Polish Geological Institute National Research Institute Polish Geological Survey Polish Hydrogeological Survey

YEARS YEARS YEARS

HYDROCARBON PROSPECTIVE OF POLAND

ŻABOWO TENDER AREA ENGLISH ABSTRACT

Aleksandra KOZŁOWSKA, Marta KUBERSKA, Olga ROSOWIECKA, Paweł ALEKSANDROWSKI, Justyna ARASZKIEWICZ, Dariusz BRZEZIŃSKI, Martyna CZAPIGO-CZAPLA, Joanna FABIAŃCZYK, Anna FELDMAN-OLSZEWSKA, Andrzej GŁUSZYŃSKI, Marcin JANAS, Marek JASIONOWSKI, Dominika KAFARA, Anna KALINOWSKA, Przemysław KARCZ, Hubert KIERSNOWSKI, Sylwia KIJEWSKA, Paulina KOSTRZ-SIKORA, Olimpia KOZŁOWSKA, Ewelina KRZYŻAK, Rafał LASKOWICZ, Krzysztof LESZCZYŃSKI, Martyna LEŚNIAK, Hanna MATYJA, Tadeusz PERYT, Zdzisław PETECKI, Grzegorz PIEŃKOWSKI, Joanna PRZASNYSKA, Leszek SKOWROŃSKI, Jakub SOKOŁOWSKI, Zenon WIŚNIOWSKI, Michał WOROSZKIEWICZ, Krystian WÓJCIK

> IV LICENSING ROUND CONCESSIONS FOR HYDROCARBON PROSPECTION, EXPLORATION AND PRODUCTION IN POLAND

Table of contents:

1. GENERAL INFORMATION	4
2. GEOLOGY	5
2.1. GENERAL GEOLOGICAL DESCRIPTION	5
2.2. TECTONICS	5
2.3. STRATIGRAPHY AND LITHOLOGY	7
3. PETROLEUM SYSTEMS	15
4. HYDROCARBON FIELDS	17
5. WELLS	25
6. SEISMIC SURVEYS	31
7. GRAVIMETRY, MAGNETOMETRY	
AND MAGNETOTELLURICS	33
7.1 GRAVIMETRY	33
7.2. MAGNETOMETRY	33
7.3. MAGNETOTELLURICS	33
8. HYDROCARBON PROSPECTIVE	37
9. REFERENCES	38

Location of the Żabowo tender area on the map of concessions for hydrocarbon exploration and production, and non-reservoir storage of substances in the subsurface and storage of wastes in the subsurface as of 31-07-2019.

1. GENERAL INFORMATION

The Żabowo tender area is located onshore in the northwestern Poland, in the 83 and 103 concession blocks (Fig. 1). The precise location is defined by geographical coordinates listed below.

Border	1992 coord	inate system
points	Х	Y
1	673 948.18	266 614.09
2	669 360.76	269 798.54
3	643 263.52	268 511.84
4	645 106.88	235 462.62
5	661 436.72	236 382.04
6	661 143.42	240 603.82
7	664 525.57	238 976.42
8	664 755.54	236 443.29
9	675 598.09	237 055.20

Tab. 1. Border points coordinates of the Żabowo tender area (Fig. 1).

Administrative centre:

Zachodniopomorskie province; Goleniów county, communes: Maszewo (participation in the tender area 0.11%), Osina (2.45%), Nowogard (28.47%); Gryfice county, communes: Gryfice (8.06%), Płoty (19.19%); Kamień Pomorski county, commune: Golczewo (4.41%); Łobez county, communes: Resko (19.41%), Łobez (0.06%), Dobra (1.52%), Radowo Małe (15.49%), Węgorzyno (0.83%).

The Żabowo tender area was previously subjected to hydrocarbon prospection and exploration concessions No. 12/99/p "Gryfice", No. 20/2000/p "Nowogard" and No. 28/2000/p "Kaleń". Currently, two hydrocarbon concessions are provided in the neigborhood of the area (Fig. 1):

- 1/2000/Ł "Kamień Pomorski" (PGNiG Polish Oil and Gas Company),
- 18/95/Ł "Świdwin-Białogard" (PGNiG Polish Oil and Gas Company).

There are numerous oil and gas fields discovered in the Rotliegend and Zechstein (Main Dolomite) in the vicinity of the tender area.

The main exploration targets in the Żabowo tender area are related to conventional oil and gas accumulations in the:

- Carboniferous and Permian (with Rotliegend deposits as main reservoir rocks),
- Permian (with Zechstein/Main Dolomite deposits as main reservoir rocks).

Fig. 1. Border points of the Żabowo tender area and location of the hydrocarbon concessions in the neighborhood as of 31-07-2019 (CBDG, 2019).

2. GEOLOGY

2.1. GENERAL GEOLOGICAL DESCRIPTION

The Żabowo tender area is located in the north-western Poland. It lies at the border of the Szczeciny-Gorzów Trough and Mid-Polish Anticlinorium (Aleksandrowski, 2017a; Fig. 2). Below the Permian-Mesozoic and Cenozoic cover, the Devonian and Carboniferous strata of the Variscan Foredeep occur (Aleksandrowski, 2017b; Fig. 3). They overlie the older Paleozoic rocks of the Kujawy-Pomerania Fold Belt (Żelaźniewicz et al. 2011).

The stratigraphy and lithology of the Paleozoic and Mesozoic rocks are recognized in numerous wells located within the Żabowo tender area and its close neighborhood. These are: <u>Barkowo 1</u>, Berkanowo 1, Błotno 1, Błotno 2K, <u>Błotno 3</u>, Brojce IG-1, Ciechnowo 1, Ciechnowo 4, Czaplinek IG-1,Czaplinek IG-2, <u>Gardomino 1</u>, Grabin 1, Grabin 2K, <u>Karsk 1</u>, <u>Łosośnica 1</u>, <u>Maszkowo 2</u>, Moracz IG-1, <u>Nowogard GEO-1</u>, <u>Piaski PIG-2</u>, <u>Piaski 3</u>, Resko 1, Resko 3, Rymań 1, Samlino 1, Sławoborze 1, Sławoborze 2, Sławoborze 3, Słowieńsko 1, <u>Smolęcin 1</u>, Świerzno 4, <u>Unibórz 1</u>, Wysoka Kamieńska 2 (see Fig. 22 for location; wells located within the tender area are highlighted).

5

2.2. TECTONIC

structural stages distinguished Several are in the Żabowo tender area. Hypothetically, the oldest structural stage is formed by the Ediacaran-Silurian succession of the Kujawy-Pomerania Fold Belt (Żelaźniewicz et al. 2011). They form the basement of the Paleozoic Platform. However, these rocks have not been recognized by drilling, because of deep burial. Above, the continuous succession of the Devonian and Carboniferous occurs (Variscan structural stage), which forms the sedimentary cover of the Paleozoic Platform. It is separated from the Permian by the Variscan unconformity. This surface lies at depth between 3700 and 5500 m b.s.l. (Kudrewicz, 2007). The Permian-Mesozoic structural stage includes volcanites, Rotliegend and Zechstein deposits in the Permian, as well as clastic and carbonate rocks in the Triassic, Jurassic and Cretaceous. The base of the Zechstein lies at depth between 3500 and 5200 b.s.l. (Kudrewicz, 2007). Some differences m thicknes of particular stratigraphic units in the Permian-Mesozoic succession are related in to halokinetic processes and occurrence of salt diapirs developed during the Mesozoic. The youngest (Cenozoic) structural stages is built of Oligocene, Miocene and Quaternary sediments.

Fig. 2. Location of the Zabowo tender area on the map of Laramide tectonic structures (after Aleksandrowski, 2017a, modified).

Fig. 3. Location of the Żabowo tender area on the map of Variscan tectonic structures (after Aleksandrowski, 2017b, modified). nob – Orłów-Boguszowice Thrust, suK – Kock Fault Zone, suKL – Kraków-Lubliniec Fault Zone, uCh – Chmielnik Fault, uD – Dolsk Fault, uG – Grójec Fault, uIZ – Izbica-Zamość Fault, uKU – Kazimierz-Ursynów Fault, uRW – Ryszkowa Wola Fault, uś – Intra-Sudetic Fault, uśO – Mid-Odra Fault, uśw – Holy Cross Mts. Fault, wWL – Wolsztyn-Leszno High.

2.3. STRATIGRAPHY AND LITHOLOGY

Mississippian, Visean (Figs 4–6)

Lithology: limestones with intercalations of claystones and calcareous claystones, claystones. Lithostratigraphy: Czaplinek Limestone Formation, Nadarzyce Claystone Formation. Wells and depth: <u>Błotno 3</u> (3839.0–4500.0 m), <u>Piaski PIG-2</u> (3794.0–3922.0 m). Thickness (according to <u>wells</u>): 128.0–661.0 m.

References: Lipiec and Matyja, 1998; Lipiec, 1999; Matyja, 2006, 2008.

Permian, Autun

Lithology: volcanic rocks. Wells and depth: <u>Błotno 3</u> (3616.1–3839.0 m), <u>Piaski PIG-2</u> (3633.0–3794.0 m), <u>Karsk 1</u> (4012.5–4086.5 m). Thickness (according to <u>wells</u>): >74.0–222.9 m.

Permian, Rotliegend (Figs 7-8)

Lithology: alluvial conglomerates and sandstones, marginal playa-lake sandstones and mudstones, fluvial sandstones and mudstones, playa-lake sandstones and mudstones, aeolian sandstones.

Wells and depth: <u>Błotno 3</u> (3506.4–3616.1 m), <u>Gardomino 1</u> (3601.0–3698.5 m), Grabin 2K (3494.7–3591.9 m), <u>Karsk 1</u> (3927.0–4012.5 m), <u>Piaski PIG-2</u> (3324.0–3633.0 m), <u>Unibórz 1</u> (3534.0–3584.0 m).

Thickness (according to wells): >50.0–309.0 m.

References: Pomianowski and Wróbel, 2004; Kiersnowski and Buniak, 2006; Maliszewska and Kuberska, 2008; Maliszewska et al., 2016.

Permian, Zechstein (Figs 9-10, 12)

- Lithology: limestones, dolomites, clastic rocks and evaporites including shallow-marine platform and slope carbonates in the Main Dolomite.
- Lithostratigraphy: PZ1 Cooper Shale (T1), Zechstein Limestone (Ca1), Lower Anhydrite (A1d), Oldest Halite (Na1), Upper Anhydrite (A1g), PZ2 – Main Dolomite (Ca2), Basal Anhydrite (A2), Older Halite (Na2), Older Potash (K2), PZ3 – Grey Pelite (T3), Platy Dolomite (Ca3), Main Anhydrite (A3), Younger Halite (Na3), PZ4a – Lower Red Pelite (T4), Lower Pegmatite Anhydrite (A4a1), Lower Youngest Halite (Na4a1), Upper Pegmatite Anhydrite (A4a2), Upper Youngest Halite (Na4a2), PZ4b – Upper Red Pelite (T4b), PZ4c; Rewal Formation.

Wells and depth: <u>Barkowo 1</u> (2675.0–3198.4 m), Błotno 1 (2314.0–3184.0 m), Błotno 2K (2337.9–3261.4 m), <u>Błotno 3</u> (3099.7–3506.4 m), <u>Gardomino 1</u> (2634.0–3601.0 m), Grabin 1 (2274.0–3238.0 m), Grabin 2K (2535.0–3494.7 m), <u>Karsk 1</u> (2259.0–3927.0 m), <u>Łosośnica 1</u> (2451.0–3470.0 m), <u>Piaski 3</u> (2346.0–3295.0 m),

<u>Piaski PIG-2</u> (2277.5–3324.0 m),

- <u>Unibórz 1</u> (2155.5–3534.0 m).
- Thickness (according to wells): >406.7–1046.5 m.
- Wells and depth (Main Dolomite Ca2): <u>Barkowo 1</u> (3157.0–3181.5 m), Błotno 1 (3181.5–3184.0 m), Błotno 2K (3250.9–3261.4 m), <u>Błotno 3</u> (3237.1–3253.5 m), <u>Cardemins 1</u> (2147.0, 21(0.5 m))
 - Gardomino 1 (3147.0-3169.5 m),
 - Grabin 1 (3222.8–3238.0 m),
 - Grabin 2K (3305.5–3326.1 m),
 - Karsk 1 (3588.5-3596.5 m),
 - Łosośnica 1 (3266.5-3275.0 m),
 - <u>Piaski PIG-2</u> (2930.0–2947.5 m),
 - <u>Unibórz 1</u> (3251.0–3303.0 m).
- Thickness (Main Dolomite Ca2, according to <u>wells</u>): 8.0–24.5 m.
- References: Wagner et al., 1978; Peryt, 1984; Oszczepalski and Rydzewski, 1987; Czapowski et al., 1993; Wagner, 1994, 2012; Peryt et al., 1996, 2010; Wagner and Peryt, 1997; Peryt and Wagner, 1998.

Fig. 4. Location of the Żabowo tender area on the geological map of the Western Pomerania without Permian, Mesozoic and Cenozoic cover (Matyja, 2006, 2008; modified). TESZ – Trans-European Suture Zone, CFD – Caledonian Deformation Front, VDF – Variscan Deformation Front, TEF – Trans-European Fault.

Fig. 5. Carboniferous stratigraphy and sedimentary environments in the Western Pomerania (Matyja, 2008, modified).

Fig. 6. Location of the Żabowo tender area on the geological-structural map of the top surface of the Permian basement (Lech, 2001; modified).

Fig. 7. Thickness of the Rotliegend deposits in the north-western part of the Polish Rotliegend Basin with location of the Żabowo tender area (Kiersnowski and Buniak, 2006; modified).

Fig. 8. Upper Rotliegend palaeogeography and facies in Poland with location of the Żabowo tender area (Kiersnowski, 2013; modified).

Fig. 9. Zechstein/Main Dolomite palaeogeography and facies in Poland with location of the Żabowo tender area (Wagner, 2012; modified).

Fig. 10. Location of the Żabowo tender area on the structural map of the top surface of the Zechstein basement (Kudrewicz, 2007; modified).

Fig. 11. Location of the Żabowo tender area on the geological map of Poland without Cenozoic cover (Dadlez et al, 2000; modified).

Triassic

- Lithostratigraphy: Buntsandstein (Baltic Formation, Połczyn Formation, Barwice Formation); Muschelkalk; Keuper (Sulechów Beds, Lower Gypsum Beds, Reed Sandstone, Zbąszynek Beds, Wielichów Beds).
- Lithology: Buntsandstein variegated claystones with anhydrite intercalations, sandstones intercalated with variegated claystones, variegated claystones and mudstones intercalated with limestones and marls; Muschelkalk – limestones and marls; Keuper – clastic rocks including variegated claystones and mudstones.
- Wells and depth: <u>Barkowo 1</u> (976.0–2675.0 m), Błotno 1 (1801.0–2314.0 m), Błotno 2K (1980.0–2337.9 m), <u>Błotno 3</u> (1860.0–3099.7 m), <u>Gardomino 1</u> (1020.0–2634.0 m), Grabin 1 (1561.0–2274.0 m), Grabin 2K (1571.0–2353.0 m), <u>Karsk 1</u> (1818.0–2259.0 m), <u>Łosośnica 1</u> (1144.0–2451.0 m), <u>Piaski PIG-2</u> (708.5–2277.5 m), <u>Unibórz 1</u> (1523.0–2155.5 m).

Thickness (according to <u>wells</u>): 441.0–1699.0 m. References: Pieńkowski, 1988, 1989; Menning and

Hendrich, 2002.

Jurassic (Figs 11–12)

- Lithostratigraphy: Lower Jurassic Zagaje Formation, Skłoby Formation, Ostrowiec Formation, Łobez Formation, Komorów Formation, Ciechocinek Formation, Borucice Formation; Middle Jurassic – Limnic Series in the lower part and undivided upper part; Upper Jurassic – Łyna Formation, Chociwel Formation, Brda Formation, Pałuki Formation, Kcyń Formation.
- Lithology: Lower Jurassic sandstones, claystones and mudstones, claystones, mudstones; Middle Jurassic – claystones and mudstones, fine-grained sandstones with intercalations of mudstones and coal beds, sandstones; Upper Jurassic – mudstones, limestones, marly limestones, sandy limestones and marls.

Wells and depth: Barkowo 1 (65.0-976.0 m),

Błotno 1 (22.0–1801.0 m), Błotno 2K (21.0–1980.0 m), <u>Błotno 3</u> (21.0–1860.0 m), <u>Gardomino 1</u> (52.0–1020.0 m), <u>Karsk 1</u> (16.0–1818.0 m), <u>Łosośnica 1</u> (61.0–1144.0 m), <u>Nowogard GEO-1</u> (1128.0–1201.0 m), <u>Piaski PIG-2</u> (161.5–708.5 m), <u>Unibórz 1</u> (32.0–1523.0 m).

Thickness (according to wells): 73.0–1839.0 m.

References: Dadlez, 1964, 1969; Dayczak-Calikowska, 1977, 1987; Dembowska, 1979a, b; Brochwicz-Lewiński, 1987; Dadlez et al., 2000; Pieńkowski, 2004.

Cretaceous (Figs 11–12)

- Lithostratigraphy: Kcyń Formation, Rogoźno Formation, Bodzanów Formation, Włocławek Formation, Mogilno Formation and undivided Albian-Maastrichtian interval.
- Lithology: sandstones, sandy-mudstones, mudstones, claystones, marls, limestones and opokas.
- Wells and depth: <u>Nowogard GEO-1</u> (225.0–1128.0 m), <u>Maszkowo 2</u> (63.0–303.4 m).
- Thickness (according to wells): 240.4-903.0 m.
- References: Raczyńska, 1979, 1987; Jaskowiak-Schoeneichowa, 1979, 1981, 1987; Dadlez, 1980; Marek, 1988; Leszczyński and Dadlez, 1999.

Cenozoic

Lithology: clays, muds, sands, gyttjas, bog limes, tills. Thickness: 21.0–225.0 m.

Fig. 12. Location of the Żabowo tender area on the tectonic map of the Zechstein-Mesozoic complex (Dadlez, 1998; modified).

Fig. 13. Geological cross section through the Żabowo tender area in the north-western Poland (Aleksandrowski and Krzywiec, 2017; modified). For location – see Figs 10–12.

3. PETROLEUM SYSTEMS

Two conventional petroleum systems are developed in the Żabowo tender area (Fig. 14). These are:

- Carboniferous-Permian petroleum system (with Rotliegend as reservoir rocks),
- Permian/Zechstein petroleum system (with Main Dolomite as reservoir rocks).

They are separated by succession of evaporites of the first Zechstein cyclotheme (A1d, Na1, A1g).

Carboniferous-Permian (Rotliegend) petroleum system

Source rocks: Mississippian fine-grained clastic rocks and carbonates.

TOC = max. 9.0% (Błotno 3).

 $T_{max} = 429^{\circ}C$ (Błotno 3).

 $R_0 = 0.6-0.9\%$ (Błotno 3).

Kerogen type: III, III/II.

Reservoir rocks: aeolian sandstones within the Rotliegend succession, alluvial conglomerates and sandstones and fluvial sandstones and mudstones at the top of the Rotliegend succession. Porosity (average in wells) = 1.03–4.82%.

Permeability (average in wells) = 0.0-0.9 mD.

Seal rocks: succession of evaporites of the first Zechstein cyclotheme (A1d, Na1, A1g).

Thickness of the overburden: 3324-3927 m.

Traps: structural and stratigraphic (related to narrowing of sandstone layers) in the Carboniferous, stratigraphic (related to interfingering of aeolian sandstones with alluvial/fluvial/playa-lake sediments) within the Rotliegend succession, structural (related to the top of the Rotliegend).

Hydrocarbon fields: Ciechnowo, Sławoborze.

References: Kotarba et al., 1992, 1999, 2004, 2005; Kiersnowski and Buniak, 2006; Burzewski et al., 2009; Grotek, 2010; Pletsch et al., 2010; Kiersnowski, 2013.

Zechstein (Main Dolomite) petroleum system

- Source rocks: organic-rich interbeds within the Main Dolomite succession
 - TOC = 0.7–2.0 (average 1.2%).
 - $T_{max} = 441 452^{\circ}C.$
 - S2 = 0.2 0.6 mgHC/g rock.
 - $R_o = 0.55 1.55\%$ (average 1.14%).

Kerogen type: III, II.

Reservoir rocks: Main Dolomite carbonates. Porosity (average in wells) = 0.58-4.22%. Permeability (average in wells) = 0.0-12.5 mD.

Seal rocks: succession of evaporites of the second, third and fourth Zechstein cyclothemes.

Thickness of the overburden: 2930-3588 m.

Traps: structural, stratigraphic.

- Hydrocarbon fields: Błotno, Rekowo, Sławoborze, Wysoka Kamieńska.
- References: Semyrka, 1985; Gąsiewicz and Wichrowska, 1996; Darłak et al. 1998.

Fig. 14. Stratigraphy, lithology and major elements of petroleum system (main horizons of source and reservoir rocks) in the Żabowo tender area (Jagielski et al., 2019; modified).

a – alluvial deposits, e – aeolian deposits, pj – playa-lake deposits, mpj+f – marginal playa-lake and fluvial deposits

4. HYDROCARBON FIELDS

Numerous hydrocarbon fields have been discovered in the close neighborhood of the Żabowo tender area. These are (Fig. 15):

- Błotno oil field (NR 4803),
- Ciechnowo gas field (GZ 6723),
- Sławoborze gas field (GZ 13325),
- Sławoborze oil field (NR 10334),
- Rekowo oil field (NR 4847),
- Wysoka Kamieńska oil field (NR 4804).

They are still exploited.

Concession for prospection, exploration and exploitation of hydrocarbons from a deposit in Poland 2018 ŻABOWO TENDER AREA

Legend

coordinate system – PL 1992

Point no.	x	Y
1	673948.18	266614.09
2	669360.76	269798.54
3	643263.52	268511.84
4	645106.88	235462.62
5	661436.72	236382,04
6	661143.42	240603.82
7	664525.57	238976.42
8	664755.54	236443.29
9	675598.09	237055.20

The source of data: System of management and protection of mineral resources in Poland - MIDAS

Copyright by PIG-PIB, Warsaw 2018

Fig. 15. Oil and gas fields in the neighborhood of the Żabowo tender area.

Acreage: 165.72 ha.

Depth: from -3143.4 m a.s.l. to -3185.5 m a.s.l. Stratigraphy: Permian/Zechstein (Main Dolomite). Resources:

- Extractable balance resources as of 2017: 8.29 ktonnes of oil in cat. C, 1.96 million m³ of natural gas in cat. C,
- Economic resources in place as of 2017:
- 8.26 ktonnes of oil,Production in 2017:
 - 0.42 ktonnes of oil, 0.04 million m^3 of natural gas.

Parameter	Average value	Unit	Comment
reservoir pressure	27.38	MPa	15.09.2008
primary reservoir pressure	60.02	MPa	calculated
porosity	1.27	%	_
permeability	0.11	mD	fracture
maximum efficiency V_{max}	128.00	t/month	_
gas-oil ratio	213.50	m ³ /t	annual average

Tab. 2. Quality parameters of the Błotno oil field (MIDAS, 2019; according to Łapa and Nowak, 2009).

Fig. 16. Map and geological cross section through the Blotno oil field (CBDG, 2019; Binder et al. 1985).

Acreage: 246.10 ha.

Depth: the depth is ambiguously determined due to the low permeability of the collector (sandstone; bottom in the Ciechnowo I block: -3720.3 m a.s.l., bottom in the Ciechnowo II block: -3697.12 m a.s.l.). Stratigraphy: Permian/Rotliegend. Resources:

- Extractable balance resources as of 2017: 15.92 million m³ of natural gas in cat. C,
- Economic resources in place as of 2017: 27.73 million m³ of natural gas,
- Production in 2017: 7.11 million m³ of natural gas.

Parameter	Average value	Unit	Comment			
reservoir pressure	40.12	MPa	Ciechnowo I block on June 28, 2002			
reservoir pressure	40.48	MPa	Ciechnowo II block on June 28, 2002			
primary reservoir pressure	46.65	MPa	Ciechnowo I block			
primary reservoir pressure	45.98	MPa	Ciechnowo II block			
aquifer depth	-3743.66	m	Ciechnowo I block			
effective deposit thickness	34.65	m	Ciechnowo I block			
effective deposit thickness	24.32	m	Ciechnowo II block			
porosity	4.85	%	Ciechnowo I block			
porosity	4.48	%	Ciechnowo II block			
permeability	16.40	mD	Ciechnowo I block			
permeability	81.420	mD	Ciechnowo II block			
total efficiency V_{tot}	359.00	m³/min	Ciechnowo 1 well – measurement on June 28, 2002			
total efficiency V_{tot}	299.00	m³/min	Ciechnowo 2 well – measurement on June 28, 2002			
total efficiency V _{tot}	44.00	m ³ /min	Ciechnowo 5 well – measurement on June 28, 2002			

Fig. 17. Map and geological cross section through the Ciechnowo gas fields (CBDG, 2019; Nowicka, 1995).

Acreage: 213.00 ha.

Depth: from -3577.66 m a.s.l. to -3637.51 m a.s.l. Stratigraphy: Permian/Rotliegend. Resources:

- Extractable balance resources as of 2017: 59.19 million m³ of natural gas in cat. C,
- Economic resources in place as of 2017: 58.32 million m³ of natural gas,
- Production in 2017:
 - 5.53 million m³ of natural gas.

Parameter	Average value	Unit	Comment
reservoir pressure	45.97	MPa	_
net pay	28.79	m	-
effective porosity	3.97	%	-
permeability	5.415	mD	Sławoborze 1well
permeability	0.497	mD	Sławoborze 3 well
total efficiency V_{tot}	526.00	m ³ /min	Sławoborze 1 well
total efficiency V_{tot}	39.00	m ³ /min	Sławoborze 3 well

Tab. 4. Quality parameters of the Sławoborze gas field (MIDAS, 2019, according to Nowicka, 2009).

Fig. 18. Map and geological cross section through the Sławoborze gas fields (CBDG, 2019; Nowicka, 2009).

Acreage: 156.90 ha.

Depth: from -3150.00 m a.s.l. to -3207.66 m a.s.l. Stratigraphy: Permian/Zechstein (Main Dolomite). Resources:

- Extractable balance resources as of 2017: 4.42 ktonnes of oil in cat. B, 1.45 million m³ of natural gas in cat. B,
- Economic resources in place as of 2017: 4.42 ktonnes of oil,
- lack of econ. resources in place of natural gas, • Production in 2017:
 - 0.12 ktonnes of oil, 0.06 million m^3 of natural gas.

-							
Parameter	Average value	Unit	Comment				
reservoir pressure	60.96	MPa	at a depth of -3199 m				
net pay	21.87	m	-				
porosity	1.32	%	-				
permeability	2.792	mD	-				
oil saturation index	0.90		-				
maximum efficiency V_{max}	67.00	t/d	Sławoborze 1 well				
maximum efficiency V_{max}	55.00	t/d	Sławoborze 3 well				
gas-oil ratio	460.00	m ³ /m ³	-				
gas–oil ratio	575.00	m ³ /t	-				

Tab. 5. Quality parameters of the Sławoborze oil field (MIDAS, 2019, according to Nowicka, 2009).

Fig. 19. Map and geological cross section through the Sławoborze oil fields (CBDG, 2019; Nowicka, 2009).

Acreage: 53.12 ha

N

Depth: from -2665.00 m a.s.l. to -2658.05 m a.s.l. Stratigraphy: Permian – Zechstein (Main Dolomite). Resources:

- Extractable balance resources as of 2017: 1.37 ktonnes of oil in cat. B, 0.27 million m³ of natural gas in cat. B,
- Economic resources in place as of 2017: 1.45 ktonnes of oil,
- lack of econ. resources in place of natural gas,Production in 2017:

EKOWO

REKOWO 4

0.08 ktonnes of oil, 0.01 million m³ of natural gas.

REKOWO

1 km

Tab. 6. Quality parameters of the Rekowo oil field (MIDAS, 2019, according to Pawłowski, 2005).

geological cross-section

mining area

oil deposit

well

REKOWO 2

REKOWO 3

Acreage: 256.20 ha.

Depth: from -3010.30 m a.s.l. to -3060.70 m a.s.l. Stratigraphy: Permian/Zechstein (Main Dolomite). Resources:

- Extractable balance resources as of 2017: 16.09 ktonnes of oil in cat. A, 2.74 million m³ of natural gas in cat. A,
- Economic resources in place as of 2017: 16.61 ktonnes of oil,
- lack of econ. resources in place of natural gas, • Production in 2017:
 - 3.73 ktonnes of oil, 0.27 million m^3 of natural gas.

Parameter	Average value	Unit	Comment
reservoir pressure	54.600	MPa	-
aquifer depth	-3060.70	m	-
net pay	21.43	m	-
porosity	4.58	%	-
permeability	10.21	mD	-
maximum efficiency V_{max}	608.00	t/month	whole deposit
gas-oil ratio	73.00	m ³ /t	-

Tab. 7. Quality parameters of the Wysoka Kamieńska oil field (MIDAS, 2019, according to Nowak, 2004).

Fig. 21. Map and geological cross section through the Rekowo oil fields (CBDG, 2019; Zoła, 1996).

Forteen deep wells (> 500 m TVD) reached the prospective intervals within the Żabowo tender area and in its close neighborhood (Fig. 22). These are: <u>Barkowo 1, Błotno 1, 2K, 3, Gardomino 1, Grabin 1,</u> 2K, <u>Karsk 1, Łosośnica 1, Nowogard GEO-1, Pisaki</u> <u>PIG-2, 3, Smolęcin 1, Unibórz 1</u> (wells located within the tender area are highlighted).

Fig. 22. Deep wells (> 500 m TVD) reaching the prospective intervals within the Żabowo tender area and in its close neighborhood.

			В	ARKOWO 1			BŁ	OTNO 1			E	BŁOTNO 2K			В	ŁOTNO 3		GARDO	MINO 1			GRABIN 1	
STRATIO	GRAPHY	top	bottom	Porosity min–max [%]	Vertical permeability min–max [mD]	top	bottom	Porosity min– max [%]	Vertical Permeability min-max [nm ³]	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [nm ³]	top	bottom	Porosity min–max [%]	Vertical Permeability min-max [nm ³]	top	bottom	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [nm ³]
QUATE	RNARY	0.0	65.0			0.0	22.0			0.0	21.0			0.0	21.0			0.0	52.0	0.0	23.0		
	UPPER					22.0	99.5			21.0	76.0			21.0	70.0					23.0	122.0		
JURASSIC	MIDDLE					99.5	703.0			76.0	468.0			70.0	456.0					122.0	331.0		
	LOWER	65.0	976.0			703.0	1801.0			468.0	1980.0			456.0	1860.0			52.0	1020.0	331.0	1561.0		
	UPPER	976.0	1252.0			1801.0	1980.5							1860.0	2216.0			1020.0	1380.0	1561.0	1721.0		
TRIASSIC	MIDDLE	1252.0	1555.0											2216.0	2495.0			1380.0	1528.0				
	LOWER	1555.0	2675.0			1980.5	2314.0			1980.0	2337.9			2495.0	3099.7			1528.0	2634.0	1721.0	2274.0		
PERM	MIAN	2675.0	3198.4			2314.0	3184.0			2337.9	3261.4			3099.7	3839.0			2634.0	3698.5	2274.0	3238.0	3.03 -11.14	3.06
Rewal Formatio	on	2675.0	2740.0															2634.0	2690.5	2274.0	2320.0		
Zechstein PZ4c		2740.0	2746.5																				
Top Youngest H	alite Na4b2	2746.5	2765.0															2690.5	2715.5	2320.0	2330.0		
Upper Red Pelit	te T4b	2765.0	2795.0															2715.5	2736.5	2330.0	2368.0		
Upper Youngest	t Halite Na4a2	2795.0	2824.0															2736.5	2774.5				
Upper Pegmatit	e Anhydrite A4a2	2824.0	2825.0															2774.5	2776.5				
Lower Youngest	t Halite Na4a1	2825.0	2864.0															2776.5	2838.0				
Lower Pegmatit	e Anhydrite A4a1	2864.0	2865.0																				
Youngest Halite		2865.0	2866.0																				
Lower Red Pelit	te T4a	2866.0	2898.5															2838.0	2838.5				
Younger Halite	Na3	2898.5	3013.0							2337.9 3082.5	3048.1 3216.1			3099.7	3186.6							2.02 11.14	2.06
Upper Younger	Halite Na3g																	2838.5	2884.0			5.05 - 11.14	5.00
Lower Younger	Halite Na3d																	2890.0	3003.5	2368.0	3218.0		
Main Anhydrite	A3	3013.0	3029.0							3048.1	3052.1	1.64	4.07	3186.6	3224.1			2884.0 3003.5	2890.0 3034.0				
Platy Dolomite + Grey Pelite T.	Ca3 3	3029.0	3032.0							3052.1 3216.1	3057.1 3222.8	3.12 - 10.29 0.14 - 11.21	10.66 0.19 - 5093.01					3034.0	3043.0				
Screening Anhye	drite A2r	3032.0	3034.5							3057.1 3222.8	3082.5 3225.3	2.00	9.17					3043.0	3044.5				
Screening Older	r Halite Na2r	3034.5	3036.0																				
Older Potash K	2	3036.0	3065.5			2214.0	2170 5			2225.2	2245 7							2011.5	2124.5				
Older Halite Na	12	3065.5	3134.0			2314.0	31/8.5			3225.3	3245.7			3224.1	3233.6			3044.5	5124.5				
Basal Anhydrite	A2	3134.0	3157.0	0.52 - 5.99	0.01 - 0.56	3178.5	3181.5			3245.7	3250.9	0.28 - 1.30	2.47 - 7.30	3233.6	3237.1			3124.5	3147.0	3218.0	3222.8		
Main Dolomite	Ca2	3157.0	3181.5	0.44 - 11.4	0.01 - 4.44	3181.5	3184.0	0.79–2.3	58.2-337.9	3250.9	3261.4	0.07 - 3.61	0.64 - 160.60	3237.1	3253.5	0.08 - 13.61	1.34 - 3.09	3147.0	3169.5	3222.8	3238.0	1.23 - 20.57	9.18-419.22
Upper Anhydrite	e A1g	3181.5	3198.4											3253.5	3425.2	0.07 - 0.37	2.47	3169.5	3468.5				
Oldest Halite No	al													3425.2	3448.6			3468.5	3543.5				
Lower Anhydrite	e A1d													3448.6	3495.9			3543.5	3592.5				
Zechstein Limes	stone Cal													3495.9	3505.9			3592.5	3601.0				
Copper Shale T	1													3505.9	3506.4								
Upper Rotlieger	ıd					1	1							3506.4	3616.1			2001.0	2000 5		1		
Lower Rotlieger	ıd			T	Ì	1		1	T		1			3616.1	3839.0		1	3601.0	3098.3				T
CARBONIFER	OUS – VISEAN			T	T	1			T					3839.0	4135.0		1						T
Nadarzyce Clav	stone Formation			T	T	1			T					3839.0	4135.0		1						T
Czaplinek Limes	stone Formation													4135.0	4500.0	0.37 - 1.75	0.7 - 160.27						

Tab. 8. Stratigraphy and petrophysical characteristics in the Barkowo 1 (Ryba, 1975), Błotno 1 (Lech, 1981), Błotno 2K (Lech, 1983b), Błotno 3 (Lech, 1984), Gardomino 1 (Binder, 1982), Grabin 1 (Binder, 1986).

			G	RABIN 2K			KARSK	1		Ł	OSOŚNICA 1		NOWC GE	OGARD O-1		PIASK	I PIG-2		UNIBÓRZ 1			
STR.	ATIGRAPHY	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [nm ³]	top	bottom max	n- [%] Vertical Permeability min-max [mD]	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [mD]	top	bottom	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [mD]	top	bottom	Porosity min–max [%]	Vertical Permeability min–max [mD]
QU	ATERNARY	0.0	23.0			0.0	16.0		0.0	22.5			0.00	225.0	0.0	108.5			0.0	32.0		
PA	LEOGENE								22.5	61.0			0.00	225.0	108.5	161.5						
CR	ETACEOUS												225.0	1128.0								
	UPPER	23.0	122.0			16.0	194.0		(1.0	106.0			1128.0	1201.0					32.0	54.5		
JURASSIC	LOWER	122.0	332.0			194.0	447.0		61.0	196.0					161.5	709.5			54.5 107.0	197.0		
	LUWER	352.0	13/1.0			447.0	1818.0		196.0	144.0	1 18 0 05				101.5	1007.0			197.0	1525.0		
TRIASSIC	MIDDLE	1371.0	1655.0			1010.0	2239.0		1410.0	1519.0	1.18 - 9.95				1007.0	1192.0			1523.0	2155 5		
inter ibblie	LOWER	1855.0	2353.0						1519.0	2451.0					1192.0	2277.5			1020.0	2100.0		
P	PERMIAN	2353.0	3591.9			2259.0	4086.5		2451.0	3470.0					2277.5	3794.0			2155.5	3584.0		
Rewal Forma	ation								2451.0	2496.0					2277.5	2327.5			2155.5	2195.5		
Zechstein PZ	'4c														2327.5	2344.0						
Top Younges	t Halite Na4b2								2496.0	2504.0					2344.0	2354.0			2195.5	2240.0		
Upper Red P	elite – upper part T4b 2														2354.0	2366.5						
Intrastratal H	Halite Na4b1								2504.0	2538.5					2366.5	2371.0			2240.0	2286.5		
Upper Red P	elite – lower part T4b 1														2371.0	2382.0						
Upper Young	est Clay Halite Na4a2t	2353.0	3135.0												2382.0	2396.5						
Upper Young	est Halite Na4a2								2538.5	2567.0					2396.5	2428.0						
Upper Pegme	atite Anhydrite A4a2								2567.0	2568.0					2428.0	2429.0			2296 5	2225 5		
Lower Young	est Hallte Na4a1								2508.0	2605.0					2429.0	2404.5			2280.5	2325.5		
Youngest Ha	lite								2005.0	2000.5					2404.5	2403.3						
Underlying F	Halite Na4a0														2465.5	2467.5						
Lower Red P	elite T4a								2606.5	2622.0					2467.5	2500.0			2325.5	2361.0		
Top Anhydrit	te A3r	2353.0	3135.0																			
Younger Hali	ite Na3					2259.0	3148.0		2622.0	2785.0					2500.0	2769.0	1.35 - 2.73	0.1	2361.0	3220.0		
Lower Young	ger Halite Na3d	3140.0 3198.0	3141.8 3264.0																			
Main Anhydr	ite A3	3141.8 3150.8 3264.0	3142.8 3198.0 3291.3	0.07	7.0 - 16.0	3148.0 3433.0 3546.5	3236.5 3436.0 3568.5		2785.0	2820.5	0.07 - 5.38	1			2769.0	2806.0	0.68 - 9.85	0.1-0.32				
Platy Dolomi	ite Ca3	3142.8 3291.3	3150.8 3296.6	4.71 2.65	2.0 - 458.0 9.0 - 69.0	3236.5 3436.0	3241.5 3440.5		2820.5	2824.0	0.07 - 6.87	0.2 - 68			2806.0	2808.5	5.84	0.1	3220.0	3221.5		
Grey Pelite T	F3					3472.5 3568.5	3481.5 3577.5		2020.5	2024.0					2808.5	2809.5			3220.0	5221.5		
Screening An	hydrite A2r					3241.5 3440.5 3481.5	3242.5 3462.5 3500.0		2824.0	2845.0					2809.5	2814.5	0.7	0.1	3221.5	3227.0		
Screening Ol	der Halite Na2r														2814.5	2823.5						
Older Potash	n K2	3296.6	3299.6			3242.5 3462.5	3433.0 3472.5		2845.0	3265.0					2823.5	2888.5						
Older Halite	Na2	5270.0	5277.0			3500.0 3577.5	3546.5 3585.0		2043.0	3203.0					2888.5	2918.5			3227.0	3245.0		
Basal Anhydr	rite A2	3299.6	3305.5	0.07	14.0	3585.0	3588.5		3265.0	3266.5	0.14	2			2918.5	2930.0	0.33	0.1	3245.0	3251.0	1.26	
Main Dolomi	ite Ca2	3305.5	3326.1	1.03	8-2005	3588.5	3596.5		3266.5	3275.0	0.07 - 2.24	0.5 - 61			2930.0	2947.5	0.35 - 2.49	0.1	3251.0	3303.0	0.04-2.66	fracturing
Upper Anhyd	lrite A1g	3326.1	3421.6	0.8 - 1.39	<200	3596.5	3866.0		3275.0	3395.0	0.07	9			2947.5	3166.5	1.05 - 2.12	0.1	3303.0	3438.5		
Lower Anhyd	rite Ald	3421.0	3438.4	0.86	30	3870.0	3017.5		3/27 5	3437.5					3100.5	32/3.0			3438.3	3525.0		
Zechstein Liv	nestone Cal	3430.4	3404.4	0.80	32 4 - 811	30/0.0	3926.0		3437.3	5470.0					3316.0	3373 /	+		3525.0	3523.0	0.62-0.03	0.0-7.85
Copper Shale	o T1	5-04.4	3774.1	0.50		3926.0	3927.0		<u> </u>				<u> </u>		3323.4	3324.0			5525.0	5554.0	0.02-0.75	0.0-7.03
Upper Rotlie	gend	3494.7	3591.9	1.23	1 – 249	3927.0	4012.5 3.2	0.1-0.95	1						3324.0	3633.0	0.75 - 17.91	0.1 - 47	3534.0	3584.0	1.5–2.2	0.0–1.24
Lower Rotlie	gend		1			4012.5	4086.5	.,	1	<u> </u>			1		3633.0	3794.0	0.37 - 4.46	0.1 - 0.8				
CARBONI	FEROUS – VISEAN		1						1	1			1		3794.0	3922.0						
Czaplinek Lim	nestone Formation														3794.0	3922.0	0.37 - 1.47	0.1				

Tab. 9. Stratigraphy and petrophysical characteristics in the Grabin 2K (Binder, 1987), Karsk 1 (Lech, 1982), Łosośnica 1 (Lech, 1989), Nowogard GEO-1 (Wróbel, 1963), Pisaki PIG-1 (Miłaczewski, 1991), Piaski 3 (Frydtych, 2015), Unibórz 1 (Lech, 1983a).

Well:	BARKOWO 1	BŁOTNO 1	BŁOTNO 2K	BŁOTNO 3	GARDOMINO 1	GRABIN 1	GRABIN 2K	KARSK 1	ŁOSOŚNICA 1	NOWOGARD GEO-1	PIASKI PIG-2	PIASKI 3	SMOLĘCIN 1	UNIBÓRZ 1
Depth: Drill core –	3198.4	3184.0	3439.0	4500.0	3698.5	3238.0	3674.0	4086.5	3470.0	1201.0	3922.0	3900.0	3600.0	3584.0
storage	NAG: Chmielnik	NAG: Chmielnik	NAG: Chmielnik	NAG: Chmielnik	NAG: Chmielnik	PGNiG: Chmielnik	NAG: Chmielnik	NAG: Chmielnik	NAG: Chmielnik	NO core	NAG: Hołowno	NO core	NO core	NAG: Chmielnik
PK	25.0 - 3175.0	25.0 - 3100.0	2455.0 - 3430.0	25.0 - 4500.0	25.0 - 3690.0	25.0 - 3050.0	1700.0 - 3670.0	25.0 - 3975.0	25.0 - 3470.0		150.0 - 3620.0		200.0	0.0 - 3575.0
PSr mDŚr	21.0 - 3172.0	3.0 - 3101.0	242.0 - 3435.0	<u>8.0</u> – <u>3644.0</u>	22.0 - 3684.0	5.0 - 30/2.0	247.0 - 3215.0	<u>4.0</u> – <u>4065.0</u>	104.0 - 34/2.0		2.0 - 3922.0		300.0 - 3600.0	0.0 - 35/6.0
PEksc	1		2097.0 - 2301.0	3060.0 - 3538.0			2010.0 - 2210.0 247.0 - 343.0	1			5550.0 - 5829.0			
A1	190 3164.0													
DA	0 5101.0					2172.0 2071.0	2160.0 2670.0				106.0 2620.0			
PA					1896.0 - 3598.0	21/3.0 - 30/1.0	2100.0 - 3070.0				100.0 - 3020.0			
PAc		1190.0 - 3170.0	500.0 - 3438.0		10/0.0 55/0.0						100.0 - 3630.0			
PAdt	190. – 3164.0		3192.0 - 3435.0	1200.0 - 4500.0	2650.0 - 3583.0			2245.0 - 4080.0	105.0 - 3470.0		1675.25 - 3800.00		300.0 - 3600.0	3200.0 - 3511.0
PAt	0				2700.0 - 3598.0									
DA+1	190. 2164.0		2102.0 2425.0	1200.0 4500.0	1806.0 3593.0			2107.0 4065.0	105.0 2470.0					2200.0 2511.0
PAU	0 - 5164.0		3192.0 - 3433.0	1200.0 - 4300.0	1890.0 - 5585.0			2197.0 - 4003.0	103.0 - 3470.0					3200.0 - 3311.0
PAt2	5.0 2175.0	0.0 2190.0	3192.0 - 3435.0	1200.0 - 4500.0	2650.0 - 3583.0			2197.0 - 4065.0	105.0 - 3470.0		1(75.0			3200.0 - 3511.0
PG PG SP-62	5.0 - 51/5.0	0.0 - 5180.0	0.0 - 3435.0	<u>0.0</u> – <u>4500.0</u>	3550.0 - 3685.0 0.0 - 3581.0	0.0 - 3073.0	0.0 - 3400.0	10.0 - 4080.0	0.0 - 3470.0		10/5.0 - 2/09.0 0.0 - 3922.0			40.0 - 3246.0
PGG		0.0 - 1810.0		3060.0 - 3651.0	0.0 - 188.0	2145.0 - 3073.0	0.0 5400.0	<u>10.0</u> <u>4000.0</u>	105.0 - 3470.0		156.0 - 1049.0		300.0 - 3600.0	40.0 5240.0
PGG SP-62											1675.0 – 3922.0			
PNG	7.0 – 3175.0	0.0 - 3180.0	32.0 - 3435.0	<u>0.0</u> – <u>4500.0</u>	2850.0 - 3685.0	0.0 – 3073.0								
PNG SP-62		17.5.0 2100.0	22.0 2125.0	0.0 4500.0	0.0 - 3581.0		0.0 - 3400.0	<u>10.0</u> – <u>4080.0</u>	0.0 – 3470.0		0.0 - 3922.0			40.0 - 3246.0
logPNG		1/65.0 - 3180.0	32.0 - 3435.0	0.0 - 4500.0	3550.0 - 3685.0 165.0 3581.0	0.0 3073.0	0.0 3400.0	3125.0 4080.0	0.0 3470.0					
PNN					105.0 - 5581.0	0.0 - 3073.0	0.0 - 3400.0	3125.0 - 4080.0	0.0 - 3470.0		2719.0 - 3922.0			
PNNnt														
PS	21.0 - 2606.0	3.0 - 3101.0	243.0 - 3435.0	<u>8.0</u> – <u>4500.0</u>	23.0 - 3684.0	5.0 - 3072.0	247.0 - 3215.0	161.0 - 4065.0	105.0 - 3265.0		2.0 - 3922.0			9.0 - 3576.0
PI		2.0 2101.0	212.0	0.0 4500.0					105.0 - 1515.0		156.0 2020.0			
	48.0M1.0N	3.0 - 3101.0	243.0 - 3435.0	8.0 – 4500.0 FL 09	A0 5M0 1N	A0 5M0 1N	A0 5M0 1N	A0 5M0 1N	105.0 - 2501.0 A0 5M0 1N		156.0 - 3920.0			A0 5M0 1N
	21.0 - 3172.0			<u>202.50</u> – <u>1930.0</u>	23.0 - 2636.0	5.0 - 2169.0	247.0 - 2385.0	161.0 - 2250.0	105.0 - 2501.0		2399.0 - 3920.0			9.0 - 2206.0
	A2.5M0.25N			EL16	A1.0M0.1N	A1.0M0.1N	A1.0M0.1N	A1.0M0.1N	A1.0M0.1N		B2.5A0.25M			A1.0M0.1N
	21.0 - 2606.0			<u>202.50</u> – <u>1930.0</u>	23.0 - 3684.0	5.0 - 3072.0	247.0 - 3672.0	161.0 - 4065.0	105.0 - 3470.0		156.0 - 2376.0			9.0 - 3576.0
РО	21.0 - 3175.0				23.0 - 2636.0	5.0 - 2169.0	247.0 - 2385.0	161.0 - 2250.0	105.0 - 2501.0		156.0 - 2376.0			9.0 - 2206.0
	A5.0M0.4N				A5.7M0.4N	A5.7M0.4N	A4.0M0.5N	A5.7M0.4N	A5.7M0.4N		N6.0M0.5A			A5.7M0.4N
	21.0 -				23.0 - 3684.0	5.0 - 3072.0	2345.0 - 3215.0	161.0 - 4065.0	105.0 - 3470.0		2399.0 - 3920.0			9.0 - 3576.0
	21.0 - 2606.0				23.0 - 3684.0	5.0 - 3072.0	247.0 - 2385.0	161.0 - 4065.0	105.0 - 3470.0					9.0 - 3576.0
	A1.0M0.1N				N5.7M0.4A	N5.7M0.4A	A8.0M1.0N	N5.7M0.4A	N5.7M0.4A					N5.7M0.4A
	21.0 - 2606.0				23.0 - 2636.0	5.0 - 2169.0	247.0 - 3215.0	161.0 - 2250.0	105.0 - 2501.0					9.0 - 2206.0
							247.0 – 2385.0	155.0 - 4065.0						
POg											2.0 - 160.0			
POp	100										2.0 - 160.0			
POst	$ \begin{array}{r} 190.\\ 0 & - 3172.0 \end{array} $	2268.0 - 3101.0	3192.0 - 3435.0	<u>210.0</u> – <u>4500.0</u>	1650.0 – 3684.0			1995.0 – 4065.0	3278.0 - 3470.0		2399.0 – 3922.0		300.0 - 3600.0	2205.0 – 3576.0
POst LL3				<u>211.75</u> – <u>1933.0</u>										
logPOst			3192.0 - 3435.0	210.0 - 4500.0	2670.0 - 3684.0	2173.0 - 3072.0	2345.0 - 3400.0	1995.0 - 4065.0			1675.0 - 3290.0			
mPOst			3192.0 - 3435.0	3103.0 - 4500.0	3120.0 - 3200.0		3200.0 - 3400.0	3740.0 - 4080.0			3290.0 - 3920.0 2750.0 2150.0			3245.0 - 3511.0
logmPOst			3192.0 - 3435.0	3103.0 - 4500.0	3120.0 - 3417.0		3200.0 - 3400.0	3740.0 - 4065.0			3290.0 - 3620.0			
PEM			2200.0 - 3087.0											
PTc DCar			40.0 - 2136.0	2105.0 2075.0	1672.0 2646.0									20.0 - 3165.0
PGaZ Velocity survey	20.0 - 3000.0	20.0 - 3100.0		3105.0 - 3965.0 20.0 - 4460.0	10/2.0 - 2046.0 20.0 - 2975.0	13.0 - 2743.0	20.0 - 3550.0	20.0 - 4030.0		19.0 – 1169.0	20.0 - 3850.0	15.0 - 3897.65	532.0 - 3600.0	3247.0 - 3332.0 20.0 - 3530.0
MSFL	2010 2000.0				2275.0	1010 2175.0	<u></u>			<u>1107.0</u>	<u></u>	<u> </u>	300.0 - 3600.0	<u></u>
NPHI													300.0 - 3600.0	
RHOB	ļ							ļ					300.0 - 3600.0	
sPGbezU								<u> </u>					300.0 - 3600.0	2000.0 2245.0
1 1/1	1	1	1		1	1		1	1	1	1	1	I	2000.0 - 3243.0

Tab. 10. Well geophysics. Logs available in digital format are highlighted. PK – deviation log, PŚr – caliper - microlog, PEksc – eccentricity log, A1 – amplitude acoustic log, PAa – acoustic log, PAa – amplitude aco

Wells	Top [m]	Bottom [m]	Stratigraphy	Flow type	Flow quantity [m³/h]
Barkowo 1	3157.0	3181.0	Zechstein	gasificated brine	0.24
Błotno 1	3180.0	3184.0	Zechstein	oil	9.0
	3252.0	3439.0		oil with brine	
	3252.0	3439.0		oil with brine	
Biotno 2K	3252.0	3439.0	Zechstein	gasificated brine, oil traces	0.102
	3394.0	3434.0		gasificated oil	
Błotno 3	3240.0	3256.0	Zechstein	NO	0.0
	3135.0	3168.0	Zechstein	gasificated brine	0.24
Gardomino 1	3135.0	3610.0	Zechstein, Rotliegend	gasificated brine	0.57
	3611.0	3698.0	Rotliegend		0.0
Grabin 1	3073.0	3238.0	Zechstein	gasificated brine	
	3379.0	3394.0	7. shata'n		0.0
C 1: OK	3394.0	3398.0	Zechstein	gasificated brine	0.34
Grabin 2K	3562.0	3605.0	Detlie een d		0.0
	3608.0	3674.0	Kotnegend		0.0
Karsk 1	3930.0	3981.0	Rotliegend	gasificated brine	15.0
T	3266.0	3274.0		gas traces	
Lososnica 1	3274.0	3305.0	Zechstein	gas traces	
	2921.0	2931.0	Zechstein	gasificated brine	20.3
	3386.0	3404.0		minimum gas flow	
	3596.0	3638.0	D (1' 1	gas	
Plaski PIG-2	3600.0	3621.0	Kotnegend	gas	
	3600.0	3637.0	Γ	gas	
	3774.0	3827.0	Rotliegend, Visean		0.0
	3274.0	3332.0	7 - the take	gasificated brine	0.31
Unibórz 1	3247.0	3278.0	Zecnstein		0.0
	3510.0	3583.0	Zechstein, Rotliegend		0.0

Tab. 11. Tests during drilling.

Wells	Top [m]	Bottom [m]	Stratigraphy	Shows	
Barkowo 1	0.0	3128.3		NO	
	3128.3	3162.0	Older Halite +Basal Anhydrite+Main	0.1–0.15% of hydrocarbons in drilling fluid	
		3162.0	Doioinite	4% of hydrocarbons in drilling fluid	
	3181.0	3198.4	Main Dolomite+Upper Anhydrite	hydrogen sulphide odour	
Błotno 1	3181.5	3184.0		point traces of oil and gas	
		3184.0	Main Dolomite	outflow of drilling fluid with traces of oil and gas; circulation loss – 16 m ³	
Błotno 2K	3422.0	3434.0	Basal Anhydrite,	point traces of gas	
	3436.0	3439.0.0	Main Dolomite		
Błotno 3	3238.0	3256.0	Main Dolomite, Upper Anhydrite	noint traces of cil	
	3482.0	3500.0	Lower Anhydrite, Zechstein	point traces of on	
Gardomino 1	3154.0	3168.0	Main Dolomite	point traces of oil	
	3168.0	3196.0	Main Dolomite, Upper Anhydrite	traces of heavier hydrocarbons	
Grabin 1	1724.0	1765.0	Dente and the in	circulation loss	
		1993.0	Buntsandstein	drilling fluid gasification	
	3231.0	3236.0	Main Dolomite	slight bituminous odour	
	3391.0	3394.0		circulation loss -5.2 m^3	
Grabin 2K	3387.0	3402.3	Main Dolomite, Upper Anhydrite	hydrogen sulphide and hydrocarbons odour	
Konstr 1	3698.0	3752.0	Upper Anhydrite	bituminous odour	
Kalsk I		3938.5	Rotliegend	circulation loss -30 m^3	
	3265.0	3274.0	Recol Antrudrite Main Dol-	point traces of gas	
Łosośnica 1		3274.0	Basai Annyunte, Main Doloinite	drilling fluid gasification	
		3470	Lower Anhydrite	drilling fluid gasification	
Unibórz 1	3261.0	3296.0	M · D I ·	point traces of oil and gas	
UIIDOIZ I	3296.0	3301.0	Main Dolointe	bituminous odour	

Tab. 12. Hydrocarbon shows during drilling.

PIASKI PIG-2 WELL LOG

GEOGRAPHIC COORDINATES

BEGINNING: 03.04.1989 FINISHING: 31.12.1990 X_1992 657938.61 Y_1992 263236.97 ALTITUDE: 65 m a.s.l.

DEPTH: 3922.0 m

Fig. 23. Well log of the key well Piaski PIG-2 (Miłaczewski, 1991).

The Żabowo tender area is explored by 2D seismic surveys executed in 1976-2006 (99 lines of total length of 1370.0 km; Tab. 14, Fig. 23). No 3D seismic surveys have been carried out, so far.

Most of the Żabowo tender area is covered by a dense grid of 2D seismic profiles, except for a southern part of the area, which has not so many data (Fig. 24). Numerous structural objects were interpreted in the most recent seismic documentations (Burek et al., 2001; Grzywa and Burek, 2001; Wróbel and Burek, 2003; Wnuk and Saj, 2007; Tab. 15). They are related to the Main Dolomite (Z2), Rotliegend (Z1) and Carboniferous (C) deposits.

Name	Year	Seismic project	Owner	Length
		name		[KM]
T0180576	1976	Gorzysław-		3.3
T0420576	1976	Wysoka		20.4
T0420576	1976	Kamieńska		14.5
T0150279	1070	Tunnensku		61
T0130279	1070			13.2
T0180279	1979			13.2
T0100279	1070			15.2
T0200279	1070			21.4
T0200279	1070			14.1
T0240279	1070			16.0
T0230279	1070			28.3
T0200279	1070			12.0
T0160280	1979			7.2
T0100280	1980			5.4
T0190280	1980			23.5
T0210280	1980			11.8
T0250280	1980			14.5
T0270280	1980			28.3
T0270200	1980			15.4
T0330280	1980			14.9
T0440280	1980			16.0
T0550280	1980			93
T0560280	1980			17.1
T0670580	1980			12.1
T0830580	1980			21.1
T0870580	1980			10.6
TA810580	1980		State	14.0
TA900580	1980	Wysoka	Treasury	7.8
T0090281	1981	Kamieńska-		13.2
T0130281	1981	Białogard		10.5
T0140281	1981			7.7
T0190281	1981			6.5
T0270281	1981			13.8
T0280281	1981			13.5
T0290281	1981			18.9
T0490281	1981			8.3
T0500281	1981			7.7
T0510281	1981			9.2
T0520281	1981			8.8
T0530281	1981			5.3
10540281	1981			5.6
10/80581	1981			6.8
10/90581	1981			11.0
T0800581	1981			10.5
T0800591	1981			0.0
T0020301	1981			9.0 7.6
T0920381	1901			26.0
T0940281	1981			17.2
T0950281	1981			21.1
TA120281	1981			4.6
TA240281	1981			87
T0390282	1982			18.0
T0400282	1982			19.9

T0660282	1982			19.7
T0770582	1982			3.7
T0850582	1982			14.1
T0960282	1982			13.2
T0060583	1983			11.3
T0130583	1983			6.3
T0140583	1983			12.6
T0180583	1983			4.2
T0200583	1983			14.8
T0210583	1983			8.9
T0270583	1983			10.9
T0280583	1983			14.9
T0290583	1983			20.5
T0300583	1983			11.1
T0320583	1983			7.7
T0330583	1983			11.2
TA320583	1983			16.0
T0250584	1984			19.1
T0260584	1984			18.8
T0010500	2000	Kamień Pom		24.7
T0040500	2000	Gryfice- Trzebiatów	PGNiG	24.6
T0010402	2002	11200101010		17.9
T0020402	2002			19.4
T0030402	2002			22.2
T0040402	2002			28.1
T0050402	2002			23.0
T0060402	2002			12.5
T0070402	2002			10.8
T0080402	2002	Piaski-Resko		10.1
T0090402	2002			7.8
T0100402	2002			6.5
T0110402	2002			3.6
T0270402	2002		State	16.4
T0280402	2002		Treasury	23.9
T0290402	2002		-	16.5
T2060402	2002			16.5
T0023106	2006			4.4
T0033106	2006			12.4
T0043106	2006			10.2
T0053106	2006	D-1-1		17.9
T0063106	2006	Kybokarty-		19.0
T0073106	2006	Komorowo		12.1
T0083106	2006			19.4
T0093106	2006			14.1
T0103106	2006			14.1
			SUMN	IARY:
			State	1320.7
			Private	49.3
			Total	1370.0

Tab. 14. Seismic surveys conducted on the Żabowo tender area (CBDG, 2019).

Object name	Horizon	Object name	Horizon
Barkowo	Z1, Z2	Międzyrzecze W	Z1, Z2
Błotno (W,N,E)	Z1, Z2	Modlimowo	Z1
Darszyce	Z1, Z2	Orzechowo	Z1, Z2
Darszyce S	Z1	Piaski	С
Gardomino	Z1, Z2	Piaski N	Z1, Z2, C
Grabin	Z1	Piaski W	Z1, Z,
Gryfice	Z1	Smolęcin W	Z2
Kaczały	Z2	Smolęcin	Z1, Z2
Karsk	Z1, Z2	Sosnkowo	Z1
Komorowo	Z1, C	Taczały	Z2
Komorowo N	Z1, Z2	Trzaski,	Z2
Komorowo W	Z1, Z2	Unibórz S	Z1, Z2
Lestkowo	Z2	Unibórz	Z1, Z2
Łosośnica	Z1, Z2	Wyszobór	Z2
Łosośnica N	Z1	Żabowo	Z1, Z2
Maszkowo	72		

Tab. 15. Structural objects mapped in Żabowo tender area (Grzywa and Burek, 2001; Wróbel and Burek, 2003; Wnuk and Saj, 2007)

Fig. 24. Seismic surveys conducted in the Żabowo tender area.

7. GRAVIMETRY, MAGNETOMETRY AND MAGNETOTELLURICS

7.1 GRAVIMETRY

Semidetailed gravimetric surveys in the Żabowo tender area and in its close neighbourhood were collected with a point density varying from 1.5 to 4.0 stations/km² (Fig. 25). All data are available in the CBDG (2019). There are 2095 data points within the tender area (Fig. 25; Duda and Bochnia, 1963; Bochnia and Duda, 1968; Duda et al., 1973). The western part is covered by the "Łódź Synclinorium" survey (Duda and Bochnia, 1963), with average point density of 2.1 stations/km². The southern part of the area is covered by the "Szczecin-Mogilno Synclinorium" survey (Bochnia and Duda, 1968), with average density of 1.5 stations/ km². The "Pomeranian Anticlinorium" (Duda et al., 1973) covers the northern part.

There are 354 data points of detailed survey, collected along 25 profiles with 100 m step (Smrek, 1979a, b). Only 4 out of them are located within the Żabowo tender area. The survey was focused on brown coal exploration.

The most recent detailed survey, not included in the CBDG yet (and therefore not shown on Fig. 25), covers the northern and eastern part of the tender area. The "Piaski-Resko" survey (Ostrowski, 2002) was focused on tectonic structure of the Permian-Mesozoic and top part of Sub-Permian sediments.

Królikowski and Petecki (1995) proposed a division of Poland into several gravity regions. Thus, the Żabowo tender area is placed at the distict gradient zone (Fig. 26) which is a border between two gravity regions: The Pomeranian High from the north-east and the northern part of Szczecin-Mogilno-Miechów Low from the south-east.

7.2. MAGNETOMETRY

Two ground, semidetailed surveys of total magnetic field intensity were conducted in the Żabowo tender area (western part – Wybraniec and Cieśla, 1995; eastern part – Kosobudzka and Paprocki, 1997). Both surveys has an average density of 2 stations/km². All data are available in the CBDG (2019). There are 1903 data points within the Żabowo tender area (Fig. 27).

An image of magnetic anomalies presented on Fig. 28 is taken from magnetic map of Poland (Petecki et al., 2003). The map is divided into several regions with different magnetic characteristic (Petecki and Rosowiecka, 2017). The Żabowo tender area is located within the Western Pomerania domain (WPd), characterized by NW-SE trending lowamplitude anomalies. According to Petecki (2001), the anomaly pattern in this area reflects a considerable depth of ~18.5 km to the top of the magnetic basement.

7.3. MAGNETOTELLURICS

Magnetotelluric measurements along two regional profiles: D-PL and BMT-5 were collected in 2007-2008 (Stefaniuk et al., 2008). MT soundings were separated by approx. 4.6 km from each other along the profiles (Fig. 29). Resistivity sections and geological models are the most important result of the survey. An example of 2D inversion of MT-data together with geological interpretation along S-PL profile is shown on Fig. 30 (Stefaniuk et al., 2008).

Fig. 25. Distribution of gravimetric measurements in the Żabowo tender (based on CBDG, 2019).

Fig. 26. Location of the Żabowo tender area on the Bouguer gravity anomaly map of Poland (Królikowski and Petecki, 1995).

Fig. 27. Distribution of magnetic stations in the Żabowo tender area (based on CBDG, 2019).

Fig. 28. Location of the Żabowo tender area in the magnetic anomaly map of Poland (Petecki et al., 2003).

Fig. 29. Distribution of magnetotelluric survey in the Żabowo tender area (based on CBDG, 2019).

Fig. 30. Results of 2D inversion of magnetotelluric data. Geological interpretation by Pokorski (Stefaniuk et al., 2008).

8. HYDROCARBON PROSPECTIVE

The Żabowo tender area is located in the north-western Poland, in the Western Petroleum Province (Fig. 31). Here, the Lower Paleozoic rocks are subsequently covered by the Devonian and Carboniferous strata of the Variscan Foredeep and Permian-Mesozoic succession of the Mid-Polish Anticlinorium and Szczecin-Gorzów Trough. The main exploration targets are related to conventional oil and gas accumulations in the Permian Rotliegend and Main Dolomite deposits.

Two independent petroleum systems work in the Żabowo tender area. The first occurs in the Carboniferous-Permian, in which gas is generated from the Lower Carboniferous shales and accumulated in the Rotliegend deposits. The second system occurs in the Zechstein Main Dolomite, in which oil and gas are expected in the carbonate deposits, while organicrich interbeds are supposed to be the source rocks. Numerous hydrocarbon fields, which have been discovered in the close neighborhood of the Żabowo tender area, are related to the Rotliegend (Ciechnowo, Sławoborze) and Main Dolomite (Sławoborze, Błotno, Rekowo, Wysoka Kamieńska) deposits.

The Żabowo area is well recognized by seismic survey: 99 seismic profiles of total length about 1370 km have been conducted, so far. As a result, 33 structural object have been mapped in the Permian and its basement. Fourteen deep wells drilled out the prospective horizons in the Żabowo tender area and in its neighborhood. The hydrocarbon shows occurred in the Carboniferous, Main Dolomite and Rotliegend.

Possible minimum work program for prospection and exploration phase:

- Stage I (12 months) integration and reinterpretation of archival geological data;
- Stage II (48 months) conduction of 2D seismic surveys (90 km) or conduction of 3D seismic surveys (45 km²) and drilling of one well to maximum depth of 6000 m TVD with obligatory coring of prospective intervals.

Fig. 31. Hydrocarbon subdivision of Poland (PIG-PIB, 2019) with location of the Żabowo tender area. 1–6 – petroleum regions (of unconfirmed/hypothetical prospective): 1 – Chełm Region, 2 – Płock-Warszawa Region, 3 – Podlasie Region, 4 – Małopolska Region, 5 – Łódź-Wieluń Region, 6 – Słupsk-Grudziądz Region.

9. REFERENCES

- Aleksandrowski, P. 2017a. Variscan tectonic structures. In: J. Nawrocki, A. Becker (eds), Geological Atlas of Poland. Polish Geological Institute – National Research Institute, Warsaw. [In Polish]
- Aleksandrowski, P. 2017b. Alpine tectonic structures. In: J. Nawrocki, A. Becker (eds), Geological Atlas of Poland. Polish Geological Institute – National Research Institute, Warsaw. [In Polish]
- Aleksandrowski, P., Krzywiec, P. 2017. Szczecin-Władysławowo Geological Cross Section. In:
 J. Nawrocki, A. Becker (eds), Geological Atlas of Poland. Polish Geological Institute – National Research Institute, Warsaw. [In Polish]
- Binder, I. 1982. Gardomino 1 well report. Inw. 128119, CAG PIG, Warsaw. [In Polish]
- Binder, I. 1986. Grabin 1 well report. Inw. 129743, CAG PIG, Warsaw. [In Polish]
- Binder, I. 1987. Grabin 2K well report. Inw. 129797, CAG PIG, Warsaw. [In Polish]
- Binder, I., Sikorski, B., Lech, I. 1985. Geological documentation of the Błotno oil field. Inw. 15113 CUG,CAG PIG, Warsaw. [In Polish]
- Bochnia, N., Duda, W. 1968. Documentation of semidetailed gravimetric survey. Topic: Szczecin-Mogilno Synclinorium, 1967. Inw. 1435, Kat. 3420/32, CAG PIG, Warsaw. [In Polish]
- Brochwicz-Lewiński, W. 1987. Upper Jurassic: stratigraphy and sedimentary development. In: A. Raczyńska (ed.), Geological structure of the Pomeranian Swell and its basement. *Prace Instytutu Geologicznego*, **69**, 123–131. [In Polish with English summary]
- Burek, G., Grzywa, E. Wnuk, Z. 2001. Report on the seismic survey 1976-1984: reprocessing and reinterprtation of the project: Świerzno-Rybokarty, Błotno-Barkowo area. Inw. 826/2001, CAG PIG, Warsaw. [In Polish]
- Burzewski, E., Górecki, W., Maćkowsk, T., Papierni, B., Reicher, B. 2009. Prognostic gas reserves – undiscovered potential of gas in the Polish Rotliegend Basin. *Kwartalnik AGH Geologia*, **35**, 123–128.
- CBDG, 2019. Central Geological Data Base. http://baza.pgi.gov.pl
- Czapowski, G., Antonowicz, L., Peryt, T.M. 1993. Facies and palaeogeography of the Zechstein (Upper Permian) Oldest Halite (Na1) in Poland. *Bulletin of the Polish Academy of Sciences, Earth Sciences*, **41**, 217–227.
- Dadlez, R. 1964. Stratigraphy and sedimentary development of the Keuper and Lower Jurassic in the Mechowo IG-1 well. *Biuletyn Instytutu Geologicznego*, **189**, 61–92. [In Polish]
- Dadlez, R. 1969. Stratigraphy of the Lias in western Poland. *Prace Instytutu Geologicznego*, **57**, 1–92. [In Polish with English summary]
- Dadlez, R. 1980. Tectonics of the Pomeranian Swell (NW Poland). *Kwartalnik Geologiczny*, **24**, 741–767. [In Polish with English summary]
- Dadlez, R. 1998. Tectonic map of the Zechstein-Mesozoic complex in the Polish lowlands, 1:500 000. Polish Geological Institute, Warsaw.

- Dadlez, R., Marek, S., Pokorski, J. 2000. Geological Map of Poland without Cenozoic Deposits, 1:1000000. Polish Geological Institute, Warsaw.
- Darłak, B., Kowalska-Włodarczyk, M., Kobyłecka, A., Leśniak, G., Such, P. 1998. Przegląd wyników badań właściwości zbiornikowych i filtracyjnych wybranych skał zbiornikowych basenów młodopaleozoicznych Niżu Polskiego. Prace Państwowego Instytutu Geologicznego, 165, 147-154. [In Polish]
- Dayczak-Calikowska, K. 1977. The Upper Bathonian and Callovian in northwest Poland. *Prace Instytutu Geologicznego*, **84**, 1–69. [In Polish with English summary]
- Dayczak-Calikowska, K. 1987. Middle Jurassic: stratigraphy and sedimentary development. In: A. Raczyńska (ed.), Geological structure of the Pomeranian Swell and its basement. *Prace Instytutu Geologicznego*, **69**, 116–123. [In Polish with English summary]
- Dembowska, J. 1979a. Systematization of lithostratigraphy of the Upper Jurassic in northern and central Poland. *Kwartalnik Geologiczny*, **23**, 617–630. [In Polish with English summary]
- Dembowska. J. 1979b. Upper Jurassic: stratigraphy, lithology, palaeogeography. In: M. Jaskowiak-Schoeneichowa (ed.), The geological structure of the Szczecin trough and Gorzów block. *Prace Instytutu Geologicznego*, **46**, 62–69. [In Polish with English summary]
- Duda, W., Bochnia, N. 1963. Report of semidetailed gravimetric survey at Szczecin Synclinorium, 1962. Kat. 3319/52, CAG PIG, Warsaw. [In Polish]
- Duda, W., Zdziarska, B., Wasiak, I. 1973. Documentation of semidetailed gravimetric survey, 2nd stage, topic: Pomeranian Anticlinorium, 1972. Inw. 1761, Kat. 32/158, CAG PIG, Warsaw. [In Polish]
- Frydrych, G. 2015. Piaski 3 well report. Inw. 3320/2015, CAG PIG, Warsaw. [In Polish]
- Gąsiewicz, A., Wichrowska, M. 1996. Sedimentation and diagenesis of the Main Dolomite in the western part of the Pomerania Platform. Inw. 499/97, CAG PIG, Warsaw. [In Polish]
- Grotek, I. 2010. Microscopic analysis of the dispersed organic matter. Inw. 2439/2011, CAG PIG, Warsaw. [In Polish]
- Grzywa, E., Burek, G. 2001. Reprocessing and reinterpretation of the seismic survey from 1976– 1984, topic: Świerzno-Rybokarty, Błotno II region. Inw. 2025/2001, CAG PIG, Warsaw. [In Polish]
- Jagielski, G., Kiersnowski, H., Kijewska, S., Kozłowska, A., Krzyżak, E., Kuberska, M., Laskowicz, R., Roszkowska-Remin, J., Smajdor, Ł., Wesołowski, M., Wójcik, K., Żuk, T. 2019. Oil and gas in Poland: licensing round and open door policy in 2019 and 2020. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, 108, 127–140. [In Polish with English summary]
- Jaskowiak-Schoeneichowa, M. 1979. Upper Cretaceous (with Upper Albian). In: Geological structure of the Szczecin trough and Gorzów block.

Prace Instytutu Geologicznego, **96**, 77–89. [In Polish with English summary]

- Jaskowiak-Schoeneichowa, M. 1981. Sedimentation and stratigraphy of the Upper Cretaceous in the north-western Poland. *Prace Instytutu Geologicznego*, **98**. [In Polish with English summary]
- Jaskowiak-Schoeneichowa, M. 1987. Upper Cretaceous. In: A. Raczyńska (ed.), Geological structure of the Pomeranian Swell and its basement. *Prace Instytutu Geologicznego*, **119**, 140–151. [In Polish with English summary]
- Kiersnowski, H. 2013. Late Permian aeolian sandstones from the Polish Upper Rotliegend basin in the context of palaeoclimatic periodicity. *Geological Society Special Publications*, **376**, 431– 456
- Kiersnowski, H., Buniak, A. 2006. Evolution of the Rotliegend Basin of northwestern Poland. *Geological Quarterly*, **50**, 119–138.
- Kosobudzka, I., Paprocki, A. 1997. Realization of semidetailed magnetic survey T in western, central and south-eastern Poland, 1995-1997. Inw. 812/98, Inw. 338/98, CAG PIG, Warsaw. [In Polish]
- Kotarba, M., Piela, J., Żołnierczuk, T. 1992. Origin of gas accumulations in the Permian–Carboniferous traps of the Paproć field based on isotopic data. *Przegląd Geologiczny*, **40**, 260–263. [In Polish]
- Kotarba, M. J., Grelowski, C., Kosakowski, P., Więcław, D., Kowalski, A., Sikorski, B. 1999. Hydrocarbon potential of source rocks and origin of gas acumulations in the Rotliegend and Carboniferous in the northern part of western Pomerania. *Przegląd Geologiczny*, **47**, 480. [In Polish with English summary]
- Kotarba, M. J., Kosakowski, P., Więcław, D., Grelowski, C., Kowalski, A., Lech, S., Merta, H. 2004. Hydrocarbon potential of Carboniferous source rocks on the Baltic part of Pomeranian Segment of the Middle Polish Trough. *Przegląd Geologiczny*, 52, 1156–1165. [In Polish with English summary]
- Kotarba, M. J., Pokorski, J., Grelowski, C., Kosakowski, P. 2005. Origin of natural gases accumulated in Carboniferous and Rotliegend strata on the Baltic part of the Western Pomerania. *Przegląd Geologiczny*, **53**, 425–433.
- Królikowski, C., Petecki, Z. 1995. Gravimetric Atlas of Poland. Polish Geological Institute, Warsaw.
- Kudrewicz, R. 2007. GIS-based Structural Geology for Petroleum Exploration within the Polish Permian Basin. AAPG Annual Convention, Long Beach, California. AAPG Search and Discover Article #90063.
- Lech, I. 1981. Błotno 1 well report. Inw. 126612, CAG PIG, Warsaw. [In Polish]
- Lech, I. 1982. Karsk 1 well report. Inw. 128116, CAG PIG, Warsaw. [In Polish]
- Lech, I. 1983a. Unibórz 1 well report. Inw. 128485, CAG PIG, Warsaw. [In Polish]
- Lech, I. 1983b. Błotno 2K well report. Inw. 128527, CAG PIG, Warsaw. [In Polish]
- Lech, I. 1984. Błotno 3 well report. Inw. 129066, CAG PIG, Warsaw. [In Polish]
- Lech, I. 1989. Łosośnica 1 well report. Inw. 131485, CAG PIG, Warsaw. [In Polish]

- Lech, S. 2001. Geological-Structural Map of the Permian Basement in the Pomerania Region 1:500 000. PGNiG Archive, Piła.
- Leszczyński, K., Dadlez, R. 1999. Subsidence and the problem ofincipient inversion in the Mid-Polish Trough based on thickness maps and Cretaceous lithofacies analysis - discussion. *Przegląd Geologiczny*, **47**, 625–628. [In Polish with English summary]
- Lipiec, M. 1999. Depositional systems and diagenesis of the Dinantian carbonate deposits in the Western Pomerania. Ph.D. thesis. Inw. 1340/2001, CAG PIG, Warsaw. [In Polish]
- Lipiec, M., Matyja, H. 1998. Depositional architecture of the Lower Carboniferous sedimentary basin in Pomerania. *Prace Państwowego Instytutu Geologicznego*, **165**, 101–112. [In Polish with English summary]
- Łapa, D., Nowak, J. 2009. Geological documentation of the Błotno oil field – supplement 1. Inw. 3315/2009, CAG PIG, Warsaw. [In Polish]
- Maliszewska, A., Kuberska, M. 2008. Mapping of cement types in the upper rotliegend rocks from the Western Polish Lowlands. *Biuletyn Państwowego Instytutu Geologicznego*, **429**, 79–90. [In Polish with English summary]
- Maliszewska, A., Jackowicz, E., Kuberska, M., Kiersnowski H. 2016. Lower Permian (Rotliegend) rocks of western Poland : a petrographic monograph. *Prace Państwowego Instytutu Geologicznego*, **204**. [In Polish with English summary]
- Marek, S. 1988. Palaeothickness, facies and palaeotectonic maps of the epicontinental Permian and Masozoic in Poland. *Kwartalnik Geologiczny*, 32, 1–14. [In Polish with English summary]
- Matyja, H. 2006. Stratigraphy and facies development of Devonian and Carboniferous deposits in the Pomeranian Basin and in the western part Baltic Basin and palaeogeography of the of the northern TESZ during Late Palaeozoic times. Prace Państwowego Instytutu Geologicznego, 186, 79–122. [In Polish with English summary]
- Matyja, H. 2008. Pomeranian basin (NW Poland) and its sedimentary evolution during Mississippian times.
 W: M. Aretz., H-G. Herbig, I. D. Somerville (Red), Carboniferous platforms and basins. *Geological Journal*, 43, 123–150.
- Menning, M., Hendrich, A. 2002. Stratigraphische Tabelle von Deutschland 2002. Potsdam and Frankfurt.
- MIDAS 2019. System of management and protection of mineral resources in Poland.
 - http://geoportal.pgi.gov.pl/portal/page/portal/midas/
- Miłaczewski, L. 1991. Piaski PIG-2 well report. Inw. 132858, CAG PIG, Warsaw. [In Polish]
- Nowak, J. 2004. Geological documentation of the Wysoka Kamieńska oil field – supplement 2. Inw. 1969/2004, CAG PIG, Warsaw. [In Polish]
- Nowicka, A. 1995. D Geological documentation of the Ciechnowo gas field. Inw. 1111/95, CAG PIG, Warsaw. [In Polish]
- Nowicka, A. 2009. Geological documentation of the Sławoborze gas field. Inw. 4414/2009, CAG PIG, Warsaw. [In Polish]

- Ostrowski, C. 2002. Documentation of detailed gravimetric survey along seismic profiles in the Piaski – Resko area, 2002. Inw. 4511/2013 CAG-PIG, Warsaw. [In Polish]
- Oszczepalski, S., Rydzewski, A. 1987. Palaeogeography and sedimentary model of the Kupferschiefer in Poland. *Lecture Notes in Earth Sciences*, **10**, 189–205.
- Pawłowski, A. 2003. Geological documentation of the Ciechnowo gas field – supplement 2. Inw. 149/2004, CAG PIG, Warsaw. [In Polish]
- Pawłowski, A. 2005. Geological documentation of the Rekowo oil field – supplement 2. Inw. 569/2007, CAG PIG, Warsaw. [In Polish]
- Peryt, T.M. 1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland. *Prace Instytutu Geologicznego*, **109**. [In Polish with English summary]
- Peryt, T.M., Wagner, R. 1998. Zechstein evaporite deposition in the Central European Basin: cycles and stratigraphic sequences. *Journal of Seismic Exploration*, **7**, 201–218.
- Peryt, T.M., Kasprzyk, A., Antonowicz, L. 1996. Upper Werra Anhydrite (Zechstein, Upper Permian) in Poland. *Bulletin of the Polish Academy* of Sciences, Earth Sciences, **44**, 121–130.
- Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K. 2010. Zechstein. In: J.C. Doornenbal, A.G. Stevenson (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten), 123–147.
- Petecki, Z., 2001. Magnetic evidence for deeply buried crystal line basement south west of the Teisseyre-Tornquist Line in NW Poland. Acta Geophysica Polonica, 49, 509–515
- Petecki, Z., Polechońska, O., Wybraniec, S., Cieśla, E. 2003. Magnetic anomaly map of Poland, 1 : 500 000. *Państwowy Instytut Geologiczny*, Warsaw.
- Petecki, Z., Rosowiecka, O. 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. *Geological Quarterly*, **61**, 934–945
- Pieńkowski, G. 1988. Characteristic of sedimentation of the uppermost Zechstein and lowermost Buntsandstein deposits. In: J. Dembowska, S. Marek (eds), Mszczonów IG-1, Mszczonów IG-2, Nadarzyn IG-1. *Profile Glębokich Otworów Wiertniczych IG*, **65**, 212–221. [In Polish with English summary]
- Pieńkowski, G. 1989. Sedimentological criteria of identification of the Zechstein/Buntsandstein and Permian/Triassic in Poland. *Przegląd Geologiczny*, **5**, 237–247. [In Polish with English summary]
- Pieńkowski, G. 2004. The epicontinental Lower Jurassic of Poland. *Polish Geological Institute Special Papers*, **12**, 1–122.
- Pletsch, T., Appel, J., Botor, D., Clayton, C., Duin, E., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-Henning, C., Papiernik, B., van Bergen, F. 2010. Petroleum generation and migration – Zechstein. W: H. Dornebal, A. Stevenson (eds.), *Petroleum geological atlas of the Soythern Permian Basin Area*, 239–241.
- Pomianowski, P., Wróbel, K. 2004. Application of new techniques in seismic interpretations provided for

prospection of hydrocarbons in the Rotliegend of the north-western Poland. In: A. Protas, B. Sikorski (eds), Permian Basin of the Polish Lowland: structure and hydrocarbon potential. Conference materials, PGNiG Archive, Piła, 69–79.

- Raczyńska, A. 1979. Lower Cretaceous (without Upper Albian). In M. Jaskowiak-Schoeneichowa (ed.), The geological structure of the Szczecin trough and Gorzów block. *Prace Instytutu Geologicznego*, **96**, 69–77. [In Polish with English summary]
- Raczyńska, A. 1987. Lower Cretaceous. In: A. Raczyńska (ed.), Geological structure of the Pomeranian Swell and its basement. *Prace Instytutu Geologicznego*, **119**, 131–140. [In Polish with English summary]
- Ryba, J. 1975. Barkowo1 well report. Inw. 15113, CAG PIG, Warsaw. [In Polish]
- Semyrka, R., 1985. Dependences of oil-bearing capacity of main dolomite in the region of Pomorze zachodnie. *Prace Geologiczne PAN*, **129**, 5–113. [In Polish with English summary]
- Smrek, A. 1979a. Documentation of detailed gravimetric profiles. Topic: Goleniów - Stargard Szczeciński - Choszczno - Krzyż, 1978. Inw. 2006, Kat. 42/139, CAG PIG, Warsaw. [In Polish]
- Smrek, A. 1979b. Documentation of detailed gravimetric profiles. Topic: Goleniów - Stargard Szczeciński - Choszczno - Krzyż, 1977 - 1979. Inw. 2041, Kat. 42/141, CAG PIG, Warsaw. [In Polish]
- Stefaniuk, M., Wojdyła, M., Petecki, Z., Pokorski, J. 2008. Documentation of geophysical survey. Topic: Geological structure of the sedimentary cover and crystalline basement of the Pomeranian segment of the Mid-Polish Trough based on complex geophysical survey /magnetotelluric profiles / Stage I: 2007 – 2008. Inw. 1277/2009; 3090/2014; 4547/2015; 4548/2015, CAG PIG, Warsaw. [In Polish]
- Wagner, R. 1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland. *Prace Państwowego Instytutu Geologicznego*, **146**. [In Polish with English summary]
- Wagner, R. 2012. Palaeogeographic Map of the Main Dolomite (Ca2) in Poland. Inw. 7736/2016, CAG PIG, Warsaw.
- Wagner, R., Piątkowski, T.S., Peryt, T.M. 1978. Polish Zechstein Basin. *Przegląd Geologiczny*, **26**, 673–686. [In Polish with English summary]
- Wagner, R., Peryt, T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. *Geological Quarterly*, **41**, 457–474.
- Wnuk, Z., Saj, A. 2007. 2D seismic report. Topic: Rybokarty-Komorowo. Region: Rybokarty-Komorowo, Region: Stawno. Inw. 1609/2008, CAG PIG, Warsaw. [In Polish]
- Wróbel, J. 1963. Nowogard GEO-1 well report. Inw. 68419,CAG PIG, Warsaw. [In Polish]
- Wróbel, K., Burek, G. 2003. 2D seismic report. Topic: Piasko-Resko. Inw. 1983/2003, CAG PIG, Warsaw. [In Polish]
- Wybraniec, S., Cieśla, E. 1995. Technical report of semidetailed magnetic survey T at NW Poland, collected under granted research project: "Applying of new methods of potential fields interpretation

to NW Poland geological structure recognition". Inw. 2137/95, CAG PIG, Warsaw. [In Polish]

- Zoła, K. 1996. Geological documentation of the Wysoka Kamieńska oil field – supplement 1. Inw. 737/97, CAG PIG, Warsaw. [In Polish]
- Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., Żytko, K. 2011. Tectonic subdivision of Poland. Komitet Nauk Geologicznych, PAN.