WYNIKI BADAŃ MATERII ORGANICZNEJ

Izabella GROTEK

CHARAKTERYSTYKA PETROGRAFICZNA ORAZ DOJRZAŁOŚĆ TERMICZNA MATERII ORGANICZNEJ ROZPROSZONEJ W UTWORACH MEZOZOIKU I PALEOZOIKU

WSTĘP

Charakterystykę petrologiczną materii organicznej rozproszonej w profilu osadów mezozoiku i paleozoiku z otworu wiertniczego Gościno IG 1, z interwału głębokości 130,2–4304,0 m, przeprowadzono na podstawie analizy 14 próbek reprezentujących utwory jury (dolnej, środkowej), triasu (dolnego, środkowego i górnego), permu górnego oraz dewonu górnego.

METODY BADAŃ

Podstawę analityczną pracy stanowią badania mikroskopowe wykonane w świetle odbitym białym oraz we fluorescencji umożliwiającej identyfikację, nierozróżnialnych często w świetle białym, składników maceralnych grupy liptynitu, a także impregnacji bitumicznych (Teichmüller, 1982). Analizy wykonano na mikroskopie polaryzacyjnym Axioskop firmy Zeiss wyposażonym w przystawkę mikrofotometryczną umożliwiającą pomiar zdolności refleksyjnej materii organicznej.

Pomiary przeprowadzono w imersji, na polerowanych płytkach skał osadowych zawierających macerały witrynitu (osady perm-jura) oraz materiał witrynitopodobny o cechach optycznych witrynitu (stałe bituminy/ bitumin oraz zooklasty) (osady dewonu). Składniki te charakteryzują się liniowym wzrostem zdolności odbicia światła wraz ze wzrostem stopnia dojrzałości (Stach i in., 1982). Wymagana wielkość ziaren >5 μm jest minimalną, niezbędną do uzyskania właściwego wyniku (Jackob, 1972).

Badania wykonano przy użyciu:

- wzorców ze szkła optycznego o określonej, stałej refleksyjności: 0,4958; 0,9207 oraz 1,1413%;
- filtru monochromatycznego o długości fali 546 nm;
- blendy pomiarowej o wielkości 0,16 mm;
- olejku imersyjnego o nD = 1,515 w temp. $20-25^{\circ}$ C.

Tabela 2

Analiza mikroskopowa materii organicznej rozproszonej w utworach dewonu

Microscopical analysis of the organic matter dispersed in Devonian deposits

Głębokość [m]	Stratygrafia	Litologia	Zooklasty [%]	SB [%]	Inertynit [%]	MO [%]	<i>R</i> _o średnie [%]	Zakres pomiarów	Liczba pomiarów
3306,30	D ₃	wap	0,20	0,30		0,50	1,22	0,98–1,41	50
3544,70	D ₃	wap	0,10	0,20	śl	0,30	1,27	0,97–1,46	27
3879,50	D ₃	ilc	0,30	0,30		0,60	1,30	1,02–1,58	48
4152,00	D ₃	ilc	0,20	0,30	śl	0,50	1,28	1,06–1,58	50
4228,00	D ₃	ilc	0,60	0,20		0,80	1,23	1,05–1,56	65
4304,00	D ₃	ilc	0,50	0,20	śl	0,70	1,70	1,07–1,93	55

D₃ – dewon górny; wap. – wapienie; ilc – iłowce; SB – stałe bituminy; MO – zawartość materii organicznej określona metodą planimetrowania

 D_3 – Upper Devonian; wap. – limestone; ilc – claystone; mlc – mudstone; SB – Solid Bitumen; MO – organic matter contents determined by a planimetric method

Tabela 3

20

22

17

65

25

91

al analysi	s of the or	ganic matte	r dispersed	in Permon	nesozoic depo	osits	
Witrynit [%]	SB [%]	Inertynit [%]	Liptynit [%]	MO [%]	<i>R_o</i> średnie [%]	Zakres pomiarów	Liczba pomiarów
0,30		0,20	0,40	0,90	0,42	0,38–0,53	60
0,60		0,20	0,40	1,20	0,45	0,40-0,54	80
0,10		0,10	śl	0,20	0,50	0,44–0,61	18

0,10

0,30

0,10

0,80

0,30

0,51

0,53

0,58

0,67

0,65

0,43-0,63

0,44-0,63

0,47-0,70

0,52-0,77

0,50 - 0,78

Analiza mikrosk Microscopic

 J_2 – jura środkowa; J_1 – jura dolna; T_3 – trias górny; T_2 – trias środkowy; T_1 – trias dolny; P_3 – perm górny; ile – iłowiec; psc – piaskowce; mlc – mułowce; dol - dolomit; and - anhydrite; SB - stałe bituminy; MO - zawartość materii organicznej określona metodą planimetrowania

śl

śl

śl

0,10

śl

0,10

śl

0,20

0,10

J₂ – Middle Jurassic; J₁ – Lower Jurassic; T₃ – Upper Triassic; T₂ – Middle Triassic; T₁ – Lower Triassic; P₃ – Upper Permian; ilc – claystone; psc – sandstone; mlc - mudstone; dol - dolomite; and - anhydrite; SB - Solid Bitumen; MO - organic matter contents determined by a planimetric method

Analizę ilościową przeprowadzono za pomocą metodyplanimetrowania powierzchni preparatów, przy skoku mikrośruby równym 0,2 mm.

Głębokość

[m] 130,20

550,00

1022,70

1425,20

1852,80

2748,20

2944,10

3065,00

Stratygrafia

 J_2

 J_1

 T_3

 T_3

 T_2

 T_1

 P_3

 P_3

Litologia

ilc

psc/mlc

ilc

ilc

mlc

mlc

dol

and/ilc

0,10

0,20

0,10

0,10

0,10

0,40

0,10

Analizę jakościową macerałów grupy liptynitu wykonano przy użyciu niebieskiego filtra wzbudzającego. Przy opisie składników petrograficznych stosowano nomenklaturę i klasyfikację przyjęta przez Międzynarodowy Komitet Petrologii Wegla (International...; 1994). Uzyskane wyniki zamieszczono w tabelach 2 i 3.

CHARAKTERYSTYKA PETROLOGICZNA MATERII ORGANICZNEJ

Dewon

Przeanalizowano materię organiczną pochodzącą z 6 próbek osadów węglanowych oraz iłowców z interwału głębokości 3306,30-4304,0 m.

Zawierają one niezbyt liczny materiał organiczny stanowiący 0,30–0,80% planimetrowanej powierzchni próbki. Lekko podwyższone jego koncentracje 0,70-0,80% występują w spągowych partiach dewonu górnego (tab. 2).

Materia organiczna dewonu górnego jest słabo zróżnicowana pod względem genetycznym. Reprezentuja ja mikrokomponenty witrynitopodobne o cechach optycznych witrynitu (stałe bituminy, zooklasty) oraz śladowa ilość sfuzynityzowanych szczątków organicznych (fig. 17). Składniki organiczne występują w formie pasemek i soczewek o zmiennej grubości 5-30 µm, sporadycznie obserwuje się większe (do 50 µm) okruchy (fig. 18G).

Nie zaobserwowano obecności pierwotnych macerałów liptynitu, co jest związane niewątpliwie z wyższym stopniem dojrzałości analizowanych osadów. Występują natomiast, w utworach dewonu górnego dość liczne drobne impregnacje bitumiczne (fig. 18H).

Perm

Osady węglanowe i ilaste permu górnego (cechsztyn) z głębokości 2944,10 oraz 3065,0 m zawierają zmienną ilość materiału organicznego stanowiącego odpowiednio 0,80 i 0,30% planimetrowanej powierzchni próbki (tab. 3).

Wypełnia on spękania i szczeliny w weglanach, najczęściej jednak jest związany z materiałem ilastym tworząc asocjację organiczno-mineralną typu bitumicznego wykazującą często słabe własności fluorescencyjne.

Najliczniej reprezentowanym składnikiem organicznym są stałe bituminy (0,1-0,4%) oraz materiał witrynitowy (0,1%) reprezentowany przez bezstrukturalny kolotelinit zbudowany ze zżelifikowanej tkanki roślinnej (fig. 17).

W niewielkiej ilości (max. 0,1%) występują również macerały inertynitu (semifuzynit, fuzynit i liptodetrynit).

Składniki lipidowe, których źródłem są glony, stanowią 0,1-0,2% planimetrowanej powierzchni próbki. Najczęściej jest to alginit tworzący soczewkowate formy, fluoryzujący w kolorze żółtym oraz bituminit fluoryzujący w kolorze brunatnym. W próbkach obserwuje się również nieliczne impregnacje bitumiczne (fig. 18F, G).

Fig. 17. Skład maceralny materii organicznej w analizowanych profilach osadów

Distribution of organic matter content in the analyzed sediments

Trias

Mułowce i iłowce triasu (dolnego, środkowego i górnego) przebadane w 4 próbkach z głębokości 1022,7–2748,2 m są ubogie w materię organiczną (0,1–0,2% planimetrowanej powierzchni próbki) (tab. 3). Podstawowym mikrokomponentem jest witrynit (0,1–0,2%) pochodzący w znacznym stopniu z redepozycji (witrodetrynit) (fig. 17). Tworzy on najczęściej drobne okruchy o rozmiarach na ogół nie przekraczających 30 µm. Witrynit *in situ* (kolotelinit) występuje w postaci soczewek i laminek o zmieniającej się grubości (5–30 µm) (fig. 18C).

Niewielki udział w składzie substancji organicznej pochodzącej głównie z redepozycji mają macerały inertne (ślady do 0,1%) zbudowane najczęściej z inertodetrynitu oraz fragmentów fuzynitu i semifuzynitu.

Macerały liptynitu występują również w ilości śladowej do maksymalnie 0,1% (głównie liptodetrynit oraz ciała bitumiczne). Wykazują one intensywną fluorescencję w kolorach pomarańczowym i brunatnym (fig. 18D).

Jura

Utwory klastyczne jury (środkowej i dolnej) z głębokości 130,2 oraz 550,0 m zawierają dość liczny materiał organiczny (0,9–1,2% planimetrowanej powierzchni próbki). Reprezentowany jest on przez macerały grupy huminitu i witrynitu (0,3 i 0,6%) przy znacznym współudziale (0,4%) składników lipidowych, głównie alginitu, bituminitu i liptodetrynitu, fluoryzujących w kolorze żółtym oraz żółto-pomarańczowym.

Licznie (ok. 0,2%) występują również macerały inertynitu (fuzynit, semifuzynit i inertodetrynit). W śladowej ilości są spotykane zooklasty (szczątki organiczne zazwyczaj zwitrynityzowane lub sfuzynityzowane) (tab. 3; fig. 17; 18A, B).

DOJRZAŁOŚĆ TERMICZNA MATERII ORGANICZNEJ

Dojrzałość termiczną materii organicznej określono przy pomocy metody pomiaru zdolności odbicia światła syngenetycznych składników witrynitopodobnych, w utworach dewonu oraz macerałów witrynitu *in situ* w utworach młodszych (permomezozoik). Średnia wartość współczynnika refleksyjności (% R_o) wzrasta wraz z głębokością pogrążenia osadów od 0,42% na głębokości 130,2 m (jura środkowa) do 1,70% na głębokości 4304,0 m (dewon górny) wskazując na przejście od osadów niedojrzałych do generowania ropy naftowej po-

Fig. 18. Materia organiczna w utworach dewonu-jury

Organic matter in the Devonian-Jurassic deposits

 \mathbf{A} – jura dolna; głęb. 130,20 m; światło białe, imersja; \mathbf{B} – jura dolna; głęb. 130,20 m; światło UV, imersja; \mathbf{C} – trias środkowy; głęb. 1852,80 m; światło UV, imersja; \mathbf{E} – perm górny; głęb. 2944,10 m; światło białe, imersja; \mathbf{F} – perm górny; głęb. 2944,10 m; światło UV, imersja; \mathbf{G} – dewon górny; głęb. 3306,30 m; światło białe, imersja; \mathbf{H} – dewon górny; głęb. 3306,30 m; światło UV, imersja;

A – Lower Jurassic; depth 130,20 m; white light, immersion; **B** – Lower Jurassic; depth 130,20 m; UV light, immersion; **C** – Middle Triassic; depth 1852,80 m; UV light, immersion; **E** – Upper Permian; depth 2944,10 m; white light, immersion; **F** – Upper Permian; depth 2944,10 m; UV light, immersion; **G** – Upper Devonian; depth 3306,30 m; white light, immersion; **H** – Upper Devonian; depth 3306,30 m; UV light, immersion;

przez fazę generowania ropy naftowej, kondensatów po fazę generowania gazów (tab. 2, 3; fig. 19).

Dane te świadczą o maksymalnych paleotemperaturach oddziałujących na kompleks analizowanych osadów w czasie ich diagenezy od 50 do 180°C (Gaupp, Batten, 1985).

Stopień dojrzałości termicznej materii organicznej w osadach dewońskich odpowiada fazie generowania kondensatów, gazów mokrych oraz gazów ekonomicznych. Najsilniej przeobrażony materiał organiczny zawarty w utworach dewonu górnego z głębokości 4304,0 m, charakteryzuje się rozrzutem granicznych wartości współczynnika refleksyjności rzędu 1,07–1,93% R_o (średnia 1,70%) co jest związane niewątpliwie z anizotropią materiału witrynitopodobnego (głównie zooklastów).

Kompleks osadów dewonu górnego (głęb. 3306,3– 4228,0 m) jest nieco słabiej dojrzały termicznie. Zakres po-

Fig. 19. Zmienność stopnia dojrzałości materii organicznej w profilu utworów dewonu-jury

Values of vitrinite reflectance index versus depth in the profile of the Devonian-Jurassic deposits

ekonomicznych. Autogeniczny materiał organiczny permu górnego z głębokości 2944,10–3065,0 m znajduje się w głównej fazie generowania ropy naftowej. Zakres pomierzonych wartości refleksyjności, w obrębie dwóch analizowanych próbek zmienia się w granicach 0,50–0,78% R_o , a wartości średnie wynoszą 0,65 i 0,67% R_o .

Nieco niższym stopniem dojrzałości termicznej charakteryzują się osady triasu z interwału głębokości 1022,7– 2748,2 m.

Osady triasu dolnego znajdują się w głównej fazie generowania ropy naftowej. Materiał organiczny w nich zawarty wykazuje refleksyjność rzędu 0,47–0,70% R_o (średnia 0,58% R_o). Nieco słabszy stopień przeobrażenia (wczesna faza generowania ropy naftowej) wykazuje materia organiczna triasu środkowego i górnego. Średnia wartość współczynnika refleksyjności witrynitu osiąga zaledwie 0,0,50–0,53% R_o , przy rozrzucie pomiarów wynoszącym 0,43–0,63% R_o .

Materiał organiczny występujący w analizowanych próbkach osadów jury dolnej i środkowej z głębokości 130,2 i 550,0 m znajduje się w stadium niedojrzałym do generowania węglowodorów. Średnia wartość współczynnika refleksyjności witrynitu *in situ* zmienia się od 0,42 do 0,45% R_o , przy zakresie pomiarów w granicach 0,38– 0,54 % R_o .

PODSUMOWANIE

Analizowany kompleks osadów wieku dewon górny – jura środkowa zawiera zmienną (od 0,1 do 1,2% planimetrowanej powierzchni próbki) ilość materiału organicznego.

Nieco podwyższone jego koncentracje (0,9-1,2%) występują w utworach jurajskich, pojedynczych poziomach osadów permu (0,8%) oraz dewonu (0,7-0,8%).

Skład petrograficzny materii organicznej jest związany z wiekiem i dojrzałością badanych osadów. W utworach dewonu jest reprezentowany przez materiał witrynitopodobny (stałe bituminy i zooklasty) oraz dość liczne, drobne impregnacje bitumiczne (dewon górny).

W osadach młodszych (perm–jura) występuje humusowy oraz humusowo-sapropelowy materiał organiczny, którego głównym mikrokomponentem są macerały witrynitu (perm–jura), stałe bituminy (perm) oraz liptynit (perm i jura), przy wyraźnym udziale grupy macerałów inertynitu.

Dojrzałość termiczna materii organicznej, określona na podstawie wielkości współczynnika refleksyjności witrynitu i/lub materiału witrynitopodobnego wyraźnie wzrasta w profilu pionowym badanego kompleksu osadów od $0,42\% R_o$ na głębokości 130,20 m (jura środkowa) do 1,70% R_o na głębokości 4304,0m (dewon górny).

Odpowiada to przejściu od stadium niedojrzałego do generowania ciekłych węglowodorów (jura górna i środkowa), przez wczesną (trias górny i środkowy) i główną fazę generowania ropy naftowej (trias dolny i perm górny) po fazę generowania gazów (dewon górny).

Ewa KLIMUSZKO

CHARAKTERYSTYKA GEOCHEMICZNA

W otworze wiertniczym Gościno IG 1 badania geochemiczne materii organicznej przeprowadzono dla utworów dewonu górnego, permu górnego (cechsztynu), dolnego, triasu środkowego i górnego oraz jury dolnej i środkowej.

Wykonano oznaczenia zawartości węgla organicznego, ilościowe oznaczenie bituminów, podział na poszczególne frakcje w wydzielonych bituminach (węglowodory nasycone, aromatyczne, asfalteny i żywice) oraz oznaczenie potencjału oksydacyjno-redukcyjnego skały (Eh).

Szczegółowe badania frakcji węglowodorów nasyconych dotyczące zawartości n-alkanów i węglowodorów izoprenoidowych przeprowadzono dla pojedynczej próbki z permu górnego.

ILOŚĆ OZNACZONEJ MATERII ORGANICZNEJ

Materia organiczna w iłowcach najniższej części profilu dewonu górnego występuje w małej ilości, zawartość węgla organicznego wynosi 0,6% (fig. 20, pojedyncza próbka). Bituminy w tych utworach są w ilości śladowej (tab. 4).

Ilasty kompleks w niższych partiach dewonu górnego zawiera od 0,10 do 0,90%, natomiast w wyższych ilość węgla organicznego zmniejsza się maksymalnie do 0,50%. Węglanowe utwory dewonu górnego zawierają punktowo do 0,50% Corg. średnio 0,25% (tab. 4, fig. 20). Kompleks ten może być uznany jako "biedne" lub "słabe" skały macierzyste (Peters, 1986) (fig. 20). Ilość bituminów wydzie-

Tabela 4

Dane geochemiczne z otworu wiertniczego Gościno IG 1

Geochemical	data	from	Gościno	IG	l b	orehole
Geoenenneur	aata	nom	Googuno	10		orenore

Głębokość [m]	Stratygrafia	Litologia	Zawartość bituminów	Zawartość Corg. [%]	Eh [mV]	Zawartość węglowo- dorów w bituminach [%]	Zawartość węglowo- dorów w skale [%]	Zawartość węglowo- dorów nasyconych [%]	Zawartość węglowo- dorów aromatycznych [%]	Zawartość żywic i asfalte-nów [%]	Współczynnik migracji
1	2	3	4	5	6	7	8	9	10	11	12
120,2	J ₂	ilc	0,051	0,70	662	15	0,008	8	7	85	0,011
130,0	J ₂	ilc	0,105	0,70	720						
550,0	J ₁	psc + mlc	0,035	1,10	664	26	0,027	22	4	74	0,024
630,0	J ₁	mlc + psc	0,050	0,70	667						
690,0	J ₁	psc + mlc	0,030	0,40	651						
985,0	T ₃	ilc	0,025	0,10	670						
1011,0	T ₃	ilc	0,018	0,10	684						
1022,5	T ₃	ilc	0,009	0,10	660						
1034,9	T ₃	ilc	0,016	0,10	661	7	0,001	4	3	93	0,010
1061,3	T ₃	ilc	0,011	0,10	671	7	0,001	4	3	93	0,010
1181,4	T ₃	mlc	0,016	0,10	669						
1184,0	T ₃	ilc	0,022	0,10	638						
1188,0	T ₃	psc	0,026	0,10	652	10	0,003	4	6	90	0,030
1365,0	T ₃	psc	0,027	0,10	654						
1371,0	T ₃	mlc	0,037	0,10	668						
1425,0	T ₃	ilc	0,016	0,10	682						
1477,9	T ₃	psc	0,036	0,10	664	14	0,004	8	6	86	0,040
1486,0	T ₃	ilc	0,024	0,10	653	14	0,004	8	6	86	0,040
1534,0	T ₃	psc	0,006	0,10	639						
1565,0	T ₂	mrl	0,020	0,10	647						
1603,0	T ₂	psc	0,015	0,10	656						
1738,0	T ₂	mlc	0,006	0,10	636						
1800,0	T ₂	mlc	0,002	0,10	677						
1846,0	T ₂	psc	0,003	0,10	671						
1852,8	T ₂	mlc	0,004	0,10	667						
1972,5	T ₁	psc	0,002	0,10	654						
2045,0	T ₁	psc	0,012	0,10	611	27	0,008	22	5	73	0,080
2147,5	T ₁	mlc	0,013	0,10	642	17	0,003	5	12	83	0,030
2247,2	T ₁	mlc + psc	0,015	0,10	655	17	0,003	5	12	83	0,030
2345,5	T ₁	mlc + psc	0,011	0,10	616	9	0,001	5	4	91	0,010
2363,5	T ₁	psc	0,010	0,10	681	9	0,001	5	4	91	0,010
2450,5	T ₁	mlc	0,003	0,10	660						
2552,7	T ₁	mlc	0,005	0,10	618						

Ta	b	el	a	4	cd.
1 a	D	eı	a	4	ca.

1	2	3	4	5	6	7	8	9	10	11	12
2652,0	T ₁	ilc	0,005	0,10	656						
2670,0	T ₁	mlc	0,005	0,10	652						
2690,5	T ₁	mlc	0,002	0,10	653						
2720,0	T ₁	mlc	0,006	0,10	652	9	0,001	7	2	91	0,010
2748,0	T ₁	mlc	0,013	0,10	649	9	0,001	7	2	91	0,010
2761,2	P ₃	ile	0,012	0,10	668	22	0,003	16	6	78	0,030
2825,5	P ₃	and	0,004	0,10	639						
2831,0	P ₃	mlc	0,008	0,10	642	14	0,001	11	3	86	0,010
2895,5	P ₃	and + sl	0,004	0,10	644						
2911,0	P ₃	and	0,002	0,10	647						
2937,6	P ₃	and	0,004	0,10	629						
2941,6	P ₃	dol	0,137	0,30	630	25	0,034	16	9	75	0,113
2944,0	P ₃	dol	0,250	0,70	677						
2947,5	P ₃	dol	0,232	0,60	642	42	0,098	25	17	58	0,163
2957,4	P ₃	ilc	0,054	0,30	667						
3034,0	P ₃	and	0,016	0,30	622	41	0,007	28	13	59	0,023
3048,1	P ₃	dol	0,017	0,10	622	41	0,007	28	13	59	0,070
3057,4	P ₃	dol	0,021	0,10	594	40	0,008	31	9	60	0,080
3075,9	P ₃	dol	0,021	0,10	610						
3083,5	P ₃	and	0,020	0,10	610	37	0,007	27	10	63	0,070
3118,0	P ₃	and	0,007	0,10	665						
3141,0	P ₃	and	0,006	0,10	671						
3188,5	P ₃	and	0,007	0,10	625						
3216,0	P ₃	and	0,005	0,10	652	17	0,001	14	3	83	0,010
3263,5	P ₃	and	0,006	0,10	659	17	0,001	14	3	83	0,010
3274,5	P ₃	and	0,009	0,10	627	17	0,001	14	3	83	0,010
3297,5	P ₃	and	0,003	0,10	638	17	0,001	14	3	83	0,010
3306,2	D ₃	wap	0,025	0,40	623						
3316,3	D ₃	wap	0,002	0,20	636						
3324,9	D ₃	wap	0,012	0,20	639						
3334,9	D ₃	wap	0,003	0,20	649						
3345,6	D ₃	wap	0,005	0,20	642						
3357,2	D ₃	wap	0,006	0,30	642						
3364,1	D ₃	wap	0,008	0,20	632						
3371,2	D ₃	wap	0,002	0,30	641						
3388,3	D ₃	wap	0,007	0,50	637						
3419,2	D ₃	wap	0,002	0,20	638						
3437,0	D ₃	wap	0,004	0,30	645						
3448,3	D ₃	wap	0,003	0,30	639						
3459,0	D ₃	wap	0,007	0,30	624						

Tabela 4 cd.

1	2	3	4	5	6	7	8	9	10	11	12
3486,4	D ₃	wap	0,005	0,30	621		ĺ				
3504,7	D ₃	wap	0,002	0,30	619						
3531,4	D ₃	wap	0,002	0,20	612						
3544,5	D ₃	wap	0,006	0,20	614						
3555,6	D ₃	wap	0,005	0,10	615						
3569,0	D ₃	wap	0,002	0,10	624						
3569,5	D ₃	wap	0,001	0,20	628						
3584,5	D ₃	ilc	0,002	0,10	643						
3598,0	D ₃	ilc	0,001	0,20	632						
3624,4	D ₃	ilc	0,001	0,20	647						
3646,0	D ₃	ilc	0,004	0,20	639						
3656,4	D ₃	ilc	0,003	0,20	638						
3662,0	D ₃	ilc	0,002	0,20	649						
3678,5	D ₃	ilc	0,001	0,10	649						
3689,0	D ₃	ilc	0,004	0,10	643						
3704,8	D ₃	ilc	0,003	0,20	638						
3722,0	D ₃	ilc	0,002	0,20	632						
3737,4	D ₃	ilc	0,002	0,20	629						
3757,4	D ₃	ilc	0,004	0,20	612						
3762,3	D ₃	ilc	0,003	0,20	613						
3778,0	D ₃	ilc	0,002	0,20	657						
3790,0	D ₃	ilc	0,005	0,20	646						
3804,5	D ₃	ilc	0,002	0,20	648						
3818,8	D ₃	ilc	0,003	0,10	652						
3824,4	D ₃	ilc	9,003	0,20	660						
3834,4	D ₃	ilc	0,002	0,40	659						
3847,8	D ₃	ilc	0,006	0,10	642						
3853,4	D ₃	ilc	0,004	0,20	659						
3869,2	D ₃	ilc	0,007	0,10	642						
3879,4	D ₃	ilc	0,010	0,50	619						
3895,0	D ₃	ilc	0,005	0,40	652						
3904,5	D ₃	ilc	0,003	0,30	650						
3919,0	D ₃	ilc	0,003	0,20	653						
3940,0	D ₃	ilc	0,007	0,20	653						
3945,4	D ₃	ilc	0,006	0,10	659						
3970,3	D ₃	ilc	0,007	0,40	652						
3998,3	D ₃	ilc	0,005	0,30	649						
4022,5	D ₃	ilc	0,005	0,20	657						
4045,0	D ₃	ilc	0,006	0,10	652						
4051,0	D ₃	ilc	0,003	0,40	639						

1	2	3	4	5	6	7	8	9	10	11	12
4071,1	D ₃	ilc	0,004	0,40	645						
4092,0	D ₃	ilc	0,002	0,30	653						
4115,8	D ₃	ilc	0,002	0,20	650						
4122,2	D ₃	ilc	0,001	0,40	636						
4140,0	D ₃	ilc	0,002	0,30	647						
4144,2	D ₃	ilc	0,002	0,30	612						
4144,6	D ₃	ilc	0,001	0,30	639						
4157,8	D ₃	ilc	0,009	0,60	614						
4164,0	D ₃	ilc	0,005	0,70	613						
4187,0	D ₃	ilc	0,001	0,50	610						
4195,3	D ₃	ilc	0,006	0,60	603						
4212,6	D ₃	ilc	0,005	0,10	625						
4227,0	D ₃	ilc	0,016	0,90	611						
4232,0	D ₃	ilc	0,016	0,70	615						
4246,8	D ₃	ilc	0,005	0,30	626						
4262,3	D ₃	ilc	0,003	0,30	612						
4273,8	D ₃	ilc	0,004	0,40	612						
4285,8	D ₃	ilc	0,011	0,90	605						
4291,8	D ₃	ilc	0,003	0,70	608						
4304,0	D ₃	ilc	0,004	0,60	606						

Tabela 4 cd.

Zawartość bituminów [%] – zawartość bituminów wydzielonych z próbki skały podana w % wagowych;

Zawartość całk. Corg. [%] - zawartość całkowitego węgla organicznego oznaczonego w próbce skalnej podana w % wagowych;

Węglowodory w bituminach [%] – udział procentowy węglowodorów w całej masie bituminów wydzielonych z próbki skalnej;

Węglowodory w skale [%] - udział procentowy węglowodorów w przeliczeniu na masę skały wg Gondek (1980);

Węglowodory nasycone w bituminach [%] – udział procentowy węglowodorów nasyconych w bituminach wydzielonych z próbki skalnej;

Węglowodory aromatyczne w bituminach [%] - udział procentowy węglowodorów aromatycznych w bituminach wydzielonych z próbki skalnej;

Żywice i asfalteny w bituminach [%] – udział procentowy żywic i asfaltenów w bituminach wydzielonych z próbki skalnej;

Współczynnik migracji – stosunek zawartości węglowodorów wysycających w skale do zawartości węgla organicznego w badanej skale (Gondek, 1980)

lona z tych utworów jest mała od 0,001 do 0,025% wag. w stropie kompleksu skalnego (tab. 4).

Wartość potencjału oksydacyjno-redukcyjnego określa warunki sedymentacji jako słabo redukcyjne (tab. 4).

Zawartość węgla organicznego w utworach cechsztynu jest mała (tab. 4, fig. 20). Jedynie w dolomitach w centralnej części kompleksu skalnego występuje wyższa ilość węgla organicznego (tab. 4, fig. 20). Utwory permu górnego głównie są "biednymi" skałami macierzystymi, ale w ich centralnej części występuje interwał skał o cechach "słabych" i "dobrych" skał macierzystych do generowania węglowodorów (fig. 20). Podwyższona zawartość węgla organicznego współwystępuje z dużą ilością bituminów (0,137– 0,250%). Ogólnie w tych utworach ilość bituminów jest mała, ale zróżnicowana od 0,003 do 0,054% (tab. 4). Udział węglowodorów w bituminach jest również zróżnicowany od 14 do 42%. Duża ilość węglowodorów jest obecna w składnikach labilnych występujących w wyższej ilości. Odpowiednio zróżnicowany jest też udział żywic i asfaltenów (tab. 4). W składzie węglowodorów ilościowo przeważają węglowodory nasycone nad aromatycznymi (fig. 21). Podwyższona ilość bituminów charakteryzuje się wysoką wartością współczynnika migracji, pozwala to sądzić, że składniki labilne w tych utworach są epigenetyczne z osadem lub współwystępują związki syngenetyczne i epigenetyczne (Gondek, 1980) (tab. 4).

_____, "biedna", "słaba", "dobra", "bardzo dobra", "doskonała" – skala macierzystości skał węglanowych "poor", "fair", "good", "very good", "excellent" – source rock generative potential for calcareous (carbonate) rock Fig. 20. Zawartość procentowa węgla organicznego w utworach paleozoiku i mezozoiku w zależności od głębokości. Ocena macierzystości skał wg Petersa (1986)

TOC [%] content in the Palaeozoic and the Mesozoic sediments versus depth. Assessment of quality source rocks after Peters (1986)

Wartość potencjału oksydacyjno-redukcyjnego jest zróżnicowana, zmienia się punktowo i wykazuje, że utwory powstawały w środowisku od silnie redukcyjnego przez redukcyjne do słabo utleniającego (594–677 Eh, graniczna wartość potencjału red-oks 676 Eh); (tab. 4).

Utwory triasu dolnego zawierają małą ilość węgla organicznego, są one "biednymi" skałami do generowania węglowodorów (tab. 4, fig. 20). Mała jest też zawartość składników labilnych w tych utworach. Udział węglowodorów w bituminach jest mały 9–17%, wysoki jest udział frakcji żywic i asfaltenów (tab. 4, fig. 21). Skład węglowodorów jest zróżnicowany. W dolnych i górnych partiach utworówprzeważają węglowodory nasycone nad aromatycznymi, natomiast w centralnej części utworów aromatyczne występują w większej ilości niż nasycone (fig. 21). Wyższa ilość bituminów obecna w tych utworach, mająca wyższy udział węglowodorów, w których ilościowo przeważa frakcja węglowodorów nasyconych, cechuje się wysoką wartością współczynnika migracji, czyli są to związki epigenetyczne z osadem (tab. 4).

Wartość potencjału oksydacyjno-redukcyjnego pozwala stwierdzić, że warunki sedymentacji były słabo redukcyjne.

Utwory triasu środkowego zawierają bardzo małą ilość węgla organicznego i bituminów (tab. 4, fig. 20). Wartość

potencjału oksydacyjno-redukcyjnego pozwala stwierdzić, że warunki sedymentacji były słabo redukcyjne (tab. 4).

Zawartość węgla organicznego w utworach triasu górnego jest bardzo mała, podobnie jak w utworach triasu środkowego 0,10% (tab. 4). Utwory te są "biednymi" skałami macierzystymi dla generowania węglowodorów. Ilość bituminów zmienia się w zakresie 0,006 do 0,037%. Udział węglowodorów w bituminach jest mały, a żywice i asfalteny występują w dużej ilości. W składzie węglowodorów nieznacznie przeważają węglowodory nasycone nad aromatycznymi (tab. 4, fig. 21). W dolnej części profilu pionowego tego kompleksu bituminy mają cechy epigenetycznych z osadem. Wartość potencjału oksydacyjno-redukcyjnego pozwala wnioskować, że osady te powstawały w środowisku słabo redukcyjnym lub słabo utleniającym (tab. 4).

Zawartość węgla organicznego w mułowcowo-piaszczystych utworach jury dolnej jest zróżnicowana od 0,40 do 1,10% (tab. 4, fig. 21). Utwory te można uznać za "biedne", "słabe" i "dobre" skały macierzyste do generowania węglowodorów. Zawartość bituminów w tych utworach jest nieznacznie podwyższona 0,030–0,050% wag. (tab. 4). Udział węglowodorów oznaczonych w pojedynczej próbce wynosi 26%, a węglowodory nasycone są w dużej przewadze. Wysoki jest udział frakcji żywic i asfaltenów (fig. 21).

Wartość potencjału oksydacyjno-redukcyjnego świadczy o tym, że utwory te powstawały w środowisku słabo redukcyjnym (tab. 4).

W utworach jury środkowej zawartość węgla organicznego jest rozłożona równomiernie (tab. 4). Ilość węgla organicznego obecna w tych utworach określa je jako "słabe" skały macierzyste do generowania węglowodorów (fig. 20).

Fig. 21. Diagram trójkątny składu grupowego bituminów z utworów paleozoiku i mezozoiku

Triangular diagram showing proportions of the fractions of saturated hydrocarbons, aromatics hydrocarbons and asphaltenes or resins in the bitumens extracted from the Palaeozoic and the Mesozoic deposits Zawartość bituminów w tych utworach jest zróżnicowana, duża w niższej części kompleksu skalnego i mniejsza w wyższej partii utworów (tab. 4). Udział węglowodorów w bituminach w pojedynczej próbce jest mały a duży jest udział żywic i asfaltenów (tab. 4). W składzie węglowodorów obie frakcje węglowodorów: nasycone i aromatyczne są prawie w równowadze (fig. 21). Bituminy występujące w tych utworach są syngenetyczne z osadem.

Wartość potencjału oksydacyjno-redukcyjnego jest zróżnicowana, określa warunki sedymentacji jako utleniające w dolnej partii i słabo redukcyjne w górnej partii utworów (tab. 4).

ŚRODOWISKO DEPOZYCJI MATERII ORGANICZNEJ, JEJ TYP GENETYCZNY I STOPIEŃ DOJRZAŁOŚCI

Analiza n-alkanów wykazała, że materia organiczna występująca w utworach permu górnego zawiera dużą ilość związków o parzystej liczbie węgli (C_{18} , C_{20} i C_{22}), oraz dużo związków mjących 17 węgli w łańcuchu. Sugeruje to, że materiałem wyjściowym były głównie bakterie i w mniejszej ilości algi (Tissot, Welte, 1978; Maliński, Witkowski, 1988) (fig. 22).

Warunki środowiska przy osadzaniu się materii organicznej w tych utworach były redukcyjne. Przedstawiono je za pomocą stosunku dwóch węglowodorów izoprenoidowych pristanu i fitanu (Pr/Ph = 0,45); (Didyk i in., 1978). Wartość wskaźników CPI wyliczona według Kotarby i in. (1994) wynosi <1 ze względu na przewagę n-alkanów o parzystej liczbie węgli w cząsteczce w całej masie n-alkanów, co uniemożliwia określenie stopnia przeobrażenia materii organicznej występującej w utworach cechsztynu.

Fig. 22. Dystrybucja n-alkanów i węglowodorów izoprenoidowych

Distribution of n-alkanes and isoprenoides

PODSUMOWANIE

Podsumowując przedstawione wyniki badań geochemicznych należy stwierdzić, że w otworze Gościno IG 1 w całym pionowym profilu jedynie niewielki interwał węglanowych utworów permu górnego i górna partia kompleksu utworów mułowcowo-piaszczystych jury dolnej może być uznana za "dobre" skały macierzyste do generowania węglowodorów. Utwory dewonu i ogólnie utwory permu, a także utwory całego kompleksu triasu są "biednymi" skałami macierzystymi. Ilość bituminów występujących w badanych utworach nie jest duża.

Materia organiczna w utworach cechsztynu jest typu sapropelowego z niewielką domieszką materiału humusowego. Źródłem wyjściowej materii organicznej obecnej w tych utworach są bakterie i algi morskie.

Można sądzić, że w utworach cechsztynu współwystępują bituminy syngenetyczne i epigenetyczne z osadem.

Przemysław KARCZ

CHARAKTERYSTYKA PIROLITYCZNA

MATERIAŁ I METODY BADAŃ

Analizie pirolitycznej poddano 27 próbek skał drobnoklastycznych i węglanowych. Skały drobnoklastyczne były reprezentowane przez iłowce i mułowce oraz ich odmiany wapniste lub dolomityczne. Wśród skał węglanowych przeważały dolomity. Przebadane próbki reprezentują interwały stratygraficzne jury (synemur), triasu (karnik, trias środkowy), permu oraz dewonu (?żywet, fran-famen) (tab. 5).

Z profilu synemuru dysponowano wyłącznie jedną próbką z głębokości 630,0 m, która reprezentuje dolną część tej jednostki stratygraficznej. Dwie próbki karniku (1376,2; 1406,9 m) reprezentują dolny interwał tej jednostki, bliski jej powierzchni spągowej. Z kolei jedna próbka triasu środkowego (1530,0 m) pochodzi prawie dokładnie ze środkowej części profilu. Perm górny jest reprezentowany przez 7 próbek dolomitu głównego reprezentujących środkową część profilu (2940,6–3068,6 m). Dewon jest reprezentowany przez 16 próbek. Stratygraficznie najmłodsza próbka z dewonu pochodzi z głębokości 3710,8 m, i reprezentuje górną część ogniwa strzeżewskiego formacji człuchowskiej (?famen). Grupa 14 próbek (4069,6–4401,7 m) rozmieszczonych w relatywnie regularnych odstępach mieści się w obrębie niższych partii ogniwa strzeżewskiego

5	
a	
e	
ab	

Wyniki analizy materii organicznej metodą pirolityczną Rock Eval

Results of Rock Eval pyrolysis of organic matter

ر د		Głębokość	N	22	S3	$I_{\rm max}$	HI	IO	ΡΙ	TOC	KC	PC L	MinC
	Litologia	[m]	[mg HC/	/gSkały]	[mg CO ₂ /gSkały]	[°C]	[mgHC/gTOC]	[mgCO ₂ /gTOC]	[mgHC/gSkały]		[wt %]		[%]
	iłowiec	630,0	0,07	0,35	1,55	414	20	90	0,17	1,73	1,63	0,09	0,20
	mułowiec dolomityczny	1376,2	0,06	0,15	0,35	338	63	145	0,29	0,24	0,21	0,03	5,02
	iłowiec	1406,9	0,04	0,11	0,27	447	114	278	0,24	0,10	0,08	0,02	0,67
odkowy	iłowiec	1530,0	0,07	0,42	0,21	436	72	36	0,14	0,58	0,53	0,05	0,04
	dolomit	2940,5	1,22	4,08	0,42	438	149	15	0,23	2,74	2,29	0,45	9,36
	dolomit	2940,6	0,92	3,20	0,19	436	238	14	0,22	1,35	1,00	0,35	11,25
	dolomit	2951,1	0,27	1,29	0,35	434	118	32	0,17	1,09	0,95	0,14	9,94
górny	dolomit	2955,4	0,23	0,90	0,25	436	168	46	0,20	0,54	0,44	0,10	11,18
	dolomit	2956,9	0,90	5,06	1,00	438	336	66	0,15	1,51	0,98	0,52	4,38
	dolomit	3057,3	0,04	0,13	0,05	433	232	91	0,24	0,05	0,04	0,02	12,16
	dolomit	3068,6	0,13	0,41	0,13	439	115	37	0,24	0,36	0,31	0,05	11,4
	iłowiec wapnisty	3710,8	0,04	0,12	0,48	442	329	1351	0,23	0,04	0,01	0,03	5,99
	iłowiec wapnisty	4069,6	0,02	0,11	0,24	443	157	341	0,16	0,07	0,05	0,02	7,08
	iłowiec	4138,1	0,03	0,13	0,33	472	437	1086	0,18	0,03	0,01	0,02	1,23
	iłowiec dolomityczny	4138,9	0,03	0,16	0,41	455	164	421	0,17	0,10	0,07	0,03	2,81
	iłowiec	4170,7	0,04	0,23	0,40	460	231	402	0,16	0,10	0,06	0,04	1,40
	iłowiec	4213,6	0,08	0,26	0,48	457	186	347	0,23	0,14	0,10	0,04	1,51
	iłowiec wapnisty	4242,4	0,04	0,12	0,40	456	92	297	0,24	0,14	0,11	0,03	2,88
amen	iłowiec	4313,3	0,02	0,08	0,32	476	161	688	0,24	0,05	0,03	0,02	2,30
	iłowiec	4375,8	0,05	0,11	0,20	321	97	175	0,32	0,11	0,09	0,02	0,82
	iłowiec	4376,3	0,03	0,07	0,15	451	57	131	0,29	0,12	0,11	0,01	1,47
	iłowiec	4377,9	0,06	0,21	0,22	351	235	242	0,21	0,09	0,06	0,03	0,45
	iłowiec	4378,0	0,04	0,12	0,29	454	203	492	0,27	0,06	0,04	0,02	0,59
	iłowiec	4383,4	0,04	0,12	0,17	476	113	158	0,26	0,11	0,09	0,02	0,70
	mułowiec	4399,0	0,05	0,11	0,21	313	159	302	0,30	0,07	0,05	0,02	0,45
	iłowiec	4401,7	0,05	0,18	0,25	444	223	321	0,24	0,08	0,05	0,03	0,78
/wet	iłowiec	4415,8	0,04	0,15	0,17	439	199	218	0,20	0,08	0,05	0,02	0,06

tość węgla organicznego liczona ze wzoru: PC + RC; RC – zawartość węgla rezydualnego liczona ze wzoru: (S4CO2 X 12 / 440) + (S4CO X 12 / 280); PC – zawartość węgla pirolitycznego liczona ze wzoru: [(S1

formacji człuchowskiej i reprezentuje fran. Tylko jedna próbka pochodzi z żywetu, a dokładnie z jego powierzchni stropowej.

Wszystkie przebadane próbki pochodziły ze zbiorów prof. dr hab. Hanny Matyi i są przechowywane w Państwowym Instytucie Geologicznym–Państwowym Instytucie Badawczym (PIG-PIB) Warszawie.

W celu oznaczenia zawartości węgla organicznego oraz jego pochodzenia i dojrzałości, wykonano analizę pirolityczną przy użyciu aparatu Rock Eval 6 w wersji Turbo. Analiza została wykonana w Pracowni Geochemicznej PIG-PIB w Warszawie.

Badanie pirolityczne Rock-Eval polega na termicznym rozkładzie rozdrobnionej próbki skały (35-100 mg) w dwóch cyklach, kolejno pirolitycznym i oksydacyjnym. W pierwszym cyklu próbka trafia do pieca pirolitycznego gdzie w atmosferze azotu jest podgrzewana do temperatury 650°C. W drugim cyklu, próbka zostaje przełożona do pieca oksydacyjnego gdzie w atmosferze tlenu jest podgrzewana do temperatury 850°C. Proces przyrostu temperatury jest sterowany programatorem, który zapewnia jej stały wzrost. Podczas cyklu pirolitycznego tzw. lotne węglowodory obecne w skale są uwalniane już w temperaturze do 350°C, a ich zawartość mierzona przy pomocy płomieniowego detektora jonizacyjnego połączonego z elektrometrem jest wyrażana na wykresie jako pik S1. W dalszej fazie tego cyklu, termiczny rozkład próbki do temperatury 650°C powoduje pirolizę kerogenu w trakcie której są uwalniane weglowodory oraz dwutlenek i tlenek wegla pochodzące z termicznego rozpadu makromolekuł oraz dwutlenek i tlenek węgla z rozkładu materii mineralnej. Wyniki te są przedstawiane odpowiednio jako piki S2 i S3. W cyklu oksydacyjnym wzrost temperatury do 850°C powoduje uwolnienie dwutlenku i tlenku węgla z rezydualnej i nieproduktywnej materii organicznej oraz materii mineralnej. Wyniki te są przedstawiane jako piki S4 i S5.

Otrzymane z analizy pirolitycznej wyniki zostają następnie przeliczone na zawartość organicznego węgla produktywnego (PC), nieproduktywnego (RC) i całkowitego (TOC) oraz zawartość węgla mineralnego (MinC).

Poza oznaczeniem PC, RC i TOC analiza pirolityczna Rock-Eval umożliwia oznaczenie innych parametrów pomocnych przy określaniu typu, stopnia dojrzałości i pochodzenia materii organicznej oraz jest pomocna przy analizie właściwości skał wykorzystywanych w poszukiwaniach złóż ropy naftowej i gazu ziemnego. Jednym z ważniejszych parametrów genetycznych oznaczanym podczas pirolizy jest wartość temperatury maksymalnej (T_{max}) wyrażanej w °C, która odpowiada maksymalnemu uwalnianiu węglowodorów podczas termicznego rozkładu kerogenu i pozwala na oszacowanie stopnia dojrzałości kerogenu. Na podstawie temperatury maksymalnego uwalniania węglowodorów możliwe jest również określenie typu kerogenu. Ważnymi parametrami oznaczanymi w trakcie pirolizy są także indeks wodorowy (HI) wyrażony jako mgHC/gTOC oraz indeks tlenowy (OI) wyrażony jako mgCO₂/gTOC, czyli ilość dwutlenku węgla generowanego z 1 grama TOC. Indeksy wodorowy i tlenowy określają genetyczny typ i pochodzenie kerogenu zawartego w skale.

ZAWARTOŚĆ, TYP GENETYCZNY I DOJRZAŁOŚĆ MATERII ORGANICZNEJ

Dewon

Przebadane próbki dewonu cechują się niezmiernie niską zawartością węgla organicznego TOC, mieszczącą się w przedziale 0,03–0,14% wag. Potencjał generacyjny S2 również oscyluje w przedziale bardzo niskich wartości i wynosi 0,07–0,26 mgHC/gSkały. Zawartość wolnych węglowodorów w próbkach także oscylowała w przedziale bardzo niskich wartości rzędu 0,02–0,08 mgHC/gSkały. Ze względu na fakt, że przebadane próbki cechują się tak bardzo niskimi wartościami wspomnianych parametrów pirolitycznych, należy je zaklasyfikować jako skały pozbawione macierzystości względem generowania węglowodorów. Ponadto, zbyt niskie wartości wspomnianych parametrów sugerują, że wyliczone parametry HI, OI, PC i inne należy uznać za niemiarodajne i nie mogą one być użyte do interpretacji odnośnie pochodzenia materii organicznej.

Perm

Potencjał węglowodorowy przebadanych próbek, wyrażony jako parametr HI, mieści się w granicach 115– 336 mgHC/gTOC, a stopień dojrzałości termicznej materii organicznej, wyrażony za pomocą parametru Tmax, wynosi 433–439°C. Zawartości TOC, będące miarą zasobności w materię organiczną, wynoszą 0,05–2,74% wag, a wielkości potencjału generacyjnego, wyrażonego za pomocą parametru S2, mieszczą się w przedziale 0,13–5,06 mgHC/ gSkały. Na podstawie wartości parametrów T_{max} i HI można wnioskować, że przebadane próbki dolomitów reprezentują trzy typy skał względem generowania węglowodorów, a mianowicie średnie/ dobre skały macierzyste (2940,5– 2940,6; 2956,9 m), bardzo słabe skały macierzyste (2951,1 m) oraz skały pozbawione macierzystości (2955,4; 3057,3– 3068,6 m). Materia organiczna zawarta w przebadanych próbkach skalnych wieku permskiego to kerogen typu II i III znajdujący się w zakresie niskotemperaturowych przemian termokatalitycznych górnej części okna ropnego (fig. 23).

Trias i jura

Potencjał węglowodorowy przebadanych próbek, wyrażony jako parametr HI, mieści się w granicach 20– 114 mgHC/gTOC, a stopień dojrzałości termicznej materii organicznej, wyrażony za pomocą parametru Tmax, wynosi 338–447°C. Zawartości TOC, będące miarą zasobności

w materię organiczną, wynoszą 0,10–1,73% wag, a wielkości potencjału generacyjnego, wyrażonego za pomocą parametru S2, mieszczą się w przedziale 0,11–0,42 mgHC/ gSkały. Na podstawie wartości wymienionych parametrów można wnioskować, że przebadane próbki skał triasu i jury reprezentują skały pozbawione macierzystości względem generowania węglowodorów. Materia organiczna zawarta w przebadanych próbkach skalnych wieku triasowego i jurajskiego to przerobiony i zdegradowany kerogen typu III. Badane próbki zawierają od 0,04 do 5,02% węgla mineralnego związanego w minerałach węglanowych, których przeważający udział stanowi dolomit. Taka zawartość węgla mineralnego wskazuje na udział 5–40% dolomitu w ogólnej masie skały.