przedstawiono rezultaty ilościowej interpretacji profilowań geofizyki wiertniczej z otworu Bodza-

Fig. 48. Unormowane wartości profilowania gamma (GR_C), profilowanie neutron-gamma (NEGR_C), profilowanie oporności o długim (EL09_C) i krótkim (EN10_C) zasięgu radialnym oraz profilowanie średnicy (CALI_C) (strzałkami zaznaczono miejsca połączeń odcinków pomiarowych)

Normalized values of the natural gamma ray log (GR_C), neutron-gamma ray log (NEGR_C), conventional resistivity logs deep (EL09_C) and shallow (EN10_C) and caliper log (CALI_C) (arrows indicate connection points between individual log runs)

nów IG 1 na głęb. 1450–3000 m. Zaprezentowano obliczony profil porowatości efektywnej, porowatości całkowitej, średniej porowatości warstwowej oraz profil zailenia. Profile porowatości uzupełniono o informacje o porowatościach skał pochodzące z archiwalnych badań laboratoryjnych na próbkach rdzenia wiertniczego. Wyniki analiz laboratoryjnych rdzeni, choć dostępne w stosunkowo niewielkiej liczbie, stanowią wraz z opisami litologicznymi (próbek okruchowych i rdzeni wiertniczych) cenną informację wykorzystaną przy kalibracji danych karotażowych oraz przy ocenie poprawności uzyskiwanych rezultatów interpretacji profilowań geofizyki wiertniczej.

Badania geofizyczne przeprowadzone w otworze umożliwiły wydzielenie warstw wodonośnych i poziomów izolacyjnych (nieprzepuszczalnych). Do stwierdzenia warstwy o charakterze izolatora zastosowano łącznie kryterium litologiczne i petrofizyczne.

Prezentowane na figurze 49 wyniki opracowania parametrów petrofizycznych piaszczysto-ilastych utworów kredy dolnej (1450–1707,5 m) wykazują obecność w niej warstw wodonośnych. Najbardziej miąższa warstwa wodonośna (1572–1620 m) charakteryzuje się porowatościami całkowitymi z przedziału 15–47% i efektywnymi 13–44%. W kredzie dolnej wydziela się również warstwy o charakterze izolacyjnym. Ich miąższości są jednak niewielkie, rzędu kilku/ kilkunastu metrów.

W niżej zalegających utworach jury górnej (1707,5– 2332,5 m) nie wydziela się warstw wodonośnych i miąższych poziomów o własnościach uszczelniających.

Warstwy wodonośne obecne są w jurze środkowej (2332,5– 2527,5 m). Najbardziej miąższa z nich (2498–2525 m) charakteryzuje się porowatością całkowitą o wartościach 9–22% i efektywną z przedziału 8–20%. Obliczone dla niej przepuszczalności mieszczą się w zakresie 6–147 mD. W utworach jury środkowej wydziela się również kilku/kilkunastometrowe izolatory.

Liczniejsze i bardziej miąższe (do ok. 50 m) warstwy wodonośne występują w profilu otworu Bodzanów IG 1 w przedziale głębokościowym odpowiadającym jurze dolnej (2527,5–2960,0 m). Charakteryzują się one porowatościami całkowitymi od kilkunastu do ok. 30%. Ich przepuszczalności przyjmują wartości od kilkudziesięciu do kilkuset mD. Poziomy uszczelniające obecne w utworach jury dolnej mają miąższości od kilku do 23 metrów.

Prezentowane w niniejszej publikacji wyniki prac interpretacyjnych uzyskano przy użyciu oprogramowania interpretacyjnego sytemu GEOFLOG oraz programu ProGeo.

Sylwia KIJEWSKA, Andrzej GŁUSZYŃSKI

SEJSMIKA W OKOLICACH OTWORU BODZANÓW IG 1

Otwór wiertniczy Bodzanów IG 1 zlokalizowany jest na prekambryjskiej platformie wschodnioeuropejskiej (kratonie wschodnioeuropejskim), w obrębie synklinorium koszalińsko-zamojskiego w podkenozoicznym planie strukturalnym, zaś w planie strukturalnym podpermskim znajduje się w zasięgu waryscyjskiego zapadliska przedgórskiego (Aleksandrowski, 2017; Aleksandrowski, Buła, 2017). Budowa geologiczna obszaru charakteryzuje się występowaniem dwóch głównych pięter strukturalnych: proterozoicznego krystalicznego cokołu kratonu i jego fanerozoicznej pokrywy osadowej. Ta ostatnia obejmuje cztery zalegające na sobie, ale wzajemnie niezgodne kompleksy osadowe (depozycyjno-strukturalne): staropaleozoiczny (kambro-sylurski), młodopaleozoiczny (karboński), permsko-mezozoiczny i kenozoiczny.

Rozkład linii sejsmicznych w okolicach otworu jest regularny jednak siatka profili nie jest gęsta. W ostatnich latach wykonano nowe zdjęcie sejsmiczne 2D (Kwietniak red., 2014), w ramach którego wykonano uzupełniające prace pomiędzy profilami wykonanymi wcześniej (Łuszcz i in., 1990; Tomaszewska, Marosz, 1992). W celu przedstawienia zarysu budowy geologicznej wybrano profil sejsmiczny o przebiegu SW-NE (prostopadle do głównych struktur tektonicznych) wykonany w 1989 roku przez Geofizykę Toruń na zlecenie PGNiG (fig. 4, 5).

Niepełne profilowanie akustyczne w otworze Bodzanów IG 1 (Adamczak, ten tom) implikuje ograniczenia w dokładności dowiązania danych sejsmicznych i otworowych w odcinku od przystropowej części permu do przystropowej części karbonu i od dolnej części syluru do końca otworu. Na analizowanym profilu zinterpretowano horyzonty sejsmiczne wyznaczające stropy: kredy, jury, triasu, permu. Ze względu na niejednoznaczny zapis sejsmiczny poniżej spągu permu, horyzonty sejsmiczne wyznaczające stropy syluru, ordowiku i kambru prześledzono jedynie w pobliżu analizowanego otworu (fig. 4).

Powodem słabej jakości zapisu sejsmicznego poniżej spągu permu mogą być wysokoprędkościowe osady ewaporatów cechsztyńskich pochłaniające znaczną część energii sygnału, oraz niewielki kontrast impedancji akustycznej pomiędzy osadami karbonu i syluru.

W świetle wyników nowych pomiarów sejsmicznych uzyskanych w ramach analizowanego zdjęcia sejsmicznego, podpermskie podłoże pocięte jest najprawdopodobniej stromymi uskokami na szereg bloków tektonicznych obniżających osady podpermskie ku południowemu zachodowi (Kwietniak, 2014).

Utwory permsko-mezozocznego kompleksu osadowego na północny wschód od otworu Bodzanów IG 1 ujęte są w szereg 4 fałdów przebiegających o kierunku NW–SE określanych strukturą Bodzanowa (Marek, 1983; Marek i in., 2011). Z fałdami współwystępują uskoki normalne, które zakorzenione są prawdopodobnie w cechsztyńskich ewaporatach. Uskoki te rozcinają osady od permu do dolnej kredy, nie zaznaczając swojej aktywności w osadach górnokredowych. Uskoki rozcinające osady permo-mezozoiczne

		Zestawienie porowatości Porosity comparison	Zailenie Shaliness				Klasyl Profile	ikac cla	cja pro s <i>sifica</i> :	ofi l u tion	
[m]		średnia por. warstwowa average layer porosity	zailenie shaliness			war	stwa w aq	odo uifer	nośna		
ept	afia phy		zailenie			V	confin	ing b	ed	a	
Głęb. / D	Stratygra Stratygra	0 ////////////////////////////////////	50 50 50 50 50	100	0	p	sea sea ermeab	ility [i	ność mD]	1	100 10000
-							-	-		_	1
- 1500 -	ar sous					-	-				
	da dol Cretac						-			=	
- 1600 -	kre Lower			-		-				-	
								-			
1700				_							
1000											
- 1800 -											
- 1900 -											
	na assic										
- 2000 -	ura gór Þer Jura										
	ji Idd										
- 2100-											
0000											
- 2200-											
2200											
2300-											
2400	owa ssic							-			
2400	środka le Jura										
2500-	jura Mido			-				_			
2000								-			
2600						-					
							-		_		
2700	sic					-		-		-	
	a dolna r Juras								-	-	
2800	jura Lowe			_		-				=	
										-	
2900					_	_	-				
						-				_	-
[trias Triassic										

Fig. 49. Wyniki interpretacji parametrów petrofizycznych utworów: triasu, jury dolnej, środkowej, górnej i kredy dolnej The results of log interpretation of petrophysical parameters: Triassic, Lower, Middle, Upper Jurassic and Lower Cretaceous

znajdują się najprawdopodobniej powyżej odnowionych(?) dyslokacji rozcinających podłoże permu.

Powstanie uskoków normalnych jest związane z ekstensyjnym rozwojem basenu polskiego i pochylaniem się podłoża tej części basenu w kierunku południowo-zachodnim oraz zachodzącą równocześnie halotektoniką. Widoczna na profilu sejsmicznym zwiększona miąższość osadów w obniżonych (stropowych) skrzydłach uskoków normalnych wskazuje na ich synsedymentacyjną aktywność w okresie od triasu (środkowego?) do wczesnej kredy (fig. 4).

Inwersja basenu z przełomu późnej kredy i paleogenu (Krzywiec, 2002, 2006), przejawiła się w omawianym obszarze zafałdowaniem pokrywy permsko-mezozoicznej.

Lidia DZIEWIŃSKA, Waldemar JÓŻWIAK

W miejscach pierwotnie występujących rowów i półrowów tektonicznych (Leszczyński, 2017) osady permsko-mezozoiczne zostały kompresyjnie/transpresyjnie(?) ściśnięte i zafałdowane w szerokopromienne fałdy widoczne na północny wschód od otworu Bodzanów IG 1. Zmniejszenie miąższości i przekraczające zaleganie osadów w przegubie antykliny znajdującej się 3–8 km od analizowanego otworu wskazuje, że etap fałdowania/inwersji rozpoczął się na tym obszarze co najmniej już w kampanie (Krzywiec, 2006) (fig. 4).

Osady kredowe ścięte są regionalną powierzchnia nieciągłości, powyżej której zalegają niezaburzone tektonicznie osady kenozoiczne.

WYNIKI POMIARÓW PRĘDKOŚCI ŚREDNICH

Opracowanie pomiarów średnich prędkości w otworze Bodzanów IG 1 sporządziło Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego w Toruniu w roku 1982 (Dokumemntacja wynikowa..., 1982). Prace pomiarowe wykonano w dniach 14–20.05.1982 r. metodą bezdynamitową aparaturą CS-5G i sondą jednogeofonową przy interwale pomiarowym 15 m. Prace prowadzono z trzech punktów wzbudzania (PW) usytuowanych w następujący sposób:

PW1d = 100 m $A = 20^{\circ}$ N = 0 mPW2d = 80 m $A = 250^{\circ}$ N = 0 mPW2d = 100 m $A = 110^{\circ}$ N = 0 m

gdzie:

- d odległość punktu wzbudzania od głębokiego otworu
- A azymut mierzony w punkcie głębokiego otworu w kierunku PW
- N niwelacja: wysokość PW w stosunku do wylotu głębokiego otworu.

W celu kontroli strzelania na poszczególnych punktach wzbudzania ustawiono geofony korekcyjne K1. W celu kontrolowania momentu wybuchu zamontowano przy głębokim otworze geofon korekcyjny K2. Geofony korekcyjne usytuowane były 25 m od głębokiego otworu i 5 m od PW. Pomiarem objęto odcinek otworu od 0 do 5550 m (kenozoik–sylur). Całkowita głębokość otworu zakończonego w utworach kambru wynosi 5854 m, zaś wysokość wylotu otworu 119,7 m n.p.m. Natomiast do obliczenia krzywej prędkości średniej przyjęto poziom odniesienia pomiaru na wysokości 2,7 m n.p.m.

Pomiar SMP (strefa małych prędkości) pozwolił na uzyskanie dla poszczególnych punktów wzbudzania następujących parametrów, wykorzystanych do obliczenia poprawki czasowej wynikającej z uwzględnienia średniej głębokości wzbudzania względem poziomu odniesienia:

PW1 $h_o = 3,7$ m $V_o = 200$ m/s $h_2 = 114,3$ m $V_2 = 1820$ m/s PW2 $h_o = 4,5$ m $V_o = 200$ m/s $h_2 = 113,5$ m $V_2 = 1970$ m/s PW3 $h_o = 4,0$ m $V_o = 200$ m/s $h_2 = 114,0$ m $V_2 = 1900$ m/s gdzie V_o – prędkość początkowa Istotny etap interpretacji materiałów stanowi redukcja pomiarów.

Głębokość zredukowaną geofonu głębinowego od powierzchni ziemi h_r , czyli obliczenie odległości między rzutem średniej prędkości strzelania na pionową oś otworu i położeniem geofonu głębinowego, określono wyrażeniem:

$$h_r = h_p - h_{sr} + N$$

 $h_{\scriptscriptstyle p}~-$ głębokość zanurzenia geofonu głębinowego od po-

wierzchni ziemi

- h_{sr} średni poziom strzelania
- N wysokość otworu strzałowgo w stosunku do wylotu głę-

bokiego otworu.

Redukcję czasu obserwowanego do czasu pionowego przebiegu promienia sejsmicznego przeprowadzono wg wzoru podanego niżej, zakładając jednorodność ośrodka od punktu wybuchu do głębokości zanurzenia geofonu głębinowego.

$$t_r = \frac{h_r}{S} \cdot t_p$$

gdzie:

 t_r – czas zredukowany

- S droga przebiegu promienia sejsmiczneg $S = \sqrt{h_r^2 + d^2}$
- t_p czas przebiegu promienia sejsmicznego po uwzględnieniu poprawek, tzn. czas zarejestrowany, do którego wprowadzono poprawkę uwzględniającą zmiany głębokości strzelania przy kolejnych wybuchach oraz zmiany momentu wybuchu związane z różną jakością zapalników;
- d odległość punktu strzałowego od głębokiego otworu.

Charakter zmian prędkości w funkcji głębokości zilustrowano w tabeli i na wykresach. Wartości h, t_r i V_s umieszczono w tabeli 39. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig.50A) i hodografu pionowego (fig.50B).

Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Widać stały systematyczny wzrost prędkości wraz z głębokością.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano wygładzanie wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp między punktami pomiarowymi. Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich z zadaniem obliczenia prędkości interwałowych bez przypadkowych skoków wartości

Fig. 50. Wykres prędkości średnich (A) i hodograf pionowy (B)

 t_r – średni czas zredukowany; V_{sr} – prędkość średnia; h – głębokość; poz. odn. pom. – poziom odniesienia pomiaru

Average seismic velocity (A) and travel-time curve (B)

 t_r – average reduced time; $V_{\rm sr}$ – average velocity; h – depth; poz. odn. pom. – reference level

wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono, wyrównując zmierzone czasy zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, co 20 m. Następnie czasy te wygładzono przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtry 0,25 i 0,50. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych. Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych operacji powoduje zaokraglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone czasy pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu, oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonych w latach 90. XX w. w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do CBDG (baza otworowa LAS-y).

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami wiążą się ze zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych. Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe) i V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych ujęto w tabeli 40, a krzywe tych prędkości przedstawiono na figurze 51.

Zestawienie wykresów prędkości z profilem geologicznym wiercenia umożliwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze. Korelacja wymaga uwzględnienia podanych wcześniej różnic w poziomach odniesienia: wylotu głębokiego otworu (119,7 m n.p.m.) i załączonych wyników pomiarów prędkości sprowadzonych do 2,7 m n.p.m.

Wykresy prędkości wygładzonych, interwałowych i kompleksowych odwzorowują złożony profil geologiczny otworu Bodzanów IG 1. Prędkość, jako pochodna czasu, jest zależna

Zestawienie wartości głębokości (*h*), średniego czasu zredukowanego (t_r) i prędkości sredniej (V_{sr})

The values of depth (*h*), reduced time (t_r) and avaerage velocity (V_{sr})

h [m]	t _r [s]	V_{sr} [s/m]
1	2	3
2	0,005000	1480
17	0,011333	1500
32	0,019333	1655
47	0,028000	1679
62	0,035667	1738
77	0,044333	1737
92	0,052333	1758
107	0,061333	1745
122	0,069667	1751
137	0,077333	1772
152	0,085333	1781
167	0,093000	1796
182	0,100000	1820
197	0,107000	1841
212	0,113000	1876
227	0,119667	1897
242	0,125667	1926
257	0,132000	1947
272	0,138333	1966
287	0,145333	1975
302	0,151000	2000
317	0,157000	2019
332	0,162667	2041
347	0,169333	2049
362	0,175333	2065
377	0,181333	2079
392	0,188000	2085
407	0,193667	2102
422	0,199000	2121
437	0,204667	2135
452	0,210667	2146
467	0,216333	2159
482	0,222667	2165
497	0,228333	2177
512	0,234667	2182
527	0,240667	2190
542	0,246667	2197
557	0,253000	2202
572	0,258667	2211

1	2	3
587	0,264333	2221
602	0,270000	2230
617	0,275333	2241
632	0,281333	2246
647	0,286667	2257
662	0,292000	2267
677	0,297000	2279
692	0,302667	2286
707	0,307667	2298
722	0,313000	2307
737	0,318667	2313
752	0,324333	2319
767	0,329667	2327
782	0,334000	2341
797	0,338667	2353
812	0,342667	2370
827	0,347333	2381
842	0,351667	2394
857	0,356000	2407
872	0,360667	2418
887	0,365333	2428
902	0,370667	2433
917	0,376000	2439
932	0,381000	2446
947	0,385667	2455
962	0,391000	2460
977	0,396667	2463
992	0,401000	2474
1007	0,405000	2486
1022	0,410000	2493
1037	0,414667	2501
1052	0,419000	2511
1067	0,422667	2524
1082	0,426667	2536
1082	0,426667	2536
1097	0,430333	2549
1112	0,434333	2560
1127	0,437333	2577
1142	0,441333	2588
1157	0,445000	2600
1172	0,448333	2614
1187	0,451667	2628
1202	0,455000	2642
1217	0,458667	2653

Tabela 39 cd.

207

ſ

Tabela 39 cd.

		Tabela 39 cd.
1	2	3
1232	0,462667	2663
1247	0,466333	2674
1262	0,469667	2687
1277	0,473000	2700
1292	0,477333	2707
1307	0,481333	2715
1322	0,485000	2726
1337	0,488667	2736
1352	0,493000	2742
1367	0,497667	2747
1382	0,502667	2749
1397	0,507333	2754
1412	0,512000	2758
1427	0,517667	2757
1442	0,523333	2755
1457	0,527333	2763
1472	0,531667	2769
1487	0,537333	2767
1502	0,541667	2773
1517	0,546333	2777
1532	0,552000	2775
1547	0,557333	2776
1562	0,561000	2784
1577	0,564333	2794
1592	0,568333	2801
1607	0,571667	2811
1622	0,575000	2821
1637	0,579333	2826
1652	0,584000	2829
1667	0,589000	2830
1682	0,594000	2832
1697	0,597333	2841
1712	0,600667	2850
1727	0,603667	2861
1742	0,608000	2865
1757	0,611333	2874
1772	0,614667	2883
1787	0,618000	2892
1802	0,621667	2899
1817	0,625333	2906
1832	0,629000	2913
1847	0,632333	2921
1862	0,635667	2929
1877	0,639667	2934

1	2	3
1892	0,643333	2941
1907	0,647000	2947
1922	0,650667	2954
1937	0,654333	2960
1952	0,658667	2964
1967	0,661667	2973
1982	0,665667	2977
1997	0,669333	2984
2012	0,673000	2990
2027	0,677333	2993
2042	0,680333	3001
2057	0,684000	3007
2072	0,687333	3015
2087	0,690667	3022
2102	0,693667	3030
2117	0,697000	3037
2132	0,700000	3046
2147	0,703000	3054
2162	0,706000	3062
2177	0,709667	3068
2192	0,712667	3076
2207	0,716000	3082
2222	0,719000	3090
2237	0,723000	3094
2252	0,726333	3101
2267	0,730333	3104
2282	0,733333	3112
2297	0,737000	3117
2312	0,740667	3122
2327	0,743667	3129
2342	0,747333	3134
2357	0,751000	3138
2372	0,755000	3142
2387	0,759667	3142
2402	0,763333	3147
2417	0,767333	3150
2432	0,771333	3153
2447	0,775000	3157
2462	0,779333	3159
2477	0,783333	3162
2492	0,787667	3164
2507	0,792000	3165
2522	0,796000	3168
2537	0,799000	3175

Г

Tabela 39 cd.	Ta	b e l	a	39	cd.
---------------	----	-------	---	----	-----

Tabela 39 cd	ela 39 cd	ela 3	9 cd
--------------	-----------	-------	------

1	2	3
2552	0,803333	3177
2567	0,807333	3180
2582	0,811333	3182
2597	0,815000	3187
2612	0,818667	3191
2627	0,822333	3195
2642	0,826000	3199
2657	0,829667	3202
2672	0,833667	3205
2687	0,837667	3208
2702	0,842000	3209
2717	0,845000	3215
2732	0,848333	3220
2747	0,851667	3225
2762	0,854667	3232
2777	0,858333	3235
2792	0,862000	3239
2807	0,866000	3241
2822	0,870000	3244
2837	0,873333	3248
2852	0,876000	3256
2867	0,879333	3260
2882	0,883333	3263
2897	0,888333	3261
2912	0,892000	3265
2927	0,895667	3268
2942	0,899667	3270
2957	0,904000	3271
2972	0,907667	3274
2987	0,911667	3276
3002	0,916333	3276
3017	0,920667	3277
3032	0,924333	3280
3047	0,928667	3281
3062	0,933333	3281
3077	0,938000	3280
3092	0,941333	3285
3107	0,945000	3288
3122	0,949000	3290
3137	0,952333	3294
3152	0,955333	3299
3167	0,958667	3304
3182	0,963000	3304
3197	0,967667	3304

1	2	3
3212	0,971667	3306
3227	0,976333	3305
3242	0,980000	3308
3257	0,985333	3305
3272	0,990667	3303
3287	0,993667	3308
3302	0,997000	3312
3317	1,000000	3317
3332	1,003333	3321
3347	1,006667	3325
3362	1,009667	3330
3377	1,012667	3335
3392	1,016000	3339
3407	1,018667	3345
3422	1,021667	3349
3437	1,024667	3354
3452	1,028333	3357
3467	1,031667	3361
3482	1,035333	3363
3497	1,039000	3366
3512	1,041667	3372
3527	1,044667	3376
3542	1,047667	3381
3557	1,050667	3385
3572	1,054000	3389
3587	1,057000	3394
3602	1,060333	3397
3617	1,063333	3402
3632	1,067000	3404
3647	1,070000	3408
3662	1,073000	3413
3677	1,076000	3417
3692	1,079667	3420
3707	1,083333	3422
3722	1,086667	3425
3737	1,091000	3425
3752	1,094667	3428
3767	1,098000	3431
3782	1,101667	3433
3797	1,104667	3437
3812	1,108000	3440
3827	1,111000	3445
3842	1,114333	3448
3857	1,117667	3451

Tabela 39 cd.

Tabela 39 cd.

1	2	3		1	2	3
3872	1,121000	3454		4532	1,262000	3591
3887	1,123667	3456	1	4547	1,266000	3592
3902	1,127333	3461	1	4562	1,270000	3592
3917	1,130667	3464	1	4577	1,273000	3595
3932	1,134333	3466	1	4592	1,276000	3599
3947	1,138667	3466	1	4607	1,279000	3602
3962	1,141667	3470	1	4622	1,282000	3605
3977	1,145333	3472	1	4637	1,285000	3609
3992	1,149000	3474	1	4652	1,288000	3612
4007	1,152667	3476	1	4667	1,291000	3615
4022	1,156000	3479		4682	1,294000	3618
4037	1,159667	3481	1	4697	1,297000	3621
4052	1,164000	3481		4712	1,300000	3625
4067	1,166667	3486	1	4727	1,303000	3628
4082	1,169000	3492	1	4742	1,306000	3631
4097	1,171667	3497	1	4757	1,308000	3637
4112	1,175000	3500		4772	1,311000	3640
4127	1,179000	3500		4787	1,314000	3643
4142	1,182000	3504		4802	1,317000	3646
4157	1,184333	3510		4817	1,320000	3649
4172	1,186667	3516		4832	1,323000	3652
4187	1,190000	3518		4847	1,326000	3655
4202	1,193333	3521		4862	1,329000	3658
4217	1,196000	3526		4877	1,332000	3661
4232	1,198667	3531		4892	1,335000	3664
4247	1,201000	3536		4907	1,338000	3667
4262	1,204000	3540		4922	1,341000	3670
4277	1,207333	3543		4937	1,344000	3673
4292	1,210667	3545		4952	1,346000	3679
4307	1,214000	3548		4967	1,349000	3682
4322	1,216667	3552		4982	1,352000	3685
4337	1,219333	3557		4997	1,355000	3688
4352	1,222333	3560		5012	1,358000	3691
4367	1,224333	3567		5027	1,361000	3694
4382	1,226667	3572		5042	1,364000	3696
4397	1,230000	3575		5057	1,367000	3699
4412	1,237000	3567		5072	1,370000	3702
4427	1,239000	3573		5087	1,373000	3705
4442	1,242000	3576		5102	1,375000	3711
4457	1,246000	3577		5117	1,377000	3716
4472	1,249000	3580		5132	1,380000	3719
4487	1,252000	3584		5147	1,383000	3722
4502	1,256000	3584		5162	1,386000	3724
4517	1,259000	3588		5177	1,389000	3727

1	2	3
5192	1,392000	3730
5207	1,395000	3733
5222	1,397000	3738
5237	1,399000	3743
5252	1,402000	3746
5267	1,405000	3749
5282	1,409000	3749
5297	1,412000	3751
5312	1,416000	3751
5327	1,420000	3751
5342	1,423000	3754
5357	1,425000	3759
5372	1,427000	3765
5387	1,429000	3770
5402	1,431000	3775
5417	1,433000	3780
5432	1,435000	3785

Tabela 39 cd.

od zmian przewierconych warstw w profilu geologicznym. Ilość możliwych do rozróżnienia warstw zależy od kontrastu właściwości sprężystych między utworami leżącymi powyżej i podścielającymi oraz stosunku miąższości danej warstwy do interwału, jaki określa prędkość. Obserwowane kontrasty prędkości są efektem zmian w wykształceniu litologicznym poszczególnych ogniw litostratygraficznych. W rezultacie daje to możliwość określenia granic między nimi. Na krzywych można wyznaczyć szereg kompleksów o dosyć jednolitej i zbliżonej charakterystyce prędkościowej.

Na krzywych prędkości uśrednionych (kompleksowych i interwałowych) obserwuje się systematyczny wzrost wartości wraz z głębokością wzdłuż całej długości profilu wiercenia, który został zakłócony kilkoma ujemnymi gradientami wyznaczonymi na wykresie prędkości wygładzonych. Pierwszy wyraźny wzrost na krzywych prędkości o ponad 500 m/s występuje na granicy kenozoiku i kredy górnej (K₂). Interwał głębokościowy obejmujący utwory K2 charakteryzuje się bardzo zróżnicowanymi prędkościami odwzorowanymi w postaci czterech kolejnych stopni systematycznego wzrostu tego parametru wraz z głębokością od wartości ok. 2400 m/s do osiągniętej w części spągowej 3850 m/s. Fakt ten wskazuje na wzrost zawartości skał węglanowych w osadach marglisto-wapiennych kredy górnej. Uwzględniając korelację z danymi stratygraficznymi wiercenia, prędkość najniższa odpowiada utworom mastrychtu, wyższa (2750 m/s), podkreślona kontrastem prędkości ok. 350 m/s, dotyczy wyższej części kampanu. Następny wzrost wartości o około 500 m/s wyodrębnia prędkość kompleksową 3250 m/s związaną z niższą częścią kampanu i santonem. Najwyższy kontrast o prędkości ok. 600 m/s wyznacza podkompleks prędkościowy 3850 m/s korelujący się na podstawie informacji otworowych z utworami koniaku–cenomanu. Powyższe relacje potwierdza obraz krzywej prędkości interwałowych, podkreślając dodatkowo kontrasty prędkości wydzielające odcinek profilu odpowiadający serii wapiennej niższej części górnego koniaku. Na głęb. ok. 1400 m, tj. w pobliżu granicy stratygraficznej kredy górnej i kredy dolnej (K₁) wyniki profilowania prędkości odnotowują na wszystkich krzywych pierwsze wyraźne obniżenie wartości. Prędkość kompleksowa ok. 3300 m/s wywołana kontrastem prędkości 550 m/s charakteryzuje generalnie piaskowcowy pakiet K₁. Krzywa prędkości interwałowych wydziela odrębne odcinki o zróżnicowanych wartościach, które mogą być spowodowane zmianami litologii (udział skał ilastych).

Gwałtowny wzrost prędkości o ok. 700 m/s do prawie 4000 m/s podkreśla granicę kontrastu wywołaną kontaktem osadów o różnym wykształceniu litologicznym. Według profilu geologicznego wiercemia jest to strop utworów wapiennych jury górnej (J_3) kontrastujący z osadami mułowcowo--ilastymi występującymi w spągu kredy dolnej.

W interwale o ponad 600-metrowej miąższości odpowiadającemu utworom jury górnej ma miejsce wyraźne trzystopniowe zróżnicowanie prędkości kompleksowych z tendencją ciągłego wzrostu wartości wraz z głębokością. W górnej partii tego przedziału obserwujemy warstwę, której odpowiada wymieniona wyżej prędkość kompleksowa równa 4000 m/s. Poniżej zalega warstwa, dla której zarejestrowano prędkość ok. 4200 m/s, a jeszcze głębiej w dolnej części J, wartość ta, najwyższa, wynosi ok. 4350 m/s. Poszczególne prędkościowe podkompleksy odzwierciedlaja udział skał marglisto-ilastych w utworach weglanowych jury górnej. Prędkości interwałowe odwzorowują z jeszcze większą dokładnością zmiany w ilości występowania poszczególnych składników materiału osadowego zaznaczając wyższymi wartościami wzrost udziału skał węglanowych. W obrębie utworów J₃, a szczególnie w jej dolnej części odpowiadającej utworom oksfordu, ma miejsce znaczny wzrost nachylenia krzywej prędkości wygładzonych.

Wykształcenie wapienne skał górnej jury kontrastuje w obrazie krzywych prędkościowych z niżej leżącymi osadami, które tworzą ciągły kompleks prędkościowy utworów piaskowcowych jury środkowej (J₂). Kontrast prędkości kompleksowych o ujemnej wartości 470 m/s umożliwia wyznaczenie granicy przystropowej J2. Utwory jury środkowej charakteryzują się jedną wartością prędkości kompleksowej, ok. 3880 m/s. Zmiany na krzywej prędkości interwałowych mogą być związane z podrzędnie występującymi iłowcami i mułowcami. Brak wyraźnej granicy na krzywych prędkościowych w miejscu wyznaczonym w profilu stratygraficznym otworu między jurą środkową i jurą dolną (J₁) wskazuje na bezpośrednie zaleganie osadów o zbliżonym wykształceniu litologicznym. W odcinku odpowiadającym utworom J₁ można wydzielić jednak dwa kompleksy: górny o prędkości kompleksowej, podobnie jak w J2, ok. 3880 m/s, i dolny, o prędkości kompleksowej wynoszącej ok. 4050 m/s, co w konsekwencji powoduje niewielkie podwyższenie prędkości w jurze dolnej w stosunku do jury środkowej. Po-

Tabela 40

Zestawienie uśrednionych wartości glębokości (*h*), prędkości interwałowej (V_i), prędkości kompleksowej (V_k), prędkości wygladzonej (V_w) obliczonych z czasu wygladzonego

Depth, averaged interval velocity (V_{i}) , complex velocity (V_{k}) and smoothed velocity (V_{w}) values calculated from smoothed time

<i>h</i> [m]	V_i [m/s]	V_k [m/s]	V_{w} [m/s]
1	2	3	4
20	1781	1898	1734
40	1781	1898	1764
60	1781	1898	1786
80	1781	1898	1817
100	1781	1898	1856
120	1994	1898	1904
140	1994	1898	1961
160	1994	1898	2025
180	1994	1898	2094
200	1994	1898	2164
220	2304	2422	2230
240	2304	2422	2288
260	2304	2422	2337
280	2304	2422	2377
300	2304	2422	2409
320	2466	2422	2436
340	2466	2422	2458
360	2466	2422	2479
380	2466	2422	2497
400	2466	2422	2511
420	2527	2422	2522
440	2527	2422	2527
460	2527	2422	2530
480	2527	2422	2531
500	2527	2734	2535
520	2578	2734	2544
540	2578	2734	2560
560	2578	2734	2585
580	2578	2734	2615
600	2578	2734	2650
620	2743	2734	2725
640	2743	2734	2687
660	2743	2734	2761
680	2743	2734	2799
700	2743	2734	2842
720	2976	2734	2890
740	2976	2734	2946
760	2976	2734	3007
780	2976	2734	3067
800	2976	3229	3117
820	3142	3229	3149

1	2	3	4
840	3142	3229	3159
860	3142	3229	3149
880	3142	3229	3128
900	3142	3229	3108
920	3143	3229	3099
940	3143	3229	3109
960	3143	3229	3143
980	3143	3229	3201
1000	3143	3229	3284
1020	3565	3229	3387
1040	3565	3229	3506
1060	3565	3229	3633
1080	3565	3229	3760
1100	3565	3854	3879
1120	3536	3854	3982
1140	3536	3854	4061
1160	3536	3854	4113
1180	3536	3854	4135
1200	3536	3854	4129
1220	3980	3854	4096
1240	3980	3854	4039
1260	3980	3854	3959
1280	3980	3854	3860
1300	3980	3854	3745
1320	3443	3854	3621
1340	3443	3854	3497
1360	3443	3854	3382
1380	3443	3854	3285
1400	3443	3285	3211
1420	3162	3285	3162
1440	3162	3285	3141
1460	3162	3285	3145
1480	3162	3285	3174
1500	3162	3285	3226
1520	3418	3285	3297
1540	3418	3285	3380
1560	3418	3285	3466
1580	3418	3285	3545
1600	3418	3285	3609
1620	3/3/	3979	3661
1040	5/5/	39/9	3700
1600	5/5/ דנדנ	2070	2020
1700	1212 דבדב	2070	2007
1700	3131	2070	2001
1740	4070	2070	3781
1/40	4070	39/9	4060
1/60	40/6	39/9	4124

Tabla 40 cd.

Tabla 40 cd.

1	n	2	1
1	4076	3070	4
1800	4076	3979	4103
1820	4070	3979	4185
1840	4149	3979	4181
1840	4149	2070	4104
1880	4149	2070	4140
1880	4149	3979	4115
1900	4149	3979	4092
1920	4090	4209	4077
1940	4090	4209	4073
1960	4090	4209	4084
1980	4090	4209	4111
2000	4090	4209	4155
2020	4335	4209	4218
2040	4335	4209	4295
2060	4335	4209	4377
2080	4335	4209	4459
2100	4335	4209	4527
2120	4562	4350	4571
2140	4562	4350	4587
2160	4562	4350	4576
2180	4562	4350	4540
2200	4562	4350	4489
2220	4333	4350	4429
2240	4333	4350	4367
2260	4333	4350	4304
2280	4333	4350	4240
2300	4333	4350	4172
2320	3989	4350	4100
2340	3989	4350	4025
2360	3989	4350	3951
2380	3989	3879	3885
2400	3989	3879	3831
2420	3772	3879	3790
2440	3772	3879	3766
2460	3772	3879	3756
2480	3772	3879	3761
2500	3772	3879	3778
2520	3852	3879	3803
2540	3852	3879	3834
2560	3852	3879	3868
2580	3852	3879	3902
2600	3852	3879	3934
2620	4020	3879	3965
2640	4020	3879	3999
2660	4020	3879	4036
2680	4020	3879	4077
2700	4020	3879	4120
	. = -		

		-	Fabla 40 cd.
1	2	3	4
2720	4180	4053	4159
2740	4180	4053	4187
2760	4180	4053	4199
2780	4180	4053	4192
2800	4180	4053	4168
2820	4035	4053	4128
2840	4035	4053	4074
2860	4035	4053	4010
2880	4035	4053	3941
2900	4035	4053	3873
2920	3740	4053	3809
2940	3740	4053	3753
2960	3740	3735	3709
2980	3740	3735	3678
3000	3740	3735	3664
3020	3719	3735	3668
3040	3719	3735	3691
3060	3719	3735	3730
3080	3719	3735	3776
3100	3719	3735	3817
3120	3808	3735	3839
3140	3808	3735	3835
3160	3808	3949	3808
3180	3808	3949	3769
3200	3808	3949	3738
3220	3834	3949	3732
3240	3834	3949	3766
3260	3834	3949	3844
3280	3834	3949	3964
3300	3834	3949	4115
3320	4461	3949	4279
3340	4461	3949	4433
3360	4461	3949	4555
3380	4461	4655	4637
3400	4461	4655	4677
3420	4683	4655	4687
3440	4683	4655	4682
3460	4683	4655	4677
3480	4683	4655	4681
3500	4683	4655	4693
3520	4712	4655	4709
3540	4712	4655	4721
3560	4712	4655	4723
3580	4712	4655	4708
3600	4712	4655	4675
3620	4528	4655	4626
3640	4528	4655	4565
		I	

Tabla 40 cd.

Tabla 40 cd.

1	2	3	4	
3660	4528	4655	4497	
3680	4528	4655	4433	
3700	4528	4421	4382	
3720	4470	4421	4352	
3740	4419	4421	4346	
3760	4384	4421	4365	
3780	4367	4421	4400	
3800	4371	4421	4439	
3820	4455	4421	4468	
3840	4455	4421	4479	
3860	4455	4421	4465	
3880	4455	4421	4430	
3900	4455	4421	4385	
3920	4315	4421	4339	
3940	4315	4421	4304	
3960	4315	4421	4290	
3980	4315	4421	4302	
4000	4315	4421	4343	
4020	4554	4421	4410	
4040	4554	4421	4498	
4060	4554	4421	4602	
4080	4554	4421	4710	
4100	4554	4421	4816	
4120	5014	5060	4912	
4140	5014	5060	4996	
4160	5014	5060	5063	
4180	5014	5060	5111	
4200	5014	5060	5140	
4220	5162	5060	5155	
4240	5162	5060	5159	
4260	5162	5060	5163	
4280	5162	5060	5171	
4300	5162	5060	5183	
4320	5127	5060	5191	
4340	5127	5060	5179	
4360	5127	5060	5133	
4380	5127	5060	5045	
4400	5127	5060	4921	
4420	4580	5060	4778	
4440	4580	5060	4634	
4460	4580	4489	4506	
4480	4580	4489	4404	
4500	4580	4489	4337	
4520	4349	4489	4306	
4540	4349	4489	4310	

1	2	3	4
4560	4349	4489	4345
4580	4349	4489	4408
4600	4349	4489	4494
4620	4755	4489	4597
4640	4755	4489	4706
4660	4755	4489	4817
4680	4755	4489	4921
4700	4755	5096	5011
4720	5116	5096	5080
4740	5116	5096	5124
4760	5116	5096	5143
4780	5116	5096	5141
4800	5116	5096	5128
4820	5110	5096	5111
4840	5110	5096	5101
4860	5110	5192	5102
4880	5110	5192	5115
4900	5110	5192	5135
4920	5177	5192	5157
4940	5177	5192	5175
4960	5177	5192	5186
4980	5177	5192	5195
5000	5177	5192	5210
5020	5295	5192	5235
5040	5295	5192	5271
5060	5295	5192	5315
5080	5295	5192	5358
5100	5295	5330	5392
5120	5376	5330	5408
5140	5376	5330	5404
5160	5376	5330	5379
5180	5376	5330	5335
5200	5376	5330	5271
5220	5122	5330	5195
5240	5122	5330	5120
5260	5122	5337	5069
5280	5122	5337	5068
5300	5122	5337	5141
5320	5683	5337	5299
5340	5683	5337	5538
5360	5683	5337	5548
5380	5683	5337	5548
5400	5683	5337	5548
5420	5683	5337	5548

jawienie się na krzywej prędkości interwałowych jeszcze większej ilości zmiennych wartości może świadczyć o większym zróżnicowaniu litologicznym w utworach J₁. Obraz ten oddaje charakter, jak wynika z danych otworowych, powtarzających się serii piaskowcowych, przedzielonych wkładkami skał mułowcowo-ilastych.

Na głęb. ok. 2960 m zaznacza się wyraźna zmiana charakteru krzywych prędkościowych. Ujemny kontrast prędkości wynoszący ok. 320 m/s występuje na wyżej wymienionej głębokości, która wg profilu geologicznego otworu stanowi granicę między jurą dolną i odmiennie w stosunku do nadkładu wykształconymi litologicznie utworami triasu górnego (T₃). W obrębie T₃ o ponad 400-metrowej miąższości można wydzielić dwa kompleksy prędkościowe: wyżej położony o prędkości kompleksowej 3735 m/s, i niżej zalegający, o prędkości wyższej określonej wartością 3950 m/s z granica wyznaczona w połowie interwału przypisanego utworom triasu górnego. Dwudzielność krzywych prędkości zarówno kompleksowej jak i interwałowej odwzorowuje granicę między norykiem a karnikiem, podkreślając zmienność charakteru tworzących je osadów. Zgodnie z wydzieleniami w profilu otworu, w serii retycko-noryckiej dominują iłowce, podczas gdy osady karniku stanowią warstwy gipsowe i piaskowiec trzcinowy.

Następny znaczny wzrost prędkości kompleksowej, bo o ponad 700 m/s do wartości ok. 4650 m/s, występuje na głęb. ok. 3370 m odpowiadającej warstwom przyspagowym triasu środkowego (T₂). Prędkość ta charakteryzuje oprócz utworów wapienia muszlowego (T_m) również górny odcinek triasu dolnego (T₁) obejmujący pstry piaskowiec górny i pstry piaskowiec środkowy. Pozostałe utwory T₁ i cechsztyńską stropową serię terygeniczną Pzt cyklotemu PZ4 charakteryzują niższe prędkości kompleksowe o wartości ok. 4420 m/s. Kompleks cechsztyński (Pz) wyróżnia się w stosunku do wyżej leżącego wzrostem prędkości kompleksowej o ok. 640-5060 m/s. Jest to prawie stała wartość dla całego tego przedziału o miąższości ok. 400 m zdominowanego w profilu wiercenia przez utwory solne i skały anhydrytu. Zanotowane różnice na krzywej prędkości interwałowych w większym stopniu odwzorowują poszczególne serie Pz. Kolejne obniżenie prędkości kompleksowej do 4490 m/s, czyli o 570 m/s, dotyczy utworów czerwonego spągowca (Pcs) i górnego odcinka karbonu (C) (formacja lubelska) reprezentowanych przez osady mułowcowo-ilasto-piaszczyste. Poniżej, prędkość kompleksowa ponownie wzrasta do prawie 5100 m/s. Kontrast prędkości określony wartościa 610 m/s powoduje podział interwału odpowiadającego utworom karbonu na dwie części w zależności od ich składu litologicznego. W dolnym odcinku karbonu (formacja Dęblina) udział mułowców oraz iłowców maleje a dominują piaskowce, co znajduje odzwierciedlenie na wszystkich trzech krzywych prędkościowych. Przejście do niżej zalegających w profilu geologicznym wiercenia utworów syluru (S) na wykresach prędkości sejsmicznych odbywa się w sposób płynny. Ostatni kompleks w granicach pomiaru, tj. do głęb. 5420 m, reprezentowany przez sylurskie utwory iłowcowe z udziałem mułowców i skał węglanowych cechuje się wskazaniami na krzywych prędkościowych, utrzymanymi na najwyższym w całej głębokości profilu poziomie 5200–5400 m/s.

Podsumowując powyższą analizę wyników pomiarów prędkości sejsmicznych w otworze Bodzanów IG 1, zmienność średnich wartości prędkości kompleksowych (w m/s)

Fig. 51. Wykresy prędkości wygładzonych (V_{μ}) , interwalowych (V_{i}) i kompleksowych (V_{μ})

poz. odn. pom. – poziom odniesienia pomiaru

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity (V_v)

poz. odn. pom. - reference level

dla poszczególnych wydzieleń stratygraficznych przedstawia się następująco:

 $\begin{array}{l} K_{e} & -1900 \\ K_{2} & -2400 - 2750 - 3250 - 3850 \\ K_{1} & -3300 \\ J_{3} & -4000 - 4200 - 4350 \\ J_{2} & -3880 \\ J_{1} & -3880 - 4050 \\ T_{3} & -3735 - 3950 \\ T_{2} & -4650 \\ T_{1} & -4650 - 4420 \\ Pz & -5060 \\ C & -4490 - 5100 \\ S & -5200 - 5400. \end{array}$

Na podstawie przedstawionych materiałów można stwierdzić, że ze względu na kontrasty prędkościowe najwyraźniejsze odbicia reflesyjne na profilach sejsmicznych powinny powstawać w kredzie górnej, w stropie kredy dolnej, w strefie jury górnej, i mniej wyraźne w stropie jury środkowej. W obrębie triasu możliwe jest wyznaczenie granic wzdłuż profili sejsmicznych ze stropu triasu i wapienia muszlowego. Ponadto granice cechsztyńskie ze stropu i spągu oraz z karbonu i ewentualnie z syluru uzupełniają zestaw horyzontów wytypowanych do odwzorowania w sesjmicznym obrazie falowym.

Otrzymane wyniki stanowią znaczący materiał do uaktualnienia modelu prędkości niezbędnego do prawidłowego głębokościowego opracowania materiałów sejsmicznych z rejonu otworu Bodzanów IG 1 i jego otoczenia. Uwzględnienie w rozkładach prędkości wyników z pomiarów w otworze wiertniczym Bodzanów IG 1 sięgających 5550 m ułatwi korelację i przyporządkowanie poziomów refleksyjnych na przekrojach do poszczególnych pięter permomezozoiku, karbonu i częściowo syluru.