WYNIKI BADAŃ PETROFIZYCZNYCH PRÓBEK RDZENI

Przedstawione w niniejszym rozdziale informacje pochodzą z materiałów zamieszczonych w dokumentacjach Habryn (2012) oraz Wójcicki (2013), skąd wybrano rezultaty badań najistotniejsze z punktu widzenia niniejszego opracowania. Scharakteryzowano badania parametrów zbiornikowych (gęstość, porowatość, przepuszczalność) oraz termicznych (przewodność i pojemność cieplna oraz ciepło radiogeniczne). Próbki, dla których wykonano omawiane poniżej analizy laboratoryjne, zestawiono w tabeli 2.

Adam WÓJCICKI

PARAMETRY ZBIORNIKOWE PRÓBEK RDZENI

Badania porowatości, przepuszczalności i gęstości 19 próbek rdzeni z otworu Czerwony Potok PIG 1 (tab. 3) wykonano w Instytucie Nafty i Gazu na zlecenie PIG-PIB w ramach przedsięwzięcia "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (*Hot Dry Rocks*) w Polsce" (Habryn, 2012; Wójcicki, 2013).

Pomiary gęstości wykonano przy pomocy piknometru helowego (gęstość szkieletowa i gęstość materiałowa) oraz porozymetru rtęciowego (gęstość pozorna, objętościowa). Posłużyły one do określenia porowatości całkowitej (oraz nieujętej w tabeli 3 porowatości otwartej). Jednocześnie wykonano badania i parametryzację przestrzeni porowej na podstawie pomierzonych krzywych ciśnień kapilarnych, wykorzystując zależność wielkości ciśnienia kapilarnego od m.in. wielkości promienia i kształtu porów. Pomiary wykonano porozymetrem rtęciowym AutoPore9220, otrzymując w rezultacie porowatość zliczoną z porozymetru oraz inne parametry charakteryzujące rozkład przestrzeni porowych i wpływające na przepływ płynów w ich obrębie. Porowatość zliczona z porozymetru jest porowatością dynamiczną, tzn. odpowiadającą udziałowi porów, w które wniknęło medium, czyli rtęć, w objętości skały. Jest ona mniejsza od porowatości otwartej o udział wody nieredukowalnej w mikroporach i związanej na powierzchni ścianek porów. Natomiast porowatość całkowita jest większą od tej ostatniej, o udział porów nieskomunikowanych. Oznaczanie współczynnika przepuszczalności efektywnej wykonano przy użyciu azotu. Pomiar polegał na doprowadzeniu do ustalonego, laminarnego przepływu gazu przez badaną próbkę i wyliczeniu współczynnika przepuszczalności przy pomocy równania Darcy'ego.

Porowatość całkowita w badanych próbkach waha się w granicach od 0,36 do 3,94%. Są to wielkości charakteryzujące skały bardzo słabo porowate. Współczynnik przepuszczalności wahał się w szerokim zakresie od 0,001 do 2,934 mD, zatem należą one generalnie do skał nieprzepuszczalnych (próbki z dolnej i środkowej części profilu otworu) lub słabo/średnio przepuszczalnych (próbki pobrane w przedziale głębokości 30,3-73,3 m p.p.t.). Wartości średnicy progowej w badanych próbkach wynoszą od 0,5 do 20 µm, przeważnie ok. 1 µm. Dowodzi to słabych właściwości filtracyjnych ośrodka. Usytuowanie względem siebie krzywych uzyskanych dla malejących i rosnących ciśnień świadczy o wielkości odstępstwa realnej przestrzeni porowej od modelu walcowego. Liczbową wartością oddalenia krzywych od siebie jest wartość efektu histerezy. W przypadku badanych próbek wielkość ta wahała się w granicach 37-76%, najczęściej ok. 50%. Wskazuje to na względnie jednorodne wykształcenie przestrzeni porowej badanych skał. Analizowane próbki wykazują mikroporowy charakter przestrzeni porowej. Świadczy o tym wielkość średniej kapilary (0,00-0,46 µm). Procent porów o średnicach większych od 1 µm jest z reguły niski i średnio wynosi ok. 46%, chociaż w niektórych próbkach przekracza 60%.

e
B
e
q
Ĩ

Wyniki analiz laboratoryjnych gęstości, porowatości i przepuszczalności skał Results of density, porosity and permeability laboratory analyzes of rocks

Współczyn- nik przepusz- czalności [mD] Permeability coefficient	2,934	2,510	2,067	1,772	0,731	0,001	0,205	<0,120	0,001	0,001	0,001	<0,110	0,001	0,001	0,001	0,001	0,110	0,001	0,001
Histereza [%] Hysteresis	53	62	52	53	58	59	09	58	99	09	40	92	Ι	37	54	71	73	99	Ι
Średnica progowa [µm] Treshold diameter	hm	20,0	hm	hm	8,0	0,5	2,0	0,5	0,7	1,0	0,05	1,0	I	1,0	0,6	1,0	0,5	4,0	I
Pory >1 µm [%] Pores >1 µm	63	62	34	60	55	65	51	46	16	44	65	20	I	66	46	31	29	28	I
Powierzchnia właściwa [m²/g] Specific area	0,17	0,09	0,16	0,18	0,14	0,04	0,04	0,12	0,63	0,18	0,06	0,79	0,00	0,03	0,05	0,23	0,29	0,61	0,00
Średnia kapilara [[µm] Mean capillary	0,37	0,46	0,26	0,23	0,24	0,39	0,41	0,11	0,06	0,11	0,15	0,04	0,00	0,41	0,21	0,05	0,06	0,04	0,00
Porowatość z porozyme- trem [%] Porosimeter porosity	3,94	2,69	2,57	2,74	2,05	1,00	0,98	0,81	2,28	1,28	0,63	1,98	0,36	0,80	0,61	0,83	1,09	1,51	0,46
Gęstość z porozyme- trem [g/cm ³] Porosimeter density	2,54	2,48	2,55	2,55	2,54	2,52	2,58	2,54	2,52	2,55	2,57	2,55	2,62	2,57	2,59	2,60	2,66	2,54	2,58
Gęstość szkieletowa [g/cm ³] Skeletal density	2,64	2,55	2,62	2,62	2,59	2,55	2,61	2,56	2,58	2,59	2,59	2,60	2,63	2,59	2,60	2,62	2,69	2,58	2,60
Porowatość całkowita [%6] Total porosity	3,94	2,85	2,67	2,85	2,13	1,07	0,98	0,86	2,39	1,20	0,65	1,98	0,36	0,82	0,62	0,83	1,06	1,56	0,47
Gęstość materiałowa [g/cm ³] Material density	2,64	2,61	2,66	2,66	2,63	2,62	2,61	2,62	2,63	2,53	2,62	2,60	2,63	2,62	2,62	2,62	2,66	2,61	2,63
Numer labolatoryjny próbki Laboratory sample number	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734	2735	2736	2737
Numer próbki Sample number	CZP1_4	CZP1_5	CZP1_7	CZP1_8	CZP1_9	CZP1_10	CZP1_11	CZP1_12	CZP1_14	CZP1_15	CZP1_16	CZP1_17	CZP1_18	CZP1_19	$CZP1_{20}$	CZP1_21	CZP1_22	CZP1_23	$CZP1_24$

Wyniki badań petrofizycznych próbek rdzeni

bm – pomiar nieudany

Magdalena PAŃCZYK-NAWROCKA, Marta WRÓBLEWSKA

PARAMETRY TERMICZNE PRÓBEK RDZENI

W laboratorium geofizycznym PIG-PIB wykonano pomiary parametru przewodności cieplnej na 24 próbkach rdzeni z otworu Czerwony Potok PIG 1, natomiast w laboratorium E.ON Energy Research Center, RWTH Aachen University wykonano na zlecenie PIB-PIB pomiary parametru pojemności cieplnej na 6 próbkach rdzeni z tegoż otworu (tab. 2, 4, 5). Ponadto dla 10 próbek określono wartości produkcji ciepła radiogenicznego (tab. 6). Wyniki pomiarów temperatury w otworze zostały omówione w rozdziale dotyczącym badań geofizyki wiertniczej.

Tabela 4

	2		8 1	5 1	
Numer próbki	Głębokość [m]	K _{śr} [W/mK]	K _{min} [W/mK]	K _{max} [W/mK]	
Sample number	Depth	K _{mean}	K _{min}	K _{max}	
CZP1_01	9,0–9,2	1,6055	1,2145	2,0310	
CZP1_02	15,2–15,4	2,1295	1,6870	2,5890	
CZP1_03	23,65-23,90	2,0545	1,7870	2,5275	
CZP1_04	30,2–30,4	1,9145	1,6280	2,2755	
CZP1_05	35,7–35,9	1,8610	1,4480	2,2260	
CZP1_06	41,1-41,2	2,3425	1,9225	2,8615	
CZP1_07	51,4–51,6	2,5455	2,0115	3,1445	
CZP1_08	57,6–57,8	2,1705	1,9030	2,5335	
CZP1_09	64,3-64,5	2,3030	1,7580	2,8520	
CZP1_10	71,5–71,7	2,9310	2,7350	3,2285	
CZP1_11	74,3–74,5	3,0465	2,7290	3,6835	
CZP1_12	81,6-81,7	3,0810	2,7870	3,4770	
CZP1_13	91,45–91,60	1,9525	1,6220	2,4665	
CZP1_14	111,00–111,15	3,2100	2,8030	3,6250	
CZP1_15	120,1–120,3	3,0355	2,5505	3,6395	
CZP1_16	134,4–134,6	2,9245	2,4980	3,5545	
CZP1_17	139,7–139,9	2,7895	2,2575	3,3135	
CZP1_18	153,8–154,0	2,6530	2,4625	2,9085	
CZP1_19	169,70-169,85	2,9810	2,7480	3,4130	
CZP1_20	186,6–186,8	3,2090	2,6525	3,6015	
CZP1_21	187,7–187,9	3,0540	2,8495	3,2970	
CZP1_22	190,5–190,7	3,1370	2,4200	3,6705	
CZP1_23	192,9–193,1	3,4125	2,7780	4,4350	
CZP1_24	200,70-200,85	3,0450	2,5755	3,5920	

Wyniki pomiaru przewodności cieplnej (K) metodą skanu optycznego. Próbki w stanie suchym Results of thermal conductivity measurements (K) using optical scanner. Dry samples

Tabela 5

Pojemność cieplna skał (Cp) obliczona dla temperatur 80-160°C

Heat capacity of rocks (Cp) measured for temperature range 80-160°C

Numer próbki	Cp(80)	Cp(100)	Cp(120)	Cp(120)	Cp(160)
Sample number			$[\mathrm{Jg}^{-1}\mathrm{K}^{-1}]$		
CZP1_12	0,842280	0,871558	0,89848	0,923549	0,944728
CZP1_15	0,841809	0,869969	0,895411	0,918505	0,940475
CZP1_18	0,842269	0,870043	0,895201	0,918560	0,939575
CZP1_20	0,841585	0,870044	0,895053	0,918039	0,939627
CZP1_22	0,850114	0,879165	0,906012	0,931088	0,953350
CZP1_24	0,846346	0,874258	0,899347	0,922803	0,945039

Tabela 6

Produkcja ciepła radiogenicznego obliczona na podstawie pomierzonych zawartości pierwiastków promieniotwórczych w skałach

Production of radiogenic heat calculated basing on measured content of radioactive elements in rocks

Numer próbki	Produkcja ciepła radiogenicznego [µW/m ³]
Sample number	Production of radiogenic heat
CZP1_03	3,913
CZP1_05	3,618
CZP1_07	4,071
CZP1_10	8,782
CZP1_12	7,554
CZP1_15	3,950
CZP1_18	7,051
CZP1_20	3,320
CZP1_22	3,358
CZP1_24	6,875

Magdalena PAŃCZYK-NAWROCKA, Marta WRÓBLEWSKA

BADANIA PRZEWODNOŚCI CIEPLNEJ

Parametr przewodności cieplnej charakteryzuje intensywność wymiany ciepła na drodze przewodzenia w danym ośrodku skalnym, a jego wielkość zależy od składu mineralnego, uziarnienia, porowatości, wielkości i kształtu porów, zawartości płynów złożowych w skale i jej zawilgocenia (Wójcicki i in., 2013).

Przewodność cieplna próbek została pomierzona za pomocą skanera optycznego TCS (Popov i in., 1999) (tab. 4). Idea pomiaru jest oparta na porównaniu nadmiaru rejestrowanego ciepła z próbki i wzorca. Próbka oraz wzorzec ogrzewane są przez ruchome, zogniskowane źródło ciepła, a pomiar odbywa się za pomocą czujników temperatury w podczerwieni. Pomiar zrealizowano w warunkach temperatury pokojowej na 24 próbkach suchych, przy czym dla każdej z próbek pomiar wykonano dwukrotnie, w kierunku równoległym i prostopadłym do osi rdzenia.

Wyniki pomiaru przewodności cieplnej przedstawione w tabeli 4 wskazują, że średnia wartość tego parametru w otworze wynosi 2,64 W/m*K. Dla porównania zmierzone przez Plewę (1994) próbki granitu ze Szklarskiej Poręby charakteryzowały się przewodnościami: 2,55 W/m*°C (granit drobno- i średnioziarnisty) i 1,64 W/m*°C (granit średnioziarnisty). Badania wykazały, że granity drobnoi średnioziarniste mogą cechować się wyższymi wartościami tego parametru w stosunku do granitów gruboziarnistych. Przewodność cieplna rośnie stopniowo wraz z głębokością, uzyskując maksymalną wartość 4,435 W/m*K. Wyraźne odstępstwo wykazuje próbka nr CZP1 13 (tab. 4) opisana jako kataklazyt, pobrana z głębokości 91,45-91,60 m, której przewodność cieplna wynosi 1,9525 W/m*K. Próbka ta charakteryzowała się podwyższoną porowatością, która przyczyniła się do spadku przewodności cieplnej. Graficznie wyniki pomiarów przedstawiono na figurze 8, gdzie wyraźnie wyróżnia się odrębność przewodności cieplnej kataklazytu.

Magdalena PAŃCZYK-NAWROCKA, Marta WRÓBLEWSKA

BADANIA POJEMNOŚCI CIEPLNEJ

Pojemność cieplna próbek skał została pomierzona za pomocą kalorymetru różnicowego DSC C-80 wykonującego pomiary w zakresie temperatur 20–300°C. Uzyskane wyniki zostały przeliczone w odniesieniu do temperatury (Kelley, 1960) dla przedziału 80–160°C, zgodnie z przyjętym założeniem projektu "Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (*Hot Dry Rocks*) w Polsce", w ramach którego wykonano otwór Czerwony Potok PIG 1 (Wójcicki, 2013; Wójcicki i in., 2013). Uzyskane wyniki przypisane do typu litologicznego granitoidu wskazują, że pojemność cieplna tego typu skał zmienia się od 0,842 J/(g*K) dla temperatury 80°C do 0,953 J/(g*K) przy 160°C. Wyniki przedstawiono w tabeli 5.

Fig. 8. Średnia przewodność cieplna badanych próbek pobranych z rdzenia wiertniczego otworu Czerwony Potok PIG 1

Average thermal conductivity of drill core samples of the Czerwony Potok PIG 1 borehole

Magdalena PAŃCZYK-NAWROCKA, Marta WRÓBLEWSKA

CIEPŁO RADIOGENICZNE

Ciepło dochodzące z wnętrza do powierzchni Ziemi stanowi sumę ciepła przewodzonego w drodze kondukcji, konwekcji oraz promieniowania. Według danych literaturowych (Plewa, 1988, 1994) udział ciepła radiogenicznego w powierzchniowym strumieniu cieplnym jest szacowane do 50%. Zmiany pola ciepła radiogenicznego przebiegają bardzo powoli, iż można uznać je za stacjonarne. Znając zawartość pierwiastków radiogenicznych w skale (informacje na ten temat przedstawiono w następnym rozdziale) oraz gęstość objętościową skały można obliczyć produkcję ciepła radiogenicznego A, wykorzystując wzór Rybacha (1973):

$$A=10^{-2*}\rho^{*}(9,25*C_{U}+2,56*C_{T}+3,48*C_{K})$$

gdzie:

 ρ – gęstość objętościowa [g/cm³],

C_U – zawartość izotopów U-238 oraz U-235 [ppm],

 C_T – zawartość izotopów Th-232 [ppm], C_K – zawartość potasu [%].

W ten sposób, na podstawie zawartości pierwiastków promieniotwórczych i wartości gęstości objętościowej pomierzonej dla 10 próbek skał z otworu Czerwony Potok PIG 1, wykonano obliczenia ciepła radiogenicznego dla tych próbek, zaprezentowane w tabeli 6 i na figurze 9. Cztery próbki (nr CZP1_10, CZP1_12, CZP1_18, CZP1_24) osiągnęły bardzo wysokie wartości powyżej 6 µW/m³, co jest skorelowane z wysokimi zawartościami uranu i toru w tych próbkach (fig. 9).

Fig. 9. Wyniki produkcji ciepła radiogenicznego w zestawieniu z wykresem zawartości toru i uranu w skałach

The results of the radiogenic heat production versus the chart of the content of thorium and uranium in rocks