WYNIKI BADAŃ MATERII ORGANICZNEJ

Barbara MASSALSKA

BADANIA GEOCHEMICZNE MATERII ORGANICZNEJ METODĄ ROCK-EVAL

Przedstawiono tutaj ogólną charakterystykę geochemiczną materii organicznej zawartej w siedmiu wybranych próbkach rdzenia z otworu wiertniczego Goczałkowice IG 1, określoną na podstawie wyników badań metodą pirolityczną Rock-Eval. Udostępnione do badań fragmenty rdzenia pochodzą ze skał kambru dolnego oraz dewonu dolnego i środkowego. Do analizy wyselekcjonowano dwie próbki ciemnoszarych mułowców, pochodzących ze skał dolnokambryjskiej formacji z Goczałkowic, oraz pięć próbek czarnych i ciemnoszarych dolomitów należących do dolnodewońśkiej formacji dolomitów z Lachowic (Narkiewicz, 2005). W otworze Goczałkowice IG 1 nie przeprowadzano uprzednio badań charakterystyki zawartej w skałach materii organicznej. Uzyskane wyniki analiz metodą Rock-Eval zamieszczono w tabeli 11.

METODA BADAŃ

Badania wykonano w pracowni geochemii organicznej PIG-PIB przy użyciu analizatora Rock-Eval *Turbo 6* z zastosowaniem podstawowego programu temperaturowego. Do analiz metodą Rock-Eval *Basic/Bulk-Rock* przeznacza się niewielką naważkę (75–150 mg) drobno zmielonej, zhomogenizowanej próbki skalnej. Przebieg analizy jest dwuetapowy. Podczas pierwszego etapu umieszczona w aparacie próbka jest przenoszona do pieca pirolitycznego, gdzie przez pewien czas przebywa w warunkach atmosfery beztlenowej (He lub N) w stałej temperaturze na poziomie 300°C. Następnie jest stopniowo podgrzewana do temperatury 650°C. W drugim etapie próbka ta jest przenoszona do pieca oksydacyjnego, po czym, w temperaturze stopniowo rosnącej od 300 do 850°C, spalana jest w warunkach sztucznej atmosfery (N₂/O₂; 80/20). Urządzenie wykorzystuje detektor płomieniowo-jonizacyjny (FID) oraz detektory podczerwieni (IR) do pomiarów typu i ilości gazów uwalnianych z próbki w trakcie przebiegu badania. Szczegółowy opis metody oraz parametrów i wskaźników otrzymywanych przez analizę Rock-Eval przedstawiono w pracy Behara i in. (2001).

INTERPRETACJA WYNIKÓW

Potencjał węglowodorowy. Jednym z podstawowych wskaźników określających zdolność skały do generowania węglowodorów jest jej całkowita zawartość węgla organicznego (TOC). Zawartość TOC przebadanych próbek waha się między 0,06 a 1,80% wag. skały. Pomijając próbkę z głęb. 2518,5 m, otrzymane wartości TOC, zarówno w próbkach mułowców, jak i w próbkach dolomitów, są bardzo niskie i typowe dla skał o niskim potencjale węglowodorowym. Minimalną zawartością węgla organicznego jaką musi odznaczać się skała macierzysta, żeby mogły być z niej generowane węglowodory o znaczeniu ekonomicznym jest 0,5% (Peters, Cassa, 1994; Dembicki, 2017). Zawartość TOC powyżej tej wartości granicznej stwierdzono jedynie w próbce dolomitów z głęb. 2518,5 m.

Wskaźnik TOC nie jest jednoznacznym wyznacznikiem potencjału węglowodorowego skały macierzystej. Ważne jest, żeby wartość TOC korelowała się z odpowiednimi wartościami parametrów S1 i S2 (Dembicki, 2009). Wartości parametru S1, określającego zawartość wolnych węglowodorów w badanych skałach, dla próbek z otworu wiertniczego Goczałkowice IG 1 oscylują między 0,01 a 0,13 mgHC/gSkały. Ilość węglowodorów wygenerowanych z kerogenu w wyniku pirolizy określa potencjał generacyjny skały i w trakcie analizy pirolitycznej Rock-Eval

Ζ	stawienie pa R	trametrów i ock-Eval pyr	wskaźników a) rolysis paramete	nalizy Rocl ers and indi	ƙ-Eval utw ces of Low	v orów kam ver Cambria	ibru dolne g an and Low	go oraz dev er Devonia	wonu doln in rocks fro	ego w otwo om the Goc	orze wiertn załkowice I	iiczym Go G1 boreho	czałkowice le	IGI	
Chronostratygrafia Chronostratigraphy	Litostra Lithostra	ıtygrafia ıtigraphy	Głębokość [m] Depth [m]	SI	S2	S3	S2/S3	T_{\max}	HI	IO	Id	TOC	PC	RC	MinC
			2516,30	0,01	0,06	0,16	0,4	415	23	59	0,14	0,27	0,02	0,25	5,60
			2518,50	0,13	0,30	0,24	1,3	420	17	13	0,30	1,8	0,04	1,76	5,94
Dewon dolny Lower Devonian	tormacja dolomitów	ogniwo dolomitów	2675,05	0,05	0,07	0,21	0,3	380	51	151	0,42	0,14	0,02	0,12	10,40
	z Lacnowic	z Uszwicy	2704,20	0,01	0,03	0,21	0,1	403	12	82	0,25	0,26	0,01	0,25	10,77
			2724,30	0,07	0,15	0,25	0,6	326	66	171	0,32	0,15	0,04	0,11	0,73
Kambr dolny	form	lacja	2822,70	0,02	0,06	0,11	0,5	334	98	193	0,25	0,06	0,01	0,05	0,10
Lower Cambrian	z Goczi	ałkowic	2969,80	0,02	0,09	0,24	0,4	378	80	211	0,18	0,11	0,02	0,09	0,10
SI – zawartość wolny S2 – zawartość weglo S3 – zawartość CO ₂ z T_{max} – temperatura mu HI – wskaźnik kodor OI – wskaźnik produk TOC – całkowita zaw PC – zawartość rezyd MinC – zawartość rezdu HI – hydrogen index calcul PI – oroduction index calcul PI – production index calcul	ch węglowodo wodorów pow: destrukcji mał aksymalnego g owy liczony ze w tywności liczc artość węgla o tycznego węgla ulalnego węgla gla mineralne <u>ś</u> ocarbons release bons released du d from organic n ximum release o ulated from the ilated from the wr. %] wr. %]	trów obecnych stałych podczi terii organiczi generowania w e wzoru: (S2 · 100 ony ze wzoru: (S3 · 100 ony ze wzoru: rzganicznegc ony ze wzoru raganicznegc ony ze wzoru stał during pyroly uring pyroly uring pyroly uring pyroly uring pyroly uring pyroly uring pyroly uring pyroly uring pyroly uring as abovel formula as above lated from the fi	n w próbce skalne as pierwotnego ki nej [mgCO ₂ /gSka vęglowodorów w 100) / TOC [mgE 0) / TOC [mgEO. SI / (SI + S2) liczona ze wzoru: $[0^{6}$ wag. skały] 2 [% wag. skały] $[0^{6}$ wag. skały] 1^{9} wag. skały] 1^{9} wag. skały] 1^{9} wag. skały] 1^{9} wag. skały] 1^{9} weg. skały] 1^{10} weg. skały]	, uwolniony akingu kero y] wyniku krak wyniku krak wyniku krak wyniku krak wyniku krak wyniku krak prof for prof prof temperature temperat	ch w trakcic genu w tem ingu keroge wag. skałyj between 300 pyrolysis [°C	s pirolizy w peraturze 36 snu w trakci and 650°C [n	a pirolizy [°(ıgHC/gSkath C]	gHC/gSkały y]						

122

Tabela 11

Wyniki badań materii organicznej

mierzy się ją pod postacią parametru S2. Parametr ten dla badanych próbek przyjmuje wartości pomiędzy 0,03 a 0,30 mgHC/gSkały. Skały o niskim potencjale węglowodorowym cechują się wartościami parametru S1 poniżej 0,5 mgHC/gSkały oraz parametru S2 poniżej 2,5 mgHC/ gSkały (wg Dembickiego, 2017). Wartości wszystkich przebadanych próbek mieszczą się poniżej tych wartości granicznych.

W praktyce geochemicznej rutynowo wykorzystywaną metodą oceny potencjału generatywnego skał jest użycie diagramu korelującego wartości parametru S2 z wartościami wskaźnika TOC. Diagram zależności S2 vs. TOC dla omawianych próbek przedstawiono na figurze 22A. Mimo podwyższonej całkowitej zawartości węgla organicznego w próbce z głęb. 2518,5 m plasuje się ona wraz z pozostałymi próbkami w obrębie pola typowego dla skał niemających potencjału węglowodorowego. Zestawione wartości parametrów i wskaźników Rock-Eval oraz umiejscowienie próbek na wykresie zależności S2 vs. TOC wskazuje, że żadna z przebadanych skał nie przejawia cech potencjalnej skały macierzystej.

Wskaźnik MinC reprezentuje procentową zawartość węgla związanego w węglanach i pośrednio wskazuje na niski udział węglanów w próbkach kambru dolnego (MinC = 0,1% wag. skały) oraz na obniżony, względem pozostałych próbek, dewonu dolnego (MinC = 5,6-10,8% wag. skały, a w spągowej próbce ogniwa dolomitów z Uszwicy wynosi 0,73% wag. skały).

Typ kerogenu. Kerogen to metastabilny, wysokomolekularny polikondensat związków organicznych, z którego, wraz ze wzrostem głębokości pogrzebania i temperatury, mogą być generowane węglowodory (Killops, Killops, 2005). Na podstawie źródła rozproszonej materii organicznej, środowiska depozycji oraz rodzaju generowanych węglowodorów wyróżnia się cztery główne typy kerogenu (patrz: Killops, Killops, 2005; Dembicki, 2017). Określenie typu kerogenu na podstawie wyników analizy pirolitycznej Rock-Eval odbywa się najczęściej przy pomocy metod graficznych. Zmodyfikowany diagram van Krevelena (HI vs. OI) i wykres zależności HI vs. T_{max} to podstawowe wykresy stosowane do oceny rodzaju zachowanej w skale materii organicznej. Ponadto, wyznacznikiem typu kerogenu są też wartości wskaźników wodorowego (HI) i tlenowego (OI) oraz wartość stosunku S2/S3 (Dembicki, 2017). Wskaźniki HI oraz OI stanowią pośredni wyznacznik ilości odpowiednio wodoru i tlenu związanego z materią organiczną (Dembicki, 2009; Behar i in., 2011). Zgodnie z literatura stężenie 0,5% TOC jest uważane za graniczne, żeby zastosować wskaźniki HI i OI do typowania kerogenu (Dembicki, 2017). W praktyce, przy zachowaniu ostrożności, z powodzeniem można interpretować wskazania HI oraz OI dla próbek o wartości TOC powyżej 0,2% wag. skały.

Próbki z kambru dolnego oraz dwie próbki z dewonu dolnego (głęb. 2724,3 i 2675,05 m), o najniższych wartościach TOC (poniżej 0,2% wag. skały), charakteryzują się niskimi, lecz podwyższonymi względem pozostałych próbek, wartościami wskaźnika HI (51–99 mgHC/gTOC) oraz stosunkowo wysokimi wartościami wskaźnika tlenowego (151-211 mgCO₂/gTOC). W związku z tym omawiane próbki na diagramie klasyfikacyjnym HI vs. OI (fig. 22B) są usytuowane w polu wskazującym na zawartość III/IV lub IV typu kerogenu. Niskie wartości parametru T_{max} spowodowały, że część wyników nie weszła w obrąb diagramu klasyfikacyjnego HI vs. T_{max} (fig. 22C). Pozostałe znajdujące się na diagramie próbki są usytuowane w polu charakterystycznym dla kerogenu typu IV. Wskaźnik S2/S3, będący stosunkiem między ilością węglowodorów wygenerowanych podczas pirolizy a ilością CO₂ związanego z materią organiczną (wg Killopsa, Killops, 2005, Dembickiego, 2017), przyjmuje dla tych próbek wartości poniżej jedności, pozostając w zgodzie ze wskazaniami diagramów klasyfikacyjnych oraz wartościami wskaźników HI oraz OI. Mimo bardzo niskiej zawartości TOC w omawianych próbkach, to prawdopodobnie zawierały one w swoim składzie niewielkie ilości kerogenu typu IV.

Pozostałe próbki dewonu dolnego (głęb. 2704,2 m, 2518,5 i 2516,3 m) przyjmują bardzo niskie wartości HI (12–23 mgHC/gTOC) oraz niskie i średnie wartości OI (13– 82 mgCO₂/gTOC). Stosunek S2/S3 waha się pomiędzy 0,10 a 1,25, przy czym wartość powyżej jedności osiąga jedynie próbka z głęb. 2518,5 m. Na obu przedstawionych diagramach klasyfikacyjnych (fig. 22B, C) omawiane próbki znajdują się w polu charakterystycznym dla kerogenu typu IV. Wartości uzyskanych wskaźników Rock-Eval jednoznacznie wskazują na obecność kerogenu typu IV również w próbkach dewonu o nieco większej zawartości węgla organicznego.

Niezależnie od zawartości węgla organicznego, wszystkie przebadane próbki z otworu Goczałkowice IG 1 najprawdopodobniej zawierają w swoim składzie, jałowy w kontekście produkcji węglowodorów, kerogen typu IV. Mianem kerogenu typu IV określa się substancję organiczną pochodzącą z różnych środowisk, która uległa silnemu utlenieniu w trakcie depozycji lub została redeponowana w trakcie kolejnych procesów skałotwórczych (Killops, Killops, 2005).

Dojrzałość termiczna. Temperatura maksymalnego generowania węglowodorów, mierzona w trakcie analizy pod postacią T_{max} , to podstawowy parametr Rock-Eval stosowany do oceny dojrzałości termicznej badanego kerogenu. Parametr ten określa temperaturę, w której doszło do wygenerowania maksymalnej ilości węglowodorów podczas etapu pirolitycznego analizy Rock-Eval (Behar i in., 2001). Wartości parametru T_{max} w badanych próbkach są niskie i wahają się między 326 a 420°C, co sugeruje niską dojrzałość termiczną rozproszonej w nich substancji organicznej (wg Dembickiego, 2017).

Indeks produkcyjności (PI) reprezentuje ilość wygenerowanych węglowodorów względem całkowitego potencjału węglowodorowego skały macierzystej (Behar i in., 2001). Wartość tego parametru wzrasta wraz ze wzrastającym stopniem dojrzałości termicznej kerogenu i w przypadku omawianych danych posłużył on do korelacji z parametrem T_{max} . Zarówno parametr T_{max} , jak i wskaźnik PI są czułe na rodzaj zawartego w skale kerogenu, ponieważ, w zależności od składu, substancja organiczna ulega de-

Fig. 22. A. Diagram S2 vs. TOC do oceny potencjału węglowodorowego skał macierzystych.
B. Diagram klasyfikacyjny typu kerogenu HI vs. OI. C. Diagram klasyfikacyjny typu kerogenu HI vs. T_{max}.
D. Diagram T_{max} vs. PI do oceny dojrzałości termicznej skał macierzystych – dla wszystkich przebadanych próbek z otworu Goczałkowice IG 1 (za Dembickim, 2017 oraz cytowanymi pracami)

MO - materia organiczna

A. A cross-plot of S2 vs. TOC for hydrocarbon potential assessment.
 B. A cross-plot of HI vs. OI for kerogen typing.
 C. A cross-plot of HI vs. T_{max} for kerogen typing.
 D. A cross-plot of T_{max} vs. PI for thermal maturity determination of all analysed samples from the Goczałkowice IG 1 borehole (after Dembicki, 2017 and references therein)

kompozycji w różnych warunkach temperaturowych (Dembicki, 2009). Diagram zależności T_{max} vs. PI (fig. 22D) pokazuje lokalizację większości wyników w obrębie pola odpowiadającego utlenionej lub przetworzonej materii organicznej. Ich umiejscowienie na diagramie jest spójne z klasyfikacją typu zawartego w nich kerogenu. Próbki kambru z głęb. 2969,8 m oraz dewonu z głęb. 2516,3 m, o wartościach PI poniżej 0,2, plasują się w polu charakterystycznym dla niedojrzałej materii organicznej.

Wskazania diagramu $T_{\rm max}$ vs. PI oraz wartości $T_{\rm max}$ poniżej 435°C sugerują, że badana materia organiczna nie uległa przeobrażeniu termicznemu ponad etap diagenezy (<75°C, wg Killopsa, Killops, 2005). Wyniki te są jednak sprzeczne z modelem historii termicznej i warunków pogrzebania tego regionu. Analiza zmian zabarwienia konodontów (CAI) wykonana dla otworu Goczałkowice IG 1 na próbkach z interwału głęb. 1984,5–1985,5 m wskazuje na wysoki stopień przeobrażenia tych skał (Bełka, 1993). Prawdopodobną przyczyną rozbieżności wyników jest nałożenie się kilku cech rozproszonej w próbkach materii organicznej. Podczas pirolizy zawarty w skałach kerogen typu IV jest w stanie wygenerować jedynie niewielkie ilości węglowodorów gazowych. Bardzo niskie zawartości węgla organicznego w badanych próbkach poskutkowały wygenerowaniem znikomych ilości węglowodorów, co przełożyło się na niską intensywność i płaski kształt piku S2. W takich warunkach T_{max} może stanowić losową liczbę z przedziału 300–600°C (wg Bielenia, Matyasik, 2018). Biorąc pod uwagę powyższe czynniki, metoda pirolizy Rock-Eval nie pozwala jednoznacznie określić dojrzałości termicznej badanych skał.

PODSUMOWANIE

Przebadane próbki dolnokambryjskich mułowców (formacji z Goczałkowic) oraz dolnodewońskich węglanów (ogniwa dolomitów z Uszwicy) z otworu wiertniczego Goczałkowice IG 1 cechują się brakiem potencjału do generowania zarówno płynnych, jak i gazowych węglowodorów. Rozproszona w nich materia organiczna to utleniony lub silnie przeobrażony kerogen typu IV. Wskazania niskiej dojrzałości termicznej materii organicznej wyników analizy Rock-Eval są niezgodne z historią termiczną tego regionu, co najprawdopodobniej wynika z rodzaju i ilości kerogenu rozproszonego w badanych skałach.