Analiza współzależności stężenia jonów w wodach podziemnych i ciśnienia piezometrycznego w punktach monitoringowych nr 6, 226 i 581 sieci obserwacyjno-badawczej PIG-PIB w wieloleciu 1991–2014

Monika Zielińska-Sitkiewicz¹, Agnieszka Kowalczyk²

Correlation analysis between ion concentrations in groundwater and potentiometric surface fluctuations at observation points: 6, 226 and 581 of the PGI-NRI monitoring network in years 1991–2014. Prz. Geol., 63: 1155–1160.

A b s t r a c t. The aim of the study was to describe how the potentiometric surface fluctuations are able to influence on the concentrations of ions in groundwater. The research based on the data provided by the groundwater monitoring network of the Polish Geological Institute – National Research Institute (PGI-NRI) from the Warta catchment in the period of 24 years of record (1991–2014). In the first stage of analysis the measured concentrations of ions: Cl^- , Mg^{2+} , Mn^{2+} , Ca^{2+} , Na^+ , SO_4^{2-} , K^+ , HCO_3^- were examined in conjunction with the groundwater level fluctuations in 29 monitoring points (in case of confined aquifers "groundwater level" was regarded as the potentiometric surface measured in the hydrogeological borehole). There were found statistically significant correlations between some of the concentrations of analysed ions and the fluctuations of groundwater level. Ions: Mg^{2+} in the point nr 6 and 226, Cl^- and Na^+ in the point nr 581 were subjected to further testing because their concentrations showed the strongest linear correlation with the potentiometric surface. In the second stage of study, the classical least-squares regression method was applied to build the linear models for these dependencies. The obtained results show that the fluctuations of potentiometric surface were able to explain from 30 to 56% of the variation of ion concentration.

Keywords: potentiometric surface fluctuations, chemical groundwater parameters, linear correlation, regression method

Na podstawie obserwacji stacjonarnych wiadomo, że ciśnienie piezometryczne wód naporowych w otworach hydrogeologicznych, jak również skład chemiczny wód podziemnych zmieniają się w czasie. Do czynników abiotycznych, które wpływają na chemizm wód, zalicza się m.in. rzeźbę terenu, hydrografię, klimat, warunki geologiczne, w tym rodzaj ośrodka skalnego, a także warunki hydrodynamiczne, decydujące o zasilaniu, drogach krążenia, kontaktowaniu się i drenażu wód (Pazdro, 1989; Macioszczyk & Dobrzyński, 2002). Są to czynniki, które często determinują również zmiany poziomu zwierciadła wód podziemnych i ciśnienia piezometrycznego w otworach hydrogeologicznych w przypadku wodonośnych warstw naporowych. Naturalną zmienność ciśnienia piezometrycznego jako przyczynę zmian składu chemicznego wody analizuje się jednak stosunkowo rzadko. Znamienne jest, że np. w bazie monitoringu jakości wód podziemnych MON-BADA (MONitoringowa BAza DAnych) wyniki analiz fizykochemicznych próbek wody były przez lata zbierane bez możliwości wprowadzenia głębokości poziomu zwierciadła pomierzonej w otworze w czasie pobierania próbki wody (informacja znajdująca się na karcie opróbowania punktu monitoringowego).

Relacja między wielkością ciśnienia piezometrycznego – czy poziomem zwierciadła wody w przypadku warstw swobodnych – a składem chemicznym wód podziemnych w warunkach naturalnych jest słabo zbadana. Z jednej strony można to tłumaczyć złożonością problemu – różnorodność warunków hydrogeologicznych sprawia, że w każdym badanym miejscu można oczekiwać lokalnej specyfiki tej relacji. Z drugiej strony wpływ naturalnych wahań poziomu wody na chemizm wód podziemnych jest uznawany za niewielki (Kleczkowski, 1984; Mądrala, 2001) i często bywa pomijany.

W artykule opisano wyniki badań wykonanych w zlewni Warty. Do analizy wybrano 29 punktów krajowego monitoringu wód podziemnych prowadzonego przez Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy (PIG-PIB), w których przypadku monitoring jakościowy i ilościowy obejmował wielolecie 1991-2014, bez istotnych braków w pomiarach. Następnie skorelowano stężenie wybranych składników wód podziemnych (sodu, potasu, manganu, chlorków, wapnia, magnezu, wodoroweglanów i siarczanów) z poziomem zwierciadła, wykorzystując współczynnik korelacji liniowej Pearsona. Przez poziom zwierciadła wody w przypadku punktów reprezentujących naporowe warstwy wodonośne rozumiano ciśnienie piezometryczne mierzone w otworze obserwacyjnym (w czasie opróbowywania chemicznego). W odniesieniu do trzech punktów monitoringowych - 6, 226, 581, w których przypadku współczynnik korelacji Pearsona wyniósł powyżej 0,6 – przeprowadzono pogłębioną analizę współzależności. Podstawowym celem prac było zbadanie, w jakim stopniu zmienność poziomu zwierciadła wód pozwala wyjaśnić zmiany stężenia wybranych jonów, dla których stwierdzono istnienie korelacyjnych związków liniowych. Zgodnie z regionalizacją hydrogeologiczną Polski wszystkie badane punkty monitoringowe znajdują się w regionie Warty, w subregionie nizinnym (Paczyński & Sadurski, 2007). Reprezentują one warstwy wodonośne w ośrodku porowym o zwierciadle napiętym. Dwa z trzech wybranych otworów hydrogeologicznych (6 i 581) ujmują poziom wielkopolskiej doliny kopalnej (GZWP 144). Lokalizację punktów w zlewni Warty przedstawiono na rycinie 1.

¹ Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 166, 02-787 Warszawa; monika_zielinska_sitkiewicz@sggw.pl.

sggw.pl. ² Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, ul. Rakowiecka 4, 02-975 Warszawa; agnieszka.kowalczyk@ pgi.gov.pl.

Ryc. 1. Lokalizacja badanych punktów monitoringowych **Fig. 1.** Location of analysed monitoring points

W zlewni Warty użytkowe poziomy wodonośne występują w czterech piętrach wodonośnych: czwartorzędowym, kredowym, jurajskim i triasowym. Ich wody to wody podziemne zwykłe, o mineralizacji do 1 g/dm³. Głębokość występowania strefy wód słodkich na tym obszarze jest zróżnicowana, zmienia się od ok. 200 do ponad 1000 m, jednak najczęściej wynosi 200–400 m (Paczyński & Sadurski, 2007). Szczegółowe informacje na temat wybranych punktów monitoringu zamieszczono w tabelach 1–5. W rozpatrywanym wieloleciu punkty opróbowywano na ogół z częstotliwością raz na rok.

METODY BADAŃ

Analizę przeprowadzono w trzech etapach. W pierwszym etapie wykorzystano współczynnik korelacji liniowej Pearsona r(Y,X) do zbadania siły i kierunków związków między stężeniem ośmiu jonów: Cl⁻, Mg²⁺, Mn²⁺, Ca²⁺, Na⁺, SO₄²⁻, K⁺ i HCO₃⁻ a poziomem zwierciadła wód podziemnych w 29 punktach monitoringowych (dokładny opis współczynnika oraz badania istotności związku korelacyjnego znajduje się w pracy Aczela, 2000, na str. 479–482). Następnie wyodrębniono związki, w których przypadku stężenie jonów najsilniej korelowało z ciśnieniem piezometrycznym, tj. $r(Y,X) \ge 0,6$, oraz dla których istotność statystyczna współczynnika korelacji Pearsona była najwyższa, czyli hipoteza zerowa H₀: $\rho(Y,X) = 0$ okazała się najmniej wiarygodna (*p-value* $\le 0,01$; tab. 6).

Tab. 1. Podstawowe informacje o punktach badań. Dane pochodzą z bazy danych Monitoring Wód Podziemnych PIG-PIB **Table 1.** Basic information on observation points. The data comes from the Groundwater Monitoring database of the PGI-NRI

Numer punktu Point number	Województwo Voivodeship	Miejscowość <i>Locality</i>	Region hydrogeologiczny Hydrogeological region	Subregion hydrogeologiczny Hydrogeological subregion	Rodzaj otworu Kind of monitoring point	Użytkowanie terenu <i>Land use</i>
6		Borówiec			studnia	
226	wielkopolskie Greater Poland	Straduń	region Warty Warta Region	subregion nizinny Lowland Subregion	wiercona	lasy forest
581		Gniezno			bored well	<u>)</u>

Tab. 2. Informacje o warstwie wodonośnej w punktach badań. Dane pochodzą z bazy danych Monitoring Wód Podziemnych PIG-PIB, Banku HYDRO i Mapy Hydrogeologicznej Polski w skali 1 : 50 000

Table 2. Information about the aquifer at the observation points. The data comes from the Groundwater Monitoring database of the PGI

 -NRI, the Bank HYDRO and The Hydrogeological Map of Poland, scale 1 : 50 000

Numer				Warst	wa wodo	onośna/ <i>Wate</i>	er-bearing horizon		
Punktu Point number	wiek utwory utworów <i>deposits</i>		zwierciadło <i>aquifer</i>	glęt d	ookość [n epth [m b	n p.p.t.] p.g.l.]	GUPW*	utwory w nadkładzie	utwory w spągu
	stratigraphy			spągu bottom	stropu top	zafiltro- wania <i>filter</i>	-	overbuden deposits	deposits at bottom
6	czwartorzęd Quaternary	piaski, żwiry sands, gravels		45,0	28,0	30-45	poziom wielkopol- skiej doliny kopalnej Wielkopolska Dolina Kopalna Aquifer	gliny loams	iły pstre variegated clays
226	kreda górna <i>Upper</i> <i>Cretaceous</i>	piaski <i>sands</i>	napięte confined	285,0	176,0	185–215	nie	mułki <i>silts</i>	nie przewiercono not drilled
581	czwartorzęd Quaternary	piaski <i>sands</i>		81,5	66,7	82–66	poziom wielkopol- skiej doliny kopalnej Wielkopolska Dolina Kopalna Aquifer	gliny pylaste silty loams	iły clays

* GUPW – główny użytkowy poziom wodonośny według Mapy Hydrogeologicznej Polski w skali 1 : 50 000. * GUPW – the major usable water-bearing horizon after the Hydrogeological Map of Poland, scale 1 : 50 000.

Tab. 3. Informacje o położeniu punktów badań – wydzielenia morfologiczne i hydrogeologiczne Table 3. Location information on observation points – geomorphological forms and hydrogeological units						
Numer punktu	Geomorfologia	Strefa	Położenie względem	Ob		
Point number	Geomorpholey	hydrodynamiczna	naibliższei rzeki lub jeziora	hvdi		

Numer punktu Point number	Geomorfologia Geomorpholgy	Strefa hydrodynamiczna <i>Hydrodynamic zone</i>	Położenie względem najbliższej rzeki lub jeziora Distance to the nearest river or lake	Obszar jednostki hydrogeologicznej* Hydrogeological unit*
6	wysoczyzna morenowa morainic plateau	zasilania i tranzytu recharge and transit	ok. 600 m na W od dopływu Głuszynki about 600 m to the west of Głuszynka's tributary	bQII/Tr
226	równina wodnolodowcowa fluvioglacial plain	area	ok. 170 m na NE od Jeziora Straduńskiego about 170 m north-east of Straduński Lake	abQII/Tr
581	poziom sandrowy outwash sands form	zasilania recharge area	ok. 1450 m na NE od Wrześnianki about 1450 m north-east of Wrześnianka River	bcQII/Tr

* Podano na podstawie szkiców geomorfologicznych Szczegółowej Mapy Geologicznej Polski w skali 1 : 50 000, ark. Kórnik, Krzeszyce, Psary Polskie. * Based on the geomorphological sketch of Detailed Geological Map of Poland, scale 1 : 50 000, Kórnik, Krzeszyce and Psary Polskie sheets.

Tab. 4. Informacje dotyczące wyników monitoringu w latach 1991–2014 w punktach badań. Dane opracowano na podstawie bazy danych Monitoring Wód Podziemnych PIG-PIB

 Table 4. Information referred to monitoring results of points in 1991–2014. Data were compiled by using of the Groundwater Monitoring database of the PGI-NRI

Numer punktu Point number	Min. stan zw. wody w czasie pobrania próbki w wieloleciu 1991–2014 [m] Min. groundwater level measu- red during taking the samples in 1991–2014 [m]	Maks. stan zw. wody w czasie pobrania próbki w wieloleciu 1991–2014 [m] Max. groundwater level measu- red during taking the samples in 1991–2014 [m]	Min. stężenie (pomiary monitoringowe w latach 1991–2014) [mg/dm ³] Minimum concentration recorded in years 1991–2014 [mg/dm ³]	Maks stężenie (pomiary monitoringowe w latach 1991–2014) [mg/dm ³] Maximum concentration recorded in years 1991–2014 [mg/dm ³]	
E	6.02	Q 47	Mg		
0	0,92	0,47	7,68	20,48	
226	7.26	0.45	Mg		
220	7,50	9,43	7,04	8,82	
			(21	
581	11.42	12.00	10,70	24,90	
	11,42	12,90	Na		
			7,70	9,52	

Tab. 5. Informacje o typie chemicznym wody w latach 1991–2014 w punktach badań. Dane pochodzą z bazy danych Monitoring Wód Podziemnych PIG-PIB

Table 5. Information about water chemistry at the points in 1991–2014. The data comes from the Groundwater Monitoring database of the PGI-NRI

Numer punktu Point number	Typ chemiczny wody w latach 1991–2014 Chemical type of water in 1991–2014
6	HCO ₃ -Ca-Mg (w latach 2010 i 2012–2014: HCO ₃ -Ca-Na-Mg) HCO ₃ -Ca-Mg (in 2010 i 2012–2014: HCO ₃ -Ca-Na-Mg)
226	HCO ₃ -Cl-Na (jedynie w roku 2008: HCO ₃ -Ca i w 1991: HCO ₃ -Na) HCO ₃ -Cl-Na (except in 2008: HCO ₃ -Ca and in 1991: HCO ₃ -Na)
581	HCO ₃ -Ca (jedynie w roku 2008: HCO ₃ -Cl-Ca-Mg) HCO ₃ -Ca (except in 2008: HCO ₃ -Cl-Ca-Mg)

Tab. 6. Wyniki analizy korelacji liniowej między stężeniem jonów a poziomem zwierciadła wód podziemnych **Table 6.** Results of the analysis of the linear correlation between ions concentration and groundwater level

Numer punktu Point number	Zmienna Y i zmienna X Variable Y and variable X	<i>r</i> (Y,X)	t	p-value
6	Mg i zwierciadło wody/ Mg and groundwater level	0,7385	4,8979	0,0000
226	Mg i zwierciadło wody/ Mg and groundwater level	-0,6114	-3,1798	0,0043
581	Cl i zwierciadło wody/ Cl and groundwater level	-0,7487	-4,7922	0,0001
581	Na i zwierciadło wody/ Na and groundwater level	-0,6657	-3,7856	0,0013

Objaśnienia: r(X,Y) – współczynnik korelacji liniowej Pearsona, t – statystyka testowa, p-value – krytyczny poziom istotności. Explanations: r(X,Y) – Pearson correlation coefficient, t – test statistics, p-value – significance level. W drugim etapie badań zastosowano klasyczną metodę najmniejszych kwadratów do estymacji współczynników czterech równań regresji. Parametry modeli liniowych to:

$$y_t = \beta_0 + \beta_1 \cdot z_t + \varepsilon$$

gdzie:

t = 1,2,...,T oraz z_t – ciśnienie piezometryczne określane przez pomiar głębokości do zwierciadła wód w otworze obserwacyjnym,

 β_0 , β_1 – standardowe błędy oszacowania wartości estymatorów b_0 i b_1 ,

ε – składnik losowy.

Oszacowano je na podstawie wyników pomiarów z lat 1991– 2014 i wyznaczono równania regresji liniowej postaci:

$$\hat{yt} = b_0 + b_1 \cdot z_t$$

$$S(b_0) \quad S(b_1)$$

gdzie:

 b_0, b_1 – oceny parametrów,

 $S(b_0)$ i $S(b_1)$ – standardowe błędy oszacowania wartości estymatorów b_0 i b_1 .

W trzecim etapie badań każdy ze stworzonych modeli regresji liniowej poddano weryfikacji statystycznej. W tym celu przeanalizowano m.in. wartości współczynnika determinacji R². Zbadano istotność współczynnika regresji, stawiając H₀: $\beta_i = 0$ wobec H₁: $\beta_i \neq 0$, i dla wartości *p*-value ≤ 0.05 odrzucano hipotezę zerową, wnioskując o statystycznej istotności parametru β_i . Ponadto w celu weryfikacji założeń klasycznej metody najmniejszych kwadratów zbadano własności składników losowych modeli. Przeprowadzono testy, w których przyjęto, że H₀ jest odrzucana dla wartości *p-value* \leq 0,05. Dobór postaci analitycznej modelu i losowość reszt ($e_t = y_t - \hat{y}_t$) zweryfikowano testem RESET, stawiając H₀: model jest poprawnie skonstruowany. Do zbadania normalności rozkładu reszt zastosowano test Shapiro-Wilka, w którym w hipotezie zerowej przyjęto, że składnik losowy pochodzi z rozkładu normalnego. Autokorelacje składnika losowego zweryfikowano testem Breuscha-Godfreya, sprawdzając H₀ o braku autokorelacji rzędu pierwsze-

Tab. 7. Model regresji liniowej dla jonów Mg^{2+} w punkcie 6 **Table 7.** Linear regression model for Mg^{2+} at point 6

go. Homoskedastyczność składnika losowego sprawdzono testem Breuscha–Pagana, przy czym *p-value* \geq 0,05 świadczyło o wiarygodności hipotezy zerowej, mówiącej o stałej wariancji reszt modelu (szczegółowy opis metod można znaleźć w pracy Maddali, 2006). Obliczenia wykonano w programach Statistica i Gretl.

WYNIKI BADAŃ

Wartości współczynnika korelacji Pearsona *r*(Y,X) wyznaczone w celu skorelowania stężenia wybranych jonów w wodzie z poziomem zwierciadła wód w otworze hydrogeologicznym (ciśnieniem piezometrycznym) wraz z oceną ich statystycznej istotności podano w tabeli 6. W tabeli uwzględniono tylko te pary związków, w których przypadku wyniki spełniły przyjęte kryteria selekcji.

Następnie oszacowano parametry strukturalne dla pięciu równań regresji liniowej wraz z miernikami syntetycznej oceny modeli. Zweryfikowano też hipotezy o własnościach składników losowych, których spełnienie gwarantuje, że estymatory klasycznej metody najmniejszych kwadratów są typu BLUE, tj. są najefektywniejszymi, nieobciążonym estymatorami w klasie estymatorów liniowych. Wyniki analizy zamieszczono w tabelach 7–10.

W przypadku pierwszego modelu zmienność poziomu zwierciadła wód podziemnych w punkcie 6 w 55% wyjaśniła zmienność stężenia jonów magnezu (tab. 7).

Zmiany stężenia jonów chloru w punkcie 581 udało się wyjaśnić fluktuacjami poziomu zwierciadła wód podziemnych w 56% (tab. 8).

W punkcie 581 wahanie poziomu zwierciadła wód podziemnych w nieco ponad 44% wyjaśniła zmienność stężenia jonów sodu (tab. 9).

Zmienność stężenia jonów magnezu w punkcie 226 udało się wyjaśnić zmiennością poziomu zwierciadła wód podziemnych w najmniejszym stopniu, czyli w niecałych 33% (tab. 10).

WNIOSKI

Wykryto statystycznie istotne korelacje ujemne między stężeniem jonów Cl⁻, Na⁺ (punkt 581) i Mg²⁺ (punkt 226) a głębokością zwierciadła wody w otworze hydrogeologicz-

Model 1. (Model 1. (p $\hat{y}_{(Mg)\iota} = -$	Decyzja Decision			
Test istotności współczynników Test on Individual Regression Coefficients	zmienna zwierciadło (X) variable – groundwater level (X)	t = 4,8979	<i>p-value</i> = 0,0000	zmienna zwierciadło statystycznie istotna variable – groundwater level is significant
Test RESET RESET test	F = 0,9597		<i>p-value</i> = 0,402	postać modelu prawidłowa the model is well specified
Test Shapiro–Wilka Shapiro–Wilk test	S-W = 0,9565		<i>p-value</i> = 0,423	normalność rozkładu reszt normality of the error distribution
Test Breuscha–Godfreya Breusch–Godfrey test	$TR^2 = 2,3264$		<i>p-value</i> = 0,127	brak autokorelacji reszt lack of autocorrelation of errors
Test Breuscha–Pagana Breusch–Pagan test	LM = 0,0127		<i>p-value</i> = 0,910	homoskedastyczność reszt homoscedasticity of the errors

Objaśnienia: $\hat{y}_{(Y)t}$ – wartość teoretyczna stężenia Y; z_t – zmienna zwierciadło; R^2 – współczynnik determinacji; t, F, S-W, TR², LM – wartości odpowiednich statystyk testowych; p-value – krytyczny poziom istotności.

Explanations: $\hat{y}_{(Y)t}$ – theoretical value of the Y concentration; z_t – variable – groundwater level; R^2 – the coefficient of determination; t, F, S-W, TR², LM – the values of relevant test statistics; p-value – significance level.

nym (tab. 6), tj. wzrost głębokości występowania zwierciadła wody w otworze (spadek ciśnienia piezometrycznego w warstwie wodonośnej) powodował spadek stężenia tych jonów. Taką współzależność można tłumaczyć wpływem wielkości ciśnienia na szybkość i intensywność procesów geochemicznych zachodzących w samej warstwie wodonośnej oraz w jej spągu i stropie, czyli w miejscach kontaktu z utworami o innej litologii. Wzmożone rozpuszcza-

Tab. 8. Model regresji liniowej dla jonów Cl⁻ w punkcie 581**Table 8.** Linear regression model for Cl⁻ at point 581

Model 2. (j <i>Model 2. (p</i> $\hat{y}_{(Cl)t} = 10$	Decyzja Decision			
Test istotności współczynników Test on Individual Regression Coefficients	zmienna zwierciadło (X) variable – groundwater level (X)	t = -4,7922	<i>p-value</i> = 0,0001	zmienna zwierciadło statystycznie istotna variable – groundwater level is significant
Test RESET RESET test	F = 0,0084		<i>p-value</i> = 0,928	postać modelu prawidłowa the model is well specified
Test Shapiro–Wilka Shapiro–Wilk test	S-W = 0,9223		<i>p-value</i> = 0,110	normalność rozkładu reszt normality of the error distribution
Test Breuscha–Godfreya Breusch–Godfrey test	$TR^2 = 1,2920$		<i>p-value</i> = 0,256	brak autokorelacji reszt lack of autocorrelation of errors
Test Breuscha–Pagana Breusch–Pagan test	LM = 0,3340		<i>p-value</i> = 0,563	homoskedastyczność reszt homoscedasticity of the errors

Objaśnienia – patrz tab. 7.

For explanations see Table 7.

Tab. 9. Model regresji liniowej dla jonów Na^+ w punkcie 581 **Table 9.** Linear regression model for Na^+ at point 581

Model 3. (p $\hat{y}_{(Na)t} = 1$	Decyzja Decision			
Test istotności współczynników Test on Individual Regression Coefficients	zmienna zwierciadło (X) variable – groundwater level (X)	t = -3,7856	<i>p-value</i> = 0,0013	zmienna zwierciadło statystycznie istotna variable – groundwater level is significant
Test RESET RESET test	F = 2,2040		<i>p-value</i> = 0,156	postać modelu prawidłowa the model is well specified
Test Shapiro–Wilka Shapiro–Wilk test	S-W = 0,9507		<i>p-value</i> = 0,378	normalność rozkładu reszt normality of the error distribution
Test Breuscha–Godfreya Breusch–Godfrey test	$TR^2 = 0,2270$		<i>p-value</i> = 0,633	brak autokorelacji reszt lack of autocorrelation of errors
Test Breuscha–Pagana Breusch–Pagan test	LM = 1,1810		<i>p-value</i> = 0,277	homoskedastyczność reszt homoscedasticity of the errors

Objaśnienia – patrz tab. 7.

For explanations see Table 7.

Tab. 10. Model regresji liniowej dla jonów Mg^{2+} w punkcie 226 **Table 10.** Linear regression model for Mg^{2+} at point 226

Model 4. (p <i>Model 4. (p</i> $\hat{y}_{(Mg)t} =$	Decyzja Decision			
Test istotności współczynników Test on Individual Regression Coefficients	zmienna zwierciadło (X) variable – groundwater level (X)	t = -3,1798	<i>p-value</i> = 0,0043	zmienna zwierciadło statystycznie istotna variable – groundwater level is significant
Test RESET RESET test	F = 0,0002		<i>p-value</i> = 0,988	postać modelu prawidłowa the model is well specified
Test Shapiro–Wilka Shapiro–Wilk test	S-W = 0,9776		<i>p-value</i> = 0,849	normalność rozkładu reszt normality of the error distribution
Test Breuscha–Godfreya Breusch–Godfrey test	$TR^2 = 0,4820$		<i>p-value</i> = 0,488	brak autokorelacji reszt lack of autocorrelation of errors
Test Breuscha–Pagana Breusch–Pagan test	LM = 0,9190		<i>p-value</i> = 0,338	homoskedastyczność reszt homoscedasticity of the errors

Objaśnienia – patrz tab. 7.

For explanations see Table 7.

nie i ługowanie minerałów w okresach wyższego ciśnienia powoduje wzrost stężenia rozpatrywanych jonów w wodzie. Ponadto wzrost ciśnienia wiąże się z przyspieszeniem przepływu wody w warstwie wodonośnej, co też może się przekładać na zaobserwowaną zależność. Wreszcie wyższe ciśnienie może prowadzić do uaktywnienia kontaktów hydraulicznych między wodami o różnym chemizmie.

Zmienność głębokości zwierciadła wody w otworze badawczym pozwoliła na wyjaśnienie zmian stężenia jonów Mg²⁺ w punktach 6 i 226 oraz Cl⁻ i Na⁺ w punkcie 581 w zakresie od niemal 33 do 56%. Są to wartości znaczące, szczególnie jeśli wziąć pod uwagę dużą liczbę innych czynników kształtujących chemizm wód podziemnych.

Wszystkie modele regresji liniowej spełniły założenia klasycznej metody najmniejszych kwadratów, ale duże zróżnicowanie otrzymanych wartości współczynnika determinacji nie pozwoliło na predykcję stężenia badanych składników wód podziemnych.

Stwierdzony w wyniku badań brak korelacji stężenia z ciśnieniem piezometrycznym w wybranych punktach w przypadku pozostałych jonów niekoniecznie musi oznaczać brak rzeczywistej współzależności. Może być ona trudniejsza do wykrycia ze względu na mniejszą synchroniczność zachodzących zmian lub, jak podali Macioszczyk i Dobrzyński (2002), długotrwałość przebiegu naturalnych procesów hydrogeochemicznych.

Względnie wysokie wartości współczynnika determinacji wskazują, że zmiany ciśnienia piezometrycznego w warstwie wodonośnej nawet w warunkach naturalnych mogą stanowić istotny czynnik w kształtowaniu się stężenia niektórych jonów. Pomijanie tego aspektu w analizach zmian składu chemicznego wód podziemnych może prowadzić do błędnych wniosków.

LITERATURA

ACZEL A. 2000 – Statystyka w zarządzaniu. Wyd. PWN, Warszawa. KLECZKOWSKI A.S. 1984 – Ochrona wód podziemnych. Wyd. Geol., Warszawa.

MACIOSZCZYK A. & DOBRZYŃSKI D. 2002 – Hydrogeochemia strefy aktywnej wymiany wód podziemnych. Wyd. PWN, Warszawa. MADDALA G.S. 2006 – Ekonometria. Wyd. PWN, Warszawa.

MĄDRALA M. 2001 – Waloryzacja hydrogeochemiczna środowisk dolin rzecznych dla potrzeb eksploatacji wód podziemnych. [W:] Bocheńska T. & Staśko S. (red.), Współczesne Problemy Hydrogeologii. T. 10. Cz. 1. Wrocław: 357–364.

PACZYŃSKI B. & SADURSKI A. 2007 – Hydrogeologia regionalna Polski. Państw. Inst. Geol., Warszawa.

PAZDRO Z. 1989 - Hydrogeologia ogólna. Wyd. Geol., Warszawa.