NUMERICAL MODELLING OF THE LANDSLIDE PROCESSES
USING DISCONTINUOUS APPROACH

Les³aw ZABUSKI1, Gianluca MARCATO2

Abstract. Principles and examples of discontinuous numerical modelling of the landslide slopes are presented in the paper. In many cases, rock mass is composed of relatively strong and competent rock blocks, which are intersected with discontinuities, such as joints, faults, fault zones, bedding planes, etc. Deformation process of such system is modelled numerically, using UDEC (Universal Distinct Element Code) computer programme. This approach is explained in the paper, and two examples of numerical simulation of the landslide development illustrate its main features. The first example is concerned with the landslide modelling in a diabase quarry, whereas the second one presents the simulation of the process in the Italian Dolomites. The results prove the appropriateness and usefulness of the discontinuous modelling approach.

Key words: distinct element method, numerical simulation, landslide.

INTRODUCTION

Typical rock mass is discontinuous. Rock matrix is usually more of less regularly intersected and divided into the blocks of different shapes, which can deform and move independently. Discontinuities in the rock mass can be imagined as a weakest “link of chain”. Thus, shear or tension failure usually occur along these surfaces, whereas the rock remains in original state. Despite this knowledge, in most of cases such medium is modelled as continuum. Although this approach can be considered as improper, in many cases the solution results of the medium’s behaviour prove its relative correctness. However, if very great deformations have to be simulated, continuous modelling could be the reason of serious inadequacies. Discontinuous models are much better and can be applied successfully in such cases.

There are few numerical tools, allowing modelling and solving the rock mechanics problems, based on the discontinuous approach. One of them is UDEC (Universal Distinct Element Code; Itasca, 2004). UDEC is ideally suited to study deformation and failure processes and mechanisms, directly related to the presence of discontinuities. Rock mass is modelled as a system of rigid or deformable blocks, touching along so-called “interfaces”, which imitate discontinuities. The behaviour both the rock matrix (internal part of the deformable blocks) and interfaces is described by commonly known laws of the continuous medium mechanics.

UDEC was used to analyse the two landslide processes. The first one occurred on the wall in a diabase quarry (Fig. 1);
creating some problems in further, secure exploitation of
the material. The task of the analysis was the explanation of
the landslide causes and prediction of the future wall stability.
The second example concerns very big landslide Passo della
Morte in Italian Dolomites (valley of the Tagliamento River),
(Fig. 2). The initiation of the movement (1) was connected with
the slow ice melting, which formerly filled the valley in the gla-
ciation’s epoch. The movement nature changed in the later pe-
riods and now the landslide is almost stable or moves slowly in
the direction 3.

PRINCIPLES OF DISCONTINUOUS MODEL AND THE UDEC PROGRAMME

There are important differences in the local and, in conse-
quence, overall behaviour between continuous and discontinuous
models. These differences are clearly visible if one compares two
schemes presented on Figure 3. In discontinuous approach, all
blocks move and deform independently, whereas continuous
model causes dependency of their deformational behaviour.
Preparation of the discontinuous model consists of the de-
scription both the rock blocks and the discontinuities proper-

![Fig. 3. Comparison between the behaviour of continuous and discontinuous models](image_url)
ties. There are two options, when the block body is considered. In the more simple models, block material can be treated as rigid, i.e. its elasticity modulus is equal to infinity. In the second option, fully deformable block-material deforms and in the consequence the shape of the block can change. The schemes on Figure 4 explain the differences in the behaviour of these two models. First assumption means that any displacements in the system occur only due to the movement along or perpendicularly to the interfaces (discontinuities). Such kind of model is applied in case of blocks built of hard rock, divided by sets of joints. Second model can be taken into account, if the system of blocks, built of relatively weak rock, is considered.

Rigid block (Fig. 4A) deforms in translational and (or) rotational mode. Deformable block is divided into zones, which can change their shape causing the change of the block shape (Fig. 4B). As it is seen on the Figure 4B, final system seems to be very different in comparison with the initial one.

NUMERICAL SIMULATION OF THE LANDSLIDE MOVEMENT

LANDSLIDE IN A DIABASE QUARRY

General site inspection suggested that the main reason of the landslide development was connected with the sand movement. Thus, the main task of numerical calculations concerned the explanation of the deformation mechanism and the role of the diabase settlement in this process.

The model geometry is presented on Figure 5. Central cross-section of the landslide was chosen for model construction and numerical simulation. Discontinuities in the diabase are modelled in accordance with the real orientation and spacing of joints. Sand discontinuities are rather “artificial”. However, it can be assumed, that the simulation of the sand layer overall behaviour approximately agrees with the reality, as the dimensions of sand blocks are sufficiently small. It was also assumed that the blocks were rigid. Therefore, failure processes were only possible along or across the discontinuities, in shear or tension respectively. The set of parameters describing their properties is shown in Table 1.

![Fig. 4. Explanation of possible deformations and displacements of the blocks](image)

A — rigid model; B — fully deformable model

![Fig. 5. Cross-section for the numerical simulation of the landslide movement](image)
The simulation results in form of illustration of landslide development during the selected stages are shown on Figure 6. Based on these results, it is possible to describe both the failure processes and their order:

— diabase blocks lowering and sliding, especially along steeply inclined discontinuities — beginning at the slope base, to the top of diabase zone;
— enlarging this process into deeper regions of the slope;
— creation of the free space between lowered diabase blocks and sand overburden;
— sliding and rolling of the sand particles, following continuous settlement of the diabase zone;
— covering the diabase zone by sand particles;

It generally means that the sand movement has a secondary character, following the diabase failure. This conclusion has a practical consequence. Before the calculations were performed, it was decided that removing the sand overburden is necessary for the diabase wall stabilisation. The results proved that such operation would not give expected effects.

The results also show, that the application of discontinuous model was proper, as the displacements of some blocks reached tens of metres; it would be impossible to simulate such large movements using a continuous approach. Moreover, final shape of the landslide body was similar to this observed in the nature.

Table 1

<table>
<thead>
<tr>
<th>Layer</th>
<th>Discontinuity</th>
<th>Normal stiffness k_n [MPa/m]</th>
<th>Shear stiffness k_s [MPa/m]</th>
<th>Cohesion c_s [kPa]</th>
<th>Tension strength R_{ts} [kPa]</th>
<th>Friction angle ϕ_s [$^\circ$]</th>
<th>Dilation angle ψ_s [$^\circ$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabase</td>
<td>Dip 10° (SZ)</td>
<td>250</td>
<td>250</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dip 10° (DZ)</td>
<td>250</td>
<td>250</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dip 80° (SZ)</td>
<td>250</td>
<td>250</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dip 80° (DZ)</td>
<td>250</td>
<td>250</td>
<td>15</td>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Sand</td>
<td>SZ</td>
<td>250</td>
<td>250</td>
<td>5</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DZ</td>
<td>250</td>
<td>250</td>
<td>15</td>
<td>5</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

SZ — shallow zone; DZ — deep zone

Fig. 6. Selected stages of the landslide development

A — initial stage; B-D — selected stages of the progressive landslide deformations
LANDSLIDE IN ITALIAN DOLOMITES

Initiation and progression of the Passo della Morte landslide were connected with the retreat of ice from the valley during the last period of the glaciation’s epoch. Huge rock falls and toppling failures developed in the first stage (see Fig. 2, stage 1). Due to these phenomena, the dip angle of the moving body surface significantly decreased and the character of the process changed. Movement continued by sliding in the direction 2 (see Fig. 2) and finally stabilisation was reached. Gradual weakening of the rock medium as well as water filtration into the loosened rock mass in difficult climatic conditions caused reactivation of the deformations. However, the movement direction nowadays (direction 3 on Fig. 2) is different than in the earlier stages. The movement distance in some parts of the slope is equal to hundreds of metres, and application of the continuous model would be very improper. Thus, UDEC was chosen to analyse this process.

The task of UDEC analysis was to simulate the movement in direction 3 (shown on Fig. 2) and to explain the mechanism of deformations occurring from the initiation of sliding until today. This work is not finished yet, but some promising results have already been obtained. Serious difficulties resulted from uncertainties regarding input data, i.e. geomechanical parameters describing the medium properties. It is highly probable that the material properties in the past were more or less different than they are at present, but due to the lack of information an assumption of constant properties was accepted. In practice, it was only one possibility for verification of the simulation appropriateness, namely, comparison of the final slope shape — simulated and measured.

Initial and final stages of the landslide are presented on Figure 7. Fully deformable blocks were chosen in this case. Simulation procedure of the process was performed for decreasing thickness of the ice cover. Although this process in natural conditions was continuous, it was impossible to follow such way in calculations. Thus, the process was divided into four stages. In each of them, one ice slice was removed and calculation carried out until equilibrium was reached. Large movement distances of the blocks and changes of their shapes are clearly visible. The geological structure, especially arrangement of the layers in the slope is in final stage significantly different in compari-

![Fig. 7. Development of the Passo della Morte landslide](image)

A — initial stage; B — final (present) stage

3 Cross-sections were elaborated by geologists from the Istituto della Ricerca per la Protezione Idrogeologica CNR, Padova, Italy.
son with the initial situation. The calculation results allow understanding the reasons of these changes.

As it was mentioned above, next trials of calculations will be carried out and their results compared with the results of some measurements performed on the slope (e.g. inclinometric measurements). Therefore, the example presents rather the possibilities of the distinct element method than the final, fully reliable solution.

FINAL REMARKS

Two examples of landslide simulation with the help of discontinuous modelling illustrate the possibilities and advantages of this approach. The model could be satisfactorily used both in the case of fractured mass built of hard, competent rock (rigid block model) and weak rock (fully deformable block model). In the first example: landslide in a diabase quarry, first model was applied, and in the second one: the Passo della Morte landslide, fully deformable blocks were assumed.

Discontinuous modelling could also be used in the flysch rock mass. Particularly sandstone flysch is suitable for application of such approach, although — as the second example proves — weak rock mass can be also modelled using this method. The landslides of different kinds and dimensions can be considered, especially in cases of large displacements.

It should be underlined that the numerical simulation can help geologists to interpret phenomena and forms observed in the nature. It means that the co-operation between geologists and engineers can give fruitful results. The examples presented in the paper confirm this conclusion.

In frames of co-operation between Istituto della Ricerca per la Protezione Idrogeologica CNR, Padova, Italy and Institute of Hydroengineering PAS Gdańsk, Poland.

REFERENCES