WYNIKI OPRÓBOWANIA POZIOMÓW ZBIORNIKOWYCH I OBJAWY ROPONOŚNOŚCI

Jakub SOKOŁOWSKI

WYNIKI OPRÓBOWANIA POZIOMÓW ZBIORNIKOWYCH

Celem opróbowania otworu Maciejowice IG 1 była ocena własności zbiornikowych paleozoiczno-mezozoicznego kompleksu osadowego i wyjaśnienie kwestii obecności w nim węglowodorów. Opróbowaniem objęto dziewięć horyzontów w utworach: dewonu dolnego (dwa horyzonty), dewonu górnego (dwa horyzonty), karbonu (trzy horyzonty), permu (jeden horyzont) i jury środkowej z triasem górnym (jeden horyzont), wytypowanych przez L. Bojarskiego, A. Żelichowskiego i J. Szewczyka z Instytutu Geologicznego w Warszawie. Opróbowanie poziomów mezozoicznych konsultowano z Z. Płochniewskim i J. Stachowiak z Zakładu Hydrogeologii i Geologii Inżynierskiej. Badania przeprowadzono po zakończeniu wiercenia za pomocą rurowego próbnika złoża firmy Halliburton w przypadku poziomów paleozoicznych oraz poprzez wytłaczanie kompresorem i sczerpywanie łyżką wiertniczą w poziomie mezozoicznym. Najgłębszy zbadany poziom został odsłonięty

pod rurami, pozostałe udostępniono do badań przez perforację rur. Dozór opróbowania sprawowali E. Pajnowski, K. Sobol, W. Kowalczyk i Z. Sowiński, a nadzór nad opróbowaniem pełnił L. Bojarski z Instytutu Geologicznego w Warszawie. Analizy właściwości fizyczno-chemicznych płynów złożowych zostały wykonane w Głównym Laboratorium Instytutu Geologicznego w Warszawie przez H. Jasińską i T. Latoszyńską. Analizy gazu pobranego z filtratu płuczki i płynów złożowych wykonał M. Sztukowski w Laboratorium Zakładu Mineralogii, Petrografii i Geochemii Instytutu Geologicznego. Rezultaty opróbowania przedstawił Bojarski (1977) w dokumentacji wynikowej otworu badawczego Maciejowice IG 1 opracowanej w Zakładzie Geologii Regionalnej Obszarów Platformowych Instytutu Geologicznego w 1977 r. (Żelichowski i in., 1977). Najważniejsze wyniki opróbowania przedstawiono na figurze 56.

WYNIKI OPRÓBOWANIA

Opróbowanie otworu przeprowadzono w okresie 31.01.– 10.06.1977 r. Stan techniczny otworu przed przystąpieniem do badań przedstawiał się następująco:

- rury Ø340 mm w głębokości od 0,0 do 565,0 m;
- rury Ø244 mm w głębokości od 0,0 do 2820,0 m;
- rury Ø178 mm w głębokości od 2637,8 do 4204,0 m.

Poziom 4204,0–5059,0 m – sylur–dewon dolny – piaskowce, mułowce. Po zakończeniu wiercenia, wykonaniu pomiarów geofizycznych i płukaniu otworu stwierdzono wyraźne zgazowanie płuczki, która paliła się jasnym, intensywnym płomieniem. W związku z powyższym przystąpiono do opróbowania interwału odsłoniętego pod rurami Ø178 mm. Opróbowanie wykonano w dniach 31.01.– 02.02.1977 r. próbnikiem rurowym firmy Halliburton. Paker próbnika zapięto w rurach Ø178 mm w głęb. 4184,0 m, zalewając 1275 m przewodu wiertniczego nad pakerem wodą. Z powodu awarii manometru nie zarejestrowano ciśnienia złożowego oraz ciśnień rejestrujących wielkość przypływu. W łącznym okresie przypływu, wynoszącym 10 godzin, do przewodu wiertniczego nad próbnikiem wpłynęło 1,55 m³ płuczki ze śladami gazu palnego. Po zakończeniu badania zlikwidowano spód otworu korkiem cementowym do głęb. 4415,0 m.

Pobrany do analizy gaz wolny scharakteryzowano jako gaz ziemny gazolinowy o dużej ilości węglowodorów (81% obj.), w tym o podwyższonej zawartości węglowodorów ciężkich wynoszącej ok. 14% obj. (tab. 39).

Poziom 4204,0–4415,0 m – dewon dolny – piaskowce, mułowce. W związku z objawami gazu stwierdzonymi podczas opróbowania niezarurowanej części otworu, powtórnie zbadano odcinek odsłonięty pod rurami Ø178, tym razem w mniejszym interwale. Badanie przeprowadzono w dniach

Fig. 56. Schemat opróbowania poziomów zbiornikowych w otworze wiertniczym Maciejowice IG 1 Testing scheme of the Maciejowice IG 1 borehole

14–17.02.1977 r., zapinając paker w rurach Ø178 na głęb. 4128 m. Opróbowanie wykonano metodą jednokrotnego odcięcia przypływu, uzyskując następujące wyniki (fig. 57): W wyniku opróbowania w przewodzie wiertniczym nad próbnikiem stwierdzono 0,87 m³ płuczki ze śladami gazu palnego. Na głowicy otworu objawów gazu nie stwierdzono. Badany kompleks wykazuje bardzo słabe właściwości zbiornikowe, co potwierdza także interpolacja krzywej ciśnienia

I okres przypływu: 48 godz., ciśnienie 53,4–56,6 at. I okres odbudowy ciśnienia: 10 godz., ciśnienie 56,6–80,7 at.

Tabela 39 Analiza chemiczna gazu pobranego

z interwalu 4204,0–5059,0 m Results of chemical analysis of gas sampled

at 4204,0–5059,0 m interval

Składnik Component		Zawartość w czystym gazie Content in pure gas				
		[% obj.]	$[g/_n m^3]$		m ³]	
Metan		67,2716		482,5	39	
Etan		6,6679		90,19	90	
Propan	l	5,6605		113,10	59	
Butan		1,2751		34,09	94	
Buten		0,0141	0,365			
Pentan		0,1286	4,334			
Wodór		0,0139		0,012		
Dwutlenek	węgla	0,1838	3,631			
Argon		0,0057	0,10		02	
Hel		0,0238		0,0	43	
Azot		18,7550		234,5	68	
Razem / T	otal	100,0000		963,047		
		Uwagi / Remark	s			
G	Za	anieczyszczonego			0.705(
Gęstość		powietrzem		[g/dm ³]	0,7856	
gazu		czystego			0,7448	
Zawartość p	owietrz	a obliczona z ilości (D_2^{-}	[%]	15,9587	

zarejestrowanej na manometrze głębinowym. Po okresie 10-godzinnej odbudowy ciśnienie denne wzrosło jedynie do 80,7 at., co jest wartością kilkukrotnie mniejszą od wielkości ciśnienia złożowego. Po zakończeniu badania otwór zlikwidowano korkiem cementowym do głęb. 4170,0 m.

Pobrany do analizy gaz wolny określono jako gaz ziemny gazolinowy o mniejszej ilości węglowodorów ciężkich (około 8% obj.) w porównaniu do gazu pobranego z głębszego interwału (tab. 40). Badany gaz odznaczał się korzystnym składem i zawierał 99,6% obj. węglowodorów przy 0,2% obj. azotu. Wśród węglowodorów dominował

Tabela 40

Analiza chemiczna gazu pobranego z interwału 4204,0–4415,0 m

Results of chemical	l analysis	of gas	sampl	ed
at 4204.0–4	415.0 m i	nterva	1	

Składnik		Zawartość w czystym gazie Content in pure gas			
Compone	ent	[% obj.]	[g/n1	m ³]	
Metan		91,4470	655,9	49	
Etan		5,6223	76,0)47	
Propan		2,0686	41,3	358	
Butan		0,3855	10,3	307	
Pentan	0,0880		2,966		
Dwutlenek w	węgla 0,1513		2,989		
Argon	ślady		_		
Hel		0,0053	0,010		
Azot		0,2320	2,902		
Razem/ Total		100,0000	792,528		
		Uwagi / Remarks			
Gęstość za		nieczyszczonego powietrzem	[g/dm ³]	0,6420	
gazu		czystego		0,6130	
Zawartość po	owietrza	obliczona z ilości O ₂	[%]	7,7442	

Fig. 57. Przebieg opróbowania poziomu 4204,0-4415,0 m

Testing of 4204,0-4415,0 m interval

metan w ilości 91,5% obj. Z uwagi na słabe własności zbiornikowe skał gaz ten występuje w ilościach śladowych.

Poziomy 3820,5–3827,5; 3882,0–3886,0 oraz 3901,0– 3906,0 m – dewon górny – wapienie. Badanie przeprowadzono w dniach 24–26.02.1977 r. po perforacji rur Ø178 mm (21–22.02.1977 r.). Paker zapięto w głębokości 3795,0 m w rurach Ø 178 mm. Opróbowanie poziomów 3882,0–3886,0 oraz 3901,0–3906,0 m przeprowadzono próbnikiem rurowym Halliburtona metodą jednokrotnego odcięcia przypływu (fig. 58):

I okres przypływu: 915 min., ciśnienie 6,3–21,0 at.

I okres odbudowy ciśnienia: 350 min., ciśnienie 6,3–31,2 at.

W wyniku badania nie stwierdzono przypływu solanki, a jedynie silne zgazowanie płuczki wiertniczej, która wpłynęła do przewodu nad próbnikiem. Gaz oceniono jako gaz ziemny gazolinowy o bardzo korzystnym składzie z uwagi na zawartość węglowodorów wynoszącą 90,1% obj. (tab. 41).

Fig. 58. Przebieg opróbowania poziomu 3882,0–3886,0 m i 3901,0–3906,0 m

Testing of 3882,0-3886,0 m and 3901,0-3906,0 m ntervals

Tabela 41 Analiza chemiczna gazu pobranego

z interwału 3882,0–3886,0 m i 3901,0–3906,0 m

Results of chemical analysis of gas sampled at 3882,0 – 3886,0 m and 3901,0–3906,0 m intervals

Składnik		Zawartość w czystym gazie Content in pure gas				
Componen	nt	[% obj.]	[g/ _n m ³]		3]	
Metan		80,6241		578,316)	
Etan		7,2786		98,450)	
Propan		2,0195		40,376		
Propen		0,1550		2,958	}	
Butan		0,0276		0,738		
Wodór		1,0558	0,949			
Dwutlenek v	vęgla	0,2105	4,159			
Argon		0,0081	0,145		;	
Hel		ślady	ślady			
Azot		8,6208		107,820)	
Razem / To	otal	100,0000		833,911		
		Uwagi / Rema	rks			
Gęstość z		anieczyszczonego powietrzem		[g/dm ³]	0,6610	
gazu		czystego			0,6450	
Zawartość powietrza obliczona z ilości O_2			D_2	[%]	4,6794	

W związku z powyższym badany poziom doperforowano w interwale 3820,5–3827,5 m w dniu 03.03.1977 r., a następnie – tego samego dnia – zapuszczono do otworu próbnik Halliburtona. Badanie wykonano, stosując pełną depresję i metodę jednokrotnego odcięcia przypływu (fig. 59):

I okres przypływu: 24 godz., ciśnienie 23,3-123,2 at.

I okres odbudowy ciśnienia: 36 godz., ciśnienie 123,2–399,0 at.

Uzyskano przypływ solanki z wydajnością 0,16 m³/h silnie zanieczyszczonej płuczką, ze śladami gazu palnego. Zwierciadło solanki stwierdzono na głęb. 3340,0 m. Ciśnienie złożowe wynosiło 399 at. i było nieznacznie wyższe od ciśnienia hydrostatycznego. Na podstawie interpretacji krzywej odbudowy ciśnienia należy sądzić, że badany poziom wykazuje średnie własności zbiornikowe. Badany

Fig. 59. Przebieg opróbowania poziomu 3820,5–3827,5 m oraz 3882,0–3886,0 m i 3901,0–3906,0 m

Testing of 3820,5–3827,5 m and 3882,0–3886,0 m and 3901,0–3906,0 m intervals odcinek zlikwidowano korkiem cementowym, którego strop stwierdzono na głęb. 3541,0 m.

Ze względu na silne skażenie solanki płuczką jej analiza jest mało wiarygodna (tab. 42). Sucha pozostałość płynu złożowego wynosi 44 g/dm³, jego gęstość 1,0303 g/cm³, a pH = 7,5. Wskaźnik rNa/rCl wynosi 0,77. Gaz uzyskany z odgazowania solanki scharakteryzowano jako gaz ziemny gazolinowy, wysokometanowy o zawartości węglowodorów w ilości 97,6% (tab. 43).

Poziom 3200,0–3228,0 m – karbon – piaskowce, mułowce. Po perforacji rur Ø178 mm (29–30.03.1977 r.) w dniach 19–21.04.1977 r. przeprowadzono opróbowanie przy użyciu próbnika rurowego firmy Halliburton. Badanie wykonano metodą jednokrotnego odcięcia przypływu (fig. 60):

I okres przypływu: 28 godz., ciśnienie 9,0-12,5 at.

I okres odbudowy ciśnienia: 8 godz. 40 min., ciśnienie 9,0–34,6 at.

W wyniku badania nie uzyskano przypływu płynu złożowego, stwierdzając na podstawie interpretacji krzywej wzrostu ciśnienia, całkowity brak własności zbiornikowych skał w badanym interwale. Wpływ na wynik badania mógł mieć długi czas pomiędzy perforacją rur a zapięciem próbnika. Po zakończeniu badania otwór zlikwidowano korkiem cementowym na głęb. 3230,0–3138,0 m.

Poziom 2980,0–2992,0 m – karbon – piaskowce, mułowce. Bezpośrednio po perforacji rur Ø178 mm w dniu 28.04.1977 r. przystąpiono do opróbowania omawianego interwału próbnikiem rurowym Halliburtona. Badanie, wykonane metodą dwukrotnego odcięcia przypływu, zakończono 30.04.1977 r. i uzyskano następujące wyniki (fig. 61):

I okres przypływu: 15 godz. 15 min., ciśnienie 107,4– 314,8 at.

I okres odbudowy ciśnienia: 4 godz., ciśnienie 314,8–315,6 at.

II okres przypływu: 11 godz. 20 min., ciśnienie 315,2–316,4 at.

W wyniku opróbowania otrzymano przypływ solanki rozcieńczonej filtratem płuczki z wydajnością 4 m³/h. Stabilizacja przypływu nastąpiła po okresie ok. 5 godzin. Ciśnienie denne złożowe wynosiło 320 at. i było nieznacznie (kilka procent) wyższe od ciśnienia hydrostatycznego. Na podstawie interpretacji krzywej wzrostu ciśnienia można stwierdzić, że utwory karbonu w badanym interwale wykazują bardzo dobre właściwości zbiornikowe. Poziom solanki w przewodzie nad próbnikiem występował na głęb. 117,0 m i jest przypuszczalnie zbliżony do poziomu hydrostatycznego, jednak pełnej stabilizacji nie osiągnięto (tab. 44). Po zakończeniu badania otwór zlikwidowano korkiem B.O.A. na głęb. 2970,0 m.

Pobrana do analizy solanka odznaczała się suchą pozostałością 162,4 g/dm³, gęstością 1,1152 g/cm³ i odczynem obojętnym (pH = 7,0). Solanka reprezentuje typ chemiczny Cl–Na–Ca,I (tab. 45). Wartości wskaźników hydrochemicznych wskazują na wysoki stopień metamorfizmu solanki (tab. 46).

Poziom 2924,0–2957,5 m – karbon – piaskowce. Po perforacji rur Ø178 mm (4–5.05.1977 r.) przystąpiono do opróbowania interwału 2924,0–2957,5 m. Badanie wykonano

Tabela 42

Analiza chemiczna solanki pobranej z poziomu 3820,5–3906,0 m

Results of chemical analysis of brine sampled at 3820,5–3906,0 m interval

Składnik	Zawartość / Content			
Component	[mg/dm ³]	[mval/dm ³]	[% mval]	
	Kationy	/ Cations		
Na ⁺	12 250,00	532,88	76,986	
K^+	2676,00	68,43	9,758	
Ca ²⁺	1500,51	74,88	10,678	
Mg^{2+}	302,16	24,86	2,545	
Fe _T	4,00	0,21	0,030	
Mn ²⁺	0,59	0,02	0,003	
Razem Cations total	16 733,26	701,28	100,000	
	Aniony	/ Anions		
Cl	24 608,04	694,19	96,379	
HCO ₃	713,46	11,69	1,624	
SO_4^2	617,40	12,85	1,785	
Br	117,80	1,47	0,205	
I_	6,55	0,05	0,007	
Razem Anions total	26 063,25	720,25	100,000	
Łącznie Total	42 796,51	_	_	

Tabela 43

Analiza chemiczna gazu pobranego z interwału 3820,5–3906,0 m

Results of chemical analysis of gas sampled at 3820,5–3906,0 m interval

Składnik Component		Zawartość w czystym gazie Content in pure gas		
		[% obj.]	$\left[g/_{n}m^{3}\right]$	
Metan		93,8026	672,846	
Etan		2,8806	38,963	
Propan	ı	0,7845	13,684	
Propen	l	0,0101	0,193	
Butan		0,1136	3,037	
Pentan		0,0333	1,120	
Wodór		0,0478	0,043	
Dwutlenek	węgla	0,0967	1,910	
Argon		ślady	_	
Hel		0,0072	0,013	
Azot		2,2236	27,811	
Razem / T	òtal	100,0000	759,620	
		Uwagi / Remarks		
Gęstość	Z	anieczyszczonego powietrzem	[g/dm ³]	0,5660
gazu		czystego		0,5660
Zawartość j	oowietrz	za obliczona z ilości O ₂	[%]	1,5798

Tabela 44

Położenie zwierciadła solanki

Water table level

Data Date	Godzina Hour	Głębokość Depth [m]
	900	188,0
20.04.1077	1100	154,0
29.04.1977 r.	1210	147,0
	1510	133,5
30.04.1977 r.	830	117,0

Fig. 60. Przebieg opróbowania poziomu 3200,0-3228,0 m

Testing of 3200,0-3228,0 m interval

Fig. 61. Przebieg opróbowania poziomu 2980,0-2992,0 m

Testing of 2980,0-2992,0 m interval

Tabela 45

Analiza chemiczna solanki pobranej z poziomu 2980,0–2992,0 m

Results of chemical analysis of brine sampled at 2980,0–2992,0 m interval

Składnik	Zawartość / Content			
Component	[mg/dm ³]	[mval/dm ³]	[% mval]	
	Kationy	/ Cations		
Na ⁺	30 000,00	1305,00	47,073	
K^+	9100,00	232,69	8,393	
Ca ²⁺	17 617,55	879,12	31,711	
Mg ²⁺	4301,02	353,80	12,762	
Fe _T	23,38	1,26	0,045	
Mn ²⁺	12,00	0,43	0,016	
Razem Cations total	61 053,95	2772,30	100,000	
	Aniony	/ Anions		
Cl	98 483,55	2778,22	98,955	
HCO ₃	369,03	6,05	0,215	
$SO_4^{2^-}$	481,57	10,03	0,357	
Br	1058,17	13,24	0,471	
I ⁻	5,07	0,04	0,001	
Razem Anions total	100 397,39	2807,57	100,000	
Łącznie Total	161 451,34	_	_	

T Wartości wskaźników hydrochemicznych badanych płynów złożowych

Hydrochemicals indicators of tested waters

Głębo- kość [m] Depth	$r[(C1^{}Na^{+})/Mg^{2+}]$	r(Ca ²⁺ /Mg ²⁺)	r(Na ⁺ /K ⁺)	r(Na ⁺ /Cl ⁻)	Cl ⁻ /Br ⁻	Br ⁻ /I	r[(SO ₄ ²⁻ ·100/Cl ⁻)]
2980,0– 2992,0	4,16	2,48	5,61	0,47	93,07	208,83	0,36
2924,0– 2957,5	3,96	2,34	9,72	0,45	89,18	331,22	0,21
1735,0– 1760,0	3,16	2,04	55,66	0,63	159,88	63,16	2,45
1393,0– 1434,0	1,98	1,48	14,66	0,71	181,80	11,86	8,13

r - wartości wyrażane w mval / value expressed in milival

w dniach 5–6.05.1977 r. próbnikiem rurowym Halliburtona, stosując metodę jednokrotnego odcięcia przypływu. W czasie trwającego 740 minut okresu oczekiwania na przypływ ciśnienie wzrosło z 99,6 do 309,3 at. (fig. 62). W wyniku opróbowania do przewodu nad próbnikiem wpłynęło 20,7 m³ czystej solanki. Po 5 godzinach obserwacji wzniosu zwierciadła, poziom solanki w otworze stwierdzono na głęb. 187,0 m (nieustalony). Średnią wydajność przypływu określono w wysokości 4,0 m³/h. Ciśnienie denne wynosiło 313 at. i było nieznacznie zaniżone w stosunku do ciśnienia złożowego, które nie zostało pomierzone.

Testing of 2924,0-2957,5 m interval

Tabela 46

Właściwości zbiornikowe badanego interwału oceniono jako bardzo dobre. Po zakończeniu badania otwór zlikwidowano korkiem cementowym do głęb. 2492,0 m.

Pobrana do analizy solanka odznaczała się suchą pozostałością 192,9 g/dm³, gęstością 1,1395 g/cm³ i odczynem obojętnym (pH = 7,0). Solanka reprezentuje typ chemiczny Cl–Na–Ca,I o podwyższonej zawartości pierwiastków biofilnych: jodu – 4,2 mg/dm³ i bromu – 1380 mg/dm³ (tab. 47). Wartości wskaźników hydrochemicznych (tab. 46) wskazują na bardzo wysoki stopień metamorfizmu solanki, a tym samym na bardzo korzystne warunki do zachowania się złóż węglowodorów. Uzyskane wyniki należy traktować jako reprezentatywne dla badanej części basenu karbońskiego.

Poziom 1735,0–1760,0 m – pogranicze permu i triasu – piaskowce. Po perforacji rur Ø244 mm, wykonanej w dniu 17.05.1977 r., za pomocą kompresora obniżono poziom płynu w otworze, wytłaczając 207 m³ płynu, tj. ok. 3-krotną objętość otworu. Po uzyskaniu przypływu czystej solanki przystąpiono do pomiarów głębokości zwierciadła (fig. 63). Temperatura solanki wytłaczanej kompresorem wynosiła na powierzchni terenu 35°C. Po uzyskaniu stabilizacji przystąpiono do sczerpywania łyżką wiertniczą. Przy maksymalnej wydajności łyżki sczerpano 30,6 m³ uzyskując zaledwie 1,0 m depresji. Wydajność przypływu określono na 5,1 m³/h. Właściwości zbiornikowe skał w badanym poziomie są bardzo dobre. Po zakończeniu badania otwór zlikwidowano korkiem cementowym na głęb. 1760,0–1700,0 m.

Pobrana do analizy solanka odznaczała się suchą pozostałością 88,0 g/dm³, gęstością 1,0635 g/cm³ i odczynem kwaśnym (pH = 5,0). Solanka reprezentuje typ chemiczny Cl–Na– Ca,I (tab. 48) o wysokim stopniu metamorfizmu (tab. 46).

Tabela 47

Analiza chemiczna solanki pobranej z poziomu 2924,0–2957,5 m

Results of chemical analysis of brine sampled at 2924,0–2957,5 m interval

Składnik	Zawartość / Content				
Component	[mg/dm ³]	[mg/dm ³] [mval/dm ³]			
	Kationy / Cations				
Na ⁺	36 000,00	1566,00	46,915		
K ⁺	6300,00	161,09	4,826		
Ca ²⁺	22 566,30	1126,06	33,734		
Mg ²⁺	5853,13	481,48	14,424		
Fer	53,11	2,85	0,085		
Mn ²⁺	15,13	0,55	0,016		
Razem Cations total	70 787,67	3338,03	100,000		
	Anion	y / Anions			
Cl	123 060,55	3471,54	99,235		
HCO ₃	123,01	2,02	0,058		
SO4 ²⁻	358,09	7,46	0,213		
Br	1379,95	17,26	0,493		
Ι	4,17	0,03	0,001		
Razem Anions total	124 925,77	3498,31	100,000		
Łącznie Total	195 713,44	-	_		

Fig. 63. Wykres stabilizacji zwierciadla wody z poziomu 1735,0–1760,0 m

Water table stabilization from 1735,0-1760,0 m interval

Tabela 48

Analiza chemiczna solanki pobranej z poziomu 1735,0–1760,0 m

Results of chemical analysis of brine sampled at 1735,0–1760,0 m interval

Składnik	Zawartość / Content					
Component	[mg/dm ³]	[mval/dm ³]	[% mval]			
	Kationy / Cations					
Na ⁺	21 600,00	939,60	63,374			
K ⁺	660,00	16,88	1,138			
Ca ²⁺	7065,30	352,56	23,780			
Mg ²⁺	2096,53	172,46	11,632			
Fe _T	19,50	1,05	0,071			
Mn ²⁺	2,05	0,07	0,005			
Razem Cations total	31 443,38	1482,62	100,000			
	Aniony	/ Anions				
Cl	52 613,29	1484,22	97,325			
HCO ₃	18,29	0,30	0,020			
$SO_4^{2^-}$	1745,18	36,33	2,382			
Br	329,08	4,12	0,270			
I_	5,21	0,04	0,003			
Razem Anions total	54 711,05	1525,01	100,000			
Łącznie / Total	86 154,43	-	-			

W solance stwierdzono rozpuszczony gaz, którego skład przedstawiono w tabeli 49. Otrzymana z odgazowania solanki próbka zawierała głównie azot oraz odznaczała się wysoką zawartością dwutlenku węgla.

Poziom 1393,0–1434,0 m – jura środkowa–trias górny – piaskowce. Interwał do badań udostępniono perforując w dniach 2–3.06.1977 r. rury Ø244 mm. Kompresorem wytłoczono z otworu płyn w ilości 216 m³, co odpowiadało ponad 4-krotnej objętości otworu. Badania zakończono

Tabela 49

Analiza chemiczna gazu pobranego z interwału 1735,0–1760,0 m

Results of chemical analysis of gas sampled at 1735,0–1760,0 m interval

Składnik		Zawartość w czystym gazie Content in pure gas			
Componer	it	[% obj.]	[g/ _r	m ³]	
Metan		0,0216	0,1	55	
Etan		0,0020	0,0)27	
Eten		0,0018	0,023		
Propan		0,0029	0,058		
Wodór		0,0973	0,088		
Dwutlenek wegla		27,7892	549,004		
Argon		0,0431	0,769		
Hel		ślady	_		
Azot		72,0421	901,0	031	
Razem/ Total		100,0000	1451,1	55	
		Uwagi / Remarks			
Gastaśś		zanieczyszczonego		1.0660	
Gęstose		powietrzem	[g/dm ³]	1,0000	
gazu		czystego		1,1220	
Zawartość	nowiet	trza obliczona z ilości O ₂	[%]	44,7976	

w dniu 6.06.1977 r., stwierdzając po dwóch godzinach od wyłączenia kompresora samowypływ o wydajności 3,6 m³/h (nadciśnienie 2,6 at.). Podczas wytłaczania temperatura wody, mierzona na powierzchni terenu, wynosiła 30°C. Następnie przystąpiono do pomiarów samowypływu, uzyskując przypływ wody z wydajnością 4,3 m³/h o temperaturze 23°C (tab. 50). W końcowym etapie pomiarów zauważono spadek wydajności (4,2 m³/h) spowodowany nieszczelnością przewodu (tab. 51). W celu ustalenia poziomu hydrostatycznego wykonano pomiar nadciśnienia (fig. 64). Poziom hydrostatyczny ustalił się 26 m ponad powierzchnią terenu. Po pobraniu próbek wody otwór zlikwidowano do wierzchu.

Tabela 50

Wyniki obserwacji samowypływu podczas opróbowania poziomu 1393,0–1434,0 m

Results of the self-outflow observations during 1393,0–1434,0 m interval testing

Data Date	Godzina Hour	Wydajność Discharge [m ³ /h]	Temperatura wody Water temperature [°C]
	1100	4,0	18,0
	1200	4,0	18,5
	1300	4,0	19,5
	1400	4,0	20,0
	1500	4,0	20,0
00.001077	16^{00}	4,0	20,0
00.00.19//r.	1700	4,3	21,5
	1900	4,3	21,5
	20^{00}	4,3	21,5
	2100	4,3	22,0
	22 ⁰⁰	4,3	22,0
	24^{00}	4,3	22,0
	100	4,3	22,0
	200	4,3	22,0
07.06 1077 -	300	4,3	22,5
07.00.1977 f.	400	4,3	23,0
	6^{00}	4,3	23,0
	800	43	23.0

Tabela 51

Wyniki obserwacji samowypływu na przelewie Thomsona podczas opróbowania poziomu 1393,0–1434,0 m

Results of the self-outflow observations (Thomson overflow) during 1393,0–1434,0 m interval testing

Data Date	Go- dzina Hour	Wysokość trójkąta wody Height of water triangle [cm]	Wydajność Discharge [m ³ /h]	Temperatura wody / Water temperature [°C]
	1000	5	2.81	18
	1200	6	4.43	19
	1200	6	4.43	20
	1300	6	4.43	21
	1400	6	4,43	21
07.04.1077	1500	6	4,43	21
0/.06.19// r.	1600	6	4,43	21
	1700	6	4,43	21
	18^{00}	6	4,43	21
	19 ⁰⁰	6	4,43	22
	20^{00}	6	4,43	22
	2100	6	4,43	22
	22^{00}	6	4,43	22
	23^{00}	6	4,43	22
	24^{00}	6	4,43	22
	100	6	4,43	22
	200	6	4,43	22
	300	6	4,43	22
	4^{00}	6	4,43	22
	500	6	4,43	22
	600	6	4,43	22
	7^{00}	6	4,43	22
	8^{00}	6	4,43	22
00.06.1077	9^{00}	5,8	4,1	23
08.06.19// r.	10^{00}	5,8	4,1	23
	1100	5,9	4,2	23
	1200	5,9	4,2	23
	1300	5,9	4,2	23
	1400	5,9	4,2	23
	1500	5,9	4,2	23
	16 ⁰⁰	5,9	4,2	23
	1700	5,9	4,2	23
	1800	5,9	4,2	23
	1900	5,9	4,2	23
	20^{00}	5,9	4,2	23
	2100	50	4.2	22

Fig. 64. Wykres stabilizacji nadciśnienia w poziomie 1393,0–1434,0 m

Overpressure stabilization from 1393,0-1434,0 m interval

Pobrana do analizy woda odznaczała się suchą pozostałością 12,0 g/dm³, gęstością 1,0109 g/cm³ i odczynem kwaśnym (pH = 6,0). Woda reprezentuje typ chemiczny Cl–Na,I o podwyższonej zawartości jodu wynoszącej 3,12 mg/dm³ (tab. 52). W wodzie stwierdzono rozpuszczony gaz, składający się głównie z azotu i odznaczający się wysoką zawartością dwutlenku węgla (tab. 53).

Tabela 52

Analiza chemiczna wody pobranej z poziomu 1393,0–1434,0 m

Results of chemical analysis of water sampled at 1393,0–1434,0 m interval

Składnik	Zawartość / Content						
Component	[mg/dm ³]	[mval/dm ³]	[% mval]				
	Kationy / Cations						
Na ⁺	3100,00	134,85	63,393				
\mathbf{K}^+	360,00	9,20	4,325				
Ca ²⁺	820,62	40,95	19,251				
Mg ²⁺	336,28	27,66	13,002				
Fe _T	1,00	0,05	0,024				
Mn ²⁺	0,15	0,01	0,005				
Razem Cations total	4618,05	212,72	100,000				
Aniony / Anions							
Cl	6724,74	189,68	90,808				
HCO ₃	201,22	3,30	1,580				
$SO_4^{2^-}$	740,88	15,42	7,382				
Br	36,99	0,46	0,220				
I_	3,12	0,02	0,010				
Razem Anions total	7706,95	208,88	100,000				
Łącznie Total	12 325,00	-	_				

Tabela 53

Analiza chemiczna gazu pobranego z interwalu 1393,0–1434,0 m

Results of chemical analysis of gas sampled at 1393,0–1434,0 m interval

Składnik Component		Zawartość w czystym gazie Content in pure gas				
		[% obj.]	[g/ _n m ³]		3]	
Metan		0,0292		0,210		
Etan		0,0076	0,103			
Eten		0,0003	0,004			
Propan		0,0010		0,020		
Dwutlenek v	vęgla	24,9497	492,906			
Argon		0,0093	0,166			
Hel		0,0040	0,007			
Azot		74,9989		938,011		
Razem Total	100,0000			1431,427		
Uwagi / Remarks						
Gęstość		zanieczyszczonego powietrzem		[g/	1,0300	
gazu	czystego			dm ³]	1,1060	
Zawartość powietrza obliczona z ilości O ₂ [%] 69,808				69,8089		

Podsumowanie

Zbadane poziomy dewonu wykazują bardzo słabe własności zbiornikowe, choć stwierdzono w ich obrębie wyraźne ślady gazu o wysokiej zawartości węglowodorów. Lepsze własności zbiornikowe wykazują utwory karbonu, z których otrzymano przypływ solanki w ilości 4 m³/h oraz w piaskowcach pogranicza permu i triasu, a także jury środkowej. W profilu otworu stwierdzono wyraźną strefowość hydrochemiczną – mineralizacja wód w utworach karbonu wynosi 193 g/dm³ przy wartości wskaźnika rNa/rCl = 0,45, w utworach pogranicza permu i triasu odpowiednio 88 g/dm³ i 0,63, a w kompleksie jurajskim 12 g/dm³ i 0,71. Na podstawie wskaźników hydrochemicznych można stwierdzić, że korzystne warunki dla zachowania się złóż węglowodorów panują w utworach paleozoiku i pogranicza pstrego piaskowca z cechsztynem. Zbiorcze zestawienie wyników opróbowania otworu Maciejowice IG 1 zawiera tabela 54.

Tabela 54

L.p. No.	<u>Stratygrafia</u> <u>Stratigraphy</u> Litologia Lithology	Głębokość badanego poziomu Depth [m]	Metoda badania Testing type	Data badania Testing date	Ciśnienie Pressure [at.]	Wielkość i rodzaj przypływu Fluid quantity [m ³]	Wydajność przypływu Discharge [m³/h]	Poziom wody w otworze Water table level [m]
1	<u>S-D</u> 1 piaskowce, mułowce	4204,0–5059,0	próbnik złoża	31.01-2.02.77	_	1,55 płuczka	_	_
2	<u>D</u> 1 piaskowce, mułowce	4204,0-4415,0	próbnik złoża	14–17.02.77	P _d =80,7	0,87 płuczka	_	_
3	<u>D</u> <u>3</u> wapienie	3882,0–3886,0 3901,0–3906,0	próbnik złoża	24–26.02.77	P _d =31,2	0,22 filtrat	_	_
4	<u>D</u> <u>3</u> wapienie	jw. + 3820,5–3827,5	próbnik złoża	3-7.03.77	P _z =399,0	3,90 filtrat+ solanka	0,16	3340,0
5	<u>C</u> piaskowce, mułowce	3200,0-3228,0	próbnik złoża	19–21.04.77	P _d =34,6	0,24 filtrat	_	_
6	<u>C</u> piaskowce, mułowce	2980,0–2992,0	próbnik złoża	28–30.04.77	P _z =320,0	21,43 solanka	4,0	117,0
7	<u>C</u> piaskowce	2924,0–2957,5	próbnik złoża	5–6.05.77	P _d =313,0	20,7 solanka	4,0	187,0
8	<u>?P/?T</u> piaskowce	1735,0-1760,0	kompresor + łyżka wiertnicza	22–29.05.77	_	solanka	5,1	52,4
9	<u>T₃–J₂</u> piaskowce	1393,0–1434,0	kompresor + łyżka wiertnicza	4–10.06.77	P _n =2,6	woda mineralna	4,3	+26,0

Zestawienie wyników opróbowania Summary of testing results

 $S-sylur; D-dewon; C-karbon; ?P?T-?perm/?trias; J-jura; P_z-ciśnienie złożowe; P_d-ciśnienie denne; P_n-nadciśnienie denne; P_n-nadciśnieni denne; P_n-nadciśnienie denne; P_n-nadciśnienie denne; P_$

 $S-Silurian; D-Devonian; C-Carboniferous; ?P?T-?Permian/?Triassic; J-Jurassic; P_z-field pressure; P_d-bottom pressure; P_n-over pressure; P_n-ov$

Anna BECKER

OBJAWY ROPONOŚNOŚCI W CZASIE WIERCENIA

Objawy węglowodorów, stwierdzone podczas wiercenia otworu Maciejowice IG 1, zostały podsumowane w dokumentacji wynikowej otworu (Żelichowski i in., 1977). W poniższej tabeli 55, przygotowanej na podstawie danych archiwalnych, zestawiono te interwały, w których obserwowano ślady ropy w rdzeniach lub gaz w płuczce, rezygnując z umieszczania w niej interwałów, gdzie zaobserwowano jedynie podwyższone wskazania metanomierza. Ślady ropy, obserwowane w wapieniach wizenu i franu, były opisywane jako wycieki/wysięki ropy ze szczelin, mikroszczelin, spękań lub kawern, a także jako "pocenie się" rdzenia ropą. Obserwacje te potwierdzano testem fluorescencji w świetle UV, którego efektem była fluorescencja barwy żółtej we wszystkich zestawionych poniżej fragmentach rdzeni. Silne zgazowanie płuczki gazem palnym na pograniczu dewonu i syluru stwierdzono podczas płukania otworu po 12-dniowej stójce.

Tabela 55

Objawy bituminów w otworze w czasie wiercenia Bitumen shows in borehole during drilling

System (piętro) System (Stage)	Głębokość [m] Depth	Rodzaj objawów bituminów Kind of bitumen shows	
Karban (wizon)	3474,6–3478,7	ślady ropy w rdzeniu	
Karbon (Wizen)	3478,7–3497,4	ślady ropy w rdzeniu	
Dewon (fran)	3772,0–3790,0	ślady ropy w rdzeniu	
	3815,3–3824,0	ślady ropy w rdzeniu	
	3862,3–3863,4	ślady ropy w rdzeniu	
Dewon-sylur	4204,0-5059,0	zgazowanie płuczki gazem palnym	