

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy państwowa służba geologiczna państwowa służba hydrogeologiczna

Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV.

UMOWA NFOŚiGW nr 307/2021/Wn-07/FG-sm-dn/D z dnia 21.04.2021 r. Zadanie 22.5004.2101.00.1

Pakiet danych geologicznych do postępowania przetargowego na poszukiwanie i rozpoznawanie złóż ropy naftowej i gazu ziemnego oraz wydobywanie ropy naftowej i gazu ziemnego ze złóż

> Obszar przetargowy Zielona Góra Zachód

Opracował: Zespół pod kierunkiem mgr Krzysztofa WAŚKIEWICZA i dr. Huberta KIERSNOWSKIEGO

NARODOWY FUNDUSZ OCHRONY ŚRODOWISKA i gospodarki wodnej

Koordynator zadania: dr Krystian WÓJCIK

Skład zespołu

mgr Krzysztof WAŚKIEWICZ – kierownik zespołu

dr Hubert KIERSNOWSKI - kierownik zespołu

mgr Dariusz BRZEZIŃSKI

mgr Martyna CZAPIGO-CZAPLA

mgr inż. Joanna FABIAŃCZYK

dr Anna GRYCZKO-GOSTYŃSKA

dr Marek JASIONOWSKI

mgr Anna KALINOWSKA

mgr inż. Sylwia KIJEWSKA

mgr Paulina KOSTRZ-SIKORA

mgr Przemysław KOWALSKI

dr hab. Aleksandra KOZŁOWSKA

dr Olimpia KOZŁOWSKA

mgr inż. Joanna KRASUSKA

dr Marta KUBERSKA

dr Krzysztof LESZCZYŃSKI

mgr Marcin ŁOJEK

Prof. dr hab. Tadeusz PERYT

mgr Elżbieta PRZYTUŁA

dr inż. Olga ROSOWIECKA

mgr inż. Dominika SIERADZ

inż. Leszek SKOWROŃSKI

mgr Marcin TYMIŃSKI

mgr inż. Dorota WĘGLARZ

mgr inż. Michał WOROSZKIEWICZ

dr Krystian WÓJCIK

mgr Jarosław ZACHARSKI

Pakiet danych geologicznych dla obszaru przetargowego Zielona Góra Zachód został przygotowany w ramach umowy z NFOŚiGW na realizację zadania pn. "Ocena perspektywiczności geologicznej Polski pod względem możliwości odkrycia nowych złóż węglowodorów oraz przygotowanie materiałów na potrzeby postępowań prowadzonych w celu udzielenia koncesji węglowodorowych – etap IV". Zgodnie z art. 49.f Ustawy z dnia 9 czerwca 2011 roku Prawo geologiczne i górnicze (Dz.U. 2011 Nr 163 poz. 981; t.j. Dz.U. z 2023 r. poz. 633) obszary przeznaczone do postępowania przetargowego ustala organ koncesyjny we współpracy z państwową służbą geologiczną. Obszar przetargowy Zielona Góra Zachód został wskazany do przetargu przez Ministra Środowiska na podstawie "Ogłoszenia o granicach przestrzeni, dla których planowane jest wszczęcie postępowania przetargowego na koncesje na poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż w 2022 r. (6 runda przetargowa)" z dnia 30 czerwca 2021 r. (pismo znak: DGK-WW.740.1.2021.JS).

Dane o budowie geologicznej i potencjale złożowym obszaru przetargowego Zielona Góra Zachód obejmują informację geologiczną będącą własnością Skarbu Państwa, dostępną w zasobach Narodowego Archiwum Geologicznego PIG-PIB oraz w ogólnodostępnych publikacjach naukowych. Źródła zamieszczonych informacji są zawarte w końcowej części pakietu danych geologicznych. Dane źródłowe, dotyczące w szczególności sejsmiki 2D i 3D, a także wyniki badań przeprowadzonych w otworach wiertniczych, karotaże oraz wyniki innych analiz istotnych z punktu widzenia poszukiwań naftowych, wraz z ich wyceną, zostały zebrane i będą dostępne do wglądu w ramach "data roomu", zorganizowanego w Czytelni Narodowego Archiwum Geologicznego w Warszawie w trakcie trwania 6. rundy przetargowej.

Spis treści

1. WSTĘP Hubert Kiersnowski, Paulina Kostrz-Sikora, Olimpia Kozłowska, Joanna Krasuska, Krzysztof Waśkiewicz, Krystian Wójcik	5
1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM 1.2. UWARUNKOWANIA ŚRODOWISKOWE	5
2. BUDOWA GEOLOGICZNA	
Anna Gryczko-Gostyńska, Marek Jasionowski, Hubert Kiersnowski, Aleksandra Kozłowska, Marta Kuberska, Krzysztof Leszczyński, Tadeusz Peryt, Elżbieta Przytuła, Krzysztof Waśkiewicz, Dorota Węglarz, Krystian Wójcik, Jarosław Zacharski	
2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ	12
2.2. TEKTONIKA	15
2.3. STRATYGRAFIA	17
2.3.1. UTWORY STARSZE OD KARBONU	17
2.3.2. KARBON	
2.3.3. PERM – CZERWONY SPĄGOWIEC	21
2.3.4. PERM – CECHSZTYN	
2.3.5. TRIAS	
2.3.6. KENUZUIK	
2.4. HYDROGEOLOGIA	45
3 SYSTEM NAETOWY	54
Hubert Kiersnowski, Dominika Sieradz, Krzysztof Waśkiewicz, Jarosław Zacharski	
3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO	54
3.2. SKAŁY MACIERZYSTE	
3.3. SKAŁY ZBIORNIKOWE	65
3.4. SKAŁY USZCZELNIAJĄCE	72
3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW	73
4. CHARAKTERYSTYKA ZŁÓŻ WEGLOWODORÓW	79
Dariusz Brzeziński, Martyna Czapigo-Czapla, Joanna Fabiańczyk, Anna Kalinowska,	
Przemysław Kowalski, Marcin Tymiński, Michał Woroszkiewicz	
4.1. ZŁOŻA WEGLOWODORÓW W SASIEDZTWIE OBSZARU PRZETARGOWEGO	
4.2. ZŁOŻE GAŻU ZIEMNEGO BRZÓŻKA	
4.3. ZŁOŻE GAZU ZIEMNEGO CZEKLIN	
4.4. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ CZERWIEŃSK	
4.5. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ LELECHÓW	93
4.6. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ MOZÓW N	99
4.7. ZŁOŻE ROPY NAFTOWEJ MOZÓW S	103
4.8. ZŁOŻE GAZU ZIEMNEGO NOWA SÓL	108
5. OTWORY WIERTNICZE	111
Marcin Łojek, Leszek Skowroński, Krystian Wójcik	
5.1. INFORMACJE OGÓLNE	111
5.2. BRONISZOW	113
5.3. BRONKOW M-27	114
5.4. CHOJNOWO 1	116
5.5. DACHOW 1	119
5.6. DACHOW M-24	122
5.1. μέβι 1	122
J.J. DKZUNUW I	124

5.0 ΠΡΖΟΝΌΨ 2	125
5.10 DYCHÓW M-26	123
5.11 JAROGNIEWICE IG-1	129
5.11. JAROONIL WICE 10^{-1}	12)
5.12. JASILIN 1 -4	130
5.13. JEEENIO W - 1	130
5.15 KOSIED7.1	132
5.16 KOSIERZ 1	132
5.10. ROSIERZ M-23	134
5.17. LUDIATOW 1	130
5.10 NIWISKA 1	137
5.20 NOWA SÓL 7	1.39
5.20. NOWA SOL 7	142
5.21. NOWA SOL 9	145
5.22. NOWA SOL 10	143
5.25. NOWA SOL 10	140
5.25. DATECZNO 1	140
5.25. PAJĘCZNU I	150
5.20. FIADN 7. CÓD 1	132
5.27. START ZAUUR I	133
5.20. ŚWIDNICA 1	137
5.29. 5 WIDNICA-1	
5.21 TDZEDULE 1	100
5.22 LIDZUTY IC 1	102
5.22 WXSOVA 1	104
5.24 WVSOVA 2	103
5.54. W I SONA 2	10/
5.26 ŻADŁÓW 2	170
5.30. ZAKKUW 2	1/2
5.29 ŻADŁÓW A	1/3
5.58. ZARKOW 4	1/5
	170
0. SEJSMIKA	1/9
Sylwia Kijewska	
7 DADANIA CDAWIMETDYCZNE MACNETYCZNE I MACNETOTEI I UDYCZNE	102
7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE	183
Olga Kosowiecka	
71 ΡΑΓΙΑΝΊΑ CDAWIMETDVC7ΝΕ	193
7.1. DADANIA OKAW IVIETKI CZNE	103
7.2. DADANIA MAONETICZNE	10J
1.3. DADAINIA MAUNEIUIELLUKIULINE	108
8 PODSUMOWANIE	190
9 ΜΑΤΕΡΙΑΙ Υ ΖΡΟΊΡΙ ΟΨΕ	101

1. WSTĘP 1.1. INFORMACJE OGÓLNE O OBSZARZE PRZETARGOWYM

Obszar przetargowy Zielona Góra Zachód ma powierzchnię 954,57 km² i obejmuje blok koncesyjny na poszukiwanie i rozpoznawanie złóż węglowodorów oznaczony numerem 243 (Fig. 1.1). Koordynaty geograficzne punktów załamania granic obszaru przetargowego są zdefiniowane w Tab. 1.1, a położenie tych punktów ilustruje Fig. 1.2.

Na nunktu	Współrzędne PL-92		
	X	Y	
1	466864,29	225534,14	
2	465099,30	259706,65	
3	460854,86	259501,20	
4	455090,39	259224,01	
5	437314,83	258369,88	
6	439083,64	224005,94	

Tab. 1.1. Współrzędne punktów załamania granic obszaru przetargowego Zielona Góra Zachód.

Do kwietnia 2015 roku obszar przetargowy był objęty koncesją Blok 243 nr 14/2007/p, której operatorem był Celtique Energie Poland/Bobr Energia. Obecnie obszar Zielona Góra Zachód graniczy od wschodu i południowego wschodu z koncesjami Nowa Sól nr 5/2018/p (Liesa Energy Sp. z o.o.) i Nowe Miasteczko nr 6/2019/p (KGHM Polska Miedź S.A.). Obszar przetargowy Zielona Góra Zachód jest dedykowany poszukiwaniom konwencjonalnych złóż węglowodorów w utworach permu – czerwonego spągowca i cechsztyu/dolomitu głównego.

[→]Fig. 1.1. Położenie obszaru przetargowego Zielona Góra Zachód na mapie koncesji na poszukiwanie, rozpoznawanie oraz wydobywanie węglowodorów oraz podziemne bezzbiornikowe magazynowanie substancji i podziemne składowanie odpadów wg stanu na 30.06.2023 r.

ZIELONA GÓRA ZACHÓD

Fig. 1.2. Punkty załamania granic oraz pozycja obszaru przetargowego Zielona Góra Zachód względem sąsiednich koncesji geologicznych i obszarów przetargowych.

1.2. UWARUNKOWANIA ŚRODOWISKOWE

Dia display consistence of the construction of the	KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH				
LOKALIZACIA OBSZARU PRZETAKCOWEGO NA MAPIE nazwa i numer akusa may wskii 1:30 000 Czerwińsk 537, Bobrowice 573, Przylep 574, Jasień 610, Chokko 611 z. PRZETAKCOWEGO NA MAPIE wskii 1:30 000 Czerwińsk 537, Bobrowice 573, Przylep 574, Jasień 610, Chokko 611 z. POLOŻENIE ADMINISTRACYJNE gmina 1% powiat Rosowiczhni zajmowany w granicah dosram przeturgrowego Bobrowice (14,76%), Dąbie (10,05%), Krosno Odzańskie (0,44%) powiat nowosolski gmina 1% powiat Bobrowice (14,76%), Dwogród Bobrawicz (14,76%), Dwogród Bobrawicz (14,76%), Dwogród Bobrawicz (14,76%), Dwogród Bobrawicz (14,76%), Lotsko (6,98%), Jasień (6,49%) powiat Ziełona Góra (17,5%), Żagań (0,25%), powiat Zary (1,13%), Lotsko (6,98%), Jasień (6,49%) gmina 1% powiat Zary (1,13%), Lotsko (6,98%), Jasień (6,49%) Jasień (6,49%) gmina 1% przeźnica (1,57%), Zagań (0,25%), wski (315,7), wski (315,7), wski (315,7), wski (315,73), wski (315,73), wski (2160mgórski (315,73), wski (2160mgórski (315,73), wski (218,31) Jasień (6,49%) aktoregion Dolina Srodkowej Odry (315,61) makoregion Wzniesienia Zielongórski (315,73), wski (218,31) wskości (218,31) makoregion Wzniesienia Gibiski (315,73), wski (218,31) Jasień (138,41) wzniesienia Zielongórski (318,41) wzniesienia Zielongórski (318,41) makoregion Wzniesienia Zielongórski (318,41) wzniesienia Zielongórski (318,41) Jas	ZIELONA GÓRA ZACHÓD				
 A Barbardian Series (1999) A Barbardian Series (1990) A Barbardian Series (1990)	1.	LOKALIZACJA OBSZARU PRZETARGOWEGO NA MAPIE	nazwa i numer arkusza mapy w skali 1 : 50 000	Czerwińsk 537, Bob 574, Jasień 610	rowice 573, Przylep , Chotków 611
 ADMINISTRACYJNE POLOŻENIE ADMINISTRACYJNE POLOŻENIE ADMINISTRACYJNE POLOŻENIE ADMINISTRACYJNE POLOŻENIE ADMINISTRACYJNE POWiat Bobrowiat (14,76%), Dabia (10,05%), Krosno Odrzański (4,4%) Bobrowiat (2009) Powiat Zełona Góra (8,7%) powiat Zełona Góra (8,7%) powiat Zełona Góra (16,80%) powiat Zełona Góra (16,80%) powiat Zełona Góra (16,80%) powiat Zerwickk (4,16%), Nowogród Bobrzański (26,57%), Świdnica (16,80%) powiat Zarya (1,25%), Zagań (0,25%) powiat Zarya (1,25%), Zagań (0,25%) powiat Zarya (1,37%), Zagań (0,25%) powiat Zarya (1,37%), Zagań (0,25%) powiat Zarya (1,37%), Zagań (0,25%) powiat Zarya (1,25%), Zagań (0,25%) powiat Zarya (1,25%), Zagań (0,25%) powiat Zarya (1,37%), Zagań (0,25%) powiat Pradolina Warciańsko (135.61) makroregion Pradolina Warciańska (135.71), mezoregion Pradolina Warciańska (135.74) makroregion Makroregion Obinizenie Zarkki (138.41), mezoregion Obinia Sobowicki (138.41), mezoregion Obinia Sobowicki			województwo	lubu	skie
 k REGIONALIZACJA FIZYCZNO- GEOGRAPICZNA			powiat	krośnieński	
POLOŽENIE ADMINISTRACYJNE poviat neovoskli (gmina Doviat Zielona Góra gmina Zielona Góra gmina Zielona Góra gmina Zielona Góra gmina Doviati Zielona Góra gmina Zielona Góra gmina gmina Dovraitiki (26,57%), Swidnica (16,86%) poviat Zargański gmina Bizeźnica (1,57%), Zagań (0,25%) gmina Bizeźnica (1,57%), Zagań (0,25%) gmina Jasień (6,49%) Jasień (6,49%) Jasień (6,49%) gmina Jasień (5,47%), Swidnica (16,86%) Jasień (5,47%), Swidnica (15,87%), Zagań (0,25%) gmina Zargański Jasień (5,47%), Swidnica (15,87%), Zagań (0,25%) Jasień (5,47%), Zagań (0,25%) Jasień (5,47%) Jasień (5,47%), Zagań (0,25%) Jasień (5,47%), Zagań (0,25%) Jasień (5,47%), Zagań (0,25%) Jasień (5,41%) Jasień (15,12), Jasień (21,12), Jas			gmina i % powierzchni zajmowanej w granicach obszaru przetargowego	Bobrowice (14,76%), Dąbie (10,05%), Krosno Odrzańskie (0,44%)	
2. POLOŽENIE ADMINISTRACYJNE POLOŽENIE ADMINISTRACYJNE POLOŽENIE ADMINISTRACYJNE Poviat Poviat Poviat Poviat Poviat Poviat Poviat Czerwichsk (4,16%), Newogród Bobrzański (26,57%), Zagań (0,25%) poviat Poviat Poviat Prodolma Stroko (6,98%), Jasie (6,649%) Prodolma Warciańsko (0,47%), Lubsko (6,98%), Jasie (6,649%) Prodolma Warciańsko (0,47%), Lubsko (6,98%), Jasie (6,649%) Prodolma Warciańsko (15,71), mezoregion Prodolma Warciańsko (15,71), mezoregion Dolina Środkowej Odry (315,61) makroregion Prodolma Marciańsko (15,77), Wariesienia Zelonogórski (315,77), Wariesienia Zelonogórski (315,77), Wariesienia Zelonogórski (315,77), Makroregion Marriesienia Gubiński (315,77), mezoregion Dolina Dolego Bobru (315,71), mezoregion Obniżenie Dolonogórski (315,77), Wał Zielonogórski (315,77), Makroregion Obniżenie Dolonogórski (315,77), Wał Zielonogórski (315,77), Wał Zielonogórski (315,77), Makroregion Obniżenie Olonogórski (315,77), mezoregion Obniżenie Olonogórski (315,77), Wał Zielonogórski (315,77), Makroregion Obniżenie Dolonogórski (315,77), Wariesienia Zawiste (318,31), mezoregion Obniżenie Mitekco-Cłogowskie (318,31), mezoregion Obniżenie Mitekco-Cłogowskie (318,31), mezoregion Obniżenie Mitekco-Złogowskie (318,31), mezoregion Obniżenie Nowosolskie (318,42), Wzriesienia Zawiste (318,41), Wzriesienia Zawiste (318,42), Układ PI-1992 [X; YI 460854,86 25950,10,0 450800,30 259706,65 450800,30 259706,65 450800,30 259224,01 450809,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259720,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 450800,30 259706,65 450800,30 259706,65 450800,30 259706,65 450800,30 450800,30 450800,30 450800,30 450800,30 450800,30			powiat	nowos	solski
POLOŻENIE ADMINISTRACUJNE powiat Zielona Góra zielona Góra (S,70%) 2. ADMINISTRACUJNE gmina powiat Zielona Góra (S,70%) 9. Czerwicńsk (1,10%), Nowogród Bobznański (26,57%), Świdnica (16,86%) powiat Bobznański Zapański gmina Brzeźnica (1,57%), Żagań (0,25%) 9. powiat Zarski Zarski gmina Jasień (6,49%) 9. Jasień (6,49%) Jasień (6,49%) 9. makroregion Pradolina Warciańska (315.6) 9. makroregion Wzniesienia Zielonogróskie (315.7) 9. makroregion Wzniesienia Zielonogróskie (315.7) 9. makroregion Wzniesienia Zielonogróskie (315.7) 9. makroregion Obnizenie Dolnolużyckie (317.2) 9. makroregion Obnizenie Dolnolużyckie (317.2) 9. makroregion Obnizenie Dolnolużyckie (318.3) 9. makroregion Obnizenie Nowosolskie (318.4) 9. Wzrzszanie (1,87.4) Wzrzszanie (318.4) 9. Wzrzszanie (1,87.4) Wzrzszanie (318.4) 9. Wzrzszanie (318.4) Wzrzszanie (318.4) 9.			gmina	Kożuchów	v (2,04%)
ADMINISTRACTIONE gmma Zelona Gong (8, 70%) additional construction of the second sec		ΡΟŁΟŻENIE	powiat	Zielona	a Góra
poviat zervieńsk (4,16%), Nowogród gmina Bobrzański (26,5%), Šwidnica (16,86%) powiat żagański zagański zagański gmina Breźnica (1,5%), Zapań (0,25%) powiat żagański żagański zagański Breźnica (1,5%), Zapań (0,25%) powiat żagański żagański żary (1,13%), Lubsko (6,98%), Jasień (6,49%) Breźnica (1,5%), Zapań (0,25%) powiat żarski żarski żarski Breźnica (1,5%), Zapań (0,25%), powiat żarski żarski żarski (315,71), mezoregion Breżeńska (315,73), Wa zalelonogórski (315,73), Wa zalelonogórski (315,73), Wa zalelonogórski (315,73), Wa zalelonogórski (318,73), Wa zalelonogórski (318,73), Wa zalelonogórski (318,31) Breżoregion Obniżenie Milicko-Glogowskie (318,31) Breżoregion Obniżenie Milicko-Glogowskie (318,41), Wzgórza Dałkowskie (318,42), Dolina Środkowego Bobru (318,47) Wzał zieżonaj zasie (318,41), Wzgórza Dałkowskie (318,42), Dolina Środkowego Bobru (318,47) Wzał zieżonogórskie (318,42), Dolina Srodkowego Bobru (318,47) 4608064,29 225334,14 45099,30 45090,30 259700,65 4608064,29 224005,94 9824,41	2.	ADMINISTRACY.INE	gmina	Zielona Go	ra (8,70%)
4 gmina C22WWBRX (26, 57%), S0X00703 Bobrzzański (26, 57%), S0X00703 Bobrzzański (26, 57%), S0X00703 powiat żarański gmina Brzeźnia (1, 57%), Zagań (0, 25%) gmina Zary (1, 13%), Lubsko (6, 98%), Jasień (6, 49%) nakroregion Pradolina Warcińsko-Odrzańska (315, 71) makroregion Dolina Stodkowej Odry (315, 61) makroregion Wzniesienia Zielonogórski (315, 72) WSZOLGRAFICZNA (WG KONDRACKIEGO, 2013 makroregion makroregion Obnizenie Miko-Głogowskie (318, 21) mezoregion Kotlina Zaiscieka (317, 23) makroregion Obnizenie Miko-Głogowskie (318, 31) makroregion Obnizenie Miko-Głogowskie (318, 31) mezoregion Obnizenie Miko-Głogowskie (318, 31) makroregion Obnizenie Miko-Głogowskie (318, 41) wzgórza Dakwek (318, 42), Wzgórza Dakwek (318, 42), Dolina Stodkowego Bobru (318, 47) 466864, 29 445509,30 259706, 65			powiat		gorski
Bits powiat zagański gmina Brzeźnica (1,57%), Zagań (0,25%) Brzeźnica (1,57%), Zagań (0,25%) gmina Zary (1,13%), Lubsko (6,98%), Jasień (6,49%) Jasień (6,49%) gmina Zary (1,13%), Lubsko (6,98%), Jasień (6,49%) Pradolina Warciańsko-Odrzańska (315.6) makroregion Pradolina Warciańsko-Odrzańska (315.7) Marciańsko-Odrzańska (315.7) makroregion Wzniesienia Zuelonogórski (315.7), Wysoczyzna Czerwieńska (315.73), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.74) 3. REGIONALIZACIA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in, 2018) makroregion Obniżenie Milcko-Glagowski (315.72), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.74) makroregion Obniżenie Milcko-Glagowski (318.41) Marcoregion Obniżenie Nowosolski (318.41) makroregion Obniżenie Milcko-Glagowski (318.41) Wzniesienia Zurski (318.41) Marcoregion 460509.30 225706.65 Wzniesienia Zurski (318.42), Dolina Srodkowego Bobru (318.42), Dolina Srodkowego Bobru (318.42), Dolina Srodkowego Bobru (318.42), Dolina Srodkowego Bobru (318.42), Marcoregion Marcoregion Wzniesienia Zurski (318.42), Marcoregion 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [kn²] 954,57 954,57 954,57			gmina	Bobrzański (26,57%), Świdnica (16,86%)	
Image: second			powiat	żagański	
Bit State powiat zarski gmina Zary (1,13%), Lubsko (6,8%), Jasień (6,49%) Jasień (6,49%) gmina Pradolina Warciańsko-Odrzańska (315.6) makroregion Pradolina Warciańsko-Odrzańska (315.6) makroregion Pradolina Warciańsko-Odrzańska (315.6) makroregion Wzniesienia Zubińska (315.7) Wzniesienia Zubińska (315.72), Wysoczyzna Czerwieńska (315.72), Wysoczyzna Czerwieńska (315.72), Wysoczyzna Czerwieńska (315.74) Makroregion Obiniżenie Dolnołużyckie (317.2) mezoregion Kolina Zasiecka (317.23) makroregion Obiniżenie Milicko-Glogowskie (318.3) mezoregion Obiniżenie Milicko-Glogowskie (318.3) mezoregion Obiniżenie Nilicko-Glogowskie (318.41), mezoregion wzgórza Dałkowskie (318.42), Dolina Środkowego Bobru (318.47) 466864.29 22553.1,44 455090.30 259706,65 WZEARZANGOWEGO 4465509,0,30 259700,65 F POWIERZCHNIA OBSZARU PRZETARGOWEGO pszuł śrawie i rozpoznawanie złóż węgłowodorów rze złóż Referencencodowe pa			gmina	Brzeźnica (1,57%), Żagań (0,25%)	
 gmina Zary (1,13%), Lubsko (6,98%), Jasich (6,49%) Bradolina Warciańsko (0,98%), Jasich (6,49%) makroregion Pradolina Warciańsko-Odrzańska (315.6) mezoregion Dolina Srodkowej Odry (315.61) mezoregion Wzniesienia Gubińskie (315.72), Wysoczyna Czerwieńska (315.73) Wiek FORMACJI ZLOŻOWEJ MWSPÓLRZENIA OBSZARU PRZETARGOWEGO MWSPÓLRZENIA OBSZARU PRZETARGOWEGO MWSPÓLRZENIA OBSZARU PRZETARGOWEGO MWSPÓLRZENIA OBSZARU PRZETARGOWEGO MUEK FORMACJI ZLOŻOWEJ MIEK FORMACJI ZLOŻOWE			powiat	żarski	
 A REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) A REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) A REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) A REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) A Rezoregion Makroregion Obniżenie Dolnołużyckie (315.73), Wał Zielonogórski (315.74) Makroregion Obniżenie Dolnołużyckie (317.2) Makroregion Obniżenie Dolnołużyckie (318.31) mezoregion Makroregion Obniżenie Nowosokie (318.41), mezoregion Obniżenie Nowosokie (318.42), Dolina Środkowege Bobru (318.47), Wzpiczna Dałkowskie (318.42), Dolina Środkowego Bobru (318.47), d466864,29 225534,14 466864,29 225534,14 466864,29 225534,14 466864,29 25901,20 440854,86 25901,20 43031,64 224005,94 43903,64 224005,94 954,57 POWIERZCHNIA OBSZARU PRZETARGOWEGO I CEL KONCESJI KEL KONCESJI KEK FORMACJI ZŁOŻOWEJ I CAL KONCESJI I CEL KONCESJI			gmina	Zary (1,13%), L Jasień (ubsko (6,98%), 6,49%)
A mezoregion Dolina Srodkowegi Odry (315.61) Makroregion Wzniesienia Zuelonogórskie (315.71), Wzniesienia Gubińskie (315.73), Wzniesienia Gubińskie (315.73), Wał Zielonogórski (315.74) 3. REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) makroregion Obniżenie Milicko-Glogowskie (315.72), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.74) 0RAZ SOLONA i in., 2018) makroregion Obniżenie Milicko-Glogowskie (318.31) makroregion Obniżenie Nowosolskie (318.41), Wzniesienia Żarskie (318.41), Wzniesienia Zarskie (318.41), Wzgórza Dałkowskie (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 466864.29 225534.14 445090,30 259706.65 460854.86 259501.20 455090,30 259214.01 9 PRZETARGOWEGO [km²] 954,57 258369.88 258369.88 6. CEL KONCESJI [kt/ nie] nie nie 9 PRZYRODNICZE OBSZARU PRAWNIE CHRONIONE: [kt/ nie] nie 9 seria narodowe ru oraz % powierzchni ru oraz % powierzchni ru oraz % powierzchni ru oraz % powierzchni nie OChK Ryma Plawska (3%), OChK Dolina Bobru			makroregion	Pradolina Warciańsko-Odrzańska (315.6)	
3. makroregion Wzniesienia Zielonogórskie (315.7), Dolina Dolnego Bobru (315.72), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.74) 3. REGIONALIZACIA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013 ORAZ SOLONA i in., 2018) mezoregion Obniżenie Dolnołużyckie (317.2) Wysoczyzna Czerwieńska (315.74) 9. ORAZ SOLONA i in., 2018) mezoregion Obniżenie Dolnołużyckie (317.2) 9. mezoregion Obniżenie Milicko-Glogowskie (318.3) 9. mezoregion Obniżenie Kowosolskie (318.41), Wzgórza Dałkowskie (318.41), Wzgórza Dałkowskie (318.42), Dolina Środkowego Bobru (318.47), 466864.29 4. WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 466864.29 225534.14 450509.30 259706.65 4300854.86 259501.20 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI [km²] 954,57 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] nie 9arki narodowe recerwaty parki krajobrazowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie 0ChK Rynna Pławska (3%), OChK Dolina Słaskiej Ochli			mezoregion	Dolina Środkowe	ej Odry (315.61)
3. REGIONALIZACJA FIZYCZNO- GEOCRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) mezoregion Warniesienia Gubińskie (315.71), Dolina Dolnego Bobru (315.72), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.73), Wał Zielonogórski (315.73) 0. REGIONALIZACJA FIZYCZNO- GEOCRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) makroregion Obniżenie Dolnołużyckie (317.2) 0. Natroregion Obniżenie Milicko-Głogowskie (318.41), mezoregion Wzniesienia Zarskie (318.41), Wzgórza Dałkowskie (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZEDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBŚZARU PRZETARGOWEGO układ PL-1992 [X; Y] 466864.29 225534.14 460854.86 259501.20 45009.30 259706.65 90WIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż wegłowdorów raz złóż perm – czerwony spagowice i cechsztyn/dolomit główny 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spagowice i cechsztyn/dolomit główny nie 8. PRZYRODNICZE OBSZARY parki narodowe jeśli "tak" to: nazwa obszar nu oraz % powierzchni obszaru przetargowego nie nie 0bszaru przetargowego obszaru przetargowego OChK Rymna Plawska (3%), OChK Dolina Bobret, Wuzniceńscie zławie dwie			makroregion	Wzniesienia Zielo	nogórskie (315.7)
3. REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) mezoregion Dolina Dolnego Bobru (315.72), Wysoczyzna Czerwieńska (315.73), Wał Zielonogórski (315.74) 9. Obniżenie Dolnolużyckie (315.72), WG KONDRACKIEGO, 2013) ORAZ SOLONA i in., 2018) mezoregion Kotlina Zasiecka (317.2) 9. mezoregion Kotlina Zasiecka (317.2) mezoregion Obniżenie Dolnolużyckie (318.3) 9. mezoregion Wstresienia Żarskie (318.41), mezoregion Wzniesienia Żarskie (318.41), Wzniesienia Żarskie (318.42), Dolina Środkowego Bobru (318.42), Przeczynzy Przeczymego Bobru (2004), Wyzkaczy (2005,94) 460854.86 259501,20 6. CEL KONCESJI [km²] 954,57 954,57 954,57 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] nie 1 1 1 1 <td< td=""><th></th><th></th><td></td><td colspan="2">Wzniesienia Gubińskie (315.71),</td></td<>				Wzniesienia Gubińskie (315.71),	
3. REGIONALIZACJA FIZYCZNO- GEOGRAFICZNA (WG KONDRACKIEGO, 2013 ORAZ SOLONA i in., 2018) Makroregion Wysoczyzna Czerwienska (315.74) Wał Zielonogórski (315.74) 0. Makroregion Obniżenie Dulnołużyckie (317.2) 0. Makroregion Obniżenie Milicko-Głogowskie (318.31) 0. Makroregion Obniżenie Milicko-Głogowskie (318.31) 0. Makroregion Obniżenie Milicko-Głogowskie (318.31) 0. WspóŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO Wikład PL-1992 [X; Y] 466854.86 2259501,20 445099,30 259706,65 437314.83 258369,88 439083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 poszukiwanie i rozpoznawanie złóż węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ [tak/nie] 9 parki narodowe rezerwaty jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu [tak/nie]		REGIONALIZACJA FIZYCZNO-	mezoregion	Dolina Dolnego Bobru (315.72), Wysoozyzna Czerwiośska (315.72)	
3. GEOGRAFICZNA (WG KONDRACKIEGO, 2013 ORAZ SOLONA i in., 2018) makroregion Obniżenie Dolnołużyckie (317.2) Makroregion Obniżenie Milicko-Głogowskie (318.3) makroregion Obniżenie Milicko-Głogowskie (318.3) Makroregion Obniżenie Nowosolskie (318.41), mezoregion Wał Trzebnicki (318.4) Musepiera Współ.rzędne punktrów Wyznaczających (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZĘDNE PUNKTÓW Wyznaczających (318.42), Dolina Środkowego Bobru (318.47) 4. Makroregion WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 4. 460854.86 229501,20 4. 430083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI [km²] 954,57 98. PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: parki narodowe [ka/ nie] nie 10. roraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu <td< td=""><th></th><td colspan="2">Wał Zielonogórski (315.74)</td></td<>				Wał Zielonogórski (315.74)	
(WG KONDKACKIEGO, 2013) ORAZ SOLONA i in., 2018) mezoregion Kotlina Zasiecka (317.23) (WG KONDKACKIEGO, 2013) mezoregion Obniżenie Milicko-Głogowskie (318.3) (WEK FORMACJI ZLOŻOWEJ) mezoregion Wzniesienia Żarskie (318.47) (WSPÓŁRZEDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 460854,86 259501,20 (Kłaści Zlasza) 460854,86 259501,20 455090,39 259224,01 (Km²] 954,57 954,57 90524,57 90524,57 6. CEL KONCESJI [km²] 954,57 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] icechsztyn/dolomit główny 8. PRZYRODNICZE OBSZARY PRAWNE CHRONIONE: [tak/ nie] nie i cechsztyn/dolomit główny i cechsztyn/dolomit główny i cechsztyn/dolomit główny 8. PRZYRODNICZE OBSZARY PRAWNE CHRONIONE: [tak/ nie] nie i cobszary chronionego krajobrazu jeśli "ta	3.	GEOGRAFICZNA	makroregion	Obniżenie Dolnołużyckie (317.2)	
4. Makroregion Obniženie Milicko-Głogowskie (318.3) mezoregion Obniżenie Nowosolskie (318.3) makroregion Wał Trzebnicki (318.4) makroregion Wał Trzebnicki (318.4), mezoregion Wał Trzebnicki (318.4), warcegion Wał Kalobawskie (318.4), warcegion Warcegion warcegion Warcegion <		ORAZ SOLONA i in., 2018)	mezoregion	Kotlina Zasiecka (317.23)	
Matrix mezoregion Obniżenie Nowosolskie (318.31) makroregion Wał Trzebnicki (318.4) Wał Trzebnicki (318.4) mezoregion Wzgórza Dalkowskie (318.41), Wzgórza Dalkowskie (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 466864.29 225534,14 460854,86 259501,20 460854,86 259501,20 439083,64 224005,94 439083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszuki wanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] parki narodowe nie 8. PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetagowego nie 0ChK Rynna Pławska (3%), OChK Dolina Słąskiej Ochli OchK Rynna Pławska (3%), OChK Dolina Słąskiej Ochli		OKAZ SOLOWA I II., 2018)	makroregion	Obniżenie Milicko-	Głogowskie (318.3)
Matrix makroregion Wał Trzebnicki (318.4) Makroregion Wzniesienia Żarskie (318.4), Wzgórza Dalkowskie (318.42), Dolina Środkowego Bobru (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO 466864,29 225534,14 460854,86 259501,20 460854,86 259501,20 455090,39 259224,01 455090,39 259224,01 437314,83 258369,88 439083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż perm - czerwony spagowiec i cechsztyn/dolomit główny 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] nie PRZYRODNICZE OBSZARY PRAWNE CHRONIONE: parki narodowe [tak/ nie] nie jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego OChK Rynan Plawska (3%), OChK Dolina Bobru (6%), OChK Dolina śląskiej Ochli			mezoregion	Obniżenie Nowosolskie (318.31)	
Markan Barkan			makroregion	Wał Trzebnicki (318.4)	
Markan Barkinandowe mezoregion Wzgórza Dalkowskie (318.42), Dolina Środkowego Bobru (318.47) 4. WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 466864,29 225534,14 465099,30 259706,65 460854,86 259501,20 437314,83 258369,88 439083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: parki narodowe [tak/ nie] ie nie ic ic obszary chronionego krajobrazu jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie OChK Rynna Pławska (3%), OChK Dolina Colk Kolina Śląskiej Ochli			mezoregion	Wzniesienia Zarskie (318.41),	
4.Dolma Srodkowego Bobru (318.47) 466864,294.WSPÓŁRZEDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGOukład PL-1992 [X; Y]466864,29 460854,86 259501,20 460854,86 2590224,015.POWIERZCHNIA OBSZARU PRZETARGOWEGO[km²]954,576.CEL KONCESJI[km²]954,576.CEL KONCESJIposzukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż7.WIEK FORMACJI ZŁOŻOWEJ[km²]perm - czerwony spągowiec i cechsztyn/dolomit główny8.rezerwaty parki krajobrazowe[tak/ nie] nieobszary chronionego krajobrazujeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowegonie				Wzgórza Dalkowskie (318.42),	
4.WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGOukład PL-1992 [X; Y]460804,29223334,144.465099,30259706,65460854,86259501,20437314,83258369,88439083,64224005,945.POWIERZCHNIA OBSZARU PRZETARGOWEGO[km²]954,57poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż6.CEL KONCESJIposzukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż7.WIEK FORMACJI ZŁOŻOWEJ[tak/ nie] parki narodowe rezerwatynie9rezerwaty parki krajobrazowe[tak/ nie] zajmowanej w granicach obszaru przetargowegonie0ChK Rynna Pławska (3%), OChK Dolina Bobru (6%), OChK Dolina Śląskiej Ochli (5%) OChK Wzmieriemie Zicherowich (5%) OChK Wzmieriemie Zicherowich (5%) OChK Wzmieriemie Zicherowich (5%) OCHK Wzmieriemie Zicherowich				Dolina Srodkoweg	$\frac{318.4}{225524.14}$
4. WSPOŁRZZEJNE PUNKTOW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 460307,30 225700,00 4. OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 460854,86 259501,20 4. PRZETARGOWEGO 437314,83 258369,88 4. PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu Itak/ nie]		WSPÓŁRZĘDNE PUNKTÓW WYZNACZAJĄCYCH GRANICE OBSZARU PRZETARGOWEGO	układ PL-1992 [X; Y]	400804,29	223334,14
4. WIZHORZADACTCH UKANCE OBSZARU PRZETARGOWEGO układ PL-1992 [X; Y] 10009 (30 1259224,01 455090,39 1259224,01 4377314,83 258369,88 439083,64 224005,94 5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ [tak/ nie] parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu [tak/ nie]				460854.86	259501.20
PRZETARGOWEGO 100 model	4.			455090.39	259224.01
Image: system of the system				437314,83	258369,88
5. POWIERZCHNIA OBSZARU PRZETARGOWEGO [km²] 954,57 6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec i cechsztyn/dolomit główny 8. PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: parki narodowe [tak/ nie] parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu nie				439083,64	224005,94
6. CEL KONCESJI poszukiwanie i rozpoznawanie złóż 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec 8. PRZYRODNICZE OBSZARY parki narodowe parki narodowe [tak/ nie] nie parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu OChK Rynna Pławska (3%), OChK Dolina	5.	POWIERZCHNIA OBSZARU PRZETARGOWEGO	[km ²]	954	,57
6. CEL KONCESJI węglowodorów oraz wydobywanie węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec i cechsztyn/dolomit główny 7. WIEK FORMACJI ZŁOŻOWEJ nie 9. PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: [tak/ nie] 9. jeśli "tak" to: nazwa obsza-ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie 0. OChK Rynna Pławska (3%), OChK Dolina Śląskiej Ochli (5%) OChK Wariozionia Ziaława destartia				poszukiwanie i roz	zpoznawanie złóż
MIEK FORMACJI ZŁOŻOWEJ węglowodorów ze złóż 7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec i cechsztyn/dolomit główny 8. PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: [tak/ nie] parki narodowe jeśli "tak" to: nazwa obszaru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie 0bszary chronionego krajobrazu jeśli "tak" to: nazwa obszaru przetargowego nie	6.	CEL KONCESJI		węglowodorów oraz wydobywanie węglowodorów ze złóż	
7. WIEK FORMACJI ZŁOŻOWEJ perm – czerwony spągowiec i cechsztyn/dolomit główny PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: [tak/ nie] nie parki narodowe [tak/ nie] nie parki narodowe jeśli "tak" to: nazwa obszaru u oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie OchK Rynna Pławska (3%), OChK Dolina Śląskiej Ochli (5%) OChK Wariosionia Ziaława śrzychia OchK Wariosionia Ziaława śrzychia					
PRZYRODNICZE OBSZARY PRAWNIE CHRONIONE: [tak/ nie] parki narodowe [tak/ nie] parki krajobrazowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu nie	7.	WIEK FORMACJI ZŁOŻOWEJ		perm – czerwo i cechsztyn/do	ny spągowiec Iomit słówny
PRAWNIE CHRONIONE: [tak/ nie] nie parki narodowe jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu nie obszary chronionego krajobrazu jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie		PRZYRODNICZE OBSZARY			
parki narodowe nie rezerwaty jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie OChK Rynna Pławska (3%), OChK Dolina Bobru (6%), OChK Dolina Śląskiej Ochli (5%) OChK Wrziegionia Zielene zówskie		PRAWNIE CHRONIONE:	[tak/ nie]		
rezerwaty jeśli "tak" to: nazwa obsza- ru oraz % powierzchni zajmowanej w granicach obszary chronionego krajobrazu nie 0 OChK Rynna Pławska (3%), OChK Dolina Bobru (6%), OChK Dolina Śląskiej Ochli (5%) OChK Wariozionia Ziałana zówskie		parki narodowe	-	nie nie	
parki krajobrazowe ru oraz % powierzchni zajmowanej w granicach obszaru przetargowego nie OChK Rynna Pławska (3%), OChK Dolina Bobru (6%), OChK Dolina Śląskiej Ochli (5%) OChK Wariosionia Ziałana sźczkia	8.	rezerwaty	jeśli "tak" to: nazwa obsza-		
obszary chronionego krajobrazu	δ.	parki krajobrazowe	ru oraz % powierzchni nie		e (20/) OChV D-1:
		obszary chronionego krajobrazu	zajmowanej w granicach obszaru przetargowego	OChK Kynna Pławska (3%), OChK Dolina Bobru (6%), OChK Dolina Śląskiej Ochli	

KARTA UWARUNKOWAŃ ŚRODOWISKOWYCH DLA OBSZARU PRZETARGOWEGO			
		ZIELONA GÓRA ZACHÓD	
			(2%), OChK Bronków-Janiszowice (3%),
			OChK Dolina Brzeźnicy (1%),
			OChK Wschodnie Okolice Lubska (6%)
			PLH080068 Dolina Dolnego Bobru (1%),
			PLH080024 Mopkowy tunel koło
			Krzystkowic (<1%), PLH080053 Jezioro
	Natura 2000 – SOO		Janiszowice (<1%), PLH080065 Lubski
			Lęg Sniezycowy (<1%), PLH080033
			Broniszow (1%), PLH080054
	Natura 2000 OSO		Nowogrodzkie Przygletkowisko (<1%)
	zespoły przyrodniczo-		lile
	-krajobrazowe		Liliowy Las (<1%)
	użytki ekologiczne		19
	pomniki przyrody	[tak (ilość)/ nie]	115
			(w tym 187 obiektów)
0	ci EPV CHPONIONE	[tak/ nia]	U tak
<u>9.</u> 10.	KOMPLEKSY LEŚNE	[tak/ nie]	tak
100		[tak (powierzchnia,% po-	
11	LASY OCHRONNE	wierzchni zajmowanej w	$200.3 \text{ km}^2 (21.0\%)$
11.		granicach obszaru przetar-	200,5 Km (21,0%)
		gowego)/ nie]	
	OBIEKTY DZIEDZICTWA KULTUROWEGO	[tak (ilość)/ nie]	tak
10		grodzisko	2
12.		Osada	97
		inne	2
	CLÓWNE 7ΡΙΟΡΝΙΚΙ ΨΟ Ρ	tak (numar nazwa i wiak	2 301 Pradolina Zasieki Nowa Sól O:
13.	PODZIEMNYCH	zbiornika)/ nie]	149, Sandr Krosno-Gubin, Q
14	STREFY OCHRONNE	[tak/ nie]	tak
14.	UJĘC WODY		un
15.	STREFY OCHRONY UZDROWISKOWEJ	[tak/ nie]	nie
16.	TERENY ZAGROŻONE PODTOPIENIAMI	[tak/ nie]	tak
			tak
17.	UDOKUMENTOWANE	[tak (rodzaj kopaliny)/ nie]	(kruszywa naturalne,
	ZŁOŻA KOPALIN		surowce ilaste ceramiki budowlanej, torfy)
	OBSZARY PROGNOSTYCZNE		tak
18	I PERSPEKTYWICZNE	[tak (rodzaj konaliny)/ nje]	(piaski, piaski i żwiry, torfy,
10.	WYSTĘPOWANIA KOPALIN	[tak (touzaj kopanity)/ mej	węgiel brunatny, sole potasowe,
	(z wyłączeniem węglowodorów)		sól kamienna, anhydryty, gipsy, rudy złota)
19.	SIECI PRZESYŁOWE GAZU	[tak/ nie]	nie
20.	PODZIEMNE MAGAZYNY GAZU	[tak/ nie]	nie
21.	DATA WYPEŁNIENIA KARTY	17.11.2021 r.	
22.	ZESTAWIENIE I OPRACOWANIE	Paulina Kostrz-Sikora, Joanna Krasuska	
	DANYCH		

Tab. 1.3. Karta uwarunkowań środowiskowych obszaru przetargowego Zielona Góra Zachód.

Objaśnienia do Mapy środowiskowej obszaru ZIELONA GÓRA ZACHÓD Legend of the Environmental Map of the Zielona Góra West area

(opracowano na podstawie bazy MGśP z zasobów PIG-PIB*) (based on MGsP databas

ZŁOŻA KOPALIN ORAZ PERSPEKTYWY I PROGNOZY ICH WYSTĘPOWANIA MINERAL DEPOSITAND					
	piaski i żwiry sands and gravels		iły i łupki ilaste		
	piaski sands		torfy peats		
< < < <	gipsy gypsum	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	anhydryty anhydrite		
4187	identyfikator z bazy MID ID from the MIDAS databas	OAS złoża małokow e of the small enviror	nfliktowego mental conflict		
9783	identyfikator z bazy MID ID from the MIDAS databas	OAS złoża konflikto e of the environmenta	owego al conflict		
794	identyfikator z bazy MIE ID from the MIDAS databas granica złoża dozosit boundory	DAS złoża bardzo e of the very environr	konfliktowego mental conflict		
	granica obszaru progno	stycznego			
	granica zweryfikowaneg	go obszaru progno	stycznego		
	granica obszaru perspe	ktywicznego			
•	złoże o powierzchni < 5 deposit with area < 5 ha	ha			
GÓRNICT	WO I PRZETWÓ	RSTWO KO	PALIN		
MINING AND M	INERAL PROCESSING granica obszaru górnicz	zego			
	boundary of the mining area granica terenu górnicze	go			
	boundary of the mining terra obszar i teren górniczy :	ain złoża o powierzch:	ni ≤ 5 ha		
0	area and terrain of the depo punkt niekoncesjonowa	sit with area ≤ 5 ha nej eksploatacji ko	opaliny (pc - rodzaj kopaliny)		
●рс	point of unlicensed exploitat	tion of a mineral (pc -	type of mineral)		
Symbol kopal Mineral symbol:	iny:	Symbol jed Symbol of the	nostki stratygraficznej: e stratigraphic unit:		
K-Mg- sole po potassiu	tasowo-magnezowe Im-magnesium salts	Q - Czwarto Quaterna	przęd ary		
natural ga Wb - wegiel bi	s runatnv	Ng-Neogene			
brown coa Na - sole kam	ienne	P - Perm Permian			
rock salts Au - rudy złot	a				
p - piachy sands					
pż - piaski i żv sands and	wiry gravels				
t - torfy peats	ilaata aaramiki hudaudanai				
building ce gi - gipsy	I(ic) -Hy i łupki ilaste ceramiki budowlanej building ceramics raw materials ni - nisy.				
gypsum ah - anhydryt	y				
SURFACE AND I	WIERZCHNIOW		INE		
	obszary dolinne zagrożo valley flood hazard area	one podtopieniami			
	granica działu wodnego water divide of second rank	drugiego rzędu			
	granica działu wodnego water divide of third rank	trzeciego rzędu			
	granica działu wodnego water divide of fourth rank	czwartego rzędu			
301	granica głównego zbiorn principle boundary aquifer wi	ika wód podziemr	nych wraz z jego numerem		
	granica strefy ochrony po water intake protected area b	ośredniej ujęcia w ooundary	ód		
Zb. Dychów	zbiornik retencyjny wraz water reservoir with its name	z jego nazwą			
■ <mark>k</mark>	ujęcie wód podziemnych (k - komunalne, p - przer underground water intake wit (k - municipal, p - industrial, (o wydajności 25 - mysłowe, Q - wiek th capacity 25 - 50 m ³ Q - age of exploited ro	- 50 m³/h ujmowanych utworów) /h _{ocks})		
	ujęcie wód podziemnycł underground water intake wi	h o wydajności ≥ 5 ith capacity ≥ 50 m³/h	i0 m³/h		

W/ BUIL

abase*)			
WARUNKI BUILDING SUBST	PODŁOŻA BUDOWLANEGO		
	tereny osuwiskowe i zagrożone ruchami masowymi landslides and mass movements hazard area		
	obszary (dawnych i obecnych) negatywnych oddziaływań gómictwa areas (past and present) of negative impact of mining		
OCHRONA I DZIEDZIC PROTECTION OF	PRZYRODY, KRAJOBRAZU TWA KULTUROWEGO NATURE, LANDSCAPE AND CULTURAL HERITAGE		
	grunty orne (klasy I-IVa użytków rolnych) arable land (class I-IVa)		
	łąki na glebach pochodzenia organicznego meadows on organic solls		
	lasy forests		
	lasy ochronne protected forests		
· · · · ·	granice terenów zarządzanych przez Dyrekcję Generalną Lasów Państwowych boundary of areas managed by General Directorate of the State Forests		
	granica obszaru chronionego krajobrazu; nazwa obszaru boundary of protected landscape area; area name		
—_FI —	granica rezerwatu przyrody (FI - florystyczny) boundary of natural reserve (FI - floristic)		
	Obszary Europejskiej Sieci Ekologicznej Natura 2000; kod obszaru Natura 2000 ecological network; area code		
00000	aleja drzew pomnikowych avenue of monumental trees		
▲ ⁿ	pomnik przyrody żywej (n - liczba obiektów) animate nature monument (n - numer of objects)		
•	pomnik przyrody nieożywionej inanimate nature monument		
Ð	użytek ekologiczny ecological area		
Φ^n	użytek ekologiczny o powierzchni < 5 ha (n - liczba obiektów) ecological area with area < 5 ha (n - numer of objects)		
\heartsuit	geostanowisko o znaczeniu lokalnym geosite of local importance		
* ⁿ	stanowisko archeologiczne (n - liczba objektów) archeological site (n - numer of objects)		
INFORMACJE DODATKOWE			
	granica powiatu distirct boundary		
<u> </u>	granica gminy, miasta commune or town boundary		
—s7—	oś autostrady lub drogi szybkiego ruchu highway or express route		
<u>ŚWIDNICA</u>	siedziba urzędu gminy, miasta commune or town office headquarter		
*****	sieć energetyczna najwyższych napięć high-voltage power network		
	granica obszaru przetargowego boundary of tender area		

* Wykorzystano informacje udostępniane przez: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, urzędy morskie oraz z baz danych PSG i PSH w PIG-PIB * Data source: RZGW, GDOŚ, GDLP, IMGW-PIB, NID, PSE, GAZ-SYSTEM, maritime offices and from database of PSG and PSH

2. BUDOWA GEOLOGICZNA 2.1. OGÓLNY ZARYS BUDOWY GEOLOGICZNEJ

Obszar przetargowy Zielona Góra Zachód jest położony na platformie zachodnioeuropejskiej, zwanej także platformą paleozoiczną (Nawrocki i Becker, 2017; Żelaźniewicz i in., 2011). Na jej budowę geologiczną składają się trzy piętra strukturalne: podłoże neoproterozoiczno-paleozoiczne oraz permsko-mezozoiczna i kenozoiczna pokrywa osadowa (Fig. 2.1-2.2). Podłoże dzieli się na dwie większe jednostki strukturalne. Pierwszą z nich są internidy waryscyjskie (=blok przedsudecki), występujące w południowoomawianego wschodniej część obszaru (Fig. 2.1-2.2). Składają się one z neoproterozoiczno-paleozoicznych skał krystalicznych oraz silnie zmetamorfizowanych skał osadowych. Strefa uskokowa środkowej Odry odgranicza internidy od drugiej jednostki strukturalnej podłoża - eksternidów waryscyjskich. Eksternidy składają się z silnie sfałdowanych utworów fliszu karbońskiego wielkopolskiego pasma fałdowo-nasunięciowego.

Na utworach podłoża zalega niezgodnie pokrywa osadowa monokliny przedsudeckiej (Fig. 2.1). Składa się ona z utworów klastycznych najwyższego karbonu, utworów klastyczno-wulkanicznych czerwonego spągowca, sukcesji węglanowo-siarczanowo-ewaporatowej cechsztynu oraz skał klastycznowęglanowych triasu. Dużą rolę w ewolucji strukturalnej pokrywy permsko-mezozoicznej monokliny przedsudeckiej odegrały ruchy tektoniczne mające miejsce podczas orogenez kimeryjskiej oraz laramijskiej.

Ostatnim piętrem strukturalnym na obszarze przetargowym Zielona Góra Zachód jest piętro kenozoiczne. Zalega ono niezgodnie i płasko na utworach permsko-mezozoicznych monokliny przedsudeckiej. Piętro kenozoiczne jest reprezentowane przez sukcesję paleogeńsko-neogeńsko-czwartorzędową.

W dalszej części opracowania przedstawiono charakterystykę wydzieleń stratygraficznych. Do ich opisu wykorzystano dane pochodzące z otworów wiertniczych zlokalizowanych na obszarze przetargowym: Broniszów, Bronków M-27, Chojnowo 1, Dachów 1, Dachów M-24, Deby 1, Drzonów 1, Drzonów 2, Dychów M-26, Górzyn P-3, Jarogniewice IG-1, Jasień P4, Jeleniów-1, Klępinka, Kosierz 1, Kosierz M-25, Lubiatów 1, Lubiatów M-20, Niwiska 1, Nowa Sól 16, Nowa Sól 18, Nowa Sól 7, Nowa Sól 9, Nowa Wieś P-1, Pajęczno 1, Piaski 1, Stary Zagór 1, Strużka 1, Świdnica-1, Tarnawa M-21, Trzebule 1, Urzuty, Wysoka 1, Wysoka 2, Żarków 1, Żarków 2, Żarków 3, Żarków 4. Ich lokalizację można znaleźć na Fig. 2.3.

Fig. 2.1. A. Położenie obszaru przetargowego Zielona Góra Zachód na szkicu głównych jednostek tektonicznych Niżu Polskiego na powierzchni podkenozoicznej (Nawrocki i Becker, 2017). **B**. Położenie obszaru przetargowego Zielona Góra Zachód na szkicu głównych jednostek waryscyjskiego planu tektonicznego (Nawrocki i Becker, 2017).

Fig. 2.2. Położenie obszaru przetargowego Zielona Góra Zachód na tle mapy głównych jednostek tektonicznych Polski pod pokrywą permsko-mezozoiczną i kenozoiczną (Żelaźniewicz i in., 2011).

Fig. 2.3. Lokalizacja otworów wykorzystanych do charakterystyki geologicznej obszaru przetargowego Zielona Góra Zachód.

2.2. TEKTONIKA

Utwory najstarszego piętra strukturalnego zostały rozpoznane 3 otworami wiertniczymi w południowej i południowo-zachodniej części obszaru przetargowego (patrz rozdział 2.2.1. Utwory starsze od karbonu). Składaja się one z neoproterozoiczno-dolnopaleozoicznych skał krystalicznych oraz zmetamorfizowanych skał osadowych. W strukturalnym planie waryscyjskim (Fig. 2.1) obszar występowania skał krystalicznych i zmetamorfizowanych jest ograniczony strefą środkowej Odry (Kiersnowski i Petecki, 2017). Granica ta składa się z szeregu uskoków o przebiegu zbliżonym do kierunku NW-SE i oddziela obszar internidów od eksternidów waryscyjskich. Dodatkowo, same internidy waryscyjskie maja blokowa budowe wewnetrzna. Bloki tektoniczne są porozdzielane licznymi uskokami o kierunkach NW-SE oraz NE-SW. W planie podpermskim głębokość pograżenia podłoża waha się od około 500 do 1500 m.

Na utworach piętra neoproterozoicznodolnopaleozoicznego zalegaja niezgodnie silnie nachylone (osiągające nawet do 90°) utwory dolnego karbonu, pociete siecia licznych uskoków, mających w pewnych przycharakter nasunięć padkach (Pożarvski i Dembowski, 1983; Kudrewicz, 2007). Podkreślają one budowę blokową podłoża. Uskoki te powstały w późnym karbonie w trakcie waryscyjskich deformacji fałdowonasunięciowych. Powaryscyjskie deformacje strukturalne dotknejy zaś utworów klastyczno-wulkanicznych czerwonego spągowca.

Na północ od strefy uskokowej środkowej Odry występuje strefa rozłamów środkowej Odry (Fig. 2.4). Jest ona związana ze ścienieniem skorupy ziemskiej (Oberc, 1990), jak również z rozległym system głęboko zakorzenionych stromych uskoków, prawdopodobnie o charakterze przesuwczym (Kiersnowski i Petecki, 2017). Strefa rozłamów środkowej Odry odgrywała ważną rolę podczas sedymentacji osadów karbonu i permu. Ich depozycja odbywała się w szeregu rowów tektonicznych (często połączonych ze sobą) położonych wzdłuż strefy rozłamów. Powstanie rowów i ich aktywność tektoniczna była związana najprawdopodobniej z reżimem przesuwczym (Aleksandrowski, 1995; Aleksandrowski i in., 1997). Zdaniem Kiersnowskiego i Peteckiego (2017, za Aleksandrowskim– informacja niepublikowana, 2016), południową część obszaru wielkopolskiego pasma fałdowo-nasunięciowego można podzielić na internidy północne i eksternidy południowe, których granicę stanowi zasięg występowania strefy rozłamowej środkowej Odry (Fig. 2.4). W świetle powyższego podziału południowo-zachodnia część obszaru przetargowego Zielona Góra Zachód należy do internidów waryscyjskich, a pozostała jego część – do internidów północnych.

Na całym obszarze przetargowym utwory laramijskiego piętra strukturalnego zalegają niezgodnie na skałach starszych. Redukcja profilu skał mezozoicznych była związana z kimeryjskimi i laramijskimi ruchami tektonicznymi. W planie strukturalnym podkenozoicznym (Fig. 2.1) utwory laramijskiego piętra strukturalnego charakteryzują się pasmowym układem wychodni o generalnym nachyleniu nie przekraczającym 5° w kierunku północno-wschodnim (Deczkowski i Gajewska, 1977). Powierzchnia ta jest pocieta licznymi uskokami o przebiegu NW-SE, N-S i NE-SE. Część z tych uskoków tworzy system rowów tektonicznych, mających tensyjny i kompresyjny charakter (Sokołowski, 1967; Podemski, 1973; Deczkowski i Gajewska, 1977, 1980). Mają one starsze założenia tektoniczne (Deczkowski i Gajewska, 1977, 1980), których początek rozwoju jest datowany na przełom kajpru i retyku (Deczkowski i Gajewska, 1977, 1980), a nawet na wczesny trias (Grocholski, 1991; Kwolek, 2000). Ostateczne przebudowanie systemu rowów "triasowych" i pozostałej powierzchni podkenozoicznej nastąpiło w wyniku ruchów tektonicznych orogenezy laramijskiej.

Ostatnim, rozpoznanym na obszarze przetargowym Zielona Góra Zachód, jest kenozoiczne piętro strukturalne. Jego utwory zalegają horyzontalnie. Utwory kenozoicznego piętra strukturalnego są reprezentowane przez paleogeńsko-neogeńsko-czwartorzędowe osady klastyczne. W osadach czwartorzędu zaobserwowano występowanie wielkoskalowych zaburzeń glacitektonicznych (Markiewicz, 2010). Ich powstanie jest związane z neotektoniczną reaktywacją w trakcie zlodowaceń plejstoceńskich (Markiewicz i Kraiński, 2002; Markiewicz i Winnicki, 2005, 2007a, b; Markiewicz, 2007).

Fig. 2.4. Mapa proponowanych zmian zasięgów waryscyjskich interdniów i eksternidów (Kiersnowski i Petecki, 2017).

2.3. STRATYGRAFIA 2.3.1. UTWORY STARSZE OD KARBONU

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Zielona Góra Zachód w trzech otworach wiertniczych stwierdzono utwory starsze od karbonu. Są one zlokalizowane w zachodniej i południowej części omawianego obszaru (Fig. 2.3). Są to (głębokości występowania skał starszych od karbonu podano wg miary geofizycznej):

- Klępinka: 457,4–708,2 m,
- Żarków 2: 929,4–994,1 m,
- Żarków 4: 1041,5–1059,7 m.

Utwory starsze od karbonu występują w południowo-zachodniej i południowej części obszaru przetargowego (Fig. 2.5–2.6). Głębokość ich pogrzebania jest zróżnicowana. Najpłycej zalegają utwory położone w części południowej (Fig. 2.7). Charakteryzują się one stopniowym zwiększeniem nachylenia w kierunku północno-zachodnim. W ujęciu regionalnym obszar ten stanowi północną część bloku przedsudeckiego. Druga strefa występowania utworów starszych od karbonu znajduje się na północ od strefy uskokowej środkowej Odry (utwory dewonu; Fig. 2.5– 2.6). Skały te charakteryzują się dosyć znacznym nachyleniem w kierunku NE (Fig. 2.7), zgodnym z regionalnym trendem.

Litologia i stratygrafia

Najstarsze rozpoznane utwory na obszarze przetargowym Zielona Góra Zachód to szare i szarobrunatne łupki skaleniowo-łyszczykowe, kwarcyty, amfibolity oraz gnejsy. Sa one zaliczane do proterozoicznego metamorfiku środkowej Odry (Oberc, 1972). W otworze Klępinka występują łupki ilasto-krzemionkowe, mułowce i wapienie. Pierwotnie utwory te uważano za kambryjskie (Milewicz i Koraś, 1971), późniejsze analizy wskazały, że są one górnodewońskie (najwyższy fran– najniższy famen). W otworach wiertniczych Żarków 2 i Żarków 4 bezpośrednio pod utworami permskimi zalegają granitoidy, które były związane z magmatyzmem w okresie orogenezy waryscyjskiej (Sokołowski, 1967, Milewicz i Wroński, 1975; Górecka i in., 1977).

Fig. 2.5. Mapa przedstawiająca powierzchnię podwaryscyjską obszaru przetargowego Zielona Góra Zachód i miejsc sąsiednich (Waksmundzka i Buła, 2017).

2.3.2. KARBON

Rozprzestrzenienie i miąższość

W pięciu otworach wiertniczych położonych na obszarze przetargowym Zielona Góra Zachód nawiercono utwory karbonu. Są one zlokalizowane w zachodniej i południowo-wschodniej części obszaru przetargowego (Fig. 2.3). Są to (głębokości występowania karbonu podano wg miary geofizycznej):

- Dachów 1: 1432,5–1508,0 m,
- Dęby 1: 1049,0–1370,5 m,
- Niwiska 1: 1645,0–1700,0 m,
- Piaski 1: 1870,0–2021,8 m,
- Strużka 1: 1445,0–1492,4 m.

Zasięg występowania utworów karbonu na obszarze przetargowym jest ograniczony. Występują one w północno-wschodniej, północnej i skrajnie północno-zachodniej części (Fig. 2.5-2.6). Utwory karbonu charakteryzują się zróżnicowaną głębokością pogrzebania. Najpłycej zalegają one w południowej swej części, gdzie powierzchnia stropowa może być położona na głębokości około 1000 m (Fig. 2.7). W przypadku pozostałej części omawianego obszaru, obserwuje sie dosyć silne zapadanie stropu karbonu w kierunku północno-wschodnim (Fig. 2.7). Zmniejsza się ono dopiero w skrajnej, północno-wschodniej jego części, gdzie utwory (najprawdopodobniej?) karbonu osiągają głębokość pogrzebania powyżej 3000 m (Fig. 2.7).

Litologia i stratygrafia

W otworze Dęby 1 utwory karbonu składają się z nachylonych pod wysokim kątem piaskowców, mułowców i iłowców. Pomimo braku badań paleontologicznych, powyższe utwory zostały zaliczone do dolnego karbonu (Krawczyńska-Grocholska i Grocholski, 1976).

Utwory karbonu w pozostałych otworach wiertniczych są reprezentowane przez brunatno-czerwone i szare iłowce, mułowce z wkładkami drobno- i średnioziarnistych piaskowców. Skały te charakteryzują się występowaniem licznych spękań, powierzchni zlustrowań tektonicznych, jak również wysokim kątem nachylenia lamin/warstw sięgającym nawet do 90°. Według Żelichowskiego (w: Wierzchowska-Kicułowa, 1984, 1987), występujące w otworach m.in. Dachów 1, Niwiska 1, Piaski 1 i Strużka 1 utwory karbonu należy traktować jako kompleks molasy górnego westfalu–stefanu (Fig. 2.6). Dodatkowo, na podstawie zmienności litologicznej tych osadów, wyróżniono wśród nich dwie nieformalne jednostki litostratygraficzne w randze serii: arkozowoszarogłazową (niższą) i piaskowców kwarcowych (wyższą). W wymienionych powyżej otworach wiertniczych skały karbonu reprezentują serię arkozowo-szarogłazową (Żelichowski; w: Wierzchowska-Kicułowa, 1984, 1987).

Wyniki badań petrograficznych

Charakterystykę petrograficzną oparto na informacjach zamieszczonych w dokumentacjach wynikowych 5 otworów wiertniczych, w których przewiercono karbon (patrz wyżej). Strop osadów karbonu, znajduje się na głębokości od 1049,0 do 1445,0 m, w części północnozachodniej obszaru przetargowego i na głębokości od 1645,0 do 1870,0 m, w części południowo-wschodniej. Osady karbonu nie zostały przewiercone. Występują tu skały klastyczne, głównie mułowce i iłowce, w mniejszej ilości piaskowce, lokalnie skały wulkaniczne. Osady karbonu przeważnie są zaburzone, sprasowane i spękane.

Iłowce maja barwe wiśniowa, ciemnobrunatna, szara, niekiedy z odcieniem fioletowym lub zielonkawym. Charakteryzują się strukturą pelitowo-aleurytowo-psamitową i teksturą bezładną lub kierunkowa, podkreśloną ułożeniem lamin bogatych w tlenki żelaza i pozbawionych ich, ułożeniem blaszek łyszczyków czy ułożeniem materiału drobniej i grubiej ziarnistego. Charakterystyczna jest oddzielność łupkowa skały. Iłowce są zbudowane głównie z illitu, kaolinitu?, pelitycznego kwarcu, blaszek muskowitu, biotytu i chlorytu, oraz hematytu. okruchowego Wśród materiału dominuie kwarc, o ziarnach ostrokrawędzistych wielkości od 0,01 do 0,08 mm. Ponadto występują albit, okruchy skał wulkanicznych i biotyt oraz mineraly akcesoryczne (cyrkon, rutyl, apatyt i epidot). Hematyt występuje w formie rozproszonej lub tworzy smugi, nadając skale zabarwienie ceglaste. Zielona barwa skały jest związana z obecnością chlorytów. Żyłki przecinające iłowce są wypełnione węglanami (m.in. kalcytem), kwarcem i tlenkami żelaza, lokalnie anhydrytem.

Mułowce są barwy czerwonobrunatnej, szarobrunatnej, szarofioletowej i zielonej. Charakteryzują się strukturą aleurytową i teksturą bezładną lub kierunkową, podkreśloną ułożeniem blaszek muskowitu lub biotytu. Głównymi składnikami skały są ziarna kwarcu (o przeciętnej wielkości 0,01-0,05 mm) i skaleni (m.in. kwaśny plagioklaz). Zawartość tych minerałów w skale jest zbliżona. Skalenie często ulegają serycytyzacji, rzadziej karbonatyzacji. Ponadto w znacznej ilości występują blaszki muskowitu i biotytu, który w większości jest przeobrażony w chloryty. Część muskowitu mogła ulec procesowi rekrystalizacji. Rozproszone w skale chloryty są odpowiedzialne za zieloną barwę skały. Z minerałów akcesorycznych obecne są nieliczne, bardzo drobne ziarna cyrkonu. Ziarna w skale zazębiają się ze sobą, a minerały blaszkowe wskazują miejscami na zaawansowaną rekrystalizację co może świadczyć o przemianach w skale, które miały miejsce na pograniczu diagenezy i metamorfizmu. Spoiwo w skale tworzą pył kwarcowy, illit/muskowit oraz chloryty. Powszechne są drobne, nieregularne skupienia minerałów nieprzezroczystych, tlenków żelaza. Wyróżniono dwie generacje żyłek przecinających skałę: starsza - wypełniona kwarcem i młodsza kwarcowo-weglanowa. Weglan prawdopodobnie reprezentuje ankeryt lub syderyt. W grubszych żyłkach kwarc krystalizuje od brzegów do wnętrza tworząc automorficzne słupki zakończone piramidami. Niekiedy środek takiej żyłki wypełnia późniejszy węglan.

Heterolity są zbudowane z naprzemianległych pakietów iłowców i mułowców, ułożonych równolegle względem siebie. Piaskowce są barwy szarej, miejscami o odcieniu różowym i szarobrunatnym. Są one zbite, zwięzłe. Charakteryzują się strukturą nierównoziarnista, od bardzo drobnoziarnistej do gruboziarnistej, zlepieńcowatej. Tekstura skały jest bezładna lub kierunkowa, podkreślona liniowym ułożeniem ziaren. Reprezentują one arenity arkozowe (Strużka 1) oraz waki, prawdopodobnie subarkozowe (Dachów 1, Niwiska 1, Piaski 1). Materiał ziarnisty jest słabo obtoczony, ostrokrawędzisty, źle wysortowany. Głównym składnikiem piaskowców jest kwarc o najczęstszej wielkości ziaren 0,06-0,4 mm, miejscami >1 mm oraz skalenie (skalenie potasowe i plagioklazy). W skaleniach są widoczne efekty serycytyzacji, rzadziej karbonatyzacji. Z łyszczyków, których zawartość jest zmienna, występują muskowit i biotyt, który jest często przeobrażany w chloryty. Okruchy skalne to kwarcyty, fyllity, granity oraz fragmenty skał wulkanicznych (typu melafirów) oraz iłowce i mułowce. Spoiwo piaskowców stanowią matriks (drobnołuseczkowa masa ilastohydrołuseczkowa i pelit kwarcowy), cement weglanowy (dolomit?) oraz minerały nieprzezroczyste (hematyt), które mogą powodować brunatne zabarwienie skały.

Skała wulkaniczna – silnie zmieniony melafir – została zidentyfikowana na głębokości około 1052,7 m, otworze wiertniczym Dęby 1. Barwa skały jest wiśniowa z nieregularnymi spękaniami wypełnionymi węglanami. Tło skalne budują mikrolity albitu silnie zserycytowanego oraz substancja bogata w tlenki żelaza i węglany. Fenokryształy tworzą słupki albitu zserycytyzowanego i kwarc. Ponadto występują pseudomorfozy chlorytowo-kalcytowe, niekiedy zawierające kwarc oraz porwaki kwarcu (ziarna spękane, skorodowane). Fenokryształy i porwaki otoczone są powłokami tlenków żelaza.

Fig. 2.6. Fragment szkicu powierzchni podpermskiej przedpola i pasma fałdowo-nasunięciowego waryscydów (według Wierzchowskiej-Kicułowej, 2007; z: Kiersnowski i Petecki, 2017). Objaśnienia kolorów i ich numerów: 1 – molasa najmłodsza, stefan–autun; 2 – molasa starsza, wyższy namur–westfal, molasa młodsza – westfal; 3 – flisz młodszy, utwory dolnego karbonu, namuru i dolnego westfalu sfałdowanego po westfalu dolnym; 4 – flisz staszy, utwory górnego dewonu, dolnego karbonu i dolnego namuru, sfałdowanego po dolnym namurze; 5 – fyllity bloku Leszna, przedfliszowe piętro strukturalne, serie epimetamorficzne, sfałdowane w fazach bretońskich lub wczesnowaryscyjskich; 6 – permsko-mezozoiczne skały osadowe bloku przedsudeckiego; 7 – granitoidy; 8 – skały krystaliczne bloku przedsudeckiego.

Fig. 2.7. Mapa strukturalna powierzchni podpermskiej obszaru przetargowego Zielona Góra Zachód i miejsc sąsiednich (Kudrewicz, 2007).

2.3.3. PERM – CZERWONY SPĄGOWIEC

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Zielona Góra Zachód w 27 otworach wiertniczych osiągnięto utwory czerwonego spągowca (Fig. 2.3). Większość z nich nawierciła skały czerwonego spągowca, a jedynie 7 z nich je przewierciła dowiercając się do utworów karbonu oraz utworów starszych od karbonu. Są to (głębokości występowania czerwonego spągowca podano wg miary geofizycznej):

- Broniszów: 785,5–791,5 m,
- Bronków M-27: 1508,3–1564,0 m,
- Chojnowo 1: 1505,0–1530,1 m,
- Dachów 1: 1375,0-1432,5 m,
- Dachów M-24: 1482,3–1538,4 m,
- Deby 1: 1040,0–1049,0 m,
- Dychów M-26: 1911,6–1930,0 m,
- Jasień P-4,
- Jeleniów 1: 1449,5–1492,3 m,
- Klępinka: 418,8–457,4 m,
- Kosierz M-25: 1784,8–1810,0 m,
- Lubiatów 1: 1350,0–1451,4 m,
- Lubiatów M-20: 1638,7–1662,0 m,
- Niwiska 1: 1282,0–1645,0 m,
- Nowa Wieś P-1: 970,3–1012,0 m,
- Piaski 1: 1414,0–1870,0 m,
- Stary Zagór 1: 1962,5–1984,6 m,
- Strużka 1: 1299,7–1445,0 m,
- Tarnawa M-21: 1450,0–1466,0 m,
- Trzebule 1:1847,5–2666,7 m,
- Urzuty IG-1: 1248,6–1250,0 m,
- Wysoka 1: 1420,0–1440,7 m,
- Wysoka 2: 1285,0–1305,0 m,
- Żarków 1: 1363,5–1363,6 m,
- Żarków 2: 923,7–929,4 m,
- Żarków 3: 1162,0–1214,6 m,
- Żarków 4: 1039,5–1041,5 m.

Utwory czerwonego spągowca występują na znacznej części obszaru przetargowego; wyjątkiem jest południowo-zachodnia i południowa część omawianego obszaru (Fig. 2.8). Głębokość zalegania stropu czerwonego spągowca waha się od około 600 m do powyżej 1900 m głębokości (Fig. 2.9). Zapada on stopniowo w kierunku północnym. Analiza rozwoju basenu czerwonego spągowca (dolnego i górnego) wskazuje, że omawiany obszar przez całą swoją historię był zlokalizowany w marginalnej zachodniej części basenu śląskiego. Jego położenie ma bezpośredni wpływ na występowanie poszczególnych jednostek litostratygraficznych oraz ich miąższość. Część południowa charakteryzuje się zredukowaną miąższością nieprzekraczającą paru metrów (otwory Żarków 2 i Żarków 4). W kierunku centrum basenu miąższość utworów czerwonego spągowca wzrasta. Potwierdzają to otwory Niwiska 1 (363,0 m) i Piaski 1 (456,0 m), które w całości przewiercają skały czerwonego spągowca, znajdujące się centralnej części basenu osadowego

Litologia i stratygrafia

W literaturze są znane dwa podziały litostratygraficzne utworów czerwonego spagowca. Pierwszy z nich, formalny (Wagner i in., 2008), został opracowany przez Karnkowskiego (1987; Fig. 2.10) i jest oparty na zgenera-lizowanej zmienności litologicznej w basenie czerwonego spągowca. Drugi podział litostra-tygraficzny, nieformalny, został zaproponowa-ny przez Pokorskiego (1981, 1988. 1997; Fig. 2.10) posiada cechy allostratygrafii i tektonostratygrafii co umożlikorelację z osadami wia jego basenu północnoniemieckiego (Hoffmann i in., 1997). Do analizy i opisu utworów czerwonego spągowca wykorzystano podział nieformalny.

Dolny czerwony spągowiec

Na obszarze przetargowym Zielona Góra Zachód w 8 otworach wiertniczych udokumentowano występowanie utworów dolnego czerwonego spągowca. Składają się one głównie z brunatnych, brunatnoszarych lub ciemnofioletowych trachybazaltów i trachyandezytów często migdałowcowych z licznymi plamami zielonymi i szarymi (Juroszek i in., 1981). Dodatkowo, w niektórych otworach występują brunatne tufy trachybazalatowe lub trachyandezytowe oraz zlepieńce składające się z otoczaków skał wylewnych, przechodzacych w brunatnoczerwone łupki.

Profil dolnego czerwonego spągowca na obszarze przetargowym rozpoczynają zlepieńce formacji Świńca (Fig. 2.10). W świetle zaproponowanego przez Kiersnowskiego (2008) nieformalnego schematu litostratygraficznego osadów wulkanoklastycznych, powyższe zlepieńce reprezentują serię skał osadowych podwulkanicznych. Zostały one nawiercone w otworze Klępinka, a ich miąższość wynosi 2,4 m. Według Deczkowskiego i in. (1993) występowanie utworów formacji Świńca/skały osadowe podwulkaniczne należy wiązać z pograniczem monokliny (otwory Klępinka i Gubin 1), gdyż nie zostały one rozpoznane na obszarze centralnej i południowej perykliny Żar. Maksymalną miąższość formacja Świńca osiąga w basenie zielonogórskim, gdzie jej wartości przekraczają 300 m (Hryniewiecka, 1988).

Na formacji z Świńca/skałach osadowych podwulkanicznych zalegają utwory wulkaniczne zaklasyfikowane do wielkopolskiej formacji wulkanogenicznej (Fig. 2.10). Występują one na znacznej części obszaru przetargowego, z wyłączeniem jego południowozachodniej części (Fig. 2.11). Utwory wielkopolskiej formacji wulkanogenicznej charakteryzują się zmniejszaniem głębokości zalegania stropu w kierunku południowym. Najpłycej skały wulkaniczne zostały nawiercone otworem Klępinka, gdzie strop skał wulkanicznych sięga głębokości 432,9 m. Najgłębiej skały wulkaniczne zostały udokumentowane w otworze Trzebule 1, na głębokości 2618,0 m. Podobnie jak z głębokością zalegania stropu serii wulkanicznej, również miąższość skał wielkopolskiej formacji wulkanogenicznej zmniejsza się z części basenowej w kierunku marginalnej krawędzi basenu, finalnie wyklinowując się (Fig. 2.10). Na znacznej części obszaru przetargowego, maksymalna miąższość wielkopolskiej formacji wulkanogenicznej sięga do 100 m (Fig. 2.11). Jedynie w pobliżu krańców, ich miaższość wzrasta do ponad 100 m (Fig. 2.11).

Utwory wielkopolskiej formacji wulkanogenicznej mogą być w pewnych miejscach rozdzielone przez kompleksy skał osadowych różnej miąższości. W otworze Niwiska 1 na tufach dolnej części wulkanitów zalegają najpierw zlepieńce z otoczakami skał wylewnych, które przechodzą w brunatnoczerwone łupki. Powyższe utwory, w świetle nieformalnego schematu litostratygraficznego (Kiersnowski, 2008), reprezentują skały osadowe międzywulkaniczne.

W północno-zachodniej części obszaru przetargowego Zielona Góra Zachód, na utworach wielkopolskiej formacji wulkanicznej zalegają skały serii osadowej nadwulkanicznej (Kiersnowski, 2008; Fig. 2.12). Powstawały one w środowiskach stożków aluwialnych i fluwialnej równi powodziowej (Kiersnowski, 2003). Wyróżniono wśród nich osady mokrych stożków aluwialnych, rzeczne osady korytowe i pozakorytowe, miejscami także jeziorne (w tym cienkie warstwy wapieni), a także kompleksy określone jako aluwialnopiroklastyczne (Kiersnowski, 2003). Depozycja osadów serii nadwulkanicznej odbywała się w zachodniej części basenu Zielonej Góry (Kiersnowski, 2008). Miąższość tych utworów jest zróżnicowana i waha się od 0 m w części marginalnej do ponad 500 m w centralnej części basenu (Fig. 2.12).

Górny czerwony spągowiec

Pomiędzy dolnym a górnym czerwonym spągowcem występuje luka czasowa licząca co najmniej 10 mln lat (Nawrocki, 1995) lub nawet 20 mln lat (inf. ustna: H. Kiersnowski, 2021), podczas której nastąpiła erozja i peneplenizacja pokrywy wulkanicznej bądź wychodni skał przedpermskich.

Skały górnego czerwonego spągowca (sakson) składają się głównie z drobno- i średnioziarnistych piaskowców, jak również z zlepieńców, gruboziarnistych piaskowców, mułowców oraz iłowców. Są one wykształcone w facjach eolicznych, aluwialnych (stożki i równie aluwialne) oraz koryt fluwialnych (Fig. 2.8). Głównym źródłem materiału klastycznego był wcześniej zdeponowany osad, który ulegał wielokrotnemu przerobieniu. Pochodził on również z wychodni skał przedpermskich, znajdujących się m.in. w południowo-zachodniej części obszaru przetargowego (Fig. 2.8).

Utwory górnego czerwonego spągowca zalegają na wulkanitach i osadach dolnego czerwonego spągowca, jak również na skałach przedpermskich. Facjalnie obszar przetargowy Zielona Góra Zachód w zachodniej części składa się z zlepieńców i piaskowców aluwialnych (Fig. 2.8). Pozostała części omawianego obszaru jest zdominowana przez drobno- i średnioziarniste piaskowce eoliczne, przy czym w części północno-wschodniej dochodzi najprawdopodobniej do ścienienia stropowej pokrywy eolicznej, pod którą pojawiają się osady fluwialne.

Utwory górnego czerwonego spagowca na obszarze przetargowym Zielona Góra Zachód są monoklinalnie nachylone w kierunku północnym-północno-zachodnim (Fig. 2.9). Układ zapadania powierzchni stropu górnego czerwonego spągowca jest stopniowy i pasowy. Głębokość pogrzebania waha się w przedziale od 783,0 m (najpłytszy otwór wiertniczy: Broniszów) do około 2000 m (najgłębszy otwór wiertniczy: Stary Zagór 1). Strukturalnie, strop czerwonego spągowca nie charakteryzuje się skomplikowaną budową tektoniczną (Fig. 2.9). Uskoki o kierunku NW-SE mają starsze założenia tektoniczne, jak również obejmują głównie utwory starsze od permu. Jedynie w kilku miejscach skały górnego czerwonego spągowca są porozcinane młodszymi uskokami wykazującymi trend NNE-SSW (Fig. 2.9).

Miąższość utworów górnego czerwonego spągowca na obszarze przetargowym jest zróżnicowana. Najmniejsze jej wartości występują w części południowej, gdzie osiągają maksymalnie do kilku metrów (Fig. 2.13). W przypadku pozostałej części omawianego obszaru miąższość wzrasta w kierunku centrum basenu (Fig. 2.13). Jej wzrost ma charakter pasowy. Generalnie miąższość górnego czerwonego spągowca waha się w przedziale od 2,5 do ponad 400 m. Największą jej wartość (ponad 300 m) na obszarze przetargowym Zielona Góra Zachód udokumentowano w otworze wiertniczym Trzebule 1.

Potencjał zbiornikowy górnego czerwonego spągowca

Dotychczasowe prace poszukiwawcze prowadzone na obszarze przetargowym Zielona Góra Zachód w ograniczonym stopniu skupiały się na potencjale naftowym utworów górnego czerwonego spągowca. Pod względem głębokości pogrzebania ich stropu oraz występowania w znacznej części obszaru przetargowego facji eolicznych, utwory górnego czerwonego spągowca wydają się być atrakcyjnym poziomem poszukiwawczym. Właściwości petrofizyczne tych skał są dobre i bardzo dobre. W wielu otworach wiertniczych podczas opróbowań utworów górnego

czerwonego spągowca uzyskiwano przypływy fluidów. Główną trudnością poszukiwań węglowodorów jest niska zawartość metanu. Położone za wschód i północny wschód od jego granic złoża gazu ziemnego (Grochowice, Kulów i Wilcze) charakteryzują się zawartością metanu do 50%. Regionalny trend dla zawartości gazu w utworach górnego czerwonego spągowca wskazuje, że zmierzając na zachód ilość metanu zmniejsza się na korzyść azotu (Fig. 2.14). Niemniej jednak, pomimo dominacji azotu nad metanem, na zachód od granicy państwowej, w Niemczech, w otworach Birkholz i Reudnitz, występuje gaz ziemny o zawartości metanu około 20% i azotu 80%, a miejsca te uważane są za perspektywiczne.

Najsłabszym rozpoznaniem czerwonego spągowca na obszarze przetargowym charakteryzuje się jego północno-wschodnia część. Nie ma tam otworów wiertniczych, jak również ilość linii sejsmicznych jest mała. Regionalny trend zawartości gazu wskazuje, że na tym obszarze powinny występować największe zawartości metanu, w porównaniu z pozostałą częścią omawianego obszaru.

Wyniki badań petrograficznych utworów czerwonego spągowca

Wyniki badań petrograficznych można uzyskać m.in. z publikacji (Kuberska i Kozłowska, 2011; Maliszewska i Kuberska, 2008; Maliszewska i in., 2016) oraz z dokumentacji wynikowych sporządzonych dla otworów wiertniczych Chojnowo 1, Dachów 1, Kosierz M-25, Lubiatów 1, M-20, Niwiska 1, Piaski 1, Stary Zagór 1, Wysoka 1, 2. Wyróżniono tu następujące litofacje: zlepieńcową, piaskowcową i mułowcowo–iłowcową.

Zlepieńce to skały drobno- i średniookruchowe, barwy szarobrunatnej i brunatnowiśniowej. Zawierają około 60% obj. frakcji psefitowej złożonej głównie z okruchów skał wulkanicznych, w mniejszej ilości osadowych, metamorficznych i głębinowych. Wśród okruchów skał wulkanicznych (do których zaliczono okruchy skał wylewnych, subwulkanicznych i piroklastycznych) najliczniejsze są te o chemizmie zasadowym, miejscami występują ryolity lub dacyty o strukturze porfirowej lub afirowej. Wśród okruchów skał osadowych wyróżniono pojedyncze fragmenty bardzo drobnoziarnistych piaskowców, mułowców i iłowców. Skały metamorficzne są reprezentowane przez okruchy kwarcu, charakterystyczne dla kataklazytów, natomiast fragmenty skał głębinowych to głównie okruchy kwarcowo-skaleniowe.

Masa wypełniająca zlepieńców odpowiada składem piaskowcowi średnio- i gruboziarnistemu, a jej skład to ostrokrawędziste (wrzecionowate) ziarna kwarcu mono- i polikrystalicznego, skalenie (głównie albit), litoklasty, podobne, jak opisywane we frakcji psefitowej. Materiał detrytyczny zlepieńców scementowany jest spoiwem ilasto-żelazistym, węglanowym, bądź kwarcowym. Składniki spoiwa rozmieszczone są nierównomiernie.

Piaskowce charakteryzują się barwą szarą, szaroseledynową i szaroczerwoną, często z widocznym plamistym zabarwieniem. Są to drobnoziarniste lub różnoziarniste skały (o słabym wysortowaniu). Z uwagi na skład mineralny piaskowców oraz rodzaj spoiwa wyróżniono arenity i waki sublityczne, lityczne, subarkozowe (nazewnictwo wg klasyfikacji Pettijohna i in., 1972). Głównym składnikiem materiału detrytycznego jest kwarc monokrystaliczny, rzadko polikrystaliczny występujące w postaci ziaren nieobtoczonych i półbtoczonych. Skalenie (mikroklin, ortoklaz, plagioklazy szeregu albit-oligoklaz) występują w postaci ziaren ostrokrawędzistych lub półobtoczonych. Ziarna skaleni są częściowo zserycytyzowane. Wśród litoklastów najliczniej występują okruchy skał wulkanicznych o podobnym składzie, jak te opisywane w zlepieńcach. Oprócz wymienionych głównych składników w piaskowcach występuja łyszczyki (muskowit, biotyt - czesto schlorytyzowany) oraz akcesorycznie - cyrkon.

Wśród głównych składników spoiw wyróżniono: tlenki i wodorotlenki żelaza, alloi autigeniczne minerały ilaste, węglany, kwarc, sporadycznie siarczany. Tlenki i wodorotlenki żelaza są w opisywanych piaskowcach powszechne, nadając im charakterystyczną czerwonawą barwę. Występują w postaci rozproszonego pigmentu, wchodząc w skład spoiwa typu matriks lub tworzą obwódki na ziarnach detrytycznych.

W grupie autigenicznych minerałów ilastych, podobnie jak w otworze wiertniczym Stypułów 17 (Kuberska i Kozłowska, 2011), położonym w pobliżu obszaru przetargowego, wyróżniono illit oraz – w piaskowcach o zabarwieniu szaroseledynowym – chloryty.

Najpospolitszym minerałem węglanowym jest kalcyt; nie wyklucza się obecności dolomitu. Porównując z wynikami szczegółowej analizy węglanów w piaskowcach z pobliskiego otworu wiertniczego Stypułów 17 (Kuberska i Kozłowska, 2011) prawdopodobnie można wyróżnić Mn-kalcyt, najbardziej rozpowszechniony (w CL żółta lub żółtopomarańczowa luminescencja), Mn/Fe-kalcyt (luminescencja w barwach pomarańczowoczerwonych).

Kwarc autigeniczny występuje w formie obwódkowej lub jako pojedyncze osobniki wykrystalizowane w przestrzeniach porowych. Miejscami rozrastające się obwódki kwarcowe całkowicie zamknęły wolne przestrzenie porowe. Siarczany reprezentowane są przez baryt.

Mułowce i iłowce, to osady o strukturze aleurytowej, pelitowej, aleurytowo-pelitowej. Występują w postaci przewarstwień lub wkładek w obrębie piaskowców lub zlepieńców. W skałach tych obserwuje się laminację równoległą, często są to skały o wyraźnej łupkowej oddzielności. Tekstura kierunkowa jest zaznaczona przeważnie ułożeniem minerałów łyszczykowych oraz ilastych.

Fig. 2.8. Mapa litofacjalno-paleogeograficzna stropowej części osadów górnego czerwonego spągowca obszaru przetargowego Zielona Góra Zachód tuż przed transgresją morza cechsztyńskiego (Kiersnowski i in., 2020).

Fig. 2.9. Mapa strukturalna powierzchni podcechsztyńskiej obszaru przetargowego Zielona Góra Zachód i jego sąsiedztwa (Kudrewicz, 2007).

Fig. 2.10. Schemat stratygraficzny czerwonego spągowca w rejonie polskiej części basenu południowopermskiego (Kiersnowski, w: Maliszewska i in., 2003).

Fig. 2.11. Mapa miąższości serii wulkanicznej na obszarze przetargowym Zielona Góra Zachód i obszarach przyległych (Kiersnowski i in., w: Wagner i in., 2008).

Fig. 2.12. Mapa miąższości serii nadwulkanicznej na obszarze przetargowym Zielona Góra Zachód i obszarach przyległych (Kiersnowski i in., w: Wagner i in., 2008).

ZIELONA GÓRA ZACHÓD

Fig. 2.13. Mapa miąższości utworów górnego czerwonego spągowca (saksonu) na obszarze przetargowym Zielona Góra Zachód i obszarach przyległych (Kiersnowski i Papiernik; w: Wagner i in., 2008).

Fig. 2.14. Mapa procentowej zawartości (A) azotu i (B) metanu na obszarze przetargowym Zielona Góra Zachód i jego sąsiedztwie (Wagner i in., 2008).

2.3.4. PERM – CECHSZTYN

Rozprzestrzenienie i miąższość

Na obszarze przetargowym Zielona Góra Zachód wszystkie odwiercone otwory wiertnicze (oprócz otworu Jarogniewice IG-1) nawierciły utwory cechsztynu. Większość otworów wiertniczych je przewierca. Pozostałe otwory sięgają utworów anhydrytu górnego (A1g), jeden z nich zaś – anhydrytu głównego (A3; Drzonów 1). Są to (głębokości występowania cechsztynu podano wg miary geofizycznej):

- Broniszów: 582,0–783,0 m,
- Bronków M-27: 1009,0-1508,3 m,
- Chojnowo 1: 992,0 –1505,0 m,
- Dachów 1: 922,5–1375,0 m,
- Dachów M-24: 953,2-1482,3 m,
- Deby 1: 737,5-1040,0 m,
- Drzonów 1: 1152,0–1303,0 m,
- Drzonów 2: 1109,0–1434,0 m,
- Dychów M-26: 1354,7 –1911,6 m,
- Jasień P-4,
- Jeleniów 1: 944,5–1449,5 m,
- Klępinka: 278,4–418,8 m,
- Kosierz 1: 1093,0–1415,0 m,
- Kosierz M-26: 1252,3–1784,8 m,
- Lubiatów 1: 907,0-1350,0 m,
- Lubiatów M-20: 1134,2–1638,7 m,
- Niwiska 1: 768,0–1282,0 m,
- Nowa Sól 7: 800,0–1113,2 m,
- Nowa Sól 9: 928,5–1137,3 m,
- Nowa Sól 16: 1041,0 –1299,0 m,
- Nowa Sól 18: 970,5 –1241,6 m,
- Nowa Wieś P-1: 687,0–970,3 m,
- Pajęczno 1: 888,0 –1203,0 m,
- Piaski 1: 907,0–1414,0 m,
- Stary Zagór 1: 1415,5–1962,5 m,
- Strużka 1: 723,0–1299,7 m,
- Świdnica 1: 1070,0–1391,0 m,
- Tarnawa M-21: 971,7–1450,0 m,
- Trzebule 1: 1259,0–1847,5 m,
- Urzuty IG-1: 683,7–1248,6 m,
- Wysoka 1: 953,5–1420,0 m,
- Wysoka 2: 815,0–1285,0 m,
- Żarków 1: 851,5–1363,5 m,
- Żarków 2: 605,0–923,7 m,
- Żarków 3: 800,0–1162,0 m,
- Żarków 4: 746,0–1039,5 m.

Profil cechsztynu na obszarze przetargowym Zielona Góra Zachód jest prawie kompletny. Na całej swej rozciągłości w otworach wiertniczych udokumentowano występowanie wszystkich ogniw cyklotemów PZ1, PZ2 i PZ3, rozdzielonych w niektórych przypadkach lokalnie występującymi wydzieleniami nieformalnymi (anhydryt środkowy A1s, anhydryty Werry A1, itd.). Jedynie profil cyklotemu PZ4 jest na obszarze przetargowym zredukowany. Współczesny jego zasięg ogranicza się do centralnej i północnej części omawianego obszaru.

Obszar przetargowy Zielona Góra Zachód był położony w marginalnej południowej części basenu cechsztyńskiego. To położenie determinowało przestrzeń akomodacyjną, jaką miały utwory cechsztynu do wypełnienia. Miąższość cechsztynu jest najmniejsza w części południowej obszaru przetargowego (Fig. 2.15). W świetle analizy paleotektonicznej cechsztynu, stanowił on północno-zachodnia cześć tarasu ślasko-sudeckiego (Wagner, 1988). Pozostała część obszaru przetargowego charakteryzuje się wzrostem miąższości w kierunku północnym (Fig. 2.15). Odpowiada ona południowej części bruzdy ślaskiej (Wagner, 1988).

Litologia i stratygrafia

Założenia schematu stratygraficznego cechsztynu opracowanego przez Richter-Bernburga (1955) zostały zaadoptowane przez Tokarskiego (1958) i Poborskiego (1960) dla polskiej części basenu permskiego. W ciągu następnych lat schemat ten był modyfikowany (Wagner i in., 1978) i uzupełniany, zwłaszcza w swej najwyższej części (m.in. Wagner, 1987, 1988, 1994).

Utwory górnego permu składają się z czterech cyklotemów: PZ1–PZ2–PZ3–PZ4 (Fig. 2.16). Cyklotemy PZ1–PZ3 są reprezentowane przez skały węglanowo-ewaporatowe. Ich depozycja odbywała się w wyniku z następujących po sobie cykli transgresywno-regresywnych (Wagner, 1994; Wagner i Peryt, 1997, 1998). W przypadku ostatniego cyklotemu PZ4, czynnik kontrolujący wytrącanie i dostarczanie osadu, jak również częściowo typ osadu, uległy

zmianie. Występująca wcześniej sukcesja węglanowo-ewaporatowa wraz z rozpoczęciem sedymentacji cyklotemu PZ4 została zastąpiona przez sukcesję terygeniczno-ewaporatową, związaną z wahaniami klimatycznymi, uzależnionymi od cykliczności okresów suchych i mokrych (Wagner, 1994).

Za dolną, a zarazem uproszczoną granicę cechsztynu przyjmuje się występowanie utworów łupka miedzionośnego (T1; Fig. 2.16), bądź, w przypadku jego braku, następujące po nim pojawienie się wapienia cechsztyńskiego (Ca1; Fig. 2.12; Peryt i Piątkowski, 1976; Wagner i in., 1978). Strop cechsztynu został ustalony na podstawie kryterium litologicznego, czyli wraz z zakończeniem występowania utworów stropowej serii terygenicznej (PZt) oraz pojawieniem się skał dolnego pstrego piaskowca (Tpp1; Fig. 2.16).

Cyklotem PZ1

Na obszarze przetargowym Zielona Góra Zachód cechsztyn rozpoczyna się utworami łupka miedzionośnego (T1; Fig. 2.12). Jest on reprezentowany przez szaroczarne łupki wapniste, poziomo laminowane, bitumiczne, z występującymi szczątkami ryb (Wagner, 1994). Ich depozycja następowała poniżej sztormowej podstawy falowania w warunkach anaerobowych (Oszczepalski i Rydzewski, 1987). Miąższość łupka miedzionośnego zazwyczaj ma od kilku do kilkudziesięciu centymetrów, maksymalnie do 1 m.

Na skałach łupka miedzionośnego (T1) zalegają utwory wapienia cechsztyńskiego (Ca1). Składają się one z szarych, ciemnoszarych i rzadziej czerwonych wapieni, które w niektórych przypadkach są zastępowane w stropowych partiach przez dolomity. Osady wapienia cechsztyńskiego były deponowane w strefie płytkiej równi basenowej (Fig. 2.17). Miąższość utworów tej strefy jest niewielka, maksymalnie osiąga 10 m (Fig. 2.17).

Pod koniec depozycji utworów Ca1 doszło do obniżenia się wody w zbiorniku morskim. Konsekwencją powyższego procesu było wynurzenie się obszarów platform węglanowych oraz równi basenowych, a zdeponowane w tych strefach osady uległy intensywnym przemianom diagenetycznym (Peryt i Piątkowski, 1976, 1977; Peryt, 1984). Kolejna ingresja morska rozpoczęła ewaporatowy etap basenu cechsztyńskiego. W skrajnie suchym klimacie doszło do sedymentacji anhydrytu dolnego (A1d; Wagner, 1994). W niższych częściach profilu A1d występują skrajnie płytkowodne anhydryty gruzłowe i mozaikowe, przechodzące ku górze w bardziej głębokowodne nieregularnie warstwowane, aż do względnie głębokowodnych anhydrytów laminowanych (Kłapciński, 1991). Miąższość A1d na obszarze przetargowym jest zróżnicowana i waha się od prawie 50 do ponad 150 m.

Następnie, na utworach A1d zalegają skały najstarszej soli kamiennej (Na1). W strefach płytszych sól kamienna wypełniała obniżenia utworzone w wyniku sedymentacji A1d (Wagner, 1994). Ograniczające je bariery anhydrytowe spełniały rolę pułapek chemicznych, które uniemożliwiały odpływ ciężkich, nasyconych solanek. Dzięki nim powstał system izolowanych lagun i panwi solnych (Czapowski, 1983; Czapowski i Tomassi-Morawiec, 1985).

Utwory Na1 zostały rozpoznane w większości otworów przewiercających najstarszy cyklotem cechsztynu (PZ1). Ich miaższość jest zróżnicowana i waha się od kilku metrów (otwór Wysoka 2) do ponad 180 m (otwór Stary Zagór 1). Oprócz zróżnicowanej miąższości Nal, utwory te w dwóch otworach wiertniczych (Kosierz M-25 i Wysoka 2) są rozdzielone skałami anhydrytu środkowego (A1s; Fig. 2.18). Podobny przypadek został rozpoznany i opracowany przez Dyjaczyńskiego i Peryta (2014) dla północnej części wału wolsztyńskiego. Miąższość A1s jest niewielka, osiąga maksymalnie 12,5 m. W przypadku rozdzielonych utworów Na1 ich dolna część jest wyróżniana jako dolna najstarsza sól kamienna (Na1d; Fig. 2.18), górna zaś jako górna najstarsza sól kamienna (Na1g; Fig. 2.18) i osiąga miąższość odpowiednio do 40 m oraz do 20 m.

Ostatnia część sekwencji siarczanowowęglanowej cyklotemu PZ1 jest reprezentowana przez utwory anhydrytu górnego (A1g). Ich powstanie wiązało się z ponowną ingresją wód na obszar basenu permskiego. Zasięg A1g był najprawdopodobniej nieco większy niż A1d i ma charakter sekwencji transgresywnej (Peryt, 1990). Większość otworów wiertniczych zlokalizowanych na obszarze przetargowym przewierca skały A1g. Najmniejszą ich miąższość udokumentowano w rejonie Nowej Soli, gdzie nie przekracza 10 m. W przypadku pozostałej części omawianego obszaru, miąższość A1g jest zbliżona i ma wartości w przedziale od 20 m do 50 m.

Na obszarze przetargowym Zielona Góra Zachód w czterech otworach wiertniczych (Broniszów, Lubiatów M-20, Urzuty IG-1 i Żarków 2) nawiercony anhydryt nie był rozdzielony przez sól kamienną. Ciągły poziom obejmuje najprawdopodobniej anhydrytu ogniwa A1d i A1g. W dotychczasowym, forschemacie litostratygraficznym malnym cechsztynu, w cyklotemie PZ1 nie występuje jednostka obejmująca ciągły profil anhydrytu, aczkolwiek pojawia się w niektórych opracowaniach i bazach danych jako anhydryt Werry (A1). Osady A1 mogą stanowić odpowiednik facjalny i czasowy sukcesji dwóch wydzieleń siarczanowych i jednego chlorkowego, które zostały zdeponowane w brzeżnej części basenu ewaporatowego (Czapowski i in., 2018).

Wraz z końcem etapu sedymentacji osadów węglanowo-siarczanowo-ewaporatowych PZ1 większa część platform węglanowych Ca1 była odsłonięta, co bezpośrednio wiązało się z ich erozją i przemianami diagenetycznymi. Na pozostałym obszarze trwała sedymentacja anhydrytu górnego, pod którymi kryły się platformy anhydrytu dolnego i liczne brzeżne izolowane baseny solne, a także płytkowodne otwarte baseny solne (Wagner, 1994).

Na znacznej części obszaru przetargowego miąższość cyklotemu PZ1 wynosi od 100 do ponad 200 m (Fig. 2.19). Jedynie w części południowej jej wartości nie przekraczają 100 m. W części północno-zachodniej miąższość cyklotemu PZ1 osiąga powyżej 200 m (Fig. 2.18).

Cyklotem PZ2

Znacząca ingresja wód morza cechsztyńskiego do basenu permskiego doprowadziła do przerwania sedymentacji ewaporatowo-siarczanowej i jej zastąpienia na rzecz sedymentacji węglanowej. Dlatego cyklotem PZ2 rozpoczynają utwory dolomitu głównego (Ca2; Fig. 2.16). Mają one charakter transgresywnoregresywny (Wagner, 1994). Układ paleogeograficzny Ca2 był ściśle uzależniony od paleomorfologii A1g. Rozwój platformy A1g miał bezpośredni wpływ na szerokość i nachylenie stoków platformy węglanowej Ca2, jak również na rozwój jego części platformowej i basenowej. W obrazie paleogeograficznym Ca2 występują trzy główne strefy (Wagner, 1994, 1998, 2012), którym odpowiadają odrębne systemy depozycyjne (Jaworowski i Mikołajewski, 2007; Wagner, 2012):

- równi basenowej,

- stoku platformy węglanowej,
- platformy węglanowej.

Obszar przetargowy Zielona Góra Zachód jest położony w południowo-zachodniej części polskiego basenu cechsztyńskiego. W jego rejonie występują wszystkie trzy główne strefy facjalne wyróżnione przez Wagnera (1994, 2012; Fig. 2.20).

System depozycyjny równi basenowych. Na obszarze przetargowym rozpoznano w jego północno-wschodniej części osady płytszej równi basenowej. W obrazie paleogeograficznym obszar ten stanowił głeboko wcieta zatoke w platformę węglanowa, która została nazwana zatoką zielonogórską (Wagner, 1994, 2012). Według Buniaka i in. (2013) zasięg zatoki zielonogórskiej jest mniejszy. Obejmuje on jedynie najbardziej wysuniętą północną część obszaru przetargowego (Fig. 2.21). Różnice w interpretacji skali wcięcia zatoki w obszar platformy węglanowej wynikają z braku rozpoznania wiertniczego na tym obszarze, co ostatecznie mogłoby rozstrzygnąć jej rzeczywisty zasieg.

Utwory Ca2 płytszej części równi basenowej składają się z dolomitów przewarstwianych warstwowanymi madstonami (Jaworowski i Mikołajewski, 2007). Pojawiają się wśród nich również cienkie wkładki wakstonów, rzadziej pakstonów, których powstanie należy wiązać z działalnością dennych prądów trakcyjnych bądź prądów zawiesinowych. Występujące w profilu muły węglanowe były miejscami stabilizowane przez działalność mikrobialną. Na obszarze przetargowym miąższość osadów płytszej części równi basenowej nie przekracza 20 m (Fig. 2.20). System depozycyjny stoków platform węglanowych. Pomiędzy osadami platformy węglanowej i równi basenowej występują osady stoku platformy węglanowej. Jej rozprzestrzenienie (szerokość i długość), miąższość oraz typ deponowanego osadu były uzależnione od paleomorfologii platformy A1g, kąta nachylenia jej stoku oraz intensywności, a także typu spływów podmorskich. W utworach dolomitu głównego na podstawie zmienności powyższych cech zostały rozpoznane dwa typy stoków platform węglanowych: łagodne i strome.

Na obszarze przetargowym rozpoznano osady łagodnego stoku platformy. Zasięg występowania tych osadów jest dyskusyjny (Fig. 2.20-2.21). W świetle interpretacji Wagnera (2012) łagodny stok platformy weglanowej obleka osady głęboko wciętej zatoki zielonogórskiej i śląsko-sudeckiej platformy węglanowej, które są położone w północno-wschodniej części obszaru przetargowego. (Fig. 2.20). Według Buniaka i in. (2013) osady łagodnego stoku platformy węglanowej na omawianym obszarze występują na niewielkim jego odcinku, w skrajnej północnej jego części (Fig. 2.21). Różnice interpretacyjne mogą sugerować konieczność ponownej analizy materiałów sejsmicznych oraz rdzeni wiertniczych z tego obszaru, gdyż zasięg stoku ma kluczowe znaczenie na poszukiwań naftowych.

Dla potrzeb niniejszego opracowania przyjęto za Wagnerem (2012) układ paleogeograficzny Ca2, co oznacza, że w północno-wschodniej części obszaru przetargowego mamy do czynienia z osadami łagodnego stoku (Fig. 2.20). Reprezentowane są one przez wapienne i wapienno-dolomitowe utwory laminowanych facji mułowych – madstony, które w niektórych przypadkach są wzbogacone w drobne, subtelne smugi ilaste lub ilasto bitumiczne. Pomimo niskiego kąta nachylenia osady są deponowane także w wyniku grawitacyjnego transportu (Jaworowski i Mikołajewski, 2007).

Miąższość utworów Ca2 na przeciętnie nachylonym stoku waha się od kilkunastu do 60 m. W pewnych przypadkach obserwuje się jej znaczne zwiększenie. Duża miąższość osadów łagodnego stoku platformy może wiązać się z występowaniem bardziej urozmaiconej linii brzegowej, bądź wcięciami w jej powierzchnię w formie zatok. Powyższe obszary, przy jednoczesnej zwiększonej akumulacji materiału mułowego (madstony) i mikrytowego, a także znacznej subsydencji, będą charakteryzowały się miąższością sięgającą prawie 200 m (Wagner, 1994). Miąższość osadów łagodnego stoku na obszarze przetargowym waha się od około 20 do ponad 40 m (Fig. 2.20).

System depozycyjny platformy węglanowej. Obszar przetargowy był położony w zachodniej części platformy sudecko-śląskiej (Wagner, 1994, 2012). Interpretacje zasięgu poszczególnych stref na obszarze platformy węglanowej są zgodne (Wagner, 1994, 2012; Buniak i in., 2013). Jedynie w wysuniętych, krawędziowych częściach omawianego obszaru występują odmienne poglądy na temat zasięgu osadów poszczególnych stref. W północno-zachodniej i wschodniej części Wagner (1994, 2012) rozpoznał osady odpowiednio niskoenergetycznej oraz wysokoenergetycznej równi platformowej (Fig. 2.20). Buniak i in. (2013) uznali utwory znajdujące się w powyższych miejscach za osady równi platformy węglanowej (Fig. 2.21). Również w zachodniej części, na południowywschód od otworu wiertniczego Kaniów 1, Buniak i in. (2013) wyznaczyli marginalną część wewnątrzplatformowej płycizny oolitowej (wysokoenergetyczna równia platformowa za Wagnerem, 1994, 2012; Fig. 2.21). Dla potrzeb niniejszego opracowania przedstawione, a także scharakteryzowane zostaną osady występujące w strefach paleogeograficznych wyróżnionych przez Wagnera (1994, 2012).

Na obszarze przetargowym Zielona Góra Zachód, obejmującym zachodnią część platformy sudecko-śląskiejn występuje jedna strefa facjalna - równia platformowa. Strefa ta jest oddzielona od strefy równi basenowej barierą węglanową. Pod względem rozciągłości jest ona najwieksza strefa paleogeograficzna występującą na obszarze platformy. Oprócz dużej przestrzeni, charakteryzuje się także zróżnicowaniem mikrofacjalnym oraz batymetrycznym. Pomimo niewielkich różnic w paleomorfologii dna nawet małe zmiany w środowisku płytkowodnym wpływają na zmiany reżimów sedymentacyjnych. Dzięki nim w obrębie równi platformy węglanowej można wyróżnić dwie strefy:

- wysokoenergetyczną strefę równi, w obrębie której występują wewnątrzplatformowe płycizny ooidowo-onkoidowe, - niskoenergetyczną strefę równi.

Wysokoenergetyczna strefa równi platformowej powstawała na lokalnych wyniesieniach paleomorfologicznych i płyciznach na zapleczu barier węglanowych. Składa się ona głównie z warstwowanych poziomo i przekątnie greinstonów i pakstonów ooidowo-onkoidowych oraz peloidowych (Jaworowski i Mikołajewski, 2007). Wysokoenergetyczna strefa równi platformowej została rozpoznana licznymi otworami w południowo-wschodniej części obszaru przetargowego. Osady rozpoznane w tej strefie osiągają miąższość nawet do 50 m (Fig. 2.20).

Niskoenergetyczna równia platformowa na obszarze przetargowym przypomina swym kształtem klin i występuje w północnozachodniej jego części (Fig. 2.20). Generalnie strefy te znajdują się na zapleczu barier zewnętrznych lub płycin wewnętrznych. Osady niskoenergetycznej równi platformowej składają się głównie z ciemnoszarych sublitoralnych węglanowych mułów piaszczystych i mułów węglanowych, również często pojawiają się także węglanowe piaski mułowe oraz utwory mikrobialne tworzące wakstony, madstony, rzadziej pakstony i bandstony (Jaworowski i Mikołajewski, 2007). Strefa niskoenergetycznej równi platformy występuje na obszarze przetargowym w północnej jego cześci (Fig. 2.20).

Koncepcje poszukiwawcze w dolomicie głównym

Na obszarze przetargowym Zielona Góra Zachód poszukiwania akumulacji węglowodorów w utworach Ca2 były prowadzone od lat 60. XX w. do końca lat 80. XX w. Ponownym zainteresowaniem obszar ten cieszył się w latach 2007–2015 r. Wykonano wtedy kilka zdjęć sejsmicznych 2D i jedno zdjęcie sejsmiczne 3D (Laski 3D) w jego północnej części oraz jedno zdjęcie sejsmiczne 3D (Nowa Sól Zachód 3D) w jego południowo-wschodniej części.

Nazwa otworu	Strop Ca2 [m]	Spąg Ca2 [m]
Broniszów	651,4	705,2
Bronków M-27	1205,3	1276,4
Chojnowo 1	1215,0	1291,5
Dachów 1	1107,0	1170,0
Dachów M-24	1187,2	1247,2
Dęby 1	789,5	855,5
Drzonów 2	1396,5	-
Dychów M-26	1581,9	1664,6

Jasień P-4	dane sa własnościa inwestora	
Jeleniów 1	1170.0	1224,0
Klepinka	306,1	330,7
Kosierz 1	1339,5	1411,5
Kosierz M-26	1522,7	1599,6
Lubiatów 1	1099,5	1174,0
Lubiatów M-20	1395,4	1449,0
Niwiska 1	1020,0	1065,0
Nowa Sól 16	1251,5	1296,5
Nowa Sól 18	1198,0	1243,5
Nowa Sól 7	1060,0	1108,0
Nowa Sól 9	1086,5	1133,0
Nowa Wieś P-1	738,6	801,7
Pajęczno 1	1130,0	1195,5
Piaski 1	1132,0	1177,0
Stary Zagór 1	1628,0	1685,0
Strużka 1	1033,0	1092,0
Świdnica 1	1359,5	1387,5
Tarnawa M-21	1180,8	1260,1
Trzebule 1	1619,0	1645,0
Urzuty IG-1	1016,1	1065,8
Wysoka 1	1170,0	1237,5
Wysoka 2	1035,5	1115,0
Żarków 1	1091,5	1160,0
Żarków 2	700,0	751,0
Żarków 3	865,2	938,0
Żarków 4	773,5	821,0

Tab. 2.1. Otwory wiertnicze nawiercające i przewiercające utwory dolomitu głównego (Ca2) na obszarze przetargowym Zielona Góra Zachód. Kolorem podkreślono otwory, które nawiercają skały Ca2.

Zaleganie powierzchni stropu Ca2 jest zgodne z regionalnym trendem strukturalnym monokliny przedsudeckiej. Najpłycej zalegają one w części południowej obszaru przetargowego, gdzie strop sięga głębokości do 651,4 m (m.in. otwory wiertnicze Broniszów i Żarków 2; Tab. 2.1). Centralna jego część charakteryzuje się pogrzebaniem wahającym się w przedziale od 1000 m do 1500 m (m.in. otwory wiertnicze Piaski 1 i Drzonów 2; Tab. 2.1). Najgłębiej pogrzebany strop Ca2 jest w części północnej obszaru przetargowego, gdzie głębokość sięga powyżej 1500 m (m.in. otwory wiertnicze Kosierz M-26 i Trzebule 1; Tab. 2.1)

Utwory Ca2 na obszarze przetargowym posiadają potencjał naftowy. Świadczyć o tym mogą złoża gazu ziemnego odkryte w jego sąsiedztwie. Tuż za jego północno-zachodnią krawędzią jest zlokalizowane złoże Czeklin. Pułapka ma charakter strukturalno-tektoniczny, a skała zbiornikowa jest silnie spękana. Powstanie pułapki wiązało się z działalnością procesów halotektonicznych. Za południowowschodnią krawędzią omawianego obszaru występuje odkryte w latach 60. XX w. złoże gazu ziemnego Nowa Sól. Pułapka i skała zbiornikowa ma podobny charakter jak w przypadku złoża Czeklin oraz powstała także w wyniku procesów halotektonicznych.

Poszczególne odcinki rdzeni z interwałów Ca2, pochodzące z otworów wiertniczych zlokalizowanych na obszarze przetargowym są nasycone węglowodorami. Wykonane opróbowania utworów Ca2 w niektórych otworach dały nieprzemysłowe przypływy ropy naftowej i słabe przypływy gazu ziemnego.

Wszystkie wymienione powyżej czynniki potwierdzają perspektywiczność obszaru przetargowego Zielona Góra Zachód. Analiza i interpretacja zdjęcia sejsmicznego 3D Nowa Sól doprowadziła do wykartowania nowego obiektu poszukiwawczego. Dalsza analiza, zwłaszcza północno-wschodniej i południowowschodniej części obszaru, może rokować interesującymi wynikami badawczymi. Również powrót do północno-zachodniej części obszaru, gdzie w niektórych otworach stwierdzono przypływ gazu, może wydawać się bardzo atrakcyjna pod względem poszukiwawczym.

Wyniki badań petrograficznych utworów dolomitu głównego

Praktycznie cały obszar przetargowy Zielona Góra Zachód znajduje się w obrębie platformy weglanowej Ca2 (Fig. 2.20-2.21). W profilu osadów Ca2 na omawianym obszarze można wyróżnić dwie mikrofacje (Peryt, 1978): mikryty (madstony), niekiedy laminowane materiałem terygenicznym, oraz utwory onkoidowe (greinstony/pakstony). W madstonach spotyka się pojedyncze otwornice, małżoraczki i małże (Peryt, 1978). Przykładowo według Peryta (1978) w otworze Lubiatów 1, położonym w centralnej części obszaru, zdecydowanie przeważają utwory mikrytowe (madstony), zwykle zailone. Jedynie w spagowej cześci profilu nawiercono utwory onkoidowe. Cienkie przeławicenia osadów onkoidowych stwierdzono także w stropie tego profilu. Z kolei w otworze Czeklin 1, położonym tuż na zachód od omawianego obszaru, utwory onkolitowe zajmują górną część około pięćdziesięciometrowego profilu Ca2.

W dokumentacjach geologicznych otworów wiertniczych zlokalizowanych na omawianym obszarze nie ma praktycznie żadnych informacji dotyczących mikrofacji i petrografii. Podobnie jak w innych cześciach monokliny przedsudeckiej, osady Ca2 są tutaj w większości zdolomityzowane (zob. Peryt, 1978). W dokumentacji otworu Kosierz M-26 są one opisywane jako szare dolomity drobnokrystaliczne z anhydrytem i licznymi stylolitami z powyższego pobieżnego opisu można wnosić, iż są to zapewne głównie madstony. Podobne opisy utworów Ca2 znajdujemy w dokumentacjach innych otworów wiertniczych na tym obszarze (np. Dychów M-26). Z kolei w otworze Jeleniów 1 (wschodnia część obszaru) w profilu Ca2 opisywane sa głównie dolomity "monolityczne", masywne, zbite, skrytoziarniste z pionowymi spękaniami. Z takiego opisu trudno jest cokolwiek wnioskować o ich charakterystyce mikrofacjalnej, petrografii czy diagenezie.

Utwory Ca2 na obszarze przetargowym są przykryte osadami anhydrytu podstawowego (A2). Granica między tymi jednostkami litostratygraficznymi ma charakter ciągłego przejścia, aczkolwiek zdarzają się przypadki w których występuje między nimi ostra, erozyjna granica (Wagner, 1994). Utwory A2 składają się z anhydrytów laminowanych i warstwowanych (Kłapciński, 1991). Ich miąższość waha się od 2 m do 25 m. Jedynie w otworze Drzonów 2 udokumentowano znaczną miąższość utworów A2, która wynosi 41,0 m.

W profilu pionowym cyklotemu PZ2 utwory A2 zostają zastąpione przez skały starszej soli kamiennej (Na2). Na obszarze przetargowym utwory Na2 osiągają najczęściej miąższość wynoszącą około 50 m. W części południowozachodniej omawianego obszaru obserwuje się znaczną redukcję miąższości Na2, zaś w otworach Świdnica 2 oraz Trzebule 1 jej nagły wzrost, sięgający ponad 130 m.

Górna część profilu cyklotemu PZ2 na obszarze Zielona Góra Zachód jest zredukowana. W większości otworów wiertniczych nie udokumentowano występowania starszej soli potasowej (K2) oraz starszej soli kamiennej kryjącej (Na2r). Jedynie w otworze Dachów 1 natrafiono na powyższe jednostki litostratygraficzne. Miąższość utworów K2 w otworze Dachów 1 wynosi 3,0 m, zaś Na2r – 4,5 m. Sedymentację cyklotemu PZ2 kończą skały anhydrytu kryjącego (A2r). Występują one na znacznej części obszaru. Utwory A2r osiągają niewielką miąższość sięgającą maksymalnie kilka metrów.

Według Wagner (1994): "W końcowym etapie rozwoju basenu cyklotemu PZ2 w całym zbiorniku panowały warunki skrajnie płytkowodne. Centralny basen sedymentacyjny został wypełniony osadami soli kamiennych i potasowych. Przybrzeżne części platform węglanowych zostały odsłonięte i trwała tu niezbyt intensywna sedymentacja terygeniczna, nieco silniejsza w południowej części basenu. Erozja i sedymentacja klastyków nie były silne, ponieważ panował w tym czasie skrajnie suchy klimat".

Na obszarze przetargowym "obserwuje się wzrost sumarycznej miąższości utworów PZ2 w kierunku północnym (Fig. 2.22). Najmniejsze jej wartości udokumentowano w otworach położonych w południowej i południowozachodniej części. W otworach wiertniczych Jasień P-4, Żarków 2 i Żarków 4 oraz Nowa Wieś P-1 sumaryczna miąższość PZ2 waha się od 41,2 m do 73,7 m. Pozostałe otwory dokumentuja miąższość utworów cyklotemu PZ2 w przedziale od ponad 100 do 200 m (Fig. 2.22). Jedynie w skrajnej części północnej i południowo-wschodniej omawianego obszaru, w otworach Trzebule 1 i Urzuty IG-1, miąższość cyklotemu PZ2 osiąga odpowiednio 229,5 m i 282,4 m.

Cyklotem PZ3

Sedymentacja sukcesji ewaporatowo-siarczanowej cyklotemu PZ2 ostatecznie doprowadziła do wyrównania wszelkich deniwelacji jakie występowały w polskim basenie cechsztyńskim (Wagner, 1994). W jej wyniku, kolejny zalew morski, który zapoczątkował depozycję utworów trzeciego cyklotemu, wkroczył na obszar wyrównanego, płytkiego basenu salinarnego.

Utwory cyklotemu PZ3 na obszarze przetargowym Zielona Góra Zachód rozpoczynają się szarym iłem solnym (T3; Fig. 2.16). Charakteryzują się one małą miąższością, w większości przypadków nie przekraczającą 5 m. Następnie w profilu pionowym występują utwory dolomitu płytowego (Ca3), które ze względu na bardzo małą miąższość (poniżej 1 m) oraz typ skały (anhydrytowo-dolomitowy) są włączane do poziomu anhydrytu głównego (A3; Podemski, 1973). Jedynie w otworach Jasień P-4 i Urzuty IG-1 wyróżniono poziom Ca3 jako oddzielną jednostkę litostratygraficzną. Miąższość poziomu A3 (wraz z Ca3) mieści się w przedziale od 10,0 m (otwór Dachów 1) do 61,0 m (otwór Nowa Sól 7). Na utworach A3 zalegają skały młodszej soli kamiennej (Na3). Ich miąższość waha się od 63,5 m (otwór Wysoka 1) do 178,0 m (otwór Strużka 1)

Najmniejszą sumaryczną miąższość utworów cyklotemu PZ3 udokumentowano w otworach wiertniczych położonych w części południowej obszaru przetargowego (Fig. 2.23); nie przekracza ona 100 m. W otworze Broniszów horyzont w ogóle nie wystęuje. Dla pozostałej części obszaru przetargowego sumaryczna miąższość utworów PZ3 wynosi powyżej 100 m (Fig. 2.23). Największa jej wartość występują w otworze Niwiska 1 – 156,0 m.

Cyklotem PZ4

Wraz z rozpoczęciem sedymentacji utworów cyklotemu PZ4 doszło do zmiany czynnika kontrolującego depozycję w basenie. Wpływ cykli transgresywno-regresywnych zmniejszył się, zanikając zupełnie w trakcie subcyklotemu PZ4c, na rzecz czynnika wahań klimatycznych (okresy wilgotne i suche; Wagner, 1994).

Subcyklotem PZ4a (Fig. 2.16) występuje w praktycznie wszystkich otworach wiertniczych i jest reprezentowany przez skały czerwonego iłu solnego (T4a), anhydrytu pegmatytowego dolnego (A4ad), najmłodszej soli kamiennej (Na4a) oraz anhydrytu granicznego (A4ar). Strop cyklotemu PZ4 jest reprezentowany przez skały stropowej serii terygenicznej (PZt).

W południowo-zachodniej części obszaru przetargowego utwory PZ4 nie zostały rozpoznane w żadnym otworze wiertniczym (z wyłączeniem osadów PZt; m.in. Żarków 2, 3 i 4). Brak utworów PZ4 najprawdopodobniej był związany z późniejszymi procesami erozji, jaka mogła zachodzić w marginalnej części basenu, jak również z samą ograniczoną depozycją. Pozostała część obszaru przetargowego Zielona Góra Zachód charakteryzuje się sumaryczną miąższością utworów cyklotemu PZ4 od 12 m do 33 m (Fig. 2.24).
ZIELONA GÓRA ZACHÓD

Fig. 2.16. Schemat stratygraficzny cechsztynu w Polsce (Wagner, 1987, 1988, 1994; Wagner i Peryt, 1997, 1998).

Fig. 2.17. Mapa paleogeograficzno-miąższościowa wapienia cechsztyńskiego – Ca1 na obszarze przetargowym Zielona Góra Zachód (Wagner, 1998). Objaśnienia na Fig. 2.15.

Fig. 2.18. Stratygrafia cyklu PZ1 w rejonie wyniesienia brandenbursko-wolsztyńsko-pogorzelskiego (Dyjaczyński i Peryt, 2014).

Fig. 2.19. Mapa paleogeograficzno-miąższościowa cyklotemu PZ1 na obszarze przetargowym Zielona Góra Zachód (Wagner, 1998). Objaśnienia na Fig. 2.15.

Fig. 2.20. Mapa paleogeograficzno-miąższościowa dolomitu głównego – Ca2 na obszarze przetargowym Zielona Góra Zachód (Wagner, 2012).

Fig. 2.21. Mapa paleogeograficzna dolomitu głównego – Ca2 na obszarze przetargowym Zielona Góra Zachód (Buniak i in., 2013).

Fig. 2.22. Mapa paleogeograficzno-miąższościowa cyklotemu PZ2 na obszarze przetargowym Zielona Góra Zachód (Wagner, 1998). Objaśnienia na Fig. 2.15.

Fig. 2.23. Mapa paleogeograficzno-miąższościowa cyklotemu PZ3 na obszarze przetargowym Zielona Góra Zachód (Wagner, 1998). Objaśnienia na Fig. 2.15.

Fig. 2.24. Mapa paleogeograficzno-miąższościowa cyklotemu PZ4 na obszarze przetargowym Zielona Góra Zachód (Wagner, 1998). Objaśnienia na Fig. 2.15.

2.3.5. TRIAS

Rozprzestrzenienie i miąższość

Spośród wszystkich otworów wiertniczych położonych na obszarze przetargowym w 36 występują utwory triasu. Są to (głębokości występowania cechsztynu podano wg miary geofizycznej):

- Broniszów: 332,3–582,0 m,
- Bronków M-27: 226,8–1009,0 m,
- Chojnowo 1: 230,0–992,0 m,
- Dachów 1: 250,0–922,5 m,
- Dachów M-24: 230,8–953,2 m,
- Dęby 1: 285,0–737,5 m,
- Drzonów 1: 262,5–1152,0 m,
- Drzonów 2: 271,0–1109,0 m,
- Dychów M-26: 231,0-1354,7 m,
- Jarogniewice IG-1: 280,4–551,6 m,
- Jasień P-4,
- Jeleniów 1: 275,0–944,5 m,
- Kosierz 1: 247,5–1093,0 m,
- Kosierz M-26: 265,2 –1252,3 m,
- Lubiatów 1: 284,0–907,0 m,
- Lubiatów M-20: 268,3-1134,2 m,
- Niwiska 1: 275,0–768,0 m,
- Nowa Sól 7: 320,0–800,0 m,
- Nowa Sól 9: 286,0–928,5 m,
- Nowa Sól 16: 275,0–1041,0 m,
- Nowa Sól 18: 380,0–970,5 m,
- Nowa Wieś P-1: 400–687,0 m,
- Pajeczno 1: 350,5–888,0 m,
- Piaski 1: 265,0–907,0 m,
- Stary Zagór 1: 230,0–1415,5 m,
- Strużka 1: 318,0–723,0 m,
- Świdnica 1: 270,0–1070,0 m,
- Tarnawa M-21: 228,3–971,7 m,
- Trzebule 1: 262,5–1259,0 m,
- Urzuty IG-1: 344,5–683,7 m,
- Wysoka 1: 256,5–953,5 m,
- Wysoka 2: 295,0–815,0 m,
- Żarków 1: 245,0–851,5 m,
- Żarków 2: 292,0–605,0 m,
- Żarków 3: 305,0-800,0 m,
- Żarków 4: 288,0–746,0 m.

Profil litostratygraficzny triasu na obszarze przetargowym Zielona Góra Zachód jest zróżnicowany. W jego południowej i południowowschodniej części, bezpośrednio pod utworami paleogenu i neogenu, występują skały permu (Fig. 2.25). Pozostała część południowa, a także centralna część obszaru przetargowego charakteryzuje się zredukowanym profilem litostratygraficznym triasu – na południu występują utwory tylko pstrego piaskowca, w centrum zaś – wapienia muszlowego (Fig. 2.25). Najpełniejszego profilu triasu należy spodziewać się w części północnej omawianego obszaru.

Litologia i stratygrafia

Utwory dolnego pstrego piaskowca składają się z litofacji piaskowcowej (Szyperko-Teller, 1997). W jej profilu pionowym zachodzi pewne zróżnicowanie wynikające z zmiennego stosunku ilościowego piaskowców do iłowców i mułowców, występowania bądź braku zlepieńców oraz gradacji ziarna. Następnie, na skałach dolnego pstrego piaskowca zalegają utwory środkowego pstrego piaskowca. Sa one reprezentowane przez sukcesję klastycznowęglanową (Szyperko-Teller, 1997). W zależności od położenia na obszarze monokliny przedsudeckiej, udział jednego z tych dwóch typów litologicznych będzie ulegał zmianie - w kierunku północnym rośnie procentowy udział węglanów w profilu, w kierunku południowym zaś - klastyków (Szyperko-Teller, 1997). Dolny trias kończy się utworami górnego pstrego piaskowca - retu. Składają się one głównie z skał siarczanowych oraz weglanowoilastych.

Utwory środkowego triasu w większej części profilu składają się z skał węglanowych (wapienie i dolomity), pośród których występują także margle, iłowce i wkładki anhydrytowe (wapień muszlowy; Gajewska, 1997a). Jedynie w najwyższej części następuje wyraźna zmiana litologiczna. Sukcesja węglanowa zostaje zastąpiona przez sukcesję klastyczno-węglanową. Jest ona reprezentowana przez szare, czerwone i pstre iłowce, pośród których występują wkładki mułowców, piaskowców, wapieni, dolomitów i margli (warstwy sulechowskie; Gajewska, 1997b). Często wśród tych skał pojawiają się zwęglone szczątki roślinne, tworzące cienkie warstewki węgli brunatnych.

W dolnej części profilu górnego triasu występują dwa miąższe kompleksy czerwonych skał ilasto-mułowcowych, z czego w dolnym pojawiają się wkładki siarczanowo-ewaporatowe (warstwy gipsowe dolne; Gajewska, 1997b), w górnym zaś udział warstw anhydrytowo-dolomitowo-piaskowcowych jest minimalny (warstwy gipsowe górne; Gajewska, 1997b). Powyższe kompleksy są rozdzielone sukcesją piaskowcową, z bardzo nielicznym udziałem śladów szczątków flory lub ilastomułowcową, charakteryzującą się bardzo licznymi szczątkami roślinnymi (piaskowiec trzcinowy, Gajewska, 1997b). Następnie w profilu górnego triasu występują szare, szarozielone, wiśniowe oraz brunatno-czerwone iłowce. Wśród tych skał pojawiają się wkładki dolomitów, mułowców, iłowców dolomitycznych, iłowców gruzłowych, a także miejscami przewarstwienia zlepieńców (warstwy jarkowskie i zbąszyneckie; Deczkowski, 1997).

Fig. 2.25. Mapa geologiczna powierzchni podkenozoicznej na obszarze przetargowym Zielona Góra Zachód (Dadlez i in., 2000).

2.3.6. KENOZOIK

Rozprzestrzenienie i miąższość

Sedymentacja osadów paleogenu odbywała się na silnie zdenudowanym kompleksie skał mezozoicznych. Miąższość paleogenu jest zróżnicowana i zależy w znacznej mierze od powierzchni stropowej skał mezozoiku (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002). Najstarsze zlodowacenie południowopolskie spowodowało bardzo intensywne zaburzenia glacitektoniczne utworów paleogenu i neogenu. Na terenie całego obszaru przetargowego Zielona Góra Zachód można natrafić na wychodnie skał środkowego i górnego miocenu oraz pliocenu.

Na obszarze przetargowym występują osady plejstocenu deponowane podczas zlodowaceń: południowo-, środkowo- i północnopolskiego; jak również osady interglacjałów małopolskiego, wielkiego oraz eemskiego. Ich miąższość i zasięg są bardzo zmienne, uzależnione od przebiegu procesów glacitektonicznych i erozyjnej działalności kolejnych zlodowaceń (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002).

Litologia i stratygrafia

Najstarszymi osadami paleogeńskimi są osady eocenu udokumentowane w otworze kartograficznym w Sieciejowie, położonym nieco na południe od południowo-zachodniej granicy obszaru przetargowego; są to mułki, iły oraz piaski spoczywające bezpośrednio na utworach triasowych (Bartczak, 2002). W południowo-wschodniej części obszaru rozpoznano utwory z pogranicza górnego eocenu – dolnego oligocenu i są to mułki, piaskowce, zlepieńce oraz wapienie (Badura i Przybylski, 2002).

Cały obszar przetargowy jest pokryty utworami należącymi do oligocenu (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002). W północnej i południowo-zachodniej części oligocen jest wykształcony w postaci piasków, piasków z glaukonitem, mułków ilastych, piasków z nagromadzeniem łyszczyków i węgli brunatnych zaliczanych do serii lubuskiej (Bartczak, 2002; Chmal, 2002; Urbański, 2002). Profil oligocenu południowo-wschodniej części obszaru przetargowego jest reprezentowany przez piaski, mułki i żwiry zaliczane do formacji leszczyńskiej (Badura i Przybylski, 2002).

Na obszarze Zielona Góra Zachód utwory neogenu są reprezentowane przez dolny, środkowy i górny miocen (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002) oraz w południowej i północno-wschodniej części również przez pliocen (Urbański, 2002). Generalnie, podczas trwania wczesnego i środkowego miocenu, na obszarze przetargowym odbywała się depozycja piasków, iłów, mułków, węgli brunatnych, żwirków, glin kaolinowych, zlepieńców, piasków pyłowatych. Osady te reprezentują serie żarska, śląsko-łużycką i Mużakowa. Najmłodszą jednostką litostratygraficzną miocenu na obszarze przetargowym jest formacja poznańska. Jest wykształcona w postaci iłów, mułków i piasków (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002). Osady pliocenu występują na prawie całym obszarze przetargowym. Brak ich wyłacznie w północno-zachodniej części (Chmal, 2002). Nie tworzą spójnej pokrywy, a ich największe rozprzestrzenienie jest udokumentowane części południowo-W zachodniej. Są to piaski i żwiry, miejscami z mułkami, iłami, glinami kaolinowymi i zlepieńcami (Bartczak, 2002).

Utwory plejstocenu składają się z glin zwałowych, piasków i żwirków, mułków. Profil kenozoiku na obszarze przetargowym kończą osady holocenu. Składają się one z torfów, namułów, mułków, piasków, żwirów oraz gytii, jak również glin deluwialnych (Bartczak, 2002; Chmal, 2002; Badura i Przybylski, 2002; Urbański, 2002).

2.4. HYDROGEOLOGIA

Obszar przetargowy Zielona Góra Zachód jest położony w regionie wodnym Środkowej Odry oraz na granicy trzech obszarów bilansowych wód podziemnych, których procentowy udział powierzchni w obrębie obszaru przetargowego kształtuje się następująco: W-V Nysa Łużycka (prawa) – 22%, W-XI (WR) Przyodrze (WR) – 43%, W-VI Bóbr – 35%. W podziale na jednolite części wód podziemnych należy do następujących obszarów w udziale: 16% do JCWPd nr 68, 22% do JCWPd nr 76, 34% do JCWPd nr 77, 28% do JCWPd nr 78. Przez obszar przetargowy Zielona Góra Zachód przepływa rzeka Bóbr, będąca największym lewobrzeżnym dopływem Odry. Przez południowo-zachodni fragment obszaru przetargowego przepływa rzeka Lubsza – prawy dopływ Nysy Łużyckiej, a przez środek obszaru przetargowego, równolegle względem siebie, z zachodu na wschód przepływają mniejsze cieki – Czarna Struga i Ochla Śląska będące dopływami Odry (Fig. 2.26).

Zgodnie z podziałem regionalnym zwykłych wód podziemnych (Paczyński i Sadurski, 2007) cały obszar należy do prowincji Odry, RŚO – regionu Środkowej Odry, subregionu Środkowej Odry północnego SŚOPł. Rozpoznanie warunków hydrogeologicznych zostało przedstawione na Mapie hydrogeologicznej Polski w skali 1 : 50 000 (MhP GUPW) – arkusze Bobrowice 573 (Kiełczawa, 2004a), Buchałów 574 (Wagner i Sadurski, 2004), Krzystkowice 610 (Kiełczawa, 2004b), Chotków 611 (Czerski, 2004).

Teren obszaru przetargowego cechują różnorodne warunki hydrogeologiczne występowania wód podziemnych. Wody podziemne występują w kilku odmiennych strukturach hydrogeologicznych o różnej zasobności i różnych parametrach hydrogeologicznych, ponadto na omawianym obszarze zidentyfikowano tereny pozbawione poziomów wodonośnych w znaczeniu użytkowym. Na omawianym obszarze głównym użytkowym piętrem wodonośnym jest piętro czwartorzędowe, natomiast podrzędne znaczenie ma piętro neogeńsko-paleogeńskie (Wagner i Sadurski, 2004). W obrębie piętra czwartorzędowego można wyróżnić, różniące się usytuowaniem geomorfologicznym i panującymi w ich obrębie warunkami hydrogeologicznymi, następujące poziomy wodonośne:

 poziom występujący w dolinach współczesnych cieków wodnych,

- poziom pradolinno-rynnowy,

 poziom związany ze zbiornikami elewacyjnymi Wału Zielonogórskiego,

- poziom sandrowo-kemowy.

Podstawowe znaczenie w obrębie obszaru przetargowego Zielona Góra Zachód ma współczesna dolina Bobru oraz struktury pradolinno-rynnowe. Największymi strukturami pradolinnymi są: biegnąca równoleżnikowo, na północ od miasta Zielona Góra, pradolina warszawsko-berlińska, na wschodzie biegnąca południkowo pradolina Barycz-Głogów (część zachodnia) oraz na południe od Zielonej Góry biegnąca równoleżnikowo pradolina Zasieki-Nowa Sól. Przebieg dwóch pierwszych struktur pokrywa się z przebiegiem współczesnej doliny Odry. Poziom pradolinny budują najczęściej dwa poziomy wodonośne (górny i dolny), zbudowane z piasków i żwirów wodnolodowcowych, o miąższościach od kilkunastu do kilkudziesięciu metrów, z nieregularnymi przewarstwieniami słabo przehoryzont wodonośny i występuje najczęściej na głębokościach poniżej 5 m (lokalnie na głębokości 5-15 m), jego miąższość wynosi od kilku metrów – na skraju struktur (w pobliżu wychodni utworów trzeciorzędowych) do ponad 40 m – w części centralnej (w osi pradolin). Poziom wodonośny jest pozbawiony naturalnej izolacji, zwierciadło wody ma charakter swobodny, czego konsekwencją jest niska odporność na zanieczyszczenia z powierzchni terenu. Z uwagi na zróżnicowane wykształcenie litologiczne osadów czwartorzędowych parametry hydrogeologiczne warstw wodonośnych różnią się w szerokim zakresie. Współczynnik filtracji waha się od 1,9 m/24h (w Lubnicy) do 120,1 m/24h (w Wysokiej). W obrębie pradolin generalnie poziom górny od piasków i żwirów poziomu dolnego oddzielają kilkudziesięciometrowej miąższości przewarstwienia glin zwałowych oraz piasków i mułków zastoiskowych. Całkowita miąższość osadów czwartorzędowych w obrębie dolin kopalnych przekracza niekiedy 100 m. Wydajności potencjalne zmieniają się w szerokim zakresie od kilkunastu do ponad 100 m³/h. W obrębie pradoliny Zasieki-Nowa Sól utwory czwartorzędowe tworzą wielowarstwowy poziom wodonośny z liczprzewarstwieniami nymi osadów ilastomułkowych. Pierwsza od powierzchni warstwa wodonośna (górna) jest zbudowana piasków różnoziarnistych pochodzenia Ζ wodnolodowcowego i rzecznego o średniej miaższości 15-20 m. Zwierciadło wody ma charakter swobodny. Współczynnik filtracji górnej warstwy wodonośnej waha się od 2,4 do 40,8 m/24h, a wodoprzewodność mieści się w przedziale 21,6–672 m²/24h. Miaższość dolnej warstwy wodonośnej jest znaczna i lokalnie dochodzi do 90 m (centralna część zbiornika). Zwierciadło wód ma zmienny charakter: napięty, lokalnie swobodny. Współczynnik filtracji dolnej warstwy wodonośnej zawiera się w przedziale 1,44-80,4 m/24h, a wodoprzewodność – w przedziale 2,4-2880 m²/24h. Wydajność potencjalna studni

puszczalnych iłów, mułów oraz glin zwało-

wych. W obrębie obszaru przetargowego do-

minującą strukturą jest dolina Bobru i jej pra-

dolina oraz pradolina Zasieki-Nowa Sól.

W obrębie doliny i pradoliny Bobru użytkowy

poziom wodonośny tworzy zazwyczaj jeden

wynosi w granicach od około 10 m³/h do ponad 70 m³/h, a w obrębie pradoliny Zasieki-Nowa Sól nawet do 120 m³/h.

Odmienna budowa poziomów wodonośnych występuje w północno-zachodniej części obszaru przetargowego, gdzie warstwy wodonośne wykształcone są w formie żwirów i piasków różnoziarnistych, o zmiennej litologii i miąższości (od około 7 do około 100 m, średnio 30 m), zalegających w formie pokryw sandrowych. Tworzą one GZWP nr 149 Sandr Krosno-Gubin. W stropie osadów zazwyczaj nie ma warstwy izolującej poziom wodonośny od powierzchni terenu a zwierciadło wody ma charakter swobodny. Zasilanie w obrębie struktury sandrowej odbywa się głównie przez bezpośrednią infiltrację wód opadowych do warstwy wodonośnej oraz miejscami w strefach kontaktów hydraulicznych w strukturach rynnowych z poziomem neogeńskim zasilanie następuje z głębszych poziomów. Współczynnik filtracji wodoprzepuszczalnych utworów czwartorzędowych waha się 1,44-136,8 m/24h. Z uwagi na bardzo duże zróżnicowanie miąższości oraz wykształcenie litologiczne warstw wodonośnych wodoprzewodność wykazuje bardzo duże rozbieżności na małej powierzchni od kilkudziesięciu do 2000 m²/24h. Zasobność większych ujęć wód podziemnych wynosi powyżej $10\ 000\ \text{m}^3/24\text{h}$.

Zielona Góra jest położona w obrębie Wzniesień Zielonogórskich. Warunki hydrogeologiczne są tu bardzo skomplikowane i zróżnicowane. Poziomy wodonośne obszarów wysoczyznowych sa wykształcone w formie międzyglinowych warstw piaszczysto-żwirowych o zwierciadle subartezyjskim oraz bardzo zróżnicowanej miąższości i zasobności. Często na wysoczyźnie czwartorzędowe pietro wodonośne zwiazane jest z obecnością wąskich, rozczłonkowanych struktur rynnowych o przebiegu zbliżonym do równoleżnikowego. Struktury rynnowe o długości do kilku kilometrów i szerokości od kilkudziesięciu do kilkuset metrów są przedzielane glinami zwałowymi o miąższości do 110 m oraz osadami paleogeńsko-neogeńskimi. Miąższość utworów wodonośnych waha się od 10 do 60 m, zaś współczynnik filtracji od 2,9 do 22,8 m/24h. Zazwyczaj występują dwa poziomy wodonośne – górny i dolny. Górny poziom wodonośny zazwyczaj jest pozbawiony izolacji a jego zwierciadło wody ma charakter swobodny (lokalnie, poniżej płatów glin zwałowych może być lekko napięte). Poziom ten występuje najczęściej na głębokościach 5–15 m i jest połączony hydraulicznie z poziomem wodonośnym doliny Bobru, pozostając jednocześnie w bezpośrednim kontakcie w wodami powierzchniowymi. Dla górnego poziomu wodonośnego parametry hydrogeologiczne są następujące: miąższość do 40 m, współczynnik filtracji – w szerokim przedziale 1,8-136,5 m/24h. Dolny poziom wodonośny jest zazwyczaj izolowany warstwa glin zwałowych, iłów zastoiskowych, mułków lub wyciśnietych iłów neogeńskich w strefach zaburzeń glacitektonicznych (mamy tu do czynienia z wyciśnieciem badź złuskowaniem oraz częstokroć z przemieszaniem z utworami czwartorzędu stropowych partii neogenu nawet do głębokości stukilkudziesięciu metrów).

Po północno-wschodniej stronie Wału Zielonogórskiego i na Wysoczyźnie Czerwieńska poziom wodonośny jest związany z tarasem kemowym, a na południe od Wału Zielonogórskiego z tarasem sandrowym. Występują tu wody czwartorzędowe o zwierciadle swobodnym lub lekko napiętym. Miąższość pierwszego poziomu wód podziemnych wynosi 20-30 m. Jest on jednolicie wykształcony w postaci serii piaszczysto-żwirowej. Lokalnie może być rozdzielony glinami lub mułkami na dwie lub trzy warstwy wodonośne. Na północnych i południowych stokach Wału Zielonogórskiego oraz w jego części centralnej i zachodniej występują rozległe obszary pozbawione użytkowych poziomów wodonośnych zgodnie z kryteriami przyjętymi dla opracowania Mapy hydrogeologicznej Polski w skali 1:50 000.

Na południe od Wału Zielonogórskiego, w Kotlinie Nowosolskiej, pierwszy poziom wód podziemnych jest związany z piaskami drobnymi i średnimi tarasu sandrowego. Występują tu wody czwartorzędowe o zwierciadle swobodnym lub lekko napiętym. Miąższość pierwszego poziomu wód podziemnych wynosi od 5 do 20 m, sporadycznie przekracza 40 m. Zwierciadło wód jest swobodne i leży na głębokości od 0,5 do 5,0 m. Poniżej występuje warstwa mułków i iłów zastoiskowych o miąższości od 20 do 40 m z przewarstwieniami piaszczysto-żwirowymi o miąższości dochodzącej do 15 m. Drugi poziom wód podziemnych związany jest z osadami piaszczysto-żwirowymi o miąższości około 20 m, zalegającymi na nieprzepuszczalnym podłożu. Zwierciadło wody ma charakter napięty.

Chemizm wód piętra czwartorzędowego w rejonie obszaru przetargowego opracowano na podstawie danych z hydrogeologicznych opracowań kartograficznych (Mapa hydrogeologiczna Polski w skali 1 : 50 000) oraz na podstawie analiz fizykochemicznych z monitoringu diagnostycznego wód podziemnych przeprowadzonego przez PIG-PIB w latach 2011-2020. Sa to wody typu HCO₃-Ca, HCO₃-Ca-Mg oraz HCO₃-SO₄-Ca, o odczynie obojetnym lub lekko zasadowym (pH od 6,6 do 7,7). Mineralizacja wód wyrażona suchą pozostałością waha się w granicach 200-700 mg/dm³, jednakże w obszarach o wysokiej antropopresji mineralizacja płytkich poziomów wód piętra czwartorzędowego może dochodzić do około 1000 mg/dm³. Zgodnie z Rozporządzeniem Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych (Dz. U. 2019 poz. 2148) wody piętra czwartorzędowego zostały zaklasyfikowane w rejonie obszaru przetargowego do klas od II do V w zależności od lokalizacji punktu. Wskaźnikami fizykochemicznymi znacząco obniżającymi klasę jakości wód są przede wszystkim podwyższone zawartości żelaza, manganu, NH4 oraz siarczanów. Wartości stężeń żelaza w tych wodach oscylują W granicach od <0,01 zazwyczaj do 13,91 mg/dm³ (lokalnie dochodząc nawet do ponad 20,00 mg/dm³), natomiast przekroczenia jonu amonowego są dosyć powszechne w wodach podziemnych i stężenia wahają się od 1,66 mg/dm³ przy średniej < 0.05 do 0,57 mg/dm³. Zawartości pozostałych form azotu w wodach podziemnych, czyli azotanów i azotynów nie przekraczają wartości granicznych dla wód pitnych i dla azotanów wynoszą do 17,30 mg/dm³, natomiast azotynów nie stwierdzono w wodach podziemnych piętra czwartorzędowego w ramach monitoringu diagnostycznego w latach 2016 i 2019.

Stężenia chlorków w wodach podziemnych wahają się od 4,25 do 120,0 mg/dm³ w studni zlokalizowanej na zachód od granicy obszaru przetargowego Zielona Góra Zachód (poza obszarem), natomiast siarczanów od 26,7 do 177,0 mg/dm³ w punkcie położonym na zachód od Zielonej Góry. Zawartości manganu w wodach podziemnych piętra czwartorzędowego są znacząco przekroczone i wynoszą od 0,034 do 1,002 mg/dm³ przy średniej wartości wynoszącej 0,402 mg/dm³.

Neogeńsko-paleogeńskie piętro wodonośne obejmuje zazwyczaj 4 poziomy wodonośne:

- górnomioceński (nadwęglowy) poziom wodonośny – w utworach piaszczystożwirowych, w stropowych partiach zaliczanych do serii Gozdnicy,

 środkowomioceński poziom wodonośny (międzywęglowy) – w utworach piaszczystych serii śląsko-łużyckiej,

 dolnomioceński poziom wodonośny (podwęglowy) – w utworach piaszczystych serii żarskiej,

- oligoceński poziom wodonośny

- w utworach piaszczystych serii lubuskiej. W obrębie piętra neogeńsko-paleogeńskiego utworami wodonośnymi są piaski drobnoziarniste i pyłowate, sporadycznie żwiry przeławicone: iłami, mułkami, kaolinami i pokładami wegla brunatnego. Neogeńskopaleogeńskie piętro wodonośne nie tworzy jednolitych struktur wodonośnych, lecz skomplikowany układ wielowarstwowy wyklinowujących się warstw i soczewek ze strefami kontaktów hydraulicznych wód poziomów czwartorzędowych i neogeńskopaleogeńskich. Liczne zawodnione warstwy i soczewki piaszczysto-żwirowe charakteryzuja się zmienna miaższościa, rozprzestrzenieniem i słabą odnawialnością. Występują na różnych głębokościach wśród iłów, pyłów i węgli brunatnych. W rejonach silnie zaburzonych glacitektonicznie utwory neogeńskopaleogeńskie występują w postaci łusek, wyciśnięć, diapirów, czy też kier glacitektonicznych w obrębie utworów czwartorzędowych (ich obecność stwierdzana jest często bardzo płytko pod powierzchnią). Wodonośność utworów neogeńsko-paleogeńskich jest zazwyczaj słabo zbadana a rozpoznane zostały tylko punktowo górne partie wodonośne mio-

cenu – poziom wodonośny nadwęglowy i międzyweglowy (w rejonie Chocicza oraz w okolicach Jasienia i Lutola) do głębokości około 100-150 m. Głębiej zalegające horyzonty wodonośne miocenu i oligocenu rozpoznano na głębokościach 150-250 m (międzywęglowy i podwęglowy). Ujmowanie tych poziomów lokalnie stwarza techniczne trudności w wykonaniu studni, gdzie czynnikiem utrudniającym ujęcie wód podziemnych jest drobnoziarnisty i pylasty charakter warstw wodonośnych zawierających koloidalną zawiesinę węgla brunatnego. Głębiej ujmowane wody (na głębokości poniżej 150 m), zwłaszcza na kontakcie z utworami triasu, moga mieć dodatkowo charakter wód mineralnych, o wysokiej zawartości jonów: chlorkowego, siarczanowego i sodowego a także fluorkowego i bromkowego (Wróbel, 1989, 1997). W rejonie Zielonej Góry wody podziemne stanowią fragment zbiornika artezyjskiego, charakteryzującego się dużą zmiennością: miaższości, wykształcenia litologicznego, warunków filtracji i chemizmu. Wody występuja w osadach środkowego i dolnego miocenu, lokalnie oligocenu (które łączą się hydraulicznie z nadległymi horyzontami miocenu). Mogą one występować na głębokościach od około 75 m (Krosno Odrzańskie) do około 230 m (Nowa Sól). Wody podziemne występują pod ciśnieniem, zwierciadło wody ma charakter subartezyjski lub artezyjski. Dostępne strefy wodonośne w utworach miocenu, występują najczęściej w zakresie głębokości 50-100 m, ich miąższość wynosi 20-40 m, przy czym sumaryczna miaższość warstw wodonośnych w całym profilu utwoneogeńsko-paleogeńskich rów przekracza 40 m lokalnie może dochodzić nawet do około 120-150 m. Wydajności studni najcześciej wynoszą od 10 do 30 m³/h (maksymalnie do 50 m³/h). Poziomy wodonośne głębiej występujace (ponad 150 m) w utworach miocenu i oligocenu (poziomy międzyweglowy i podweglowy) nie posiadają charakteru użytkoweg0.

Chemizm wód podziemnych piętra neogeńsko-paleogeńskiego w rejonie obszaru przetargowego opracowano na podstawie danych z hydrogeologicznych opracowań kartograficznych (Mapa hydrogeologiczna Polski w skali 1 : 50 000) oraz analiz fizykoche-

micznych z monitoringu diagnostycznego wód podziemnych przeprowadzonego w latach 2011-2020. Wody ujmowane z piętra neogeńskiego są zazwyczaj wodami typu HCO₃-SO₄-Ca lokalnie HCO₃-SO₄-Cl-Ca-Na o odczynie obojętnym lub lekko zasadowym (pH od 7,01 do 7,68). Mineralizacja wód wyrażona suchą pozostałością waha się w granicach 200–900 mg/dm³. Zgodnie z Rozporządzeniem Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 11 października 2019 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych (Dz. U. 2019 poz. 2148) wody piętra neogeńskiego zostały zaklasyfikowane w rejonie obszaru przetargowego do II klasy jakości. Wskaźnikami fizyczno-chemicznymi w zakresie stężeń II klasy jakości są przede wszystkim podwyższone zawartości NH₄, żelaza, siarczanów, chlorków oraz wodorowęglanów i wapnia. Zawartości żelaza w tych wodach oscylują zazwyczaj w granicach 0,28–2,24 mg/dm³ (lokalnie dochodząc do $12,0 \text{ mg/dm}^3$), natomiast jonu amonowego wahaja się od 0,06 do 0,64 mg/dm³ przekraczając wartości graniczne dla wód pitnych. Zawartości pozostałych form azotu w wodach podziemnych, czyli azotanów i azotynów nie przekraczają wartości granicznych dla wód wynoszą odpowiednio pitnych do i 1,79 mg/dm³ azotanów (w analizach archiwalnych zawartość azotanów dochodziła do 42,9 mg/dm³) i <0,01 mg/dm³ azotynów. Stężenia chlorków w wodach podziemnych wahają się od 22,0 do 85,8 mg/dm³, natomiast siarczanów od 94,0 do 145 mg/dm³ (analizy archiwalne wskazują na zawartość siarczanów niektórych punktach dochodzaca W do 342 mg/dm³), zaś maksymalna zawartość manganu wynosi do 0,185 mg/dm³ (lokalnie do $1,55 \text{ mg/dm}^3$ w analizach archiwalnych wykonanych w ramach realizacji Mapy hydrogeologicznej Polski w skali 1 : 50 000), przekraczając normy dla wód pitnych.

W utworach **triasu** stwierdzono występowanie wód podziemnych w osadach wapienia muszlowego i pstrego piaskowca (Bielecka i in., 2001; Wagner i Sadurski, 2004; Wróbel, 1989, 1997). Poziomy wodonośne wapienia muszlowego i pstrego piaskowca charakteryzuje się wysoką mineralizacją, w granicach 1–500 g/dm³ (są to wody chlorkowo-sodowe oraz chlorkowo-sodowo-wapniowe z zawar-tością bromu i jodu, o podwyższonej tempera-turze w złożu do 30°C).

W granicach obszaru przetargowego Zielona Góra Zachód znajdują się fragmenty Głównych Zbiorników Wód Podziemnych: nr 149 Sandr Krosno-Gubin, który zajmuje około 8% powierzchni obszaru przetargowego, nr 301 Pradolina Zasieki-Nowa Sól, który zajmuje około 12% powierzchni obszaru przetargowego oraz niewielki fragment proponowanego obszaru ochronnego wyznaczonego dla GZWP nr 150 Pradolina Warszawa-Berlin (Mikołajków i Sadurski, 2017; Tab. 2.2).

Na przeważającej części obszaru przetargowego stopień zagrożenia głównego użytkowego poziomu wodonośnego został określony jako średni (Fig. 2.27). Wysoki i bardzo wysoki stopień zagrożenia występuje przede wszystkim w dolinie Bobru oraz w rejonie Zielonej Góry co jest to związane z zespołem miejsko-przemysłowym Zielonej Góry oraz ze słabo izolowanymi poziomami wodonośnymi doliny Bobru. Niski i bardzo niski stopień zagrożenia wód podziemnych występuje w południowo-zachodnim rejonie obszaru przetargowego, gdzie dominują jednostki hydrogeologiczne z głównym użytkowym poziomem wodonośnym w utworach neogeńsko-paleogeńskich.

Obszar przetargowy Zielona Góra Zachód jest położony w obrębie trzech dokumentacji hydrogeologicznych ustalających zasoby dyspozycyjne wód podziemnych. W tabeli 2.3 zestawiono wielkość zasobów dyspozycyjnych w poszczególnych rejonach wodnogospodarczych wód podziemnych znajdujących się w obrębie omawianego obszaru.

Na omawianym obszarze zlokalizowanych jest kilkadziesiąt ujęć wód podziemnych, które eksploatują wody wszystkich użytkowych pięter wodonośnych. Najwięcej ujęć bazuje na czwartorzędowym piętrze wodonośnym. Ujęcia o największych poborach powyżej 100 tys. m³/rok, skoncentrowane są w rejonie Zielonej Góry, Nowogrodu, Jasienia i Świdnicy. Eksploatują one wody przede wszystkim na potrzeby komunalne mieszkańców a ich lokalizację warunkuje obecność dużych zespołów miejsko-przemysłowych. Informacje o zasobach eksploatacyjnych oraz o średnim poborze wód podziemnych ujęć zlokalizowanych w granicach obszaru przetargowego podano w Tab. 2.4.

W obrębie obszaru przetargowego Zielona Góra zachód jest zlokalizowana jedna strefa ochronna ujęcia wód podziemnych Łężyca ustanowiona Rozporządzeniem nr 1/2012 Dyrektora Regionalnego Zarządu Gospodarki Wodnej we Wrocławiu z dnia 17 kwietnia 2012 r. w sprawie ustanowienia strefy ochronnej ujęcia komunalnego wody podziemnej w Łężycy, na terenie gminy Zielona Góra, powiat zielonogórski, województwo lubuskie (Dz. Urz. Woj. Lubus. z dn. 20 kwietnia 2012 r. poz. 911).

Poza obszarem przetargowym wokół ujęć komunalnych Zielonej Góry ustanowiono strefy ochrony pośredniej:

- Rozporządzenie Dyrektora Regionalnego Zarządu Gospodarki Wodnej we Wrocławiu z dnia 15 marca 2004 r. w sprawie ustanowienia strefy ochronnej dla Centralnego Ujęcia Wody w Zawadzie k. Zielonej Góry dla Zakładu Wodociągów i Kanalizacji w Zielonej Górze (Dz. Urz. Woj. Lubus. Nr 19, poz. 332 z późn. zm.).
- Rozporządzenie Nr 10/2007 Dyrektora Regionalnego Zarządu Gospodarki Wodnej we Wrocławiu z dnia 10 września 2007 r. zmieniające rozporządzenie nr 4/2007 Dyrektora Regionalnego Zarządu Gospodarki Wodnej we Wrocławiu z dnia 9 maja 2007 r. w sprawie ustanowienia strefy ochronnej ujęcia wody podziemnej Glinka Górna, gmina Jasień, powiat żarski, województwo lubuskie.

W granicach terenów ochrony pośredniej obowiązują ograniczenia w użytkowaniu terenu oraz lokalizowaniu niektórych inwestycji. Zasięg stref ochronnych oraz pełen zakres tych ograniczeń jest dostępny w Rozporządzeniach Dyrektora RZGW Wrocław.

Fig. 2.26. Położenie obszaru przetargowego Zielona Góra Zachód na tle jednostek fizycznogeograficznych oraz JCWPd i GZWP.

Fig. 2.27. Położenie obszaru przetargowego Zielona Góra Zachód na tle jednostek hydrogeologicznych.

Numer zbiornika	Nazwa zbiornika	Wiek utworów	Typ ośrodka wodonośnego	Szacunkowe zasoby dyspozycyjne [tys. m³/24h]	Średnia głębokość zwierciadła wód podziemnych [m p.p.t.]
301	Pradolina Zasieki-Nowa Sól	Q _p	porowy	53,2	30
149	Sandr Krosno-Gubin	Qs	porowy	47,4	25

Tab. 2.2. Podstawowa charakterystyka hydrogeologiczna głównych zbiorników wód podziemnych, których fragmenty występują na obszarze przetargowym Zielona Góra Zachód (Mikołajków i Sadurski, 2017). Q_P – utwory czwartorzędu w pradolinach; Q_s – utwory czwartorzędu w sandrach.

Tytuł dokumentacji	Wykonawca	Nr decyzji zatwierdzają- cej zasoby dyspozycyjne	Obszar bilanso- wy wód podziem- ziem- nych	Rejon wodno-gosp. wód pod- ziemnych	Pow. rejonu wodno- gosp. [km ²]	Zasoby dyspozycyjne w rejonie wodno-gosp. [m ³ /24h]
Dokumentacja zaso- bów dyspozycyjnych Międzyrzecza Odry				W-XI F Przy- odrze Młynkowo-	684.0 [*] 1057.9 ^{**}	183 597 [*] 130 743 ^{**}
i Bobru w tym: GZWP nr 149 Sandr Krosno- Gubin i GZWP nr 301	Bielecka i in., 2001	DG/kdh/ED/4 89-6336/01	W-XI Przyod- rze	Nysa Łużycka W-XI E Przy-	546.3*	146 628 [*]
Zasieki-Nowa Sól (dotyczy obszaru mię- dzy Nysą Łużycką i Odrą)			120	odrze Siedlisko - Młynkowo	270.5**	33 431**
Dokumentacja hydro- geologiczna ustalająca zasoby dyspozycyjne wód podziemnych zlewni Nysy Łużyckiej (od granicy państwa do ujścia do Odry)	Czerski i in., 2011	DGiKGhg- 4731- 1/6809/8803/1 1/MJ	W-V Nysa Łużycka (prawa)	Lubsza (W-V B)	910,3	71 400
Dokumentacja hydro- geologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilansowego: zlewnia środkowego Bobru (bez zlewni Szprotawy) i polskiej części zlewni Izery	Koślacz i in., 2018	DGK- II.4731.26.201 8.AJ	W-VI Bóbr	Bóbr Dolny (W-VI F)	373,9	77 727

* wielkość zasobów dyspozycyjnych obliczona dla fragmentu rejonu wodno-gospodarczego objętego dokumentacją ** wielkość zasobów perspektywicznych obliczona dla fragmentu rejonu wodno-gospodarczego nieudokumentowanego

Tab. 2.3. Zestawienie wielkości ustalonych zasobów dyspozycyjnych wód podziemnych w rejonach wodnogospodarczych znajdujących się w obrębie obszaru przetargowego Zielona Góra Zachód.

Nr	Użytkownik ujęcia	Nazwa ujęcia/ miejscowość	Wiek warstwy wodonośnej	Pobór (2019) [m ³ /24h]
1	Zielonogórskie Wodociągi i Kanalizacja Sp. z o.o.	Ujęcia: "Zacisze"/Zielona Góra ul. Zjednoczenia/Zielona Góra Ochla Jarogniewice Łężyca Łężyca	Q	1 872,9
2	Zakład Komunalny Sp. z o.o. w Jasieniu	Jasień	Q	316,9
3	Zakład Gospodarki Komunalnej i Mieszkaniowej w Nowogrodzie Bobrzańskim Sp. z o.o.	Nowogród Bobrzański	Q	152,0
5	Spółka Wodno Ściekowa Miasta i Gminy Nowogród Bobrzański	SUW Pielice-Pierzwin SUW Bogaczów	Q	252,4
6	Urząd Gminy Dąbie	Dąbie	Q	104,9
7	Zakład Usług Komunalnych w Świdnicy	Świdnica	Q	103,7
8	Polski Związek Działkowców Rodzinnego Ogrodu Działkowe- go Sawanna	Zielona Góra	Q	130,00
9	NOVITA S.A.	Zielona Góra	Q	127,1

Tab. 2.4. Wykaz największych ujęć zaopatrzenia w wodę w granicach obszaru przetargowego Zielona Góra Zachód.

3. SYSTEM NAFTOWY 3.1. OGÓLNA CHARAKTERYSTYKA NAFTOWA OBSZARU PRZETARGOWEGO

System naftowy jest określany jako zespół procesów geologicznych i naftowych prowadzący do powstania złoża węglowodorów. Do podstawowych elementów systemu naftowego zalicza się: skałę macierzystą – ze względu na zawartość kopalnej substancji organicznej stanowi źródło powstawania węglowodorów, skałę zbiornikową - której odpowiednie właściwości petrofizyczne (porowatość, przepuszczalność) pozwalają na akumulację węglowodorów, oraz skałę uszczelniającą - która jest skałą nieprzepuszczalną i uniemożliwia ucieczkę medium złożowego. Ponadto nieodzownym elementem systemu naftowego w złożach konwencjonalnych jest pułapka naftowa, która ze względu na swoje cechy strukturalne lub stratygraficzno-litologiczne tworzy miejsce akumulacji węglowodorów. Niezbędnym do zaistnienia systemu naftowego i powstania złoża weglowodorów jest zespół procesów umiejscowionych w przestrzeni i w czasie geologicznym, na które składają się: generowanie, ekspulsja, migracja i akumulacja węglowodorów oraz formowanie pułapki złożowej. Wzajemne relacje czasowe pomiędzy wspomnianymi elementami i procesami systemu naftowego pozwalają na powstanie złoża.

Budowa tektoniczna obszaru przetargowego Zielona Góra Zachód oraz parametry węglowodorowe w poszczególnych piętrach strukturalnych pozwalają rozróżnić dwa odrębne systemy naftowe, z czego ten drugi należy traktować jako system podrzędny. Są to:

- cechsztyński system naftowy (główny cel poszukiwawczy)
- karbońsko-dolnopermski system naftowy (podrzędny cel poszukiwawczy).

Cechsztyński system naftowy stanowi zamknięty system hydrodynamiczny. Oznacza to, że system ten jest uszczelniony zupełnie od otoczenia, a utwory dolomitu głównego (Ca2) pełnią rolę jednocześnie skały macie-

rzystej oraz skały zbiornikowej (Fig. 3.1). Za skały macierzyste uznaje sie skały pochodzenia mikrobialnego (cyjanobakterie) i glonowego (Kotarba i Wagner, 2007), które mogą występować w dwóch odmianach: 1) zwartej - kompleksy związane z budowlami mikrobialno-glonowymi oraz warstwami mudstonów, 2) rozproszonej - tworzące laminy cyjanobakterii, stabilizujące osad ziarnisty (Słowakiewicz i Gasiewicz, 2013; Słowakiewicz i in., 2016). Skała zbiornikowa składa się najczęściej z wapieni i dolomitów reprezentowanych przez greinstony i pakstony (Fig. 3.1). Odnotowuje się wśród nich liczne objawy na rdzeniach wiertniczych, jak również udokumentowano liczne złoża ropy naftowej, ropy naftowej i gazu ziemnego oraz gazu ziemnego. Cechsztyński system naftowy posiada podwójne, bardzo efektywne uszczelnienie. Od spągu, jak również od stropu uszczelniony jest miąższymi ewaporatami cyklotemów PZ1 i PZ2 (Fig. 3.1). W sąsiedztwie obszaru przetargowego Zielona Góra Zachód w utworach Ca2 udokumentowano występowanie złóż gazu ziemnego oraz ropy naftowej i gazu ziemnego m.in: złoże Czeklin, Nowa Sól, Otyń, Lelechów.

Na obszarze przetargowym istnieje duże prawdopodobieństwo występowania karbońsko-dolnopermskiego systemu naftowego. Za skałę macierzystą, z której jest generowany gaz ziemny, uznaje się utwory dolnego karbonu (Fig. 3.1). W pewnych przypadkach moga także występować zredukowane fragmenty górnego karbonu (Fig. 3.1), których depozycja ograniczała się do lokalnych rowów tektonicznych. Skałą zbiornikową są piaskowce górnego czerwonego spagowca (Fig. 3.1). Najlepszymi własnościami kolektorskimi charakteryzują się osady eoliczne, jednakże są możliwe także akumulacje węglowodorów w osadach korytowych facji aluwialnych i fluwialnych. Uszczelnieniem dla karbońsko-dolnopermskiego systemu naftowego są ewaporaty cechsztynu cyklotemu PZ1 (Fig. 3.1). Na obszarze przetargowym i jego najbliższej okolicy nie odkryto złóż gazu ziemnego w utworach górnego czerwonego spągowca, aczkolwiek w otworach wiertniczych i na rdzeniach wiertniczych występują objawy węglowodorów. Na wschód od omawianego obszaru udokumentowano występowanie licznych złóż gazu ziemnego w utworach górnego czerwonego spągowca – Grochowice, Kulów, Dębina.

Fig. 3.1. Schemat prezentujący poszczególne elementy cechsztyńskiego i karbońsko-dolnopermskiego systemu naftowego dla obszaru przetargowego Zielona Góra Zachód. Ciemniejszy kolor przedstawia pewne elementy systemu naftowego, zaś jaśniejszy kolor przedstawia mniej pewne/hipotetyczne elementy systemu naftowego.

3.2. SKAŁY MACIERZYSTE

Karbon Litologia: ilowce i mułowce

Miąższość: nieprzewiercony

 \sim 47,4 m w otworze Strużka 1 (najmniejsza miąższość z obszaru przetargowego), \sim 321,5 m w otworze Dęby 1 (największa miąższość z obszaru przetargowego).

Głębokość zalegania:

Dachów: 1432,5–1508,0 m, Dęby 1: 1049,0– 370,5 m, Niwiska 1: 1645,0–1700,0 m, Strużka 1: 1445,0–1492,4 m, Piaski 1: 1870,0–2021,8 m.

Bezpośrednio w obszarze przetargowym Zielona Góra Zachód utwory karbonu zostały nawiercone w jego centralnej oraz północnej i zachodniej cześci. Niestety w otworach tych brak jest szczegółowych informacji na temat potencjału weglowodorowego przewiercanych formacji karbońskich. W ostatnich latach szczegółowe badania rozproszonej materii organicznej występującej w karbonie wykonano w ramach opracowania Podhalańskiej i in. (2016), podsumowanych m.in. w pracy Nowaka (2016) oraz Romana (2016). Badaniami tymi objęto wybrane otwory, głównie centralnej części eksternidów waryscyjskich. Otwory najbliżej obszaru badań, które poddano analizie, to Siciny IG-1 oraz Paproć 29. Stwierdzono w nich występowanie materii organicznej w postaci macerałów głównie dwóch podstawowych grup - witrynitu i inertynitu, będącymi humusowymi składnikami materii organicznej. W badanych skałach karbonu zaobserwowano dwie generacje witrynitu: autochtoniczny (pierwotny) i allochtoniczny (wtórny) - redeponowany; różnią się one barwą, refleksyjnością i formą występowania. Witrynit pierwotny występuje zwykle w formie drobnych i cienkich pasemek oraz niewielkich fragmentów (witrodetrynit). Inertynit jest drugą grupą składników organicznych powszechnie występujących w skałach karbonu podłoża monokliny przedsudeckiej (Nowak, 2003). W badanych skałach macerały z grupy inertynitu są reprezentowane przede wszystkim przez inertodetrynit, a czasami w przypadku występowania większych fragmentów inertynitu jest możliwe rozpoznanie

56

fuzynitu, semifuzynitu, sekretynitu czy funginitu.

Biorąc pod uwagę, że materia organiczna stwierdzona w karbonie charakteryzuje się dominacją humusowych komponentów o lądowym pochodzeniu z dużą domieszką redeponowanego witrynitu (do 18%), badane utwory karbonu podłoża monokliny przedsudeckiej zakwalifikowano jako skały macierzyste o III typie kerogenu (Nowak, 2016). W opracowaniach starszych (Wagner, 2008) wskazywano, że gazy termogeniczne najprawdopodobniej powstały z pojedynczej skały macierzystej zawierającej kerogen III lub mieszany III/II.

Najliczniej w przeanalizowanych próbkach karbońskich występuje witrynit wraz z detrytusem humusowym (66–100%) i inertynit (do 22%). Taki skład materii organicznej rozproszonej w badanych skałach karbonu podłoża monokliny przedsudeckiej jest typowy dla morskich osadów turbidytowych (Nowak, 2003).

Dotychczasowe badania utworów karbońskich nie doprowadziły do jednoznacznego wskazania poziomów litologicznychfacjalnych, z którymi można by wiązać istotne (duże) jednostkowe nagromadzenia materii organicznej. Zwykle konkludowano (np. Wagner i in., 2008), że wydzielenie konkretnych poziomów macierzystych, a tym samym określenie ich miąższości tylko na podstawie kryteriów geochemicznych, jest niemożliwe. Jednoznaczne wyróżnienie kompleksów skał macierzystych jest utrudnione ze względu na charakter litologiczny utworów karbonu, jak również ze względu na ograniczony materiał badawczy - w większości przypadków nawiercane są tylko stropowe partie karbonu. Dlatego też w analizach generacyjnych przyjmowano najczęściej obecność przewarstwień skał typu macierzystego w całym przedziale głębokościowym analizowanego wydzielenia stratygraficznego karbonu.

W sąsiedztwie obszaru Zielona Góra Zachód jedynie w otworze Siciny IG-1 podjęto próbę wydzielenia takich horyzontów poprzez interpretację pomiarów geofizycznych skalibrowanych badaniami geochemicznymi próbek skał. Na profilu widać dwa kompleksy o miąższości około 250 i 80 m, w których średnia zawartość TOC jest większa niż 2%. (Fig. 3.2; Roman, 2016)

Generalnie stopień dojrzałości termicznej, to jest przeobrażenia materii organicznej skał karbonu podłoża monokliny przedsudeckiej jest wysoki. Wartości refleksyjności witrynitu zmieniają się w szerokich granicach, w przedziale od poniżej 1,5% do ponad 5,5%. (Nowak, 2003). Zazwyczaj uzyskane wartości Ro witrynitu odpowiadają stadiom od generacji gazów po fazę destrukcji węglowodorów. Wcześniejsze publikacje (Nowak, 1999) wskazują, że główną fazę generacji gazów wykazują skały karbonu podłoża północnozachodniej i zachodniej części monokliny przedsudeckiej, natomiast w kierunku południowym i południowo-wschodnim następuje znaczący wzrost stopnia metamorfizmu oraz przeobrażenia.

Należy wspomnieć także o pracy Poprawy (2010), który w strefie występowania utwo-

rów karbonu na obszarze przetargowym Zielona Góra Zachód wykreślił mapy ukazujące poziom dojrzałość materii organicznej wyrażoną poprzez refleksyjność witrynitu (Ro) na 1,4–2,5% (Fig. 3.3) oraz średnią zawartość materii organicznej (TOC), którą ocenił na 1,2–1,6% (Fig. 3.4).

W pracy Botora i in. (2013) wyznaczony poziom dojrzałości karbońskiej materii organicznej (Ro) skalkulowanej dla stropu karbonu wyniósł 1,5–2,0% (Fig. 3.5–3.6). Oba przytoczone przedziały są wystarczające do generacji gazu ziemnego

Podsumowanie. Na obszarze przetargowym Zielona Góra Zachód istnieje duża szansa występowania pakietów skał karbońskich zawierających rozproszoną materię organiczną, która mogła wygenerować węglowodory (głównie gazowe) w ilościach komercyjnych.

Fig. 3.2. Zestawienie pomiarów geofizycznych z wyznaczonymi poziomami perspektywicznymi dla występowania węglowodorów w utworach karbonu w otworze Siciny IG-1 (Roman, 2016).

Fig. 3.3. Mapa refleksyjności witrynitu (Ro) dla utworów karbonu obszaru przetargowego Zielona Góra Zachód i w jego sąsiedztwie (Poprawa, 2010).

Fig. 3.4. Mapa średniej zawartości materii organicznej (TOC) w utworach karbonu obszaru przetargowego Zielona Góra Zachód i w jego sąsiedztwie (Poprawa, 2010).

Fig. 3.5. Potencjał węglowodorowy dla utworów karbonu południowej i południowo zachodniej części Polski (eksternidy waryscyjskie; Botor i in., 2013).

Fig. 3.6. Indeks wodorowy (HI) vs. Tmax dla utworów karbonu południowo-zachodniej i południowej części Polski (eksternidy waryscyjskie; Botor i in., 2013)

Dolomit główny Litologia: dolomity i wapienie, madstony, bandstony, pakstony i greinstony

Miąższość: 24,6–82,7 m.

Głębokość zalegania (patrz Tab. 2.1). Główna skała macierzysta dolomitu głównego stanowią osady platformy węglanowej. Badania geochemiczne dolomitu głównego były skoncentrowane m.in. w północnej części platformy śląsko-sudeckiej. Zostały one opublikowane w pracach Kosakowskiego i Wróbel (2010) oraz Kosakowskiego i Krajewskiego (2014). Pomimo braku badań na otworach wiertniczych zlokalizowanych na obszarze przetargowym Zielona Góra Zachód, utwory dolomitu głównego występują w tych samych strefach facjalnych i charakteryzowały zbliżoną historią geologiczną (podobne pogrążenia, grubość nadkładu, wielkość strumienia cieplnego itd.). Można założyć, że wyniki badań geochemicznych północnej części platformy śląsko-sudeckiej będą reprezentatywne dla obszaru przetargowego Zielona Góra Zachód.

Kosakowski i Wróbel (2010) wykonali badania geochemiczne w 39 otworach wiertniczych. Według mapy paleogeograficznej dolomitu głównego (Wagner, 2012) ponad połowa z tych otworów położona jest w północno-zachodniej i północnej części platformy ślasko-sudeckiej. Materia organiczna składa się głównie z macerałów grupy liptynitu, wskazujących II typ kerogenu (Fig. 3.7). Obserwuje się strefowość dojrzałości termicznej materii organicznej, która odzwierciedla układ paleogeograficzny dolomitu głównego (Kosakowski i Wróbel, 2010). Charakteryzuje się ona zwiększaniem dojrzałości termicznej materii organicznej od osadów platformy węglanowej w kierunku równi basenowej. Refleksyjność witrynitu utworów północnej części platformy śląsko-sudeckiej (sensu platforma wielkopolska) waha się od 0,5 do 1,35% Ro, co odpowiada tzw. oknu ropnemu. Pobrane próbki dolomitu głównego do badań geochemicznych z obszaru północnej i północno-zachodniej części platformy śląskosudeckiej potwierdzają, że był on aktywną skałą macierzystą.

Szczegółowe badania sedymentologicznogeochemiczne dolomitu głównego jako skały macierzystej zostały przedstawione w pracy Kosakowskiego i Krajewskiego (2014). Wyniki badań przedstawiają regionalną charakterystykę mikrofacjalną i geochemiczną m.in. północnej części platfomy śląsko-sudeckiej, odpowiadającej obszarowi przetargowemu Zielona Góra Zachód.

Ilościowo, najlepszymi parametrami zawartości węglowodorów (HI) i całkowitej zawartości materii organicznej (TOC) charakteryzują się osady platformy węglanowej (Fig. 3.8; Pletsch i in., 2010). Jednakże, w pionowym profilu geochemicznym utwory dolomitu głównego wykazują większe ich zróżnicowanie. Wysokie zawartości TOC i HI wydają się nie występować w całym profilu, lecz jedynie w jego najpłycej pogrzebanych częściach (Fig. 3.8; Kotarba i Wagner, 2007).

W świetle badań geochemicznych (Kosakowski i Krajewski, 2014; Tab. 3.1–3.3; Fig. 3.8– 3.9) osady stoku platformy węglanowej mają słaby lub dobry potencjał węglowodorowy (średnia zawartość bituminów 1430 ppm), osady platformy węglanowej dobry potencjał węglowodorowy (średnia zawartość bituminów 4930 ppm), natomiast osady przykrawędziowej bariery mają najwyższy potencjał węglowodorowy (średnia zawartość bituminów 9560 ppm).

Fig. 3.7. Charakterystyka skały macierzystej dolomitu głównego południowo-zachodniej Polski (Kosakowski i Wróbel, 2010)

Index	Ш		Ш		IV		V		VII		IX		XI	XIII	
Total organic carbon (TOC) (wt. %)	0.01 to 3.36 0.21	(<u>183</u>) (13)	0.00 to 3.87	(<u>34)</u> (8)	0.00 to 0.77	(<u>30)</u> (7)	0.04 to 0.11	(10) -(2)	0.01 to 0.04 0.02	((10))	0.01 to 0.83 0.19	(<u>20</u>) (3)	0.01 to 0.77 0.27	$(\frac{7}{1}) \frac{0.01 \text{ to } 0.1}{0.03}$	1 (<u>5)</u> (1)-
$S_1 + S_2 (mg HC/g rock)$	0.18 to 3.12 0.86	(<u>38)</u> (5)	0.08 to 10.71 2.01	(<u>8)</u> (4)	0.11 to 0.98 0.65	(<u>8)</u> (5)	-		-		0.51 to 2.51 1.24	(<u>5)</u> (1)	0.33 to 2.26 1.25	$(\frac{4}{1}) -$	
Hydrogen index (HI) (mg HC/g TOC)	25 to 225 75	(<u>38)</u> (5)	67 to 166 116	$(\underline{8})$ $(\underline{4})$	56 to 10 83	(<u>8)</u> (5)	-		-		52 to 170 109	(<u>5)</u> (1)	90 to 145 119	$\frac{(4)}{(1)}$ -	
Oxygen index (OI) (mg CO ₂ /g TOC)	6 to 219 103	(<u>38)</u> (5)	<u>5 to 180</u> 74	$(\frac{8}{4})$	8 to 204 113	(<u>8)</u> (2)	-		-		93 to 604 280	(<u>5)</u> (1)	69 to 223 159	$\frac{(4)}{(1)}$ -	
T _{max} (°C)	434 to 510 454	(<u>31)</u> (5)	435 to 462 449	$(\frac{6}{3})$	420 to 456 436	(<u>8)</u> (5)	-		-		433	(1)	433 to 442	$\frac{(2)}{(1)} -$	
Production index (PI)	0.30 to 0.89 0.50	(<u>38)</u> (5)	0.22 to 0.53 0.31	$(\frac{8}{4})$	0.36 to 0.56 0.45	(<u>8)</u> (5)	-				0.38 to 0.69 0.58	(<u>5)</u> (1)	0.33 to 0.87 0.56	$\frac{(4)}{(1)} =$	
Bitumens (ppm)	210 to 2800 1000	(<u>19)</u> (5)	190 to 2370 1068	$(\frac{8}{4})$	440 to 1070 653	(<u>3)</u> (3)	-		-		100 to 5380 2303	(<u>3)</u> (1)	1880	(1) -	
Aromatics HC (%)	13 to 46 33	(<u>10)</u> (5)	29 and 39 -	(2) (2)	36		-		-		_		22	-	
Saturated HC (%)	10 to 37 22	$(\underline{10})$ (5)	28 and 32 -	(2) (2)	16				-				19	776	
Resins (%)	3 to 22 14	$(\frac{10}{5})$	20 and 21 -	(2) (2)	12		-		-				16	-	
Asphaltenes (%)	14 to 49 31	$(\frac{10}{5})$	9 and 22	(2) (2)	36		-		-		- 1		43	-	

TOC – total organic carbon; Tmax – temperature of maximum of S₂ peak; S₂ – residual petroleum potential; S₁ – oil and gas yield (mg HC/g rock); PI – production index; HI – hydrogen index; OI – oxygen index. Range of geochemical parameters is given as numerator; median values in denominator, in parentheses: number of samples from wells (numerator) and number of sampled wells (denominator).

Objaśnienia parametrów: TOC – całkowity węgiel organiczny, Tmax – temperatura maksymalnej generacji węglowodorów w trakcie crackingu kerogenu, S2 – potencjał generacyjny, S1 – wolne węglowodory, PI – wskaźnik produkcyjności, HI – wskaźnik wodorowy, OI – wskaźnik tlenowy, Bitumens – zawartość bituminów, Aromatics HC – zawartość węglowodorów aromatycznych, Saturated HC – zawartość węglowodorów nasyconych, Resins – zawartość żywic, Asphaltenes – zawartość asfaltenów. Zakres parametrów geochemicznych podany jest w liczniku, wartości średnie w mianowniku, w nawiasie: liczba próbek (licznik) oraz liczba otworów (mianownik).

Objaśnienia przebadanych pod względem macierzystości mikrofacji występujących na obszarze północnej części platformy śląsko-sudeckiej: II – mikrobialno-klastyczne dolopakstony i dolomadstony (facja środkowej i dolnej partii oraz podstawy skłonu platformy węglanowej); III - mikrobrekcje, litoklastyczne dolopakstony, greinstony, dolofloatstony, dolomadstony (facja górnej i środkowej partia skłonu platformy węglanowej); IV - laminowane dolopakstony peloidalne, dolobindstony, dolomadstony (facja rampy stoku platformy weglanowej); V – dologreinstony i dolo-pakstony ooidowe (facja wysokoenergetycznej, płytkiej bariery platformy węglanowej, facja wewnątrzplatformowej ławicy oolitowej oraz facja wyższej partii stoku platformy weglanowej); VI – mikrytowe dologreinstony i pakstony ooidowe (facja średnioenergetycznj, płytkiej wewnątrzplatformowej ławicy oolitowej); VII – mikrobialne dolobindstony i mikroframestony, dolopakstony (facja płytkich, krawędziowych lub wewnatrzplatformowych raf mikrobialnych); IX - algowe dolopakstony i grainstony z ziarnami agregatowymi, dolobindstony (facja płytkiej, otwartej lub ograniczonej wewnętrznej platformy węglanowej, budowle mikrobialno-glonowe); X – bioklastowo-peloidowe dolowakstony i madstony (facja płytkiej, chronionej wewnętrznej platformy węglanowej z umiarkowaną lub niską cyrkulacją wód); XI - fenestralne, mikrobialne dolobindstony, dolomadstony i dolopakstony (facja wewnatrzplatformowej równi pływowej); XIII - dolorudstony i floatstony litoklastyczne, dolopakstony (facje wewnatrzplatformowych kanałów i równi pływowych); XIV – słabo laminowany mikryt, mikrosparyt z minerałami ewaporatowymi (facja wewnątrzplatformowych kanałów i równi pływowych).

Tab. 3.1. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla facji skłonu i podnóża skłonu platformy węglanowej (Kosakowski i Krajewski, 2014).

Index	Facies					
	V		XII/V	<u>``</u>		
Total organic carbon	0.09 to 1.92	(3)	0.37 to 1.13	(5)		
(TOC) (wt. %)	0.83	(1)	0.75	(1)		
$S_1 + S_2$ (mg HC/g rock)	4.50 and 9.87	(2)	4.07 to 11.75	(5)		
		(1)	6.62	(1)		
Hydrogen index (HI)	147 and 164	(2)	147 to 207	(5)		
(mg HC/g TOC)		(1)	156	(1)		
Oxygen index (OI)	24 and 94	(2)	24 to 153	(5)		
$(mg CO_2/g TOC)$	5555	(1)	156	(1)		
$T_{\rm max}$ (°C)	434	(1)	81 1			
Production index (PI)	0.68 and 0.84	(2)	0.79 to 0.86	(5)		
	—	(1)	0.83	(1)		
Bitumens (ppm)	12440	(1)	7540 to 12800	(3)		
			9560	(1)		
Aromatics HC (%)	21	(1)	Ξ			
Saturated HC (%)	45	(1)	=			
Resins (%)	7	(1)	=			
Asphaltenes (%)	27	(1)	=			

Objaśnienia dla parametrów geochemicznych i mikrofacji znajdują się w Tab.3.1.

Tab. 3.2. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla mikrofacji krawędzi platformy węglanowej (Kosakowski i Krajewski, 2014).

Index	п		IX		X		XI		XIV	
Total organic carbon (TOC) (wt. %)	0.03 to 2.95 0.35	(<u>30)</u> (3)	0.01 to 1.32 0.23	(<u>86)</u> (7)	0.03 to 1.33 0.23	(<u>19)</u> (3)	0.03 to 0.71 0.27	$\frac{(6)}{(4)}$	0.07 to 0.84 0.27	$\frac{(8)}{(1)}$
$S_1 + S_2 (mg HC/g rock)$	0.58 to 5.16 2.32	(<u>13)</u> (3)	0.23 to 11.8 2.32	$\frac{(30)}{(6)}$	0.52 to 3.20 1.62	(<u>5)</u> (2)	0.22 to 2.21 0.74	$(\frac{4}{3})$	0.28 to 1.90 0.70	(<u>5)</u> (1)
Hydrogen index (HI) (mg HC/g TOC)	70 to 106 88	(<u>13)</u> (3)	70 to 106 88	(<u>30)</u> (6)	60 to 116 101	(<u>5)</u> (2)	63 to 180 106	$(\underline{4})$ (3)	72 to 152 103	(<u>5)</u> (1)
Oxygen index (OI) (mg CO ₂ /g TOC)	17 to 233 101	(<u>13)</u> (3)	69 to 336 172	(<u>30)</u> (6)	1 <u>6 to 153</u> 88	(<u>5)</u> (2)	45 to 261 153	$(\underline{4})$ (3)	43 to 95 80	$\frac{(5)}{(1)}$
T_{\max} (°C)	437 to 448 445	$(\frac{7}{2})$	438 to 457 445	$(\underline{11})$ (4)	437 to 446 442	$(\underline{4})$ (2)	429 to 444 434	(3) (2)	429 to 441 437	$\frac{(5)}{(1)}$
Production index (PI)	0.44 to 0.94 0.67	(<u>13)</u> (3)	0.27 to 0.83 0.59	(<u>30)</u> (6)	0.46 to 0.77 0.60	(<u>5)</u> (2)	0.19 to 0.85 0.56	$(\frac{4}{2})$	0.33 to 0.47 0.43	$\frac{(5)}{(1)}$
Bitumens (ppm)	870 to 5360 2500	$\frac{(11)}{(2)}$	510 to 15760 2500	(<u>15)</u> (5)	1950 to 4440 2950	(<u>3)</u> (2)	660 and 1010	(2) (2)	660 and 1320	$\frac{(1)}{(1)}$
Aromatics HC (%)	<u>24 and 29</u> –	$\frac{(2)}{(2)}$	<u>19 to 34</u> 26	$\frac{(8)}{(4)}$	20		<u>20 and 28</u> –	$\frac{(2)}{(2)}$		
Saturated HC (%)	<u>39 and 40</u> —	$(\frac{2}{2})$	$\frac{9 \text{ to } 69}{40}$	(<u>8)</u> (4)	14		14 and 40 _	$\binom{(2)}{(2)}$		
Resins (%)	<u>17 and 17</u>	$(\frac{2}{2})$	7 to 24 14	$\frac{(8)}{(4)}$	17		9 and 29 —	$(\frac{2}{2})$		
Asphaltenes (%)	14 and 22	$\frac{(2)}{(2)}$	3 to 56 20	$\frac{(8)}{(4)}$	21		23 and 37	$\frac{(2)}{(2)}$	-	

 $TOC - total organic carbon; Tmax - temperature of maximum of S_2 peak; S_2 - residual petroleum potential; S_1 - oil and gas yield (mg HC/g rock); PI - production index; HI - hydrogen index; OI - oxygen index. Range of geochemical parameters is given as numerator; median values in denominator, in parentheses: number of samples from wells (numerator) and number of sampled wells (denominator).$

Objaśnienia dla parametrów geochemicznych i mikrofacji znajdują się pod Tab.3.1.

Tab. 3.3. Wyniki analizy pirolitycznej Rock-Eval oraz składu grupowego bituminów z podziałem na mikrofacje w dolomicie głównym dla facji wewnętrznej części platformy węglanowej (Kosakowski i Krajewski, 2014).

Fig. 3.8. Diagram potencjału materii organicznej dolomitu głównego północnej części platformy śląsko-sudeckiej (*sensu* Kosakowski i Krajewski, 2014 – zachodnia część platformy Wielkopolskiej). Kółko – osady skłonu, trójkąt – osady bariery, kwadrat – osady platformy. A. klasyfikacja według Hunt (1996). B. Peters i Cassa (1994).

Fig. 3.9. Diagram zawartości węglowodorów względem całkowitej zawartości materii organicznej dolomitu głównego północnej części platformy śląsko-sudeckiej (*sensu* Kosakowski i Krajewski, 2014 – zachodnia część platformy Wielkopolskiej). Kółko – osady skłonu, trójkąt – osady bariery, kwadrat – osady platformy. Klasyfikacja według Hunt (1979) i Leenher (1984).

3.3. SKAŁY ZBIORNIKOWE

Dolomit główny Litologia: dolomity i wapienie, greinstony i pakstony

Miąższość: 24,6–82,7 m, wyższa w części północno-zachodniej obszaru przetargowego, w części północnej od 10 do 40 m, powyżej 40 m dla pozostałej części (z wyjątkiem odcinka na południu, gdzie Ca2 jest najprawdopodobniej zerodowany)

Głębokość stropu (patrz Tab. 2.1)

Utwory dolomitu głównego na obszarze Zielona Góra Zachód są słabo zróżnicowane mikrofacjalnie (Peryt, 1978). Praktycznie cały omawiany obszar jest zlokalizowany na platformie weglanowej składającej się z kilkudziesięciometrowej miąższości greinstonów/pakstonów (czesto onkoidowych), madstonów/wakstonów i niekiedy bandstonów. Powyższe utwory lokalnie mogły charakteryzować się dobrą porowatością i przepuszczalnością, jednak w trakcie diagenezy właściwości petrofizyczne ulegały zwykle pogorszeniu, głównie na skutek scementowania przestrzeni porowej i kompakcji chemicznej.

Procesy diagenetyczne, jakim mogły ulec utwory Ca2 na omawianym obszarze, to dolomityzacja, kalcytyzacja (dedolomityzacja), anhydrytyzacja, wczesno- i późnodiagenetyczna cementacja (głównie dolomit, kalcvt, anhydryt, halit), rekrystalizacja, rozpuszczanie (np. niektórych niestabilnych mineralogicznie szkieletów organizmów/bioklastów), kompakcja, stylolityzacja (Peryt, 1978). Procesy diagenetyczne miały różny, z reguły destrukcyjny, wpływ na własności zbiornikowe. Jedynie dolomityzacja mogła teoretycznie przyczynić się do wzrostu mikroporowatości międzykrystalicznej, a procesy rozpuszczania do rozwoju makroporowatości. Obserwuje się także zeszczelinowacenie, które – o ile szczeliny nie sa wtórnie wypełnione cementami ma bardzo duży wpływ na porowatość i przepuszczalność. Pozostałe zjawiska diagenetyczne (w szczególności cementacja i rozciśnieniem/stylolityzacja) puszczanie pod prowadziły do redukcji porowatości i przepuszczalności.

Semyrka i in. (2015) analizowali dane dotyczące porowatości i przepuszczalności osadów Ca2 na platformie Grotowa położonej na północ od omawianego tutaj obszaru (Tab. 3.4). Wyróżnili tam trzy podstawowe mikrofacje: utwory ziarnozwięzłe (pakstony, greinstony, flotstony i rudstony), mułozwiezłe (madstony i wakstony) oraz mikrobialne (bandstony – maty i budowle mikrobialne). Wydzielone mikrofacje charakteryzują się nie tylko odmiennym rozwojem litologicznym, ale również zróżnicowanymi wielkościami parametrów petrofizycznych (Tab. 3.4). Na podstawie przeprowadzonej analizy statystycznej porównano parametry petrofizyczne w/w trzech mikrofacji i stwierdzono, iż utwory ziarnozwięzłe charakteryzują się najlepszymi właściwościami zbiornikowymi (Tab. 3.4). Dla tych utworów stwierdzono wysoką średnią porowatość efektywną oraz wysoką średnią porowatość dynamiczną dla gazu i ropy (Tab. 3.4). Utwory te charakteryzowały się także wysoką przepuszczalnością.

Wartości parametrów zbiornikowych Ca2 pomierzonych w otworach wiertniczych na omawianym obszarze przedstawia Tab. 3.5. Porowatość w poszczególnych próbkach jest bardzo niska i waha się od blisko 0 do maksymalnie 7% w nielicznych przypadkach. Przepuszczalność omawianych utworów jest również bardzo niska – praktycznie w większości otworów stwierdzono jej brak. Tylko w kilku otworach zmierzono większe wartości przepuszczalności – od około 0,5 do ponad 3 mD, a w dwóch przypadkach aż nieco ponad 30 i 50 mD (odpowiednio otwór wiertniczy Nowa Sól 7 i Żarków 3; Tab. 3.5).

W rdzeniach wiertniczych Ca2 pochodzących z otworów obszaru Zielona Góra Zachód (brak jednoznacznych danych zamieszczonych w dokumentacjach z otworów: Dychów M-26, Kosierz M-25, Nowa Wieś P-9) obserwuje się ich punktowe nasycenia węglowodorami (Tab. 3.6). W niektórych otworach wiertniczych opróbowane odcinki Ca2, ze względu na słabe własności petrofizyczne, jak również historię generacji, ekspulsji i migracji węglowodorów charakteryzowały się brakiem przypływu węglowodorów (Tab. 3.6). W pozostałych otworach podczas oprobowań Ca2 uzyskano przypływ solanki, zgazowanej solanki, solanki z ropą naftową bądź nieprzemysłowy przypływ gazu ziemnego (otwór wiertniczy Bronków M-27; Tab. 3.6). Wyniki uzyskane z odcinków opróbowanych poziomu Ca2, jak również występujące na rdzeniach wiertniczych objawy węglowodorów, świadczą o potencjale naftowym obszaru przetargowego Zielona Góra Zachód.

O potencjale naftowym obszaru "Zielona Góra Zachód" mogą świadczyć również odkryte złoża w jego sąsiedztwie – Czeklin, Nowa Sól i Lelechów.

	Bandstony	Utwory mułozwięzłe	Utwory ziarnozwięzłe
Gęstość szkieletowa [g/cm ³]	2,79	2,75	2,76
Gęstość objętościowa [g/cm ³]	2,47	2,51	2,37
Porowatość efektywna [%]	12,09	8,92	14,16
Średnia kapilarna [µm]	0,49	0,82	1,65
Powierzchnia właściwa [m ² /g]	0,62	0,64	0,49
Średnica progowa [µm]	9,67	6,08	9,43
Porowatość dynamiczna dla ropy [%]	5,79	5,67	8,45
Porowatość dynamiczna dla gazu [%]	10.80	7.92	13.64

Tab. 3.4. Wyniki badań porozymetrycznych subfacji dolomitu głównego (na podstawie Semyrka, 2013 z Waśkiewicz i Kiersnowski, 2020) z obszaru półwyspu Grotowa, północnej części platformy wielkopolskiej i wschodniej części platformy Gorzowa, mogące stanowić analogiczne własności petrofizycne dla stref facjalnych obszaru przetargowego Zielona Góra Zachód.

Nazwa otworu:	Głębokość [m] (ilość prób)	Przepuszczalność [mD] (średnia)	Porowatość [%] (średnia)	Bitumiczność [%] (średnia)
Chojnowo 1	1215,0–1291,5 (63)	0,042–0,286	0,12–6,21	śladowa do 0,15
Dachów 1	1106,5–1173,2 (46)	b.s2,124	0,13–3,89	0,0185–0,0698
Dęby 1	787,6–859,7 (42)	0,041–0,0427	0,15–5,14	0,0138–0,0758
Drzonów 2	1400,9–1434,0 (32)	b.s0,202	0,13–0,74	0,02–0,0958
Jeleniów 1	1164,0–1226,0 (37)	0,074–0,0935 (0,229)	0,13–0,58 (0,302)	0,0195–0,0783 (0,0321)
Kosierz 1	1339,5–1411,5 (56)	b.s0,663	0,14–2,16	0,012–0,1633
Niwiska 1	1014,7–1059,3 (43)	$<\!\!0,\!01-\!0,\!0768$ (0,0186)	0,14–0,67 (0,21)	0,0023–0,0913 (0,0303)
Nowa Sól 7	1606,0–1108,0 (18)	<0,01–31,16	b.p0,77	0,0090–0,0760
Nowa Sól 9	1087,4–1135,2 (30)	b.p.	b.p4,73	0,0075–0,1460
Nowa Sól 16	1269,5–1300,0 (19)	0,042–0,136	0,12–0,66	0,022–0,161
Nowa Sál 18	1194,0 - 1204,4 (15)	0,061–1,994	0,13–0,22	0,0205–0,1485
Nowa 301 18	1204,3–1241,6 (37)	0,12–071	0,048–0,348	0,0083–0,0675
Pajęczno 1	1129,0–1193,0 (60)	<0,01–0,0616 (0,0272)	0,16–1,15 (0,43)	Ślady–0,1018 (0,0249)
Piaski 1	1132,0–1177,0 (30)	0,351–20,836	0,15–0,73	0,0153–0,148
Stary Zagór 1	1628,0–1685,0 (73)	0,057–0,359	0,12–3,68	0,0108–0,094
Strużka 1	1033,0–1092,0 (31)	b.s0,364	0,13–21,26	0,0123–0,0318
Świdnica 1	1359,5–1387,5 (52)	0,074–0,229	0,12–0,68	0,014–0,1593

Trzebule 1	1619,0–1645,0 (19)	0,099–0,211	0,14–3,56	0,029–0,1073
Wysoka 1	1168,0–1200,6 (30)	0,084–0,872	0,14–4,75	0,018–10,0425
Wysoka 2	1039,6–1116,2 (57)	0,054–3,366	0,14–0,99	0,005–0,0375
Żarków 1	1129,8–1158,2 (47)	0,049–0,29	0,25–1,13	0,012–0,1135
Żarków 2	727,0–753,1 (22)	0,077–0,911	0,13–1,91	0,025–1,413
Żarków 3	863,0–938,0 (23)	0,071–50,442	0,14–5,45	0,012–0,274
Żarków 4	768,9–820,0 (22)	0,106–0,361	0,19–7,26	0,0195–0,3425

b.s. – bardzo słaba przepuszczalność; b.p. – brak porowatości /przepuszczalności

Tab. 3.5. Własności zbiornikowe i objawy węglowdorów na rdzeniach wiertniczych utworów dolomitu głównego (Ca2) i ich bezpośredniego podłoża i nadkładu na obszarze przetargowym Zielona Góra Zachód – zestawione dane pochodzą z dokumentacji otworowych. Dokładne głębokości dolomitu głównego – patrz Tab. 2.1.

Nazwa otworu:	Objawy na rdzeniach	Odcinki Opróbowywane: [m]	Wyniki opróbowań:	Zawartość: solanka [g/l] gaz [%]
		1205,0-1223,0	Brak przypływu	-
Bronków M-27	+	1205,0–1277,0	Przypływ gazu palnego o małej wydajności	$\begin{array}{c} {\rm CH_4:\ 22,0047}\\ {\rm C_2H_6:\ 13,2125}\\ {\rm C_4H_{10}:\ 4,2753}\\ {\rm N2:\ 59,7132}\\ {\rm Ar:\ 0,7943} \end{array}$
		1202,0–1282,0	Przypływ 5,4 m ³ solanki ze śladami gazu	Cl ⁻ : 242,2 HCO ₃ ⁻ : 0,12 SO ₄ ³⁻ : 0,83 Fe ³⁺ : 0,22 Ca ²⁺ : 46,37 Mg ²⁺ : 0,92 Na ⁺ : 50,38 Br ⁻ : 4,37
Chojnowo 1	+	1220,0-1242,7*	Brak przypływu	-
		1105,8–1172,0*	Przypływ solanki	$\begin{array}{c} Cl^{-} + Br^{\cdot}: 195,7392 \\ HCO_{3}^{-}: 0,5002 \\ CO_{3}^{2-}: 0,1440 \\ SO_{4}^{3-}: 0,7449 \\ Ca^{2+}: 17,0889 \\ Mg^{2+}: 6,8099 \\ Na^{+}: 6,8099 \end{array}$
Dachów 1	+	1105,8–1172,0*	sodowego z niewielką ilością wapnia i magnezu	$\begin{array}{c} C\Gamma + Br^{:}: 195,7392 \\ HCO_{3}^{-}: 0,5002 \\ CO_{3}^{2^{-}}: 0,1440 \\ SO_{4}^{3^{-}}: 0,7449 \\ Ca^{2^{+}}: 17,0889 \\ Mg^{2^{+}}: 6,8099 \\ Na^{+}: 6,8099 \\ Br^{-}: 195,7392 \end{array}$

	-			
Dęby 1	+	795,3–837,0*' **	Przypływ 2,5 m ³ /h solanki z rozpuszczonym w niej gazem	Cl ⁻ : 108,8622 HCO ₃ ⁻ : 1,1102 SO ₄ ²⁻ : 2,8479 Fe ³⁺ : 1,2547 Ca ²⁺ : 7,1088 Mg ²⁺ : 7,7772 Na ⁺ : 47,4498
Dychów M-26	?	1584,0–1619,0	Bardzo minimalne objawy wskazujące na przepływ medium złożowego	Brak informacji
		1163,3–1189,1	Brak przypływu	_
Jeleniów 1	+	1163,3–1189,1**	Przypływ solanki	Cl ⁻ : 227,1186 SiO ⁻ : 0,1063 HCO ₃ ⁻ : 1,2810 SO ₄ ²⁻ : 0,5391 Fe ³⁺ : 0,5651 Ca ²⁺ : 24,7150 Mg ²⁺ : 47,3117 Na ⁺ : 28,7710 Br ⁻ : 1,5984
Kosierz 1	+	—	—	-
		1514,0–1545,0	Brak przypływu	
Kosierz M-25	?	1513,5–1581,0	Bardzo mały przypływ płuczki – ok. 0,3 m ³ /h	_
Lubiatów M-20	+	1401,0–1450,8	Przypływ płuczki – 0,011 m ³ /h – z śladami ropy naftowej	_
Niwiska 1	+	1020,0–1050,4	Brak przypływu	_
Nowa Sól 7	+	1060,0–1113,2*' **	Przypływ ok. 40 l/h solanki	Cl ⁻ : 227,6532 SiO ⁻ : 0,1064 HCO ₃ ⁻ : 0,5612 SO ₄ ²⁻ : 0,4897 Fe ³⁺ : 2,0926 Ca ²⁺ : 20,1062 Mg ²⁺ : 26,1901 Na ⁺ : 72,9567
Nowa Sól 16	+	1251,5–1296,5**	Przypływ 15 l/h solanki	Cl ⁻ : 146,0952 SiO ⁻ : 0,1392 HCO ₃ ⁻ : 0,7685 SO ₄ ²⁻ : 1,0206 Fe ³⁺ : 6,5240 Ca ²⁺ : 21,6300 Mg ²⁺ : 12,7419 Na ⁺ : 38,6327
		1194,0–1214,0***	Przypływ 100 l/dobę so- lanki i ok. 6 l ropy naftowej	Ropa średnioparafino- wa o zaw. frakcji benzy- nowej około 14% obj. i naftowej około 23% obj
Nowa Sól 18	+	1194,0–1214,0**' ***	Przypływ 120 l/dobę so- lanki z śladami gazu	Cl ⁻ : 169,1442 SiO ⁻ : 0,1368 HCO ₃ ⁻ : 0,4758 SO ₄ ²⁻ : 0,5185 Fe ³⁺ : 2,0003 Ca ²⁺ : 23,5475 Mg ²⁺ : 24,9155 Na ⁺ :33,3899

Nowa Wieś P-9	?	752,0–756,3	Przypływ 2,4 m ³ /h solanki zgazowanej gazem niepal- nym	CI: 1,03 E5 HCO ₃ : 3,29 E2 SO ₄ ²⁻ : 4,28E3 Fe ³⁺ : 3,95 Ca ²⁺ : 1,73E2 Mg ²⁺ : 5,71 E2 Na ⁺ : 6,93 E4
		1135,0-1150,0**	Brak przypływu	-
Piaski 1	+	1156,0–1160,0**	Przypływ 100 l płynu na dobę ze śladami ropy i gazu	Cl ⁻ : 220,0414 SiO ⁻ : 3,4494 HCO ₃ ⁻ : 0,5978 SO ₄ ²⁻ : 0,4115 Fe ³⁺ : 2,3262 Ca ²⁺ : 20,2284 Mg ²⁺ : 37,3564 Na ⁺ : 49,1007 Br ⁻ : 3,3566
Pajęczno 1	+	1130,0–1183,0	Brak przypływu	_
		1620,0–1644,2*	Brak przypływu	
Stary Zagor I	+	1620,0-1685,0*	Brak przypływu	—
		1031,0-1080,0*	Brak przypływu	
Strużka 1	+	1031-1080**	Przypływ 9 m ³ płynu	_
		1181,0–1195,0	Brak przypływu	
Tarnawa M-21	+	1181,0-1210,0	Brak przypływu	_
		1220,0-1270,0	Brak przypływu	
		1180,0-1215,0**	Brak przypływu	_
Trzebule 1	+	1619,0–1633,0*, **	Brak przypływu	_
Wysoka 1	+	1170,5–1237,5**	Przypływ solanki	Cl ⁻ : 239,6243 SiO ⁻ : 4,7992 HCO ₃ ⁻ : 0,8784 SO ₄ ²⁻ : 0,1275 Fe ³⁺ : 2,1835 Ca ²⁺ : 27,4959 Mg ²⁺ : 42,0476 Na ⁺ : 45,8680 Br ⁻ : 3,2767
Wysoka 2	+	1034–1039**	Przypływ solanki	Cl ⁻ : 201,9332 SiO ⁻ : 2,1324 HCO ₃ ⁻ : 0,5734 SO ₄ ²⁻ : 1,4369 Fe ³⁺ : 1,9569 Ca ²⁺ : 18,3467 Mg ²⁺ : 24,0175 Na ⁺ : 64,6221 Br ⁻ : 1,2520
Żarków 1	+	1087,7–1129,8*,**	Przypływ 160 l na dobę solanki i 270 l ropy nafto- wej	Cl ⁻ : 227,6532 SiO ⁻ : 3,4899 HCO ₃ ⁻ : 1,1468 SO ₄ ²⁻ : 0,5144 Fe ³⁺ : 2,2674 Ca ²⁺ : 33,2159 Mg ²⁺ : 23,9007 Na ⁺ : 64,3112
Żarków 2	+	_	-	_

Żarków 3	+	865,2–938,0	Łyżką po ściągnięciu płynu przy opróbowaniu stropu dolomitu	Cl ⁻ : 176,2362 SiO ⁻ : 0,2861 HCO ₃ ⁻ : 1,1224 SO ₄ ²⁻ : 0,4197 Fe ³⁺ : 1,5666 Ca ²⁺ : 12,2113 Mg ²⁺ : 1,7983 Na ⁺ : 95,7481
Żarków 4	+	764,4–774,5**,***	Brak przypływu	-

*za pomocą łyżkowania **kwasowanie, ***hydroperforacja

Tab. 3.6. Objawy węglowodorów w utworach dolomitu głównego oraz ich bezpośrednego podłoża i nadkładu zarejestrowane w otworach wiertniczych z obszaru przetargowego Zielona Góra Zachód – zestawione dane pochodzą z dokumentacji otworowych.

Górny czerwony spągowiec Litologia: drobno- i średnioziarniste piaskowce eoliczne

W 8 otworach wiertniczych wykonano badania właściwości petrofizycznych utworów górnego czerwonego spągowca dla obszaru przetargowego Zielona Góra Zachód (Tab. 3.7). Duży wpływ na ich własności petrofizyczne miały procesy diagenetyczne oddziaływujące na skałę, jak również środowisko sedymentacji w którym odbywała się ich depozycja. Porowatość na omawianym obszarze waha się od 2,61 do 26,53%, a przepuszczalność od 0,806 do 240,01 mD (Tab. 3.7).

W odwierconych i opróbowanych horyzontach utworów górnego czerwonego spągowca uzyskano w większości przypadków przypływy solanek (Tab. 3.8). Charakteryzują się one różną wydajnością, co jest związane m.in. z właściwościami petrofizycznymi omawianej skały zbiornikowej. Część z uzyskanych podczas opróbowań solanek jest zgazowana (Tab. 3.8). W otworze Tarnawa M-21 uzyskano przemysłowy przypływ gazu, aczkolwiek zdominowany jest w swoim składzie przez gaz niepalny (Tab. 3.8).

Nazwa otworu	Głębokość [m] (ilość prób)	Przepuszczalność [mD] (średnia)	Porowatość [%] (średnia)	Bitumiczność [%] (średnia)
Chojnowo 1	1505,0–1530,1 (4)	1,792–102,410	6,67–21,44	śladowa
Dachów 1	1372,0–1396,0 (11)	0,543–210,585	2,61–26,17	śladowa
Dęby 1	1042,9–1053,7 (6)	8,795–117,266	1,09–15,19	śladowa
Niwiska 1	1289,0–1362,6 (11)	0,1379–36,3707 (15,6738)	3,96–19,1 (12,04)	ślady–0,0343 (0,0057)
Piaski 1	(3)	0,554–161,047	8,42–24,03	śladowa
Stary Zagór 1	1965,0–1984,6 (14)	97,848–240,0173	13,71–26,53	śladowa
Wysoka 2	1285,0–1305,0 (13)	8,672–185,823	4,21–16,76	śladowa
Żarków 3	1034,2–1040,2 (1)	0,806	3,41	śladowa

Tab. 3.7. Właściwości fizyczno-chemiczne utworów górnego czerwonego spągowca i jego bezpośredniego podłoża i nadkładu w rdzeniach z otworów wiertnicznych zlokalizowanych na obszraze przetargowym Zielona Góra Zachód – zestawione dane pochodzą z dokumentacji otworowych.

Nazwa otworu	Objawy na	Odcinki opróbowywane	Wyniki opróbowań	Skład solanki [g/l]
Bronków M-27	–	 1504,2–1517,0	Przypływ solanki 1,64 m³/h	$\begin{array}{c} \text{Sklad gazu [76]} \\ \text{CI}^ 161,91 \\ \text{SiO}^ 0,4 \\ \text{HCO}_3^ 1,59 \\ \text{SO}_4^{2^-} - 0,51 \\ \text{Fe}^{3+} - 0,41 \\ \text{Ca}^{2+} - 36,54 \\ \text{Mg}^{2+} - 46,51 \\ \text{Na}^+ - 20,18 \\ \text{Br}^ 0,63 \end{array}$
Chojnowo 1	+	1505–1530,1*	Brak objawów	_
Dachów 1	_	1374,6–1508	Przypływ rozrzedzonej płuczki przez solankę – brak bituminów	_
Jeleniów 1	-	1443,7–1492,3	Przypływ 7 m ³ /h solanki	_
Kosierz M-25	_	1772,0–1810,0	Duży przypływ solanki zanieczyszczonej płuczką – 16,2 m ³ /h	_
Lubiatów M-20	_	1625,0–1662,0	Przypływ solanki 16,2 m ³ /h	$\begin{array}{c} Cl^{-}-168,742\\ HCO_{3}^{-}-0,20867\\ SO_{4}^{2-}-0,44944\\ Fe^{3+}-0,01841\\ Ca^{2+}-45,622\\ Mg^{2+}-1,252\\ Na^{+}-55,227\\ J^{-}-0,02328\\ K^{+}-1,461\\ Mn^{2+}-0,13135\\ \end{array}$
Niwiska 1	_	1281,5–1303,0	Przypływ solanki 3,3 m ³ /h	$\begin{array}{c} C\Gamma-117,0180\\ HCO_3^0,1220\\ SO_4^{2^-}-1,6626\\ Fe^{3+}-0,0909\\ Ca^{2+}-5,3690\\ Mg^{2+}-3,6277\\ Na^+-63,6013 \end{array}$
Nowa Wieś P-9	_	939,0–1012,0	Przypływ 0,14 m ³ /h płuczki zgazowanej gazem niepalnym	$\begin{array}{c} CH_4: 20,3\%\\ C_2H_6: 0,11\%\\ N_2: 79,09\%\\ H_2: 0,49\% \end{array}$
Piaski 1		1633,0–1650,0*	Przypływ solanki 100 l/h	$\begin{array}{c} Cl^{-}-49,9986\\ SiO^{-}-0,2353\\ CO_{3}^{2-}-0,1200\\ SO_{4}^{2-}-2,0412\\ Ca^{2+}-12,1866\\ Mg^{2+}-0,0598\\ Na^{+}-19,5404 \end{array}$
		1414,0–1420,0	Intensywny przypływ solanki	$Cl^{-} - 2,8368 \\ SiO^{-} - 0,1874 \\ CO_{3}^{2-} - 0,1440 \\ SO_{4}^{2-} - 1,5227 \\ Ca^{2+} - 0,8960 \\ Mg^{2+} - 0,238 \\ Na^{+} - 1,7261 \\ Ca^{2+} - 1,7261 \\ Ca^{2+$
Stary Zagór 1	_	1962,5–1984,6	Przypływ solanki ok. 300 l/h	$\begin{array}{c} CI^{-}-217,0152\\ SiO^{-}-0,8914\\ HCO_{3}^{-}-0,1647\\ SO_{4}^{2-}-0,5350\\ Fe^{3+}-0,6518 \end{array}$

		[- 2+
				$Ca^{2+} - 66,3450$
				$Mg^{-1} - 1,1843$ $Mr^{+} = 62,4246$
				Na = 02,4240
				J = 0,0181
Staużka 1		1021 0 1206 0*	Po sciągnięciu płynu stwierdzene mału przu	
Suuzka I	—	1031,0-1300,0*	stwieldzono mały przy-	—
			pryw wody złożowej	CH · 10 61%
		1443,0–1466,0	Przemysłowy przepływ gazu palnego; minimal- na wydajność poten- cjalna Vabs.=46 m ³ /min	C.H.: 0.68%
Tarnawa M-21	_			N ₂ : 88 85%
Tullawa M 21				$CO_2: 0.03\%$
				He: 0.41%
				CI - 164.8107
				SiO ⁻ – 3,1606
				$HCO_3 - 0.0732$
				$SO_4^{2-} - 0,4609$
Wysoka 1	_	1420,0–1440,7*	Silny przypływ solanki	$Fe^{3+} - 1,5848$
				$Ca^{2+} - 20,3935$
				$Mg^{2+} - 4,5051$
				Na ⁺ – 75,2929
				Br ⁻ - 0,4329
				$Cl^{-} - 154,1242$
				SiO ⁻ – 3,3600
				$HCO_3^2 - 0.0488$
				$SO_4^{2^-} - 0,4033$
Wysoka 2	—	1287,3–1303,0	Przypływ solanki	$Fe^{31} - 0,8113$
				$Ca^{2+} - 18,3542$
				$Mg^{-1} - 1,8020$
				Na = 82,1299
				DI = 0,4102
	_	1360,0–1363,0	Przypływ 120/h solanki	CI = 164,0374 SiO ⁻ 0.1075
				$HCO_{1}^{-} = 0.2318$
Żarków 1				$SO_{4}^{2-} = 1.1688$
				$Fe^{3+} = 0.2266$
				$Ca^{2+} - 22.6717$
				$Mg^{2+} - 4.6388$
				$Na^{+} - 85,0478$
				,
Żarków 4	_	1034,0–1034,0***	Brak przypływu	-

*za pomocą łyżkowania **kwasowanie, ***hydroperformacja

Tab. 3.8. Objawy węglowodorów stwierdzone podczas opróbowania odcinków górnego czerwonego spągowca i jego bezpośredniego podłoża i nadkładu w otworach wiertniczych zlokalizowanych na obszraze przetargowym Zielona Góra Zachód – zestawione dane pochodzą z dokumentacji otworowych.

3.4. SKAŁY USZCZELNIAJĄCE

Skałą uszczelniającą cechsztyńskiego systemu naftowego jest od spągu i stropu sukcesja ewaporatowo-siarczanowa cyklotemów PZ1 i PZ2. Skałami nadkładu są pozostałe utwory cechsztynu (PZ3 i PZ4), jak również skały mezozoiku (w tym wypadku wyłącznie triasowe) oraz kenozoiku (Fig. 3.1).

W przypadku sugerowanego karbońskodolnopermskiego systemu naftowego, skałę uszczelniającą będą stanowić zalegające nad utworami czerwonego spągowca ewaporaty cyklotemu PZ1. Dodatkowo, w przypadku części południowo-wschodniej obszaru przetargowego, potencjalną skałą uszczelniającą mogą stanowić nieprzepuszczalne kompleksy aluwialnych zlepieńców i piaskowców. W karbońsko-dolnopermskim systemie naftowym pozostała część profilu cechsztynu (cyklotemu PZ2, PZ3 i PZ4), mezozoiku
(w tym przypadku wyłącznie trias) oraz kenozoiku jest nadkładem (Fig. 3.1).

3.5. GENERACJA, MIGRACJA, AKUMULACJA I PUŁAPKI WĘGLOWODORÓW

Cechsztyński system naftowy

Skały macierzyste: madstony, bandstony. Skały zbiornikowe: greinstony i pakstony. Skały uszczelniające: skały zbiorniowe Ca2 stanowią zamknięty system hydrodynamiczny. Od spągu i stropu są izolowane przez utwory ewaporatowe cechsztynu, należące odpowiednio do cyklotemów PZ1 i PZ2.

Skały nadkładu: nadkład stanowią skały osadowe permsko-mezozoiczne (cyklotemy PZ3, PZ4 i trias) mające miąższość od około 650,0 do około 1350,0 m.

Kształt i wielkość pułapek: pułapki małej i średniej wielkości typu strukturalnego lub strukturalno-tektonicznego.

Wiek i mechanizm utworzenia pułapek: pierwotne pułapki synsedymentacyjne (Kotarba i in., 2000) związane z strefą krawędzi platformy węglanowej Ca2 oraz jej podnóża, jak również basenowymi podniesieniami Ca2 (płytkowodne, weglanowe facje ziarniste). Drugi typ jest zwiazany z późniejszymi procesami halotektonicznymi (spiętrzanie soli i wypiętrzanie kompleksu A1g, Ca2 i A2).

Wiek i mechanizm generacji, ekspulsji, migracji i akumulacji węglowodorów: generacji węglowodorów Pierwszy etap z utworów dolomitu głównego rozpoczął się jeszcze w trakcie późnego permu. Na tym etapie został wygenerowany autochtoniczny gaz, którego skład jest zdominowany przez metan. Powstanie autochtonicznego gazu wiąże się z działalnością mikrobialną bakterii przeobrażającą substancję organiczną (Kotarba i in., 2000). Główne stadium generowania węglowodorów na obszarze przetargowym Zielona Góra Zachód należy wiązać z wejściem skał Ca2 w tzw. okno ropne. Oprócz wzbogaconych w materię organiczną skał macierzystych i dobrych własności zbiornikowych oraz uszczelnienia, bardzo ważnymi czynnikami wpływającymi na generację węglowodorów były wzmożona subsydencja oraz wysoki strumień cieplny. Przyjęto za Dadlezem i in. (1995), że wielkość strumienia

ulegał on ochłodzeniu, aż do osiągnięcia pod koniec kredy temperatury zbliżonej do współczesnej. Wzmożona subsydencja rozpoczęta w permie, kontynuowała się we wczesnym, środkowym i późnym triasie. W jej wyniku utwory dolomitu głównego, które zostały pogrzebane na głębokość powyżej 1500,0 m, uległy podgrzaniu temperaturą przekraczającą 80°C, wchodząc w początkowe stadium "okna ropnego" (Kosakowski i Wróbel, 2010). Należy jednakże mieć na uwadze, że ze względu na układ paleogeograficzny dolomitu głównego, determinowany przez zróżnicowany paleorelief podłoża (m.in. platforma anhydrytowa A1g), wejście w okresie triasowym skał macierzystych w etap okna ropnego dotyczy głównie utworów facji basenowych (Pletsch i in., 2010). Największe pogrzebanie skał dolomitu głównego nastąpiło w jurze. Na ten okres również przypada główne stadium generacji węglowodorów. Ze względu na wysostrumień cieplny jaki występował ki w tej części basenu, skały równi basenowej wyczerpały już w późnym triasie swój potencjał generacyjny, a w przypadku facji platformy węglanowej - w środkowej jurze (Pletsch i in., 2010). Ekspulsja węglowodorów rozpo-częła się we wczesnym triasie w rejonie obeimujacym m.in. obszar przetargowy Zielona Góra Zachód i trwała do końca późnej jury oraz początku wczesnej kredy, kiedy została przerwana przez kimeryjskie ruchy orogeniczne. Wyliczony na podstawie modelowań 1D współczynnik transformacji kerogenu dla obszaru m.in. platformy śląskosudeckiej wynosi powyżej 98% (Kosakowski i Wróbel, 2010). Według modelowania 2D wykonanego za

cieplnego była najwyższa w późnym permie i wczesnym triasie. Przez resztę mezozoiku

Według modelowania 2D wykonanego za pomocą oprogramowania Platte River Associates (Kosakowski i Wróbel, 2010), uzyskane wyniki pokazują, że proces migracji rozpoczął się i trwał w podobnym czasie co proces generacji. Na obszarze przetargowym już we wczesnym triasie zachodziła migracja węglowodorów, która była kontynuowana do późnej jury oraz jeszcze zachodziła w późnej kredzie.

Według Kotarby i Wagnera (2007) proces generacji węglowodorów następował w dwóch ścieżkach. W przypadku pierwszej ścieżki, proces generacji był jednoetapowy. Wiązał się on z ciągłą i postępującą fazą transformacji materii organicznej, której potencjał węglowodorowy został wyczerpany pod koniec triasu. Druga ścieżka charakteryzuje się dwoma etapami generacji węglowodorów. Pierwszy z nich, podczas której od 80 do 90% masy węglowodorowej została wyge-

Karbońsko-dolnopermski system naftowy

Skały macierzyste: iłowce i mułowce dolnego oraz górnego karbonu.

Skały zbiornikowe: drobno- i średnioziarniste piaskowce eoliczne górnego czerwonego spagowca.

Skały uszczelniające: na całym obszarze przetargowym utwory czerwonego spągowca są uszczelnione przez ewaporaty cechsztynu cyklotemu PZ1.

Skały nadkładu: nadkład stanowią skały osadowe permsko-mezozoiczne (cyklotemy PZ2, PZ3, PZ4 i trias) mające miąższość od około 750,0 do około 1700,0 m.

Kształt i wielkość pułapek: pułapki małej i średniej wielkości typu strukturalnego lub strukturalno-tektonicznego.

Wiek i mechanizm utworzenia pułapek: pułapki występujące w stropie osadaów eolicznych mogą mieć charakter pułapek synsedymentacyjnych. Zakłada się również występowanie pułapek typu mieszanego, strukturalno-tektonicznych, które ostatecznie mogły się ukształtować w wyniku ruchów kimeryjskich i/lub laramijskich.

Wiek i mechanizm generacji, ekspulsji, migracji i akumulacji węglowodorów: Przedstawiona poniżej analiza jest oparta na modelowaniu numerycznym karbońskodolnopermskiego systemu naftowego, które zostało wykonane dla całej polskiej części basenu permskiego (Botor i in., 2013). Na obszarze przetargowym Zielona Góra Zachód znaczna część skał macierzystych dolnego i w mniejszym stopniu górnego karbonu nerowana z kerogenu, trwał do końca późnej jury. Dla pozostałej części masy węglowodorowej, generacja odbywała się już w okresie pokredowym. W konsekwencji, akumulacje ropy naftowej w pułapkach nastąpiło na przełomie triasu i jury, nasycenie gazem złóż ropy miało miejsce pod koniec późnej jury, a ostateczna generacja gazu nastąpiła w paleogenie i neogenie. Badania geologiczne i geochemiczne wskazują, że migracja węglowodorów z skały macierzystej do skały zbiornikowej odbywała się w zasięgu zaledwie kilkunastu kilometrów (Kotarba i Wagner, 2007).

osiąga refleksyjność witrynitu w granicach 1,5-2,0% Ro (Fig. 3.10). Jedynie w północnozachodniej jego części, refleksviność witrynitu jest w zakresie 1,0-1,5% Ro. Oznacza to, że skały macierzyste znajdują się głównej fazie generowania w gazu termogenicznego, a w mniejszym stopniu we wczesnej jego fazie. Przyjmując za Botorem i in. (2013) wymodelowany rozkład waryscyjskiego paleostrumienia cieplnego i stopień transformacji kerogenu skał macierzystych dla okresu końca karbonu, wynika że potencjał generacyjny węglowodorów nie został wykorzystany (Fig. 3.11). Jest to kluczowa informacja; oznacza ona, że główny proces generacji i migracji węglowodorów był późniejszy, dzięki czemu węglowodory nie uległy destrukcji.

Wzmożona subsydencja w trakcie cechsztynu i do końca triasu występowała w całym basenie polskim. Również w częściach marginalnych basenu (obszar przetargowy) modelowania pograżenia 1D (np. Otwór Siciny 2; z Wójcicki i in., 2014) wskazują na znaczne pogrążenie stropu skał karbońskich, mogących osiągać pogrzebanie na około 3000,0 m. Numeryczne modelowania karbońsko-dolnopermskiego systemu naftowego wskazują, że pod koniec triasu współczynnik transformacji kerogenu karbońskich skał macierzystych wynosił od 40 do 60% (Fig. 3.12).

Zwiększona subsydencja rozpoczęta w cechsztynie trwała przez cały trias i swoje maksimum osiągnęła pod koniec późnej jury. Została ona przerwana przez ruchy kimeryjskie. Pomimo ponownej subsydencji przypadajacej na okres kredy, karbońskie skały macierzyste najprawdopodobniej nie osiągnęły większego stopnia transformacji kerogenu. Wpływ na to mogły mieć dwa czynniki: 1) pogrzebanie stropu skał karbonu było płytsze, 2) wielkość oraz paleostrumienia cieplnego W czasie zmniejszała się, osiagając pod koniec kredy wartości zbliżone do dzisiejszych. Powyższe informacje mogą sugerować, że część pułapek synsedymentacyjnych w utworach górnego czerwonego spagowca mogła zostać rozformowana, a weglowodory mogły przemigrować do innych stref, bądź do pułapek mieszanych, typu strukturalno-tektonicznych.

Według modelowania naftowego (Botor i in., 2013) pod koniec kredy stopień transformacji kerogenu karbońskiej skały macierzystej obszaru Zielona Góra Zachód osiągnął około 90% (Fig. 3.13).

weglowodorów Migracja na obszarze Zielona Góra Zachód odbywała sie najprawdopodobniej jedynie W kierunku pionowym. Występujące pod skałami zbiornikowymi wulkanity mogły utrudniać jej zachodzenie (Fig. 3.14). Należy jednakże mieć na uwadze, że występujące liczne dyslokacje, a zwłaszcza strefa rozłamów środkowej Odry (Kiersnowski i Petecki, 2017), które zostały odnowione w trakcie ruchów kimeryjskich lub laramijskich, mogły być potencjalną ścieżą migracyjną dla weglowodorów.

Według analiz Burzewskiego i in. (2009) skały macierzyste karbonu w obrębie obszaru przetargowego Zielona Góra Zachód cechowały się w historii geologicznej jednostkowym potencjałem genetycznym na poziomie 200–600 kg HC/m² basenu (Fig. 3.15).

Fig. 3.10. Mapa rozkładu refleksyjności witrynitu dla karbońskich skał macierzystych karbońsko-dolnopermskiego systemu naftowego (Botor i in., 2013; zmodyfikowane).

Fig. 3.11. Mapa rozkładu stopnia transformacji kerogenu karbonskiej skały macierzystej pod koniec okresu karbońskiego (Botor i in., 2013; zmodyfikowane)

Fig. 3.12. Mapa rozkładu stopnia transformacji kerogenu karbonskiej skały macierzystej pod koniec okresu triasu (Botor i in., 2013; zmodyfikowane)

Fig. 3.13. Mapa rozkładu stopnia transformacji kerogenu karbonskiej skały macierzystej pod koniec okresu kredy (Botor i in., 2013; zmodyfikowane).

Fig. 3.14. Mapa przedstawiająca ścieżki migracji gazu ziemnego z karbońskich skał macierzystych ograniczona do utworów górnego czerwonego spągowca (Botor i in., 2013; zmodyfikowane).

Fig. 3.15. Mapa jednostkowego potencjału powierzchniowego (JPP) utworów dolnego karbonu (Burzewski i in., 2009; zmodyfikowane).

4. CHARAKTERYSTYKA ZŁÓŻ WĘGLOWODORÓW4.1. ZŁOŻA WĘGLOWODORÓW W SĄSIEDZTWIE OBSZARU PRZETARGOWEGO

W bliskim sąsiedztwie obszaru przetargowego Zielona Góra Zachód udokumentowano siedem złóż węglowodorów (Fig. 4.1). Są to:

- złoże gazu ziemnego Brzózka (GZ 16415; Fig. 4.2);
- złoże gazu ziemnego Czeklin (GZ 4734; Fig. 4.3);
- wybilansowane złoże ropy naftowej Czerwieńsk (NR 4807; Fig. 4.4–4.6);

- wybilansowane złoże ropy naftowej Lelechów (NR 4808; Fig. 4.7–4.9);
- wybilansowane złoże ropy naftowej Mozów N (NR 5326; Fig. 4.10–4.12);
- złoże ropy naftowej Mozów S (NR 5511; Fig. 4.13–4.15);
- złoże gazu ziemnego Nowa Sól (GZ 6724; Fig. 4.16).

→ Fig. 4.1. Złoża węglowodorów w sąsiedztwie obszaru przetargowego Zielona Góra Zachód.

4.2. ZŁOŻE GAZU ZIEMNEGO BRZÓZKA

Położenie administracyjne:

województwo – lubuskie powiat – krośnieński gmina – Krosno Odrzańskie Powierzchnia całkowita złoża: 274,00 ha Głębokość zalegania: 1613,0–1666,5 m Stratygrafia: perm/cechsztyn – dolomit główny Koncesja na wydobywanie: brak Użytkownik złoża: brak Data rozpoczęcia eksploatacji: złoże nieeksploatowane Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 16415

Dokumentacje w NAG PIG-PIB:

 Wolańska A. 2012. Dokumentacja geologiczna złoża gazu ziemnego Brzózka w kat. C. Inw. 271/2013, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 18 stycznia 2013 roku, zn: DGKkzk-4741-8114/-5/2352/12/MW.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe (stan na rok 2011): 75,60 mln m³ gazu ziemnego w kat. C Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku: 75,40 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe wg stanu na 31.12.2022 roku: brak Wydobycie w 2022 roku: brak

Budowa złoża:

Złoże gazu ziemnego Brzózka (Fig. 4.2A) przewiercono w 2010 roku odwiertem Brzózka-3 i znajduje się ono w brzeżnej części niecki zielonogórskiej. Struktura Brzózki jest wydłużona wzdłuż osi NW-SE, ma łagodnie zapadające skłony ze stwierdzonymi dwiema dyslokacjami i niewielką amplitudę (około 60 m). Powstała w wyniku halotektonicznego wypiętrzenia soli najstarszej. Gaz ziemny występuje w pułapce strukturalnej, w utworach dolomitu głównego (Fig. 4.2B). Złoże jest typu warstwowego. Górna granica złoża odpowiada stropowi dolomitu głównego, izolowanego wyżej ległymi utworami nieprzepuszczalnymi. Dolną granicę wyznaczono natomiast na głębokości występowania spągu dolomitu głównego w otworze Brzózka-3.

Otwory zlokalizowane na złożu (Fig. 4.2A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
BRZÓZKA-3	1697,0	perm górny

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.1.

Historia produkcji: według informacji zawartych w dokumentacji geologicznej złoża (Wolańska, 2012) w dniach 21-30.10.2010 r. podczas testu produkcyjnego przeprowadzonego w odwiercie Brzózka-3 ze złoża wydobyto ogółem 204 499 m³ gazu ziemnego, 1340 1 wody (nie była to woda złożowa, prawdopodobnie był to filtrat) oraz 1300 1 kondensatu.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie denne P _{ds}			19,820	MPa	na głębokości 1649,7 m
ciśnienie głowicowe P _{gs}			16,620	MPa	
ciśnienie złożowe pierwotne			19,820	MPa	
głębokość położenia wody pod- ścielającej				m	nie dotyczy
miąższość efektywna złoża			6,740	m	wartość średnia z mapy miąższo- ści efektywnej
porowatość	0,400	9,100	2,230	%	dla całego poziomu dolomitu głównego
porowatość efektywna			7,050	%	wartość średnia z mapy porowato- ści efektywnej
przepuszczalność			0,490	mD	wartość średnia obejmująca stro- pową rdzeniową partię dolomitu głównego
temperatura złoża			65,750	°C	
warunki produkowania				-	wolumetryczne
współczynnik nasycenia węglo- wodorami			0,633	_	
współczynnik wydobycia			0,600	-	
wydajność absolutna V _{abs}			290,000	m ³ /min	
wydajność dozwolona V _{dozw}			60,000	m ³ /min	
par	ametry jako	ściowe gazu	ziemnego (k	xopalina głów	vna)

parametry jakościowe gazu ziemnego (kopalina główna)

parametry jakościowe gazu ziemnego (kopalina główna)					
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania			10,097	MJ/m ³	
gęstość			0,939	_	
liczba Wobbego			10,420	MJ/m ³	
wartość opałowa	8,790	9,820	9,193	MJ/m ³	
zawartość C ₂ H ₆	1,905	1,985	1,953	% obj.	
zawartość CH ₄	13,090	14,220	13,517	% obj.	
zawartość dwutlenku węgla	0,000	0,109	0,052	% obj.	
zawartość H ₂			0,002	% obj.	
zawartość He	0,035	0,036	0,035	% obj.	
zawartość Hg	1,521	1,616	1,559	$\mu g/m^3$	
zawartość N ₂	80,820	82,120	81,810	% obj.	
zawartość siarkowodoru	0,000	0,000	0,000	% obj.	
zawartość węglowodorów			18,106	% obj.	
zawartość węglowodorów ciężkich C_{3+}	2,492	2,849	2,636	% obj.	

Tab. 4.1. Parametry złoża gazu ziemnego Brzózka i parametry jakościowe kopaliny (MIDAS, 2022, według Wolańskiej, 2012).

Fig. 4.2. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Brzózka i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże gazu ziemnego Brzózka (na podstawie Wolańskiej, 2012).

4.3. ZŁOŻE GAZU ZIEMNEGO CZEKLIN

Położenie administracyjne: województwo – lubuskie powiat – krośnieński gmina – Bobrowice, Krosno Odrzańskie Powierzchnia całkowita złoża: 136 ha Głębokość zalegania: 1250,0–1351,0 m Stratygrafia: perm/cechsztyn – dolomit główny) Koncesja na wydobywanie: brak Użytkownik złoża: brak Data rozpoczęcia eksploatacji: złoże nieeksploatowane Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4734

Dokumentacje w NAG PIG-PIB:

 Urbański R., Żurawik J., Wojtkowiak Z. 1975. Dokumentacja geologiczna złoża gazu ziemnego Czeklin w rejonie Krosna Odrzańskiego. Inw. 11402 CUG, CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z dnia 17 kwietnia 1976 roku, znak: KZK/012/S/3335/76.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe: nie wyznaczono

Wydobywalne zasoby bilansowe wg stanu na 31.12.2022 roku:

95,00 mln m³ gazu ziemnego w kat. C Zasoby przemysłowe wg stanu na

31.12.2022 roku: brak Wydobycie w 2022 roku:

brak

Budowa złoża:

Złoże gazu ziemnego Czeklin (Fig. 4.3A) rozpoznano odwiertem Czeklin 1, wykonanym w 1965 roku. Jest ono zlokalizowane w zachodniej części monokliny krośnieńskozielonogórskiej, w górnej partii przydyslokacyjnej struktury, która powstała prawdopodobnie wskutek przecięcia łagodnej antykliny uskokiem inwersyjnym. Pułapka złożowa występuje w skrzydle zrzuconym (północnym). Złoże Czeklin jest złożem warstwowym, gaz ziemny jest zakumulowany w utworach dolomitu głównego (Fig. 4.3B). Od góry złoże ogranicza nieprzepuszczalny kompleks anhydrytowo-solny, dolną granicę stanowi poziom wody podścielającej oraz częściowo niżej ległe utwory anhydrytu górnego Werry, przy czym do obliczenia zasobów złoża za dolną granicę przyjęto powierzchnie dzielaca kompleks dolomitu głównego wykazującego niemal całkowity zanik własności kolektorskich od górnej partii dolomitu o średniej porowatości wynoszącej 5,12%. Zewnętrzna granica złoża przebiega w większości po linii przecięcia stropu dolomitu głównego i poziomu wody podścielającej, a od SW wzdłuż dyslokacji.

Otwory zlokalizowane na złożu (Fig. 4.3A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
CZEKLIN 1	1936,5	perm

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.2.

Historia produkcji: złoże Czeklin obecnie nie jest zagospodarowane. Brak jest informacji o wydobyciu prowadzonym na etapie poszukiwania i rozpoznawania złoża.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie denne P _{ds}			163,440	ata	odwiert Czeklin 1
ciśnienie głowicowe P_{gs}			140,800	atn	odwiert Czeklin 1
ciśnienie złożowe pierwotne			163,440	ata	
głębokość położenia wody pod- ścielającej			1351,000	m	
miąższość efektywna złoża			13,400	m	pole "b"
miąższość efektywna złoża			26,800	m	pole "a"
miąższość efektywna złoża		27,000	21,000	m	
porowatość			3,280	%	dla całego kompleksu
porowatość			0,790	%	kompleks dolny
porowatość			5,120	%	kompleks górny

porowatość efektywna			5,120	%	
przepuszczalność			0,764	mD	kompleks górny
przepuszczalność			0,296	mD	kompleks dolny
stopień mineralizacji wody zło- żowej			342,000	g/l	
temperatura złoża			337,000	°K	
warunki produkowania				—	wolumetryczne
współczynnik nasycenia węglo- wodorami			0,700	_	
współczynnik wydobycia			0,700	_	
wydajność absolutna V _{abs}			900,000	Nm ³ /min	odwiert Czeklin 1
wydajność dozwolona V_{dozw}			50,000	Nm ³ /min	
	parai	netry jakoś	ciowe gazu z	ziemnego	
Nazwa parametru	Wartość	Wartość	Wartość		T T 1
	min.	max.	średnia	Jednostka	Uwagi
gęstość	min. 0,922	max. 0,969	średnia 0,938	Jednostka –	względem powietrza
gęstość wartość opałowa	min. 0,922	max. 0,969	średnia 0,938 1678,000	– Kcal/Nm ³	względem powietrza wartość dolna obliczona
gęstość wartość opałowa wartość opałowa	min. 0,922 	max. 0,969 	średnia 0,938 1678,000 1854,000	Jednostka – Kcal/Nm ³ Kcal/Nm ³	Wagi względem powietrza wartość dolna obliczona wartość górna obliczona
gęstość wartość opałowa wartość opałowa zawartość C ₂ H ₆	min. 0,922 1,140	max. 0,969 1,570	średnia 0,938 1678,000 1854,000 1,370	Jednostka – Kcal/Nm ³ Kcal/Nm ³ % obj.	Wagi względem powietrza wartość dolna obliczona wartość górna obliczona
$\begin{array}{c} gęstość\\ \hline\\ wartość opałowa\\ \hline\\ wartość opałowa\\ \hline\\ zawartość C_2H_6\\ \hline\\ zawartość CH_4 \end{array}$	min. 0,922 1,140 11,800	max. 0,969 1,570 14,050	średnia 0,938 1678,000 1854,000 1,370 13,260	Jednostka – Kcal/Nm ³ Kcal/Nm ³ % obj. % obj.	Względem powietrza wartość dolna obliczona wartość górna obliczona
gęstość wartość opałowa wartość opałowa zawartość C ₂ H ₆ zawartość CH ₄ zawartość dwutlenku węgla	min. 0,922 1,140 11,800 0,000	max. 0,969 1,570 14,050 3,333	średnia 0,938 1678,000 1854,000 1,370 13,260 0,060	Jednostka - Kcal/Nm³ Kcal/Nm³ % obj. % obj. % obj.	Wagi względem powietrza wartość dolna obliczona wartość górna obliczona
gęstość wartość opałowa wartość opałowa zawartość C ₂ H ₆ zawartość CH ₄ zawartość dwutlenku węgla zawartość N ₂	min. 0,922 1,140 11,800 0,000 80,000	max. 0,969 1,570 14,050 3,333 85,500	średnia 0,938 1678,000 1854,000 1,370 13,260 0,060 84,000	Jednostka - Kcal/Nm³ Kcal/Nm³ % obj. % obj. % obj. % obj. % obj.	Względem powietrza wartość dolna obliczona wartość górna obliczona
gęstość wartość opałowa wartość opałowa zawartość C ₂ H ₆ zawartość CH ₄ zawartość dwutlenku węgla zawartość N ₂ zawartość siarkowodoru	min. 0,922 1,140 11,800 0,000 80,000	max. 0,969 1,570 14,050 3,333 85,500	średnia 0,938 1678,000 1854,000 1,370 13,260 0,060 84,000	Jednostka - Kcal/Nm³ Kcal/Nm³ % obj. % obj.	Uwagi względem powietrza wartość dolna obliczona wartość górna obliczona nie stwierdzono

Tab. 4.2. Parametry złoża gazu ziemnego Czeklin i parametry jakościowe kopaliny (MIDAS, 2022 według Urbańskiego i in., 1975).

Fig. 4.3. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Czeklin i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże gazu ziemnego Czeklin (na podstawie Urbańskiego i in., 1975).

4.4. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ CZERWIEŃSK

Położenie administracyjne: województwo - lubuskie powiat - Miasto Zielona Góra gmina – Miasto Zielona Góra Powierzchnia całkowita złoża: 172,3 ha Głębokość zalegania: Od -1831,45 do -1860,0 m Stratygrafia: perm/cechsztyn – dolomit główny) Koncesja na wydobywanie: brak Użytkownik złoża: brak Data rozpoczęcia eksploatacji: listopad 1971 roku Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 4807

Dokumentacje w NAG PIG-PIB:

- Marciński J. 1985. Dokumentacja geologiczna złoża ropy naftowej Czerwieńsk. Inw. 15763 CUG, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska i Zasobów Naturalnych z dnia 26 listopada 1986 roku, znak: KZK/012/M/pf165/5085/86.
- Pyzik M., Szczepański J. 1996. Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Czerwieńsk. Inw. 981/97, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 11 marca 1997 roku, znak: KZK/2/6709/97.
- Olszewska K. 1999. Dokumentacja geologiczna złoża ropy naftowej Czerwieńsk. Dodatek nr 2 (przeliczenie zasobów). Inw. 1289/2000, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 26 czerwca 2000 roku, znak: DG/kzk/ZW/7160/2000.
- Burdzy M. 2009. Dokumentacja geologiczna złoża ropy naftowej Czerwieńsk w kat. A. Dodatek nr 3 – wniosek o rozliczenie zasobów. Inw. 5321/2009, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 20 listopada 2009 roku, znak: DGiKGkzk-4741-37/7897/1337/09/AW.

Zasoby:

Złoże skreślone z krajowego bilansu zasobów złóż kopalin w roku 2009.

Pierwotne wydobywalne zasoby bilansowe stan na rok 2008:

35,00 tys. t ropy naftowej w kat. A 7,70 mln m³ gazu ziemnego w kat. A Wydobywalne zasoby bilansowe stan na 31.12.2008 roku:

2,31 mln m³ gazu ziemnego w kat. A Wydobywalne zasoby pozabilansowe stan na 31.12.2008 roku:

0,37 tys. t ropy naftowej w kat. A Zasoby przemysłowe

stan na 31.12.2008 roku:

0,37 tys. t ropy naftowej w kat. A 62,00 tys. t zasobów nieprzemysłowych ropy naftowej w kat. A 4,31 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. A

Wydobycie w 2022 roku:

brak

Budowa złoża:

Złoże ropy naftowej Czerwieńsk (Fig. 4.6A) znajduje się w środkowej części depresji zielonogórskiej. Pierwszym otworem, którym nawiercono strukturę złożową, był Czerwieńsk-2 (1971 rok). Ropa naftowa jest zakumulowana w stropowej partii dolomitu głównego (Fig. 4.6B) wykształconego w facji obrebie brachyantykliny lagunowej, W o amplitudzie 28,55 m. Jest to złoże typu masywowego. Od góry uszczelnienie serii złożowej stanowią ewaporaty cechsztynu. Na północy i północnym wschodzie zasięg złoża ogranicza bariera litologiczna, z kolei na południu i południowym zachodzie granica odpowiada konturowi wody podścielającej. Utwory dolomitu głównego odznaczają się małą porowatością i niską przepuszczalnością, rolę kolektora odgrywa głównie system szczelin. Kopalinę towarzyszącą stanowi gaz ziemny gazolinowy.

Otwory zlokalizowane na złożu (Fig. 4.6A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
CZERWIEŃSK-2	1896,0	perm górny
CZERWIEŃSK-3	1806,0	perm górny
CZERWIEŃSK-4	1900,0	perm górny
CZERWIEŃSK-5	1894,0	perm górny
CZERWIEŃSK 8	2370,0	perm
CZERWIEŃSK-9	1953,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.3.

Historia produkcji: dane zestawiono w Tab. 4.4–4.5 i na Fig. 4.4–4.5.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi	
ciśnienie aktualne			13,310	MPa	z dnia 14.10.2000 r.	
ciśnienie złożowe pierwotne			23,320	MPa		
głębokość położenia wody podścielającej			-1860,00	m		
miąższość efektywna złoża			14,400	m		
nasycenie ropą			60,000	%		
porowatość			1,000	%		
temperatura złoża			345,000	°K		
typ chemiczny wody złożowej				_	solanka chlorkowo-sodowo- -wapniowa	
współczynnik wydobycia			0,350	-		
wydajność dozwolona V _{dozw}			45,000	t/miesiąc	3 t/cykl (15 cykli na miesiąc)	
parametry jakościowe ropy naftowej (kopalina główna)						
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi	
ciężar właściwy ropy			0,842	g/cm ³		
zawartość parafiny			3,570	% wag.		
zawartość siarki			1,270	% wag.		
param	etry jakościo	owe gazu zie	mnego (kopa	alina towarzy	vsząca)	
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi	
wartość opałowa			52.400	MJ/Nm ³		
zawartość C ₂ H ₆			19,990	% obj.		
zawartość CH ₄			42,880	% obj.		
zawartość dwutlenku węgla			0,200	% obj.		
zawartość He			0,040	% obj.		
zawartość N ₂			0,380	% obj.		
zawartość siarkowodoru			0,380	% obj.		
zawartość węglowodorów ciężkich C_{3+}			21,830	% obj.		

Tab. 4.3. Parametry złoża ropy naftowej Czerwieńsk i parametry jakościowe kopalin (MIDAS, 2022 wg Burdzego, 2009).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilan- sowych i pozabilansowych w tys t		
(rok/miesiąc/dzień)	kat. A		
2006/12/31	0.31		
2005/12/31	0.53		
2004/12/31	0.76		
2003/12/31	0.14		
2002/12/31	0,26		
2001/12/31	0,27		
2000/12/31	0,36		
1999/12/31	0,33		
1998/12/31	0,37		
1997/12/31	0,39		
1996/12/31	0,45		
1995/12/31	0,39		
1994/12/31	0,49		
1993/12/31	0,59		
1992/12/31	0,62		
1991/12/31	0,87		
1990/12/31	1,15		
1989/12/31	1,50		
1988/12/31	2,14		
1987/12/31	2,23		
1986/12/31	2,91		
1985/12/31	3,96		
1984/12/31	5,71		
1983/12/31	5,54		
1982/12/31	0,22		
1981/12/31	_		
1980/12/31	_		
1979/12/31	-		
1978/12/31	-		
1977/12/31	-		
1976/12/31	_		
1975/12/31	-		
1974/12/31	-		
1973/12/31	-		
1972/12/31	1,29		
1971/12/31	0,87		

Tab. 4.4. Historia wydobycia ropy naftowej (kopalina główna) w złożu Czerwieńsk (według dodatku nr 3 do dokumentacji geologicznej złoża – Burdzy, 2009).

Stan na dzień (rok/missioa/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilan- sowych w mln m ³		
(rok/miesiąc/uzien)	kat. A		
2006/12/31	0,02		
2005/12/31	0,03		
2004/12/31	0,05		
2003/12/31	0,01		
2002/12/31	0,03		
2001/12/31	0,03		
2000/12/31	0,04		
1999/12/31	0,03		
1998/12/31	0,04		
1997/12/31	0,04		
1996/12/31	0,05		
1995/12/31	0,04		
1994/12/31	0,05		
1993/12/31	0,06		
1992/12/31	0,06		

1991/12/31	0,09
1990/12/31	0,11
1989/12/31	0,15
1988/12/31	0,36
1987/12/31	0,42
1986/12/31	0,53
1985/12/31	0,74
1984/12/31	1,19
1983/12/31	0,96
1982/12/31	0,03
1981/12/31	_
1980/12/31	_
1979/12/31	_
1978/12/31	_
1977/12/31	_
1976/12/31	_
1975/12/31	_
1974/12/31	_
1973/12/31	_
1972/12/31	0,16
1971/12/31	0.09

Tab. 4.5. Historia wydobycia gazu zimnego (kopalina towarzysząca) w złożu Czerwieńsk (według dodatku nr 3 do dokumentacji geologicznej złoża – Burdzy, 2009).

Fig. 4.4. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Czerwieńsk (według dodatku nr 3 do dokumentacji geologicznej złoża – Burdzy, 2009).

Fig. 4.5. Wykres wydobycia gazu zimnego (kopalina towarzysząca) w złożu Czerwieńsk (według dodatku nr 3 do dokumentacji geologicznej złoża – Burdzy, 2009).

Fig. 4.6. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Czerwieńsk i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Czerwieńsk (na podstawie Burdzego, 2009).

4.5. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ LELECHÓW

Położenie administracyjne:

województwo – lubuskie powiat – nowosolski gmina – Nowa Sól, Otyń
Powierzchnia całkowita złoża: 98,00 ha
Głębokość zalegania: od -1000,0 m do -1055,0 m
Stratygrafia: perm/cechsztyn – dolomit główny
Koncesja na wydobywanie: brak
Użytkownik złoża: brak
Data rozpoczęcia eksploatacji: luty 1974 roku (eksploatacja próbna)
Nadzór górniczy:
Okręgowy Urząd Górniczy – Poznań
Nr MIDAS: 4808

Dokumentacje w NAG PIG-PIB:

- Podemski M., Bojarski L. 1974. Dokumentacja złoża ropy naftowej Lelechów. Inw. 10737 CUG, CAG PIG, Warszawa. Zatwierdzona decyzją Prezesa Centralnego Urzędu Geologii z dnia 8 października 1974 roku, znak KZK/012/S/3053/74.
- Pawłowski A., Zoła K., 2000. Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Lelechów. Inw. 2291/2000, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Środowiska z dnia 17 października 2000 roku, znak DG/kzk/EZD/7183/2000.

Zasoby:

Złoże skreślone z krajowego bilansu zasobów złóż kopalin w 2000 roku. Wydobywalne zasoby bilansowe stan na 31.12.1999 roku: brak Zasoby przemysłowe stan na 31.12.1999 roku: brak Wydobycie w 2022 roku: brak

Budowa złoża:

Złoże ropy naftowej Lelechów (Fig. 4.9A) nawiercono po raz pierwszy w 1974 roku odwiertem Lelechów IG-2. Struktura złożowa wydłużonej kształt brachyantykliny ma o stromo zapadających skrzydłach i dłuższej osi przebiegającej w kierunku NE-SW. Ropa naftowa oraz towarzyszący jej gaz ziemny w postaci czapy gazowej występują w utworach dolomitu głównego, w pułapce litologiczno-stratygraficznej (Fig. 4.9B). Złoże Lelechów jest złożem warstwowym. Od góry uszczelnienie nieprzepuszczalny stanowi kompleks anhydrytu, od dołu granicę wyznacza poziom wody podścielającej i spąg dolomitu głównego, poniżej którego występują utwory izolujące. Zewnętrzne granice złoża przebiegają w większości wzdłuż linii przecięcia się poziomu wody podścielającej ze stropem utworów dolomitu głównego; na południu jest ono ograniczone przez strefę zaniku własności zbiornikowych dolomitu głównego.

Otwory zlokalizowane na złożu (Fig. 4.9A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
LELECHÓW-4	1096,5	perm górny
LELECHÓW-5	1074,0	perm górny
LELECHÓW 9	1160,0	perm górny
LELECHÓW IG-2	1600,0	perm górny

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.6.

Historia produkcji: dane zestawiono w Tab. 4.7–4.8 i na Fig. 4.7–4.8.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			6,420	MPa	24.10.1997 r., na głębokości 1060 m, odwiert Lelechów-5
ciśnienie nasycenia				MPa	nie określono z badań PVT
ciśnienie złożowe pierwotne			12,260	MPa	na głębokości 1085 m
głębokość położenia wody podścielającej			-1055,00	m	kontur wodny
głębokość położenia wody podścielającej			-1035,00	m	granica ropa-gaz
miąższość efektywna złoża			22,390	m	
nasycenie ropą			70,000	%	
porowatość	2,500	4,500	3,640	%	wg badań geofizycznych
porowatość	0,170	1,820	0,430	%	wg badań laboratoryjnych
przepuszczalność	0,001	0,179	0,043	mD	
stopień mineralizacji wody zło- żowej	345,700	384,780		g/l	
temperatura złoża			315,650	°K	
temperatura złoża			42,500	°C	
typ chemiczny wody złożowej				_	solanka chlorkowo-sodowo- -wapniowa z magnezem, zmeta- morfizowana z dużym współ- czynnikiem siarczanowości 2,126
warunki produkowania				—	czapa gazowa i gaz rozpuszczony w ropie
współczynnik nasycenia węglowodorami			70,000	%	nasycenie gazem w czapie
współczynnik wydobycia			0,150	_	dla ropy naftowej
wydajność odwiertów	6,000	20,000	12,000	t/d	dla ropy naftowej
współczynnik wydobycia			0,900	_	dla gazu ziemnego z czapy gazo- wej
współczynnik wydobycia			0,150	_	dla gazu ziemnego rozpuszczo- nego w ropie
wydajność odwiertów	12,000	45,000	23,000	m ³ /min	dla gazu z czapy gazowej
par	ametry jako	ściowe ropy	naftowej (k	opalina głów	vna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciężar właściwy ropy			0,803	g/cm ³	
zawartość parafiny			0,920	% wag.	
zawartość siarki	0,080	2,250		% wag.	
paramo	etry jakościo	we gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
wartość opałowa			14,910	MJ/m ³	Hs
wartość opałowa			13,540	MJ/m ³	Hi
zawartość C ₂ H ₆			4,054	% obj.	
zawartość CH ₄			20,401	% obj.	

zawartość dwutlenku węgla	 	0,079	% obj.	
zawartość He	 	0,052	% obj.	
zawartość N ₂	 	71,198	% obj.	
zawartość siarkowodoru	 	0,001	% obj.	
zawartość węglowodorów cięż- kich	 	74,100	g/m ³	
zawartość węglowodorów cięż- kich C ₃₊	 	3,063	% obj.	

Tab. 4.6. Parametry złoża ropy naftowej Lelechów i parametry jakościowe kopalin (MIDAS, 2022 według Pawłow-skiego i Zoły, 2000).

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilan-
(rok/miesiąc/dzień)	sowych w tys. t kat. C
1999/12/31	0,44
1998/12/31	0,62
1997/12/31	2,43
1996/12/31	1,50
1995/12/31	0,07
1994/12/31	-
1993/12/31	-
1992/12/31	-
1991/12/31	-
1990/12/31	-
1989/12/31	-
1988/12/31	-
1987/12/31	-
1986/12/31	-
1985/12/31	-
1984/12/31	-
1983/12/31	-
1982/12/31	-
1981/12/31	-
1980/12/31	_
1979/12/31	_
1978/12/31	_
1977/12/31	-
1976/12/31	-
1975/12/31	4,46
1974/12/31	4,45

Tab. 4.7. Historia wydobycia ropy naftowej w złożu Lelechów (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995–1999 według bazy MIDAS, 2022, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów pozabilansowych w mln m ³ kat. C	Wydobycie gazu ziemnego z zasobów szacunkowych w mln m ³
1999/12/31	0,04	_
1998/12/31	0,07	_
1997/12/31	0,51	_
1996/12/31	3,43	_
1995/12/31	3,39	_
1994/12/31	_	_

1993/12/31	_	_
1992/12/31	_	_
1991/12/31	_	_
1990/12/31	_	_
1989/12/31	_	_
1988/12/31	_	_
1987/12/31	_	_
1986/12/31	_	_
1985/12/31	_	_
1984/12/31	_	_
1983/12/31	_	_
1982/12/31	_	_
1981/12/31	_	_
1980/12/31	_	_
1979/12/31	_	_
1978/12/31	_	_
1977/12/31	_	-
1976/12/31	_	0.26

Tab. 4.8. Historia wydobycia gazu ziemnego w złożu Lelechów (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995–1999 według bazy MIDAS, 2022, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.7. Wykres wydobycia ropy naftowej w złożu Lelechów (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995–1999 według bazy MIDAS, 2022, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.8. Wykres wydobycia gazu ziemnego w złożu Lelechów (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995–1999 według bazy MIDAS, 2022, wcześniejsze lata według bilansów złóż kopalin w Polsce w wersji papierowej).

Fig. 4.9. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Lelechów i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Lelechów (na podstawie Pawłowskiego i Zoły, 2000).

4.6. WYBILANSOWANE ZŁOŻE ROPY NAFTOWEJ MOZÓW N

Położenie administracyjne:

województwo – lubuskie powiat – zielonogórski gmina – Sulechów
Powierzchnia całkowita złoża: 177,00 ha
Głębokość zalegania:
-1935,00 m (spąg złoża)
Stratygrafia: perm/cechsztyn – dolomit główny
Koncesja na wydobywanie: brak
Użytkownik złoża: brak
Data rozpoczęcia eksploatacji: styczeń 1991 roku
Nadzór górniczy:
Okręgowy Urząd Górniczy – Poznań
Nr MIDAS: 5326

Dokumentacje w NAG PIG-PIB:

- Leszczyński M. 1995. Dokumentacja geologiczna w kat. B złoża ropy naftowej Mozów S i Mozów N. Inw. 230/96, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska Zasobów Naturalnych i Leśnictwa z dnia 20 grudnia 1995 roku, znak KZK/2/6546/A/95.
- Zalewska M. 1996. Dokumentacja geologiczna w kat. B złóż ropy naftowej – Mozów S i Mozów N. Dodatek nr 1. Wniosek o zmianę decyzji zasobowej. Inw. 332/97, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 30 grudnia 1996 roku, znak KZK/2/6689/A/96.
- Burdzy M. 2001. Dokumentacja geologiczna złoża ropy naftowej Mozów S i Mozów N. Dodatek nr 2. Dokumentacja rozliczeniowa złoża ropy naftowej Mozów N. Inw. 72/2002, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Środowiska z dnia 19 grudnia 2001 roku, znak DG/kzk/EZD/7364/2001.

Zasoby:

Złoże skreślone z krajowego bilansu zasobów złóż kopalin w roku 2001. Pierwotne wydobywalne zasoby bilansowe stan na rok 2000:

5,2 tys. t ropy naftowej w kat. B

0,8 mln m³ gazu ziemnego w kat. B Wydobywalne zasoby bilansowe stan na 31.12.2000 roku: 0,908 tys. t ropy naftowej w kat. B 0,1701 mln m³ gazu ziemnego w kat. B Zasoby przemysłowe stan na 31.12.2000 roku: brak Wydobycie w 2022 roku: brak

Budowa złoża:

Złoże ropy naftowej Mozów N (Fig. 4.12A) rozpoznano w 1990 roku odwiertem Mozów-1. Znajduje się ono na północnym skrzydle niecki zielonogórskiej, w bezpośrednim sasiedztwie złoża ropy naftowej Mozów S. Struktura Mozów N to niewielki (około 2 km długości, maksymalnie 1,2 km szerokości) element wydłużony wzdłuż osi NNW-SSE (Fig. 4.12B). Ropa naftowa jest zakumulowana w utworach dolomitu głównego (facja lagunowa), kopaliną współwystępującą jest rozpuszczony w niej gaz ziemny. Górną granicę złoża stanowi strop dolomitu głównego, nad którym zalegają izolujące ewaporaty cechsztynu. Dolna granica odpowiadała spągowi interwału udostępnionego do eksploatacji w otworze Mozów-1.

Otwory zlokalizowane na złożu (Fig. 4.12A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
MOZÓW-1	2414,0	perm

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.9.

Historia produkcji: dane zestawiono w Tab. 4.10–4.11 i na Fig. 4.10–4.11.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie złożowe pierwotne			21,530	MPa	
miąższość efektywna złoża			2,000	m	
miąższość złoża		30,000		m	
porowatość			2,700	%	
przepuszczalność		0,100		mD	
temperatura złoża			73,000	°C	
współczynnik wydobycia			0,100	-	
par	ametry jako	ościowe ropy	naftowej (k	opalina głów	na)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
zawartość asfaltenów			5,430	% wag.	
zawartość frakcji benzynowej			7,500	% obj.	
zawartość frakcji naftowej			20,600	% obj.	
zawartość węglowodorów aromatycznych			22,830	% wag.	
zawartość węglowodorów nasyconych			64,130	% wag.	
param	etry jakościo	owe gazu zie	mnego (kopa	alina towarzy	vsząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
gęstość			0,852	_	względem powietrza
wartość opałowa			45,795	MJ/Nm ³	
zawartość C ₂ H ₆			20,306	% obj.	
zawartość CH ₄			51,138	% obj.	
zawartość dwutlenku węgla			0,199	% obj.	
zawartość H ₂			0,037	% obj.	
zawartość He			0,032	% obj.	
zawartość N ₂			18,484	% obj.	
zawartość siarkowodoru			0,034	% obj.	
zawartość węglowodorów ciężkich C ₃₊			9,771	% obj.	

Tab. 4.9. Parametry złoża ropy naftowej Mozów N i parametry jakościowe kopalin (MIDAS, 2022 według Zalewskiej, 1996 oraz Burdzego, 2001).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie ropy naftowej z wydobywalnych zasobów bilanso- wych w tys. t kat. B	Wydobycie ropy naftowej z zasobów szacunkowych w tys. t
1997/12/31	0,18	_
1996/12/31	0,18	_
1995/12/31	0,73	_
1994/12/31	_	0,33
1993/12/31	_	0,27
1992/12/31	-	0,48
1991/12/31	_	2.13

Tab. 4.10. Historia wydobycia ropy naftowej (kopalina główna) w złożu Mozów N (według dodatku nr 2 do dokumentacji geologicznej złoża – Burdzy, 2001).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilanso- wych w mln m ³ kat. B	Wydobycie gazu ziemnego z zasobów szacunkowych w mln m ³
1997/12/31	0,02	_
1996/12/31	0,02	_
1995/12/31	0,21	_
1994/12/31	_	0,03
1993/12/31	_	0,03
1992/12/31	_	0,08
1991/12/31	_	0,24

Tab. 4.11. Historia wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Mozów N (według dodatku nr 2 do dokumentacji geologicznej złoża – Burdzy, 2001).

Fig. 4.10. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Mozów N (według dodatku nr 2 do dokumentacji geologicznej złoża – Burdzy, 2001).

Fig. 4.11. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Mozów N (według dodatku nr 2 do dokumentacji geologicznej złoża – Burdzy, 2001).

Fig. 4.12. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Mozów N i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Mozów N (na podstawie Burdzego, 2001).

4.7. ZŁOŻE ROPY NAFTOWEJ MOZÓW S

Położenie administracyjne:

województwo – lubuskie powiat – zielonogórski gmina – Sulechów Powierzchnia całkowita złoża: 158,00 ha Głębokość zalegania: -1888,0 m (spąg złoża) Stratygrafia: perm/cechsztyn – dolomit główny Koncesja na wydobywanie: 50/96 z dnia 7 stycznia 1997 roku wydana przez Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa Użytkownik: ORLEN S.A. Data rozpoczęcia eksploatacji: 1992 roku Nadzór górniczy: Okręgowy Urząd Górniczy – Poznań Nr MIDAS: 5511

Dokumentacje w NAG PIG-PIB:

- Leszczyński M. 1995. Dokumentacja geologiczna w kat. B złoża ropy naftowej Mozów S i Mozów N. Inw. 230/96, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska Zasobów Naturalnych i Leśnictwa z dnia 20 grudnia 1995 roku, znak KZK/2/6546/A/95.
- Zalewska M. 1996. Dokumentacja geologiczna w kat. B złóż ropy naftowej – Mozów S i Mozów N. Dodatek nr 1. Wniosek o zmianę decyzji zasobowej. Inw. 332/97, CAG PIG, Warszawa. Zatwierdzony decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 30 grudnia 1996 roku, znak KZK/2/6689/A/96.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe stan na rok 1995:

5,90 tys. t ropy naftowej w kat. B 2,15 mln m³ gazu ziemnego w kat. B Wydobywalne zasoby bilansowe stan na 31.12.2022 roku:

1,51 tys. t ropy naftowej w kat. B 0,14 mln m³ gazu ziemnego w kat. B Zasoby przemysłowe stan na 31.12.2022 roku: 1,32 tys. t zasobów przemysłowych ropy naftowej w kat. B 33,23 tys. t zasobów nieprzemysłowych ropy naftowej w kat. B brak zasobów przemysłowych gazu ziemnego w kat. B 21,58 mln m³ zasobów nieprzemysłowych gazu ziemnego w kat. B

Wydobycie w 2022 roku:

1,19 tys. t ropy naftowej w kat. B 0,12 mln m³ gazu ziemnego w kat. B

Budowa złoża:

Złoże ropy naftowej Mozów S (Fig. 4.15A) W 1991 roku odwiertem przewiercono Mozów-2. Jest ono położone w północnym skrzydle niecki zielonogórskiej. Akumulacja ropy naftowej występuje w utworach dolomitu głównego wykształconych w facji lagunowej. Kopaliną towarzysząca jest gaz ziemny rozpuszczony w ropie. Struktura Mozów S tworzy element wydłużony wzdłuż osi W-E. o długości około 2,2 km i maksymalnej szerokości 1 km (Fig. 4.15B). Górna granica złoża odpowiada powierzchni stropowej dolomitu głównego, wyżej zalegają nieprzepuszczalne ewaporaty cechsztynu. Dolną granicę wyznaczono na spągu interwału udostępnionego do eksploatacji i jest to również dolna granica obliczenia zasobów. Mozów S jest złożem typu warstwowo-litologicznego.

Otwory zlokalizowane na złożu (Fig. 4.15A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
MOZÓW-2	2387,0	perm

Parametry złoża i parametry jakościowe kopalin: dane zestawiono w Tab. 4.12.

Historia produkcji: dane zestawiono w Tab. 4.13–4.14 i na Fig. 4.13–4.14. Według informacji zawartych w dodatku nr 1 do dokumentacji geologicznej złoża (Zalewska, 1996) od początku eksploatacji, tj. od września 1992 roku, do końca 1995 roku ze złoża wydobyto 0,8200 tys. t ropy naftowej i 0,3508 mln m³ gazu ziemnego.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie aktualne			23,540	MPa	06.03.1995 r.
ciśnienie złożowe pierwotne			24,456	MPa	04.09.1991 r.
miąższość efektywna złoża			3,500	m	
miąższość złoża		26,000		m	
porowatość			2,500	%	
powierzchnia złoża			1,580	km ²	
przepuszczalność		0,100		mD	poniżej 0,1 mD

temperatura złoża			72,000	°C	
par	ametry jako	ściowe ropy	naftowej (k	opalina głóv	vna)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
zawartość asfaltenów			2,960	% wag.	
zawartość frakcji benzynowej			17,600	% obj.	
zawartość frakcji naftowej			19,100	% obj.	
zawartość węglowodorów aromatycznych			27,180	% wag.	
zawartość węglowodorów nasyconych			58,320	% wag.	
zawartość żywic			11,540	% wag.	
paramo	etry jakościo	owe gazu zie	mnego (kop	alina towarz	ysząca)
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
Nazwa parametru gęstość	Wartość min.	Wartość max.	Wartość średnia 0,858	Jednostka –	Uwagi
Nazwa parametru gęstość wartość opałowa	Wartość min. 	Wartość max.	Wartość średnia 0,858 46,008	Jednostka – MJ/Nm ³	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C ₂ H ₆	Wartość min. 	Wartość max. 	Wartość średnia 0,858 46,008 18,308	Jednostka – MJ/Nm ³ % obj.	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4	Wartość min. 	Wartość max. 	Wartość średnia 0,858 46,008 18,308 52,038	Jednostka — MJ/Nm ³ % obj. % obj.	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla	Wartość min. 	Wartość max. 	Wartość średnia 0,858 46,008 18,308 52,038 0,511	Jednostka MJ/Nm ³ % obj. % obj. % obj.	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość H2	Wartość min. 	Wartość max. 	Wartość średnia 0,858 46,008 18,308 52,038 0,511 0,131	Jednostka MJ/Nm ³ % obj. % obj. % obj. % obj. % obj.	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość H2 zawartość He	Wartość min. 	Wartość max.	Wartość średnia 0,858 46,008 18,308 52,038 0,511 0,131 0,071	Jednostka 	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość H2 zawartość H2 zawartość N2	Wartość min. 	Wartość max.	Wartość średnia 0,858 46,008 18,308 52,038 0,511 0,131 0,071 18,236	Jednostka 	Uwagi
Nazwa parametru gęstość wartość opałowa zawartość C2H6 zawartość CH4 zawartość dwutlenku węgla zawartość H2 zawartość He zawartość N2 zawartość siarkowodoru	Wartość min. 	Wartość max.	Wartość średnia 0,858 46,008 18,308 52,038 0,511 0,131 0,071 18,236 0,025	Jednostka 	Uwagi

Tab. 4.12. Parametry złoża ropy naftowej Mozów S i parametry jakościowe kopalin (MIDAS, 2022 według Zal	lewskiej,
1996).	

Stan na dzień	Wydobycie ropy naftowej z wydobywalnych zasobów bilanso-	Wydobycie ropy naftowej z zasobów szacunkowych w tys. t
(rok/miesiąc/dzień)	wych w tys. t	
	kat. B	
2022/12/31	1,19	
2021/12/31	1,43	
2020/12/31	1,05	_
2019/12/31	0,70	_
2018/12/31	1,14	_
2017/12/31	1,37	_
2016/12/31	1,07	_
2015/12/31	1,32	_
2014/12/31	1,26	_
2013/12/31	0,31	_
2012/12/31	_	_
2011/12/31	1,09	_
2010/12/31	1,15	_
2009/12/31	3,09	_
2008/12/31	1,23	_
2007/12/31	1,21	_
2006/12/31	0,94	_

2005/12/31	0,63	-
2004/12/31	0,84	_
2003/12/31	0,20	_
2002/12/31	0,31	_
2001/12/31	0,31	_
2000/12/31	0,36	_
1999/12/31	0,36	_
1998/12/31	0,36	_
1997/12/31	0,36	_
1996/12/31	0,36	_
1995/12/31	0,36	_
1994/12/31	_	0,29
1993/12/31	_	0,11
1992/12/31	_	0,06

Tab. 4.13. Historia wydobycia ropy naftowej (kopalina główna) w złożu Mozów S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2020 według bazy MIDAS, 2022; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Zalewska, 1996).

Stan na dzień (rok/miesiąc/dzień)	Wydobycie gazu ziemnego z wydobywalnych zasobów bilanso- wych w mln m ³	Wydobycie gazu ziemnego z zasobów szacunkowych w mln m ³
	kat. B]
2022/12/31	0,12	
2021/12/31	0,14	
2020/12/31	0,11	-
2019/12/31	0,07	-
2018/12/31	0,13	-
2017/12/31	0,16	_
2016/12/31	0,10	-
2015/12/31	0,26	-
2014/12/31	0,22	_
2013/12/31	0,02	-
2012/12/31	_	_
2011/12/31	0,12	_
2010/12/31	0,07	_
2009/12/31	0,19	-
2008/12/31	0,09	-
2007/12/31	0,07	-
2006/12/31	_	-
2005/12/31	0,03	-
2004/12/31	0,06	-
2003/12/31	0,06	-
2002/12/31	0,09	-
2001/12/31	0,13	-
2000/12/31	0,15	-
1999/12/31	0,16	-
1998/12/31	0,16	-
1997/12/31	0,16	_
1996/12/31	0,15	_
1995/12/31	0,15	_
1994/12/31	_	0,13
1993/12/31	-	0,05
1992/12/31	-	0.02

Tab. 4.14. Historia wydobycia gazu zimnego (kopalina towarzysząca) w złożu Mozów S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2020 według bazy MIDAS, 2022; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Zalewska, 1996).

Fig. 4.13. Wykres wydobycia ropy naftowej (kopalina główna) w złożu Mozów S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2020 według bazy MIDAS, 2022; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Zalewska, 1996).

Fig. 4.14. Wykres wydobycia gazu ziemnego (kopalina towarzysząca) w złożu Mozów S (na podstawie corocznych zestawień zmian zasobów złóż przysyłanych przez przedsiębiorcę; lata 1995-2020 według bazy MIDAS, 2022; wcześniejsze lata według dodatku nr 1 do dokumentacji geologicznej złoża – Zalewska, 1996).

Fig. 4.15. A. Lokalizacja otworów wiertniczych na złożu ropy naftowej Mozów S i w jego sąsiedztwie (na podstawie CBDG, 2022). **B.** Przekrój przez złoże ropy naftowej Mozów S (na podstawie Zalewskiej, 1996).

4.8. ZŁOŻE GAZU ZIEMNEGO NOWA SÓL

Położenie administracyjne: województwo - lubuskie powiat – nowosolski gmina - Kożuchów Powierzchnia całkowita złoża: 60,9 ha Głębokość zalegania: od -869,1 m do -900,0 m Stratygrafia: perm/cechsztyn – dolomit główny Koncesja na wydobywanie: brak Użytkownik złoża: brak Data rozpoczęcia eksploatacji: złoże nieeksploatowane Nadzór górniczy: kręgowy Urząd Górniczy - Poznań Nr MIDAS: 6724

Dokumentacje w NAG PIG-PIB:

 Dudzińska K. 1995. Dokumentacja geologiczna w kat. B złoża gazu ziemnego Nowa Sól. Inw. 1071/95, CAG PIG, Warszawa. Zatwierdzona decyzją Ministra Ochrony Środowiska, Zasobów Naturalnych i Leśnictwa z dnia 24 maja 1995 roku, znak KZK/2/6476/95.

Zasoby:

Pierwotne wydobywalne zasoby bilansowe: brak Pierwotne wyd. zasoby pozabilansowe stan na rok 1994: 8,75 mln m³ gazu ziemnego w kat. B
Wydobywalne zasoby bilansowe: brak Wydobywalne zasoby pozabilansowe stan na 31.12.2022 roku: 8,75 mln m³ gazu ziemnego w kat. B Zasoby przemysłowe stan na 31.12.2022 roku: brak Wydobycie w 2022 roku: brak

Budowa złoża:

Złoże gazu ziemnego Nowa Sól (Fig. 4.16A) zostało odkryte w 1981 roku odwiertem Nowa Sól 24. Znajduje się ono w południowozachodniej części monokliny przedsudeckiej, na obszarze zaangażowanym tektonicznie. Gaz ziemny jest zakumulowany w pułapce antyklinalnej, w utworach dolomitu głównego (Fig. 4.16B) stanowiących kolektor szczelinowo-porowy. Struktura złożowa jest wydłużona w kierunku ENE-WSW, a jej wschodnie skrzydło obcina uskok. Nowa Sól to złoże typu masywowego. Jego górną granicę wyznacza strop dolomitu głównego, nad którym zalega seria nieprzepuszczalnych utworów anhydrytowo-solnych, a dolną – poziom wody podścielającej.

Otwory zlokalizowane na złożu (Fig. 4.16A; stan na 2022 r.):

Nazwa otworu	Głębokość spągu [m p.p.t.]	Stratygrafia na dnie
NOWA SÓL 22	946,0	perm górny
NOWA SÓL 24	958,0	perm górny

Parametry złoża i parametry jakościowe kopaliny: dane zestawiono w Tab. 4.15.

Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciśnienie denne P _{ds}			9,120	MPa	odwiert Nowa Sól 24
ciśnienie denne P _{ds}			10,010	MPa	odwiert Nowa Sól 22
ciśnienie głowicowe P _{gs}			8,940	MPa	odwiert Nowa Sól 22
ciśnienie głowicowe P _{gs}			8,110	MPa	odwiert Nowa Sól 24
ciśnienie złożowe pierwotne			9,560	MPa	
głębokość położenia wody podścielającej			-900,000	m	
miąższość efektywna złoża		30,900	15,400	m	
porowatość			2,000	%	
stopień mineralizacji wody złożowej			330,000	g/l	
temperatura złoża			37,000	°C	
typ chemiczny wody złożowej				—	solanka chlorkowo-sodowa
współczynnik nasycenia węglowodorami			0,700	—	
współczynnik wydobycia			0,700	—	
wydajność absolutna V _{abs}			811,000	m ³ /min	odwiert Nowa Sól 22
wydajność absolutna V _{abs}			7,000	m ³ /min	odwiert Nowa Sól 24
wydajność dozwolona V _{dozw}			107,000	m ³ /min	odwiert Nowa Sól 22
wydajność dozwolona V _{dozw}			1,000	m ³ /min	odwiert Nowa Sól 24
parametry jakościowe gazu ziemnego					
Nazwa parametru	Wartość min.	Wartość max.	Wartość średnia	Jednostka	Uwagi
ciepło spalania	24,600	26,100	25,320	MJ/m ³	
gęstość	0,834	0,871	0,847	-	

wartość opałowa	22,300	23,700	22,960	MJ/m ³	
zawartość C ₂ H ₆	5,900	9,268	7,596	% obj.	
zawartość CH ₄	34,395	40,335	38,058	% obj.	
zawartość dwutlenku węgla	0,000	0,000	0,000	% obj.	
zawartość H ₂	0,078	0,176	0,109	% obj.	
zawartość He	0,148	0,263	0,228	% obj.	
zawartość N ₂	49,187	50,795	49,725	% obj.	
zawartość siarkowodoru	0,000	0,000	0,000	% obj.	
zawartość węglowodorów	48,851	50,394	49,938	% obj.	
zawartość węglowodorów ciężkich C ₃₊	76,295	117,744	96,829	g/m ³	tzw. zawartość gazoliny

Tab. 4.15. Parametry złoża gazu ziemnego Nowa Sól i parametry jakościowe kopaliny (MIDAS, 2022 według Dudzińskiej, 1995).

Fig. 4.16. A. Lokalizacja otworów wiertniczych na złożu gazu ziemnego Nowa Sól i w jego sąsiedztwie (na podstawie CBDG, 2022). B. Przekrój przez złoże gazu ziemnego Nowa Sól (na podstawie Dudzińskiej, 1995).

czerwony spągowiec Rotliegend

1136 m

-1000

m n.p.m. *m a.s.l.* 1054,5 m

5. OTWORY WIERTNICZE 5.1. INFORMACJE OGÓLNE

Na obszarze przetargowym Zielona Góra Zachód znajdują się następujące otwory wiertnicze o głębokości >500 m MD osiągające interwały perspektywiczne:

Nazwa	Rok	Właściciel informacji	Głebokość [m]	Stratygrafia na dnie	
otworu	wykonania	geologicznej			
BRONISZOW	1962	Skarb Państwa	791,5	perm – czerwony spągowiec	
BRONKOW-M-27	1988	Skarb Państwa	1564,0	perm – czerwony spągowiec	
CHOJNOWO 1	1968	Skarb Państwa	1530,1	perm – czerwony spągowiec	
DACHÓW 1	1966	Skarb Państwa	1508,0	karbon	
DACHÓW-M-24	1979	Skarb Państwa	1538,4	perm – czerwony spągowiec	
DĘBY 1	1966	Skarb Państwa	1370,5	karbon	
DRZONÓW 1	1965	Skarb Państwa	1303,0	perm – cechsztyn	
DRZONÓW 2	1966	Skarb Państwa	1434,0	perm – cechsztyn	
DYCHÓW M-26	1981	Skarb Państwa	1930,0	perm – czerwony spągowiec	
JAROGNIEWICE IG-1	1966	Skarb Państwa	551,6	trias	
JASIEŃ P-4	1989	Skarb Państwa	1054,0	perm	
JELENIÓW-1	1968	Skarb Państwa	1492,3	perm – czerwony spągowiec	
KLĘPINKA	1961	Skarb Państwa	708,2	proterozoik	
KOSIERZ 1	1965	Skarb Państwa	1415,0	perm – cechsztyn	
KOSIERZ M-25	1982	Skarb Państwa	1810,0	perm – czerwony spągowiec	
LUBIATÓW 1	1966	Skarb Państwa	1451,4	perm – czerwony spągowiec	
LUBIATÓW M-20	1983	Skarb Państwa	1662,0	perm – czerwony spagowiec	
NIWISKA 1	1969	Skarb Państwa	1700,0	karbon	
NOWA SÓL 7	1963	Skarb Państwa	1113,2	perm – cechsztyn	
NOWA SÓL 9	1963	Skarb Państwa	1137,3	perm – cechsztyn	
NOWA SÓL 16	1964	Skarb Państwa	1299,0	perm – cechsztyn	
NOWA SÓL 18	1964	Skarb Państwa	1241,6	perm – cechsztyn	
NOWA WIEŚ P-1	1987	Skarb Państwa	1012,0	perm – czerwony spągowiec	
PAJĘCZNO 1	1969	Skarb Państwa	1203,0	perm – cechsztyn	
PIASKI 1	1966	Skarb Państwa	2021,8	karbon	
STARY ZAGÓR 1	1967	Skarb Państwa	1984,6	perm – czerwony spągowiec	
STRUŻKA 1	1966	Skarb Państwa	1492,4	karbon	
ŚWIDNICA-1	1967	Skarb Państwa	1391,0	perm – cechsztyn	
TARNAWA M-21	1990	Skarb Państwa	1466,0	perm – czerwony spągowiec	
TRZEBULE 1	1966	Skarb Państwa	2666,7	perm – czerwony spągowiec	
URZUTY IG-1	1962	Skarb Państwa	1250,0	perm – czerwony spągowiec	
WYSOKA 1	1967	Skarb Państwa	1440,7	perm – czerwony spągowiec	
WYSOKA 2	1968	Skarb Państwa	1305,0	perm – czerwony spągowiec	
ŻARKÓW 1	1965	Skarb Państwa	1363,6	perm – czerwony spągowiec	
ŻARKÓW 2	1965	Skarb Państwa	994,1	proterozoik	
ŻARKÓW 3	1965	Skarb Państwa	1214,6	perm – czerwony spągowiec	
ŻARKÓW 4	1965	Skarb Państwa	1059,7	proterozoik	

W następnych podrozdziałach przedstawiono ich ogólną charakterystykę. Lokalizację wymienionych otworów można znaleźć na Fig. 5.1. Przykładowy profil otworu reperowego – Piaski 1 – zilustrowano na Fig. 5.2. Informacje źródłowe niniejszego rozdziału – dane geologiczne będące własnością Skarbu Państwa, które są niezbędne dla prawidłowej analizy perspektywiczności naftowej obszaru Zielona Góra Zachód, zostały zebrane i wycenione w osobnym miejscu – "Projekcie cyfrowych danych geologicznych". Będzie on dostępny do wglądu w ramach "DATA RO-OMu" w Czytelni NAG w trakcie trwania szóstej rundy przetargów na koncesje węglowodorowe w Polsce.

Fig. 5.1. Otwory wiertniczne wykonane na obszarze przetargowym Zielona Góra Zachód i jego sąsiedztwie.

5.2. BRONISZÓW

Głębokość otworu wg miary wiertniczej: 791,5 m

Rok zakończenia wiercenia: 1962 **Rdzenie:** 564,4–791,5 m, 164 skrzynki, Magazyn rdzeni wiertniczychw Michałowie.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratuquafia	
od	do	Stratygrana	
0,0	332,3	kenozoik	
332,3	582,0	trias	
582,0	791,5	perm	
582,0	613,9	terygeniczna stropowa seria PZt	
613,9	651,4	anhydryt podstawowy A2	
651,4	705,2	dolomit główny Ca2	
705,2	779,6	anhydryt A1	
779,6	782,7	wapień cechsztyński Cal	
782,7	783,0	łupek miedzionośny Tl	
783,0	791,5	czerwony spągowiec	

Wyniki badań skał:

W Narodowym Archiwum Geologicznym znajduje się jedynie karta otworu wiertniczego Broniszów, w której brak wyników badań skał.

Wyniki geofizyki otworowej:

Karta otworu Broniszów zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>dla podkreślonych profi</u>lowań w CBDG sa dostępne pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 0,3–786,7 m,
- profilowanie krzywizny odwiertu (PK): 300–740 m,
- profilowania oporności standardowe (PO): 351–786 m,
- profilowanie oporności EL02 (PO): 350,75–785,75 m,
- profilowanie oporności EL03 (PO): 351,5–785,75 m,
- profilowanie oporności EL07 (PO): 353,25–787,5 m,
- profilowanie oporności EL09 (PO): 353,1–786,9 m,
- profilowanie oporności EL14 (PO): 354,25–784,75 m,
- profilowanie oporności EL26 (PO): 358,25–781,5 m,
- profilowanie oporności EN20 (PO): 350,5–784,75 m,

- prof. oporności sondą gradientową (Pog): 351,65–513 m,
- profilowanie potencjałów naturalnych (PS): 349,25–784,75 m,
- profilowanie średnicy otworu (PSr): 0,10–785,4 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Broniszów <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: objawów węglowodorów nie stwierdzono, prób złożowych nie wykonano.

Dokumentacje NAG PIG-PIB:

- Pomiary geofizyczne otworu Broniszów + karta otworu. Inw. 65463, CAG PIG, Warszawa.
- Mizeracka K. 1979. Dokumentacja badań właściwości fizycznych skał z rejonu Monokliny Przedsudeckiej i Wału Północno-Sudeckiego, rok opracowania 1979. Inw. 62/154, CAG PIG, Warszawa.

5.3. BRONKÓW M-27

Głębokość otworu wg miary wiertniczej: 1564,0 m

Rok zakończenia wiercenia: 1988 **Rdzenie:** 0–1563 m, 503 skrzynki, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (Oszczepalski i in., 1990):

Głębokość [m]		Stratugnofia	
od	do	Stratygrana	
0,0	226,8	kenozoik	
226,8	1009,0	trias	
1009,0	1564,0	perm	
1009,0	1036,8	cechsztyn PZ4	
1036,8	1146,7	cechsztyn PZ3	
1146,7	1276,4	cechsztyn PZ2	
1276,4	1508,3	cechsztyn PZ1	
1508,3	1564,0	czerwony spągowiec	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Bronków-M-27 (Oszczepalski i in., 1990) znajdują się wyniki 2 analiz wody złożowej oraz 3 analizy gazu (Tab. 5.1–5.2). Wykonano również analizy petrograficznomineralogiczne na zawartość metali dla 21 próbek z anhydrytu dolnego, wapienia podstawowego i czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Bronków-M-27 (Oszczepalski i in., 1990) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak dla</u> nich plików LAS):

prof. gradientu potencjałów naturalnych (gPS): 880–1200 m,

- profilowanie naturalnego promieniowania gamma (PG): 2–1564 m,
- profilowanie gamma–gamma gęstościowe (PGG): 3–1564 m,
- profilowanie krzywizny odwiertu PK: 0–1550 m,
- profilowanie neutron-neutron nadtermiczne (PNNnt): 2–1564 m,
- profilowania oporności standardowe (PO): 41–1560 m,
- profilowanie oporności płuczki (POpl): 880–1560 m,
- profilowanie potencjałów naturalnych (PS): 41–1560 m,
- profilowanie średnicy otworu CALI (PSr): 41−1560 m,
- prof. temp. przy nieust. równowadze term. (PTn): 900–1564 m,
- prof. temp. przy ustalonej równowadze term. (PTu): 125–300 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Bronków-M-27 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.3– 5.4.

Dokumentacje NAG PIG-PIB:

 Oszczepalski S., Rydzewski A., Chojęta H. 1990. Dokumentacja wynikowa otworu Bronków M-27 [zawiera kartę otworu] Inw. 132247, CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
t <u></u>			Cl	242,2
			Br	4,37
			HCO ₃ ⁻	1,59
			SO_4^{2-}	0,51
		z mrak aufonouwah	SiO ₃ ²⁻	0,4
1202,0–1205,0	dolomit główny	z Turek Sylonowych	Ca ²⁺	36,54
		przy kompresorowaniu	Mg^{2+}	46,51
			Na/K ⁺	20,18/14,59
			Al/Fe ³⁺	0,41
			pН	3,9
			mineralizacja	367,3
1504,2–1507,3			Cl	161,91
	wonień	płyn pobrano znad próbnika	Br	0,63
	nodetawowy		HCO ₃ ⁻	0,12
	podstawowy		SO_4^{2-}	0,83
			$\mathrm{NH_4}^+$	-

Ca ²⁺	46,37
Mg^{2+}	0,92
Na/K ⁺	50,38
Al/Fe ³⁺	0,22
pН	6,4
mineralizacia	261.38

Tab. 5.1. Wyniki analiz wody i filtratu w otworze Bronków-M-27 (Oszczepalski i in., 1990).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
_			CH_4	22,0047
		próbnik złoża	C_2H_6	13,2125
1205,0-1277,0	dolomit główny		C_4H_{10}	4,2753
			N_2	0,7943
			Ar	59,7132
			CH_4	14,5463
			C_2H_6	0,8715
			C_3H_8	0,2744
			i-C ₄ H ₁₀	0,0275
			$n-C_4H_{10}$	0,0847
			i-C ₅ H ₁₂	0,0238
			$n-C_5H_{12}$	0,0255
1202,0-1205,0	dolomit główny	z głowiczki	C ₆ H ₁₄	0,0023
			C ₇ H ₁₆	-
			C ₈ H ₁₈	-
			CO ₂	0,068
			N_2	84,006
			He	0,0262
			H ₂	0,0439
			H_2S	0
			CH_4	7,4347
			C_2H_6	2,2033
			C_3H_8	0,023
			i-C ₄ H ₁₀	0,0031
			$n-C_4H_{10}$	0,0204
			i-C ₅ H ₁₂	0,0084
			$n-C_5H_{12}$	0,008
1504,2-1507,3	wapień podstawowy	płyn pobrany znad próbnika	$C_{6}H_{14}$	0,0013
			C ₇ H ₁₆	-
			C ₈ H ₁₈	-
			CO ₂	0,2827
			N ₂	88,6984
			He	0
			H ₂	1,3167
			H_2S	0

Tab. 5.2. Wyniki analiz gazu (w czystym gazie) w otworze Bronków-M-27 (Oszczepalski i in., 1990).

Głębokość [m] Stratygrafia		Stuatygnafia	Objawy	
od	do	Stratygrana	Objawy	
1205,0	1223,0	dolomit alówny	miejscami odgazowywanie się rdzenia	
1275,0	1276,0	dolollin glowily	obfite pocenie się rdzenia ropą naftową	

Tab. 5.3. Objawy węglowodorów w rdzeniach w otworze Bronków-M-27 (Oszczepalski i in., 1990).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1205,0-1223,0		pr. rurowy złoża	brak przypływu	-
1250,0–1277,0		pr. rurowy złoża	przypływ gazu palnego o małej wydajności przez 250 min i ślady ropy naftowej w płuczce wiertniczej z przewodu nad próbnikiem	0,24 m ³ płucz- ki/285,4 min
1202,0–1282,0	dolomit główny	pr. rurowy złoża	kwasowanie (30 m ³ cieczy kwa- sującej) spadek ciśnienia po kwasowaniu, otwór oddał sam 11,55 m ³ , wytłoczono kompre- sorem 20,58 m ³ , wtłoczono do rurek syfonowych powietrze, próba wywołania przypływy kompresorem wytłoczono 24,135 m ³ solanki z otworu, brak przypływu	-
1504,2–1517,0	PZ1, czerwony spagowiec		przypływ solanki, ciśnienie złożowe 14.8 MPa	1,64

Tab. 5.4. Rezultaty prób złożowych w otworze Bronków-M-27 (Oszczepalski i in., 1990).

5.4. CHOJNOWO 1

Głębokość otworu wg miary wiertniczej: 1530,1 m **Rok zakończenia wiercenia:** 1968 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	230,0	kenozoik	
230,0	992,0	trias	
992,0	1530,1	perm	
992,0	1011,0	terygeniczna stropowa seria PZt	
1011,0	1032,0	sól kam. najmłodsza Na4a	
1032,0	1032,5	anhydryt pegmaty. dolny A4a1	
1032,5	1035,0	ił solny czerwony dolny T4a	
1035,0	1143,0	sól kam. młodsza Na3	
1143,0	1154,0	anhydryt główny A3	
1154,0	1156,5	szary ił solny T3	
1156,5	1160,0	anhydryt kryjący A2r	
1160,0	1204,0	sól kamienna starsza Na2	
1204,0	1215,0	anhydryt podstawowy A2	
1215,0	1291,5	dolomit główny Ca2	
1291,5	1328,5	anhydryt górny A1g	
1328,5	1360,0	sól kamienna najstarsza Na1	
1360,0	1501,5	anhydryt dolny A1d	
1501,5	1505,0	wapień cechsztyński Cal	
1505,0	1530,1	czerwony spągowiec	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Chojnowo 1 (Piela, 1968) znajdują się wyniki analiz fizyczno-chemicznych 15 próbek z triasu z interwału 526–543,6 m, 63 próbek z dolomitu głównego i anhydrytu górnego z interwału 1221,5–1294,7 m oraz 4 próbek z czerwonego spągowca z interwału 1512,7– 1530,1 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto znajdują się wyniki 3 analiz wody złożowej oraz 1 analizy gazu (Tab. 5.5–5.7).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Chojnowo 1 (Piela, 1968) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak dla nich plików LAS):

- profilowanie naturalnego promieniowania gamma (PG): 3–1524 m,
- profilowanie krzywizny odwiertu (PK): 25–1520 m,
- profilowanie neutron–gamma (PNG): 3–1524 m,
- profilowania oporności standardowe (PO): 30–1523,5 m,
- profilowanie oporności sterowane (POst): 1212,5–1523,5 m,
- profilowanie potencjałów naturalnych (PS): 30–990 m,
- profilowanie średnicy otworu CALI (PSr): 30–1520 m,
- profilowanie temperatury po cementowaniu (PTc): 5–1175 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Chojnowo 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.8–5.10.

Dokumentacje NAG PIG-PIB:

- Piela J. 1968. Dokumentacja wynikowa z otworu Chojnowo 1 Inw. 92972, CAG PIG, Warszawa.
- Czarnecki R. 1968. Karta otworu: Chojnowo 1. Inw. 92972, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	15	12,62–23,65	0,851–43,783	śladowa
		(1/,4/)	(11,/)	
dolomit główny	63	0,12-6,21	0,042–0,286	éladowa 0.15
i anhydryt górny	03	(1,64)	(0,18)	slauowa-0,15
czerwony spągowiec	4	6,67–21,44 (12,57)	1,792–102,41 (38,78)	0,3056–1,2834

Tab. 5.5. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 526–543,6 m, 1221,5–1294,7 m oraz 1512,7–1530,1 m w otworze Chojnowo 1 na podstawie dokumentacji wynikowej (Piela, 1968).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	204,3661
			Br	0,5927
			HCO ₃ ⁻	0,1098
			SO_4^{2-}	0,716
1530.1	czerwony	nhưn no zhrzkowaniu 13 m ³ nhưnu	Ca ²⁺	46,9052
1550,1	spągowiec	piyii po ziyzkowalilu 45 lii piyilu	Mg^{2+}	1,2013
			Na/K ⁺	76,3154
			Al/Fe ³⁺	46,9052
			pН	6,39
			mineralizacja	336,2
			Cl	248,922
			Br	4,2624
	dolomit główny	płyn pobrano łyżką po ściągnięciu z otworu 42200 l płynu po I kwasowaniu	HCO ₃ ⁻	0,7747
			SO_4^{2-}	0,6296
			SiO_3^{2}	0,9674
1221,4			Ca ²⁺	34,669
			Mg^{2+}	52,8599
			Na/K ⁺	23,106
			Al/Fe ³⁺	0,7035
			pН	4,1
			mineralizacja	372,5
			Cl	253,7964
			Br	5,0616
			HCO ₃ ⁻	1,4762
			SO_4^{2-}	1,9095
	dolomit alówny	płyn pobrano łyżką po ściągnięciu	$\operatorname{SiO_3^{2-}}$	1,6056
1221,4–1295,0	i anhydryt górny	z otworu 52 m ³ płynu	Ca ²⁺	36,7084
	i annyui yi goiny	po II kwasowaniu	Mg^{2+}	51,6585
			Na/K ⁺	26,7828
			Al/Fe ³⁺	1,5346
			pH	4,38
			mineralizacja	380,9

Tab. 5.6. Wyniki analiz wody i filtratu w otworze Chojnowo 1 (Piela, 1968).

ZIELONA GÓRA ZACHÓD

Głębokość [m	Stratygrafia	Metoda	Składniki	% obj.
1523,6–1530,1 cz	czerwony spągowiec	gaz z degazacji rdzenia	CH_4	99,35
			C_2H_6	0,47
			C_3H_8	0,18
			H_2	-

Tab. 5.7. Wyniki analiz gazu (w czystym gazie) w otworze Chojnowo 1 (Piela, 1968).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
1221,5		20
1225,2		10
1225,2	dolomit główny	15
1225,2–1227,4		5
1231,3–1234,3		5

Tab. 5.8. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Chojnowo 1 (Piela, 1968).

Głębok	ość [m]	Stratugnofia	Objerry
od	do	Stratygrana	Objawy
1227,4	1260,1		zapach bitumin
1269,6	1284,2	1-1	zapach bitumin
1230,4	1234,3	dolomit giowny	smużki ropy występujące miejscami
1248	1254,1		ślady ropy w spękaniach
1288,7	1294,4	dolomit główny, anhydryt górny	objawy cieczy brunatnej ropy w masie dolomitycznej

Tab. 5.9. Objawy węglowodorów w rdzeniach w otworze Chojnowo 1 (Piela, 1968).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1216,3–1221,0	dolomit główny	łyżkowanie otworu	brak przypływu	-
1216,3–1301	dolomit główny, anhydryt górny	łyżkowanie otworu	brak przypływu	-
1216,3–1505,0	dolomit główny, PZ1	łyżkowanie otworu	niewielki przypływ solanki, poziom nie spada pomimo łyżkowania	-
1216,3–1295,0		łyżkowanie otworu	brak przypływu	-
1216,3–1295,0		kwasowanie	hydroperforacje kwasem 5% HCl na gł. 1294,5–1292, 1254–1248, 1234,3–1230,4 P=180 atm., wytłoczenie płynu poreakcyjnego wodą i ponowne zalanie otworu kwasem 5% w ilości 1,5 m ³	
1216,3–1295,0	dolomit główny, anhydryt górny	II kwasowanie	po podwójnym przemyciu otworu 5% kwasem po 1500 l każdy, wy- konano II kwasowanie P = 200 atm. w czasie 25 min wtło- czono 11 m ³ kwasu. Wytłoczono z otworu 35 700 l płynu, wzrostu ciśnienia nie obserwowano. Na- stępnie wytłoczono 42 200 l solan- ki z minimalnym śladami ropy. Po złyżkowaniu płynu od 15 do 26 marca przestój gdzie lustro płynu podniosło się do 744 m gł., 30 marca do gł. 625 m. Razem z otworu odebrano 59700 l płynów	_

Tab. 5.10. Rezultaty prób złożowych w otworze Chojnowo 1 (Piela, 1968).

5.5. DACHÓW 1

Głębokość otworu wg miary wiertniczej: 1508,0 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Studence Co
od	do	Stratygrana
0,0	250,0	kenozoik
250,0	922,5	trias
922,5	1432,5	perm
922,5	937,0	terygeniczna stropowa seria PZt
937,0	952,5	sól kam. najmłodsza Na4a
952,5	953,5	anhydryt pegm. dolny A4a1
953,5	959,5	ił solny czerwony dolny T4a
959,5	1052,0	sól kam. młodsza Na3
1052,0	1062,0	anhydryt główny A3
1062,0	1063,0	szary ił solny T3
1063,0	1065,5	anhydryt kryjący A2r
1065,5	1070,0	sól kamienna starsza kryjąca Na2r
1070,0	1073,0	sól potasowa starsza K2
1073,0	1103,0	sól kamienna starsza Na2
1103,0	1107,0	anhydryt podstawowy A2
1107,0	1170,0	dolomit główny Ca2
1170,0	1213,0	anhydryt górny A1g
1213,0	1255,0	sól kamienna najstarsza Na1
1255,0	1371,0	anhydryt dolny A1d
1371,0	1374,5	wapień cechsztyński Cal
1374,5	1375,0	łupek miedzionośny T1
1375,0	1432,5	czerwony spągowiec
1432,5	1508,0	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Dachów 1 (Binder i Olczak, 1967) znajduja sie wyniki analiz fizycznochemicznych 46 próbek z dolomitu głównego i anhydrytu górnego z interwału 1107,0-1173,2 m oraz 14 próbek z czerwonego spągowca z interwału 1375,0-1396,0 m (Binder i Olczak, 1967) wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto znajdują się wyniki 3 analiz wody złożowej oraz 5 analizy (Tab. 5.11-5.13).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Dachów 1 (Binder i Olczak, 1967) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 9–1497 m,
- \circ profilowanie krzywizny odwiertu (PK): 29–1490 m,
- profilowanie neutron–gamma (PNG): 9–1497 m,
- profilowania oporności standardowe (PO): 29–1497 m,
- profilowanie oporności EL00 (PO): <u>891–1497 m,</u>
- profilowanie oporności EL03 (PO): <u>886–1497 m,</u>
- profilowanie oporności EN64 (PO): <u>886–1497 m,</u>
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 886–1497 m.
- profilowanie oporności sterowane (POst): 886–1497 m,
- profilowanie potencjałów naturalnych (SP): 29–1497 m,
- profilowanie średnicy otworu CALI (PSr): 885–1499 m,
- profilowanie temperatury (PT): 188–1140 m,
- profilowanie temperatury po cementowaniu (PTc): 15–775 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Dachów 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.14–5.16

Dokumentacje NAG PIG-PIB:

- Binder I., Olczak D. 1967. Dokumentacja wynikowa z wiercenia Dachów 1 [zawiera kartę otworu] Inw. 83944, CAG PIG, Warszawa.
- Olczak D. 1966a. Karta otworu: Dachów 1 Inw. 83944, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
dolomit główny, anhydryt górny	46	0,13–3,89 (0,83)	b. sł. przepusz- czalne–2,124 (0,24)	0,0185–0,0698
wapień podstawowy, łupek miedzionośny, czerwony spągowiec	3	0,105-0,155 (0,98)	0,88–1,08 (0,14)	0,022–0,0345
czerwony spągowiec	11	2,61–26,17 (15,82)	0,543–210,585 (112.87)	ślady

Tab. 5.11. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1107,0–1173,2 m, 1372,0–1378,0 m oraz 1378,0–1396,0 m w otworze Dachów 1 na podstawie dokumentacji wynikowej (Binder i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	195,7392
			Br	
			HCO ₃ ⁻	0,5002
	a a based and		SO_4^{2-}	0,7449
	annyaryt	ntra no zbrżkowaniu	SiO ₃ ²⁻	
1105,8-1172,0	dolomit główny	dolomitu glownogo	Ca ²⁺	17,0889
	anhydryt górny	dolollitu giownego	Mg^{2+}	6,8099
	annyuryt gorny		Na/K ⁺	95,1154
			Al/Fe ³⁺	
			pH	9
			mineralizacja	320,8
			Cl	198,5760
	an haadaa d	płyn po złyżkowaniu dolomitu głownego	Br	
			HCO ₃ ⁻	1,0736
			SO4 ²⁻	1,6338
	nodstawowy		CO_2	0,144
1105,8–1172,0	dolomit główny, anhydryt górny		Ca ²⁺	17,0889
			Mg^{2+}	10,659
			Na/K ⁺	90,3154
			Al/Fe ³⁺	
			pH	9
			mineralizacja	328
			Cl	5,319
			Br	
			HCO ₃	0,1464
			SO4 ²⁻	1,4733
390,0–400,0 m	pstry piaskowiec	płyn pobrano po perforacji	Ca ²⁺	0,402
			Mg ²⁺	0,2368
			Na/K ⁺	3,3009
			pH	7
			mineralizacja	11,8

Tab. 5.12. Wyniki analiz wody i filtratu w otworze Dachów 1 (Binder i Olczak, 1967).

Głębokość [m	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	96,58
1508	karbon	gaz z degazacji płuczki	C_2H_6	2,5
			C ₃ H ₈	0,52
			C_4H_{10}	0,4
			CH_4	97,98
1508	karbon	gaz z degazacji płuczki	C_2H_6	2,02
			C_3H_8	-

			H ₂	-
1378,0–1384,0 czerwony spągowiec		gaz z degazacji rdzenia	CH_4	98,57
	0705000		C_2H_6	1,27
	czerwoliy		C ₃ H ₈	0,16
		H ₂	-	
1272 0 1278 0	wapień	oog a dogogooji edgonio	CH_4	99
			C_2H_6	1
1372,0-1378,0	bunch micdziono	gaz z degazacji idzellia	C ₃ H ₈	-
	spy czerwory		H ₂	-
1372,0–1378,0	snagowiec	goz z dogozocii rdzonio	CH_4	99,05
	spągowiec	gaz z degazacji ruzenia	C_2H_6	0,95

Tab. 5.13. Wyniki analiz gazu (w czystym gazie) w otworze Dachów 1 (Binder i Olczak, 1967).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
24,6-251,9	kenozoik, trias	ciągły zanik płuczki
358,5–390		8 m³/?h
466-650	pstry piaskowiec	260 m ³ /?h
689,6-830,7		100 m ³ /?h

Tab. 5.14. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Dachów 1 (Binder i Olczak, 1967).

Głębokość [m]		Stratygrafia	Objewy	
od	do	Stratygrafia	Objawy	
1107,0	1112,2		zapach bitumin	
1112,2	1171,7		zapach bitumin i H_2S	
1171,7	1139,4		zapach H_2S	
1139,4	1144,4	dolomit główny	zapach bitumin	
1148,1	1153,1		zapach bitumin	
1161,7	1165		zapach H ₂ S	
1165	1167,2		w spękaniach punktowe objawy ropy	
1167,2	1173,2	dolomit główny, anhydryt górny	w spągu liczne objawy brunatnej ropy w spękaniach	

Tab. 5.15. Objawy węglowodorów w rdzeniach w otworze Dachów 1 (Binder i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1342,0–1382,3	PZ1, czerwony spągowiec	próbnik złoża	brak przypływu	-
1111,0–1156,6	dolomit główny	próbnik złoża	nieudana próba zapięcia pakera, łyżkowanie od 0 do 570 m gł. Po 2,5 h stójki płyn się podniósł do 280 m gł. Razem złyżkowa- no 31 m ³ płynu. Po 16 h lustro ustaliło się na 160 m. Brak przepływu	-

Tab. 5.16. Rezultaty prób złożowych w otworze Dachów 1 (Binder i Olczak, 1967).

5.6. DACHÓW M-24

Głębokość otworu wg miary wiertniczej: 1538,4 m

Rok zakończenia wiercenia: 1979 **Rdzenie:** 0947,5–1538,5 m, 245 skrzynek, Magazyn rdzeni wiertniczychw Michałowie.

Stratygrafia (Karta otworu Dachów M-24):

Głębok	xość [m]	Stratugnofia	
od	do	Stratygrana	
0,0	230,8	kenozoik	
230,8	944,4	trias	
944,4	1538,4	perm	
944,4	1482,3	cechsztyn	
1482,3	1538,4	czerwony spągowiec	

Wyniki badań skał:

W NAG znajduje się jedynie karta otworu wiertniczego Dachów M-24.

Wyniki geofizyki otworowej:

W NAG znajdują się wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak dla nich plików LAS):

- prof. gradientu potencjałów naturalnych (gPS): 1117–1532 m,
- mikroprofilowanie średnicy otworu (mPSr): 1118–1243 m,
- o profilowanie akustyczne (PA):

447–1533 m,

- profilowanie naturalnego promieniowania gamma (PG): 0–1535 m,
- profilowanie gamma-gamma gęstościowe (GGDN): 0–1535 m,
- \circ profilowanie krzywizny odwiertu (PK): 0–1535 m,
- profilowanie neutron-gamma (PNG): 400–1535 m,
- profilowanie neutron-neutron nadtermiczne (PNNnt): 400–1535 m,
- profilowania oporności standardowe (PO): 53–1532 m,
- profilowanie potencjałów naturalnych (SP): 53–1115 m,
- profilowanie średnicy otworu (CALI): 53–1535 m,
- profilowanie temperatury (TEMP): 30–1535 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Dachów 1 <u>nie wykonano</u>.

Dokumentacje NAG PIG-PIB:

• Karta otworu: Dachów M-24. Inw. 125480, CAG PIG, Warszawa.

5.7. DĘBY 1

Głębokość otworu wg miary wiertniczej: 1370,5 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (Binder, 1966a):

Głębok	kość [m]	Stratyonofia
od	do	Stratygrana
0,0	285,0	kenozoik
285,0	737,5	trias
737,5	1049,0	perm
737,5	750,0	terygeniczna stropowa seria PZt
750,0	764,5	anhydryt główny A3
764,5	765,5	szary ił solny T3
765,5	766,2	anhydryt kryjący A2r
766,2	785,0	anhydryt główny A3
785,0	785,5	szary ił solny T3
785,5	787,5	anhydryt kryjący A2r
787,5	789,5	anhydryt podstawowy A2

789,5	855,5	dolomit główny Ca2
855,5	896,0	anhydryt górny Alg
896,0	914,5	sól kamienna najstarsza Nal
914,5	1036,5	anhydryt dolny A1d
1036,5	1040,0	wapień cechsztyński Cal
1040,0	1049,0	czerwony spągowiec
1049,0	1370,5	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Dęby 1 (Binder, 1966a) znajdują się wyniki analiz fizyczno-chemicznych 42 próbek z anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego z interwału 787,6–859,7 m, 2 próbek z wapienia cechsztyńskiego z interwału 1036,5–1040,0 m oraz 6 próbek z czerwonego spągowca i karbonu z interwału 1042,9–1053,7 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto znajdują się wyniki 1 analizy wody złożowej oraz 1 analizy gazu (Tab. 5.17–5.19).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Dęby 1 (Binder, 1966a;; Olczak, 1966b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań

w CBDG znajdują się pliki LAS):

- profilowanie krzywizny odwiertu (PK): 50–400 m,
- profilowania oporności standardowe (PO): 32,5–1367 m,
- profilowanie oporności EN16 (PO): 428–1367 m,
- profilowanie oporności EN64 (PO): 429–1367 m,
- profilowanie potencjałów naturalnych (PS): 32,5–1367 m,

• profilowanie średnicy otworu CALI (PSr): 428–1367 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Dęby 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.20–5.22

Dokumentacje NAG PIG-PIB:

- Binder I. 1966a. Sprawozdanie wynikowe z otworu Dęby 1. Inw. 7240/2021, CAG PIG, Warszawa.
- Olczak D. 1966b. Pomiary geofizyczne otworu Dęby 1 + karta otworu. Inw. 83958, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pointarow	[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny, anhydryt górny	42	0,15–5,14	0,041–0,1311	0,0138–0,0758
wapień podstawowy	2	0,57	0,095	0,0153
czerwony spągowiec, karbon	6	1,09–15,19	8,795–117,266	ślady

Tab. 5.17. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 787,6–859,7 m, 1036,5–1040,0 m oraz 1042,9–1053,7 m w otworze Dęby 1 na podstawie dokumentacji wynikowej (Binder, 1966a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	108,8622
			Br	-
	dolomit główny	płyn po złyżkowaniu dolomitu głów- nego po kwasowaniu	HCO ₃ ⁻	1,1102
			SO_4^{2-}	2,8479
705 / 927 0			Ca ²⁺	7,1088
793,4-837,0			Mg^{2+}	7,7772
			Na/K ⁺	47,4498
			Al/Fe ³⁺	1,2547
			pH	7
			mineralizacja	180,8

Tab. 5.18. Wyniki analiz wody i filtratu w otworze Dęby 1 (Binder, 1966a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
795,4–837,0	dolomit główny	gaz z degazacji solanki po kwasowaniu	CH_4	95,95
			C_2H_6	4,05
			C_3H_8	-
			$C_4 H_{10}$	-

Tab. 5.19. Wyniki analiz gazu (w czystym gazie) w otworze Dęby 1 (Binder, 1966a).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
0–301	kenozoik	20 m³/?

Tab. 5.20. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Dęby 1 (Binder, 1966a).

Głębokość [m]		Stratygrafia	Objerry	
od	do	Stratygrafia	Objawy	
789,5	853,5	dolomit główny	bardzo słaby zapach bitumin	

Tab. 5.21. Objawy węglowodorów w rdzeniach w otworze Dęby 1 (Binder, 1966a).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
795,4–837,0	dolomit główny	próbnik złoża	kwasowanie 10 m ³ 12–13% P _{pocz} =80 atm., P _{kon} =40 atm., 2 h stójki, samoczynny wypływ 50 l płuczki ze śladami H ₂ S, razem odebra- no 38 050 l płynu	2,5

Tab. 5.22. Rezultaty prób złożowych w otworze Dęby 1 (Binder, 1966a).

5.8. DRZONÓW 1

Głębokość otworu wg miary wiertniczej: 1303,0 m Rok zakończenia wiercenia: 1965 Rdzenie: brak.

Stratygrafia (CBDG, 2022):

Głębok	xość [m]	Stratugnofia
od	do	Stratygrana
0,0	262,0	kenozoik
262,0	1109,0	trias
1109,0	1303,0	perm
1152,0	1175,0	terygeniczna stropowa seria PZt
1175,0	1185,0	sól kam. najmłodsza Na4a
1185,0	1186,0	anhydryt pegmaty. dolny A4a1
1186,0	1190,5	ił solny czerwony dolny T4a
1190,5	1286,0	sól kam. młodsza Na3
1286,0	1303,0	anhydryt główny A3

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Drzonów 1 (Binder, 1966b) brak wyników analiz fizyczno-chemicznych z powodu erupcji zgazowanej solanki na głębokości 1303,0 m. Wykonano 2 analizy wody złożowej oraz 2 analizy gazu (Tab. 5.23–5.24).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Drzonów 1 (Binder, 1966b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 23–632 m,
- profilowanie krzywizny odwiertu (PK): 30–900 m,
- profilowanie neutron–gamma (PNG): 24–632,5 m.
- prof. Opor. standardowe (PO): 30–914 m,
- profilowanie oporności EL18 (PO): 27–914 m,
- o prof. pot. naturalnych (PS): 30–914 m,
- profilowanie średnicy otworu CALI (PSr): 325–1006,75 m.

Pomiarów średnich prędkości w otworze Drzonów 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: z powodu erupcji zgazowanej solanki na głębokości 1303,0 m nie przeprowadzono prób złożowych.

Dokumentacje NAG PIG-PIB:

- Binder I. 1966b. Sprawozdanie wynikowe z otworu Drzonów 1. Inw. 7241/2021, CAG PIG, Warszawa.
- Olczak D. 1965a. Pomiary geofizyczne otworu Drzonów 1 + karta otworu Inw. 83947, CAG PIG, Warszawa.

	C1 1 P			h
Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	251,766
			J	0,0144
			HCO ₃ ⁻	0,9397
			SO_4^{2-}	0,2798
		como ozumnu uzuhuu	$\mathrm{SiO_3}^{2-}$	0,4534
1303,0	anhydryt główny	zgazowanej solanki	Ca ²⁺	30,2604
		zgazowanej solaliki	Mg^{2+}	50,464
			Na/K ⁺	33,4095
			Al/Fe ³⁺	0,1841
			pН	4
			mineralizacja	416,41
			Cl	273,042
			Br	-
			HCO ₃	1,952
			SO_4^{2-}	0,5802
		samoezunny uzuntuw	SiO_3^{2}	0,0167
1303,0	anhydryt główny	zgazowanej solanki	Ca ²⁺	24,3732
		zgazowanej solaliki	Mg^{2+}	51,4494
			Na/K ⁺	48,2177
			Al/Fe ³⁺	3,7305
			pН	7
			mineralizacja	415,2

Tab. 5.23. Wyniki analiz wody i filtratu w otworze Drzonów 1 (Binder, 1966b).

Głębokość [m	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	98,79
1202.0		gaz z degazacji solanki	C_2H_6	1
1303,0	anhydryt główny		C_3H_8	0,21
			$C_4 H_{10}$	-
			CH_4	100
1303,0	anhydryt główny	gaz z degazacji solanki	C_2H_6	-
			C_3H_8	-
			H_2	-

Tab. 5.24. Wyniki analiz gazu (w czystym gazie) w otworze Drzonów 1 (Binder, 1966b).

5.9. DRZONÓW 2

Głębokość otworu wg miary wiertniczej: 1434,0 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuatyonofia
od	do	Stratygrana
0,0	271,0	kenozoik
271,0	1109,0	trias
1109,0	1434,0	perm
1 109,0	1 122,0	terygeniczna stropowa seria PZt
1 122,0	1 133,5	sól kam. najmłodsza Na4a
1 133,5	1 135,0	anhydryt pegmaty. dolny A4a1
1 135,0	1 141,0	ił solny czerwony dolny T4a
1 141,0	1 264,5	sól kam. młodsza Na3

1 264,5	1 288,0	anhydryt główny A3
1 288,0	1 288,6	szary ił solny T3
1 288,6	1 289,5	anhydryt kryjący A2r
1 289,5	1 355,5	sól kamienna starsza Na2
1 355,5	1 396,5	anhydryt podstawowy A2
1 396,5	1 434,0	dolomit główny Ca2

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Drzonów 2 (Binder, 1967a) znajdują się wyniki analiz fizyczno-chemicznych 32 próbek z dolomitu głównego (Binder, 1967a). Ponadto znajdują się wyniki 1 analizy wody złożowej oraz 1 analiza gazu (Tab. 5.25– 5.27).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Drzonów 2 (Binder, 1967a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 4–1426 m,
- profilowanie neutron–gamma (PNG): <u>7–1426 m,</u>
- profilowanie oporności EL18 (PO): 27–1426,5 m,
- profilowanie średnicy otworu CALI (PSr): 25–1427,5 m.

Pomiarów średnich prędkości w otworze Drzonów 2 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.28–5.30.

Dokumentacje NAG PIG-PIB:

- Binder I. 1967a. Sprawozdanie wynikowe z otworu Drzonów 2. Inw. 7242/2021, CAG PIG, Warszawa.
- Olczak D. 1967a. Karta otworu: Drzonów 2. Inw. 88631, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
dolomit główny	32	0,13–0,74	0,046-0,202	0,02–0,0958

Tab. 5.25. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1400,9–1434 m w otworze Drzonów 2 na podstawie dokumentacji wynikowej (Binder, 1967a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
1405,0–1409,0	dolomit główny	Przypływ płynu po torpedowaniu i kwa- sowaniu	Cl	143,2584
			HCO ₃ ⁻	0,4636
			SO_4^{2-}	1,7079
			Ca ²⁺	13,5778
			Mg^{2+}	5,5398
			Na/K ⁺	66,5907
			Al/Fe ³⁺	1,0155
			рН	7
			mineralizacja	246,8

Tab. 5.26. Wyniki analiz wody i filtratu w otworze Drzonów 2 (Binder, 1967a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
1418,0–1419,0	dolomit główny	gaz z degazacji rdzenia	CH_4	63,67
			C_2H_6	20,7
			C_3H_8	9,64
			C_4H_{10}	4,23
			C ₅ H ₁₂	1,69
			$C_{6}H_{14}$	0,07
			H_2	1,9

Tab. 5.27. Wyniki analiz gazu (w czystym gazie) w otworze Drzonów 2 (Binder, 1967a).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
1142,1	sól kam. mł.	$4m^{3}/?$

Tab. 5.28. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Drzonów 2 (Binder, 1967a).

Głębok	kość [m]	Stratygrafia	Obiewy
od	do	Stratygrafia	Objawy
1399,5	1431,2	dolomit	zapach bitumin
1404,0	1411,0	główny	w spękaniach wyraźne objawy ropy i gazu

Tab. 5.29. Objawy węglowodorów w rdzeniach w otworze Drzonów 2 (Binder, 1967a).

Głębokość MD [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1/13/1 ()	dolomit	hvžkowanie	ściągnięto 22 m ³ ,	
1454,0	główny	Tyzkowanie	brak przypływu	-
			kwasowanie 20 m ³ cieczy	
			14,5%, samoczynnie wypłynęło	
1400 0 1424 0	dolomit	łyżkowanie	4 505 l płynu bez śladów bitu-	
1400,0-1434,0	główny		min, łącznie po kwasowaniu	-
			odebrano 32 800 l płynu i 10 l	
			emulsji ropnej. Brak przypływu	
			torpedowanie i kwasowanie	
			$20 \text{ m}^3 14\%$, Ppocz = 100 atm.,	
1405,0–1409,0	dolomit	1	Pkon=100atm, samoczynnie	170 270 1/24 1
	główny	łyzkowanie	wypłynęło 2 900 l, bez śladów	170-2701/24 h
	_		bitumin, łącznie złyzkowano	
			31 258 l płynu i 5 l ropy	

Tab. 5.30. Rezultaty prób złożowych w otworze Drzonów 2 (Binder, 1967a).

5.10. DYCHÓW M-26

Głębokość otworu wg miary wiertniczej: 1930,0 m

Rok zakończenia wiercenia: 1981

Rdzenie: 428,0–1930,0 m, 287 skrzynek, Magazyn rdzeni wiertniczychw Michałowie.

Stratygrafia (Oszczepalski i Rydzewski, 1983):

Głębokość [m]		Stratygnofia
od	do	Stratygrana
0,0	250,0	kenozoik
250,0	1354,7	trias
1354,7	1930,0	perm
1354,7	1367,0	terygeniczna stropowa seria PZt
1367.0	1468.0	podcyklotem PZ4b,
1307,0	1400,0	podcyklotem PZ4a
1468,0	1496,8	sól kam. młodsza Na3
1496,8	1513,1	anhydryt główny A3
1513,1	1516,0	szary ił solny T3
1516,0	1519,4	anhydryt kryjący A2r
1519,4	1575,7	sól kamienna starsza Na2
1575,7	1581,9	anhydryt podstawowy A2
1581,9	1664,6	dolomit główny Ca2
1664,6	1682,3	anhydryt górny A1g
1682,3	1857,0	sól kamienna najstarsza Na1
1857,0	1907,9	anhydryt dolny A1d
1907,9	10116	wapień cechsztyński Cal
	1911,0	łupek miedzionośny T1
1911,6	1930,0	czerwony spągowiec górny

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Dychów M-26 (Oszczepalski i Rydzewski, 1983) <u>brak</u> wyników analiz petrofizycznych (porowatości, przepuszczalności) oraz chemicznych wody i gazu. Zawarto jedynie analizy geochemiczne (zawartości pierwiastków metalicznych) 26 próbek z wapienia podstawowego oraz 6 próbek z czerwonego spągowca, znajdują się również wyniki analizy 25 płytek cienkich z utworów czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja otworu Dychów M-26 (Oszczepalski i Rydzewski, 1983) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- prof. akust. amplitudy po cement. (PA-Ca): 75–1586 m,
- prof. akust. czasu interwałowego po cement (PACdt): 65,25–1603,5 m,
- profilowanie czasu akust. T po zacement (PACt): 75–1586 m,

- profilowanie czasu akust. T1 po zacement (PACt1): 63,5–1601,75 m,
- profilowanie naturalnego promieniowania gamma (PG): 1–1924,9 m,
- profilowanie gamma–gamma gęstościowe (GGDN): 1,25–1929,5 m,
- profilowanie krzywizny odwiertu (PK): 0–1920 m,
- profilowanie neutron–gamma (PNG): <u>375,1–1924,9 m,</u>
- profilowanie neutron-neutron nadtermiczne (PNNnt): 375,25–1928,75 m,
- profilowania oporności standardowe PO: 10,5–1924 m,
- profilowanie oporności EL07 (PO): 8,25–1929,5 m,
- profilowanie oporności EL09 PO: 8,1–1924,9 m,
- profilowanie oporności EN10 PO: 5–1929,75 m,
- profilowanie potencjałów naturalnych (PS): 10,5–1930,75 m,
- profilowanie średnicy otworu CALI (PSr): 0,1–1927,75 m,
- prof. temp. przy ustalonej równowadze term PTu:0–1920 m.

Dokumentacja pionowego profilowania sejsmicznego w otworze Dychów M-26 (Materzok, 1981) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG dostępne są pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony Tx2: 20–1780 m,
- profilowanie prędk. śr., czas interpolowany TW: 20–1780 m,
- profilowanie prędk. śr., czas pomierzony Tr_PW1: 13–1738 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_PW2: 13–1738 m,</u>
- profilowanie prędk. śr., czas pomierzony Tr_PW3: 28–1738 m,
- profilowanie prędk. śr., czas uśredniony <u>Tr_PO: 13–1738 m.</u>
- profilowanie prędk. śr., gradient czasu interpol. DT_VSP: 20–1780 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.31–5.32. Nie odnotowano obecności węglowodorów w rdzeniu.

Dokumentacje NAG PIG-PIB:

- Oszczepalski S., Rydzewski A. 1983. Dokumentacja wynikowa otworu Dychów M-26 [zawiera kartę otworu] Inw. 127602, CAG PIG, Warszawa.
- Materzok W. 1981. Dokumentacja pionowego profilowania sejsmicznego, odwiert: Dychów M-26 Inw. D87 VS, CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
1224,0		10
1234,0		15
1253,0		30
1280,0	trias dolny	7
1291,0		5
1326,0		15
1348,0		5
1426,0		10
1438,0	podcyklotem PZ4b i PZ4a	30
1462,0		25
1474,0	sél kamendara Na2	22
1489,0	sol kam. muodsza Nas	25
1501,0		20
1505,0	anhydryt główny A3	5
1512,0		20
1525,0		15
1543,0	sól kamienna starsza Na2	21
1561,0		19

1577,0	anhydryt podstawowy A2	20
1584,0	dolomit główny Ca2	10

Tab. 5.31. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Dychów M-26 (Oszczepalski i Rydzewski, 1983).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz. [m ³ /h]
1571,0–1619,0	sól kamienna starsza, anhydryt podstawowy, dolomit główny	próbnik złoża	Bardzo minimalny objaw wska- zujące na dopływ medium zło- żowego po 90 i 80 min w prze- wodzie stwierdzono 46 l płuczki	-

Tab. 5.32. Rezultaty prób złożowych w otworze Dychów M-26 (Oszczepalski i Rydzewski, 1983).

5.11. JAROGNIEWICE IG-1

Głębokość otworu wg miary wiertniczej: 551,6 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuatuonofia
od	do	Stratygrana
0,0	280,4	kenozoik
280,4	551,6	trias

Wyniki badań skał:

W karcie otworu wiertniczego Jarogniewice IG-1 (Bardadyn i in., 1966) brak wyników analiz. W dokumentacji Szostak i Blus (1971) znajdują się wyniki pomiarów ciężarów objętościowych i porowatości skał 59 próbek z kenozoiku z interwału 0–280,4 m oraz 605 próbek z triasu dolnego z interwału 208,4– 551,6 m (Tab. 5.33).

Wyniki geofizyki otworowej:

Karta otworu wiertniczego Jarogniewice IG-1 (Bardadyn i in., 1966) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- prof. gradientu potencjałów naturalnych (gPS): 4,5–548,8 m,
- mikroprofilowanie średnicy otworu (mPSr): 298–550 m,
- profilowanie naturalnego promieniowania gamma (PG): 9,2–553,8 m,
- profilowanie krzywizny odwiertu (PK): 300–550 m,

- <u>profilowanie neutron-gamma (PNG):</u> <u>6,6–549,8 m,</u>
- profilowania oporności standardowe (PO): 298–550 m,
- profilowanie oporności EL02 (PO): 295,5–549,7
- profilowanie oporności EL03 (PO): 297,1–549,6 m,
- profilowanie oporności EL07 (PO): 298,1–549,6 m,
- profilowanie oporności EL09 (PO): 298–549,7 m,
- profilowanie oporności EL14 (PO): 298,1–549,7 m,
- profilowanie oporności EL26 (PO): 298,1–549,5 m,
- profilowanie potencjałów naturalnych (SP): 296,3–549,7 m,
- profilowanie średnicy otworu (CALI): 0,1–549,9 m,
- o profilowanie temperatury PT: 46–550 m,
- prof. temp. przy nieust. równowadze term. PTn: 46,3–552,8 m,

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Jarogniewice IG-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: brak

Dokumentacje NAG PIG-PIB:

• Bardadyn E., Basista S., Sałdan M. 1966. Pomiary geofizyczne dla otworu Jarogniewice IG-1 [zawiera kartę otworu] Inw. 78103, CAG PIG, Warszawa.

 Szostak I., Blus R. 1971. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1970 [104 otwory wiertnicze] Inw. 43782, ObO /1246,CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)
		[%]	[mD]
konozoik	50	40–14	2,34–1,73
KEHOZOIK	39	(33,08)	(2,31)
trias dolny	605	19–1	2,87–1,77
unas dolliy	003	(6,76)	(2,31)

Tab. 5.33. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 0–280,4 m oraz 208,4–551,6 m w otworze Jarogniewice IG-1 na podstawie dokumentacji wynikowej (Szostak i Blus, 1971).

5.12. JASIEŃ P-4

Głębokość otworu wg miary wiertniczej: 1054,0 m

Rok zakończenia wiercenia: 1989

Rdzenie: 0–1054,0 m, 559 skrzynek, Magazyn rdzeni wiertniczych w Michałowie.

Wyniki badań skał:

W NAG znajduje się jedynie dokumentacja zawierająca szczątkowe dane stratygraficzne oraz wyniki analiz składu chemicznego i mineralogicznego utworów cechsztynu w otworze Jasień P-4 w kontekście mineralizacji kruszcowej (Oszczepalski i Rydzewski, 1993). Brak wyników geofizyki wiertniczej i informacji dotyczących węglowodorów.

Dokumentacje NAG PIG-PIB:

 Oszczepalski S., Rydzewski A. 1993. Budowa geologiczna perykliny Żar w aspekcie występowania surowców mineralnych. Inw. 1457/93, CAG PIG, Warszawa.

5.13. JELENIÓW-1

Głębokość otworu wg miary wiertniczej: 1492,3 m **Rok zakończenia wiercenia:** 1968

Rdzenie: brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratzonofia
od	do	Stratygrana
0,0	275,0	kenozoik
275,0	944,5	trias
944,5	1 492,3	perm
944,5	957,0	terygeniczna stropowa seria PZt
957,0	970,0	sól kamienna najmłodsza Na4a
970,0	971,0	anhydryt pegmatytowy dolny A4a1
971,0	975,0	ił solny czerwony dolny T4a
975,0	1085,0	sól kamienna młodsza Na3
1085,0	1105,5	anhydryt główny A3
1105,5	1107,0	ił solny szary T3

1107,0	1110,0	anhydryt kryjący A2r
1110,0	1162,5	sól kamienna starsza Na2
1162,5	1170,0	anhydryt podstawowy A2
1170,0	1224,0	dolomit główny Ca2
1224,0	1265,0	anhydryt górny A1g
1265,0	1374,0	sól kamienna najstarsza Na1
1374,0	1442,5	anhydryt dolny A1d
1442,5	1447,0	wapień cechsztyński Cal
1447,0	1449,5	łupek miedzionośny T1
1449,5	1492,3	czerwony spągowiec górny

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Jeleniów-1 (Binder i Bałaban, 1969) znajdują się wyniki analiz fizycznochemicznych 37 próbek z anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego z interwału 1164,0–1226,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto wykonano analiz wody złożowej dolomitu głównego (Tab. 5.34–5.35).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu wiertniczego Jeleniów-1 (Binder i Bałaban, 1969) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla wymienionych profilowań w CBDG brak plików LAS):

- mikroprofilowania oporności (mPO): 308,0–909,5 m,
- mikroprofilowanie średnicy otworu (mPSr): 1050,0–1487,5 m,
- profilowanie naturalnego promieniowania gamma (PG): 3,5–1490,0 m,
- profilowanie krzywizny odwiertu (PK): 25,0–1470,0 m,
- profilowanie neutron–gamma (PNG): 3,5–1490,0 m,
- profilowania oporności standardowe (PO): 41,0–1487,5 m,
- profilowanie oporności sterowane (POst): 308,0–1487,5 m,

- profilowanie potencjałów naturalnych (PS): 41,0–1487,5 m,
- \circ profilowanie średnicy otworu (PSr): 40,0–1477,0 m,
- prof. temp. przy nieust. równowadze term. (PTn): 32,0–1172,0 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Jeleniów-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.36–5.37.

Dokumentacje NAG PIG-PIB:

- Binder I., Bałaban Z. 1969. Dokumentacja wynikowa otworu Jeleniów-1. Inw. 102570, CAG PIG, Warszawa.
- Binder I. 1970. Aneks do dokumentacji wynikowej otworu Jeleniów-1 Inw. 1779/2020, CAG PIG, Warszawa.

Stratygrafia	Liczba pom- iarów	Porowatość Min-Max (średnia) [%]	Przepuszczalność Min-Max (średnia) [mD]	Bituminy Min-Max (średnia) [%]
anhydryt podstawowy,	37	0,13–0,58	0,074–0,935	0,0195–0,783
dolomit główny, anhydryt górny		(0,302)	(0,229)	(0,0321)

Tab. 5.34. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1164,0–1226,0 m w otworze Jeleniów-1 na podstawie dokumentacji wynikowej (Binder i Bałaban, 1969).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
		po kwasowaniu wytłoczono sprężonym powietrzem	Cl	227,1186
			Br	1,5984
	anhudmut na data		HCO ₃ ⁻	1,2810
1169,0–1270,0	annydryt podsta- wowy, dolomit główny, p anhydryt górny, sól kamienna najstarsza		SO_4^{2-}	0,5391
			SiO ₃ ²⁻	0,1063
			Ca ²⁺	24,715
			Mg^{2+}	47,317
			Na/K ⁺	28,771
			Al/Fe ³⁺	1,5632
			pH	4,7
			mineralizacja	344,4

Tab. 5.35. Wyniki analiz wody i filtratu w otworze Jeleniów-1 (Binder i Bałaban, 1969).

Głęboł	kość [m]	Stratygrafia	Objerry
od	do		Objawy
1170,0	1212,6	dalamit alármur	zapach bitumiczny
1212,6	1221,0	dolomit glowny	ślady ropy w spękaniach oraz silny zapach bitumiczny

Tab. 5.36. Objawy węglowodorów w rdzeniach w otworze Jeleniów-1 (Binder i Bałaban, 1969).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1166,36–1189,1	anhydryt podstawowy, dolomit główny	pr. rurowy złoża	brak przypływu	-
1492,3–1443,7	czerwony spągowiec	pr. rurowy złoża	intensywny przypływ wody złożowej	7
1169,0–1270,0	anhydryt pod- stawowy, dolomit główny, anhydryt górny, sól kam. Najst.	pr. rurowy złoża	kwasowanie 20 m ³ 15% HCl P = 170 atm. Po 2,5 h odebrano samoczynnie 15 m ³ płynu, wytłoczono płynu 38,950 l	-

Tab. 5.37. Rezultaty prób złożowych w otworze Jeleniów-1 (Binder i Bałaban, 1969).

5.14. KLĘPINKA

Głębokość otworu wg miary wiertniczej: 708,2 m

Rok zakończenia wiercenia: 1961

Rdzenie: 278,0–702,0 m, 183 skrzynki, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	278,4	kenozoik
278,4	457,4	perm
278,4	305,0	dolomit płytowy Ca3
305,0	306,1	szary ił solny T3
306,1	330,7	dolomit główny Ca2
330,7	410,8	anhydryt górny Al

410,8	418,8	wapień cechsztyński Cal
418,8	425,10	biały spągowiec
425,10	457,4	czerwony spągowiec
457,4	708,2	proterozoik
418,8 425,10 457,4	423,10 457,4 708,2	czerwony spągowiec proterozoik

Wyniki badań skał:

W NAG jest dostępna jedynie karta otworu wiertniczego Klępinka IG-1. Brak wyników geofizyki wiertniczej i informacji dotyczących węglowodorów.

Dokumentacje NAG PIG-PIB:

• Karta otworu Klępinka. Inw. 4120/T1, CAG PIG, Warszawa.

5.15. KOSIERZ 1

Głębokość otworu wg miary wiertniczej: 1415 m **Rok zakończenia wiercenia:** 1965 **Rdzenie:** brak.

Stratygrafia (Zieloński, 1965):

Głębokość [m]		Stratuarafia
od	do	Stratygrana
0,0	247,5	kenozoik
247,5	1093,0	trias
1093,0	1415,0	perm
1093,0	1109,0	terygeniczna stropowa seria PZt

1109.0	1131.0	sól kam naimłodsza Na4a
1131.0	1131,0	anhydryt pegmaty dolny A4a1
1132.0	1132,0	il solny czerwony dolny T4a
1132,0	1135,5	anhydryt stronoun A 3r
1126.0	1225.5	annyaryi siropowyAST
1150,0	1255,5	sol kam. mioasza Nas
1235,5	1203,5	anhydryt głowny A3
1263,5	1265,5	szary it solny T3
1265,5	1269,5	anhydryt kryjący A2r
1269,5	1321,5	sól kamienna starsza Na2
1321,5	1339,5	anhydryt podstawowy A2
1339,5	1411,5	dolomit główny Ca2
1411,5	1415,0	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Kosierz 1 (Zieliński, 1965) znajdują się wyniki analiz fizyczno-chemicznych 56 próbek z dolomitu głównego z interwału 1339,5– 1411,5 m, wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. (Tab. 5.38).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Kosierz 1 (Zieliński, 1965) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 3–1410 m,
- profilowanie krzywizny odwiertu (PK): 25–1400 m,
- profilowanie neutron–gamma (PNG): <u>3–1410 m,</u>
- profilowania oporności standardowe (PO): 5 1408 m,
- profilowanie oporności EL00 (PO): <u>5–1408 m</u>,
- profilowanie oporności EN16 (PO): <u>5–1407 m,</u>
- profilowanie oporności EN64 (PO): 5–1407 m,
- profilowanie potencjałów naturalnych (PS): 5 1408 m,
- profilowanie średnicy otworu CALI (PSr): 5 – 1408 m.

Sprawozdanie z pomiaru średnich prędkości w otworze Kosierz-1 (Krach i in., 1965) zawiera wyniki pomiarów wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony (Tx2): 20–1360 m,
- profilowanie prędk. śr., czas interpolowany (TW): 20–1360 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW1): 191–1341 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW2): 141–1366 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW3): 91–1366 m,
- profilowanie prędk. śr., czas uśredniony Tr_(PO) 291–1366 m,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP): 20–1360 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu zestawiono w Tab. 5.39–5.40. W otworze Kosierz 1 nie przeprowadzono prób złożowych.

Dokumentacje NAG PIG-PIB:

- Zieliński R. 1965. Sprawozdanie wynikowe z otworu geologicznego Kosierz 1. Inw. 7243/2021, CAG PIG, Warszawa.
- Krach B., Kądzioła A., Madej H. 1965. Sprawozdanie z pomiaru średnich prędkości w otworze Kosierz-1. S-328,Przeds. Bad. Geofiz. Sp. z o.o., Warszawa.

Stratygrafia	Liczba po- miarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
dolomit główny	56	0,14–2,16	b.słaba–0,663	0,0375-0,2108

Tab. 5.38. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1339,5–1411,5 m (dolomit główny), w otworze Kosierz 1 na podstawie dokumentacji wynikowej (Zieliński, 1965).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
24,6–251,9	kenozoik, trias	ciągły zanik płuczki
358,5-390,0		8 m ³ /?h
466,0-650,0	pstry piaskowiec	260 m³/?h
689,6-830,7]	100 m ³ /?h

Tab. 5.39. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Kosierz 1 (Zieliński, 1965).

Głębok	ość [m]	Stuatygnafia	Objewy
od	do	Stratygrana	Objawy
1343,0	1350,5		zapach bitumin
1366,0	1375,5		słabe punktowe ślady ropy
1379,3	1400,6	dolomit główny	słabe punktowe ślady ropy
1350,5	1356,6		zapach H ₂ S
1371,5	1379,3		zapach H ₂ S

Tab. 5.40. Objawy węglowodorów w rdzeniach w otworze Kosierz 1 (Zieliński, 1965).

5.16. KOSIERZ M-25

Głębokość otworu wg miary wiertniczej: 1810,0 m

Rok zakończenia wiercenia: 1982

Rdzenie: 1171,2–1810,0 m, 332 skrzynki, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (Oszczepalski i in., 1983):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	260,0	kenozoik
260,0	1252,3	trias
1252,3	1810,0	perm
1252,3	1266,0	terygeniczna stropowa seria PZt
1266,0	1286,0	sól kamienna najmłodsza Na4a
1286,0	1287,3	anhydryt pegmatytowy dolny A4a1
1287,3	1295,0	ił solny czerwony dolny T4a
1295,0	1408,0	sól kamienna młodsza Na3
1408,0	1426,7	anhydryt główny A3
1426,7	1428,7	ił solny szary T3
1428,7	1439,6	anhydryt kryjący A2r
1439,6	1501,4	sól kamienna starsza Na2
1501,4	1522,7	anhydryt podstawowy A2
1522,7	1599,6	dolomit główny Ca2
1599,6	1632,5	anhydryt górny A1g
1632,5	1642,5	sól kamienna najstarsza górna Na1g
1642,5	1655,0	anhydryt środkowy A1s
1655,0	1668,7	sól kamienna najstarsza dolna A1d
1668,7	1781,4	anhydryt dolny A1d
1781,4	1784,7	wapień cechsztyński Cal
1784,7	1784,8	łupek miedzionośny T1
1784,8	1784,8	biały spągowiec
1784,8	1810,0	czerwony spągowiec górny

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Kosierz M-25 (Oszczepalski i in., 1983) <u>brak</u> wyników analiz petrograficznych (porowatości, przepuszczalności). Zawarto jedynie analizy chemiczne gazu (Tab. 5.41.) oraz analizy geochemiczne (zawartości pierwiastków metalicznych) 21 próbek z wapienia podstawowego oraz z czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja otworu Kosierz M-25 (Oszczepalski i in., 1983) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 75,0–290,0 m,
- prof. akust. amplitudy po cement. (PA-Ca): 60,0–1420,0 m,
- profilowanie czasu akust. T po zacment. (PACt): 60,0–1420,0 m,
- profilowanie czasu akust. T1 po zacement. (PACt1): 60,2–1442,6 m,
- profilowanie naturalnego promieniowania gamma (PG): 0,3–1803,9 m,
- profilowanie gamma–gamma gęstościowe (PGG): 4,2–1810,0 m,
- profilowanie krzywizny odwiertu (PK): 20,0–1800,0 m,
- profilowanie neutron–gamma (PNG): 238,0–1803,9 m,
- profilowanie neutron-neutron nadtermiczne (PNNnt): 238,1–814,8 m,
- profilowanie neutron–neutron termiczne (PNNt): 240,0–814,0 m,
- profilowania oporności standardowe (PO): 7,0–1808,0 m,
- profilowanie oporności EL03 (PO): 274,1–785,8 m,
- profilowanie oporności EL07 (PO): <u>4,4–1802,8 m,</u>
- profilowanie oporności EL09 (PO): 4,4–1803,3 m,
- profilowanie oporności EN10 (PO): 4,0–1803,9 m,
- profilowanie potencjałów naturalnych (PS): 4,2–1808,0 m,
- o profilowanie średnicy otworu (PSr):

<u>0,1–1802,9 m,</u>

 prof. temp. przy ustalonej równowadze term. (PTu): 17,0–1797,0 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Kosierz M-25 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.42–5.43. Zaniku płuczki podczas wiercenia nie stwierdzono.

Dokumentacje NAG PIG-PIB:

 Oszczepalski S., Rydzewski A., Chojęta H. 1983. Dokumentacja wynikowa otworu Kosierz M-25 [zawiera kartę otworu]. Inw. 128893, CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH ₄	20,7
			C_2H_6	11,54
			C ₃ H ₈	4,01
1512 5 1591 0	anhydryt	filtrat abaarlei a soloako	C_4H_{10}	21,37
1513,5–1581,0	podstawowy,	intrat piuczki z solanką	N ₂	38,61
	dolomit główny		CO_2	0,1951
			Ar	0,3772
			H_2	3,1738
			CH_4	18,7717
	anhydryt dolny, wapień podstawowy, czerwony spągowiec	odgazowanie solanki	C_2H_6	0,1847
			C_3H_8	0,0613
1772 0 1810 0			C_4H_{10}	0,0291
1772,0-1810,0			Ar	0,2992
			N_2	75,9301
			He	ślady
			H ₂	4,7239

Tab. 5.41. Wyniki analiz gazu (w czystym gazie) w otworze Kosierz M-25 na podstawie dokumentacji wynikowej (Oszczepalski i in., 1983).

Głęboko	Głębokość [m] Stratygrafia		Objewy
od	do	Stratygrana	Objawy
1568,4	1573,3	dolomit główny	liczne plamy bitumin

Tab. 5.42. Objawy węglowodorów w rdzeniach w otworze Kosierz M-25 (Oszczepalski i in., 1983).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1514,0–1545,0	anhydryt	pr. rurowy złoża	brak przepływu	-
1513,5–1581,0	podstawowy, dolomit główny	pr. rurowy złoża	bardzo słaby przepływ płuczki z gazem $CH_4 = 20,7\%$ $Pd = 137*10^3$ hPa	0,2
1772,0–1810,0	anhydryt dolny, wapień podstawowy, czerwony spągowiec	pr. rurowy złoża	filtrat + płuczka Pz = 178*10 ³ hPa	11

Tab. 5.43. Rezultaty prób złożowych w otworze Kosierz M-25 (Oszczepalski i in., 1983).

5.17. LUBIATÓW 1

Głębokość otworu wg miary wiertniczej: 1451,4 m **Rok zakończenia wiercenia:** 1965 **Rdzenie:** brak.

Stratygrafia (Olczak, 1966c):

Głębokość [m]		Strotygrafia
od	do	Stratygrana
0,0	260,0	kenozoik
175,0	906,0	trias
906,0	1451,4	perm
906,0	920,0	terygeniczna stropowa seria PZt
920,0	937,0	sól kamienna najmłodsza Na4a
937,0	937,5	anhydryt pegmatytowy dolny A4a1
937,5	943,0	ił solny czerwony dolny T4a
943,0	1020,0	sól kamienna młodsza Na3
1020,0	1042,5	anhydryt główny A3
1042,5	1043,5	ił solny szary T3
1043,5	1047,5	anhydryt kryjący A2r
1047,5	1095,0	sól kamienna starsza Na2
1095,0	1099,5	anhydryt podstawowy A2
1099,5	1174,0	dolomit główny Ca2
1174,0	1212,0	anhydryt górny A1g
1212,0	1223,0	sól kamienna najstarsza Na1
1223,0	1347,5	anhydryt dolny A1d
1347,5	1350,0	wapień cechsztyński Cal
1350,0	1372,5	biały spągowiec
1372,5	1451,4	czerwony spągowiec

Wyniki badań skał:

W NAG znajduje się tylko karta otworu wiertniczego Lubiatów 1 (Olczak, 1966c), w której brak analiz petrofizycznych i analiz mediów.

Wyniki geofizyki otworowej:

Karta otworu Lubiatów 1 (Olczak, 1966c) zawiera wyniki badań geofizyki wiertniczej wykonanych w zakresie (w CBDG brak dla nich plików LAS):

- profilowanie krzywizny odwiertu (PK): 25–1450 m,
- profilowanie oportości standardowe (PO): 20–1460 m,
- profilowanie oportości sterowane (POst): 1300–1448 m,
- profilowanie potencjałów naturalnych (SP): 20–1465 m,
- profilowanie średnicy otworu (PSr): 20–844 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Lubiatów 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obecności węglowodorów w trakcie wiercenia oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.44–5.45.

Dokumentacje NAG PIG-PIB:

• Olczak D. 1966c. Pomiary geofizyczne otworu Lubiatów 1 + karta otworu. Inw. 83957, CAG PIG, Warszawa.

Głęboko	ość [m]		
od	do	Stratygrafia	Objawy
	39,9	kenozoik	Zanik płuczki około 30 m ³
1099,5	1174,0	dolomit główny	Intensywne ślady ropy i gazu

Tab. 5.44. Objawy węglowodorów w trakcie wiercenia i w rdzeniach w otworze Lubiatów 1 na podstawie karty otworu (Olczak, 1966c).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1099,5–1147,0	dolomit główny	pr. rurowy złoża, kwasowanie	solanka	20–30 l/doba

Tab. 5.45. Rezultaty prób złożowych w otworze Lubiatów 1 na podstawie karty otworu (Olczak, 1966c).

5.18. LUBIATÓW M-20

Głębokość otworu wg miary wiertniczej: 1662,0 m

Rok zakończenia wiercenia: 1983

Rdzenie: 0–1661,3 m, 415 skrzynek, Magazyn rdzeni wiertniczych w Michałowie; 1148–1391,5 m, 161 skrzynek, Magazyn rdzeni wiertniczych w Leszczach.

Stratygrafia (Oszczepalski i in., 1984):

Głębokość [m]		Stuaturanofia	
od	do	Stratygrana	
0,0	268,3	kenozoik	
268,3	1134,2	trias	
1134,2	1662,0	perm	
1134,2	1638,7	cechsztyn	
1638,7	1662,0	czerwony spągowiec górny	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Lubiatów M-20 (Oszczepalski i in., 1984) <u>brak</u> wyników analiz petrograficznych (porowatości, przepuszczalności). Zawarto jedynie analizy chemiczne gazu, ropy naftowej i wody (Tab. 5.46–5.48.) oraz analizy geochemiczne (zawartości pierwiastków metalicznych) 21 próbek z wapienia podstawowego oraz z czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Lubiatów M-20 (Oszczepalski i in., 1984) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak</u> plików LAS):

- prof. gradientu potencjałów naturalnych (gPS): 1 395,0–1 655,0 m,
- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 10,0–1 435,0 m,

- profilowanie naturalnego promieniowania gamma (PG): 2,0–1 660,0 m,
- profilowanie gamma–gamma gęstościowe (PGG): 2,0–1 660,0 m,
- profilowanie krzywizny odwiertu (PK): 0,0–1 658,0 m,
- o profilowanie neutron–gamma (PNG): 248,0–1 660,0 m,
- profilowanie neutron-neutron nadtermiczne (PNNnt): 248,0–1 394,0 m,
- profilowania oporności standardowe (PO): 1 610,0−1 658,0 m,
- prof. oporności sondą gradientową (POg): 10,0–1 655,0 m,
- prof. oporności sondą potencjałową (POp): 10,0–1 655,0 m,
- profilowanie potencjałów naturalnych (PS): 10,0–1 390,0 m,
- profilowanie średnicy otworu (PSr): 10,0−1 659,0 m,
- prof. temp. przy ustalonej równowadze term (PTu): 90,0–1 655,0 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Lubiatów M-20 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki i obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.49– 5.51.

Dokumentacje NAG PIG-PIB:

 Oszczepalski S., Rydzewski A., Chojęta H. 1984. Dokumentacja wynikowa otworu Lubiatów M-20 [zawiera kartę otworu]. Inw. 129425, CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			CH_4	13,7932
			C_2H_6	14,6251
			C_3H_8	14,3013
1401,0–1450,8	dolomit główny, PZ1	z przewodu nad próbnikiem odgazowanie płuczki	C_4H_{10}	7,5956
			N_2	47,0151
			CO_2	0,8351
			Ar	0,642
			H_2	1,0445
1401 0 1450 0		z przewodu nad próbnikiem	CH_4	13,2404
1401,0-1430,8	dolomit główny	odgazowanie płuczki	C_2H_6	21,6711

			C ₃ H ₈	8,6651
			C ₄ H ₁₀	7,4912
			Ar	0,5979
			N ₂	45,3557
			CO ₂	2,7994
			H ₂	0,2292
			CH_4	13,688
	PZ1, czerwony spągowiec	z przewodu nad próbnikiem	C_2H_6	0,0219
1625,0–1662,0			C ₃ H ₈	0,0035
			C_4H_{10}	-
			N ₂	84,1535
			H ₂	1,889
			He	0,244

Tab. 5.46. Wyniki analiz gazu (w czystym gazie) w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			C ₁₅	3
			C ₁₆	10,2
			C ₁₇	8,2
			C ₁₈	14,4
			C ₁₉	10,9
			C ₂₀	9,7
	dolomit główny, PZ1	woda z emulsją ropy naftowej	C ₂₁	7,6
			C ₂₂	6,6
			C ₂₃	4,4
1401.0-1450.8			C ₂₄	3,1
1.01,0 1.00,0			C ₂₅	4,4
			C ₂₆	3,9
			C ₂₇	2,4
			C ₂₈	2,6
			C ₂₉	2,1
			C_{30}	2,3
			C_{31}	1,5
			C ₃₂	1,5
			C ₃₃	0,/
			C_{34}	0,8

Tab. 5.47. Wyniki analiz ropy w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	168,742
			Br⁻	0,243
			HCO ₃ ⁻	0,20867
1625,0–1662,0	PZ1, czerwony spągowiec		SO_4^{2-}	0,44944
		pr. rurowy złoża	$\mathrm{NH_4}^+$	-
			Ca ²⁺	45,622
			Mg^{2+}	1,252
			Na/K ⁺	55,227/1,461
			Al/Fe ³⁺	0,01341
			pН	6,74
			mineral.	279,5

Tab. 5.48. Wyniki analiz wody w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

Głębokość [m]	Stratygrafia	Zanik płuczki [m ³ /24h]
255,0-274,0	kenozoik/trias	13
274,0-275,0		12
300,0-330,0	• ,	40
430,0–438,0	wapien muszlowy/rot	12
458,0-492,0	musziów y/iet	12
492,0–518,0		12
576,0-586,0		12
770,0-800,0		4
800,0-818,0	pstry piaskowiec	12
818,0-842,0		12
842,0-850,0		10
850,0-859,0		10
859,0-871,0		10
871,0-884,0		10
910,0–1002,0		10
1010,0–1018,0		6
1397,0–1401,0	aaahaatum	12
1531,0-1537,0	cecnsztyn	2
Głębokość [m]	Stratygrafia	Zgazowanie płuczki
1421,0	cocheztyn	+
1625,0	cecusztyn	+

Tab. 5.49. Zaniki i zgazowania płuczki w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

Głęboko	bokość [m] Strotygrofia		Objewy	
od	do	Stratygrafia	Objawy	
1423,2	1430,4	dolomit główny	wycieki ropy	

Tab. 5.50. Objawy węglowodorów w rdzeniach w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1401,0–1450,8	dolomit główny, PZ1	pr. rurowy złoża	słaby przypływ płuczki ze śladami emulsji ropnej	0,2 m ³ /h po 48h średnie tempo 0,011 m ³ /h
1612,0–1662,0	PZ1,	pr. rurowy złoża	awaria nie przeprowadzono	-
1625,0–1662,0	czerwony spągowiec	pr. rurowy złoża	duży przypływ solanki P = 160,6 10 ³ hPa	16,2

Tab. 5.51. Rezultaty prób złożowych w otworze Lubiatów M-20 (Oszczepalski i in., 1984).

5.19. NIWISKA 1

Głębokość otworu wg miary wiertniczej: 1700,0 m **Rok zakończenia wiercenia:** 1969 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuatyonafia	
od	do	Stratygrana	
0,0	275,0	kenozoik	
275,0	768,0	trias	

768,0	1645,0	perm
768,0	784,0	stropowa seria terygeniczna
784,0	795,0	sól kamienna najmłodsza Na4a
795,0	799,0	anhydryt pegmatytowy dolny A4a1
799,0	801,0	ił solny czerwony dolny T4a
801,0	920,0	sól kamienna młodsza Na3
920,0	954,0	anhydryt główny A3
954,0	957,0	ił solny szary T3
957,0	960,0	anhydryt kryjący A2r
960,0	1003,0	sól kamienna starsza Na2

1003,0	1020,0	anhydryt podstawowy A2
1020,0	1065,0	dolomit główny Ca2
1065,0	1095,0	anhydryt górny Alg
1095,0	1138,0	sól kamienna najstarsza Na1
1138,0	1277,0	anhydryt dolny A1d
1277,0	1282,0	wapień cechsztyński Ca1,
		łupek miedzionośny T1
1282,0	1410,0	czerwony spągowiec górny
1410,0	1535,0	czerwony spągowiec dolny
1535,0	1645,0	czerwony spągowiec górny
1645,0	1700,0	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Niwiska 1 (Obuch i Piec, 1969) znajdują się wyniki analiz fizyczno-chemicznych 1 próbki z triasu z interwału 330,0–334,1 m, 2 próbek z anhydrytu głównego z interwału 946,8–951,3 m, 5 próbek z anhydrytu podstawowego z interwału 1005,1–1014,7 m, 43 próbek z dolomitu głównego z interwału 1020,0–1059,3 m oraz 11 próbek z czerwonego spągowca z interwału 1289,0–1362,6 m wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i zawartości bituminów. Ponadto wykonano 2 analizy wody złożowej (Tab. 5.52–5.53).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Niwiska 1 (Obuch i Piec, 1969) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowania oporności (mPO): 318–771 m,
- profilowanie naturalnego promieniowania gamma (PG): 7–1695 m,
- profilowanie krzywizny odwiertu (PK): 25–765 m,
- profilowanie neutron–gamma (PNG): <u>10–1700 m,</u>
- profilowania oporności standardowe (PO): 41–1695 m,
- o profilowanie oporności EL03 (PO):
- o <u>38–1695 m</u>,
- profilowanie oporności sterowane (POst): 318–1695 m,
- o profilowanie średnicy otworu (PSr):
- o <u>39–1697 m.</u>

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Niwiska 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.54–5.55.

Dokumentacje NAG PIG-PIB:

• Obuch B., Piec H. 1969. Dokumentacja wynikowa wiercenia Niwiska 1 [zawiera kartę otworu]. Inw. 102572, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	1	31,75	_	brak
anhydryt główny	2	0,22–0,28	0,0634–0,0646	élady 0.014
annydryt glowny	2	(0,25)	(0,064)	slady=0,014
anhydryt podstawowy	5	0,19–0,31	0,0467-0,0999	0,0158-0,0255
annydryt podstawowy	5	(0,28)	(0,0749)	(0,0199)
delemit główny	42	0,14–0,67	b. słaba–0,0768	0,0023-0,0913
dolomit glowny	45	(0,21)	(0,0186)	(0,0303)
	11	3,96–19,1	0,1379-36,3707	ślady-0,0343
czerwony spągowiec	11	(12,04)	(15,6738)	(0,0057)

Tab. 5.52. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 330,0–334,1 m, 946,8–951,3 m, 1005,1–1014,7 m, 1020,0–1059,3 m oraz 1289,0–1362,6 m w otworze Niwiska 1 na podstawie dokumentacji wynikowej (Obuch i Piec, 1969).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	117,018
			Br	-
			HCO ₃ ⁻	0,122
	anhydryt dolny,		SO_4^{2}	-
	wapień		$\mathrm{NH_4}^+$	-
1270,5-1303,0	cechsztyński,	pr. rurowy złoża	Ca ²⁺	5,3698
	czerwony		Mg^{2+}	3,628
	spągowiec		Na/K ⁺	-
			Al/Fe ³⁺	-
			pН	-
			mineralizacja	-
	anhydryt dolny,		Cl	117,018
			Br	-
			HCO ₃	0,122
			SO ₄ ²⁻	1,6626
	wapień		NH_4^+	-
1270,5-1303,0	cechsztyński,	pr. rurowy złoża	Ca ²⁺	5,369
	czerwony		Mg^{2+}	3,6277
	spągowiec		Na/K ⁺	63,6013
			Al/Fe ³⁺	0,0909
			pH	7
			mineralizacja	192

Tab. 5.53. Wyniki analiz wody w otworze Niwiska 1 (Obuch i Piec, 1969).

Głęboko	ść [m]	Stratygrafia	Obiowy
od	do	Stratygrana	Objawy
1019,4	1023,2	anhydryt podstawowy, dolomit główny	minimalny zapach bitumin
1028,2	1031,5		słaby zapach bitumin
1031,5	1036,3		słaby zapach bitumin miejscami minimalne punktowe objawy ropy
1036,3	1041,2	dolomit główny	słaby zapach bitumin
1041,2	1046,3		słaby zapach bitumin
1053,1	1059,3		słaby zapach bitumin

Tab. 5.54. Objawy węglowodorów w rdzeniach w otworze Niwiska 1 (Obuch i Piec, 1969).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
	anhydryt			
1015,9–1050,4	podstawowy,	pr. rurowy złoża	przepływu brak	-
	dolomit główny			
	anhydryt dolny,			
1270,5–1303,3	wapień	pr. rurowy złoża	przypływ solanki	
	cechsztyński,			2,1 m ³ /40 min
	czerwony			
	spągowiec			

Tab. 5.55. Rezultaty prób złożowych w otworze Niwiska 1 (Obuch i Piec, 1969).

5.20. NOWA SÓL 7

Głębokość otworu wg miary wiertniczej: 1113,2 m **Rok zakończenia wiercenia:** 1963 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnofia
od	do	Stratygrana
0,0	320,0	kenozoik
320,0	800,0	trias
800,0	1113,2	perm
800,0	816,0	terygeniczna stropowa seria PZt
816,0	827,5	sól kam. najmłodsza Na4a
827,5	829,0	anhydryt pegmaty. dolny A4a1
829,0	835,0	ił solny czerwony dolny T4a
835,0	915,0	sól kam. młodsza Na3
915,0	976,0	anhydryt główny A3
976,0	986,5	szary ił solny T3
986,5	1049,5	sól kamienna starsza Na2
1049,5	1060,0	anhydryt podstawowy A2
1060,0	1108,0	dolomit główny Ca2
1108,0	1113,2	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Nowa Sól 7 (Cimaszewski, 1964) znajdują się wyniki analiz fizyczno-chemicznych 18 próbek z anhydrytu podstawowego i dolomitu głównego z interwału 1057,7– 1108,0 m (Cimaszewski, 1964) wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto znajdują się wyniki 1 analizy wody złożowej (Tab. 5.56–5.57).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Nowa Sól 7 (Cimaszewski, 1964) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 2–1113 m,
- profilowanie krzywizny odwiertu (PK): 25–1100 m,
- profilowanie neutron–gamma (PNG): 2–1113 m,
- profilowania oporności standardowe (PO): 5–1111 m,
- profilowanie oporności EL18 (PO): <u>9–1111 m.</u>
- profilowanie potencjałów naturalnych (PS): 0–1296 m,
- profilowanie średnicy otworu CALI (PSr): 1–1112 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Nowa Sól 7 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.58–5.59.

Dokumentacje NAG PIG-PIB:

 Cimaszewski L. 1964. Dokumentacja złoża gazu ziemnego w Książu Śląskim (rejon Nowej Soli). Inw. 4121/88, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny	18	0–0,77	0-31,16	0,0009-0,08

Tab. 5.56. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1057,7–1108 w otworze Nowa Sól 7 na podstawie dokumentacji wynikowej (Cimaszewski, 1964).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
1060,0			Cl	227,6532
			Br	-
			HCO ₃	0,5612
	dolomit główny	po kwasowaniu $\frac{SO_4^{2^2}}{SiO_3^{2^2}}$	SO_4^{2-}	0,4897
			SiO ₃ ²⁻	0,1064
			Ca ²⁺	20,1062
			Mg ²⁺	26,1901

	Na/K ⁺	72,9567
	Al/Fe ³⁺	2,0926
	pН	4,6
	mineralizacja	353,76

Tab. 5.57. Wyniki analiz wody i filtratu w otworze Nowa Sól 7 (Cimaszewski, 1964).

Głębok	ość [m]	Stuaturanofia	Objerry
od	do	Stratygrafia	Objawy
1074,8	1081,4		punktowe ślady ropy i gazu
1087,7	1092,9	dolomit główny	punktowe ślady ropy i gazu
1097,6	1103,8		punktowe ślady ropy i gazu
1060,0	1108,0		zapach bitumin

Tab. 5.58. Objawy węglowodorów w rdzeniach w otworze Nowa Sól 7 (Cimaszewski, 1964).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1062,2–1066,0	dolomit główny	łyżkowanie	brak przypływu	-
1062,2–1113,2	dolomit główny, anhydryt górny	łyżkowanie	brak przypływu, kwasowanie 18,5 tys. 1 12,5% kwasu z 19,2 tys. 1 przybitki wodnej przy P = 130 atm. Po 7,5 h stój- ki otwór samoczynnie oddał 3 tys. 1, następnie złyżkowano 28,7 tys. 1 płynu, słaby przypływ	45 l/h, po 5 dobach 14,4 l/h

Tab. 5.59. Rezultaty prób złożowych w otworze Nowa Sól 7 (Cimaszewski, 1964).

5.21. NOWA SÓL 9

Głębokość otworu wg miary wiertniczej: 1137,3 m **Rok zakończenia wiercenia:** 1963 **Rdzenie:** brak.

Stratygrafia (Cimaszewski, 1964):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	286,0	kenozoik
286,0	928,5	trias
928,5	1137,3	perm
928,5	946,0	terygeniczna stropowa seria PZt
946,0	955,0	sól kam. najmłodsza Na4a
955,0	956,0	anhydryt pegmaty. dolny A4a1
956,0	958,0	ił solny czerwony dolny T4a
958,0	1008,0	sól kam. młodsza Na3
1008,0	1024,0	anhydryt główny A3
1024,0	1027,0	szary ił solny T3
1027,0	1029,5	anhydryt kryjący A2r
1029,5	1082,0	sól kamienna starsza Na2
1082,0	1086,5	anhydryt podstawowy A2
1086,5	1133,0	dolomit główny Ca2
1133,0	1137,3	anhydryt górny A1g

Wyniki badań skał:

W dokumentacji złoża gazu ziemnego w Książu Śląskim (Cimaszewski, 1964) znajdują się wyniki analiz fizyczno-chemicznych 30 próbek z dolomitu głównego z interwału 1087,4–1137,3 m, (Cimaszewski, 1964) wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i bituminów (Tab. 5.60).

Wyniki geofizyki otworowej:

W dokumentacji złoża gazu ziemnego w Książu Śląskim (Cimaszewski, 1964) znajdują się wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS):</u> <u>1–1137 m.</u>
- profilowanie naturalnego promieniowania gamma (PG): 3–1140 m,
- \circ profilowanie krzywizny odwiertu (PK): 25–1075 m,
- profilowanie neutron–gamma (PNG): <u>3–1140 m,</u>

- profilowania oporności standardowe (PO): 5–1137 m,
- profilowanie oporności EL18 (PO): <u>7–1137 m,</u>
- profilowanie średnicy otworu CALI (PSr): 1–1137 m.

W NAG znajdują się również wyniki pomiarów prędkości średnich wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony (Tx2): 20–1040 m,
- profilowanie prędk. śr., czas interpolowany (TW): 20–1040 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr (PW1): 57–1057 m,</u>
- profilowanie prędk. śr., czas pomierzony <u>Tr (PW2): 107–882 m,</u>

- profilowanie prędk. śr., czas pomierzony Tr_(PW3): 32–982 m,
- profilowanie prędk. śr., czas uśredniony Tr_(PO) 32–1057 m,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP): 20–1040 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.61–5.62.

Dokumentacje NAG PIG-PIB:

 Cimaszewski L. 1964. Dokumentacja złoża gazu ziemnego w Książu Śląskim (rejon Nowej Soli). Inw. 17850, 4121/88, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pomarow	[%]	[mD]	[%]
dolomit główny, anhydryt górny	30	0-4,73	nieprzepuszczalna	0,0075–0,163

Tab. 5.60. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1087,4–1137,3 m w otworze Nowa Sól 9 (Cimaszewski, 1964).

Głębok	ość [m]	Stuaturguafia	Objerry
od	do	Stratygrafia	Objawy
1094	1098,9		ślady ropy i gazu
1112,7	1117,7	dolomit główny	ślady ropy i gazu
1086,5	1133,0		zapach bitumin

Tab. 5.61. Objawy węglowodorów w rdzeniach w otworze Nowa Sól 9 (Cimaszewski, 1964).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1085,8-1087,4		próbnik złoża	brak przypływu	-
1085,8–1137,3	anhydryt podstawowy, dolomit główny, anhydryt górny	próbnik złoża	brak przypływu, kwasowanie 18 m ³ 13% kwasu z 20,5 m ³ przybitki wodnej przy P = 120 atm. Po 14 h stójki otwór samoczynnie oddał 2,43 tys. l płynu bez śladów ropy, na- stępnie kompresorem wytłoczono 13,5 m ³ płynu. Po 24 h obserwacji ciśnienia 18 atm., przy otwieraniu zasuw wydo- bywał się gaz (analizy nie przeprowa- dzono). Łyżkowano otwór 500 l płynów i 1 l ropy. Storpedowano interwał 1115,0–1110,0. Złyżkowano 15,7 tys. l. Kwasowanie 19 m ³ 14% kwasu z 20 m ³ przybitki wodnej przy P = 100 atm. Po 14 h stójki złyżkowano 19,49 tys. l płynu bez śladów ropy	0,6 l/h

Tab. 5.62. Rezultaty prób złożowych w otworze Nowa Sól 9 (Cimaszewski, 1964).
5.22. NOWA SÓL 16

Głębokość otworu wg miary wiertniczej: 1299,0 m **Rok zakończenia wiercenia:** 1964 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuatyonofia
od	do	Stratygrana
0,0	275,0	kenozoik
275,0	1041,0	trias
1041,0	1300,0	perm
1041,0	1059,0	terygeniczna stropowa seria PZt
1059,0	1071,0	sól kam. najmłodsza Na4a
1071,0	1072,0	anhydryt pegmaty. dolny A4a1
1072,0	1075,0	ił solny czerwony dolny T4a
1075,0	1157,5	sól kam. młodsza Na3
1157,5	1186,0	anhydryt główny A3
1186,0	1188,0	szary ił solny T3
1188,0	1192,5	anhydryt kryjący A2r
1192,5	1243,0	sól kamienna starsza Na2
1243,0	1251,5	anhydryt podstawowy A2
1251,5	1296,5	dolomit główny Ca2
1296,5	1299,0	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Nowa Sól 16 (Binder, 1964) znajdują się wyniki analiz fizyczno-chemicznych 19 próbek z dolomitu głównego i anhydrytu górnego z interwału 1269,5–1299,0 m wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartości bituminów. Ponadto znajdują się wyniki 2 analiz wody złożowej (Tab. 5.66–5.67).

Wyniki geofizyki otworowej:

Dokumentacja otworu Nowa Sól 16 (Binder, 1964) zawiera wyniki badań geofizyki wiert-

niczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 8–1 296 m.
- profilowanie krzywizny odwiertu (PK): 25–1290 m,
- profilowanie neutron-gamma (PNG): 10-1296 m,
- profilowania oporności standardowe (PO): 0–1296 m,
- profilowanie oporności EL18 (PO): <u>9–1296 m.</u>
- profilowanie potencjałów naturalnych (PS): 0–1296 m,
- profilowanie średnicy otworu CALI (PSr): 0–1298 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Nowa Sól 16 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.68–5.69.

Dokumentacje NAG PIG-PIB:

- Binder I. 1964. Sprawozdanie wynikowe z otworu Nowa Sól 16 Inw. 7250/2021, CAG PIG, Warszawa.
- Olczak D. 1964. Pomiary geofizyczne wraz z kartą otworu Nowa Sól 16. Inw. 83968, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
dolomit główny, anhydryt górny	19	0,12–0,66	0,042–0,136	0,022–0,161

Tab. 5.66. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1269,5–1299,0 m w otworze Nowa Sól 16 na podstawie dokumentacji wynikowej (Binder, 1964).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	146,0952
1262,0–1299,0	dolomit główny, anhydryt górny	podczas obserwacji przypływu płynu do otworu	HCO ₃ ⁻	0,7686
			SO_4^{2-}	1,0206
			SiO ₃ ²⁻	0,1392
			Ca ²⁺	21,63
			Mg^{2+}	12,7419

			Na/K ⁺	38,6327
			Al/Fe ³⁺	6,524
			pH	5
			mineralizacja	230,674
			Cl	81,558
1262 0-1299 0	dolomit główny,		HCO ₃	0,7686
			SO ₄ ²⁻	2,0783
			SiO ₃ ²⁻	0,0481
		podczas obserwacji przypływu	Ca ²⁺	10,8144
1202,0-1299,0	anhydryt górny	płynu do otworu	Mg^{2+}	7,5845
			Na/K ⁺	27,0543
			Al/Fe ³⁺	0,3231
			pH	6
			mineralizacja	132,758

Tab. 5.67. Wyniki analiz wody i filtratu w otworze Nowa Sól 16 (Binder, 1964).

Głębok	ość [m]	Stratygrafia	Obiowy
od	do	Stratygrana	Objawy
1251,5	1296,5	dolomit główny	punktowe ślady ropy i zapach gazu

Tab. 5.68. Objawy węglowodorów w rdzeniach w otworze Nowa Sól 16 (Binder, 1964).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1262,0–1299,0	dolomit główny, anhydryt górny	próbnik złoża	brak przypływu, kwasowanie 20 m3 13,5% kwasu z 23 m ³ przybitki wodnej przy P = 180 atm. Po 6 h stójki otwór samoczynnie oddał 7 tys. l na- stępnie złyżkowano 24 tys. l płynu	średni przypływ ok. 3,5 l/h

Tab. 5.69. Rezultaty prób złożowych w otworze Nowa Sól 16 (Binder, 1964).

5.23. NOWA SÓL 18

Głębokość otworu wg miary wiertniczej: 1241,6 m **Rok zakończenia wiercenia:** 1964 **Rdzenie:** brak.

Stratygrafia (Binder, 1965a):

Głębokość [m]		Stratygnofia
od	do	Stratygrana
0,0	280,0	kenozoik
280,0	970,5	trias
970,5	1241,6	perm
970,5	986,5	terygeniczna stropowa seria PZt
986,5	1002,0	sól kam. najmłodsza Na4a
1002,0	1003,0	anhydryt pegmaty. dolny A4a1
1003,0	1010,0	ił solny czerwony dolny T4a
1010,0	1106,5	sól kam. młodsza Na3
1106,5	1128,5	anhydryt główny A3
1128,5	1131,0	szary ił solny T3
1131,0	1134,5	anhydryt kryjący A2r
1134,5	1190,5	sól kamienna starsza Na2
1190,5	1198,0	anhydryt podstawowy A2
1198,0	1243,5	dolomit główny Ca2
1243,5	1241,6	anhydryt górny Alg

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Nowa Sól 18 (Binder, 1965a) znajdują się wyniki analiz fizyczno-chemicznych 52 próbek z anhydrytu podstawowego, dolomitu głównego i anhydrytu górnego z interwału 1194,0–1241,6 m. Ponadto znajdują się wyniki 1 analizy wody złożowej, 1 analizy ropy i 1 analizy gazu (Tab. 5.70–5.73).

Wyniki geofizyki otworowej:

Dokumentacja otworu Nowa Sól 18 (Binder, 1965a) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 5–1268 m,
- profilowanie krzywizny odwiertu (PK): 0–1240 m,

- profilowanie neutron–gamma (PNG): <u>5–1257 m,</u>
- profilowania oporności standardowe (PO): 30–1242 m,
- o profilowanie oporności EL18 (PO):
- o <u>33–1243 m</u>,
- profilowanie potencjałów naturalnych (PS): 30–1242 m,
- profilowanie średnicy otworu CALI (PSr): 26–1257 m
- profilowanie temperatury (PT): 20–1244 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Nowa Sól 18 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.74–5.76.

Dokumentacje NAG PIG-PIB:

- Binder I. 1965a. Sprawozdanie wynikowe otworu strukturalnego Nowa Sól 18. Inw. 7251/2021, CAG PIG, Warszawa.
- Olczak D., Jaskowiak M. 1965. Pomiary geofizyczne wraz z kartą otworu Nowa Sól 18, pow. Nowa Sól, woj. zielonogórskie. Inw. 83966, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów -	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny, anhydryt górny	52	0,12–0,71	0,047–1,994	0,0083–0,1485

Tab. 5.70. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1194,0–1241,6 m w otworze Nowa Sól 18 na podstawie dokumentacji wynikowej (Binder, 1965a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
1194,0–1215,0		po perforacji hydraulicznej i kwasowaniu	Cl	169,1442
			HCO ₃ ⁻	0,4758
	anhydryt podstawowy, dolomit główny		SO_4^{2-}	0,5185
			$\mathrm{SiO_3}^{2-}$	0,1368
			Ca ²⁺	23,5475
			Mg^{2+}	24,9155
			Na/K ⁺	33,5899
			Al/Fe ³⁺	2,0003
			pН	5,5
			mineralizacja	262,24

Tab. 5.71. Wyniki analiz wody i filtratu w otworze Nowa Sól 18 (Binder, 1965a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
1194,0–1215,0	anhydryt podstawowy, dolomit główny	gaz po drugim kwasowaniu	CH_4	0,542
			C_2H_6	0,108
			C_3H_8	0,13
			C_4H_{10}	0,06
			C ₅ H ₁₂	0,035
			$C_{6}H_{14}$	0,02
			CO_2	93
			N_2	2,7
			H_2	2,8

Tab. 5.72. Wyniki analiz gazu w otworze Nowa Sól 18 (Binder, 1965a).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
1194,0–1215,0 anhydryt podstawowy, dolomit główny		frakcja benzynowa	14	
	anhydryt podstawowy,	pobrana podczas pomiaru	frakcja naftowa	23
	dolomit główny	przypływu po kwasowaniu	frakcja parafinowa	3,25
			pozostałość	55

Tab. 5.73. Wyniki analiz ropy w otworze Nowa Sól 18 (Binder, 1965a).

Głębokość [m]	Stratygrafia	Zanik płuczki [m ³ /24h]
803,0-828,1	trias	10 m ³ /?
902,0		$3 \text{ m}^3/?$
1190,5–1194,0	anhydryt podstawowy	$7 \text{ m}^3/?$
1014,5	sól kam. młodsza	5,5 m ³ /?

Tab. 5.74. Zaniki płuczki w otworze Nowa Sól 18 (Binder, 1965a).

Głębokość [m]		Stuatuquafia	Objewy	
od	do	Stratygrafia	Objawy	
1208,5	1213,3		punktowe ślady ropy i gazu	
1215,6	1229,35	dolomit główny	punktowe ślady ropy i gazu	
1198,0	1243,5		zapach bitumin	

Tab. 5.75. Objawy węglowodorów w rdzeniach w otworze Nowa Sól 18 (Binder, 1965a).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1194,0–1215,0	anhydryt podstawowy, dolomit główny	łyżkowanie	brak przypływu, kwasowanie 20 m ³ 15% kwa- su z 23 m ³ przybitki wodnej przy P = 130 atm. Po 3 h stójki otwór oddał 9,7 tys. l następnie złyżkowano 33 8 tys. l płynu 131 l ropy	-
1214,0 1212,0 1206,2 1199,5 1196,0	anhydryt podstawowy, dolomit główny	łyżkowanie	hydroperforacja, złyżkowano 14 m ³ płynu i 4 1 ropy. Kwasowanie 20 m ³ 13% kwasu z 22 m ³ przybitki wodnej przy P = 120 atm. Po 4,5 h stójki otwór samoczynnie oddał 10,3 m ³ następnie złyżkowano 32,33 tys. 1 płynu zga- zowanego, ze słobymi śladami ropy	-

Tab. 5.76. Rezultaty prób złożowych w otworze Nowa Sól 18 (Binder, 1965a).

5.24. NOWA WIEŚ P-1

Głębokość otworu wg miary wiertniczej:

1012,0 m

Rok zakończenia wiercenia: 1987

Rdzenie: 23–1012 m, 545 skrzynek, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (Rydzewski i Chojęta, 1988):

Głębok	kość [m]	Stuaturanofia
od	do	Stratygrana
0,0	400,0	kenozoik
400,0	687,0	trias
687,0	1 012,0	perm
687,0	970,3	cechsztyn
970,3	1012,0	czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Nowa Wieś P-1 (Rydzewski i Chojęta, 1988) <u>brak</u> wyników analiz petrofizycznych (porowatości, przepuszczalności). Zawarto jedynie 2 analizy gazu oraz 1 analizę wody złożowej (Tab. 5.77–5.78). Ponadto wykonano analizy geochemiczne (zawartości pierwiastków metalicznych) 19 próbek z wapienia podstawowego i czerwonego spągowca.

Wyniki geofizyki otworowej:

Dokumentacja otworu Nowa Wieś P-1 (Rydzewski i Chojęta, 1988) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak plików</u> LAS):

- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 130–755 m,
- profilowanie naturalnego promieniowania gamma (PG): 50–995 m,
- profilowanie gamma–gamma gęstościowe (PGG): 10–995 m,
- profilowanie krzywizny odwiertu PK: 50–995 m,
- profilowanie neutron–gamma PNG: 10–995 m,
- profilowanie neutron–neutron nadtermiczne (PNNnt): 340–995 m,
- profilowania oporności standardowe (PO): 50–993 m,
- profilowanie oporności płuczki (POpl): 31–994 m,

- profilowanie potencjałów naturalnych (PS): 50–994 m,
- profilowanie średnicy otworu (PSr): 50–995 m,
- prof. temp. przy ustalonej równowadze term. PTu: 10–990 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Nowa Wieś P-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.79–5.80.

Dokumentacje NAG PIG-PIB:

 Rydzewski A., Chojęta H. 1988. Dokumentacja wynikowa otworu wiertniczego Nowa Wieś P-1 [zawiera kartę otworu]. Inw. 131548, CAG PIG, Warszawa.

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	103
			HCO ₃ ⁻	0,329
	dolomit główny		SO_4^{2-}	4,28
		pr. rurowy złoża	$\mathrm{NH_4}^+$	-
752 0 756 2			Ca ²⁺	1,73
/52,0-/50,5			Mg ²⁺	0,571
			Na/K ⁺	69,3/0,301
			Al/Fe ³⁺	0,0395
			pН	7,85
			mineralizacja	187,148

Tab. 5.77. Wyniki analiz wody w otworze Nowa Wieś P-1 (Rydzewski i Chojęta, 1988).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	dolomit główny		CH_4	7,0412
752 0 756 2		gaz z degazacji solanki	C_2H_6	0,2323
752,0-750,5			C_3H_8	0,0772
			N_2	92,6493
	PZ1, czerwony spągowiec		CH_4	20,34
020.0 1012.0		gaz z degazacji rdzenia	C_2H_6	0,1139
939,0-1012,0			N_2	79,09
			H_2	0,4924

Tab. 5.78. Wyniki analiz gazu (w czystym gazie) w otworze Nowa Wieś P-1 (Rydzewski i Chojęta, 1988).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
198,0–250,0		12
250,0-290,0	kenozoik	10
290,0-334,0		10
334,0–365,0		5
752,0–757,0	aaahaatun	14
757,0–763,7	cechsztyn	4

763,7–770,5	2
770,5–771,0	4
771,0–778,3	2
778,3–784,1	3
784,1–791,2	3
791,2–769,4	3
796,4–802,7	4
802,7-806,4	3
810,6-816,5	3
816,5-824,0	3
824,0-833,5	3
833,5-849,0	3

Tab. 5.79. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Nowa Wieś P-1 (Rydzewski i Chojęta, 1988).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
752,0–756,3	dolomit główny	pr. rurowy złoża	przypływ solanki słabo zgazowanej gazem niepalnym Pz = 73,6 [*] 10 ³ hPa	2,4
939,0–1012,0	cechsztyn, czerwony spągowiec	pr. rurowy złoża	przypływ solanki zgazowanej gazem niepalnym Pz = 93,7 [*] 10 ³ hPa	0,14

Tab. 5.80. Rezultaty prób złożowych w otworze Nowa Wieś P-1 (Rydzewski i Chojęta, 1988).

5.25. PAJĘCZNO 1

Głębokość otworu wg miary wiertniczej: 1203,0 m **Rok zakończenia wiercenia:** 1969 **Rdzenie:** brak.

Stratygrafia (Krzyżanowski, 1969):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	350,0	kenozoik	
350,0	882,0	trias	
882,0	1203,0	perm	
888,0	904,5	strop. seria terygeniczna cechsztynu	
904,5	919,0	sól kamienna najmłodsza Na4a	
919,0	922,0	anhydryt pegmatytowy dolny A4a1	
922,0	926,5	ił solny czerwony dolny T4a	
926,5	1036,0	sól kamienna młodsza Na3	
1036,0	1059,5	anhydryt główny A3	
1059,5	1062,5	ił solny szary T3	
1062,5	1066,5	anhydryt kryjący A2r	
1066,5	1115,5	sól kamienna starsza Na2	
1115,5	1130,0	anhydryt podstawowy A2	
1130,0	1195,5	dolomit główny Ca2	
1195,5	1203,0	anhydryt górny A1g	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Pajęczno 1 (Krzyżanowski, 1969) znajdują się wyniki analiz fizyczno-chemicznych 13 próbek z triasu z interwału 432,0–804,0 m, 2 próbek z anhydrytu podstawowego z interwału 1123,0–1129,0 m, 60 próbek z dolomitu głównego z interwału 1130,0–1193,0 m, 2 próbek anhydrytu górnego z interwału 1195,5–1198,0 m (Tab. 5.81).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Pajęczno 1 (Krzyżanowski, 1969) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>dla podkreślonych profilowań</u> <u>w CBDG znajdują się pliki LAS</u>):

- mikroprofilowania oporności (mPO): 316–850 m,
- profilowanie naturalnego promieniowania gamma (PG): 3–858 m,
- <u>profilowanie neutron–gamma PNG:</u> <u>49–858 m.</u>
- profilowania oporności standardowe (PO): 35–850 m,
- profilowanie oporności EL03 (PO): 30–850 m,

- profilowanie średnicy otworu (PSr): 30–1 180 m,
- profilowanie temperatury (PT): 100–1 180 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Pajęczno 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.82–5.83.

Dokumentacje NAG PIG-PIB:

• Krzyżanowski S. 1969. Dokumentacja wynikowa wiercenia Pajęczno 1. Inw. 106159, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	13	1,59–16,89 (8,14)	0,0245–24,2726 (5,5125)	ślady–brak
anhydryt główny	2	0,2–0,22 (0,217)	0,0588–0,0674 (0,0629)	ślady
dolomit główny	60	0,16–1,15 (0,43)	b. słaba–0,0616 (0,0272)	ślady–0,1018 (0,0249)
anhydryt górny	2	0,63–0,66 (0,64)	0,0407–0,411 (0,409)	ślady

Tab. 5.81. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 432,0–804,0 m, 1123,0–1129,0 m, 1130,0–1193,0 m oraz 1195,5–1198,0 m w otworze Pajęczno 1 na podstawie dokumentacji wynikowej (Krzyżanowski, 1969).

Głębokość [m]	Stratygrafia	Objawy
1131,0–1141,0		punktowe objawy ropy w spękaniach, niekiedy zgazowanej
1139,0–1141,0		rosa solankowa
1144,0–1153,0	1.1. 4.1/	słaby zapach bitumin
1160,0–1164,0	dolollilt glowily	punktowe objawy ropy
1172,0–1177,0		słaby zapach bitumin
1177,0–1183,0		rosa solankowa
Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
315,0–435,0	trias	6–10 m ³ /?
1137,0–1158,0	dolomit główny	21 m ³ /?
1183,0–1203,0	dolomit główny anhydryt górny	125 m ³ /?

Tab. 5.82. Objawy w trakcie wiercenia (zaniki płuczki) oraz objawy węglowodorów w rdzeniach w otworze Pajęczno 1 (Krzyżanowski, 1969).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz. [m ³ /h]
1130,0–1183,0	dolomit główny	pr. rurowy złoża	30 min. oczekiwania brak przypływu	-

Tab. 5.83. Rezultaty prób złożowych w otworze Pajęczno 1 (Krzyżanowski, 1969).

5.26. PIASKI 1

Głębokość otworu wg miary wiertniczej: 2021,8 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak

Stratygrafia (Choiński i Olczak, 1967):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	290,0	kenozoik
290,0	935,0	trias
935,0	1873,0	perm
907,0	919,0	terygeniczna stropowa seria PZt
919,0	932,5	sól kam. najmłodsza Na4a
932,5	933,5	anhydryt pegmatytowy dolny A4a1
933,5	936,5	ił solny czerwony dolny T4a
936,5	1038,0	sól kam. młodsza Na3
1038,0	1058,0	anhydryt główny A3
1058,0	1059,0	szary ił solny T3
1059,0	1063,0	anhydryt kryjący A2r
1063,0	1112,0	sól kamienna starsza Na2
1112,0	1132,0	anhydryt podstawowy A2
1132,0	1177,0	dolomit główny Ca2
1177,0	1213,0	anhydryt górny A1g
1213,0	1260,0	sól kamienna najstarsza Na1
1260,0	1410,0	anhydryt dolny A1d
1410,0	1414,0	wapień cechsztyński Ca
1414,0	1870,0	czerwony spągowiec
1870,0	2021,8	karbon

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Piaski 1 (Choiński i Olczak, 1967) znajdują się wyniki analiz fizyczno-chemicznych 5 próbek z triasu z interwału 430,5– 500,6 m, 30 próbek z dolomitu głównego i anhydrytu górnego z interwału 1132,6– 1181,0 m, 2 próbek z wapienia cechsztyńskiego z interwału 1410,0–1414,0 m, 3 próbek z czerwonego spągowca z interwału 1419,1–1525,9 m. Ponadto wykonano 5 analiz wody złożowej, 1 analizę gazu oraz 1 analizę ropy (Tab. 5.84–5.87). Wykonano również analizy petrograficzne 11 próbek z czerwonego spągowca i karbonu z interwału 1581,6–2021,8 m.

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Piaski 1 (Choiński i Olczak, 1967) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 14–2015 m,
- profilowanie krzywizny odwiertu (PK): 25–2000 m,
- profilowanie neutron-gamma (PNG): 16-2015 m,
- profilowania oporności standardowe (PO): 24–2015 m,
- profilowanie oporności EL03 (PO): 300–2015 m,
- profilowanie oporności sterowane (POst): 307,5–2015 m,
- profilowanie potencjałów naturalnych (PS): 24–2015 m,
- profilowanie średnicy otworu (PSr): 20–2015 m,
- profilowanie temperatury (PT): 10–1641,5 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Piaski 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.88–5.90.

Dokumentacje NAG PIG-PIB:

• Choiński L., Olczak D. 1967. Dokumentacja wynikowa otworu Piaski 1 [zawiera kartę otworu]. Inw. 88634, CAG PIG, Warszawa.

ZIELONA GÓRA ZACHÓD

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pointarow	[%]	[mD]	[%]
trias	5	7,89–17,44	0,636-84,024	0,0187-0,0937
dolomit główny, anhydryt górny	30	0,15–0,73	0,351-20,836	0,0153-0,148
wapień cechsztyński	2	0,32–0,72	0,158–0,233	ślady
czerwony spagowiec	3	8,42-24,03	0,554-161,047	ślady

Tab. 5.84. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 430,5–500,6 m, 1132,6–1181,0 m, 1410,0 -1414,0 m oraz 1419,1–1525,9 m w otworze Piaski 1 na podstawie dokumentacji wynikowej (Choiński i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	220,0414
			Br	3,3566
			HCO ₃ ⁻	0,5978
			SO4 ²⁻	0,4115
	1-1		SiO ₃ ²⁻	3,4494
1133,7–1179,5	dolomit główny,	pr. rurowy złoża	Ca ²⁺	20,2284
	annydryt gorny		Mg^{2+}	37,5364
			Na/K ⁺	49,1007
			Al/Fe ³⁺	2,3262
			pH	5
			mineralizacja	338
			Cl	117,018
			Br⁻	-
			HCO ₃ ⁻	0,976
			SO4 ²⁻	0,8297
			$\mathrm{NH_4}^+$	-
1135,0–1150,0	dolomit główny	pr. rurowy złoża	Ca ²⁺	18,2056
			Mg ²⁺	14,2996
			Na/K ⁺	17,1303
			Al/Fe ³⁺	9,3817
			pH	6
			mineralizacja	180,4
			Cl	2,8368
			Br	-
		pr. rurowy złoża	HCO ₃	0,144
			$SO_4^{2^2}$	1,5227
			$SiO_3^{2^2}$	0,1874
1414,0–1420,0	czerwony spągowiec			0,89
				0,0238
			Na/K	1,7261
			Al/Fe	-
			pH	8
			mineralizacja	9,8
				49,9980
				- 0.12
			псо ₃	2.0412
			SiO 2-	2,0412
1633,0-1650,0	czerwony spągowiec	pr. rurowy złoża	$\frac{510_3}{Ca^{2+}}$	12.4866
			Ma^{2+}	0.0508
			Na/K ⁺	19 5/0/
			nH	97
			mineralizacia	92.4
			Cl	144,6768
			HCO ₂ ⁻	0.0488
1414.0-1431.8	czerwony spagowiec	pr. rurowy złoża	SO4 ²⁻	2,2182
,,0	J - F - 78 - 11 - 6	1	SiO ₃ ²⁻	0,5923
			Ca ²⁺	27,4198

	Mg^{2+}	2,3129
	Na/K ⁺	57,4774
	Al/Fe ³⁺	1,4575
	pН	6,5
	mineralizacja	247,2

Tab. 5.85. Wyniki analiz wody i filtratu w otworze Piaski 1 (Choiński i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Temperatura [°C]	% obj.
			170	1,5
			180	2,7
			190	5
			200	6,7
1135,0–1150,0	dolomit główny	z łyżkowania	210	8,5
			220	10
			230	13,7
			240	16,3
			250	19,3
			260	22,8
			270	26,5
			280	30
			290	33,5
			300	36,5

Tab. 5.86. Wyniki analiz ropy w otworze Piaski 1 (Choiński i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
	dolomit główny	z głowicy eksploatacyjnej	CH_4	12,64
			C_2H_6	4,9
			C_3H_8	2,62
1135,0–1150,0			C_4H_{10}	1,3
			$C_{5}H_{12}$	0,72
			$C_{6}H_{14}$	0,2
			CO_2	68,3
			N_2	5,976
			He	0,057
			H_2	3,23
			Ar	0,057

Tab. 5.87. Wyniki analiz gazu (w czystym gazie) w otworze Piaski 1 (Choiński i Olczak, 1967).

Głębokość [m]	Stratygrafia	Zanik płuczki
1518,0	czerwony spągowiec	20 m ³ /?
1557,0		30 m ³ /?
1581,0		50 m ³ /?

Tab. 5.88. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Piaski 1 (Choiński i Olczak, 1967).

Głębok	ość [m]	Stuatuquafia	Obierry
od	do	Stratygrafia	Objawy
1172,1	1175,5	dolomit główny	zapach bitumiczny, w stropie i spągu intensywne plamy tłustej ropy barwy żółto-brązowej

Tab. 5.89. Objawy węglowodorów w rdzeniach w otworze Piaski 1 (Choiński i Olczak, 1967).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1414,0–1431,8	czerwony spągowiec	łyżkowanie	pomimo intensywnego ściągania płynu 86400 l lustro się nie obniżało, brak śladów bitumin	2000 l/h

1912,0	karbon	łyżkowanie	brak przypływu	-
1850,0–1870,0		perforacja bezpocisko- wa 10 strzałów, łyżkowanie	ściągnięto płynu 22200 l brak przypływu	-
1633,0–1650	czerwony spągowiec	perforacja bezpocisko- wa 10 strzałów, łyżkowanie	ściągnięto płynu 39480 l, brak śladów bitumin	100 l/h
1414,0–1420,0		perforacja bezpocisko- wa 10 strzałów, łyżkowanie	ściągnięto płynu 38760 l	-
1135,0–1150,0		perforacja bezpocisko- wa 10 strzałów, łyżkowanie	ściągnięto płynu 12780 l brak przypływu	-
1135,0–1150,0		kwasowanie	$6 \text{ m}^3 \text{ HCl } 14\% \text{ P} = 180 \text{ atm.},$ brak przypływu	-
1135,0–1150,0	dolomit główny	hydroperforacja i II kwasowanie	9 m ³ HCl 13% P = 180 atm., na- stępnego dnia samoczynny wypływ 2800 l płynu. Złyżkowano 16900 l w tym 100 l ropy. Dobowe przy- pływy płynu/ropy w litrach 750/30, 110/10, 125/5, 395/5, 60/5, 105/11, 180/20, awaria torpedy, łyżkowanie 10640 l w tym 10 l ropy, wartość przypływu spada do 90 l/24h	350 l/24h
1135,0–1150,0		III kwasowanie	25 m ³ HCl 14% P = 180 atm., stój- ka 19 h, samowypływ 4700 l płynu. Łyżkowanie 6050 l ze śladami gazu w płynie, przypływ ze śladami gazu tylko przez dwa dni potem już tylko sam płyn.	460 l/24h

Tab. 5.90. Rezultaty prób złożowych w otworze Piaski 1 (Choiński i Olczak, 1967).

5.27. STARY ZAGÓR 1

Głębokość otworu wg miary wiertniczej: 1984,6 m **Rok zakończenia wiercenia:** 1967 **Rdzenie:** brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuaturanofia
od	do	Stratygrana
0,0	230,0	kenozoik
230,0	1415,5	trias
1415,5	1984,6	perm
1415,5	1430,0	terygeniczna stropowa seria PZt
1430,0	1448,5	sól kam. najmłodsza Na4a
1448,5	1449,5	anhydryt pegmatytowy dolny A4a1
1449,5	1452,5	ił solny czerwony dolny T4a
1452,5	1532,5	sól kam. młodsza Na3
1532,5	1554,5	anhydryt główny A3
1554,5	1556,5	szary ił solny T3
1556,5	1559,0	anhydryt kryjący A2r
1559,0	1620,0	sól kamienna starsza Na2
1620,0	1628,0	anhydryt podstawowy A2
1628,0	1685,0	dolomit główny Ca2
1685,0	1725,0	anhydryt górny Alg

1725,0	1908,5	sól kamienna najstarsza Na1
1908,5	1958,5	anhydryt dolny A1d
1958,5	1962,5	wapień cechsztyński Cal, łupek miedzionośny Tl
1962,5	1984,6	czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Stary Zagór 1 (Piela i Czernecki, 1967) znajdują się wyniki analiz fizycznochemicznych 11 próbek z triasu z interwału 867,3–873,3 m, 73 próbek z dolomitu głównego z interwału 1628,0–1685,0 m oraz 14 próbek z czerwonego spągowca z interwału 1965,0–1984,6 m. Ponadto wykonano 1 analizę wody złożowej (Tab. 5.91–5.92).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Stary Zagór 1 (Piela i Czernecki, 1967) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 6–1975 m,
- profilowanie krzywizny odwiertu (PK): 25–1975 m,
- profilowanie neutron–gamma (PNG): <u>6–1975 m,</u>
- profilowania oporności standardowe (PO): 33,5–1974 m,
- profilowanie oporności EL00 (PO): 38,5–1974 m.
- profilowanie oporności EL03 PO: 366–1974 m,
- profilowanie oporności EN16 (PO): 33–1312 m,
- profilowanie oporności EN64 (PO): 35–1312 m,
- prof. oporności sondą 3–elektr. ster. (POst): 365–1977 m.

- profilowanie oporności sterowane (POst): 365–1977 m,
- profilowanie potencjałów naturalnych (PS): 33,5–1974 m,
- profilowanie średnicy otworu (PSr): 32–1977 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Stary Zagór 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.93–5.94.

Dokumentacje NAG PIG-PIB:

• Piela J., Czernecki R. 1967. Dokumentacja wynikowa wiercenia Stary Zagór 1 [zawiera kartę otworu] Inw. 88632, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pointarow	[%]	[mD]	[%]
trias	11	2,89-23,86	0,406-234,249	ślady
dolomit główny	73	0,12–3,68	0,359–0,057	0,0108-0,094
czerwony spągowiec	14	13,71–26,53	97,848-240,173	ślady

Tab. 5.91. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 867,3–873,3 m, 1628,0–1685,0 m oraz 1965,0–1984,6 m w otworze Stary Zagór 1 na podstawie dokumentacji wynikowej (Piela i Czernecki, 1967).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	217,0152
			Br	
			HCO ₃ ⁻	0,1647
1963,0–1964,6	czerwony spągowiec	z łyżkowania	SO4 ²⁻	0,535
			SiO ₃ ²⁻	0,8914
			Ca ²⁺	66,345
			Mg ²⁺	1,1843
			Na/K ⁺	62,4246
			Al/Fe ³⁺	0,6518
			pH	6
			mineralizacja	361,8

Tab. 5.92. Wyniki analiz wody w otworze Stary Zagór 1 (Piela i Czernecki, 1967).

Głębokość [m]		Stuatuquafia	Obierry
od	do	Stratygrafia	Objawy
1642,3	1646,9		punktowe nagromadzenia ropy w rdzeniu
1667,5	1673,4		zapach bitumiczny
1642,9	1654,2	dalamit alárimi	zapach bitumiczny
1664,4	1667,5	dolomit glowny	zapach bitumiczny
1628	1642,9		brak najmniejszych objawów bitumicznych
1677,9	1685,0		zapach siarkowodoru

Tab. 5.93. Objawy węglowodorów w rdzeniac	n w otworze Stary Zagór 1 (Piela i Czernecki, 1967).
---	--	----

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1628 0-1646 9		łyżkowanie	płynu ściągnięto 27 m ³ ,	_
1020,0 1010,9	dolomit główny	Tyžko Wullie	brak przypływu	
1629 0 1601 2	dolollin glowily	hutkowania	płynu ściągnięto 29160 l, brak	
1020,0-1091,5		tyzkowalite	śladów bitumin, brak przypływu	-
1094 (10(2.5		łyżkowanie	płynu ściągnięto 54,8 m ³ , lustro	200.1/h
1984,0–1902,5	czerwony spągowiec		utrzymuje poziom	500 1/11
			$10 \text{ m}^3 \text{ HCl } 13-14\% \text{ P} = 140 \text{ atm.},$	
1620,0	anhydryt podstawowy	kwasowanie	po 4 h samoczynny wypływ 5 m ³	
			płynu, brak śladów bitumin, łyż-	-
			kowanie 31200 l, brak przypływu	

Tab. 5.94. Rezultaty prób złożowych w otworze Stary Zagór 1 (Piela i Czernecki, 1967).

5.28. STRUŻKA 1

Głębokość otworu wg miary wiertniczej: 1492,4 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	256,0	kenozoik	
256,0	725,0	trias	
725,0	1492,4	perm	
723,0	737,5	terygeniczna stropowa seria PZt	
737,5	755,0	sól kam. najmłodsza Na4a	
755,0	755,5	anhydryt pegmaty. dolny A4a1	
755,5	759,5	ił solny czerwony dolny T4a	
759,5	937,5	sól kam. młodsza Na3	
937,5	950,0	anhydryt główny A3	
950,0	951,0	szary ił solny T3	
951,0	956,0	anhydryt kryjący A2r	
956,0	1030,0	sól kamienna starsza Na2	
1030,0	1033,0	anhydryt podstawowy A2	
1033,0	1092,0	dolomit główny Ca2	
1092,0	1119,5	anhydryt górny A1g	
1119,5	1158,5	sól kamienna najstarsza Na1	
1158,5	1294,5	anhydryt dolny A1d	
1294,5	1299,0	wapień cechsztyński Ca	
1299,0	1299,7	łupek miedzionośny T1	
1299,7	1304,0	biały spągowiec	
1304,0	1445,0	czerwony spągowiec	
1445,0	1492,4	karbon	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Strużka 1 (Binder, 1967b) znajdują się wyniki analiz fizyczno-chemicznych 43 próbek z dolomitu głównego i anhydrytu górnegoz interwału 1033,0–1093,6 m, 4 próbek z wapienia cechsztyńskiego z interwału 1294,6–1299,0 m, 2 próbek z białego spągowca z interwału 1299,7–1304,0 m, 5 próbek z czerwonego spągowca z interwału 1306,6–1321,2 m. Ponadto znajdują się wyniki 1 analizy wody złożowej i 1 analizy gazu (Tab. 5.95–5.97).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Strużka 1 (Binder, 1967b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 5–1492 m,
- profilowanie krzywizny odwiertu (PK): 100–1480 m,
- profilowanie neutron–gamma (PNG): 10–1492 m,
- profilowania oporności standardowe (PO): 350–1480 m,
- profilowanie oporności EL00 (PO): 25–1480 m,
- profilowanie oporności EL03 (PO): 351–1480 m,
- profilowanie oporności EN64 (PO): 25–1480 m,
- prof. oporności sondą 3–elektr. ster. LL3 (POst): 350,5–1480 m,
- profilowanie oporności sterowane (POst): 1026–1480 m,
- profilowanie potencjałów naturalnych (PS): 350–1480 m,

 profilowanie średnicy otworu CALI (PSr): 25–1362,5 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Strużka 1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.98–5.100

Dokumentacje NAG PIG-PIB:

- Binder I. 1967b. Sprawozdanie wynikowe z otworu Strużka 1 Inw. 7244/2021, CAG PIG, Warszawa.
- Olczak D. 1967b. Pomiary geofizyczne otworu Stróżka 1 + karta otworu. Inw. 83951, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
dolomit główny, anhydryt górny	43	0,13–20,4	0–0,364	0,0123–0, 798
wapień podstawowy	4	0,82–3,7	0,06–0,515	0,0078–0,022
biały spągowiec	2	2,45–6,47	20,974–24,241	0,0043–0,0095
czerwony spągowiec	5	3,66–8,85	24,241-50,503	0,4122-0,5902

Tab. 5.95. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 1033,0–1093,6 m, 1294,6–1299,0 m, 1299,7–1304,0 m oraz 1306,6–1321,2 m w otworze Strużka 1 (Binder, 1967b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
1033,0–1080,0	dolomit główny	po kwasowaniu	pН	1
	dolollin glowily		c. wł.	1,216

Tab. 5.96. Wyniki analiz wody i filtratu w otworze Strużka 1 (Binder, 1967b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
1300,6–1306,6	czerwony spągowiec, biały spągowiec		CH_4	94,83
		dagazacia rdzania	C_2H_6	4,47
		uegazacja tuzenia	C ₃ H ₈	1,04
			C_4H_{10}	0.06

Tab. 5.97. Wyniki analiz gazu w otworze Strużka 1 (Binder, 1967b).

Głębokość [m]	Stratygrafia	Zanik płuczki
56,8–94,1	Ironogoilt	20 m ³ /?
121,1–175,1	KEHOZOIK	30 m ³ /?
1460,9–1468,9	karbon	$3 \text{ m}^3/?$

Tab. 5.98. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Strużka 1 (Binder, 1967b).

Głębokość [m]		Stratugrafia	Objewy
od	do	Stratygrana	Objawy
1033,0	1092,0	dolomit główny	miejscami bardzo słaby zapach bitumin

Tab. 5.99. Objawy węglowodorów w rdzeniach w otworze Strużka 1 (Binder, 1967b).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1027,5–1032,6	anhydryt podstawowy, dolomit główny	łyżkowanie	brak przypływu	-
1031,0–1306,0	dolomit główny– czerwony spągowiec	łyżkowanie	brak przypływu	-
1031,0–1358,0	dolomit główny– czerwony spągowiec	łyżkowanie	złyżkowano 21,28 tys. l płynu bez śladów bitumin	bardzo słaby przypływ
1031,0-1080,0	anhydryt podstawowy,	łyżkowanie	kwasowanie 3100113% kwasu z 19 m ³	-

dolomit główny	przybitki wodnej przy P = 80 atm. Po 2 h
	stójki otwór samoczynnie oddał 800 l
	następnie złyżkowano 30,82 tys. 1 płynu,
	brak przypływu

Tab. 5.100. Rezultaty prób złożowych w otworze Strużka 1 (Binder, 1967b).

5.29. ŚWIDNICA-1

Głębokość otworu wg miary wiertniczej: 1391 m **Rok zakończenia wiercenia:** 1967 **Rdzenie:** brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratugrafia	
od	do	Stratygrana	
0,0	270,0	kenozoik	
270,0	1070,0	trias	
1070,0	1391,0	perm	
1070,0	1081,5	terygeniczna stropowa seria PZt	
1081,5	1095,5	sól kam. najmłodsza Na4a	
1095,5	1096,0	anhydryt pegmatytowy dolny A4a1	
1096,0	1100,5	ił solny czerwony dolny T4a	
1100,5	1201,5	sól kam. młodsza Na3	
1201,5	1212,5	anhydryt główny A3	
1212,5	1213,5	szary ił solny T3	
1213,5	1217,5	anhydryt kryjący A2r	
1217,5	1353,5	sól kamienna starsza Na2	
1353,5	1359,5	anhydryt podstawowy A2	
1359,5	1387,5	dolomit główny Ca2	
1387,5	1391,0	anhydryt górny A1g	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Świdnica-1 (Piela i Geroń, 1967) znajdują się wyniki analiz fizyczno-chemicznych 52 próbek z anhydrytu podstawowowego i dolomitu głównego z interwału 1353,5– 1383,6 m, (Piela i Geroń, 1967). Ponadto wykonano 1 analizę wody złożowej (Tab. 5.101– 5.102).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Świdnica-1 (Piela i Geroń, 1967) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- mikroprofilowania oporności (mPO): 301–1041 m,
- profilowanie naturalnego promieniowania gamma (PG): 6–1391 m,
- profilowanie neutron–gamma (PNG): 20–1391 m,
- profilowania oporności standardowe (PO): 36–1365 m,
- profilowanie oporności EL18 (PO): 42–1366 m,
- profilowanie oporności sterowane (POst): 1040–1365 m,
- profilowanie potencjałów naturalnych (PS): 36–1365 m,
- profilowanie średnicy otworu (PSr): <u>30–1391 m.</u>

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Świdnica-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.103–5.104.

Dokumentacje NAG PIG-PIB:

• Piela J., Geroń S. 1967. Dokumentacja wynikowa otworu Świdnica-1. Inw. 88635, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pomarow	[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny	52	0,12–0,68	0,074–0,229	0,014–0,1593

Tab. 5.101. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1353,5–1383,6 m w otworze Świdnica-1 na podstawie dokumentacji wynikowej (Piela i Geroń, 1967).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
		po dwukrotnym kwasowaniu łyżką z gł. 1000 m.	Cl	216,9340
			Br⁻	1,145
			HCO ₃ ⁻	1,3664
	anhydryt podstawowy, dolomit główny		SO_4^{2-}	3,6175
			$\mathrm{SiO_3}^{2-}$	4,979
1353,5-1383,6			Ca ²⁺	24,2741
			Mg^{2+}	30,3866
			Na/K ⁺	54,2246
			Al/Fe ³⁺	5,4469
			pН	5
			mineralizacja	350,2

Tab. 5.102. Wyniki analiz wody w otworze Świdnica-1 (Piela i Geroń, 1967).

Głębokość [m]		Stratzarafia	Objewy	
od	do	Stratygrafia	Objawy	
1356,9	1363,2	anhydryt	ślady brunatnej ropy w rdzeniu i intensywnych	
1359,5	1387,5	podstawowy,	zapach bitumiczny	
1377,6	1383,6	dolomit główny	zapach siarkowodoru	

Tab. 5.103. Objawy węglowodorów w rdzeniach w otworze Świdnica-1 (Piela i Geroń, 1967).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1353,5–1365,1	dolomit główny, anhydryt górny	wtłoczenie wody a następnie powietrza w przestrzeń międzyru- rową	przypłyneło 10 l solanki bez bitumin	-
1353,5–1365,1		kwasowanie I	przemywanie kwasem bez tłocze- nia 5 m ³ HCl 5%, tłoczenie 4 m ³ HCl 5%, P = 90–120 atm., po 1 h samoczynny wypływ 30 l płynu, brak śladów bitumin, kompresorem wytłoczono 24 m ³ bez bitumin, przypływ solanki bardzo niewielki	-
1353,5–1391,0		kwasowanie II	przemywanie kwasem bez tłocze- nia 600 l HCl 14%, tłoczenie 20 m ³ HCl 14% P = 120–130 atm., po 3 h samoczynny wypływ 5400 l płynu, brak śladów bitumin. Kompreso- rem wytłoczono 10500 l bez bitu- min, łyżkowanie 57200 l, przypływ niewielki solanki	-

Tab. 5.104. Rezultaty prób złożowych w otworze Świdnica-1 (Piela i Geroń, 1967).

5.30. TARNAWA M-21

Głębokość otworu wg miary wiertniczej: 1466,0 m

Rok zakończenia wiercenia: 1990

Rdzenie: 1–1466,0 m, 906 skrzynek, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (Strzelecki i in., 1991):

Głębokość [m]		kość [m]	Stratygrafia	
	od	do	Stratygrana	
	0,0	228,3	kenozoik	
	228,3	971,7	trias	
	971,7	1466,0	perm	
	971,7	986,0	terygeniczna stropowa seria PZt	
	986,0	986,6	anhydryt stropowy A4g	
	986,6	988,2	sól kam. najmłodsza Na4a	

988,2	1000,0	ił solny czerwony dolny T4a
1000,0	1000,6	anhydryt główny górny A3g
1000,6	1080,8	sól kam. młodsza Na3
1080,8	1125,0	anhydryt główny A3
1125,0	1125,3	dolomit płytowy Ca3
1125,3	1125,9	szary ił solny T3
1125,9	1132,0	anhydryt kryjący A2r
1132,0	1173,4	sól kamienna starsza Na2
1173,4	1180,8	anhydryt podstawowy A2
1180,8	1260,1	dolomit główny Ca2
1260,1	1304,0	anhydryt górny A1g
1304,0	1372,5	sól kamienna najstarsza Na1
1372,5	1446,2	anhydryt dolny A1d
1446,2	1449,8	wapień cechsztyński Cal
1449,8	1450,0	łupek miedzionośny T1
1450,0	1457,4	biały spągowiec
1457,4	1466,0	czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Tarnawa M-21 (Strzelecki i in., 1991) <u>brak</u> wyników analiz petrofizycznych. Zawarto jedynie analizy chemiczne gazu oraz analizy geochemiczne (zawartości pierwiastków metalicznych) 22 próbek z wapienia podstawowego oraz z czerwonego spągowca (Tab. 5.105).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Tarnawa M-21 (Strzelecki i in., 1991) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak dla nich plików LAS):

- pomiar akustyczny stanu zacementowania rur okładzinowych (Pac): 30–1180 m,
- profilowanie akustyczne czasu interwałowego (PAdt): 60–1463 m,
- profilowanie czasu akustycznego T1 (PAt1): 60–1463 m,

- profilowanie czasu akustycznego T2 (PAt2): 60–1463 m,
- profilowanie naturalnego promieniowania gamma (PG): 6–1464 m,
- profilowanie gamma–gamma gęstościowe (PGG): 6–1464 m,
- \circ profilowanie krzywizny odwiertu (PK): 0–1460 m,
- profilowanie neutron-neutron nadtermiczne (PNNnt): 6–1464 m,
- profilowanie neutron–neutron termiczne PNNt: 200–1464 m,
- profilowania oporności standardowe (PO): 60–1463 m,
- profilowanie oporności płuczki (POpl): 6–1118 m,
- profilowanie oporności sterowane (POst): 248–1450 m,
- profilowanie potencjałów naturalnych (PS): 60–1463 m,
- profilowanie średnicy otworu (PSr): 60–1460 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Tarnawa M-21 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.106–5.108.

Dokumentacje NAG PIG-PIB:

• Strzelecki R., Oszczepalski S., Rydzewski A. 1991. Dokumentacja wynikowa otworu wiertniczego Tarnawa M-21 Inw. 132781, CAG PIG, Warszawa.

Głębokość m]	Stratygrafia	Metoda	Składniki	% obj.
1443,0–1466,0		próbnik złoża	CH_4	10,61
			C_2H_6	0,0809
	PZ1, czerwony spągowiec		C_3H_8	0,005
			$C_{4}H_{10}$	0,0037
			N_2	88,85
			CO_2	0,03
			Ar	-
			H_2	0
			He	0.41

Tab. 5.105. Wyniki analiz gazu (w czystym gazie) w otworze Tarnawa M-21 (Strzelecki i in., 1991).

Głębokość [m]	Stratygrafia	Zanik płuczki [m ³ /24h]
321,0-328,0		11
328,0-340,0		8
340,0-346,0		9
346,0-358,0		5,5
358,0-365,0		10
365,0-374,0		10
374,0–387,0	trias	5
387,0-402,0		3
480,0–514,0		9
514,0-530,0		8
530,0-545,0		6
545,0-564,0		9
564.0-585.0	1	9

Tab. 5.106. zaniki i zgazowania płuczki w otworze Tarnawa M-21 (Strzelecki i in., 1991).

Głębokość [m]		Stuatuquafia	Obierry	
od	do	Stratygrana	Objawy	
1188,45	1217,0	delemit elément	spękania wypełnione ropą	
1232,0	1248,5	dolomit głowny	intensywne spękania silnie przesycone ropą	

Tab. 5.107. Objawy węglowodorów w rdzeniach w otworze Tarnawa M-21 (Strzelecki i in., 1991).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1181,0–1195,0	dolomit główny	próbnik	brak przypływu, do przewodu nad próbnikiem wpłynęło 20 l płuczki i 0,7 l ropy	-
1181,0-1210,0		próbnik	brak przypływu	-
1220,0-1260,0		próbnik	brak przypływu	-
1443,0–1466,0	PZ1, czerwony spągowiec	przypływ przemysłowy gazu pal- nego wysokozaazotowanego P złożowe = 149,1*10 ³ hPa.		Vabs = 46 m ³ /min
1180,0–1215,0	dolomit główny	kwasowanie	25 m ³ HCl 14% P = 120–130 atm., po 1 h samoczynny wypływ przez 7 h płynu, potem kompresorem, brak przypływu	

Tab. 5.108. Rezultaty prób złożowych w otworze Tarnawa M-21 (Strzelecki i in., 1991).

5.31. TRZEBULE 1

Głębokość otworu wg miary wiertniczej: 2666,7 m **Rok zakończenia wiercenia:** 1966 **Rdzenie:** brak.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnofia	
od	do	Stratygrana	
0,0	262,5	kenozoik	
262,5	1259,0	trias	
1259,0	2666,7	perm	

1 259,0	1 275,0	terygeniczna stropowa seria PZt
1 275,0	1 300,0	sól kam. najmłodsza Na4a
1 300,0	1 300,5	anhydryt pegmaty. dolny A4a1
1 300,5	1 301,5	ił solny czerwony dolny T4a
1 301,5	1 395,0	sól kam. młodsza Na3
1 395,0	1 413,5	anhydryt główny A3
1 413,5	1 415,5	szary ił solny T3
1 415,5	1 416,0	anhydryt kryjący A2r
1 416,0	1 612,5	sól kamienna starsza Na2
1 612,5	1 619,0	anhydryt podstawowy A2
1 619,0	1 645,0	dolomit główny Ca2
1 645,0	1 681,5	anhydryt górny A1g
1 681,5	1 702,0	sól kamienna najstarsza Na1

1 702,0	1 837,5	anhydryt dolny A1d
1 837,5	1 845,0	wapień cechsztyński Ca
1 845,0	1 847,5	łupek miedzionośny T1
1 847,5	2 666,7	czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Trzebule 1 (Binder, 1966d) znajdują się wyniki analiz fizyczno-chemicznych 19 próbek z dolomitu głównego z interwału 1619,5– 1643,9 m, 22 próbek z czerwonego spągowca z interwału 1847,5–2444,5 m (Binder, 1966d) wraz z oznaczeniem porowatości, przepuszczalności, zasoleniem i zawartoścą bituminów (Tab. 5.109).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Trzebule 1 (Binder, 1966d; patrz również Kasprzak, 2013) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>w CBDG brak plików LAS</u>):

- profilowanie naturalnego promieniowania gamma (PG): 2550–2660 m,
- profilowanie krzywizny odwiertu (PK): 1625–2575 m,
- profilowanie neutron gamma (PNG): 2550–2660 m,
- profilowania oporności standardowe (PO): 6–2658 m,
- profilowanie oporności sterowane (POst): 353,5–1619 m,
- profilowanie potencjałów naturalnych (PS): 6–2658 m,
- profilowanie średnicy otworu (PSr): 6,5–1926 m.

Dokumentacja pomiarów prędkości średnich otworu Trzebule-1 (Krach i Madej, 1966) zawiera wyniki pomiarów wykonanych w następującym zakresie (w CBDG są dostępne dla nich pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony (Tx2): 20–2580 m,
- profilowanie prędk. śr., czas interpolowany (TW): 20–2580 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW1): 86–2586 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW2): 86–2586 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW3): 86–2586 m,
- profilowanie prędk. śr., czas uśredniony Tr_(PO) 86–2586 m,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP): 20–2580 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.110–5.111.

Dokumentacje NAG PIG-PIB:

- Binder I. 1966d. Sprawozdanie wynikowe z otworu Trzebule-1. Inw. 7245/2021, CAG PIG, Warszawa.
- Kasprzak T. 2013. Composite well log Trzebule 1. Inw. 5610/2013,CAG PIG, Warszawa.
- Krach B., Madej H. 1966. Sprawozdanie z pomiaru średnich prędkości w otworze Trzebule 1. S-406, Przeds. Bad. Geofiz. Sp. z o.o., Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pomiarow	[%]	[mD]	[%]
dolomit główny	19	0,14–3,56	0,099–2,187	0,029–0,1073
czerwony spągowiec	22	0,49–24,41	0,106–227,518	ślady bitumin

Tab. 5.109. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 1619,5–1643,9 m i 1847,5–2444,5 m w otworze Trzebule-1 na podstawie dokumentacji wynikowej (Binder, 1966d).

Głębokość [m]		Stratuanafia	Objevy	
od	do	Stratygrana	Objawy	
1619,5	1642,2	dolomit główny	na świeżym przełamie zapach bitumin	

Tab. 5.110. Objawy węglowodorów w rdzeniach w otworze Trzebule-1 (Binder, 1966d).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
2666,7	czerwony	-	brak testów z powodu wyników geofi-	-
1619,0–1633,0	dolomit główny	łyżkowanie	brak przepływu, kwasowanie 47700 l 13% kwasu z 4800 l przybitki wodnej przy P = 150 atm. Po 13 h stójki otwór samoczynnie oddał 1,5 m ³ następnie złyżkowano 6,2 m ³ płynu, brak przy- pływu	-

Tab. 5.111. Rezultaty prób złożowych w otworze Trzebule-1 na podstawie dokumentacji wynikowej (Binder, 1966d).

5.32. URZUTY IG-1

Głębokość otworu wg miary wiertniczej: 1250,0 m

Rok zakończenia wiercenia: 1962

Rdzenie: 706,5–1250,0 m, 252 skrzynki, Magazyn rdzeni wiertniczych w Michałowie; 605,0–1014,1, 127 skrzynek, Magazyn rdzeni wiertniczych w Leszczach.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratzanofia	
od	do	Stratygrana	
0,0	344,5	kenozoik	
344,5	683,7	trias	
683,7	1250,0	perm	
683,7	714,0	terygeniczna stropowa seria PZt	
714,0	734,0	anhydryt główny A3	
734,0	783,4	dolomit płytowy Ca3	
783,4	827,6	anhydryt kryjący A2r	
827,6	946,9	sól kamienna starsza Na2	
946,9	996,0	anhydryt podstawowy A2	
996,0	1012,7	sól kamienna starsza Na2	
1012,7	1016,1	anhydryt podstawowy A2	
1016,1	1065,8	dolomit główny Ca2	
1065,8	1245,0	anhydryt dolny A1d	
1245,0	1248,2	wapień cechsztyński Ca	
1248,2	1248,6	łupek miedzionośny T1	
1248,6	1250,0	czerwony spągowiec	

Wyniki badań skał:

W NAG znajduje się tylko karta otworu wiertniczego Urzuty IG-1 wraz z pomiarami geofizycznymi.

Wyniki geofizyki otworowej:

Karta otworu wiertniczego Urzuty IG-1 zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (<u>dla</u> <u>podkreślonych profilowań w CBDG są do-</u> <u>stępne pliki LAS</u>):

 profilowanie naturalnego promieniowania gamma (PG): 392–1250 m,

- profilowanie gamma-gamma gęstościowe (PGG): 110–1249 m,
- profilowanie neutron-gamma (PG): 25–1250 m,
- profilowania oporności standardowe (PO): 407–1247 m,
- profilowania oporności EL02 (PO): 406,25–1248,5 m,
- profilowania oporności EL03 (PO): 408,25–1247,25 m,
- profilowania oporności EL09 (PO): 408,6–1247,6 m,
- profilowania oporności EL14 (PO): 410,5–1248,5 m,
- profilowania oporności EL26 (PO): 415,5–1244,5 m,
- profilowania oporności EN10 (PO): 407,1–1247,9 m,
- profilowanie oporności sterowane (POst): 407,25–1059,75 m,
- profilowanie sondą głęboką: 407–1050 m,
- $\circ\,$ profilowanie sondą pseudolaterologową: 407–1050 m,
- profilowanie sondą szczegółową: 407–1050 m,
- profilowanie potencjałów naturalnych (PS): 405,25–1249,75 m,
- profilowanie średnicy otworu (PSr): 0,1–1250,0 m,
- profilowanie temperatury (PT): <u>30–1250 m.</u>

Dokumentacje NAG PIG-PIB:

• Karta otworu Urzuty IG-1 wraz z pomiarami geofizycznymi. 1962. Inw. 67493, CAG PIG, Warszawa.

5.33. WYSOKA 1

Głębokość otworu wg miary wiertniczej: 1440,7 m **Rok zakończenia wiercenia:** 1967 **Rdzenie:** brak

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia	
od	do	Stratygrana	
0,0	256,5	kenozoik	
256,5	953,5	trias	
953,5	1 440,7	perm	
953,5	965,0	terygeniczna stropowa seria PZt	
965,0	977,0	sól kam. najmłodsza Na4a	
977,0	982,5	ił solny czerwony dolny T4a	
982,5	1046,0	sól kam. młodsza Na3	
1046,0	1104,0	anhydryt główny A3	
1104,0	1105,5	szary ił solny T3	
1105,5	1109,0	anhydryt kryjący A2r	
1109,0	1156,0	sól kamienna starsza Na2	
1156,0	1170,5	anhydryt podstawowy A2	
1170,5	1237,5	dolomit główny Ca2	
1237,5	1283,0	anhydryt górny A1g	
1283,0	1287,5	sól kamienna najstarsza Na1	
1287,5	1418,0	anhydryt dolny A1d	
1418,0	1420,0	wapień cechsztyński Ca	
1420,0	1440,7	czerwony spągowiec	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Wysoka 1 (Binder i Olczak, 1968) znajdują się wyniki analiz fizyczno-chemicznych 11 próbek z triasu z interwału 465,8–477,4 m, 30 próbek z dolomitu głównego z interwału 1170,5–1200,6 m, 2 próbek z wapienia cechsztyńskiego z interwału 1418,0–1419,9 m oraz 14 próbek z czerwonego spągowca z interwału 1420,0–1440,7 m wraz z oznaczeniem porowatości, przepuszczalności, zasolenia i zawartości bituminów. Ponadto wykonano 2 analizy wody złożowej (Tab. 5.112–5.113).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wysoka-1 (Binder i Olczak, 1968) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS):</u> <u>30–1440 m</u>,
- profilowanie naturalnego promieniowania gamma (PG): 5–1438 m,
- \circ profilowanie krzywizny odwiertu (PK): 25–1430 m,
- profilowanie neutron–gamma (PNG): 7–1438 m,
- profilowania oporności standardowe (PO): 37–1427 m,
- profilowanie oporności EL19 (PO): 35–1426 m,
- profilowanie oporności sterowane (POst): 282–1157 m,
- profilowanie potencjałów naturalnych (PS): 37–1427 m,
- profilowanie średnicy otworu (PSr): <u>30–1440 m.</u>

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Wysoka-1 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.114–5.115.

Dokumentacje NAG PIG-PIB:

• Binder I., Olczak D. 1968. Dokumentacja wynikowa odwiertu Wysoka-1 (miejsc. Pajęczno, woj. zielonogórskie) [zawiera kartę otworu]. Inw. 102991, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
trias	11	8,54-17,52	0,244–2,437	ślady
dolomit główny	30	0,14–4,75	0,084–0,872	0,018-10,0425
wapień cechsztyński	2	1,63–2,54	0,182–0,285	ślady
czerwony spagowiec	14	7,78–18,09	7,266-108,54	ślady

Tab. 5.112. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 465,8–477,4 m, 1170,5–1200,6 m, 1418,0–1419,9 m oraz 1420,0–1440,7 m w otworze Wysoka 1 na podstawie dokumentacji wynikowej (Binder i Olczak, 1968).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	239,6243
			Br⁻	3,2767
			HCO ₃ ⁻	0,8784
	- / 1 1		SO_4^{2-}	0,1275
	sol kamenna		SiO ₃ ²⁻	4,7992
1150,0-1190,0	starsza, annyuryt	przypływ po kwasowaniu	Ca ²⁺	27,4959
	poustawowy,		Mg ²⁺	42,0476
	dolollin glowily		Na/K ⁺	45,868
		-	Al/Fe ³⁺	2,1835
			pH	4,6
			mineralizacja	373,4
			Cl	164,8107
			Br	3,4329
			HCO ₃ ⁻	0,0732
			SO_4^{2-}	0,4809
		w czasie kontroli poziemu lustra	SiO_3^{2}	3,1606
1420,0-1440,7	czerwony spągowiec	w czasie kontroli poziolitu iustra	Ca ²⁺	20,3935
		piyitu	Mg^{2+}	4,5051
			Na/K ⁺	75,2929
			Al/Fe ³⁺	1,5848
			pН	6,0
			mineralizacja	275,8

Tab. 5.113. Wyniki analiz wody i flitratu w otworze Wysoka 1 (Binder i Olczak, 1968).

Głębokość [m]		Stratugrafia	Obiowy	
od	do	Stratygrafia	Objawy	
1170,5	1183,7		słaby zapach bitumiczny	
1187,7	1190,0		słaby zapach bitumiczny	
1196,2	1200,6	dolomit główny	punktowe objawy ropy	
1190,0	1190,2		obfite ślady brunatnej zgazowanej ropy	
1191,8	1193,0		obfite ślady brunatnej zgazowanej ropy	

Tab. 5.114. Objawy węglowodorów w rdzeniach w otworze Wysoka 1 (Binder i Olczak, 1968).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1150,0-1190,0		łyżkowanie	łyżkowanie 1160 l, brak przypływu.	-
1150,0–1190,0	sól kamienna starsza, anhydryt podstawowy,	kwasowanie	0,8 m ³ HCl 5% P = 140 atm., po 1 h kompresorem wytoczono 21200 l płynu, brak przypływu	-
1150,0–1190,0	dolomit główny	kwasowanie II	13 m ³ HCl 15% P = 90 atm., po 2 h samoczynny wypływ 1720 l solanki	-
1420,0–1440,7	czerwony spągowiec	łyżkowanie	łyżkowanie 24940 l, przypływy solanki, w sumie z łyżkowano 41440	1250 l/h

Tab. 5.115. Rezultaty prób złożowych w otworze Wysoka 1 (Binder i Olczak, 1968).

5.34. WYSOKA 2

Głębokość otworu wg miary wiertniczej: 1305,0 m

Rok zakończenia wiercenia: 1968

Rdzenie: 1280,2–1292,7m, 4 skrzynki, Magazyn rdzeni wiertniczych w Michałowie.

Stratygrafia (CBDG, 2022):

Głębokość [m]		Stuaturanofia
od	do	Stratygrana
0,0	295,0	kenozoik
295,0	815,0	trias
815,0	1305,0	perm
815,0	830,0	terygeniczna stropowa seria PZt
830,0	844,5	sól kam. najmłodsza Na4a
844,5	846,5	anhydryt pegmatytowy dolny A4a1
846,5	852,0	ił solny czerwony dolny T4a
852,0	958,0	sól kam. młodsza Na3
958,0	973,0	anhydryt główny A3
973,0	975,0	szary ił solny T3
975,0	979,0	anhydryt kryjący A2r
979,0	1026,5	sól kamienna starsza Na2
1026,5	1035,5	anhydryt podstawowy A2
1035,5	1115,0	dolomit główny Ca2
1115,0	1151,0	anhydryt górny A1g
1151,0	1168,5	sól kamienna najstarsza górna Na1g
1168,5	1175,5	anhydryt środkowy A1s
1175,5	1211,0	sól kamienna najstarsza dolna Na1d
1211,0	1280,5	anhydryt dolny A1d
1280,5	1284,0	wapień cechsztyński Ca
1284,0	1285,0	łupek miedzionośny T1
1285,0	1305,0	czerwony spągowiec

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Wysoka 2 (Taraszczuk i Olczak, 1968) znajdują się wyniki analiz fizyczno-chemicznych 57 próbek z dolomitu głównego z interwału 1039,6–1115,0 m, 5 próbek z anhydrytu dolnego z interwału 1268,5–1280,5 m oraz 13 próbek z czerwonego spągowca z interwału 1286,5–1305,0 m. Ponadto wykonano 4 analiz wody złożowej i 2 analizy gazu z dolomitu głównego. (Tab. 5.116–5.118).

Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Wysoka 2 (Taraszczuk i Olczak, 1968) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- <u>średnica nominalna wiercenia (BS):</u> 35–1300 m,
- profilowanie naturalnego promieniowania gamma (PG): 0–1300 m,
- profilowanie krzywizny odwiertu (PK): 35–1300 m,
- profilowanie neutron–gamma (PNG): <u>5–1300 m,</u>
- profilowania oporności standardowe PO: 35–1299,5 m,
- profilowanie oporności EL03 (PO): 35–1300 m,
- profilowanie oporności sterowane (POst): 256–1299,5 m,
- profilowanie potencjałów naturalnych (PS): 35–1299,5 m,
- profilowanie średnicy otworu (PSr): <u>35–1300 m.</u>

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Wysoka-2 <u>nie wykonano</u>.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.119–5.121.

Dokumentacje NAG PIG-PIB:

Taraszczuk Z., Olczak D. 1968. Dokumentacja wynikowa otworu Wysoka 2 (miejsc. Wysoka, pow. zielonogórski) [zawiera kartę otworu]. Inw. 100960, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max (średnia)	Przepuszczalność Min-Max (średnia)	Bituminy Min-Max (średnia)
		[%]	[mD]	[%]
dolomit główny	57	0,14–0,99	0,054–3,366	0,005-0,0375
anhydryt dolny	5	0,6–3,64	0,173-0,866	0,0038-0,0353
czerwony spągowiec	13	8,672–185,823	4,21-16,76	ślady

Tab. 5.116. Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1039,6–1115,0 m, 1268,5–1280,5 m oraz 1286,5–1305,0 m w otworze Wysoka 2 na podstawie dokumentacji wynikowej (Taraszczuk i Olczak, 1968).

Głebokość [m]	Stratygrafia	Metoda	Składniki	g/l
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Cl	208.5048
			Br	
			HCO ₂ ⁻	-
			SQ4 ²⁻	_
			$SiO_2^{2-}$	-
1039.6-1115.0	dolomit główny	po łyżkowaniu	Ca ²⁺	27,4959
1009,0 1110,0	determine gre wing	Fo Dine thanka	Mg ²⁺	-
			Na/K ⁺	_
			Al/Fe ³⁺	_
			pН	7,19
			mineralizacia	-
			Cl	164,1242
			Br	0,4102
			HCO ₃ ⁻	0,0488
			$SO_4^{2-}$	0,4033
1287,3–1305,0			SiO ₃ ²⁻	1,36
	czerwony spagowiec	z próbnika na gł. 1283,9 m	Ca ²⁺	18,3542
			$Mg^{2+}$	1,802
			Na/K ⁺	82,1239
			Al/Fe ³⁺	1,802
			pН	5,45
			mineralizacja	274,7
		po łyżkowaniu po kwasowaniu	Cl	212,7564
			Br	2,1312
			HCO ₃ ⁻	0,4636
			$SO_4^{2-}$	0,1696
	anhydryt podstawowy,		SiO ₃ ²⁻	0,6132
1032,6–1117,0	dolomit główny,		Ca ²⁺	14,2697
	anhydryt górny		Mg ²⁺	28,2205
			Na/K ⁺	67,5553
			Al/Fe ³⁺	1,5079
			pН	5,4
			mineralizacja	329,2
			Cl	201,9338
			Br	1,252
			HCO ₃	0,5734
			$SO_4^{2-}$	2,1324
			SiO ₃ ²⁻	1,4369
1039,0–1054,4	dolomit główny	po kwasowaniu	Ca ²⁺	18,3467
			Mg ²⁺	24,0175
			Na/K ⁺	64,6221
			Al/Fe ³⁺	1,9569
			рН	4,92
			mineralizacja	324

Tab. 5.117. Wyniki analiz wody i flitratu w otworze Wysoka 2 (Taraszczuk i Olczak, 1968).

Głebokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			$CH_4$	20,48
			$C_2H_6$	7,74
	dolomit główny, anhydryt górny		$C_3H_8$	3,264
			$C_4H_{10}$	1,904
			$C_{5}H_{12}$	0,537
1039,6–1117,2			$C_{6}H_{14}$	0,075
			$N_2$	58
			$CO_2$	8
			Ar	-
			$H_2$	-
			He	-

	dolomit główny, anhydryt górny		CH ₄	23,7
			$C_2H_6$	6,07
			$C_3H_8$	3,382
1039,6–1117,2			$C_4H_{10}$	1,43
			$C_{5}H_{12}$	0,534
			$C_{6}H_{14}$	0,028
			$N_2$	59,15
			$CO_2$	5,706
			He	

Tab. 5.118. Wyniki analiz gazu (w czystym gazie) w otworze Wysoka 2 (Taraszczuk i Olczak, 1968).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
450,0		30m ³ /?
503,8	trias	30m ³ /?
445,0-490,8		20m ³ /?

Tab. 5.119. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Wysoka 2 (Taraszczuk i Olczak, 1968).

Głębok	ość [m]	Stratugrafia	Objawy	
od	do	Stratygrana		
1059,7	1078,0		zapach bitumiczny i punktowe ślady ropy	
1078,0	1088,8	dolomit główny	zapach H ₂ S	
1094,6	1110,0		zapach bitumiczny i słabe punktowe ślady ropy	

Tab. 5.120. Objawy węglowodorów w rdzeniach w otworze Wysoka 2 (Taraszczuk i Olczak, 1968).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1285 0-1305 0	czerwony spągo-	próbnik typu John-	przypływy solanki 672 l	_
1285,0-1585,0	wiec	ston	bez sladów gazu	_
1032 6-1117		nerforacia	łyżkowanie 13 m ³ , brak przypły-	_
1052,0-1117		perioraeja	wu	_
1032,6-1117		kwasowanie	1200 l HCl 3 m ³ brak przypływu	-
			$12 \text{ m}^3 \text{ HCl } 12\% \text{ P} = 90 \text{ atm., po } 2$	
			h samoczynny wypływ przez	
			7400 l płynu, potem scianieto	
1022 6 1115 0	dolomit główny	kwasowanie II	44 410 1	-
1032,0–1113,0			z obecnością gazu palnego, przy-	
			pływ solanki, wzrost ciśnienia na	
			głowicy, wytłoczono kompreso-	
			rem 59 010 l	
			zacementowano interwał, wytło-	
			czono kompresorem 12 670 l,	
			wykonano hydroperforację	
			1054,4–1039 m, P = 200–220	
1039,0–1054,4		hydroperforacja	atm. Kwasowanie III 1 m ³ HCl	-
			10%	
			P = 50 atm, po 2 h samoczynny	
			wypływ przez 5000 l płynu,	
			potem wytłoczono 31 960 l	

Tab. 5.121. Rezultaty prób złożowych w otworze Wysoka 2 (Taraszczuk i Olczak, 1968).

## 5.35. ŻARKÓW 1

**Głębokość otworu wg miary wiertniczej:** 1363,6 m

**Rok zakończenia wiercenia:** 1965 **Rdzenie:** 1356,2–1361,6 m, 4 skrzynki, Magazyn rdzeni wiertniczych w Michałowie.

## Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnofia	
od	do	Stratygrana	
0,0	245,0	kenozoik	
245,0	851,5	trias	
851,5	1363,6	perm	
851,5	865,5	terygeniczna stropowa seria PZt	
865,5	883,0	sól kam. najmłodsza Na4a	
883,0	885,0	anhydryt pegmaty. dolny A4a1	
885,0	889,0	ił solny czerwony dolny T4a	
889,0	1025,5	sól kam. młodsza Na3	
1025,5	1041,5	anhydryt główny A3	
1041,5	1043,1	szary ił solny T3	
1043,1	1046,5	anhydryt kryjący A2r	
1046,5	1086,0	sól kamienna starsza Na2	
1086,0	1091,5	anhydryt podstawowy A2	
1091,5	1160,0	dolomit główny Ca2	
1160,0	1205,0	anhydryt górny A1g	
1205,0	1228,0	sól kamienna najstarsza Nal	
1228,0	1357,5	anhydryt dolny A1d	
1257 5	1262 5	wapień cechsztyński Ca1,	
1337,3	1303,3	łupek miedzionośny T1	
1363,5	1363,6	czerwony spągowiec	

## Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Żarków 1 (Binder, 1965b) znajdują się wyniki analiz fizyczno-chemicznych 84 próbek anhydrytu podstawowego i dolomitu głównego z interwału 1086,0–1158,2 m. Ponadto znajdują się wyniki 2 analiz wody złożowej i 1 analizy ropy (Tab. 5.122–5.123).

## Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Żarków 1 (Binder, 1965b) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 5 – 1359 m,
- o profilowanie krzywizny odwiertu (PK):

0–1080 m,

- profilowanie neutron–gamma (PNG): <u>5–1359 m,</u>
- profilowania oporności standardowe (PO): 31–1364 m,
- profilowanie oporności EL00 (PO): 41–1364 m,
- profilowanie oporności EN64 (PO): <u>36–1364 m,</u>
- profilowanie potencjałów naturalnych (PS): 31–1364 m,
- profilowanie średnicy otworu CALI (PSr): 36–1364 m.

W NAG znajdują się również wyniki pomiarów prędkości średnich wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony (Tx2): 20–1080 m,
- profilowanie prędk. śr., czas interpolowany (TW): 20–1080 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_(PW1): 92–892 m.</u>
- profilowanie prędk. śr., czas pomierzony Tr_(PW2): 92–1082 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW3): 242–1082 m,
- profilowanie prędk. śr., czas uśredniony Tr_(PO) 92–1082 m,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP): 20–1080 m.

**Objawy węglowodorów w trakcie wiercenia i próby złożowe:** obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.124–5.126

#### **Dokumentacje NAG PIG-PIB:**

- Binder I. 1965b. Sprawozdanie wynikowe z otworu geologicznego Żarków 1. Inw. 7246/2021, CAG PIG, Warszawa.
- Olczak D. 1965b. Pomiary geofizyczne otworu Żarków 1 + karta otworu. Inw. 83959, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pomiarow	[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny	84	0,12-6,31	0,044–1,154	0,012–0,4684

**Tab. 5.122.** Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 1086,0–1158,2 w otworze Żarków 1 na podstawie dokumentacji wynikowej (Binder, 1965b).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
			Cl	227,6532
			Br	-
			HCO ₃ ⁻	
			SO4 ²⁻	0,5144
		ntra na ztritrauraniu dalamitu akiumaga na	SiO ₃ ²⁻	-
1095,0-1108,0	dolomit główny	piyn po ziyzkowaniu dolomitu giownego po	Ca ²⁺	33,2159
		Kwasowallu	$Mg^{2+}$	23,9007
			Na/K ⁺	64,3112
			Al/Fe ³⁺	
			pН	6,5
			mineralizacja	
			Cl	184,0374
			Br	-
			HCO ₃	
			SO4 ²⁻	1,1688
			SiO ₃ ²⁻	-
1363,6	czerwony spągowiec	podczas obserwacji przepływu	Ca ²⁺	22,6717
			Mg ²⁺	4,6388
			Na/K ⁺	85,0478
			Al/Fe ³⁺	
			pH	5
			mineralizacja	

Tab. 5.123. Wyniki analiz wody i filtratu w otworze Żarków 1 (Binder, 1965b).

Głębokość m]	Stratygrafia	Metoda	Składniki	% obj.
1095,0–1108,0	dolomit główny		frakcja	
			benzynowa	
		pobrana podczas pomiaru przypływu po kwasowaniu	frakcja	
			naftowa	
			frakcja	4.07
			parafinowa	4,07

Tab. 5.4. Wyniki analiz ropy w otworze Żarków 1 (Binder, 1965b).

Głębokość [m]	Stratygrafia	Zanik płuczki [m³/24h]
90,0–98,0	kenozoik	$30 { m m}^3/?$

Tab. 5.124. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Żarków 1 (Binder, 1965b).

Głębok	xość [m]	Stratygrafia	Objawy
oa	<b>a</b> o	•••	
1086,8	1115,1	anhydryt podstawo-	ślady ropy i gazu
1120,0	1129,7	wy,	ślady ropy i gazu
1146,7	1154,7	dolomit główny	ślady ropy i gazu

Tab. 5.125. Objawy węglowodorów w rdzeniach w otworze Żarków 1 (Binder, 1965b).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1095,0–1108,0	dolomit główny	łyżkowanie	brak przypływu, kwasowanie 240 l 14–15% kwasu. Po 5 h stójki otwór następnie złyż- kowano 240 l płynu, brak przypływu. II kwasowanie 15 m ³ 12,5% kwasu z 19,5 m ³ przybitki wodnej przy P = 200–150 atm. Po 4 h stójki otwór samoczynnie oddał 4 m ³ następnie złyżkowano 34,86 tys. 1 płynu i 270 l ropy, brak przypływu. III kwasowanie 19 m ³ 13,5% kwasu z 30 m ³ przybitki wodnej przy P = 150 atm. Po 3 h stójki otwór samoczynnie oddał 2 m ³ na- stępnie złyżkowano 29 tys. 1 płynu, przypływ wody złożowej	680 1/24 h z spadkiem do 360 1/24 h
1363,6	czerwony spągowiec	łyżkowanie	złyżkowano 37 510 l płynu, przypływ wody złożowej	77,5 l/h

Tab. 5.126. Rezultaty prób złożowych w otworze Żarków 1 (Binder, 1965b).

## 5.36. ŻARKÓW 2

**Głębokość otworu wg miary wiertniczej:** 994,1 m **Rok zakończenia wiercenia:** 1965 **Rdzenie:** brak.

#### Stratygrafia (Binder, 1965c):

Głębokość [m]		Stratuquafia
od	do	Stratygrana
0,0	292,5	kenozoik
292,5	605,0	trias
605,0	994,1	perm
605,0	625,0	terygeniczna stropowa seria PZt
625,0	685,0	anhydryt główny A3
685,0	687,0	szary ił solny T3
687,0	700,0	anhydryt podstawowy A2
700,0	751,0	dolomit główny Ca2
751,0	918,0	anhydryt górny i dolny Alg Ald
918,0	922,5	wapień cechsztyński Ca
922,5	923,7	łupek miedzionośny T1
<i>923,7</i>	929,4	czerwony spągowiec
929,4	994,1	proterozoik

## Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Żarków 2 (Binder, 1965c) znajdują się wyniki analiz fizyczno-chemicznych 22 próbek z dolomitu głównego i anhydrytu górnego z interwału 727,0–753,1 m. Ponadto wykonano badania mikropaleontologiczne 3 próbek w otworze Żarków 2 (Tab. 5.127).

## Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Żarków 2 (Binder, 1965c; patrz również Olczak, 1966d) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (w CBDG brak dla nich plików LAS):

- profilowanie naturalnego promieniowania gamma (PG): 11–996 m,
- profilowanie neutron–gamma (PNG): 11–996 m,
- profilowania oporności standardowe (PO): 600–650 m,
- profilowanie potencjałów naturalnych (PS): 6–857 m,
- profilowanie średnicy otworu CALI (PSr): 100–900 m.

W NAG znajdują się również wyniki pomiarów prędkości średnich wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują siępliki LAS):

- profilowanie prędk. śr., czas interpolowany podwojony (Tx2): 20–880 m,
- profilowanie prędk. śr., czas interpolowany (TW): 20–880 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW1): 91–891 m,
- profilowanie prędk. śr., czas pomierzony Tr_(PW2): 91–891 m,
- profilowanie prędk. śr., czas pomierzony <u>Tr_(PW3): 91–891 m.</u>
- profilowanie prędk. śr., czas uśredniony Tr_(PO) 91–891 m,
- profilowanie prędk. śr., gradient czasu interpol. (DT_VSP): 20–880 m.

Objawy węglowodorów w trakcie wiercenia i próby złożowe: obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu zestawiono w Tab. 5.128–5.129. <u>Prób złożo-wych w otworze nie wykonano.</u>

### Dokumentacje NAG PIG-PIB:

- Binder I. 1965c. Sprawozdanie wynikowe z otworu geologicznego Żarków 2 Inw. 7247/2021, CAG PIG, Warszawa.
- Olczak D. 1966d. Pomiary geofizyczne otworu Żarków 2 + karta otworu Inw. 83960, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
dolomit główny, anhydryt górny	22	00,13–1,91	0,077–0,911	0,025-1,412

**Tab. 5.127.** Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 727,0–753,1 w otworze Żarków 2 na podstawie dokumentacji wynikowej (Binder, 1965c).

Głębokość [m]	Stratygrafia	Zanik pluczki
310,0–350,0	trias	$45 \text{ m}^3$

Tab. 5.128. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Żarków 2 (Binder, 1965c).

Głębokość [m]		Stuaturanofia	Obiowy	
od	do	Stratygrafia	Objawy	
727,0	751,0	1-1	zapach bitumin	
747,1	751,0	dolomit giowny	ślady ciężkiej ropy w szczelinach	

Tab. 5.129. Objawy węglowodorów w rdzeniach w otworze Żarków 2 (Binder, 1965c).

#### 5.37. ŻARKÓW 3

**Głębokość otworu wg miary wiertniczej:** 1214,6 m **Rok zakończenia wiercenia:** 1965 **Rdzenie:** brak.

#### Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygrafia
od	do	Stratygrana
0,0	305,0	kenozoik
305,0	800,0	trias
800,0	1214,6	perm
800,0	808,5	terygeniczna stropowa seria PZt
808,5	833,5	anhydryt główny A3
833,5	834,5	szary ił solny T3
834,5	839,5	anhydryt kryjący A2r
839,5	859,0	sól kamienna starsza Na2
859,0	865,2	anhydryt podstawowy A2
865,2	938,0	dolomit główny Ca2
938,0	985,4	anhydryt górny A1g
985,4	1001,3	sól kamienna najstarsza Na1
1001,3	1156,2	anhydryt dolny A1d
1156,2	1162,0	wapień cechsztyński Cal
1162,0	1214,6	czerwony spągowiec

#### Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Żarków 3 (Binder, 1966c) znajdują się wyniki analiz fizyczno-chemicznych 23 próbek z anhydrytu podstawowego i dolomitu głównego z interwału 863,0–938,0 m. Ponadto znajdują się wyniki 1 analizy wody złożowej i 2 analiz gazu (Tab. 5.130–5.131).

#### Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Żarków 3 (Binder, 1966c) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 6–861 m,
- profilowanie krzywizny odwiertu (PK): 25–300 m,
- profilowanie neutron–gamma (PNG): <u>8–861 m</u>,

- profilowania oporności standardowe (PO): 7–844,5 m,
- profilowanie oporności EL00 (PO): <u>13–844,5 m,</u>
- profilowanie oporności EN16 (PO): <u>7–844,5 m.</u>
- profilowanie oporności EN64 (PO): <u>7–844,5 m,</u>
- profilowanie potencjałów naturalnych (PS): 7–844,5 m,
- profilowanie średnicy otworu CALI (PSr): 7–1006 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Żarków 3 <u>nie wykonano</u>.

**Objawy węglowodorów w trakcie wiercenia i próby złożowe:** obserwacje zaniku płuczki, obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.132– 5.135.

#### **Dokumentacje NAG PIG-PIB:**

- Binder I. 1966c. Sprawozdanie wynikowe z otworu geologicznego Żarków 3. Inw. 7248/2021, CAG PIG, Warszawa.
- Olczak D. 1966e. Pomiary geofizyczne otworu Żarków 3 + karta otworu. Inw. 83961, CAG PIG, Warszawa.

Stratygrafia	Liczba pomiarów	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
		[%]	[mD]	[%]
anhydryt podstawowy, dolomit główny	23	0,14–5,45	0,071–50,442	0,012–0,274

**Tab. 5.130.** Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwału 863,0–938,0 w otworze Żarków 3 na podstawie dokumentacji wynikowej (Binder, 1966c).

Głębokość [m]	Stratygrafia	Metoda	Składniki	g/l
865,2–938,0			Cl	176,2362
			HCO ₃ ⁻	1,1224
	dolomit główny	płyn po złyżkowaniu dolomitu głównego po opróbowaniu	$SO_4^{2-}$	0,4197
			SiO ₃ ²⁻	0,2861
			Ca ²⁺	12,2113
			$Mg^{2+}$	1,7985
			Na/K ⁺	95,7481
			Al/Fe ³⁺	1,566
			pН	7
			mineralizacja	292,6

Tab. 5.131. Wyniki analiz wody i filtratu w otworze Żarków 3 na podstawie dokumentacji wynikowej (Binder, 1966c).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			$CH_4$	97,73
1160.0 1166.0	waniań apabaztuński	degazacja rdzenia	$C_2H_6$	1,96
1100,0–1100,0	czerwony spągowiec		$C_3H_8$	0,25
			$C_{4}H_{10}$	0,06
			$CH_4$	96,84
1160,0–1166,0	wapień cechsztyński,	degazacja rdzenia	$C_2H_6$	2,86
			$C_3H_8$	0,25
	czerwony spągowiec		$C_4H_{10}$	0,05

Tab. 5.132. Wyniki analiz gazu w otworze Żarków 3 na podstawie dokumentacji wynikowej (Binder, 1966c).

Głębokość [m]	Stratygrafia	Zanik płuczki
357,0-365,0	trias	80 m ³ /?
365,0-400,0		20 m ³ /?
873,5–877,5	dolomit główny	10 m ³ /?
1214,5	czerwony spągowiec	20 m ³ /?

Tab. 5.133. Objawy w trakcie wiercenia (zaniki płuczki) w otworze Żarków 3 (Binder, 1966c).

Głębokość [m]		Stratuarafia	Objerry	
od	do	Stratygrana	Objawy	
865,2	877,6	delemit glówny	ślady ropy w szczelinach	
870,0	870,0	dolollint glowily	intensywne objawy ropy	

Tab. 5.134. Objawy węglowodorów w rdzeniach w otworze Żarków 3 (Binder, 1966c).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
861,0-879,9	anhydryt podstawowy,	łyżkowanie	solanka 30 m ³ bez śladów bitumin	-
867,0-879,9	dolomit główny	łyżkowanie	solanka 10 m ³	-

Tab. 5.135. Rezultaty prób złożowych w otworze Żarków 3 (Binder, 1966c).

## 5.38. ŻARKÓW 4

**Glębokość otworu wg miary wiertniczej:** 1059,7 m **Rok zakończenia wiercenia:** 1965 **Rdzenie:** brak.

#### Stratygrafia (CBDG, 2022):

Głębokość [m]		Stratygnofia	
od	do	Stratygrana	
0,0	288,0	kenozoik	
288,0	746,0	trias	
746,0	1059,7	perm	
746,0	759,0	anhydryt główny A3	
759,0	760,0	szary ił solny T3	
760,0	773,5	anhydryt podstawowy A2	
773,5	821,0	dolomit główny Ca2	
821,0	860,5	anhydryt górny A1g	
860,5	908,0	sól kamienna najstarsza Na1	
908,0	1033,5	anhydryt dolny A1d	
1033,5	1039,5	wapień cechsztyński Ca1,	
		łupek miedzionośny T1	
1039,5	1041,5	czerwony spągowiec	
1041,5	1059,7	proterozoik	

Wyniki badań skał:

W dokumentacji wynikowej otworu wiertniczego Żarków 4 (Kasprzak i Binder, 1965) znajdują się wyniki analiz fizycznochemicznych 18 próbek z triasu z interwału 300,0–641,8 m, 22 próbek z anhydrytu podstawowego i dolomitu głównego z interwału 768,9–820,0 m oraz 1 próbki z czerwonego spągowca. Ponadto znajdują się wyniki 2 analizy gazu (Tab. 5.136–5.137).

#### Wyniki geofizyki otworowej:

Dokumentacja wynikowa otworu Żarków 4 (Kasprzak i Binder, 1965) zawiera wyniki badań geofizyki wiertniczej wykonanych w następującym zakresie (dla podkreślonych profilowań w CBDG znajdują się pliki LAS):

- profilowanie naturalnego promieniowania gamma (PG): 5–1062 m,
- profilowanie krzywizny odwiertu (PK): 50–1050 m,
- profilowania oporności standardowe (PO): 31–1061 m,
- profilowanie oporności EL00 (PO): 31–1061 m,
- profilowanie oporności EN64 (PO): 31–1061 m,
- profilowanie potencjałów naturalnych (PS): 31–1061 m,
- profilowanie średnicy otworu CALI (PSr): 31–1214,6 m.

Pomiarów średnich prędkości i pomiarów pionowego profilowania sejsmicznego w otworze Żarków 4 <u>nie wykonano</u>.

**Objawy węglowodorów w trakcie wiercenia i próby złożowe:** obserwacje obecności węglowodorów w rdzeniu oraz wyniki przeprowadzonych prób złożowych zestawiono w Tab. 5.138–5.139.

## Dokumentacje NAG PIG-PIB:

- Kasprzak T., Binder I. 1965. Geologiczna metryka otworu poszukiwawczego Żarków 4. Inw. 7249/2021, CAG PIG, Warszawa.
- Olczak D. 1966f. Pomiary geofizyczne otworu Żarków 4 + karta otworu Inw. 83962, CAG PIG, Warszawa.

Stratygrafia	Liczba	Porowatość Min-Max	Przepuszczalność Min-Max	Bituminy Min-Max
	pointarow	[%]	[mD]	[%]
pstry piaskowiec	18	0,6234–10,63	0,753–205,446	ślady
anhydryt podstawowy, dolomit główny	22	0,19–7,26	0,106–0,361	0,008–0,3445
czerwony spągowiec	1	3,41	0,806	ślady

**Tab. 5.136.** Podsumowanie wyników badań fizyczno-chemicznych próbek pobranych z interwałów 300,0–641,8 m, 768,9–820,0 m oraz 1040,2 m w otworze Żarków 4 na podstawie dokumentacji wynikowej (Kasprzak i Binder, 1965).

Głębokość [m]	Stratygrafia	Metoda	Składniki	% obj.
			$CH_4$	7,76
		degazacja rdzenia	$C_2H_6$	ślady
			$C_3H_8$	-
1040.2			$C_{4}H_{10}$	-
1040,2	czerwony spągowiec		$C_{5}H_{12}$	-
			$C_{6}H_{14}$	-
			powietrze	89,14
			$H_2$	3,1
	czerwony spągowiec	degazacja rdzenia	$CH_4$	4,76
			$C_2H_6$	ślady
			$C_3H_8$	-
1040.2			$C_{4}H_{10}$	-
1040,2			$C_{5}H_{12}$	-
			$C_6H_{14}$	-
			powietrze	92,54
			H ₂	2,7

Tab. 5.137. Wyniki analiz gazu w otworze Żarków 4 (Kasprzak i Binder, 1965).

Głębokość [m]		Stuatuquefie	Objerry		
od	do	Stratygrafia	Objawy		
763,3	763,4	anhridarit	punktowe ślady zwietrzałej ropy		
763,8	766,1	nodstowowy	ślady martwej ropy		
773,0	779,0	dolomit główny	słaby zapach bitumin		
763,8	779,0		silny zapach H ₂ S		
822,7	829,7	anhydryt górny	zapach bitumin		
1034,3	1040,2	wapień cechsztyński, łupek miedzionośny, czerwony spągowiec	drobne banieczki wydobywającego się gazu		

Tab. 5.138. Objawy węglowodorów w rdzeniach w otworze Żarków 4 (Kasprzak i Binder, 1965).

Głębokość [m]	Stratygrafia	Metoda	Przypływ	Tempo prz.
1049,2-1059,7	perm	łyżkowanie	7 tys. l płynu	-
1034,0–1039,0	wapień cechsztyński, łupek miedzionośny	hydroperforacja	awaria	-
1029,2–1033,0	anhydryt dolny	hydroperforacja	złyżkowano 2,4 tys. l płynu, brak przepływu	-
917,5–922,5 908,0–912,0	anhydryt dolny	hydroperforacja	po hydroperforacji kwasowanie 10 m ³ 12–14% kwasu z 2 m ³ przybitki wod- nej przy P = 190–120 atm. Po 24 h stójki otwór samoczynnie oddał 1 m ³	-

			następnie złyżkowano 1400 l płynu, brak przypływu	
764,4–774,5	anhydryt podstawowy, dolomit główny	hydroperforacja	po hydroperforacji kwasowanie 10 m ³ 12% kwasu z 1600 l przybitki wodnej przy P = 200–190 atm. Po 2 h stójki otwór samoczynnie oddał 650 l na- stępnie złyżkowano 10,6 tys. l płynu, brak przypływu	-

Tab. 5.139. Rezultaty prób złożowych w otworze Żarków 4 (Kasprzak i Binder, 1965).

## **OTWÓR WIERTNICZY: PIASKI 1**

#### WSPÓŁRZĘDNE PROSTOKĄTNE RECTANGULAR COORDINATES

WIERCENIE ROZPOCZĘTO: 10.08.1965 DRILING STARTED 10.08.1965 WIERCENIE ZAKOŃCZONO: 2.02.1966 DRILING COMPLETE: 2.02.1966 GŁĘBOKOŚĆ KOŃCOWA: 2021,8 m FINAL DEPTH: 2021.8 m

X_1992 449683.35 X_1992 449683.35 Y_1992 248923.17 Y_1992 248923.17 WYSOKOŚĆ: 78 m n.p.m. ELEVATION: 78 m. a.s.l.

MIEJSCOWOŚĆ: PIASKI PLACE: PIASKI GMINA: ŚWIDNICA DISTRICT: ŚWIDNICA WOJEWÓDZTWO: LUBUSKIE PROVINCE: LUBUSKIE



Fig. 5.3. Profil otworu Piaski 1 na podstawie dokumentacji wynikowej (Choiński i Olczak, 1967).

#### 6. SEJSMIKA

Badania sejsmiczne na obszarze przetargowym Zielona Góra Zachód prowadzano już na początku lat 60-tych XX wieku. Dane były jednak zapisywane jedynie metodą analogową, a ówczesne możliwości techniczne i metodyka dodatkowo powodują, że dane te mają obecnie wartość archiwalną. Pomiary z zapisem cyfrowym zaczęto przeprowadzać w latach 70-tych. Obszar jest jednak pokryty stosunkowo rzadką siecią linii sejsmicznych (Fig. 6.1–6.2), którą uzupełniają zdjęcia 3D.

Większość pomiarów 2D wykonano w latach 70-tych ubiegłego wieku. Zaledwie pojedyncze linie zlokalizowane w północnopomierzono zachodnim rogu obszaru w 1990 r. oraz 7 profili w części północnej w 2011 roku. Te ostatnie wpłyneły na uzupełnienie siatki profili w tej części. Jednak dopiero wykonanie dwóch zdjęć 3D wyraźnie wpłynęło na ilość danych sejsmicznych na obszarze (Fig. 6.1-6.2). Oba zdjęcia zrealizowano w 2013 roku. W Tab. 6.1 zebrano listę danych sejsmicznych z zapisem cyfrowym z pominięciem linii, których długość w granicach obszaru przetargowego Zielona Góra Zachód jest krótsza niż 2 km.

ZIELONA GÓRA ZACHÓD



Fig. 6.1. Badania sejsmiczne wykonane w rejonie obszaru przetargowego Zielona Góra Zachód (CBDG, 2022).


Fig. 6.2. Badania sejsmiczne wykonane w granicach obszaru przetargowego Zielona Góra Zachód (CBDG, 2022).

## ZIELONA GÓRA ZACHÓD

NAZWA	ROK WYKONANIA	TEMAT	KONCESJE [dla badań wykonanych po 2001 r.]	WŁAŚCICIEL	DŁUGOŚĆ [km]
T0580477	1977	Cubinka Nowa Sál		Skarb Państwa	3,18
T0610477	1977	Cyblika-INowa Sol		Skarb Państwa	3,28
W0080277	1977			Skarb Państwa	7,61
W0120277	1977	Peryklina Żar		Skarb Państwa	7,67
WA060377	1977			Skarb Państwa	13,77
WA120377	1977			Skarb Państwa	4,93
WB060377	1977			Skarb Państwa	10,53
T0030478	1978			Skarb Państwa	8,88
T0050478	1978	Cybinka-Nowa Sól		Skarb Państwa	4,58
T0060478	1978			Skarb Państwa	2,51
T0110478	1978			Skarb Państwa	4,02
T0630478	1978			Skarb Państwa	11,42
T0640478	1978			Skarb Państwa	14,58
T0650478	1978			Skarb Państwa	23,21
T0660478	1978			Skarb Państwa	22,19
T0680478	1978			Skarb Państwa	28,75
T0750478	1978			Skarb Państwa	35,39
TS700478	1978			Skarb Państwa	13,61
T0760479	1979			Skarb Państwa	13,04
T0770479	1979			Skarb Państwa	10,02
W0190279	1979	Niecka Północnosudecka		Skarb Państwa	10,09
T0950690	1990	Słubice-Krosno Odrzańskie		ORLEN S.A.	2,41
T01A7610	2011			Skarb Państwa	6,93
T02B7610	2011		Blok 243 14/2007/p, Laski 37/2008/p	Skarb Państwa	3,48
T03C7610	2011			Skarb Państwa	2,80
T06F7610	2011	Laski		Skarb Państwa	3,75
T07G7610	2011			Skarb Państwa	7,42
T08H7610	2011	]		Skarb Państwa	11,41
T09J7610	2011	]		Skarb Państwa	10,83
				Skarb Państwa	299,88
				ORLEN S.A.	2,41
Tab (1 List	. 1:::	$2D(dh_{1}+dh_{2}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{3}+dh_{$		7:-1	74

Tab. 6.1. Lista linii sejsmicznych 2D (dłuższych niż 2 km) w granicach obszaru przetargowego Zielona Góra Zachód.

NAZWA	ROK WYKONANIA	KONCESJE (dla badań wykonanych po 2001 r.)	WŁAŚCICIEL	POWIERZCHNIA [km ² ]
Laski 3D	2013	Blok 243 14/2007/p, Laski 37/2008/p	Skarb Państwa	81,12
Nowa Sól Zachód 3D	2013	Blok 243 14/2007/p	Skarb Państwa	128,07
			Skarb Państwa	209,19

Tab. 6.2. Lista badań sejsmicznych 3D wykonanych w granicach obszaru przetargowego Zielona Góra Zachód.

## 7. BADANIA GRAWIMETRYCZNE, MAGNETYCZNE I MAGNETOTELLURYCZNE 7.1. BADANIA GRAWIMETRYCZNE

Prace grawimetryczne, zmierzające do pokrycia obszaru przedstawionego na Fig. 7.1 zdjęciem o charakterze półszczegółowym rozpoczęto już w latach 60-tych XX wieku. Wykonano wówczas, sąsiadujące bezpośrednio od południa z granicami obszaru przetargowego Zielona Góra Zachód, zdjęcie monokliny przedsudeckiej, w strefie Leszno-Ostrzeszów (Duda, 1964) – ze średnim zagęszczeniem 1,5 pkt/km². W kolejnych latach prace kontynuowano w ramach tematu Dzierżoniów-Legnica-Bolesławiec (Cieśla i Okulus, 1974). Zdjęcie to, obejmujące swoim zasięgiem wschodnią część obszaru przetargowego, zostało wykonane z większym zagęszczeniem punktów wynoszącym średnio 4,5 pkt/km². Dopełnieniem prac było zdjęcie rejonu Gubin-Zielona Góra obejmujące zachodnią część omawianego obszaru (Pisuła i Ostrowski, 1990).

Współrzędne punktów pomiarowych wszystkich wymienionych powyżej zdjęć zostały wyznaczone w układzie Borowa Góra, a wartości anomalii Bouguera obliczone w systemie poczdamskim z przyśpieszeniem normalnym. Stworzenie komputerowego banku danych grawimetrycznych umożliwiło opracowanie i opublikowanie Atlasu grawimetrycznego Polski (Królikowski i Petecki, 1995), w którym anomalie grawimetryczne zostały obliczone w międzynarodowym sysgrawimetrycznym temie IGSN 71. z uwzględnieniem formuły Moritza na pole normalne dla elipsoidy odniesienia GRS 80. Atlas zawiera mapy anomalii grawimetrycznych o charakterze przeglądowym w skalach 1 : 500 000 i 1 : 750 000. Tak opracowane dane pomiarowe zdjęcia poszczegółowego są dostępne w CBDG, w postaci cyfrowego banku danych. Współrzędne stacji (punktów) zostały przeliczone na układ 1992 przez Instytut Geodezji i Kartografii (Kryński, 2007). Należy jednak pamiętać, że tak przeliczone lokalizacje charakteryzują się błędem przekraczającym niekiedy 100 m. Problem ten zostanie wyeliminowany w ciągu najbliższych lat, ponieważ w 2021 r. rozpoczęto realizację I etapu projektu realizowanego na zlecenie Ministerstwa Klimatu i Środowiska,

a finansowanego przez NFOŚiGW, którego celem jest m.in. korekta błędów lokalizacji stanowisk grawimetrycznych, błędów wyrównania osnowy grawimetrycznej, wykonanie nowej redukcji danych z uwzględnieniem współcześnie obowiązujących systemów odniesienia. W efekcie (który ma zostać osiągnięty w połowie 2024 r.) danym grawimetrycznym m.in. pokrywającym obszar przetargowy Zielona Góra Zachód zostaną przypisane poprawne lokalizacje określone w państwowym układzie współrzędnych geodezyjnych PUWG 1992.

Wyżej opisane problemy z układem Borowa Góra nie dotyczą zdjęć szczegółowych, których w rejonie obszaru przetargowego Zielona Góra Zachód jest kilka. Rejon ten był w latach 80-tych XX wieku przedmiotem poszukiwań wegla brunatnego. W ramach takich poszukiwań wykonano szczegółowe profilowe badania grawimetryczne. Bezpośrednio w obrębie obszaru przetargowego zrealizowano 9 profili (Łaszczyńska i in., 1982) – profile wykonano z 50-cio metrowym krokiem pomiarowym. Południową granicę obszaru przecinają kolejne trzy profile (Ostrowska i Pisuła, 1991) – wykonane z krokiem pomiarowym wynoszącym 100 m. Obraz szczegółowych badań uzupełnia jeszcze profil we wschodniej części obszaru przetargowego (Okulus, 1980), o średnim kroku pomiarowym 50 m.

Bogaty materiał pomiarowy stał się podstawą do kilku opracowań interpretujących obraz grawitacyjny obszaru zainteresowania (m.in. Cieśla i in., 1997; Kozera i Wronicz, 1976; Królikowski i in., 1986).

Mapa anomalii grawimetrycznych w redukcji Bouguera została przedstawiona na Fig. 7.4. Według podziału na regiony grawimetryczne, zaproponowanego przez Królikowskiego i Peteckiego (1995), obszar przetargowy Zielona Góra Zachód znajduje się w północnozachodnim krańcu Wyżu Śląskiego – tzw. wyżu krośnieńsko-ostrzeszowskiego, pokrywającego monoklinę przedsudecką bez części północno-zachodniej i blok przedsudecki. Pochodzenie regionalnej anomalii na monoklinie przedsudeckiej wiązane jest najczęściej z podniesieniem powierzchni Moho, z jednoczesnym upatrywaniem przyczyny anomalii drugiego rzędu w obecności zmetamorfizowanych utworów kambryjsko-dewońskich (Królikowski i Grobelny, 1991; Królikowski i Petecki, 1995).

## Dokumentacje grawimetryczne

- Bochnia N., Duda W. 1972. Dokumentacja szczegółowych badań grawimetrycznych, temat Krosno Odrzańskie, 1971 r. Inw. 1696, CAG PIG, Warszawa.
- Cieśla E., Okulus H. 1974. Dokumentacja półszczegółowych badań grawimetryczno-magnetycznych. Temat: Blok przedsudecki, rejon: Dzierżoniów-Legnica-Bolesławiec, 1973. Inw. 1799, CAG PIG, Warszawa.
- Duda W. 1964. Opracowanie półszczegółowych badań grawimetrycznych: Monoklina Przedsudecka (Leszno-Ostrzeszów), 1963. Inw. 1044, CAG PIG, Warszawa.
- Łaszczyńska B., Okulus H., Wojas A. 1982. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawime-

trycznych (obszary: Oborniki, Kłecko, Pogorzela, Świebodzin-Boryszyn, Studzieniec, Bobrowice), 1981. Inw. 2189, CAG PIG, Warszawa.

- Okulus H. 1980. Sprawozdanie techniczne z pomiarów grawimetrycznych wykonanych w rejonie obszaru północnosudeckiego i perykliny Żar, 1977. Inw. 2051, CAG PIG, Warszawa.
- Ostrowska K., Pisuła M. 1991. Dokumentacja szczegółowych badań grawimetrycznych dla tematu: Poszukiwanie złóż węgla brunatnego w obrębie anomalii grawimetrycznych, II faza, 1990 rok. Inw. 1281/91, CAG PIG, Warszawa.
- Pisuła M., Ostrowski C. 1990. Dokumentacja półszczegółowych badań grawimetrycznych, temat: Gubin-Zielona Góra 1987-1989. Kat. G-569 PBG, CAG PIG, Warszawa.
- Reczek J. 1962. Opracowanie półszczegółowych badań grawimetrycznych w północnej części Monokliny Przedsudeckiej, 1962 r. Inw. 062/63, CAG PIG, Warszawa.



**Fig. 7.1.** Lokalizacja stanowisk grawimetrycznych z pomiarów półszczegółowych i szczegółowych na obszarze przetargowym Zielona Góra Zachód (na podstawie danych CBDG, 2022).



Fig. 7.2. Mapa anomalii grawimetrycznych w redukcji Bouguera w rejonie obszaru przetargowego Zielona Góra Zachód (Królikowski i Petecki, 1995).

#### 7.2. BADANIA MAGNETYCZNE

Pierwszym zdjęciem magnetycznym wykonanym w rejonie obszaru przetargowego Zielona Góra Zachód było zdjęcie (obecnie o wartości jedynie archiwalnej) pionowej składowej ziemskiego pola magnetycznego Z, o charakterze regionalnym, tj. wykonane z zagęszczeniem rzędu 0,22 pkt/km² (Kozera, 1955, Fig. 7.3). Kolejnymi pracami było nieco gęstsze zdjęcie (Tałuc i Ciszewski, 1962) o średnim zagęszczeniu 1,2 pkt/km². W ramach tego zdjęcia wykonano również pomiary wzdłuż profili, które widoczne są w zachodniej części obszaru przetargowego (Fig. 7.3). Ostatnim zdjęciem Z wykonanym na opisywanym obszarze jest zdjęcie profilowe, realizowane z krokiem 50 m (Tałuc i Ciszewski, 1964).

W latach 70-tych XX wieku. Przystąpiono do realizacji półszczegółowego zdjęcia całkowitego wektora ziemskiego pola magnetycznego T. Środkowa i wschodnia część obszaru przetargowego Zielona Góra Zachód została objęta zdjęciem Monoklina Przedsudecka (Pasik, 1974). Jest to zdjęcie o stosunkowo niedużym średnim zagęszczeniu rzędu 1 pkt/km². Od zachodu graniczy z nim nowsze, a zarazem gęstsze (3 pkt/km²) zdjęcie Polska zachodnia, centralna i południowowschodnia (Kosobudzka, 1991).

Mapa anomalii magnetycznych  $\Delta T$  została przedstawiona na Fig. 7.4. Według podziału zaproponowanego przez Peteckiego i Rosowiecką (2017), obszar przetargowy Zielona Góra Zachód znajduje się w północnozachodnim skraju domeny sudeckiej (Sd – Sudetic domain). Znajduje się tu (głównie na południe od analizowanego obszaru) pasmo dodatnich anomalii o rozciągłości NW-SE. Petecki i Rosowiecka (2017) powiązali je z podpermskim wyniesieniem Wolsztyn-Leszno, będącym głęboką strukturą związaną z podłożem krystalicznym, zidentyfikowaną na profilu P4 projektu głębokiej sejsmiki refrakcyjnej POLONAISE'97 (Grad i in., 2003).

W latach 90. obszar zachodniej Polski został poddany kompleksowej interpretacji grawimetryczno-magnetycznej, która objęła zasiegiem arkuszy 14 mapy W skali 1: 200 000, w tym arkusz Zielona Góra (Cieśla i in., 1997). Wynikiem było opracowanie map geofizycznych elementów strukturalnych w skali 1: 500 000. Ponadto wykonano dwuwymiarowe modelowania wzdłuż wybranych linii przekrojowych, które wyznaczono głównie w pobliżu sejsmicznych profili refrakcyjnych. W ramach opracowania (Cieśla i in., 1997) wykonano mapy elementów anomalnych obu pól potencjalnych (liniowych i strukturalnych; Fig. 7.5). Linie takie wyznaczono m.in. w oparciu o zmiany kierunku i wyraźne przesunięcia osi ekstremalnych wartości anomalii magnetycznych lub grawimetrycznych oraz wyraźne zmiany charakteru pól. W polu magnetycznym część stref dyslokacyjnych wyznaczona jest również przez ciągi drobnych, dodatnich form anomalnych. Występują one głównie w północnej i centralnej części arkusza Zielona Góra. Pewna część tych anomalii układa się wzdłuż linii prostych, co może wskazywać na ich związek z liniami dyslokacyjnymi.

Do pierwszoplanowych elementów pola magnetycznego zaliczyć należy niewątpliwie regionalną strefę podwyższonego gradientu, która rozciąga się od Słubic poprzez Świebodzin w kierunku SEE do Wolsztyna i dalej na SSE do okolic Oleśnicy. Jest to granica pomiędzy dwoma odmiennymi magnetycznie obszarami: obszar południowo-zachodni o wyraźnie uprzywilejowanych kierunkach rozciągłości anomalii NW-SE i NWW-SEE oraz obszar północno-wschodni o ujemnych wartościach pola magnetycznego, bez uprzywilejowanego kierunku.

Podobną granicę, o zbliżonym przebiegu obserwuje się w polu grawitacyjnym (linia SLO – Słubice-Leszno-Oleśnica). Jej północna cześć ma przebieg zbliżony do rozłamu Dolska, lecz jest usytuowana na S od niego. Obszar przetargowy Zielona Góra Zachód znajduje się na południe od obu opisywanych lineamentów. SLO ogranicza od północy regionalne pasmo dodatnich anomalii siły ciężkości, rozciągające się od Cybinki poprzez Leszno do Oławy. Złożony, zaburzony charakter pasma i liczne, niekiedy znaczne przesunięcia osi maksymalnych wartości  $\Delta g$  mogą świadczyć o istnieniu dyslokacji poprzecznych do jego rozciągłości. Pasmu grawimetrycznemu odpowiada w polu magnetycznym ciag mało intensywnych dodatnich anomalii o zbliżonym przebiegu i ekstremach zlokalizowanych: na N od Cybinki, na SW od Wolsztyna i na S od Leszna. W wyniku mograwimetryczno-magnetycznego delowania stwierdzono, że strop źródeł zaburzających występuje na głębokości 4-5 km. Jest to obszar wypiętrzenia Wolsztyna, gdzie skały starszego paleozoiku nawiercono na głębokościach nie przekraczających 2,5 km.

# Dokumentacje magnetyczne

- Kosobudzka I. 1991. Sprawozdanie z półszczegółowych badań magnetycznych ΔT, temat: Polska zachodnia, centralna i południowo-wschodnia, rok 1990. Inw. 1287/91, CAG PIG, Warszawa.
- Kozera A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Grupę Magnetyczną II PPG w 1955 r. Inw. 40604, CAG PIG, Warszawa.
- Pasik J. 1974. Dokumentacja półszczegółowych badań magnetycznych. Temat: Monoklina Przedsudecka, 1974. Kat. M-164, Arch. Przedsiębiorstwa Badań Geofizycznych, Warszawa.
- Tałuc S., Ciszewski S. 1962. Opracowanie półszczegółowych badań magnetycznych w rejonie monokliny przedsudeckiej, 1962. Kat. M-106 PBG, CAG PIG, Warszawa.
- 5. Tałuc S., Ciszewski S. 1964. Opracowanie zwiadowczych profili magnetycznych w środkowej części regionu przedsudeckiego, 1963 rok. Inw. 2086, CAG PIG, Warszawa.



Fig. 7.3. Lokalizacja stanowisk pomiarowych pola geomagnetycznego na obszarze przetargowym Zielona Góra Zachód (CBDG, 2022).



**Fig. 7.4.** Mapa anomalii modułu całkowitego pola geomagnetycznego T w rejonie obszaru przetargowego Zielona Góra Zachód (Petecki i Rosowiecka, 2017).



**Fig. 7.5.** Elementy liniowe i strukturalne wyinterpretowane na podstawie magnetyki i grawimetrii (Cieśla i in., 1997). 1 – granice większych jednostek geofizyczno-geologicznych wydzielone na podstawie: a – magnetyki (oznaczone małymi literami), b – grawimetrii (oznaczone dużymi literami); 2 – najważniejsze linie nieciągłości (kontakty i/lub dyslokacje) wydzielone na podstawie: a – magnetyki, b – grawimetrii; 3 – elementy liniowe: a – granice zespołów jednostek strukturalnych, b – ważniejsze uskoki i strefy uskokowe; 4 – bloki wydzielone na podstawie magnetyki: a – o podwyższonych własnościach magnetycznych, b – o obniżonych własnościach magnetycznych; 5 – bloki wydzielone na podstawie grawimetrii: a – o podwyższonej gęstości, b – o obniżonej gęstości; 6 – lokalizacja S-części VII sejsmicznego profilu międzynarodowego z zaznaczeniem pozycji głębokich rozłamów; 7 – wyinterpretowane profile; 8 – uskok Dolska; 9 – granice wydzielone wg modelowania: a – dyslokacje (grawimetria), b – kontakty magnetyczne.

### 7.3. BADANIA MAGNETOTELLURYCZNE

W rejonie obszaru przetargowego Zielona Góra Zachód nie wykonano żadnych prac magnetotellurycznych.

## 8. PODSUMOWANIE

Perspektywy naftowe poszczególnych horyzontów stratygraficznych oraz związane z nimi koncepcje poszukiwawcze na obszarze przetargowym Zielona Góra Zachód zostały opisane w rozdziale 2. Ich podstawą są dane dotyczące systemów naftowych, złóż węglowodorów zlokalizowanych na obszarze przetargowym i w jego okolicy, otworów wiertniczych, sejsmiki i grawimetrii oraz magnetyki (rozdziały 3–7). Poniżej zestawiono najważniejsze informacje o obszarze przetargowym Zielona Góra Zachód w formie karty informacyjnej, a także zaproponowano minimalny program fazy poszukiwawczo-rozpoznawczej przyszłej koncesji, której zakres umożliwiłby odkrycie złóż węglowodorów.

Dane ogólne	Nazwa obszaru:	Zielona Góra Zachód		
	Lokalizacja:	Na lądzie <u>Arkusze mapy geologicznej w skali 1 : 50 000</u> : Czerwińsk 537, Bobrowice 573, Przylep 574, Jasień 610, Chotków 611 <u>Fragment bloku koncesyjnegoh nr</u> : 243 <u>Położenie administracyjne</u> : województwo lubuskie, powiat krośnieński, gminy: Bobrowice (14,76%), Dąbie (10,05%), Krosno Odrzańskie (0,44%) powiat nowosolski, gmina Kożuchów (2,04%) powiat Zielona Góra, gmina Zielona Góra (8,70%) powiat zielonogórski, gminy: Czerwieńsk (4,16%), Nowogród Bobrzański (26,57%), Świdnica (16,86%) powiat żagański, gminy: Brzeźnica (1,57%), Żagań (0,25%) powiat żarski, gminy: Żary (1,13%), Lubsko (6,98%), Jasień (6,49%)		
	Тур:	poszukiwanie i rozpoznawanie złóż węglowodorów oraz wydobywanie węglowodorów ze złóż		
	Czas obowiązywania:	koncesja na 30 lat w tym: faza poszukiwawczo-rozpoznawcza (5 lat), faza wydobywcza – po uzyskaniu decyzji inwestycyjnej		
Udziały		zwycięzca przetargu 100%		
Powierzchnia [km²] Rodzaj złoża		954,57		
		konwencjonalne złoża gazu ziemnego i ropy naftowej w utworach permu – dolomitu głównego i czerwonego spągowca		
Piętra strukturalne		kenozoiczne, laramijskie, waryscyjskie		
Systemy naftowe		I – konwencjonalny system naftowy permu/cechsztynu – w utworach dolomitu głównego II – konwencjonalny system naftowy karbonu i permu– w utworach czerwonego spągowca		
Skały zbiornikowe		I – zdolomityzowane greinstony i pakstony dolomitu głównego II – drobno- i średnioziarniste piaskowce eoliczne górnego czerwonego spągowca		
Skały macierzyste		I – madstony, greinstony, bandstony dolomitu głównego II – iłowce i mułowce dolnego oraz górnego karbonu		
Skały uszczelniające		I – utwory ewaporatowe cechsztynu PZ2 II – utwory ewaporatowe cechsztynu PZ1		
Typ pułapki		I – strukturalne lub strukturalno-tektoniczne II – strukturalne lub strukturalno-tektoniczne		
Złoża rozpoznane w pobliżu		Przázka Czaklin Czarwieńsk I aleghów Morzów N Mrozów S News Sól		
obszaru przetargowego		BIZOZKA, CZEKINI, CZEI WIENSK, LEICCHOW, WOIZOW N, WIOZOW S, NOWA SOI		
Zrealizowane zdjęcia sejsmiczne, rejon (właściciel)		1977 Cybinka-Nowa Sól, 2 profile (Skarb Państwa) 1977 Peryklina Żar, 5 profili (Skarb Państwa) 1978 Cybinka-Nowa Sól, 13 profili (Skarb Państwa) 1979 Niecka Północnosudecka, 1 profil (Skarb Państwa) 1990 Słubice-Krosno Odrzańskie, 1 profil (ORLEN S.A.) 2011 Laski, 7 profili (Skarb Państwa) 2013 Laski 3D (Skarb Państwa) 2013 Nowa Sól Zachód 3D (Skarb Państwa)		
Otwory reperowe (glębokość)		BRONISZÓW (791,5 m) BRONKÓW-M-27 (1564,0 m) CHOJNOWO 1 (1530,1 m) DACHÓW 1 (1508 m) DACHÓW-M-24 (1538,4 m) DĘBY 1 (1370,5 m) DRZONÓW 1 (1303,0 m) DRZONÓW 2 (1434,0 m)		

Karta informacyjna obszaru przetargowego Zielona Góra Zachód

DYCHÓW M-26 (1930,0 m)	
JAROGNIEWICE IG-1 (551,6 m)	
JASIEŃ P-4 (1054,0 m)	
JELENIÓW-1 (1492,3 m)	
KLĘPINKA (708,2 m)	
KOSIERZ 1 (1415,0 m)	
KOSIERZ M-25 (1810,0 m)	
LUBIATÓW 1 (1451,4 m)	
LUBIATÓW M-20 (1662,0 m)	
NIWISKA 1 (1700,0 m)	
NOWA SÓL 7 (1113,2 m)	
NOWA SÓL 9 (1137.3 m)	
NOWA SÓL 16 (1299,0 m)	
NOWA SÓL 18 (1241,6 m)	
NOWA WIEŚ P-1 (1012,0 m)	
PAJĘCZNO 1 (1203,0 m)	
PIASKI 1 (2021,8 m)	
STARY ZAGÓR 1 (1984,6 m)	
STRUŻKA 1 (1492,4 m)	
ŚWIDNICA-1 (1391.0 m)	
TARNAWA M-21 (1466,0 m)	
TRZEBULE 1 (2666,7 m)	
URZUTY IG-1 (1250,0 m)	
WYSOKA 1 (1440,7 m)	
WYSOKA 2 (1305,0 m)	
ŻARKÓW 1 (1363,6 m)	
ŻARKÓW 2 (994,1 m)	
ŻARKÓW 3 (1214,6 m)	
ŻARKÓW 4 (1059,7 m)	

Proponowany minimalny program prac fazy poszukiwawczo-rozpoznawczej

- Interpretacja i analiza archiwalnych danych geologicznych
- Wykonanie badań sejsmicznych 2D (co najmniej 100 km PW) albo 3D (co najmniej 50 km²)
  - Wykonanie jednego odwiertu wiertniczego o maksymalnej głębokości 5000 m TVD wraz z obligatoryjnym rdzeniowaniem interwałów perspektywicznych

# 9. MATERIAŁY ŹRÓDŁOWE

- Aleksandrowski P. 1995. Rola wielkoskalowych przemieszczeń przesuwczych w ukształtowaniu waryscyjskiej struktury Sudetów. *Przegląd Geologiczny*, **43**, 745– 754.
- Aleksandrowski P., Kryza R., Mazur S., Żaba J. 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. *Geological Magazine*, 134, 727– 739.
- Badura J., Przybylski B. 2002. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Chotków (611). Państwowy Instytut Geologiczny, Warszawa.
- Bardadyn E., Basista S., Sałdan M. 1966. Pomiary geofizyczne dla otworu Jarogniewice IG-1 [zawiera kartę otworu] Inw. 78103, CAG PIG, Warszawa.
- Bartczak E. 2002. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Krzystkowice (610). Państwowy Instytut Geologiczny, Warszawa.
- Bielecka H., Jędrusiak M., Kieńć D., Nowacki F., Kuzynków H. 2001. Dokumentacja zasobów dyspozycyjnych Międzyrzecza Odry i Bobru w tym: GZWP nr 149 Sandr Krosno-Gubin i GZWP nr 301 Zasieki-Nowa Sół (dotyczy obszaru między Nysą Łużycką i Odrą). Inw. 1619/2001, CAG PIG, Warszawa.
- **Binder I. 1964.** Sprawozdanie wynikowe z otworu Nowa Sól 16 Inw. 7250/2021, CAG PIG, Warszawa.
- **Binder I. 1965a.** Sprawozdanie wynikowe otworu strukturalnego Nowa Sól-18. Inw. 7251/2021, CAG PIG, Warszawa.
- **Binder I. 1965b.** Sprawozdanie wynikowe z otworu geologicznego Żarków 1. Inw. 7246/2021, CAG PIG, Warszawa.
- **Binder I. 1965c.** Sprawozdanie wynikowe z otworu geologicznego Żarków 2 Inw. 7247/2021, CAG PIG, Warszawa.
- **Binder I. 1966a.** Sprawozdanie wynikowe z otworu Dęby 1. Inw. 7240/2021, CAG PIG, Warszawa.

- **Binder I. 1966b.** Sprawozdanie wynikowe z otworu Drzonów 1 Inw. 7241/2021, CAG PIG, Warszawa.
- **Binder I. 1966c.** Sprawozdanie wynikowe z otworu geologicznego Żarków-3. Inw. 7248/2021, CAG PIG, Warszawa.
- **Binder I. 1966d.** Sprawozdanie wynikowe z otworu Trzebule-1. Inw. 7245/2021, CAG PIG, Warszawa.
- **Binder I. 1967a.** Sprawozdanie wynikowe z otworu Drzonów 2. Inw. 7242/2021, CAG PIG, Warszawa.
- **Binder I. 1967b.** Sprawozdanie wynikowe z otworu Strużka 1. Inw. 7244/2021, CAG PIG, Warszawa.
- **Binder I. 1970.** Aneks do dokumentacji wynikowej otworu Jeleniów-1 Inw. 1779/2020, CAG PIG, Warszawa.
- **Binder I., Bałaban Z. 1969.** Dokumentacja wynikowa otworu Jeleniów-1 [zawiera kartę otworu] Inw. 102570, CAG PIG, Warszawa.
- **Binder I., Olczak D. 1967.** Dokumentacja wynikowa z wiercenia Dachów-1 [zawiera kartę otworu] Inw. 83944, CAG PIG, Warszawa.
- **Binder I., Olczak D. 1968.** Dokumentacja wynikowa odwiertu Wysoka-1 (miejsc. Pajęczno, woj. zielonogórskie) [zawiera kartę otworu]. Inw. 102991, CAG PIG, Warszawa.
- Bochnia N., Duda W. 1972. Dokumentacja szczegółowych badań grawimetrycznych, temat Krosno Odrzańskie, 1971 r. Inw. 1696, CAG PIG, Warszawa.
- Botor D., Papiernik B., Maćkowski T., Reicher B., Kosakowski P., Machowski G., Górecki W. 2013. Gas generation in Carboniferous source rocks of the Variscan foreland basin: implications for a charge history of Rotliegend deposits with natural gases. *Annales Societatis Geologorum Poloniae*, 83, 353–383.
- Buniak A., Kwolek K., Nowicka A., Dyjaczyński K., Papiernik B., Peryt T., Protas A., Wagner R. 2013. Mapa perspektyw poszukiwawczych w utworach dolomitu głównego. PGNiG, Oddział w Zielonej Górze; Państwowy Instytut

Geologiczny – Państwowy Instytut Badawczy, Warszawa.

- **Burdzy M. 2001.** Dokumentacja geologiczna złoża ropy naftowej Mozów S i Mozów N. Dodatek nr 2. Dokumentacja rozliczeniowa złoża ropy naftowej Mozów N. Inw. 72/2002, CAG PIG, Warszawa.
- **Burdzy M. 2009.** Dokumentacja geologiczna złoża ropy naftowej Czerwieńsk w kat. A. Dodatek nr 3 – wniosek o rozliczenie zasobów. Inw. 5321/2009, CAG PIG, Warszawa.
- Burzewski W., Górecki W., Maćkowski T., Papiernik B., Reicher B. 2009. Zasoby prognostyczne – nieodkryty potencjał gazu ziemnego w polskim basenie czerwonego spągowca. *Geologia*, 35, 123–128.
- **CBDG**, **2022.** Centralna Baza Danych Geologicznych. baza.pgi.gov.pl
- Chmal R. 2002. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Bobrowice (573). Państwowy Instytut Geologiczny, Warszawa.
- Choiński L., Olczak D. 1967. Dokumentacja wynikowa otworu Piaski 1 [zawiera kartę otworu]. Inw. 88634, CAG PIG, Warszawa.
- Cieśla E., Okulus H. 1974. Dokumentacja półszczegółowych badań grawimetrycznomagnetycznych. Temat: Blok przedsudecki, rejon: Dzierżoniów-Legnica-Bolesławiec, 1973. Inw. 1799, CAG PIG, Warszawa.
- Cieśla E., Petecki Z., Wybraniec S., Gientka D., Staniszewska B., Twarogowski J., Żółtowski Z. 1997. Kompleksowa interpretacja grawimetrycznomagnetyczna Polski zachodniej, 1997 rok. Inw. 7/98, 4746/2015, CAG PIG, Warszawa.
- Cimaszewski L. 1964. Dokumentacja złoża gazu ziemnego w Książu Śląskim (rejon Nowej Soli). Inw. 4121/88, CAG PIG, Warszawa.
- Czapowski G. 1983. Zagadnienia sedymentacji soli kamiennej cyklotemu PZ1 we wschodnim skłonie wyniesienia Łeby. *Przegląd Geologiczny*, **31**, 278–284.
- Czapowski G., Tomassi-Morawiec H. 1985. Sedymentacja i geochemia najstarszej soli kamiennej w rejonie Zatoki Puc-

kiej. Przegląd Geologiczny, 33, 663-670.

- Czapowski G., Nowacki Ł., Chełmiński J., Głuszyński A., Skowroński L. 2018. Ewaporaty górnego permu (cechsztynu) na obszarze centralnej części monokliny przedsudeckiej (SW Polska) – warunki występowania i wykształcenia. *Przegląd* Solny, 29–53.
- Czarnecki R. 1968. Karta otworu: Chojnowo-1. Inw. 92972, CAG PIG, Warszawa.
- Czerski M. 2004. Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Chotków 0611. Państwowy Instytut Geologiczny, Warszawa.
- Czerski M., Chudzik L., Serafin R., Wojtkowiak A., Horbowy K., Kłonowski M., Krawczyk J., Russ D., Zawistowski K., Biel A., Przybysławski J. 2011. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych zlewni Nysy Łużyckiej (od granicy państwa do ujścia do Odry). Inw. 2842/2011, CAG PIG, Warszawa.
- Dadlez R., Narkiewicz M., Stephenson R. A., Visser M. T. M., Van Wess J.-D. 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. *Tectonophysics*, 252, 179–195.
- Dadlez R., Marek S., Pokorski J. 2000. Mapa geologiczna Polski bez utworów kenozoiku, 1 : 1 000 000. Państwowy Instytut Geologiczny, Warszawa.
- Deczkowski Z. 1997. Trias górny. Noryk i retyk. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, **153**, 184–186.
- Deczkowski Z., Gajewska I. 1977. Charakterystyka starokimeryjska i laramijskich struktur blokowych monokliny przedsudeckiej. *Kwartalnik Geologiczny*, 21, 467– 481.
- Deczkowski Z., Gajewska I. 1980. Mezozoiczne i trzeciorzędowe rowy obszaru monokliny przedsudeckiej. *Przegląd Geologiczny*, 28, 151–156.
- Deczkowski Z., Oszczepalski S., Rydzewski A. 1993. Budowa geologiczna i surowce mineralne perykliny Żar. [W]:

Budowa geologiczna perykliny Żar w aspekcie występowania surowców mineralnych. [Red.]: S. Oszczepalski, A. Rydzewski. Inw.1457/93, CAG PIG, 9–18.

- Duda W. 1964. Opracowanie półszczegółowych badań grawimetrycznych: Monoklina Przedsudecka (Leszno-Ostrzeszów), 1963. Inw. 1044, CAG PIG, Warszawa.
- Dudzińska K. 1995. Dokumentacja geologiczna w kat. B złoża gazu ziemnego Nowa Sól. Inw. 1071/95, CAG PIG, Warszawa.
- Dyjaczyński K., Peryt T.M. 2014. Controls on basal Zechstein (Wuchiapingian) evaporite deposits in SW Poland. *Geological Quarterly*, **58**, 485–502.
- Gajewska I. 1997a. Trias środkowy (wapień muszlowy-kajper dolny). Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 133–136.
- Gajewska I. 1997b. Trias górny. Kajper. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 164–166.
- Górecka T., Parka Z., Ślusarczyk S., Templin L. 1977. Wyniki badań palinologicznych osadów podpermskich południowo-wschodniej części monokliny przedsudeckiej. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, Studia i Materiały, 12, 29–55.
- Grad M., Jensen S.L., Keller G.R., Guterch A., Thybo H., Janik T., Tiira T., Yliniemi J., Luosto U., Motuza G., Nasedkin V., Czuba W., Gaczyński E., Środa P., Miller K.C., Wilde-Piórko M., Komminaho K., Jacyna J., Korabliova L. 2003. Crustal structure of the Trans-European suture zone region along POLONAISE'97 seismic profile P4. Journal of Geophysical Research, 108: 12-1–12-24.
- Grocholski W. 1991. Budowa geologiczna przedkenozoicznego podłoża Wielkopolski. Przewodnik 62 Zjazdu Polskiego Towarzystwa Geologicznego, Poznań.

- Hoffmann N., Pokorski J., Lindert W., Bachmann H. 1997. Rotliegend stratigraphy, paleogeography and facies in eastern part of the central European Basin. *Prace Państwowego Instytutu Geologicznego*, 157, 75–86.
- Hryniewiecka A. 1988. Geneza produktywności dolnopermskiego basenu gazonośnego południowej części monokliny przedsudeckiej. *Gospodarka Surowcami Mineralnymi*, 4.
- Hunt J.M. 1979. Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, 617.
- Hunt J.M. 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, 743.
- Jaworowski K., Mikołajewski Z. 2007. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. *Przegląd Geologiczny*, **55**, 1017–1024.
- Juroszek C., Kłapciński J., Sachanbiński M. 1981. Wulkanity dolnego permu południowej części monokliny przedsudeckiej i perykliny Żar. Annales Societatis Geologorum Poloniae, **51**, 517–546.
- Karnkowski, P.H. 1994. Rotliegend lithostratigraphy in the central part of the Polish Permian Basin. *Geological Quarterly*, **38**, 27–42.
- Karnkowski P.H. 1987. Litostratygrafia czerwonego spągowca w Wielkopolsce. *Kwartalnik Geologiczny*, **31**, 643–672.
- Karta otworu Urzuty IG-1. Inw. 67493, CAG PIG, Warszawa.
- Karta otworu: Dachów-M-24. Inw. 125480, CAG PIG, Warszawa.
- Karta otworu: Klępinka. Inw. 4120/T1, CAG PIG, Warszawa.
- Kasprzak T. 2013. Composite well log Trzebule 1. Inw. 5610/2013,CAG PIG, Warszawa.
- Kasprzak T., Binder I. 1965. Geologiczna metryka otworu poszukiwawczego Żarków 4. Inw. 7249/2021, CAG PIG, Warszawa.

- **Kiełczawa J. 2004a.** Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Bobrowice 0573. Państwowy Instytut Geologiczny, Warszawa.
- **Kiełczawa J. 2004b.** Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Krzystkowice 0610. Państwowy Instytut Geologiczny, Warszawa.
- Kiersnowski H. 2003. Środowiska sedymentacji osadów czerwonego spągowca dolnego na obszarze Wielkopolski. [W]: Wulkanoklastyczne osady czerwonego spągowca dolnego na obszarze Wielkopolski, [Red.]: Maliszewska A. Prace Państwowego Instytutu Geologicznego, 179, 15–27.
- Kiersnowski H. 2008. Litostratygrafia osadów czerwonego spągowca dolnego na obszarze platformy waryscyjskiej oraz jej związki z litostratygrafią niemiecką w NE Brandenburgii. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Kiersnowski H., Petecki Z. 2017. Budowa geologiczna podcechsztyńskiego podłoża Legnicko-Głogowskiego Okręgu Miedziowego (LGOM) i jego otoczenia: spojrzenie krytyczne. Biuletyn Państwowego Instytutu Geologicznego, 468, 175– 198.
- Kiersnowski H., Buniak A., Waśkiewicz K. 2020. Mapa litofacji stropu osadów czerwonego spągowca górnego. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Kłapciński J. 1991. Zechstein anhydrites in western Poland. *Zentralblatt für Geologie und Paläontologie*, Teil I, H.4, 1171– 1188.
- Kondracki J. 2013. Geografia regionalna Polski, Wydawnictwa Naukowe PWN, Warszawa.
- Kosakowski P., Krajewski M. 2014. Hydrocarbon potential of the Zechstein Main Dolomite in the western part of the Wielkopolska platform, SW Poland: New sedimentological and geochemical data. *Marine and Petroleum Geology*, **49**, 99 – 120.
- Kosakowski P., Wróbel M. 2010. Sourcerock evaluation and basin modelling in the Western Part of the Fore-Sudetic Mono-

cline – SW Poland (P343). 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010 Barcelona, Spain, 14-17 June, 1-5.

- Kosobudzka I. 1991. Sprawozdanie z półszczegółowych badań magnetycznych ΔT, temat: Polska zachodnia, centralna i południowo-wschodnia, rok 1990. Inw. 1287/91, CAG PIG, Warszawa.
- Koślacz R., Gurwin J., Koziołek J. 2018. Dokumentacja hydrogeologiczna ustalająca zasoby dyspozycyjne wód podziemnych obszaru bilansowego: zlewnia środkowego Bobru (bez zlewni Szprotawy) i polskiej części zlewni Izery, [woj. dolnośląskie, lubuskie]. Inw. 5840/2019, CAG PIG, Warszawa.
- Kotarba M., Wagner R. 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski–Międzychód–Lubiatów area: geological and geochemical approach to microbial–algal source rock. *Przegląd Geologiczny*, 55, 1025–1036.
- Kotarba M.J., Więcław W., Stecko Z. 2000. Skład, geneza i środowisko generowania gazu ziemnego w utworach dolomitu głównego zachodniej części obszaru przedsudeckiego. *Przegląd Geologiczny*, **48**, 429–435.
- Kozera A. 1955. Sprawozdanie z prac magnetycznych. Temat: Regionalne badania na Śląsku, Ziemi Lubuskiej i w Wielkopolsce przeprowadzonych przez Grupę Magnetyczną II PPG w 1955 r. Inw. 40604, CAG PIG, Warszawa.
- Kozera A., Wronicz S. 1976. Kompleksowa interpretacja materiałów sejsmicznych i grawimetrycznych dla wybranych obszarów Niecki Szczecińskiej pod kątem rozwoju utworów solnych. Inw. 44854, CAG PIG, Warszawa.
- Krawczyńska-Grocholska H., Grocholski W. 1976. Uwagi o karbonie północnozachodniego obrzeżenia bloku przedsudeckiego. *Kwartalnik Geologiczny*, 20, 53–64.
- Królikowski C., Grobelny A. 1991. Preliminary results of the geophysical interpretation (stripping method) in respect to the pre-Permian basement of south-western Poland. *Kwartalnik Geologiczny*, **35**, 449– 476.

- Królikowski C., Petecki Z. 1995. Atlas grawimetryczny Polski. Państwowy Instytut Geologiczny, Warszawa.
- Królikowski C., zespół. 1986. Zastosowanie metody odejmowania efektów grawitacyjnych do wyznaczania anomalii od podłoża podpermskiego północno-zachodniej Polski, etap II /ostatni/ – Opracowanie mapy anomalii od podłoża permu, 1986. Inw. 35725, CAG PIG, Warszawa
- Kryński J. 2007. Precyzyjne modelowanie quasigeoidy na obszarze Polski – wyniki i ocena dokładności. *Seria Monograficzna IGiK*, 13, Warszawa.
- Krzyżanowski S. 1969. Dokumentacja wynikowa wiercenia Pajęczno 1. Inw. 106159, CAG PIG, Warszawa.
- Kuberska M., Kozłowska A. 2011. Nowe dane o petrografii skał czerwonego spągowca z zachodniej części monokliny przedsudeckiej. *Biuletyn Państwowego Instytutu Geologicznego*, 444, 135–148.
- Kudrewicz R. 2007. Mapy strukturalne powierzchni podcechsztyńskiej i podpermskiej, 1 : 500 000. [W:] Wagner R. i in., 2008 [red.], Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce - badania geologiczne. Inw. 2293/2009, CAG PIG, Warszawa.
- **Kwolek K. 2000.** Wiek ruchów tektonicznych w strefie dyslokacji Poznań – Kalisz, monoklina przedsudecka. *Przegląd Geologiczny*, **48**, 804–814.
- Leenheer M.J. 1984. Missisipian Bakken and equivalent formations as source rocks in the western Canadian basin. *Organic Geochemistry*, **6**, 521–532.
- Leszczyński M. 1995. Dokumentacja geologiczna w kat. B złoża ropy naftowej Mozów S i Mozów N. Inw. 230/96, CAG PIG, Warszawa.
- Łaszczyńska B., Okulus H., Wojas A. 1982. Dokumentacja badań geofizycznych; temat: Poszukiwania złóż węgla brunatnego w obrębie anomalii grawimetrycznych (obszary: Oborniki, Kłecko, Pogorzela, Świebodzin-Boryszyn, Studzieniec, Bobrowice), 1981. Inw. 2189, CAG PIG, Warszawa.

- Maliszewska A., Kuberska M. 2008. Spoiwa skał górnego czerwonego spągowca w zachodniej części Niżu Polskiego w ujęciu kartograficznym. Biuletyn Państwowego Instytutu Geologicznego, 429, 79–90.
- Maliszewska A., Kiersnowski H., Jackowicz E. 2003. Wulkanoklastyczne osady czerwonego spągowca dolnego na obszarze Wielkopolski. *Prace Państwowego Instytutu Geologicznego*, **179**, 1–59.
- Maliszewska A., Jackowicz E., Kuberska M., Kiersnowski H. 2016. Skały permu dolnego (czerwonego spągowca) zachodniej Polski – monografia petrograficzna. *Prace Państwowego Instytutu Geolo*gicznego, 204.
- Marciński J. 1985. Dokumentacja geologiczna złoża ropy naftowej Czerwieńsk. Inw. 15763 CUG, CAG PIG, Warszawa.
- Markiewicz A. 2007. Naskórkowa struktura południowej części monokliny przedsudeckiej a zagospodarowanie utworów najstarszej soli kamiennej (Na1). *Gospodarka Surowcami Mineralnymi*, 23, 35–49.
- Markiewicz A. 2010. Morfotektonika rejonu Zielonej Góra. Zeszyty Naukowe Uniwersytetu Zielonogórskiego, 139, 81– 92.
- Markiewicz A., Kraińska A. 2002. Neotektoniczna reaktywacja struktur halotektonicznych a zaburzenia glacitektoniczne w strefach marginalnych zlodowaceń plejstoceńskich na przykładzie wzgórz Dalkowskich (SW Polska). Materiały IX Sympozjum Glacitektoniki, *Zeszyty Naukowe Uniwersytetu Zielonogórskiego*, **129**, 123–142.
- Markiewicz A., Winnicki J. 2005. Plejstoceńska reaktywacja cienkopokrywowej struktury monokliny przedsudeckiej a strefy dużych zaburzeń glacitektonicznych w rejonie Zielonej Góry, Kożuchowa i Głogowa (SW Polska). Materiały VI Ogólnopolskiej Konferencji "Neotektonika Polski" Aktywne uskoki Europy Środkowej.
- Markiewicz A., Winnicki J. 2007a. Morfotektonika Wału Trzebnickiego (Śląskiego). Zeszyty Naukowe Uniwersytetu Zielonogórskiego, **134**, 113–131.

- Markiewicz A., Winnicki J. 2007b. Gravitational collapse in the Nysa Łużycka River Valley between Łęknica and Dübern (Polish-German borderland). Materiały VII Ogólnopolskiej Konferencji "Neotectonic Cross-Bordering the Western and Eastern European Platform, 183–184.
- Materzok W. 1981. Dokumentacja pionowego profilowania sejsmicznego, odwiert: Dychów M-26 Inw. D87 VS, CAG PIG, Warszawa.
- MIDAS, 2022. System Gospodarki i Ochrony Bogactw Mineralnych Polski https://geoportal.pgi.gov.pl/midas-web
- Mikołajków J., Sadurski A. 2017. Informator PSH Główne Zbiorniki Wód Podziemnych w Polsce, Państwowy Instytut Geologiczny Państwowy Instytut Badawczy, Warszawa.
- Milewicz J., Koraś J. 1971. Uwagi o podłożu podpermskim rejonu Gubina. *Kwartalnik Geologiczny*, 15, 870–875.
- Milewicz J., Wroński J. 1975. Budowa geologiczna obszaru między Gubinem, Lubuskiem i Przewozem. *Biuletyn Instytutu Geologicznego*, 287.
- Mizeracka K. 1979. Dokumentacja badań właściwości fizycznych skał z rejonu Monokliny Przedsudeckiej i Wału Północno-Sudeckiego, rok opracowania 1979. Inw. 62/154, CAG PIG, Warszawa.
- Nawrocki J. 1995. Skala magnetostratygraficzna dla utworów czerwonego spągowca, cechsztynu i pstrego piaskowca z obszaru Polski. *Przegląd Geologiczny*, 43, 1027–1029.
- Nawrocki J., Becker A. 2017. Atlas geologiczny Polski. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Nowak G. 1999. Analiza możliwości generacji węglowodorów w skałach karbonu podłoża monokliny przedsudeckiej w świetle badań materii organicznej. Inw. 2235/99, CAG PIG, Warszawa
- Nowak G. 2003. Petrologia materii organicznej rozproszonej w poźnopaleozoicznych skałach osadowych południowozachodniej Polski. *Cuprum*, **4**, 3–209.
- Nowak G. 2016. Wyniki badan petrologicznych materii organicznej rozproszonej

w skałach karbonu podłoża monokliny przedsudeckiej. [W]: Rozpoznanie stref perspektywicznych dla występowania niekonwencjonalnych złóż weglowodorów w Polsce, Etap I; Podhalańska T. i in. [red.]. Inw. 4878/2016, CAG PIG, Warszawa.

- Oberc J. 1972. Sudety i obszary przyległe. Budowa geologiczna Polski. Tektonika, 4, Wydawnictwo Geologiczne, Warszawa.
- Oberc J. 1990. Monoklina przedsudecka i jej tło geologiczne. Materiały Konferencyjne Komitetu Tektonicznego KNG PAN: Problemy tektoniki Legnicko-Głogowskiego Okręgu Miedziowego, cz. 1, 7–14, CUPRUM, Wrocław.
- Obuch B., Piec H. 1969. Dokumentacja wynikowa wiercenia Niwiska 1 [zawiera kartę otworu]. Inw. 102572, CAG PIG, Warszawa.
- Okulus H. 1980. Sprawozdanie techniczne z pomiarów grawimetrycznych wykonanych w rejonie obszaru północnosudeckiego i perykliny Żar, 1977. Inw. 2051, CAG PIG, Warszawa.
- Olczak D. 1964. Pomiary geofizyczne wraz z kartą otworu Nowa Sól 16. Inw. 83968, CAG PIG, Warszawa.
- Olczak D. 1965a. Pomiary geofizyczne otworu Drzonów 1 + karta otworu Inw. 83947, CAG PIG, Warszawa.
- Olczak D. 1965b. Pomiary geofizyczne otworu Żarków 1 + karta otworu. Inw. 83959, CAG PIG, Warszawa.
- Olczak D. 1966a. Karta otworu: Dachów 1. Inw. 83944, CAG PIG, Warszawa.
- Olczak D. 1966b. Pomiary geofizyczne otworu Dęby 1 + karta otworu. Inw. 83958, CAG PIG, Warszawa.
- Olczak D. 1966c. Pomiary geofizyczne otworu Lubiatów 1 + karta otworu. Inw. 83957, CAG PIG, Warszawa.
- Olczak D. 1966d. Pomiary geofizyczne otworu Żarków 2 + karta otworu Inw. 83960, CAG PIG, Warszawa.
- Olczak D. 1966e. Pomiary geofizyczne otworu Żarków 3 + karta otworu. Inw. 83961, CAG PIG, Warszawa.
- Olczak D. 1966f. Pomiary geofizyczne otworu Żarków 4 + karta otworu Inw. 83962, CAG PIG, Warszawa.

- Olczak D. 1967a. Karta otworu: Drzonów 2. Inw. 88631, CAG PIG, Warszawa.
- Olczak D. 1967b. Pomiary geofizyczne otworu Stróżka 1 + karta otworu. Inw. 83951, CAG PIG, Warszawa.
- Olczak D., Jaskowiak M. 1965. Pomiary geofizyczne wraz z kartą otworu Nowa Sól 18, pow. Nowa Sól, woj. zielonogórskie. Inw. 83966, CAG PIG, Warszawa.
- Ostrowska K., Pisuła M. 1991. Dokumentacja szczegółowych badań grawimetrycznych dla tematu: Poszukiwanie złóż węgla brunatnego w obrębie anomalii grawimetrycznych, II faza, 1990 rok. Inw. 1281/91, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A. 1983. Dokumentacja wynikowa otworu Dychów M-26 [zawiera kartę otworu] Inw. 127602, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A. 1987. Paleogeography and sedimentary model of the Kuperschiefer in Poland. *Lecture Notes in Earth Sciences*, 10, 189–205.
- Oszczepalski S., Rydzewski A. 1993. Budowa geologiczna perykliny Żar w aspekcie występowania surowców mineralnych. Inw. 1457/93, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A., Chojęta H. 1983. Dokumentacja wynikowa otworu Kosierz M-25 [zawiera kartę otworu]. Inw. 128893, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A., Chojęta H. 1984. Dokumentacja wynikowa otworu Lubiatów M-20 [zawiera kartę otworu]. Inw. 129425, CAG PIG, Warszawa.
- Oszczepalski S., Rydzewski A., Chojęta H. 1990. Dokumentacja wynikowa otworu Bronków M-27 [zawiera kartę otworu] Inw. 132247, CAG PIG, Warszawa.
- Paczyński B., Sadurski A. 2007. Hydrogeologia regionalna Polski, tom I- wody słodkie, Państwowy Instytut Geologiczny, Warszawa.
- Pasik J. 1974. Dokumentacja półszczegółowych badań magnetycznych. Temat: Monoklina Przedsudecka, 1974. Kat. M-164, Arch. Przedsiębiorstwa Badań Geofizycznych, Warszawa.
- Pawłowski A., Zoła K. 2000. Dodatek nr 1 do dokumentacji geologicznej złoża ropy

naftowej Lelechów. Inw. 2291/2000, CAG PIG, Warszawa.

- **Peryt T.M. 1978.** Charakterystyka mikrofacjalna cechsztyńskich osadów węglanowych cyklotemu pierwszego i drugiego na obszarze monokliny przedsudeckiej. *Studia Geologica Polonica*, **54**, 1–88.
- Peryt T.M. 1984. Sedymentacja i wczesna diageneza utworów wapienia cechsztyńskiego w Polsce zachodniej. *Prace Państwowego Instytutu Geologicznego*, 109, 1–80.
- Peryt T.M. 1990. Cechsztyński anhydryt górny (A1g) na obszarze polskiej części syneklizy perybałtyckiej. *Biuletyn Państwowego Instytutu Geologicznego*, **364**, 5–29
- Peryt T.M., Piątkowski T.S. 1976. Osady caliche w wapieniu cechsztyńskim zachodniej części syneklizy perybałtyckiej. *Kwartalnik Geologiczny*, 20, 525–538
- Peryt T.M., Piątkowski T.S. 1977. Algal vadose pisoliths in the Zechstein Limestone (Upper Permian) of Poland. *Sedimentary Geology*, 19, 275–286.
- Petecki Z., Rosowiecka O. 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. *Geological Quarterly* 61, 934–945.
- Peters K.E., Cassa M.R. 1994. Applied source rock geochemistry. [W]: The Petroleum System – from Source to Trap, [Red.]: Magoon L.B., Dow W.G., *AAPG Memoir*, **60**, 93–120.
- Pettijohn, F.J., Potter, P.E., Siever, R. 1972. Sand and sandstone. New York, Springer – Verlag.
- **Piela J. 1968.** Dokumentacja wynikowa z otworu Chojnowo-1 Inw. 92972, CAG PIG, Warszawa.
- Piela J., Czernecki R. 1967. Dokumentacja wynikowa wiercenia Stary Zagór 1 [zawiera kartę otworu] Inw. 88632, CAG PIG, Warszawa.
- Piela J., Geroń S. 1967. Dokumentacja wynikowa otworu Świdnica-1 [zawiera kartę otworu]. Inw. 88635, CAG PIG, Warszawa.
- Pisuła M., Ostrowski C. 1990. Dokumentacja półszczegółowych badań grawime-

trycznych, temat: Gubin-Zielona Góra 1987-1989. Kat. G-569 PBG, CAG PIG, Warszawa.

- Pletsch T., Appel J., Botor D., Clayton C.J., Duin E.J.T., Faber E., Górecki W., Kombrink H., Kosakowski P., Kuper G., Kus J., Lutz R., Mathiesen A., Ostertag C., Papiernik B., Van Bergen F. 2010. Petroleum generation and migration. [W]: Petroleum Geological Atlas of the Southern Permian Basin Area. [Red.] Doornenbal J.G., Stevenson A.G., 225–253. EAGE Publications b. v., Houten.
- **Poborski J. 1960.** Cechsztyńskie zagłębie solne Europy Środkowej na ziemiach Polski. *Prace Instytutu Geologicznego*, **30**, 355–366.
- **Podemski M. 1973.** Sedymentacja cechsztyńska w zachodniej części monokliny przedsudeckiej na przykładzie okolicy Nowej Soli. *Prace Instytutu Geologicznego*, 71, 1–101.
- Podemski M., Bojarski L. 1974. Dokumentacja złoża ropy naftowej Lelechów. Inw. 10737 CUG, CAG PIG, Warszawa.
- Podhalańska T., zespół. 2016. Rozpoznanie stref perspektywicznych dla występowania niekonwencjonalnych złóż. weglowodorów w Polsce, Etap I. Inw. 4878/2016, CAG PIG, Warszawa.
- **Pokorski J. 1981**. Propozycja formalnego podziału litostratygraficznego czerwonego spągowca na Niżu Polskim. *Kwartalnik Geologiczny*, **25**, 41–58
- **Pokorski J. 1988.** Rotliegendes lithostratigraphy in north-western Poland. *Bulletin* of the Polish Academy of Sciences, Earth Sciences, **36**, 99–108.
- **Pokorski J. 1997.** Perm dolny (czerwony spągowiec). Litostratygrafia i litofacje. Formalne i nieformalne jednostki litostratygraficzne. [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, **153**, 35–38.
- **Pomiary geofizyczne otworu Broniszów** + karta otworu. Inw. 65463, CAG PIG, Warszawa.
- Poprawa P. 2010. Rozpoznanie basenów węglowodorowych Polski pod kątem możliwości występowania i zasobów oraz możliwości koncesjonowania poszukiwań nie-

konwencjonalnych złóż gazu ziemnego etap I. Inw. 2439/2011, CAG PIG, Warszawa.

- **Pożaryski W., Dembowski Z. 1983.** Mapa geologiczna Polski i krajów ościennych bez utworów kenozoicznych, mezozoicznych i permskich, 1 : 1 000 000. Instytut Geologiczny, Warszawa.
- **Pyzik M., Szczepański J. 1996.** Dodatek nr 1 do dokumentacji geologicznej złoża ropy naftowej Czerwieńsk. Inw. 981/97, CAG PIG, Warszawa.
- Reczek, J. 1962. Opracowanie półszczegółowych badań grawimetrycznych w północnej części Monokliny Przedsudeckiej, 1962 r. Inw. 062/63, CAG PIG, Warszawa.
- Richter-Bernburg G. 1955. Stratigraphische Gliederung des deutschen Zechsteins. Z. dt. Geol. Ges., 105, 843–854.
- Roman M.G. 2016. Interpretacja i wizualizacja danych otworowych w utworach niższego paleozoiku obszaru kratonu wschodnioeuropejskiego i karbonu podłoża monokliny przedsudeckiej. *Przegląd Geologiczny*, **64**, 976–981.
- **Rydzewski A., Chojęta H. 1988.** Dokumentacja wynikowa otworu wiertniczego Nowa Wieś P-1 [zawiera kartę otworu]. Inw. 131548, CAG PIG, Warszawa.
- Semyrka R. 2013. Jakościowa i ilościowa charakterystyka petrofizyczna subfacji dolomitu głównego w strefach paleogeograficznych. *Gospodarka Surowcami Mineralnymi*, 29, 99–114.
- Semyrka R., Jarzyna J.J., Krakowska P.I. Semyrka G. 2015. Analiza statystyczna parametrów mikrofacji dolomitu głównego w granicznej strefie platformy węglanowej. *Gospodarka Surowcami Mineralnymi*, 31, 123–140.
- Słowakiewicz M., Gąsiewicz A. 2013. Palaeoclimatic imprint, distribution and genesis of Zechstein Main Dolomite (Upper Permian) petroleum source rocks in Poland: Sedimentological and geochemical rationales. [W]: Palaeozoic Climatic Cycles: Their Evolutionary and Sedimentological Impact, [Red.]: Gąsiewicz A., Słowakiewicz M., *Geological Society of London, Special Publications*, **376**, 523– 538.

- Słowakiewicz M., Tucker M.E., Hindenberg K., Mawson M., Idiz E.F., Pancost R.D. 2016. Nearshore euxinia in the photic zone of an ancient sea: Part II The bigger picture and implications of understanding ocean anoxia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 461, 432–448.
- Sokolowski J. 1967. Charakterystyka geologiczna i strukturalna obszaru przedsudeckiego. *Geologia Sudetica*, **3**, 297–367
- Solon J., Borzyszkowski J., Bidłasik M., Richling A., Badora K., Balon J., Brzezińska-Wójcik T., Chabudziński Ł., Dobrowolski R., Grzegorczyk I., Jodłowski M., Kistowski M., Kot R., Krąż P., Lechnio J., Macias A., Majchrowska A., Malinowska E., Migoń P., Myga-Piątek U., Nita J., Papińska E., Rodzik J., Strzyż M., Terpiłowski S., Ziaja W. 2018. Physico-geographicalmesoregions of Poland - verification and adjustment of boundaries on the basis of contemporary spatial data. *Geographia Polonica*, 91.
- Strzelecki R., Oszczepalski S., Rydzewski A. 1991. Dokumentacja wynikowa otworu wiertniczego Tarnawa M-21 Inw. 132781, CAG PIG, Warszawa.
- Szostak I., Blus R. 1971. Dokumentacja pomiarów ciężarów objętościowych i porowatości skał, rok 1970 [104 otwory wiertnicze] Inw. 43782, ObO /1246,CAG PIG, Warszawa.
- Szyperko-Teller A. 1997. Formalne i nieformalne jednostki litostratygraficzne. Litostratygrafia i litofacje. Trias dolny (pstry piaskowiec). [W]: Epikontynentalne perm i mezozoik w Polsce, [Red.]: Marek S., Pajchlowa M. *Prace Państwowego Instytutu Geologicznego*, 153, 112–117.
- Tałuc S., Ciszewski S. 1962. Opracowanie półszczegółowych badań magnetycznych w rejonie monokliny przedsudeckiej, 1962. Kat. M-106 PBG, CAG PIG, Warszawa.
- Tałuc S., Ciszewski S. 1964. Opracowanie zwiadowczych profili magnetycznych w środkowej części regionu przedsudeckiego, 1963 rok. Inw. 2086, CAG PIG, Warszawa.
- Taraszczuk Z., Olczak D. 1968. Dokumentacja wynikowa otworu Wysoka-2 (miejsc. Wysoka, pow. zielonogórski) [za-

wiera kartę otworu]. Inw. 100960, CAG PIG, Warszawa.

- Tokarski A. 1958. Poszukiwawcze zadania wiercenia Mogilno 1. Nafta, 14, 4–12.
- Urbański K. 2002. Objaśnienia do szczegółowej mapy geologicznej Polski 1 : 50 000. Arkusz Buchałów (574). Państwowy Instytut Geologiczny, Warszawa.
- Urbański R., Żurawik J., Wojtkowiak Z. 1975. Dokumentacja geologiczna złoża gazu ziemnego Czeklin w rejonie Krosna Odrzańskiego. Inw. 11402 CUG, CAG PIG, Warszawa.
- Wagner J., Sadurski A. 2004. Mapa hydrogeologiczna Polski w skali 1 : 50 000, ark. Buchałów 0574. Państwowy Instytut Geologiczny, Warszawa.
- Wagner R. 1987. Cechsztyn. W: Budowa geologiczna wału pomorskiego i jego podłoża. *Prace Instytutu Geologicznego*, 119, 64–81.
- Wagner R. 1988. Ewolucja basenu cechsztyńskiego w Polsce. *Kwartalnik Geologiczny*, **32**, 33 51.
- Wagner R. 1994. Stratygrafia osadów i rozwój basenu cechsztyńskiego na Niżu Polskim. *Prace Państwowego Instytutu Geologicznego*, 146, 1–71.
- Wagner R. 1998. Mapy paleogeograficzne cechsztynu. [W:] Dadlez i in., 1998 [red.], Atlas paleogeograficzny epikontynentalnego permu i mezozoiku w Polsce, 1:2500000. Inw. 3417/98, 4610/2015,
- Wagner R. 2012. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Wagner R., Peryt T.M. 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. *Geological Quarterly*, **41**, 457–474.
- Wagner R., Peryt T.M. 1998. O możliwości podziału cechsztynu na sekwencje stratygraficzne w basenie Polskim. *Prace Państwowego Instytutu Geologicznego*, 165, 129–146.
- Wagner R., Piątkowski T.S., Peryt T.M. 1978. Polski basen cechsztyński. *Przegląd Geologiczny*, 26, 673–686.
- Wagner R., Buniak A., Dadlez R., Grotek I., Kiersnowski H., Kuberska M.,

Kudrewicz R., Lis P., Maliszewska A., Mikołajewski Z., Papiernik B., Pokorski J., Poprawa P., Skowroński L., Słowakiewicz M., Szewczyk J., Wolnowski T. 2008. Zasoby prognostyczne, nieodkryty potencjał gazu ziemnego w utworach czerwonego spągowca i wapienia cechsztyńskiego w Polsce - badania geologiczne. Inw. 2293/2009, CAG PIG, Warszawa.

- Waksmundzka M.I., Buła Z. 2017. Mapa geologiczna Polski bez utworów permu, mezozoiku i kenozoiku. [W]: Nawrocki J., Becker A. [Red.], Atlas geologiczny Polski. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
- Waśkiewicz K., Kiersnowski H. 2020. Systemy naftowe basenów permskich. Basen permski (czerwony spągowiec; dolomit główny). [W]: Pięcioletni plan rewaluacji stanu rozpoznania geologicznego kraju z wykorzystaniem nowoczesnych technik eksploracyjnych, szczególnie na większych głębokościach i w nowych strukturach geologicznych, pod kątem poszukiwań i wydobycia węglowodorów. Inw. 9530/2021, CAG PIG, Warszawa, 41–78.
- Wierzchowska-Kicułowa K. 1984. Budowa geologiczna utworów podpermskich monokliny przedsudeckiej. *Geologia Sudetica*, **19**, 121 – 142.
- Wierzchowska-Kicułowa K. 1987. Charakterystyka geologiczna podłoża permu obszaru przedsudeckiego. *Kwartalnik Geologiczny*, 31, 557–568.
- Wierzchowska-Kicułowa K. 2007. Podłoże monokliny. Monografia KGHM Polska Miedź S.A. (wydanie II): 90–92, Lubin.

- Wolańska A., 2012. Dokumentacja geologiczna złoża gazu ziemnego Brzózka w kat. C. Inw. 271/2013, CAG PIG, Warszawa.
- Wójcicki A., Kiersnowski H., Dyrka I., Adamczak-Biały T., Becker A., Głuszyński A., Janas M., Kozłowska A., Krzemiński L., Kuberska M., Pacześna J., Podhalańska T., Roman M., Skowroński L., Waksmundzka M.I. 2014. Prognostyczne zasoby gazu ziemnego w wybranych zwięzłych skałach zbiornikowych Polski. Szacowanie zasobów złóż węglowodorów – zadanie ciągłe PSG (etap I, 2014-2017 r.). Inw. 9046/2019, CAG PIG, Warszawa.
- Wróbel I. 1989. Wody podziemne Środkowego Nadodrza i problemy ich ochrony. Wydawnictwo WSInż, Zielona Góra.
- Wróbel I. 1997. Zmiany w środowisku hydrologicznym i hydrogeologicznym w rejonie Zielonej Góry. Współczesne problemy hydrogeologii, t. VIII. Wydawnictwo WIND, Wrocław.
- Zalewska M. 1996. Dokumentacja geologiczna w kat. B złóż ropy naftowej – Mozów S i Mozów N. Dodatek nr 1. Wniosek o zmianę decyzji zasobowej. Inw. 332/97, CAG PIG, Warszawa.
- Zieliński R. 1965. Sprawozdanie wynikowe z otworu geologicznego Kosierz-1. Inw. 7243/2021, CAG PIG, Warszawa.
- Żelaźniewicz A., Aleksandrowski P., Buła Z., Karnkowski P.H., Konon A., Ślączka A., Żaba J., Żytko K. 2011. Regionalizacja tektoniczna Polski. Komitet Nauk Geologicznych PAN, Wrocław.