WYNIKI BADAŃ GEOFIZYCZNYCH

Michał Grzegorz ROMAN

GEOFIZYKA OTWOROWA

ZAKRES WYKONANYCH BADAŃ

Opracowanie danych geofizyki wiertniczej wykonano m.in. w programie Techlog, który został udostępniony PIG--PIB przez Schlumberger Information Solutions w celu prowadzenia prac naukowo-badawczych.

W otworze Unisław IG 1 pomiary geofizyki wiertniczej wykonano w 711 odcinkach pomiarowych. Badania były wykonywane przez grupy karotażowe Geofizyki Toruń z Bazy Geofizyki Otworowej w Toruniu w okresie od 28.03.1980 r. do 23.08.1982 r. Pomiar wykonano przy pomocy aparatury analogowej, następnie – w latach dziewięćdziesiątych XX wieku – część profilowań scyfrowano. Scyfrowane dane pomiarowe znajdują się w formacie plików *.las* w Centralnej Bazie Danych Geologicznych (CBDG) (numer identyfikacyjny CBDG otworu 22923, nazwa: "Unisław IG-1"), oryginalne materiały analogowe są przechowywane w Narodowym Archiwum Geologicznym pod numerem archiwalnym 128425. Z uwagi na zły stan ich zachowania są udostępniane tylko w postaci skanów.

Do dokumentacji otworu wiertniczego Unisław IG 1 załączono następujące pomiary (skróty P... są zgodne z używanymi w załącznikach dokumentacji, w nawiasach podano skróty stosowane w plikach *.las* w CBDG, "_C" oznacza profilowanie kompozytowe powstałe z połączenia badań odcinkowych):

- profilowanie średnicy otworu PŚr (CALI, CALI_C);
- profilowanie naturalnej promieniotwórczości gamma PG (GR, GR_C);
- profilowanie neutron-gamma PNG (NEGR, NEGR_C);
- profilowanie gamma-gamma PGG (GGDN);
- profilowanie neutron-neutron PNN (CNL);
- profilowanie potencjałów samoistnych PS (SP);
- profilowanie oporności PO sondami o rozstawach: A0,4M0,1N (EL02), A1,0M0,1N (EL03), A2,0M0,5N (EN10_C, EL09 lub EL07), A4,0M0,5N (EL14), A8,0M1,0N (EL26), N6,0M0,5A (EL09_C, EN10 lub EN 20), A5,7M0,4N (EL18);
- sterowane profilowanie oporności POst (LL3 w postaci analogowej dostępne często tylko w postaci krzywej zlogarytmowanej);
- profilowanie indukcyjne PI (IL);

- profilowanie akustyczne PA (T1, T2, DT, DT_C);
- profilowanie cementomierzem akustycznym PAc, (CBA, CBDT);
- profilowanie krzywizny otworu PK (umieszczone w nagłówkach badań odcinkowych, zestawione i przeliczone dla całego otworu w osobnym załączniku).

W tabeli 18 przedstawiono dokładne interwały wykonanych profilowań geofizyki otworowej wraz z datą ich wykonania i ówczesną głębokością (wg miary geofizycznej) oraz nominalną średnicą otworu (lub średnicą rur). Większość profilowań scyfrowano z krokiem próbkowania 0,25 m i udostępniono w CBDG w postaci 148 plików o rozszerzeniu .bkr (pliki tekstowe zawierające pojedyncze profilowania kompatybilne z systemem GEOFLOG -Szewczyk, 1996) oraz 22 plików formatu .las (pliki tekstowe zawierające zestandaryzowany nagłówek z informacjami o otworze i odcinku grupujący część/ całość krzywych z odcinka pomiarowego, kompatybilny ze współcześnie stosowanymi programami produkcji zachodniej¹) zawierających odcinkowe, źródłowe pomiary, dwa pliki .las z pomiarami połączonymi i/lub znormalizowanymi oraz dwa pliki .las zawierające wyniki pomiarów prędkości średnich. We wszystkich wymienionych plikach głębokości podano w metrach pod poziomem terenu według miary geofizycznej, bez uwzględnienia poprawki na skrzywienie otworu.

Połączone i znormalizowane wyniki profilowania naturalnej promieniotwórczości gamma i neutron-gamma przedstawiono na figurze 2²⁾. Znajduje się na niej również między innymi profilowanie średnicy otworu wiertniczego z oznaczonymi za pomocą strzałek głębokościami łączenia odcinków badań, średnica nominalna wiercenia oraz profilowania oporności i akustyczne. Profilowanie neutron-

¹ W niektórych przypadkach, żeby plik ten mógł być wczytany do bazy danych programu, pliki te należy zmodyfikować przez usunięcie odstępu między znakami "~A" znajdującymi się nad oznaczeniami poszczególnych kolumn ("DEPTH" itd.) a tymi oznaczeniami, tak aby znalazły się one w jednej linii i były oddzielone jedną spacją. Niezgodność wynika prawdopodobnie z istnienia różnych wersji standardu .las.

² Figura 2 znajduje się pod opaską na końcu książki.

Tabela 18

Wykaz badań geofizyki otworowej wykonanych w otworze wiertniczym Unisław IG 1 (wg Bielawska, Król, 1982)

List of well logs performed in the Unisław IG 1 borehole (Bielawska, Król, 1982)

Data Date	Rodzaj pomiarów Type of measurement	Interwał [m p.p.t.] Interval [m b.g.l.]	Data Date	Rodzaj pomiarów Type of measurement	Interwał [m p.p.t.] Interval [m b.g.l.]	
	BSO $(5 \times POg)$			POst	2055-3077	
	РОр	16–291		РОр	2600-3075	
26.01.1000	PS			PS	010 0055	
26.01.1980	PG, PNG, PGG		5-7.05.1980	PŚr	218-30/5	
	Pśr, Pobj	2-295		PG, PNG, PGG	2580-3075	
	РК	5-300		PA	2600-3075	
	РОр			РТ	2890-3075	
	POg			BSO $(5 \times POg)$		
	PS	218–1076		РОр	2050 2520	
2-3.02.1980	PŚr, PK			POst, PI	3050-3520	
	PG, PNG, PGG	250-1079		PS		
	PGG	218-1025	14-17.06.1980	PŚr	218-3520	
	РТ	800-1076		РК	3050-3520	
	BSO $(5 \times POg)$			PG, PNG, PGG	3050-3520	
	POg	1020–1562		PA	3020-3520	
	PS			PT	3325-3520	
	PŚr	219–1565	12.07.1980	PAc	10-3525	
14-15.02.1980	РК			BSO (3×POg)		
	POst	1020–1565		PO (sonda węglanowa)		
	PG, PNG, PGG			POst	3523–3730	
	PA	219–1565	21.07.1980	PS		
	BSO $(5 \times POg)$			PŚr, PK		
	РОр	1515–2120		PG, PNG	3435-3730	
	POst			PA	3523-3730	
	PS			POg		
29.02-01.03.1980	PŚr	218–2117		РОр		
	РК	1525-2120	0 11 10 1000	POst	3720-4342	
	PG, PNG, PGG	1515 0110	9-11.10.1980	PS		
	PA	1515-2118		PŚr, PK	3720-4545	
	РТ	1940–2118		PG, PNG	4445-4545	
	POg	2050 2640	19.11.1980	PAC	3000-4550	
	РОр	2050-2640		BSO $(5 \times POg)$		
	PS	219, 2640		POst	4529 4920	
21 22 02 1000	PŚr	218-2640	14-17.11.1980	PS	4538-4830	
21-22.03.1980	РК	2075-2640		PŚr, PK		
	PG, PNG, PGG	2050 2640		PG, PNG, PGG	3860-4830	
	PA	2050-2640		BSO (4×POg)		
	РТ	2450-2640	26-28.02.1980	PŚr, PK	4538–5315	
5-7.05.1980	BSO $(5 \times POg)$	2055-3077		PG, PNG		

PG – profilowanie naturalnej promieniotwórczości gamma, PNG – profilowanie neutron – gamma, PS – profilowanie naturalnych potencjałów, PO – klasyczne profilowanie oporności (p – potencjałowe, g – gradientowe), PK – profilowanie krzywizny otworu, PŚr – profilowanie średnicy, PI – profilowanie indukcyjne, POst – sterowane profilowanie oporności (laterolog), PGG – profilowanie gamma-gamma, PA – profilowanie akustyczne, PAc – profilowanie cementomierzem akustycznym, BSO – boczne sondowanie oporności, PT – profilowanie temperatury

PG – gamma ray log, PNG – neutron-gamma ray log, PS – spontaneous potential log, PO – conventional electrical log (g – lateral, p – normal), PK – deviation log, PSr – caliper, PI – induction log, POst – laterolog, PGG – gamma-gamma log, PA – acoustic log, PAc – cement bound log, PT – temperature log.

-gamma i profilowanie naturalnej promieniotwórczości gamma znormalizowano zgodnie z metodyką opisaną w pracy Szewczyka i in. (2001). Ponadto w otworze Unisław IG 1 profilowanie gamma zestandaryzowano *post factum* (zrekalibrowane) do jednostek [API] według metodyki opisanej w pracy Szewczyka (2000a) – krzywa GR_S w pliku *niel s.las* dostępnym w CBDG.

W otworze tym nie przeprowadzono profilowań temperatury, a jedynie pomiary termometrem maksymalnym wykonywane każdorazowo przy zapuszczaniu sond do otworu. Takie punktowe pomiary temperatury w warunkach nieustalonych zestawia tabela 19.

W zasobach CBDG dla 171 próbek rdzenia znajdują się wyniki oznaczeń: gęstości szkieletowych i objętościowych, porowatości efektywnych i całkowitych zawartość kalcytu i dolomitu oraz (dla wybranych próbek) przepuszczalności w kierunku poziomym i pionowym. Wyniki części tych oznaczeń laboratoryjnych prezentuje figura 2.

Tabela 19 Dostępne pomiary termometrem maksymalnym w otworze wiertniczym Unisław IG 1

Maximum tempearture measurements available for the Unisław IG 1 borehole

Głębokość maksymalna [m] Maximal depth	Temperatura [°C] Temperature
1075	28
1575	42,5
2120	54,5
2640	57,5
3075	62
3520	70

OCENA JAKOŚCI DANYCH

Wykonane pomiary były powtarzalne. W przypadku analizy archiwalnych danych geofizyki wiertniczej należy pamiętać o ograniczeniach stosowanego ówcześnie sprzętu oraz analogowych metod rejestracji:

- Wyniki badań radiometrycznych nie były kalibrowane ani standaryzowane, jednostki w których rejestrowano te profilowania to impulsy na minutę.
- Wykonane w otworze klasyczne pomiary oporności w wariantach potencjałowym i gradientowym mierzą pozorne oporności skał.
- Proces cyfrowania analogowo zarejestrowanych krzywych powoduje zwiększenie niepewności pomiaru. Możliwe są również błędy grube – zauważono np. podpisanie cyfrowej wersji krzywych potencjałowego profilowania oporności (*normal* – w zasobach CBDG oznaczane jako EN) jako profilowanie gradientowe (*lateral* – EL).

Warunki geologiczno-techniczne panujące w otworze uległy pogorszeniu po nawierceniu utworów cechsztynu, w związku z czym nie wykonano wszystkich pomiarów niezbędnych do interpretacji ilościowej, a profilowania radiometrii przeprowadzono po zarurowaniu otworu. Niemal roczny przestój prac wiertniczych po osiągnięciu utworów czerwonego spagowca spowodował podniesienie temperatury w otworze, co - wraz z koniecznością stosowania ciężkich płuczek - uniemożliwiło wykonanie pełnego zestawu profilowań. Poniżej stropu utworów cechsztynu na zapis sond geofizyki otworowej duży wpływ mają wysoka mineralizacja płuczki i dodatek barytu (płuczka solno--skrobiowa obciążona barytem). Zniekształcenia te są najsilniejsze w przypadku pomiarów elektrometrycznych (zmniejszenie pseudooporności) oraz sond neutronowych (intensywniejsza absorpcja neutronów termicznych przez chlor zawarty w płuczce) i gamma/gamma-gamma (baryt stosunkowo silnie absorbuje promieniowanie gamma). Wszystko to sprawia, że wyniki pomiarów geofizycznych wykonanych od stropu utworów cechsztynu pozwalają jedynie na jakościową interpretację (Bielawska, Król, 1982).

Wszystkie wykonane pomiary, a co za tym idzie ich interpretacje, są obciążone zmianami średnic otworu – efekt ten jest wyraźnie widoczny w miejscach zmiany nominalnej średnicy wiercenia czy znacznych rozmyć ścian otworu (por. fig. 2). Większe rozmycia ścian otworu zarejestrowano w interwałach głębokości: 218–300; 2383–2518; 3661– 3729; 4676–4745 i 4770–4810 m.

Przesunięcia głębokościowe pomiędzy głębokościami pomierzonymi geofizycznie a głębokościami notowanymi przez wiertników sięgają 13 m na głębokości 5000 m i są tłumaczone różnicą w podatności na rozciąganie przewodu wiertniczego i kabla geofizycznego w warunkach wysokich ciśnień i temperatur panujących na dnie otworu (Bielawska, Król, 1982).

Profilowanie krzywizny otworu pomierzono z krokiem 25 m w całym profilu, a następnie ręcznie scyfrowano, przeliczono (metodą stycznych) i zwizualizowano. Profilowanie krzywizny otworu nie wykazało znaczącego odchylenia od pionu do głębokości 3800 m. Poniżej, do głębokości 4725 m, otwór krzywi się znacznie w kierunku SSE (maksymalnie do 7°), a w interwale 4725–5325 m – w kierunku NE (maksymalnie do 14°). Sumaryczne odejście otworu od punktu początkowego wyniosło w rzucie poziomym 100,5 m, jego azymut to 107,6°, a różnica pomiędzy rzeczywistą głębokością pionową a głębokością pomierzoną w otworze wynosi 11,2 m (Bielawska, Król, 1982). Stwierdzono skrzywienie się otworu po roku stójki związanej z problemami z jego opróbowaniem (Raczyńska i in., 1983).

INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Wkrótce po wykonaniu badań odcinkowych przeprowadzano interpretację granic litologicznych, wydzielano poziomy zbiornikowe i oceniano ich nasycenie metodą normalizacji krzywych. Dla wydzielonych poziomów zbiornikowych wykonywano również klasyczną, odcinkową interpretację, o ile pozwalał na nią zestaw dostępnych pomiarów. Na podstawie tych analiz oraz danych z sąsiednich otworów wyznaczono profil stratygraficzny (Bielawska, Król, 1982).

Za najbardziej perspektywiczne dla wystąpień węglowodorów uznano utwory czerwonego spągowca i dewonu. Dostępne wyniki interpretacji wskazują na obecność gazu ziemnego ekranowanego przez nadległe utwory cechsztynu oraz ropy naftowej w utworach dewonu. Duża miąższość utworów dewonu daje nadzieję na uzyskanie przypływów przemysłowych, mimo stosunkowo trudnych warunków udostępniania tego poziomu. Wymienione wystąpienia węglowodorów są od siebie niezależne – gaz ziemny w kolektorze czerwonego spągowca kontaktuje z solanką (Bielawska, Król, 1982).

Po zcyfrowaniu danych geofizyki wiertniczej zinterpretowano je w profilu za pomocą systemu GEOFLOG (Szewczyk, 1996). Dane dotyczące litologii zestawione z profilowaniem naturalnej promieniotwórczości gamma i profilowaniem neutron-gamma skalibrowano z oznaczeniami porowatości efektywnej i gęstości na próbkach (łącznie 167 oznaczeń). Gęstość objętościową obliczono dla całego profilu za pomocą wzoru (Szewczyk, 2000b):

$$\rho = \rho_{\rm m} \left(1 - \Phi - V_{\rm sh}\right) + \rho_{\rm w} \Phi + \rho_{\rm sh} V_{\rm sh}$$

gdzie:

- $\rho_{m} = gestość szkieletu skalnego ustalona za pomocą typu litologii, [kg/m³];$
- porowatość całkowita wyznaczona na podstawie profilowania neutron gamma poprawionego na wpływ zailenia i skalibrowanego do próbek, [m³/m³];
- V_{sh} udział objętościowy minerałów ilastych ustalony na podstawie profilowania gamma, [m³/m³];
- ρ_w gęstość medium nasycającego przestrzeń porową, [kg/m³];
- ρ_{sh} gęstość minerałów ilastych, [kg/m³].

Trafność wyboru parametrów sterujących kontrolowano przez porównanie obliczonej na podstawie modelu litologicznego krzywej czasu interwałowego fali P (DT) z rzeczywistymi wartościami DT pomierzonymi sondą akustyczną w otworze (współczynnik korelacji R = 0,783). W interwałach o znacznym zaileniu (por. fig. 2) sposób ten może zawodzić ze względu na zjawisko tzw. zaniku cykli (przeskoku faz, ang. *cycle skipping*).

Wyniki interpretacji omówionych w niniejszym rozdziale zestawiono na figurze 2.

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

OPRACOWANIE POMIARU PRĘDKOŚCI ŚREDNICH

Pomiar średnich prędkości rozchodzenia się fal sejsmicznych w ośrodku skalnym w głębokim otworze badawczym Unisław IG 1 wykonano w sierpniu 1980 r. Opracowanie wyników profilowania prędkości i profilowania akustycznego wykonało Przedsiębiorstwo Geofizyki Morskiej i Lądowej Górnictwa Naftowego w Toruniu.

Pomiar czasu przyjścia fali sejsmicznej do geofonu głębinowego przeprowadzono w interwale głębokości 195– 3495 m co 15 m, przy całkowitej głębokości wiercenia zakończonej na 5355 m. Wysokość wylotu otworu wynosiła 86 m n.p.m., natomiast wysokość poziomu odniesienia pomiaru przyjęto na 0 m n.p.m. Prace pomiarowe wykonała grupa 3D/T przy pomocy aparatury POISK SK, sondą 6-elementową. Wielkość średniego ładunku dynamitu wynosiła 0,250 kg. Geofony korekcyjne usytuowano co 25 m od głębokiego otworu i 5 m od punktu strzałowego (PS).

Prace strzałowe prowadzono z trzech PS przy średniej głębokości strzelania 10 m. Odległość PS 1 i PS 2 od głębokiego otworu była taka sama i wynosiła 150 m, a dla PS 3 większa – 200 m. Niwelacja, czyli wysokość względna punktów strzałowych w stosunku do wylotu otworu wiertniczego, kształtowała się następująco:

dla PS 2 - 0 m,

dla PS 3 – +1 m.

Odnośnie do azymutu mierzonego w punkcie głębokiego otworu w kierunku punktu strzałowego w przypadku PS 1 jest to 130°, dla PS 2 - 270° i dla PS 3 - 360°.

W kwietniu 1982 r. wykonano uzupełnienie głębokościowe do 4515 m wcześniejszego pomiaru prędkości średnich zakończonego na głębokości 3495 m. Interwał pomiaru wynosił tak jak wyżej 15 m. Prace pomiarowe wykonała grupa 3D/T aparaturą CS-5G. Prace prowadzono na tym odcinku z 1 punktu wzbudzania (PW) metodą bezdynamitową. Odległość PW od głębokiego otworu stanowiła 100 m, a jego wysokość względna w stosunku do wylotu wiercenia +3 m. Azymut mierzony w punkcie otworu wiertniczego w kierunku tego punktu wzbudzania wynosił 130°.

Dobór odpowiednich warunków wzbudzania poprzedził pomiar strefy małych prędkości (SMP). W jego wyniku otrzymano następujące wartości charakteryzujące tę strefę: dla $h_0 = 2,0$ m V_0 wynosi 160 m/s, dla $h_1 = 0$ m V_1 wynosi 1830 m/s i dla $h_2 = 834$ m V_2 również wynosi 1830 m. Obliczenia obejmujące m.in. redukcję głębokości, czasów i poprawki czasowe wykonano na maszynie EMR-6135.

Głębokość zredukowaną wyznaczono według wzoru:

$$h_{\rm r} = h_{\rm pom} - h_{\rm odn}$$

gdzie:

- *h_r* głębokość zredukowana punktu pomiarowego do poziomu odniesienia, [m];
- h_{pom} głębokość zanurzenia geofonu głębinowego, [m];
- *h_{odn}* głębokość poziomu odniesienia (z uwzględnieniem niwelacji i głębokości wzbudzania), [m].

Redukcję czasów do pionu wykonano metodą, która zakłada jednorodność ośrodka od punktu wzbudzania do głębokości zanurzania geofonu, czyli prostoliniowy przebieg promienia sejsmicznego, według wzoru:

$$t_r = \frac{h_r}{\sqrt{{h_r}^2 + d^2}} \cdot t_p$$

gdzie:

 t_r – czas zredukowany, [s];

 h_r – głębokość zredukowana punktu pomiarowego do poziomu odniesienia, [m];

 t_n – czas poprawiony, [s];

 d – odległość punktu wzbudzania PW od głębokiego otworu, [m].

Poprawki czasowe liczono według wzoru:

$$d_t = \frac{h - h_{odn}}{V_0}$$

gdzie:

- *h* głębokość wzbudzania, [m];
- V_o prędkość fali w utworach przypowierzchniowych w strefie małych prędkości (SMP), która dla otworu wiertniczego Unisław IG 1 wynosi 1830 m/s.

Wartości h_r i t_r posłużyły do obliczenia prędkości średnich (V_{sr}) zgodnie ze wzorem:

$$V_{\dot{s}r} = \frac{h_r}{t_r}$$

Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego. Program obliczeń jest opracowany w dwóch wersjach: bez uwzględnienia i z uwzględnieniem krzywizny otworu i w zależności od wielkości odchylenia otworu od pionu stosuje się odpowiednią wersję programu. Redukcję czasów do pionu wykonano w tym przypadku z użyciem programu w wersji nieuwzględniającej krzywizny otworu, do czego upoważniały parametry otworu wiertniczego Unisław IG 1.

Charakter zmian prędkości w funkcji głębokości zilustrowano w odpowiednich tabelach i na wykresach. Zestaw wartości h_r , t_r i (V_{sr}) zestawiono w tabeli 20. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich i hodografu pionowego (fig. 34). Wykres prędkości średnich i hodograf pionowy do głębokości 3495 m stanowią graficzne uśrednienie krzywych uzyskanych z trzech punktów wzbudzania. Do takiego postępowania upoważniał stosunkowo mały rozrzut pomierzonych wielkości przy wzbudzaniu z trzech różnych punktów. Przedstawione wykresy wskazują na zależność między wzrostem głębokości a czasem rejestracji i prędkością średnią. Zaznacza się na nich systematyczny wzrost prędkości wraz z głębokością.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości zastosowano sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp miedzy punktami pomiarowymi. Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich z zadaniem obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono przez wyrównanie zmierzonych czasów zredukowanych do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości, co 20 m. Następnie czasy te wygładzono specjalnym programem przez zastosowanie operacji splotu z filtrem trójkątnym z zastosowaniem 20 razy filtrów 0,25 i 0,50. Celem tych przekształceń usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów było przygotowanie materiałów do obliczenia prędkości interwałowych. Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości czasów spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone czasy pomiarów po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonych w latach 90. XX wieku w Zakładzie Geofizyki PIG na potrzeby interpretacji refleksyjnych prac sejsmicznych. Bank ten przekazano do CBDG PIG-PIB.

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów wygładzonych n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów

Tabela 20

Zestawienie wartości głębokości (H), czasu zredukowanego (T_r), i prędkości średnich (V_{sr})

Depth (*H*), reduced time (T_r) and average velicity (V_{sr}) values

<i>h</i> [m]	t_r [s]	V_{sr} [m/s]		<i>h</i> [m]	t_r [s]	$V_{sr} \ [{ m m/s}]$
4	0,006000	1070	1	559	0,268000	2086
19	0,016000	1188		574	0,275000	2087
34	0,025000	1360		589	0,282000	2089
49	0,033000	1485		604	0,289000	2090
64	0,041000	1561]	619	0,296000	2091
79	0,049000	1612		634	0,304000	2086
94	0,057000	1649		649	0,309000	2100
109	0,064000	1703		664	0,315000	2108
124	0,071000	1746		679	0,321000	2115
139	0,078000	1782		694	0,326000	2129
154	0,085000	1812		709	0,331000	2142
169	0,091000	1857		724	0,335000	2161
184	0,097000	1897		739	0,338000	2186
199	0,103000	1932		754	0,342000	2205
214	0,108000	1981		769	0,345000	2229
229	0,115000	1991		784	0,350000	2240
244	0,122000	2000		799	0,354000	2257
259	0,129000	2008		814	0,359000	2267
274	0,136000	2015		829	0,364000	2277
289	0,143000	2021		844	0,370000	2281
304	0,150000	2027		859	0,375000	2291
319	0,158000	2019		874	0,380000	2300
334	0,165000	2024		889	0,385000	2309
349	0,171000	2041		904	0,391000	2312
364	0,175000	2080		919	0,396000	2321
379	0,183000	2071		934	0,401000	2329
394	0,190000	2074		949	0,408000	2326
409	0,197000	2076		964	0,413000	2334
424	0,204000	2078		979	0,420000	2331
439	0,211000	2081		994	0,426000	2333
454	0,218000	2083		1009	0,431000	2341
469	0,224000	2094		1024	0,435000	2354
484	0,231000	2095		1039	0,440000	2361
499	0,239000	2088		1054	0,444000	2374
514	0,244000	2107		1069	0,448000	2386
529	0,252000	2099		1084	0,454000	2388
544	0,260000	2092		1099	0,460000	2389

Tabela 20 cd.

<i>h</i> [m]	t _r [s]	V_{sr} [m/s]	<i>h</i> [m]	t_r [s]	V_{sr} [m/s]
1114	0,466000	2391	1684	0,624000	2699
1129	0,472000	2392	1699	0,628000	2705
1144	0,478000	2393	1714	0,632000	2712
1159	0,484000	2395	1729	0,635000	2723
1174	0,490000	2396	1744	0,638000	2734
1189	0,495000	2402	1759	0,641000	2744
1204	0,502000	2398	1774	0,644000	2755
1219	0,507000	2404	1789	0,648000	2761
1234	0,512000	2410	1804	0,653000	2763
1249	0,517000	2416	1819	0,658000	2764
1264	0,522000	2421	1834	0,663000	2766
1279	0,527000	2427	1849	0,668000	2768
1294	0,531000	2437	1864	0,673000	2770
1309	0,535000	2447	1879	0,678000	2771
1324	0,539000	2456	1894	0,683000	2773
1339	0,542000	2470	1909	0,688000	2775
1354	0,545000	2484	1924	0,693000	2776
1369	0,548000	2498	1939	0,698000	2778
1384	0,551000	2512	1954	0,702000	2783
1399	0,554000	2525	1969	0,706000	2789
1414	0,557000	2539	1984	0,710000	2794
1429	0,560000	2552	1999	0,714000	2800
1444	0,563000	2565	2014	0,717000	2809
1459	0,566000	2578	2029	0,721000	2814
1474	0,569000	2591	2044	0,725000	2819
1489	0,572000	2603	2059	0,728000	2828
1504	0,575000	2616	2074	0,731000	2837
1519	0,578000	2628	2089	0,734000	2846
1534	0,582000	2636	2104	0,737000	2855
1549	0,585000	2648	2119	0,741000	2860
1564	0,588000	2660	2134	0,746000	2861
1579	0,592000	2667	2149	0,749000	2869
1594	0,597000	2670	2164	0,753000	2874
1609	0,602000	2673	2179	0,757000	2878
1624	0,607000	2675	2194	0,761000	2883
1639	0,612000	2678	2209	0,766000	2884
1654	0,616000	2685	2224	0,771000	2885
1669	0,620000	2692	2239	0,777000	2882

Tabela 20 cd.

<i>h</i> [m]	$\begin{bmatrix}t_r\\[\mathbf{s}]\end{bmatrix}$	V_{sr} [m/s]	<i>h</i> [m]	
2254	0,783000	2879	2824	(
2269	0,788000	2879	2839	(
2284	0,794000	2877	2854	(
2299	0,799000	2877	2869	(
2314	0,804000	2878	2884	(
2329	0,809000	2879	2899	(
2344	0,813000	2883	2914	(
2359	0,818000	2884	2929	(
2374	0,822000	2888	2944	(
2389	0,826000	2892	2959	(
2404	0,829000	2900	2974	(
2419	0,833000	2904	2989	(
2434	0,837000	2908	3004	(
2449	0,840000	2915	3019	(
2464	0,843000	2923	3034	(
2479	0,847000	2927	3049	(
2494	0,850000	2934	3064	(
2509	0,853000	2941	3079	(
2524	0,854000	2956	3094	(
2539	0,856000	2966	3109	
2554	0,859000	2973	3124	1
2569	0,863000	2977	3139	1
2584	0,866000		3154	
2599	0,870000	2984	3169	
2614	0,874000	2987	3184	1
2629	0,878000	2991	3199	
2644	0,883000	2994	3214	
2659	0,888000	2994	3229	
2674	0,893000	2994	3244	
2689	0,898000	2994	3259	
2704	0,904000	2994	3274]
2719	0,909000	2991	3289	1
2734	0,914000	2991	3304	
2749	0,918000	2991	3319	
2764	0,922000	2995	3334	
2779	0,925000	2998	3349	
2794	0,928000	3004	3364	1
2809	0,931000	3011	3379	

<i>h</i> [m]	t_r [S]	V_{sr} [m/s]
2824	0,935000	3017
2839	0,939000	3020
2854	0,942000	3023
2869	0,945000	3030
2884	0,948000	3036
2899	0,951000	3042
2914	0,954000	3048
2929	0,957000	3055
2944	0,960000	3061
2959	0,964000	3067
2974	0,968000	3070
2989	0,973000	3072
3004	0,978000	3072
3019	0,982000	3072
3034	0,985000	3074
3049	0,988000	3080
3064	0,991000	3086
3079	0,995000	3092
3094	0,998000	3094
3109	1,001000	3100
3124	1,004000	3106
3139	1,008000	3112
3154	1,012000	3114
3169	1,016000	3117
3184	1,020000	3119
3199	1,024000	3122
3214	1,027000	3124
3229	1,030000	3130
3244	1,033000	3135
3259	1,037000	3143
3274	1,040000	3148
3289	1,044000	3150
3304	1,048000	3153
3319	1,052000	3155
3334	1,055000	3160
3349	1,058000	3165
3364	1,060000	3174
3379	1,063000	3179

Та	bel	a	20	cd.
1 44	D.C.			cu.

<i>h</i> [m]	t _r [S]	$V_{sr} \ [{ m m/s}]$	<i>h</i> [m]	$\begin{bmatrix}t_r\\\mathbf{S}\end{bmatrix}$	$V_{sr} \ [{ m m/s}]$
3394	1,066000	3184	3919	1,184000	3310
3409	1,069000	3189	3934	1,188000	3311
3424	1,072000	3194	3949	1,191000	3316
3439	1,075000	3199	3964	1,194000	3320
3454	1,079000	3201	3979	1,197000	3324
3469	1,083000	3203	3994	1,200000	3328
3484	1,086000	3208	4009	1,203000	3333
3499	1,090000	3210	4024	1,206000	3337
3514	1,094000	3212	4039	1,209000	3341
3529	1,097000	3217	4054	1,212000	3345
3544	1,100000	3222	4069	1,215000	3349
3559	1,103000	3227	4084	1,218000	3353
3574	1,106000	3231	4099	1,221000	3357
3589	1,109000	3236	4114	1,225000	3358
3604	1,113000	3238	4129	1,228000	3362
3619	1,117000	3240	4144	1,231000	3366
3634	1,120000	3245	4159	1,235000	3368
3649	1,123000	3249	4174	1,238000	3372
3664	1,126000	3254	4189	1,241000	3376
3679	1,130000	3256	4204	1,244000	3379
3694	1,134000	3257	4219	1,248000	3381
3709	1,138000	3259	4234	1,251000	3384
3724	1,141000	3264	4249	1,254000	3388
3739	1,145000	3266	4264	1,257000	3392
3754	1,148000	3270	4279	1,260000	3396
3769	1,151000	3275	4294	1,263000	3400
3784	1,155000	3276	4309	1,267000	3401
3799	1,158000	3281	4324	1,270000	3405
3814	1,161000	3285	4339	1,274000	3406
3829	1,165000	3287	4354	1,278000	3407
3844	1,168000	3291	4369	1,281000	3411
3859	1,171000	3295	4384	1,284000	3414
3874	1,174000	3300	4399	1,287000	3418
3889	1,178000	3301	4414	1,290000	3422
3904	1,181000	3306	4429	1,293000	3425

Fig. 34. Wykres prędkości średnich (A) i hodograf pionowy (B) (poz. odn. 0,0 m n.p.m.)

 $T_{\rm r}$ – średni czas zredukowany, $V_{\rm śr}$ – prędkość średnia, H – głębokość. Stratygrafia: ${\rm K_z}$ – kenozoik; ${\rm K_m}$ – kreda, mastrych; ${\rm K_{ep}}$ – kreda, kampan; ${\rm K_{st}}$ – kreda, santon; ${\rm K_{en}}$ – kreda, koniak; ${\rm K_t}$ – kreda, turon; ${\rm K_e}$ – kreda, cenoman; ${\rm K_1}$ – kreda dolna; J₃ – jura górna; J₂ – jura środkowa; J₁ – jura dolna; T₃ – trias górny; T₂ – trias środkowy; T₁ – trias dolny; P₃ – perm górny; P₁ – perm dolny; D – dewon

Average seismic velocity (A) and travel-time curve (B) (reference level 0.0 m a.s.l.)

 T_r – average reduced time, V_{sr} – average velocity, H – depth. Stratigraphy: K_z – Cenozoic; K_m – Cretaceous, Maastrichtian; K_{cp} – Cretaceous, Campanian; K_{st} – Cretaceous, Santonian; K_{cn} – Cretaceous, Coniacian; K_t – Cretaceous, Turonian; K_c – Cretaceous, Cenomanian; K_1 – Lower Cretaceous; J_3 – Upper Jurassic; J_2 – Middle Jurassic; J_1 – Lower Jurassic; T_3 – Upper Triassic; T_2 – Middle Triassic; T_1 – Lower Triassic; P_3 – Upper Permian; P_1 – Lower Permian; D – Devonian

prędkości interwałowych. Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości V_w (prędkości wygładzone), V_i (prędkości interwałowe) i V_k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawarto w tabeli 21. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 35. Ze-

Fig. 35. Wykresy prędkości wygładzonych (V_w) , interwałowych (V_i) i kompleksowych (V_k) (poz. odn. 0,0 m n.p.m.)

Objaśnienia na figurze 34

Smoothed velocity (V_w) , interval velocity (V_i) and complex velocity V_k (reference level 0.0 m a.s.l.)

For explanations see Figure 34

stawienie wykresów prędkości z profilem geologicznym otworu wiertniczego umożliwia powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi w otworze. Korelacja wymaga uwzględnienia podanych wcześniej różnic w poziomach odniesienia: wylotu głębokiego otworu (86 m n.p.m.) i załączonych wyników pomiarów prędkości sprowadzonych do 0 m n.p.m.

W otworze wiertniczym Unisław IG 1 interwał głębokościowy odpowiadający utworom kredowym (K_2) charakteryzuje się prędkościami narastającymi stopniowo w sposób schodkowy. Najniższe wartości oscylujące w granicach 1800–1950 m/s dotyczą osadów mastrychtu i częściowo

kampanu wraz z ich ok. 100-metrowym nadkładem (K_). Na głębokościach od 290 do 490 m (wykres prędkości) następuje wzrost prędkości do ok. 2200 m/s, która obejmuje w profilu geologicznym otworu pozostałe warstwy kampanu oraz santonu. W warstwach przyspągowych santonu, tuż powyżej granicy stratygraficznej santon-koniak, obserwuje się następny skok prędkości o 100 m/s wydzielający następny podkompleks w utworach kredowych, o miąższości ok. 220 m i średniej wartości prędkości 2300 m/s. Jest to seria obejmująca zgodnie z danymi otworowymi interwał koniak-cenoman wyróżniająca się wśród skał kompleksu kredy górnej. Prawdopodobnie udział materiału węglanowego jest tu większy niż w pozostałych warstwach. W konsekwencji zmiany prędkości na krzywych pomiarowych, w tym w czterowarstwowym kompleksie, następują w przedziale 1800-2300 m/s, co obrazuje zmienność wykształcenia litologicznego poszczególnych warstw budujących te utwory. Ich zróżnicowanie podkreślają też anomalie zanotowane na krzywych profilowania akustycznego (PA) i prędkości interwałowych na głębokościach odpowiadających kolejno granicom kontaktowym w profilach mastrycht-kampan i turon-cenoman. Jeszcze wyraźniejsza granica prędkościowa o kontraście 850 m/s zaznacza kontakt utworów górno- i dolnokredowych. Utwory kredy dolnej (K) na krzywej prędkości kompleksowej charakteryzują się dwiema wartościami. Wartość wyższa 3150 m/s odpowiada 140-metrowej miąższości warstwom górnym. Prędkość niższa 2800 m/s, przypisana pakietom dolnym, dotyczy również najwyższych poziomów jury górnej (J_2) , co łącznie daje miąższość 260 m.

W opisywanym otworze wiertniczym najbardziej zróżnicowany pod względem prędkości jest kompleks odpowiadający stratygraficznie formacjom jury. Na podstawie analizy poszczególnych krzywych prędkościowych przedział odpowiadający jurze górnej można podzielić na dwa główne podkompleksy. Górny o miąższości ok. 240 m charakteryzuje się prędkością 3050 m/s i dolny o wartości 4500 m/s, który tym samym przewyższa o 1450 m/s prędkość leżących wyżej utworów. Podkompleks górny jest dodatkowo różnicowany wartościami prędkości interwałowej, co prawdopodobnie pozostaje w zależności od procentowego udziału skał wapienno-marglistych w skałach tytonu i kimerydu, które ten odcinek profilu obejmuje. Tak wysoki kontrast prędkości zaznacza się na głębokości korelującej się z przystropowymi warstwami utworów węglanowych oksfordu i wyróżnia 250-metrową serię tych utworów. Wyinterpretowana dla nich wspomniana wyżej średnia prędkość kompleksowa 4500 m/s jest najwyższą w omawianym profilu otworowym. Poniżej na wszystkich trzech wykresach prędkości: wygładzonych, interwałowych i kompleksowych następuje zmiana gradientu. Ujemny kontrast prędkości o wartości 800 m/s towarzyszy przejściu do utworów jury środkowej (J₂), charakteryzujących się obniżoną w stosunku do nadkładu prędkością kompleksową do 3700-3750 m/s, która reprezentuje tu utwory piaszczysto-ilaste tej formacji. Granica stratygraficzna między jurą środkową i dolną (J_1) nie zaznacza się na krzywych prędkościowych w sposób ścisły ze względu na brak znaczących dla tego parametru zmian w charakterze osadów na tym poziomie. Zanotowana zmiana występuje powyżej, według przyjętej wersji danych z otworu na głębokości kontaktu bajosu z aalenem. Utwory jury dolnej charakteryzują zasadniczo dwie prędkości: część górną 3400 m/s i część dolną wyższa -3900 m/s, o kontraście 500 m/s lokalizującym się w warstwach przystropowych formacji drzewieckiej. Związane jest to z wydzielaniem się na krzywych prędkościowych utworów z przewagą poziomów piaskowcowych w postaci podwyższonych wartości, co jeszcze bardziej szczegółowo obrazuje wykres prędkości interwałowych. Poniżej w przedziale głębokościowym obejmującym najniższe sekwencje jury dolnej (J₁, formacja zagajska) i trias górny (T₂) obserwuje się zmniejszenie parametru prędkości kompleksowej do 3350 m/s. Następnie ponownie za sprawą kontrastu 1150 m/s zostaje wyróżniony odcinek o bardzo dużej prędkości kompleksowej 4500 m/s związany z utworami wapienia muszlowego (T₂). Kolejne obniżenie prędkości do poziomu 3550 m/s dotyczy górnych skał triasu dolnego (ret). W przedziale występowania wyżej opisanych pakietów triasowych wykres prędkości interwałowych dodatkowo różnicuje poszczególne serie.

Na głębokości ok. 2810 m (na wykresie prędkości) wskazania na krzywej pokazują kontrast prędkości 800 m/s i wzrost wartości prędkości kompleksowej do 4350 m/s, która z małymi odchyleniami utrzymuje się na tym poziomie dla całego, o miąższości 1000 m, kompleksu obejmującego w profilu geologicznym otworu utwory triasu dolnego (T_1) i częściowo permu górnego (P_2) . Zakres zmian parametrów prędkości w tym przedziale jest mały i wynosi od 4100 do 4675 m/s, co świadczy o takim wykształceniu litologicznym osadów, które daje na krzywych pomiarowych zbliżony efekt prędkościowy. Najgłębszy odcinek krzywych prędkościowych obrazuje rozkład tego parametru w niższych skałach cechsztynu (PZ3-PZ1) i w kończącym pomiar czerwonym spągowcu. Początkowo wartość rośnie od 4350 do 4800 m/s, po czym utrzymuje się na poziomie 4600-4650 m/s. Największe zmiany dokonują się w przedziale głębokościowym odpowiadającemu młodszej soli kamiennej dolnej.

Podsumowując, najwyższe wartości prędkości zarejestrowano w utworach wapiennych jury górnej – w oksfordzie oraz w kompleksie wapienia muszlowego triasu środkowego. Najniższe prędkości cechuje kilkustopniowy kompleks kredy górnej o miąższości 710 m z uwzględnieniem jej nadkładu i relatywnie poszczególne, wyróżnione kompleksy według profilu stratygraficznego w utworach jurajsko-triasowych.

Analiza przedstawionych powyżej wyników badań upoważnia do wydzielenia następujących średnich wartości prędkości (w zaokrągleniu do 50 m/s) dla poszczególnych kompleksów stratygraficznych w otworze Unisław IG 1:

- kreda górna (K_2) 2150 m/s,
- kreda dolna $(K_1) 3150$ i 2800 m/s,
- jura górna (J₃) 3050 i 4500 m/s (oksford),
- jura środkowa (J₂) 3700-3750 m/s,
- jura dolna (J₁) 3400 i 3900 m/s,
- trias górny (T₃) 3350 m/s,

- trias środkowy (T₂) 4500 m/s (wapień muszlowy),
- ret 3550 m/s,
- trias dolny (T_1) 4350 m/s,
- perm (P) 4550 m/s.

Wykresy prędkości wygładzonych, interwałowych i kompleksowych odwzorowują złożony profil geologiczny otworu wiertniczego Unisław IG 1. Prędkość jako pochodna czasu jest zależna od zmian w profilu geologicznym przewierconych warstw. Liczba możliwych do rozróżnienia warstw zależy od kontrastu właściwości sprężystych między utworami nadległymi i podścielającymi oraz stosunku miąższości danej warstwy do interwału, jaki określa prędkość. Obserwowane kontrasty prędkości są efektem zmian w wykształceniu litologicznym poszczególnych ogniw litostratygraficznych. W rezultacie daje to możliwość określenia granic między nimi. Na krzywych można wyznaczyć szereg kompleksów o dosyć jednolitej i zbliżonej charakterystyce prędkościowej, które znajdują też odzwierciedlenie w pomiarach sejsmicznego profilowania akustycznego (PA) wykonanego w tym otworze do głębokości 3495 m.

Otrzymane wyniki stanowią znaczący materiał do uaktualnienia modelu prędkości niezbędnego do prawidłowego głębokościowego opracowania materiałów sejsmicznych z rejonu otworu wiertniczego Unisław IG 1 i jego otoczenia. Uwzględnienie w rozkładach prędkości wyników z pomiarów w otworze wiertniczym Unisław IG 1 sięgających 4515 m ułatwi korelację i przyporządkowanie poziomów refleksyjnych na przekrojach do poszczególnych pięter permo-mezozoiku.

Tabela 21

Zestawienie uśrednionych wartości prędkości interwałowej (V_i) , prędkości kompleksowej (V_k) i prędkości wygładzonej (V_w) obliczonych z czasu wygładzonego

Averaged interval velocity (V_i) , complex velocity (V_k) and smoothed velocity (V_w) values calculated from smoothed time

<i>Н</i> [m]	V_i [m/s]	V_k [m/s]	V _w [m/s]	<i>Н</i> [m]	V_i [m/s]	V_k [m/s]	V _w [m/s]
20	1754	1822	1905	480	2170	2190	2146
40	1754	1822	1709	500	2170	2314	2132
60	1754	1822	1776	520	2152	2314	2125
80	1754	1822	1861	540	2152	2314	2129
100	1754	1822	1955	560	2152	2314	2149
120	2149	1822	2049	580	2152	2314	2189
140	2149	1950	2134	600	2152	2314	2254
160	2149	1950	2201	620	2548	2314	2347
180	2149	1950	2245	640	2548	2314	2470
200	2149	1950	2265	660	2548	2314	2621
220	2245	1950	2265	680	2548	2314	2792
240	2245	1950	2253	700	2548	2314	2966
260	2245	1950	2238	720	3200	3170	3120
280	2245	1950	2226	740	3200	3170	3227
300	2245	2219	2219	760	3200	3170	3270
320	2217	2219	2218	780	3200	3170	3251
340	2217	2219	2219	800	3200	3170	3186
360	2217	2219	2219	820	2967	3170	3097
380	2217	2190	2215	840	2967	3170	3005
400	2217	2190	2206	860	2967	2814	2920
420	2170	2190	2194	880	2967	2814	2851
440	2170	2190	2178	900	2967	2814	2799
460	2170	2190	2162	920	2772	2814	2767

Tabela 21 cd.

	,			-				
<i>H</i> [m]	$\begin{bmatrix} V_i \\ [m/s] \end{bmatrix}$	V_k [m/s]	V_{w} [m/s]		<i>H</i> [m]	$\begin{bmatrix} V_i \\ [m/s] \end{bmatrix}$	V_k [m/s]	V_{w} [m/s]
940	2772	2814	2756	1	1740	3748	3748	3829
960	2772	2814	2763		1760	3748	3748	3746
980	2772	2814	2785	1	1780	3748	3748	3622
1000	2772	2814	2812	1	1800	3748	3748	3485
1020	2809	2809	2832		1820	3271	3381	3360
1040	2809	2809	2834	1	1840	3271	3381	3267
1060	2809	2809	2814		1860	3271	3381	3214
1080	2809	2809	2776		1880	3271	3381	3206
1100	2809	2809	2733		1900	3271	3381	3241
1120	2707	3039	2698		1920	3499	3381	3316
1140	2707	3039	2681]	1940	3499	3381	3425
1160	2707	3039	2690		1960	3499	3381	3560
1180	2707	3039	2730		1980	3499	3381	3709
1200	2707	3039	2801]	2000	3499	3381	3857
1220	3142	3039	2906		2020	4053	3889	3986
1240	3142	3039	3046		2040	4053	3889	4077
1260	3142	3039	3221		2060	4053	3889	4115
1280	3142	3039	3429		2080	4053	3889	4091
1300	3142	3039	3665		2100	4053	3889	4008
1320	4245	3039	3920		2120	3613	3889	3877
1340	4245	3039	4174		2140	3613	3889	3716
1360	4245	4513	4406		2160	3613	3889	3542
1380	4245	4513	4597]	2180	3613	3889	3375
1400	4245	4513	4733]	2200	3613	3350	3228
1420	4738	4513	4804		2220	3062	3350	3115
1440	4738	4513	4811		2240	3062	3350	3042
1460	4738	4513	4756		2260	3062	3350	3015
1480	4738	4513	4646		2280	3062	3350	3033
1500	4738	4513	4489		2300	3062	3350	3096
1520	4018	4513	4301		2320	3427	3350	3199
1540	4018	4513	4104		2340	3427	3350	3337
1560	4018	4513	3921		2360	3427	3350	3505
1580	4018	3708	3773		2380	3427	3350	3695
1600	4018	3708	3673		2400	3427	3350	3902
1620	3683	3708	3627		2420	4404	3350	4120
1640	3683	3708	3634		2440	4404	3350	4340
1680	3683	3708	3757		2460	4404	4497	4543
1700	3683	3708	3823		2460	4404	4497	4702
1720	3748	3748	3854		2480	4404	4497	4781

Tabela 21 cd.

	17	17	17	1	TT	17	IZ.	17
[m]	[m/s]	[m/s]	[m/s]		[m]	[m/s]	$\begin{bmatrix} V_k \\ [m/s] \end{bmatrix}$	[m/s]
2500	4205	4497	4751		3280	4227	4353	4409
2520	4205	4497	4607		3300	4328	4353	4487
2540	3683	3708	3757	1	3320	4653	4353	4572
2560	4205	4497	4379		3340	4653	4353	4652
2580	4205	4497	4111		3360	4653	4675	4706
2600	4205	4497	3849		3380	4653	4675	4719
2620	3446	3546	3625		3400	4653	4675	4689
2640	3446	3546	3456		3420	4533	4675	4626
2660	3446	3546	3351		3440	4533	4675	4553
2680	3446	3546	3312		3460	4533	4460	4491
2700	3446	3546	3337		3480	4533	4460	4451
2720	3652	3546	3422		3500	4533	4460	4436
2740	3652	3546	3559		3520	4449	4460	4440
2760	3652	3546	3731		3540	4449	4460	4452
2780	3652	3546	3922		3560	4449	4460	4459
2800	3652	3546	4109		3580	4449	4426	4453
2820	4375	4358	4270		3600	4449	4426	4433
2840	4375	4358	4388		3620	4356	4426	4400
2860	4375	4358	4452		3640	4356	4426	4365
2880	4375	4358	4455		3660	4356	4363	4335
2900	4375	4358	4404		3680	4356	4363	4316
2920	4188	4358	4315		3700	4356	4363	4314
2940	4188	4358	4215		3720	4386	4363	4330
2960	4188	4116	4130		3740	4386	4363	4361
2980	4188	4116	4079		3760	4386	4363	4401
3000	4188	4116	4070		3780	4386	4363	4446
3020	4172	4116	4099		3800	4386	4363	4488
3040	4172	4116	4151		3820	4563	4612	4522
3060	4172	4116	4205		3840	4563	4612	4551
3080	4172	4239	4242		3860	4563	4612	4577
3100	4172	4239	4254		3880	4563	4612	4604
3120	4227	4239	4246		3900	4563	4612	4634
3140	4227	4239	4227		3920	4742	4612	4673
3160	4227	4239	4213		3940	4742	4612	4719
3180	4227	4353	4213		3960	4742	4612	4768
3200	4227	4353	4228		3980	4742	4791	4811
3220	4227	4353	4255		4000	4742	4791	4839
3240	4227	4353	4294		4020	4805	4791	4847
3260	4227	4353	4344		4040	4805	4791	4834

Tabela 21 cd

<i>Н</i> [m]	V_i [m/s]	V_k [m/s]	V_{w} [m/s]
4260	4606	4600	4602
4280	4606	4600	4580
4300	4606	4600	4561
4320	4591	4591	4555
4340	4591	4591	4568
4360	4591	4591	4598
4380	4591	4591	4634
4400	4591	4591	4664
4420	4570	4595	4660

<i>Н</i> [m]	<i>V_i</i> [m/s]	V_k [m/s]	<i>V</i> _w [m/s]
4060	4805	4791	4800
4080	4805	4791	4755
4100	4805	4791	4708
4120	4644	4791	4667
4140	4644	4633	4641
4160	4644	4633	4629
4180	4644	4633	4626
4200	4644	4633	4629
4220	4606	4633	4629
4240	4606	4600	4621