# WYNIKI BADAŃ GEOFIZYCZNYCH

## Piotr KRZYWIEC

# INTERPRETACJA DANYCH SEJSMICZNYCH

Otwory wiertnicze Brześć Kujawski IG 1, IG 2 i IG 3 są ulokowane w kujawskim segmencie bruzdy śródpolskiej, w najbliższym sąsiedztwie poduszki solnej Smólak lub Brześć (por. Dadlez, Marek, 1998). Znajdują się one w bliskim sąsiedztwie profilu sejsmicznego 18-VI-78T, obrazującego budowę piętra cechsztyńsko-mezozoicznego (fig. 3, 39). Najgłębszy otwór, Brześć Kujawski IG 1, odwiercono ponad osiową strefą tej poduszki, zaś dwa kolejne otwory kalibrujące profil – na południowo-zachodniej flance. W żadnym z omawianych otworów nie dowiercono podłoża cechsztynu. Pierwszy otwór, przebijając kompleks jurajski i triasowy, nawiercił utwory cechsztynu, dwa pozostałe zakończono w utworach jurajskich.

Dowiązania głębokościowych danych otworowych (stratygrafia, karotaże) do czasowych danych sejsmicznych dokonano wykorzystując pomiary prędkości średnich.

Profil 18-VI-78T charakteryzuje się stosunkowo wysoką jakością pola falowego. Utwory pstrego piaskowca oraz wa-

pienia muszlowego charakteryzują się stosunkowo stałą miąższością, co wskazuje na brak ruchów soli cechsztyńskich. Zasadnicze zmiany miąższości obserwuje się w obrębie utworów triasu górnego – ich profil, przewiercony przez otwór Brześć Kujawski IG 1, charakteryzuje się, ponad poduszką solną, znaczną redukcją miąższości. Jednoznacznie wskazuje to na intensywne ruchy soli w obrębie tej części basenu osadowego bruzdy śródpolskiej. Zjawisko późnotriasowej tektoniki solnej miało charakter regionalny (szersze omówienie – patrz Krzywiec, 2006a; Krzywiec i in., 2006). Analogiczne redukcje miąższości – choć na mniejszą skalę – są obserwowane w obrębie kompleksu dolnojurajskiego. Utwory jury środkowej charakteryzują się raczej stałym rozkładem miąższości, co wskazuje na wygaśnięcie ruchów soli i związanej z tym tektoniki solnej.

Finalnym etapem ewolucji tektonicznej omawianego fragmentu bruzdy śródpolskiej była późnokredowo-paleogeńska inwersja, która doprowadziła do uniesienia osiowej części



Fig. 39. Zinterpretowany profil sejsmiczny 18-VI-78T skalibrowany przez otwory wiertnicze Brześć Kujawski IG 1, IG 2 i IG 3

Interpreted seismic profile 18-VI-78T calibrated by the Brześć Kujawski IG 1, IG 2 and IG 3 boreholes

basenu i uformowania wału śródpolskiego (szersze omówienie – patrz Krzywiec, 2006b; Krzywiec i in., 2006). Poinwersyjna erozja usunęła całość kredowej pokrywy osadowej, w związku z czym obecnie nie ma możliwości przeanalizowania przebiegu procesu inwersji na tym obszarze na podstawie danych sejsmicznych.

# Jan SZEWCZYK

# WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

# ZAKRES WYKONANYCH BADAŃ

We wszystkich analizowanych otworach wiertniczych wykonano badania geofizyczne. Badania prowadzono sukcesywnie w trakcie głębienia otworów w tzw. odcinkach badań strefowych. Rodzaje wykonanych badań dla omawianych otworów przedstawiono w formie graficznej na figurze 40, gdzie pokazano również numery katalogowe przyjęte dla poszczególnych badań w systemie interpretacyjnym GEOFLOG. Dokonany wybór odcinków głębokościowych badań był związany z konstrukcją otworów, a także z potrzebą zachowania przyjętej zasady nieprzekraczania 300-metrowej długości badanych odcinków. Badania te wykonano odpowiednio:

- W otworze Brześć Kujawski IG 1 w 12 odcinkach pomiarowych w okresie od 2.09.1986 do 16.02.1988 r.
- W otworze Brześć Kujawski IG 2 w 6 odcinkach pomiarowych w okresie od 4.01.1988 do 20.04.1988 r.





**Typy profilowań geofizycznych**: PG – profilowanie naturalnego promieniowania gamma, PN – profilowanie neutronowe, PS – profilowanie potencjałów samoistnych, SR – profilowanie średnicy otworu, RL – profilowanie oporności długą sondą gradientową, RS – profilowanie oporności krótką sondą potencjałową, RT – profilowanie oporności polem sterowanym, PA – profilowanie akustyczne, GG – profilowanie gęstości typu gamma-gamma, SO – sondowanie oporności, PT – profilowanie temperatury; przy opisie profilowania podano jego numer identyfikacyjny w systemie GEOFLOG

**Types of borehole logging methods:** PG – natural gamma log, PN – neutron log, PS – spontaneous log, SR – caliper, RL – resistivity lateral, RS – resistivity normal, RT – laterolog, PA – sonic log, GG – density log, SO – resistivity sounding, PT – temperature log; it was given a number of file used in GEOFLOG interpretation system

Fig. 40. Schematyczne zestawienie typów badań geofizycznych wykonanych w otworach wiertniczych Brześć Kujawski IG 1 (A), IG 2 (B) i IG 3 (C)

Schematic presentation of types of well logging methods performed in the Brześć Kujawski IG 1 (A), IG 2 (B) and IG 3 (C) boreholes





Na wykresie profilowania średnicy otworu wskazano miejsca połączeń poszczególnych odcinków pomiarowych; przedstawiono również odcinki rdzeniowane

Normalized values of natural gamma logs in the Brześć Kujawski IG 1 (A), IG 2 (B) and IG 3 (C) boreholes

A depth point is shown on caliper logs for joined of runs of well logs

• W otworze Brześć Kujawski IG 3 – w pięciu odcinkach pomiarowych w okresie od 3.03.1987 do 22.10.1987 r.

Wykonawcą badań była firma GEOFIZYKA Toruń z bazy Toruń bądź Wołomin.

Wszystkie badania wykonano przy użyciu standardowych aparatów analogowych produkcji radzieckiej, w niektórych przypadkach z zastosowaniem sond pomiarowych polskiej produkcji (przede wszystkim w pomiarach akustycznych). Zastosowane w badaniach radiometrycznych (PG, PN oraz PGG) sondy radiometryczne nie były kalibrowane ani standaryzowane. Wyniki profilowań uzyskane tymi metodami opisywano w nieporównywalnych jednostkach zliczeń intensywności promieniowania (imp./min).

Odcinki poszczególnych badań strefowych miały minimum 50-metrowe zakładki (powtórzenia) głębokościowe w stosunku do wcześniej wykonanych badań w odcinku wyżej leżącym, a część badań każdorazowo wykonywano w całej niezarurownej części profilu. W odniesieniu do większości metod badawczych, w odcinkach profilu o największym zróżnicowaniu parametrów petrofizycznych, wykonywano badania kontrolne w odcinkach nie mniejszych niż 50 m. Głównym celem tych badań było określenie stopnia stabilności pracy stosowanych układów pomiarowych.

Praktycznie w profilach wszystkich otworów wiertniczych wykonano pełny zestaw badań geofizycznych możliwych wówczas do wykonania w Polsce. Jakość wyników badań geofizycznych uzyskanych przy pomocy standardowych analogowych aparatur karotażowych odpowiada najwyższym możliwym wówczas do uzyskania. Omawiane otwory badawcze praktycznie kończyły równocześnie okres wiertniczego rozpoznania wgłębnej budowy Polski, prowadzonego w okresie po II wojnie światowej przez Państwowy Instytut Geologiczny. Poczynając od roku 1992 badania geofizyczne w otworach wiertniczych są wykonywane przez Górnictwo Naftowe i Gazownictwo, przy pomocy aparatury cyfrowej firmy Halliburton. Uzyskiwane za ich pośrednictwem dane geofizyczne odpowiadają współczesnym standardom światowym.

Zdecydowana większość wykonanych dotychczas na obszarze Polski otworów wiertniczych została zbadana przy pomocy aparatur analogowych geofizycznych, z zastosowaniem niekalibrowanych sond pomiarowych.

Prowadzone w Państwowym Instytucie Geologicznym od początku lat 90. XX w. systematyczne prace metodyczne oraz interpretacyjne, były oparte, w głównej mierze, na danych z otworów z rejonu Brześcia Kujawskiego (a także prowadzonych równolegle prac badawczych w rejonie Ciechocinka oraz Wojszyc).

Ze względu na zrealizowany w tych otworach obszerny zakres badań laboratoryjnych parametrów petrofizycznych, a także petrograficznych w omawianych otworach, uzyskane dane stanowią niezwykle cenny materiał faktograficzny do analiz metodycznych.

Analizy tych danych doprowadziły w początkach lat 90. XX w. do utworzenia sytemu baz danych geofizyczno-geologicznych wraz z systemem interpretacyjnym GEOFLOG integrującym te dane (Szewczyk, 1994). Umożliwiło to również rozwiązanie szeregu ważnych zagadnień metodycznych niezbędnych do interpretacji omawianych danych, w tym:

- cyfrowych opisów litologii (Gientka, Szewczyk, 1996);
- kalibracji sond neutronowych danymi laboratoryjnymi (Szewczyk, 1998a, b);
- konstrukcji syntetycznych profilowań akustycznych (Szewczyk, 1998b);
- standaryzacji statystycznej danych radiometrycznych (Szewczyk, 2000);
- obliczeń gęstości objętościowej uwzględniających zmienność składu mineralnego skał (Szewczyk, 2000);
- obliczeń przewodności cieplnej skał oraz wartości gęstości strumienia cieplnego (Szewczyk, 2001).

Wyniki tych badań umożliwiły m.in. wykonanie systematycznych prac interpretacyjnych w odniesieniu do ponad 300 kluczowych głębokich otworów badawczych, głównie z obszaru Niżu Polskiego.

Wyniki źródłowych danych pomiarowych zarejestrowane bezpośrednio w formie analogowej w skali głębokościowej 1:500 zostały zdigitalizowane, unormowane oraz wprowadzone w formie Centralnej Bazy Danych Geologicznych. W wyniku tych prac utworzono, zarówno w odniesieniu do wyników badań odcinkowych, jak i do danych połączonych i unormowanych, zbiory danych geofizycznych w formacie LAS (Logging ASCII Standard). Dane te w postaci cyfrowej są dostępne w CBDG pod numerami katalogowymi: dla otworu Brześć Kujawski IG 1 – pod numerem 10872, Brześć Kujawski IG 2 – 10873 oraz Brześć Kujawski IG 3 – 10873.

Na figurze 41 przedstawiono zbiorcze wyniki unormowanych i połączonych wartości naturalnego promieniowania gamma, a także profilowania średnicy otworu, ze wskazaniem głębokości połączenia poszczególnych odcinków badań. Wskazano równocześnie odcinki profilu, w których wykonywano badania hydrogeologiczne.

### CEL BADAŃ GEOFIZYCZNYCH

Podstawowym celem badawczym postawionym do rozwiązania w omawianych otworach wiertniczych było:

- określenie w połączeniu z danymi wiertniczymi (rdzeniami oraz próbkami okruchowymi) litologii skał występujących w profilu;
- ustalenie zmienności głębokościowej parametrów fizycznych skał niezbędnych do wydzielenia skał wykazujących właściwości zbiornikowe;
- wydzielenie warstw przepuszczalnych ze wskazaniem warstw kluczowych dla ustalenia możliwości występowania bituminów oraz uzyskania informacji istotnych dla rozpoznania hydrogeologicznego;
- ustalenie modeli zmienności głębokościowej parametrów fizycznych, wykorzystywanych w analizach wyników powierzchniowych geofizycznych metod badawczych (głównie grawimetrii oraz sejsmiki);

 określenie stanu technicznego otworu w zakresie niezbędnym do jego właściwej realizacji oraz warunków i możliwości wykonywania badań hydrogeologicznych, zarówno w trakcie prowadzenia wiercenia (badania próbnikami złoża), jak i po jego zakończeniu (badania przez perforacje rur okładzinowych).

# WYNIKI BADAŃ GEOFIZYCZNYCH

## Wyniki laboratoryjnych badań parametrów petrofizycznych

Jednym z celów badawczych w otworach wiertniczych Brześć Kujawski IG 1, IG 2 i IG 3 było uzyskanie informacji na temat głębokościowej zmienności parametrów petrofizycznych skał występujących w profilu. Ważnym źródłem informacji na ten temat były wyniki laboratoryjnych badań rdzeni wiertniczych.

W zakres laboratoryjnych badań parametrów petrofizycznych próbek pobranych z rdzeni wiertniczych wchodziły badania:

- gęstości objętościowej (w stanie powietrzno-suchym);
- gęstości właściwej;
- porowatości całkowitej;
- porowatości efektywnej;
- przepuszczalności w kierunku poziomym oraz pionowym;
- zawartości kalcytu oraz dolomitu (parametry te badano zarówno w odniesieniu do rdzeni wiertniczych, jak i próbek okruchowych).

Ogółem wykonano badania tych parametrów w odniesieniu do 1391 próbek (727 + 308 + 356 próbek) rdzeniowych oraz okruchowych. Jednym z ważnych elementów interpretacyjnych była wykonana *post factum* kalibracja danych geofizycznych (główne radiometrycznych), które, jak już wspomniano wcześniej, pozbawione są tego elementu. Znaczny zakres rdzeniowania profili wykonanych wierceń we wszystkich omawianych otworach wiertniczych oraz liczne badania laboratoryjne parametrów petrofizycznych rdzeni wiertniczych pozwoliły na unikatowe w skali całego Niżu Polskiego rozpoznanie cech fizycznych utworów mezozoicznych.

Na figurze 42 przedstawiono podstawowe informacje dotyczące wyników tych badań. Są to zestawienia głębokościowe odpowiednio: porowatości całkowitej oraz efektywnej, gęstości objętościowej oraz właściwej, a także przepuszczalności oraz relacje między tymi parametrami. Zdecydowanie różnymi właściwościami petrofizycznymi charakteryzują się utwory młodszego mezozoiku (kreda, jura) w stosunku do utworów starszego mezozoiku (trias). Utwory młodszych formacji mają zdecydowanie wyższą porowatość w porównaniu z utworami formacji starszych. Wyraźną zmienność, niekiedy znaczną nawet w obrębie tych samych typów litologicznych, wykazuje gęstość właściwa. Wskazuje to na konieczność uwzględniania zmienności tego parametru w interpretacjach geofizycznych, również wykonywanych współcześnie aparaturami cyfrowymi z sondami kalibrowanymi. Bardzo słaba korelacja istnieje między porowatością efektywną a przepuszczalnością skał praktycznie dla wszystkich formacji. Utrudnia to m.in. ocenę właściwości filtracyjnych badanych warstw, a tym samym określanie wydajności poszczególnych warstw wodonośnych. Ma to istotne znaczenie przy ocenie perspektyw ujęcia wód podziemnych dla celów geotermicznych czy balneologicznych. W przypadku prowadzenia ewentualnych dalszych badań, których celem będzie próba zwiększenia dokładności wyników interpretacji, do prowadzonych analiz powinny być włączone również dane elektrometryczne (zarówno sondowania oporności, jak profilowania potencjałów samoistnych).

## Wyniki interpretacji danych geofizycznych

Wyniki badań geofizycznych wykorzystano zarówno w trakcie ustalania profilu litologicznego-stratygraficznego, jak i przy wyborze warstw wodonośnych, bądź ich fragmentów, istotnych dla rozpoznania parametrów hydrogeochemicznych oraz hydrodynamicznych wód podziemnych. W ramach prac interpretacyjnych opracowano m.in.:

- cyfrowy opis profilu wiertniczego (LITO);
- warstwowy (GEO) oraz objętościowy (VOL) geofizyczny profil litologiczny;
- określenie wielkości przesunięć głębokościowych między głębokościami określanymi na podstawie długości przewodu wiertniczego a głębokościami określanymi na podstawie pomiarów;
- kalibrację *post factum* profilowań radiometrycznych na podstawie laboratoryjnych danych petrofizycznych;
- obliczenie porowatości całkowitej oraz efektywnej, gęstości objętościowej oraz prędkości fal akustycznych;

 $\rightarrow$ 

Fig. 42. Zbiorcze zestawienie graficzne wyników laboratoryjnych badań parametrów petrofizycznych

 $\mathbf{A} - \text{porowatość całkowita oraz efektywna, } \mathbf{B} - \text{gestość właściwa oraz objętościowa, } \mathbf{C} - \text{gestość objętościowa w funkcji gestości właściwej, } \mathbf{D} - \text{gestość właściwa oraz objętościowa, } \mathbf{E} - \text{porowatość efektywna w funkcji przepuszczalności, } \mathbf{F} - \text{porowatość efektywna w funkcji porowatość efektywna w funkcji porowatość efektywna w funkcji przepuszczalności, } \mathbf{F} - \text{porowatość efektywna w funkcji porowatość efektywna w funkcji por$ 

#### Depth diagram of results of petrophysical parameters

A – total or effective porosity, B – matrix or bulk density, C – bulk density versus martix density, D – matrix density for main types of lithology, E – effective porosity versus permeability, F – effective porosity versus total porosity



 obliczenie przewodności cieplnej skał wraz z określeniem wielkości gęstości strumienia cieplnego.

## Cyfrowy opis profilu litologicznego

Punktem wyjściowym do prac interpretacyjnych było opracowanie cyfrowego wiertniczego profilu litologicznego opartego zarówno na rdzeniach wiertniczych, jak i próbkach okruchowych. Przy stosowaniu tego opisu przyjęto oryginalną metodę opisu cyfrowego litologii zaproponowaną przez Gientkę i Szewczyka (1996). Metoda ta wraz z opracowanymi procedurami informatycznymi pozwala na uzyskanie unormowanego cyfrowego opisu rdzeni wiertniczych oraz próbek okruchowych w formie umożliwiającej jego numeryczne przetwarzanie i stosowanie w procedurach interpretacyjnych systemu GEOFLOG (lub innych systemów po odpowiednim dostosowaniu struktury danych). Uzyskiwany tym sposobem cyfrowy opis litologii przenoszono (i uogólniano) na warstwowy profil geofizyczny (GEO), opracowywany na podstawie analiz profilowań geofizycznych. W procesie interpretacji uwzględniano zarówno wzajemne przesunięcia głębokościowe obydwu typów informacji, jak i niepełny uzysk rdzenia. Na figurze 43 przedstawiono wielkość przesunięć głębokościowych w poszczególnych otworach wiertniczych. W interpretacjach danych rdzeniowych, w przypadku niepełnego jego uzysku, przyjęto zasadę dowiązywania głębokościowego do stropu odcinka rdzeniowanego.



#### Fig. 43. Przesunięcie między głębokościami wiertniczymi określanymi na podstawie długości przewodu wiertniczego, a głębokościami geofizycznymi opartymi na długości kabla geofizycznego

Depth displacement between drillers and well logging depths



#### Fig. 44. Zestawienie głębokościowe

#### A – Brześć Kujawski IG 1, B – Brześć Kujawski IG 2,

Results of calculation

A – Brześć Kujawski IG 1, B – Brześć Kujawski IG 2,



#### wyników obliczeń porowatości całkowitych oraz gęstości objętościowej

C – Brześć Kujawski IG 3; dla porównania pokazano wyniki badań laboratoryjnych analogicznych parametrów petrofizycznych (kropki)

of total porosity and bulk density

C - Brześć Kujawski IG 3; for comparison the results of calculation with point laboratory petrophysical data (dots) are shown





Calculated synthetic sonic log (DTS)

A comparison with results of sonic log (DT) and pseudo-sonic log is shown, based on calculation of vertical seismic profile data (VSP);  $\mathbf{A}$  – Brześć Kujawski IG 3;  $\mathbf{B}$  – Brześć Kujawski IG 2;  $\mathbf{C}$  – Brześć Kujawski IG 1, cutting;  $\mathbf{D}$  – Brześć Kujawski IG 1, whole

termicznei

visible



#### Profile gęstościowe oraz porowatościowe

Ważnym elementem interpretacyjnym w przypadku badanych otworów wiertniczych była wykonywana post fatum kalibracja stosowanych w badaniach sond radiometrycznych. Metody wykonywania kalibracji opisano we wcześniejszych pracach Szewczyka (1998a, 2000; Szewczyk, Gientka, 1998). Uzyskiwane tym sposobem informacje pozwalają na obliczenie objętościowego profilu litologicznego (VOL) badanych profili wiertniczych, uwzględniającego zarówno istniejący opis litologii, jak i parametry petrofizyczne badanych skał, uzyskiwane na podstawie badań laboratoryjnych. W zastosowanej procedurze interpretacyjnej przyjęto 3-składnikowy model objętościowy skały (przestrzeń porowa + zailenie + szkielet skały). Poprawność przyjmowanych parametrów metodycznych, jak i wybieranych tzw. głębokościowych odcinków metodycznych (o stałych parametrach interpretacyjnych), oceniano metodą iteracyjną zarówno na podstawie zgodności uzyskiwanych wyników z wynikami badań laboratoryjnych (porowatości i gęstości), jak i zgodności obliczonej prędkości fal akustycznych z jej obserwowanymi wartościami. Głębokości łączenia poszczególnych odcinków badań z definicji wybierano jak głębokości początkowe wspomnianych wcześniej odcinków metodycznych.

Fig. 46. Temperatura obserwowana (T) oraz obliczona (Ts) w otworze wiertniczym Brześć Kujawski IG 2 W górnej części profilu (<1100 m) widoczne wyraźne zaburzenie równowagi

Observed (*T*) and calculated (*Ts*) palaeotemperature in Brześć Kujawski IG 2 borehole

A temperature disturbance in upper part (<1100 m) of profile is clearly

Na figurze 44 przedstawiono wyniki obliczeń porowatości całkowitej i gęstości objętościowej w stanie powietrzno-suchym dla wszystkich trzech analizowanych otworów wiertniczych. W procedurach interpretacyjnych nie stosowano w odniesieniu do profilowań radiometrycznych przeliczeń do tzw. anomalii fizycznych (*vide* Czubek, 1973), nie wprowadzano również poprawek na zmienność średnicy wierceń.

Otrzymane wyniki interpretacji porównywano z wynikami badań parametrów fizycznych uzyskanymi na podstawie badań laboratoryjnych. Prezentowane wyniki mogą być wykorzystane w analizach związanych z pozyskiwaniem energii geotermalnej, hydrogeologii, czy też w modelowaniach wyników powierzchniowych badań geofizycznych, takich jak badania sejsmiczne czy grawimetryczne.

# Fig. 47. Warstwy wodonośne oraz izolacyjne w profilach otworów wiertniczych Brześć Kujawski IG 1, IG 2 i IG 3 określone na podstawie interpretacji danych geofizycznych

Podano średnią wartość porowatości efektywnej dla tych warstw. Wskazano interwały głębokościowe, w których wykonano badania hydrogeologiczne – podano wielkość obserwowanych przypływów (w  $m^3/h$ ) oraz mineralizację wód (w  $g/dm^3$ )

Aquifers and non-aquifers in the Brześć Kujawski IG 1, IG 2 and IG 3 boreholes based on geophysical well logging data interpretation

Average effective porosity of aquifers and depth intervals with hydrogeological tests results (discharge in m<sup>3</sup>/h and total mineralization in g/dm<sup>3</sup> are shown)



#### Prędkości fal akustycznych oraz sejsmicznych

Wyniki bezpośrednich rejestracji w trakcie badań prędkości fal akustycznych (DT) ze względu na złą jakość stosowanego sprzętu pomiarowego, w tym brak kompensacji wpływu otworu, nie pozwalały na uzyskanie dostatecznie wiarygodnego rozpoznania tej ważnej, szczególnie dla badań sejsmicznych, cechy fizycznej skał występujących w profilach. Jednym z efektów wykonanych prac interpretacyjnych było, wspomniane już wcześniej, obliczenie objętościowego profilu litologiczno-porowatościowego (VOL). Rozwiązując zadanie, określane w fizyce jako zadanie "wprost", obliczono wartość tzw. syntetycznego profilowania akustycznego (DTS). Zastosowaną metodykę obliczeń przedstawiono we wcześniejszej pracy autora (Szewczyk, 1998a). W procedurze interpretacyjnej przyjęto model Hana i in. (1986), uwzględniający wpływ ciśnienia litostatycznego. Na figurze 45 zestawiono głębokościowe wyniki obliczonych wartości prędkości akustycznych (DTS) z wynikami bezpośrednich pomiarów akustycznych (DT) oraz tzw. sejsmicznymi prędkościami pseudoakustycznymi (DT VSP) określonymi na podstawie pionowych profilowań prędkości fal sejsmicznych. Uzyskany wynik obliczeń prędkości fali akustycznej pozwala na efektywną weryfikację poprawności zapisu bezpośredniego pomiaru (jeśli ten istnieje), lub też wypełnia wiedzę na temat tego ważnego parametru fizycznego we fragmentach otworów, w których brak bezpośrednich pomiarów akustycznych. Większość otworów wiertniczych wykonanych przed rokiem 1978 jest całkowicie pozbawiona tego typu pomiarów, bądź też uzyskiwane wyniki są obarczone znacznymi błędami. W przedstawionych wynikach obserwowana jest wyraźnie lepsza zgodność obliczonych wartości DTS z wynikami DT VSP w stosunku do bezpośrednich pomiarów prędkości fal akustycznych (DT).

Uwagę zwracają małe wartości wszystkich typów prędkości w obrębie utworów jury dolnej oraz triasu górnego, związane z płytkim zaleganiem tych utworów (i wynikającym z tego faktu zmniejszeniem się ciśnienia litostatycznego). W otworze Brześć Kujawski IG 3, w spągowej części utworów aalenu i stropowej części toarku jest widoczny, zaznaczony kółkiem na figurze 45, wpływ upadu warstw na obserwowane wartości prędkości typu DT VSP.

Uzyskane dane dotyczące rozpoznania prędkościowego (łącznie z obliczonymi wartościami gęstości objętościowych) mogą stanowić materiał wyjściowy do prowadzenia szczegółowych modelowań sejsmicznych oraz grawimetrycznych na omawianym obszarze.

#### Warunki geotermiczne

Pomiar temperatury w warunkach zbliżonych do ustalonych wykonano jedynie w otworze Brześć Kujawski IG 2. Pomiar ten przeprowadzono po 12 dobach od ustania cyrkulacji płuczki wiertniczej w otworze. Na figurze 46 przedstawiono zarówno wartości obserwowanej temperatury (T), jak i obliczonych wartości paleotemperatury (Ts).

W odniesieniu do otworów Brześć Kujawski IG 1 oraz IG 3 mierzono temperaturę w warunkach nieustabilizowanych termicznie, nad dnem otworów (odpowiednik tzw. pomiarów termometrem maksymalnym).

Przy pomocy metody opisanej przez autora we wcześniejszej pracy (Szewczyk, 2001), obliczono wartości przewodności cieplnej dla profili omawianych otworów, a następnie wartości gęstości ziemskiego strumienia cieplnego. W obliczeniach tych uwzględniono wpływ czynnika paleoklimatycznego na wartość strumienia (Szewczyk, 2002). Wartość strumienia wyniosła odpowiednio: 80,1 (Brześć Kujawski IG 1); 88,3 (IG 2) oraz 86,8 mWm<sup>-2</sup> (IG 3). Wszystkie trzy analizowane otwory wiertnicze znajdują się w strefie podwyższonych wartości strumienia, związanych ze wschodnią granicą zasięgu waryscydów zdefiniowaną przez Pożaryskiego i in. (1992).

### Warstwy wodonośne, mineralizacja wód podziemnych

Jednym z ważnych celów badawczych w omawianych otworach wiertniczych, zgodnie z przyjętymi założeniami badawczymi, było wydzielenie warstw wodonośnych, ze szczególnym uwzględnieniem warstw mogących potencjalnie zawierać bituminy. Na figurze 47 przedstawiono profile omawianych otworów wiertniczych z wydzielonymi poziomami wodonośnymi, wraz z obliczoną dla nich średnią porowatością efektywną, a także lokalizację oraz podstawowe wyniki wykonanych opróbowań poziomów wodonośnych. Na figurze 48 przedstawiono zestawienie mineralizacji wód podziemnych z badanych poziomów wodonośnych na tle wartości mineralizacji obserwowanych na Niżu Polskim. Linią ciągłą zaznaczono wartość średnią mineralizacji, obliczoną metodą najmniejszych kwadratów.

Wody podziemne dla badanego obszaru wykazują relatywnie niższą mineralizację w stosunku do wartości średnich obserwowanych na obszarze Niżu Polskiego. Jest to szczególnie widoczne w przebiegu zmienności mineralizacji obserwowanej w otworze Brześć Kujawski IG 3 (nie jest tu wykluczony wpływ filtratu płuczki wiertniczej na wielkości obserwowanej mineralizacji wody).

Wysłodzenie wody może być związane z prawdopodobną infiltracją wody z płytszych poziomów wodonośnych o niskiej mineralizacji, w kierunku głębszych poziomów (descenzja wód). Bezpośrednim dowodem na możliwość występowania tego zjawiska jest zaobserwowana pionowa cyrkulacja wód w przestrzeni pozarurowej, prowadząca do obniżenia temperatury w otworze Brześć Kujawski IG 2 do głęb. ok. 1070 m. Niezależnym potwierdzeniem tego zjawiska były wyraźne zaniki płuczki wiertniczej do tej głębokości, obserwowane w trakcie wykonywania wiercenia. Pokazana została wartość średnia mineralizacji tych wód obliczona metodą najmniejszych kwadratów

Results of tests with all results for Polish Lowlands in the background

Mean value of water mineralisation calculated by the method of last squares is shown



#### PODSUMOWANIE WYNIKÓW BADAŃ GEOFIZYCZNYCH

Wykonane badania z zakresu geofizyki wiertniczej umożliwiły rozpoznanie zarówno profilu litologicznego, jak i podstawowych cech petrofizycznych utworów występujących w profilach wszystkich trzech analizowanych otworów wiertniczych. Uzyskane w tych otworach wyniki, zarówno geofizyczne, jak i geologiczne, mają istotne znacznie dla procesu właściwego wykorzystania danych archiwalnych z innych otworów wykonanych na obszarze Niżu Polskiego. Zdecydowaną większość wykonanych dotychczas na obszarze Polski otworów wiertniczych zbadano przy pomocy aparatur analogowych geofizycznych z zastosowaniem niekalibrowanych sond pomiarowych. Można z dużym prawdopodobieństwem przypuszczać, że przyrost liczby nowych otworów wiertniczych na obszarze Polski będzie znikomy. Przyrost nowych informacji na temat budowy geologicznej będzie w głównej mierze bazował na właściwej interpretacji już istniejących danych archiwalnych.

Problem właściwej interpretacji, m.in. wyników badań geofizycznych jest, i pozostanie, fundamentalnym problemem badawczym. Ze względu na unikatowy, obszerny zakres badań geofizycznych, petrofizycznych, petrograficznych, a także innych wykonanych w omawianych otworach wiertniczych, uzyskane dane stanowią niezwykle cenny materiał faktograficzny dla analiz metodycznych, związanych z badaniami utworów mezozoicznych na Niżu Polskim. Są to jednocześnie bardzo cenne informacje metodyczne, niezbędne dla właściwej interpretacji parametrów geofizycznych uzyskanych metodami współcześnie stosowanymi w badaniach aparaturami cyfrowymi typu Halliburton.

#### Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

# PROFILOWANIE PRĘDKOŚCI ŚREDNICH (BRZEŚĆ KUJAWSKI IG 1 I IG 3) ORAZ PIONOWE PROFILOWANIE SEJSMICZNE (BRZEŚĆ KUJAWSKI IG 1)

W rejonie Brześcia Kujawskiego znajdują się dwa otwory wiertnicze, w których przeprowadzono pomiary prędkości średnich. Są to Brześć Kujawski IG 1, nawiercający osady cechsztynu, oraz Brześć Kujawski IG 3, zakończony w utworach jury dolnej.

W otworze **Brześć Kujawski IG 1** pomiary sejsmometryczne, profilowanie prędkości średnich i pionowe profilowanie sejsmiczne wykonało Przedsiębiorstwo Geofizyki Górnictwa Naftowego Kraków w styczniu 1988 r. Pomiarami objęto odcinki do 4000 m (*V*śr) przy głębokości końcowej otworu 4573 m. Prace wykonano aparaturą SERCEL SN 338 oraz sondą pięciogeofonową, stosując interwał pomiaru 20 m. W celu doboru odpowiednich warunków strzelania wykonano mikroprofilowanie otworów strzałowych oraz dynamikę. Prace strzałowe, których średni ładunek wynosił 1,0–2,0 kg, wykonano z dwóch punktów strzałowych. Parametry punktów strzałowych (PS) wynosiły:

PS 1 
$$d = 110 \text{ m}$$
 A = 240° N = 0,0 m  
PS 2  $d = 730 \text{ m}$  A = 240° N = 0,0 m

gdzie:

- d odległość punktu wzbudzania (strzelania) od głębokiego otworu (w m),
- A azymut mierzony w punkcie głębokiego otworu w kierunku punktu wzbudzania (strzelania),
- N wysokość względna punktu wzbudzania (strzelania) w stosunku do otworu wiertniczego (niwelacja).

Do obliczenia krzywej prędkości średnich przyjęto, jako poziom odniesienia, poziom wylotu otworu, tj. 90 m n.p.m. Jakość materiałów podstawowych została oceniona w 67% całego interwału pomiarowego jako dobra i w 33% jako dostateczna, zarówno dla PS 1, jak i dla PS 2. Redukcję czasu wykonano metodą, która zakłada jednorodność ośrodka od punktu wzbudzania do głębokości zanurzenia geofonu. Rejestracji dokonano na taśmach cyfrowych i na papierze oscylograficznym. Sejsmogramy oscylograficzne wykorzystano do opracowania prędkości średnich.

Taśmy z zapisem cyfrowym z pomiarów PPS (pionowe profilowanie sejsmiczne) przetworzono na centrali cyfrowej MS 421, przeprowadzając między innymi normalizację zapisu, odpowiednią filtrację i wyrównanie dynamiki. Na sejsmogramie zbiorczym wykonano, dla dokładniejszej korelacji fal odbitych i w celu wyeliminowania z tła zakłóceń, sumowanie kierunkowe.

W otworze wiertniczym **Brześć Kujawski IG 3** profilowanie prędkości średnich wykonało Przedsiębiorstwo Geofizyki Górnictwa Naftowego Toruń w październiku 1987 r. Pomiary wykonano metodą bezdynamitową aparaturą CS 5G i sondą jednogeofonową typu NT przy interwale pomiarowym 15 m. Prace prowadzono z trzech punktów wzbudzania (PW) usytuowanych:

| PW 1 | d = 100 m | $A = 280^{\circ}$ | N = 0 m |
|------|-----------|-------------------|---------|
| PW 2 | d = 50 m  | $A = 20^{\circ}$  | N = 0 m |
| PW 1 | d = 50 m  | A = 160°          | N = 0 m |

Do obliczenia krzywej prędkości średnich przyjęto, jako poziom odniesienia wysokość pomiaru, czyli 0 m n.p.m., przy wysokości wylotu otworu wynoszącej 95 m n.p.m. Pomiarem objęto odcinki do głębokości 2080 m, przy głębokości końcowej otworu 2204 m. Redukcję do pionu wykonano zakładając jednorodność ośrodka, a więc prostolinijny przebieg promienia sejsmicznego.

Dla obydwu otworów wiertniczych, Brześć Kujawski IG 1 i IG 3 głębokość zredukowana do poziomu odniesienia została obliczona ze wzoru:

$$hr = h - hpo \pm N \pm \Delta h$$

gdzie:

- hr głębokość zredukowana punktu pomiarowego,
- h głębokość zanurzenia geofonu głębinowego,
- hpo średnia głębokość wzbudzania,
- $\Delta h$  różnica głębokości między *hpo* i poziomem odniesienia w metrach.

Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

$$tp = tobs + \Delta th$$

gdzie:

- *tp* czas poprawiony;
- tobs-czas obserwowany;
- $\Delta th$  poprawka wynikająca z głębokości punktu wzbudzania (strzelania), poziomu odniesienia, miąższości strefy małych prędkości, prędkości w tej strefie i prędkości pod nią.

W przypadku otworu Brześć Kujawski IG 1, do obliczenia poprawki  $\Delta th$  pomiędzy średnią głębokością wzbudzania a poziomem odniesienia, przyjęto prędkość dla PS 1 – 1090 m/s, a dla PS 2 – 930 m/s. W otworze Brześć Kujawski IG 3 pomiary SMP (strefa małych prędkości) pozwoliły wyznaczyć wartości: dla PW 1 do głębokości 1,2 m – 300 m/s i dla PW 2 oraz 3 do głębokości 1,7 m – 1350 m/s.

Czas zredukowany dla poszczególnych punktów wzbudzania liczono na podstawie wzoru:

$$tr = \frac{hr}{\sqrt{hr^2 + d^2}} \times tp$$

W celu wyeliminowania anizotropii ośrodka obliczono średni czas redukowany (*tr*), jako średnią arytmetyczną pomiarów czasu zredukowanego z poszczególnych punktów wzbudzania.

Wartości *hr* i *tr* posłużyły do obliczenia prędkości średnich (*V*śr) zgodnie ze wzorem:

$$V \acute{s} r = \frac{hr}{tr}$$

Wszystkie wyliczone wartości zestawiono w tabelach 31 (Brześć Kujawski IG 1) i 32 (IG 3). Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego.

Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 49A, 51A) i hodografu pionowego (fig. 49B, 51B). Do wykreślenia krzywych prędkości średnich wykorzystano wartości uśrednione z poszczególnych punktów wzbudzania. Przedstawiony na figurach 49B i 51B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano wygładzanie wartości pomiarów geofizycznych. Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem jej wykorzystania jest jednakowy odstęp między punktami pomiarowymi.

Podaną metodę zastosowano do wygładzania odczytów czasu z pomiarów prędkości średnich, w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości



Fig. 49. Wykres prędkości średnich (A) i hodograf pionowy (B) (otwór Brześć Kujawski IG 1, poz. odn. 90 m n.p.m.)

Tr – średni czas zredukowany, Vśr – prędkość średnia, H – głębokość; oznaczenia stratygraficzne wg słownika kodowego sytemu SADOG (Geonafta)

Average seismic velocity (A) and travel-time curve (B) (Brześć Kujawski IG 1 borehole, reference level 90 m a.s.l.)

Tr – average reduced time, V'sr – average velocity, H – depth; stratigraphical symbols according to the SADOG coding system of Geonafta

wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując pomiary czasu zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu odniesienia pomiaru i ich interpolacji dla znormalizowanych przedziałów głębokości, co 20 m. Następnie wyznaczone wartości wygładzono przy użyciu specjalnego programu przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtr 0,25; 0,5 i 0,25. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zostają zmniejszone przypadkowe skoki wartości spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych



#### Fig. 50. Wykresy prędkości wygładzonych (*Vw*), interwałowych (*Vi*) i kompleksowych (*Vk*) (otwór Brześć Kujawski IG 1; poz. odn. 90 m n.p.m.)

Oznaczenia stratygraficzne wg słownika kodowego sytemu SADOG (Geonafta)

Smoothed velocity (*Vw*), interval velocity (*Vi*) and complex velocity (*Vk*) (Brześć Kujawski IG 1 borehole; reference level 90 m a.s.l.)

Stratigraphical symbols according to the SADOG coding system of Geonafta

warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone pomiary czasu po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje są zawarte w banku danych prędkościowych utworzonym w latach 90. XX w. w Zakładzie Geofizyki PIG dla potrzeb interpretacji prac sejsmicznych. Fig. 51. Wykres prędkości średnich (A) i hodograf pionowy (B) (otwór Brześć Kujawski IG 3, poz. odn. 0 m n.p.m.) Objaśnienia przy figurze 49

Average seismic velocity (A) and travel-time curve (B) (Brześć Kujawski IG 3 borehole, reference level 0 m a.s.l.)

For explanations see Figure 49

3000

4000

5000

6000

Vw, Vi, Vk [m/s]

Q+Ng<sup>1000</sup>

.lk

Jo

Jcl+bt

n

500

2000



# Fig. 52. wykresy prędkości wygradzonych (*Vw*), interwałowych (*Vi*) i kompleksowych (*Vk*) (otwór Brześć Kujawski IG 3; poz. odn. 0 m n.p.m.) Objaśnienia na figurze 50

Smoothed velocity (*Vw*), interval velocity (*Vi*) and complex velocity (*Vk*) (Brześć Kujawski IG 3 borehole; reference level 0 m a.s.l.)

For explanations see Figure 50

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasu wygładzonego n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości obliczonych prędkości odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości *Vw* (prędkość wygładzona), *Vi* (prędkość interwałowa), *Vk* (prędkość kompleksowa) obliczonych z pomiarów czasu wygładzonego przedstawiono w tabelach 33 (Brześć Kujawski IG 1) i 34 (IG 3). Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurach 50 (Brześć Kujawski IG 1) i 52 (IG 3).

Powyższe wykresy wzbogacono profilem stratygraficznym wiercenia, co umożliwia bezpośrednie powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi przekroju geologicznego w otworze oraz z refleksami sejsmicznymi.

Obserwowane na wykresach (fig. 50, 52) duże zmiany prędkości są związane ze zmienną litologią skał geologicznych. Zasadniczy wpływ mają tu utwory oksfordu o dużej miąższości, wykształcone w facji wapiennej. W otworze wiertniczym Brześć Kujawski IG 3 facja ta ku górze przechodzi w marglisto-piaszczyste osady kimerydu. Granica kontrastu prędkości w stropie jury środkowej jest związana z przystropowymi piaskowcami. Zróżnicowane prędkości dolnych pięter jury środkowej (bajos, aalen), łączone ze zmianami facjalnymi – przejścia facji ilastej w fację piaszczystą, jest zdominowane przez bardzo wyraźny wzrost wartości na głębokości odpowiadającej spągowi aalenu górnego. W utworach jury dolnej obok granicy kontrastu prędkości odpowiadającej przystropowej serii osadów piaskowcowych występuje bardzo wyraźna granica w stropowych warstwach pliensbahu.

Charakterystyka utworów triasu ogranicza się do otworu wiertniczego Brześć Kujawski IG 1 (fig. 51). Wapień muszlowy wykształcony w facji marglisto-wapiennej zaznacza się na wykresach w postaci kompleksu o dużych wartościach prędkości. W pozostałych osadach triasu, wykształconych głównie jako piaskowce i mułowce, zaznaczają się podwyższone prędkości w dolnych warstwach gipsowych kajpru górnego i w przyspągowych wapieniach osadów retu.

Uzyskane wyniki korelacji rejestrowanych granic kontrastów prędkości z granicami geologicznymi dostarczają danych do identyfikacji granic odbijających na przekrojach sejsmicznych (jury górnej, środkowej i dolnej, kajpru, wapienia muszlowego oraz górnego pstrego piaskowca) oraz ich interpretacji głębokościowej.



Wyniki pomiaru PPS w otworze Brześć Kujawski IG 1 charakteryzują się brakiem refleksów pochodzących z utworów płytszych, przy stosunkowo dobrej czytelności refleksów z utworów zalegających głębiej. Uzyskana rozdzielczość pozwala na uzupełnienie informacji o położeniu granic sejsmicznych poniżej dna głębokiego odwiertu. Obraz falowy zarejestrowany z PS 1 na PS 2 zawiera refleksy pochodzące z granic sejsmicznych znajdujących się poniżej najgłębszego punktu rejestracji PPS. W wyniku ekstrapolacji zidentyfikowano odbicia:

- na czasie t = 2,12 s z głęb. ok. 4330 m refleks z przystropowych utworów cechsztynu Z<sub>3-4</sub> (PS 1); – na czasie t = 3,06–3,26 s z głęb. ok. 6080–6480 m szereg refleksów ze spągu cechsztynu Z<sub>1</sub>' (PS 1, PS 2). Refleksy te (Z<sub>1</sub>' i Z<sub>3-4</sub>) znajdują potwierdzenie zarówno na głębokościowym przekroju sejsmicznym profilu W18-VI-78T przebiegającym przez głęboki otwór geologiczny Brześć Kujawski IG 1, jak i na mapach granic refleksyjnych Z<sub>1</sub>' i Z<sub>3-4</sub> z dokumentacji tematu "Włocławek-Płock" rejon "Inowrocław-Toruń" 1978/79.

Wykresy prędkości średnich i prędkości kompleksowych pozwalają określić model prędkościowy, według którego mogą być opracowane przekroje i mapy głębokościowe oraz miąższościowe.

## Tabela 31

## Zestawienie wartości głębokości (H), czasu zredukowanego (Tr) i prędkości średnich (Vśr) dla otworu wiertniczego Brześć Kujawski IG 1

Depth (H), reduced time (Tr) and average velocity (Vśr) values for the Brześć Kujawski IG 1 borehole

| <i>H</i> [m] | <i>Tr</i> 1 [s] | <i>Tr</i> 2 [s] | <i>Tr</i> [s] | Vśr [m/s] | <i>H</i> [m] | <i>Tr</i> 1 [s] | <i>Tr</i> 2 [s] | Tr [s] | Vśr [m/s] |
|--------------|-----------------|-----------------|---------------|-----------|--------------|-----------------|-----------------|--------|-----------|
| 1            | 2               | 3               | 4             | 5         | 1            | 2               | 3               | 4      | 5         |
| 20           | 0,0160          | 0,0070          | 0,0115        | 1739      | 460          | 0,1550          | 0,1350          | 0,1450 | 3172      |
| 40           | 0,0300          | 0,0140          | 0,0220        | 1818      | 480          | 0,1620          | 0,1420          | 0,1520 | 3158      |
| 60           | 0,0420          | 0,0210          | 0,0315        | 1905      | 500          | 0,1700          | 0,1490          | 0,1595 | 3135      |
| 80           | 0,0500          | 0,0270          | 0,0385        | 2078      | 520          | 0,1770          | 0,1560          | 0,1665 | 3123      |
| 100          | 0,0580          | 0,0340          | 0,0460        | 2174      | 540          | 0,1840          | 0,1630          | 0,1735 | 3112      |
| 120          | 0,0650          | 0,0400          | 0,0525        | 2286      | 560          | 0,1880          | 0,1700          | 0,1790 | 3128      |
| 140          | 0,0730          | 0,0460          | 0,0595        | 2353      | 580          | 0,1960          | 0,1770          | 0,1865 | 3110      |
| 160          | 0,0780          | 0,0520          | 0,0650        | 2462      | 600          | 0,2050          | 0,1850          | 0,1950 | 3077      |
| 180          | 0,0840          | 0,0580          | 0,0710        | 2535      | 620          | 0,2090          | 0,1920          | 0,2005 | 3092      |
| 200          | 0,0900          | 0,0640          | 0,0770        | 2597      | 640          | 0,2180          | 0,1980          | 0,2080 | 3077      |
| 220          | 0,0940          | 0,0700          | 0,0820        | 2683      | 660          | 0,2220          | 0,2040          | 0,2130 | 3099      |
| 240          | 0,1010          | 0,0750          | 0,0880        | 2727      | 680          | 0,2290          | 0,2110          | 0,2200 | 3091      |
| 260          | 0,1060          | 0,0800          | 0,0930        | 2796      | 700          | 0,2340          | 0,2190          | 0,2265 | 3091      |
| 280          | 0,1100          | 0,0840          | 0,0970        | 2887      | 720          | 0,2420          | 0,2250          | 0,2335 | 3084      |
| 300          | 0,1140          | 0,0890          | 0,1015        | 2956      | 740          | 0,2490          | 0,2310          | 0,2400 | 3083      |
| 320          | 0,1180          | 0,0940          | 0,1060        | 3019      | 760          | 0,2520          | 0,2390          | 0,2455 | 3096      |
| 340          | 0,1250          | 0,0990          | 0,1120        | 3036      | 780          | 0,2610          | 0,2460          | 0,2535 | 3077      |
| 360          | 0,1290          | 0,1040          | 0,1165        | 3090      | 800          | 0,2700          | 0,2540          | 0,2620 | 3053      |
| 380          | 0,1330          | 0,1100          | 0,1215        | 3128      | 820          | 0,2790          | 0,2620          | 0,2705 | 3031      |
| 400          | 0,1390          | 0,1140          | 0,1265        | 3162      | 840          | 0,2880          | 0,2680          | 0,2780 | 3022      |
| 420          | 0,1440          | 0,1200          | 0,1320        | 3182      | 860          | 0,2910          | 0,2750          | 0,2830 | 3039      |
| 440          | 0,1500          | 0,1280          | 0,1390        | 3165      | 880          | 0,2990          | 0,2820          | 0,2905 | 3029      |

# Tabela 31 cd.

| 1    | 2      | 3      | 4      | 5    |   | 1    | 2      | 3      | 4      |
|------|--------|--------|--------|------|---|------|--------|--------|--------|
| 900  | 0,3070 | 0,2880 | 0,2975 | 3025 |   | 1700 | 0,5250 | 0,5160 | 0,5205 |
| 920  | 0,3130 | 0,2950 | 0,3040 | 3026 | ] | 1720 | 0,5290 | 0,5190 | 0,5240 |
| 940  | 0,3210 | 0,3010 | 0,3110 | 3023 |   | 1740 | 0,5330 | 0,5250 | 0,5290 |
| 960  | 0,3250 | 0,3080 | 0,3165 | 3033 |   | 1760 | 0,5380 | 0,5310 | 0,5345 |
| 980  | 0,3310 | 0,3150 | 0,3230 | 3034 |   | 1780 | 0,5410 | 0,5350 | 0,5380 |
| 1000 | 0,3400 | 0,3200 | 0,3300 | 3030 |   | 1800 | 0,5480 | 0,5410 | 0,5445 |
| 1020 | 0,3470 | 0,3290 | 0,3380 | 3018 |   | 1820 | 0,5510 | 0,5460 | 0,5485 |
| 1040 | 0,3550 | 0,3360 | 0,3455 | 3010 |   | 1840 | 0,5590 | 0,5490 | 0,5540 |
| 1060 | 0,3580 | 0,3420 | 0,3500 | 3029 |   | 1860 | 0,5610 | 0,5550 | 0,5580 |
| 1080 | 0,3660 | 0,3490 | 0,3575 | 3021 |   | 1880 | 0,5630 | 0,5580 | 0,5605 |
| 1100 | 0,3740 | 0,3550 | 0,3645 | 3018 |   | 1900 | 0,5660 | 0,5660 | 0,5660 |
| 1120 | 0,3780 | 0,3610 | 0,3695 | 3031 |   | 1920 | 0,5690 | 0,5690 | 0,5690 |
| 1140 | 0,3850 | 0,3660 | 0,3755 | 3036 |   | 1940 | 0,5760 | 0,5730 | 0,5745 |
| 1160 | 0,3880 | 0,3710 | 0,3795 | 3057 |   | 1960 | 0,5800 | 0,5780 | 0,5790 |
| 1180 | 0,3930 | 0,3770 | 0,3850 | 3065 |   | 1980 | 0,5830 | 0,5820 | 0,5825 |
| 1200 | 0,4000 | 0,3850 | 0,3925 | 3057 |   | 2000 | 0,5870 | 0,5900 | 0,5885 |
| 1220 | 0,4060 | 0,3900 | 0,3980 | 3065 |   | 2020 | 0,5910 | 0,5940 | 0,5925 |
| 1240 | 0,4130 | 0,3960 | 0,4045 | 3066 |   | 2040 | 0,5990 | 0,5990 | 0,5990 |
| 1260 | 0,4180 | 0,4020 | 0,4100 | 3073 |   | 2060 | 0,6030 | 0,6060 | 0,6045 |
| 1280 | 0,4230 | 0,4080 | 0,4155 | 3081 |   | 2080 | 0,6070 | 0,6090 | 0,6080 |
| 1300 | 0,4300 | 0,4150 | 0,4225 | 3077 |   | 2100 | 0,6110 | 0,6110 | 0,6110 |
| 1320 | 0,4340 | 0,4200 | 0,4270 | 3091 |   | 2120 | 0,6170 | 0,6160 | 0,6165 |
| 1340 | 0,4400 | 0,4260 | 0,4330 | 3095 |   | 2140 | 0,6230 | 0,6200 | 0,6215 |
| 1360 | 0,4430 | 0,4310 | 0,4370 | 3112 |   | 2160 | 0,6270 | 0,6250 | 0,6260 |
| 1380 | 0,4460 | 0,4360 | 0,4410 | 3129 |   | 2180 | 0,6300 | 0,6310 | 0,6305 |
| 1400 | 0,4550 | 0,4410 | 0,4480 | 3125 |   | 2200 | 0,6370 | 0,6370 | 0,6370 |
| 1420 | 0,4580 | 0,4460 | 0,4520 | 3142 |   | 2220 | 0,6410 | 0,6410 | 0,6410 |
| 1440 | 0,4650 | 0,4510 | 0,4580 | 3144 |   | 2240 | 0,6470 | 0,6480 | 0,6475 |
| 1460 | 0,4680 | 0,4550 | 0,4615 | 3164 |   | 2260 | 0,6540 | 0,6540 | 0,6540 |
| 1480 | 0,4700 | 0,4590 | 0,4645 | 3186 |   | 2280 | 0,6610 | 0,6580 | 0,6595 |
| 1500 | 0,4790 | 0,4650 | 0,4720 | 3178 |   | 2300 | 0,6690 | 0,6660 | 0,6675 |
| 1520 | 0,4820 | 0,4700 | 0,4760 | 3193 |   | 2320 | 0,6770 | 0,6720 | 0,6745 |
| 1540 | 0,4900 | 0,4750 | 0,4825 | 3192 |   | 2340 | 0,6810 | 0,6750 | 0,6780 |
| 1560 | 0,4920 | 0,4810 | 0,4865 | 3207 |   | 2360 | 0,6860 | 0,6790 | 0,6825 |
| 1580 | 0,4970 | 0,4850 | 0,4910 | 3218 |   | 2380 | 0,6910 | 0,6830 | 0,6870 |
| 1600 | 0,5010 | 0,4900 | 0,4955 | 3229 |   | 2400 | 0,6970 | 0,6920 | 0,6945 |
| 1620 | 0,5040 | 0,4950 | 0,4995 | 3243 |   | 2420 | 0,7010 | 0,6950 | 0,6980 |
| 1640 | 0,5100 | 0,5010 | 0,5055 | 3244 |   | 2440 | 0,7030 | 0,6980 | 0,7005 |
| 1660 | 0,5130 | 0,5060 | 0,5095 | 3258 |   | 2460 | 0,7080 | 0,7020 | 0,7050 |
| 1680 | 0,5190 | 0,5100 | 0,5145 | 3265 | ] | 2480 | 0,7110 | 0,7070 | 0,7090 |

| 2 | n | 1 |
|---|---|---|
| 7 | 7 | 1 |
|   |   |   |

| 1    | 2      | 3      | 4      | 5    |   | 1    | 2      | 3      | 4      | 5    |
|------|--------|--------|--------|------|---|------|--------|--------|--------|------|
| 2500 | 0,7150 | 0,7120 | 0,7135 | 3504 |   | 3260 | 0,8910 | 0,8780 | 0,8845 | 3686 |
| 2520 | 0,7210 | 0,7140 | 0,7175 | 3512 |   | 3280 | 0,8970 | 0,8860 | 0,8915 | 3679 |
| 2540 | 0,7240 | 0,7160 | 0,7200 | 3528 |   | 3300 | 0,9010 | 0,8920 | 0,8965 | 3681 |
| 2560 | 0,7290 | 0,7210 | 0,7250 | 3531 |   | 3320 | 0,9070 | 0,8950 | 0,9010 | 3685 |
| 2580 | 0,7310 | 0,7250 | 0,7280 | 3544 |   | 3340 | 0,9110 | 0,9010 | 0,9060 | 3687 |
| 2600 | 0,7340 | 0,7300 | 0,7320 | 3552 | ] | 3360 | 0,9140 | 0,9040 | 0,9090 | 3696 |
| 2620 | 0,7390 | 0,7330 | 0,7360 | 3560 |   | 3380 | 0,9190 | 0,9080 | 0,9135 | 3700 |
| 2640 | 0,7430 | 0,7380 | 0,7405 | 3565 |   | 3400 | 0,9230 | 0,9120 | 0,9175 | 3706 |
| 2660 | 0,7490 | 0,7440 | 0,7465 | 3563 | ] | 3420 | 0,9280 | 0,9150 | 0,9215 | 3711 |
| 2680 | 0,7530 | 0,7480 | 0,7505 | 3571 |   | 3440 | 0,9310 | 0,9210 | 0,9260 | 3715 |
| 2700 | 0,7580 | 0,7530 | 0,7555 | 3574 | ] | 3460 | 0,9350 | 0,9270 | 0,9310 | 3716 |
| 2720 | 0,7630 | 0,7570 | 0,7600 | 3579 | 1 | 3480 | 0,9410 | 0,9310 | 0,9360 | 3718 |
| 2740 | 0,7660 | 0,7620 | 0,7640 | 3586 | ] | 3500 | 0,9450 | 0,9330 | 0,9390 | 3727 |
| 2760 | 0,7710 | 0,7650 | 0,7680 | 3594 |   | 3520 | 0,9500 | 0,9350 | 0,9425 | 3735 |
| 2780 | 0,7760 | 0,7690 | 0,7725 | 3599 | ] | 3540 | 0,9540 | 0,9410 | 0,9475 | 3736 |
| 2800 | 0,7800 | 0,7740 | 0,7770 | 3604 |   | 3560 | 0,9590 | 0,9470 | 0,9530 | 3736 |
| 2820 | 0,7840 | 0,7790 | 0,7815 | 3608 |   | 3580 | 0,9640 | 0,9500 | 0,9570 | 3741 |
| 2840 | 0,7880 | 0,7840 | 0,7860 | 3613 |   | 3600 | 0,9680 | 0,9540 | 0,9610 | 3746 |
| 2860 | 0,7940 | 0,7900 | 0,7920 | 3611 |   | 3620 | 0,9710 | 0,9570 | 0,9640 | 3755 |
| 2880 | 0,8010 | 0,7950 | 0,7980 | 3609 |   | 3640 | 0,9780 | 0,9630 | 0,9705 | 3751 |
| 2900 | 0,8060 | 0,7970 | 0,8015 | 3618 |   | 3660 | 0,9810 | 0,9690 | 0,9750 | 3754 |
| 2920 | 0,8110 | 0,8020 | 0,8065 | 3621 |   | 3680 | 0,9850 | 0,9720 | 0,9785 | 3761 |
| 2940 | 0,8160 | 0,8060 | 0,8110 | 3625 |   | 3700 | 0,9900 | 0,9770 | 0,9835 | 3762 |
| 2960 | 0,8210 | 0,8110 | 0,8160 | 3627 |   | 3720 | 0,9940 | 0,9820 | 0,9880 | 3765 |
| 2980 | 0,8270 | 0,8160 | 0,8215 | 3628 |   | 3740 | 1,0000 | 0,9860 | 0,9930 | 3766 |
| 3000 | 0,8320 | 0,8210 | 0,8265 | 3630 |   | 3760 | 1,0050 | 0,9910 | 0,9980 | 3768 |
| 3020 | 0,8360 | 0,8250 | 0,8305 | 3636 |   | 3780 | 1,0080 | 0,9950 | 1,0015 | 3774 |
| 3040 | 0,8410 | 0,8300 | 0,8355 | 3639 |   | 3800 | 1,0130 | 0,9990 | 1,0060 | 3777 |
| 3060 | 0,8450 | 0,8350 | 0,8400 | 3643 |   | 3820 | 1,0160 | 1,0030 | 1,0095 | 3784 |
| 3080 | 0,8510 | 0,8390 | 0,8450 | 3645 |   | 3840 | 1,0230 | 1,0070 | 1,0150 | 3783 |
| 3100 | 0,8550 | 0,8430 | 0,8490 | 3651 |   | 3860 | 1,0270 | 1,0110 | 1,0190 | 3788 |
| 3120 | 0,8610 | 0,8470 | 0,8540 | 3653 |   | 3880 | 1,0310 | 1,0150 | 1,0230 | 3793 |
| 3140 | 0,8640 | 0,8520 | 0,8580 | 3660 |   | 3900 | 1,0390 | 1,0230 | 1,0310 | 3783 |
| 3160 | 0,8700 | 0,8570 | 0,8635 | 3660 |   | 3920 | 1,0410 | 1,0270 | 1,0340 | 3791 |
| 3180 | 0,8740 | 0,8600 | 0,8670 | 3668 |   | 3940 | 1,0430 | 1,0330 | 1,0380 | 3796 |
| 3200 | 0,8790 | 0,8660 | 0,8725 | 3668 |   | 3960 | 1,0470 | 1,0370 | 1,0420 | 3800 |
| 3220 | 0,8840 | 0,8710 | 0,8775 | 3670 |   | 3980 | 1,0520 | 1,0440 | 1,0480 | 3798 |
| 3240 | 0,8880 | 0,8740 | 0,8810 | 3678 |   | 4000 | 1,0570 | 1,0490 | 1,0530 | 3799 |
|      |        |        |        |      |   |      |        |        |        |      |

# Tabela 31 cd.

# Tabela 32

# Zestawienie wartości głębokości (H), czasu zredukowanego (Tr) i prędkości średnich (Vśr) dla otworu wiertniczego Brześć Kujawski IG 3

Depth (H), reduced time (Tr) and average velocity (Vsr) values for the Brześć Kujawski IG 3 borehole

| <i>H</i> [m] | <i>Tr</i> 1 [s] | <i>Tr</i> 2 [s] | <i>Tr</i> 3 [s] | Tr [s] | Vśr [m/s] | ] | <i>H</i> [m] | <i>Tr</i> 1 [s] | <i>Tr</i> 2 [s] | <i>Tr</i> 3 [s] | Tr [s] | Vśr [m/s] |
|--------------|-----------------|-----------------|-----------------|--------|-----------|---|--------------|-----------------|-----------------|-----------------|--------|-----------|
| 1            | 2               | 3               | 4               | 5      | 6         | 1 | 1            | 2               | 3               | 4               | 5      | 6         |
| 10           | 0,0030          | 0,0040          | 0,0050          | 0,0040 | 2500      |   | 520          | 0,1420          | 0,1470          | 0,1480          | 0,1457 | 3570      |
| 25           | 0,0060          | 0,0100          | 0,0100          | 0,0087 | 2885      |   | 535          | 0,1450          | 0,1510          | 0,1510          | 0,1490 | 3591      |
| 40           | 0,0120          | 0,0150          | 0,0160          | 0,0143 | 2791      | 1 | 550          | 0,1480          | 0,1550          | 0,1560          | 0,1530 | 3595      |
| 55           | 0,0180          | 0,0210          | 0,0220          | 0,0203 | 2705      | ] | 565          | 0,1510          | 0,1590          | 0,1600          | 0,1567 | 3606      |
| 70           | 0,0240          | 0,0260          | 0,0270          | 0,0257 | 2727      |   | 580          | 0,1540          | 0,1630          | 0,1640          | 0,1603 | 3617      |
| 85           | 0,0290          | 0,0320          | 0,0330          | 0,0313 | 2713      |   | 595          | 0,1590          | 0,1670          | 0,1680          | 0,1647 | 3613      |
| 100          | 0,0340          | 0,0360          | 0,0370          | 0,0357 | 2804      |   | 610          | 0,1640          | 0,1710          | 0,1720          | 0,1690 | 3609      |
| 115          | 0,0390          | 0,0400          | 0,0410          | 0,0400 | 2875      |   | 625          | 0,1680          | 0,1750          | 0,1750          | 0,1727 | 3620      |
| 130          | 0,0430          | 0,0450          | 0,0460          | 0,0447 | 2910      |   | 640          | 0,1720          | 0,1790          | 0,1790          | 0,1767 | 3623      |
| 145          | 0,0470          | 0,0490          | 0,0500          | 0,0487 | 2979      |   | 655          | 0,1760          | 0,1830          | 0,1830          | 0,1807 | 3625      |
| 160          | 0,0510          | 0,0530          | 0,0540          | 0,0527 | 3038      |   | 670          | 0,1800          | 0,1870          | 0,1870          | 0,1847 | 3628      |
| 175          | 0,0560          | 0,0570          | 0,0580          | 0,0570 | 3070      |   | 685          | 0,1840          | 0,1910          | 0,1910          | 0,1887 | 3631      |
| 190          | 0,0600          | 0,0610          | 0,0620          | 0,0610 | 3115      |   | 700          | 0,1890          | 0,1960          | 0,1950          | 0,1933 | 3621      |
| 205          | 0,0660          | 0,0650          | 0,0660          | 0,0657 | 3122      |   | 715          | 0,1940          | 0,2010          | 0,2000          | 0,1983 | 3605      |
| 220          | 0,0700          | 0,0680          | 0,0700          | 0,0693 | 3173      |   | 730          | 0,1990          | 0,2060          | 0,2050          | 0,2033 | 3590      |
| 235          | 0,0730          | 0,0730          | 0,0740          | 0,0733 | 3205      |   | 745          | 0,2040          | 0,2110          | 0,2100          | 0,2083 | 3576      |
| 250          | 0,0780          | 0,0770          | 0,0790          | 0,0780 | 3205      |   | 760          | 0,2080          | 0,2150          | 0,2140          | 0,2123 | 3579      |
| 265          | 0,0820          | 0,0810          | 0,0830          | 0,0820 | 3232      |   | 775          | 0,2120          | 0,2190          | 0,2180          | 0,2163 | 3582      |
| 280          | 0,0860          | 0,0850          | 0,0870          | 0,0860 | 3256      |   | 790          | 0,2170          | 0,2240          | 0,2220          | 0,2210 | 3575      |
| 295          | 0,0910          | 0,0880          | 0,0900          | 0,0897 | 3290      |   | 805          | 0,2220          | 0,2290          | 0,2260          | 0,2257 | 3567      |
| 310          | 0,0950          | 0,0920          | 0,0940          | 0,0937 | 3310      |   | 820          | 0,2270          | 0,2340          | 0,2310          | 0,2307 | 3555      |
| 325          | 0,0980          | 0,0960          | 0,0980          | 0,0973 | 3339      |   | 835          | 0,2320          | 0,2390          | 0,2360          | 0,2357 | 3543      |
| 340          | 0,1020          | 0,1000          | 0,1020          | 0,1013 | 3355      |   | 850          | 0,2370          | 0,2440          | 0,2410          | 0,2407 | 3532      |
| 355          | 0,1050          | 0,1030          | 0,1060          | 0,1047 | 3392      |   | 865          | 0,2430          | 0,2500          | 0,2470          | 0,2467 | 3507      |
| 370          | 0,1090          | 0,1070          | 0,1100          | 0,1087 | 3405      |   | 880          | 0,2480          | 0,2550          | 0,2530          | 0,2520 | 3492      |
| 385          | 0,1120          | 0,1110          | 0,1140          | 0,1123 | 3427      |   | 895          | 0,2540          | 0,2600          | 0,2580          | 0,2573 | 3478      |
| 400          | 0,1150          | 0,1150          | 0,1180          | 0,1160 | 3448      |   | 910          | 0,2600          | 0,2660          | 0,2640          | 0,2633 | 3456      |
| 415          | 0,1180          | 0,1190          | 0,1220          | 0,1197 | 3468      |   | 925          | 0,2660          | 0,2720          | 0,2700          | 0,2693 | 3434      |
| 430          | 0,1220          | 0,1230          | 0,1260          | 0,1237 | 3477      |   | 940          | 0,2710          | 0,2780          | 0,2760          | 0,2750 | 3418      |
| 445          | 0,1260          | 0,1270          | 0,1290          | 0,1273 | 3495      |   | 955          | 0,2760          | 0,2840          | 0,2820          | 0,2807 | 3403      |
| 460          | 0,1290          | 0,1310          | 0,1330          | 0,1310 | 3511      |   | 970          | 0,2820          | 0,2890          | 0,2870          | 0,2860 | 3392      |
| 475          | 0,1320          | 0,1350          | 0,1370          | 0,1347 | 3527      |   | 985          | 0,2880          | 0,2940          | 0,2920          | 0,2913 | 3381      |
| 490          | 0,1350          | 0,1390          | 0,1410          | 0,1383 | 3542      |   | 1000         | 0,2930          | 0,2990          | 0,2970          | 0,2963 | 3375      |
| 505          | 0,1390          | 0,1430          | 0,1440          | 0,1420 | 3556      |   | 1015         | 0,2980          | 0,3040          | 0,3020          | 0,3013 | 3368      |

| 2 | 0 | 3 |
|---|---|---|
| 4 | / | 5 |

|      |        |        |        |        |      |      |        |        |        | Tab    | ela 32 cd. |
|------|--------|--------|--------|--------|------|------|--------|--------|--------|--------|------------|
| 1    | 2      | 3      | 4      | 5      | 6    | 1    | 2      | 3      | 4      | 5      | 6          |
| 1030 | 0,3030 | 0,3090 | 0,3070 | 0,3063 | 3362 | 1570 | 0,4540 | 0,4580 | 0,4570 | 0,4563 | 3440       |
| 1045 | 0,3080 | 0,3140 | 0,3120 | 0,3113 | 3357 | 1585 | 0,4570 | 0,4620 | 0,4610 | 0,4600 | 3446       |
| 1060 | 0,3130 | 0,3190 | 0,3170 | 0,3163 | 3351 | 1600 | 0,4600 | 0,4650 | 0,4650 | 0,4633 | 3453       |
| 1075 | 0,3180 | 0,3240 | 0,3220 | 0,3213 | 3345 | 1615 | 0,4630 | 0,4690 | 0,4680 | 0,4667 | 3461       |
| 1090 | 0,3230 | 0,3290 | 0,3270 | 0,3263 | 3340 | 1630 | 0,4660 | 0,4720 | 0,4710 | 0,4697 | 3471       |
| 1105 | 0,3280 | 0,3340 | 0,3320 | 0,3313 | 3335 | 1645 | 0,4700 | 0,4750 | 0,4740 | 0,4730 | 3478       |
| 1120 | 0,3330 | 0,3390 | 0,3370 | 0,3363 | 3330 | 1660 | 0,4730 | 0,4790 | 0,4780 | 0,4767 | 3483       |
| 1135 | 0,3380 | 0,3430 | 0,3410 | 0,3407 | 3332 | 1675 | 0,4760 | 0,4820 | 0,4810 | 0,4797 | 3492       |
| 1150 | 0,3420 | 0,3470 | 0,3450 | 0,3447 | 3337 | 1690 | 0,4800 | 0,4860 | 0,4850 | 0,4837 | 3494       |
| 1165 | 0,3460 | 0,3510 | 0,3490 | 0,3487 | 3341 | 1705 | 0,4830 | 0,4890 | 0,4880 | 0,4867 | 3503       |
| 1180 | 0,3490 | 0,3540 | 0,3520 | 0,3517 | 3355 | 1720 | 0,4860 | 0,4920 | 0,4910 | 0,4897 | 3513       |
| 1195 | 0,3520 | 0,3570 | 0,3560 | 0,3550 | 3366 | 1735 | 0,4890 | 0,4950 | 0,4940 | 0,4927 | 3522       |
| 1210 | 0,3550 | 0,3600 | 0,3590 | 0,3580 | 3380 | 1750 | 0,4920 | 0,4980 | 0,4970 | 0,4957 | 3531       |
| 1225 | 0,3580 | 0,3640 | 0,3620 | 0,3613 | 3390 | 1765 | 0,4960 | 0,5010 | 0,5010 | 0,4993 | 3535       |
| 1240 | 0,3620 | 0,3670 | 0,3650 | 0,3647 | 3400 | 1780 | 0,4990 | 0,5040 | 0,5040 | 0,5023 | 3543       |
| 1255 | 0,3660 | 0,3700 | 0,3680 | 0,3680 | 3410 | 1795 | 0,5020 | 0,5070 | 0,5070 | 0,5053 | 3552       |
| 1270 | 0,3700 | 0,3740 | 0,3720 | 0,3720 | 3414 | 1810 | 0,5060 | 0,5110 | 0,5100 | 0,5090 | 3556       |
| 1285 | 0,3740 | 0,3780 | 0,3760 | 0,3760 | 3418 | 1825 | 0,5100 | 0,5140 | 0,5130 | 0,5123 | 3562       |
| 1300 | 0,3780 | 0,3820 | 0,3800 | 0,3800 | 3421 | 1840 | 0,5140 | 0,5180 | 0,5170 | 0,5163 | 3564       |
| 1315 | 0,3830 | 0,3860 | 0,3840 | 0,3843 | 3422 | 1855 | 0,5180 | 0,5210 | 0,5200 | 0,5197 | 3570       |
| 1330 | 0,3880 | 0,3910 | 0,3880 | 0,3890 | 3419 | 1870 | 0,5230 | 0,5250 | 0,5240 | 0,5240 | 3569       |
| 1345 | 0,3920 | 0,3960 | 0,3920 | 0,3933 | 3419 | 1885 | 0,5270 | 0,5280 | 0,5270 | 0,5273 | 3575       |
| 1360 | 0,3960 | 0,4010 | 0,3970 | 0,3980 | 3417 | 1900 | 0,5310 | 0,5320 | 0,5310 | 0,5313 | 3576       |
| 1375 | 0,4000 | 0,4060 | 0,4020 | 0,4027 | 3415 | 1915 | 0,5350 | 0,5360 | 0,5350 | 0,5353 | 3577       |
| 1390 | 0,4040 | 0,4100 | 0,4070 | 0,4070 | 3415 | 1930 | 0,5390 | 0,5400 | 0,5390 | 0,5393 | 3578       |
| 1405 | 0,4080 | 0,4140 | 0,4110 | 0,4110 | 3418 | 1945 | 0,5430 | 0,5440 | 0,5430 | 0,5433 | 3580       |
| 1420 | 0,4120 | 0,4180 | 0,4150 | 0,4150 | 3422 | 1960 | 0,5470 | 0,5480 | 0,5470 | 0,5473 | 3581       |
| 1435 | 0,4160 | 0,4220 | 0,4190 | 0,4190 | 3425 | 1975 | 0,5510 | 0,5530 | 0,5510 | 0,5517 | 3580       |
| 1450 | 0,4190 | 0,4260 | 0,4230 | 0,4227 | 3431 | 1990 | 0,5550 | 0,5580 | 0,5550 | 0,5560 | 3579       |
| 1465 | 0,4230 | 0,4300 | 0,4270 | 0,4267 | 3434 | 2005 | 0,5590 | 0,5620 | 0,5590 | 0,5600 | 3580       |
| 1480 | 0,4270 | 0,4340 | 0,4320 | 0,4310 | 3434 | 2020 | 0,5630 | 0,5660 | 0,5630 | 0,5640 | 3582       |
| 1495 | 0,4310 | 0,4380 | 0,4360 | 0,4350 | 3437 | 2035 | 0,5670 | 0,5700 | 0,5670 | 0,5680 | 3583       |
| 1510 | 0,4360 | 0,4420 | 0,4400 | 0,4393 | 3437 | 2050 | 0,5710 | 0,5740 | 0,5710 | 0,5720 | 3584       |
| 1525 | 0,4410 | 0,4460 | 0,4440 | 0,4437 | 3437 | 2065 | 0,5750 | 0,5780 | 0,5750 | 0,5760 | 3585       |
| 1540 | 0,4460 | 0,4500 | 0,4490 | 0,4483 | 3435 | 2080 | 0,5790 | 0,5820 | 0,5790 | 0,5800 | 3586       |
| 1555 | 0,4500 | 0,4540 | 0,4530 | 0,4523 | 3438 | 2095 | 0,5830 | 0,5860 | 0,5830 | 0,5840 | 3587       |

# Tabela 33

# Zestawienie uśrednionych wartości prędkości interwałowej (Vi), prędkości kompleksowej (Vk) i prędkości wygładzonej (Vw) obliczonych z czasu wygładzonego dla otworu wiertniczego Brześć Kujawski IG 1

Averaged interval velocity (Vi), complex velocity (Vk) and smoothed velocity (Vw) values calculated from smoothed time for the Brześć Kujawski IG 1 borehole

| <i>H</i> [m] | Vi [m/s] | <i>Vk</i> [m/s] | Vw [m/s] |
|--------------|----------|-----------------|----------|
| 1            | 2        | 3               | 4        |
| 20           | 2311     | 2497            | _        |
| 40           | 2311     | 2497            | 2237     |
| 60           | 2311     | 2497            | 2346     |
| 80           | 2311     | 2497            | 2489     |
| 100          | 2311     | 2497            | 2656     |
| 120          | 3085     | 2497            | 2837     |
| 140          | 3085     | 2497            | 3020     |
| 160          | 3085     | 3652            | 3197     |
| 180          | 3085     | 3652            | 3365     |
| 200          | 3085     | 3652            | 3522     |
| 220          | 3815     | 3652            | 3666     |
| 240          | 3815     | 3652            | 3793     |
| 260          | 3815     | 3652            | 3893     |
| 280          | 3815     | 3652            | 3958     |
| 300          | 3815     | 3652            | 3979     |
| 320          | 3800     | 3652            | 3952     |
| 340          | 3800     | 3652            | 3881     |
| 360          | 3800     | 3652            | 3775     |
| 380          | 3800     | 3652            | 3643     |
| 400          | 3800     | 3652            | 3501     |
| 420          | 3191     | 3652            | 3361     |
| 440          | 3191     | 3021            | 3233     |
| 460          | 3191     | 3021            | 3127     |
| 480          | 3191     | 3021            | 3045     |
| 500          | 3191     | 3021            | 2987     |
| 520          | 2944     | 3021            | 2952     |
| 540          | 2944     | 3021            | 2935     |
| 560          | 2944     | 3021            | 2933     |
| 580          | 2944     | 3021            | 2943     |
| 600          | 2944     | 3021            | 2961     |
| 620          | 2990     | 3021            | 2981     |
| 640          | 2990     | 2955            | 2997     |
| 660          | 2990     | 2955            | 3002     |

| <i>H</i> [m] | Vi [m/s] | <i>Vk</i> [m/s] | Vw [m/s] |
|--------------|----------|-----------------|----------|
| 1            | 2        | 3               | 4        |
| 680          | 2990     | 2955            | 2993     |
| 700          | 2990     | 2955            | 2967     |
| 720          | 2865     | 2955            | 2927     |
| 740          | 2865     | 2955            | 2881     |
| 760          | 2865     | 2955            | 2838     |
| 780          | 2865     | 2825            | 2808     |
| 800          | 2865     | 2825            | 2795     |
| 820          | 2851     | 2825            | 2803     |
| 840          | 2851     | 2825            | 2828     |
| 860          | 2851     | 2825            | 2865     |
| 880          | 2851     | 2825            | 2904     |
| 900          | 2851     | 3032            | 2939     |
| 920          | 2978     | 3032            | 2964     |
| 940          | 2978     | 3032            | 2978     |
| 960          | 2978     | 3032            | 2985     |
| 980          | 2978     | 3032            | 2991     |
| 1000         | 2978     | 3032            | 3003     |
| 1020         | 3111     | 3032            | 3029     |
| 1040         | 3111     | 3032            | 3072     |
| 1060         | 3111     | 3032            | 3132     |
| 1080         | 3111     | 3032            | 3203     |
| 1100         | 3111     | 3032            | 3277     |
| 1120         | 3386     | 3496            | 3341     |
| 1140         | 3386     | 3496            | 3388     |
| 1160         | 3386     | 3496            | 3413     |
| 1180         | 3386     | 3496            | 3422     |
| 1200         | 3386     | 3496            | 3423     |
| 1220         | 3487     | 3496            | 3431     |
| 1240         | 3487     | 3496            | 3453     |
| 1260         | 3487     | 3496            | 3494     |
| 1280         | 3487     | 3496            | 3556     |
| 1300         | 3487     | 3496            | 3633     |
| 1320         | 3840     | 3496            | 3720     |

| <i>H</i> [m] | <i>Vi</i> [m/s] | <i>Vk</i> [m/s] | Vw [m/s] |
|--------------|-----------------|-----------------|----------|
| 1            | 2               | 3               | 4        |
| 1340         | 3840            | 3496            | 3808     |
| 1360         | 3840            | 4044            | 3890     |
| 1380         | 3840            | 4044            | 3961     |
| 1400         | 3840            | 4044            | 4017     |
| 1420         | 4078            | 4044            | 4057     |
| 1440         | 4078            | 4044            | 4081     |
| 1460         | 4078            | 4044            | 4092     |
| 1480         | 4078            | 4044            | 4095     |
| 1500         | 4078            | 4044            | 4098     |
| 1520         | 4140            | 4129            | 4108     |
| 1540         | 4140            | 4129            | 4128     |
| 1560         | 4140            | 4129            | 4151     |
| 1580         | 4140            | 4129            | 4171     |
| 1600         | 4140            | 4176            | 4184     |
| 1620         | 4171            | 4176            | 4185     |
| 1640         | 4171            | 4176            | 4178     |
| 1660         | 4171            | 4176            | 4166     |
| 1680         | 4171            | 4176            | 4156     |
| 1700         | 4171            | 4244            | 4151     |
| 1720         | 4192            | 4244            | 4154     |
| 1740         | 4192            | 4244            | 4168     |
| 1760         | 4192            | 4244            | 4195     |
| 1780         | 4192            | 4244            | 4239     |
| 1800         | 4192            | 4244            | 4302     |
| 1820         | 4468            | 4244            | 4377     |
| 1840         | 4468            | 4244            | 4454     |
| 1860         | 4468            | 4499            | 4518     |
| 1880         | 4468            | 4499            | 4552     |
| 1900         | 4468            | 4499            | 4545     |
| 1920         | 4391            | 4499            | 4502     |
| 1940         | 4391            | 4499            | 4433     |
| 1960         | 4391            | 4499            | 4354     |
| 1980         | 4391            | 4225            | 4285     |

| 2 | a | 5 |
|---|---|---|
| 4 |   | 2 |

| 1    | 2    | 3    | 4    |
|------|------|------|------|
| 2000 | 4391 | 4225 | 4236 |
| 2020 | 4219 | 4225 | 4213 |
| 2040 | 4219 | 4225 | 4213 |
| 2060 | 4219 | 4225 | 4223 |
| 2080 | 4219 | 4225 | 4226 |
| 2100 | 4219 | 3984 | 4206 |
| 2120 | 3984 | 3984 | 4152 |
| 2140 | 3984 | 3984 | 4062 |
| 2160 | 3984 | 3984 | 3946 |
| 2180 | 3984 | 3984 | 3818 |
| 2200 | 3984 | 3984 | 3691 |
| 2220 | 3518 | 3698 | 3582 |
| 2240 | 3518 | 3698 | 3504 |
| 2260 | 3518 | 3698 | 3467 |
| 2280 | 3518 | 3698 | 3479 |
| 2300 | 3518 | 3698 | 3540 |
| 2320 | 3882 | 3698 | 3647 |
| 2340 | 3882 | 3698 | 3793 |
| 2360 | 3882 | 3698 | 3966 |
| 2380 | 3882 | 3698 | 4152 |
| 2400 | 3882 | 3698 | 4337 |
| 2420 | 4709 | 4862 | 4512 |
| 2440 | 4709 | 4862 | 4668 |
| 2460 | 4709 | 4862 | 4801 |
| 2480 | 4709 | 4862 | 4907 |
| 2500 | 4709 | 4862 | 4984 |
| 2520 | 4958 | 4862 | 5022 |
| 2540 | 4958 | 4862 | 5016 |
| 2560 | 4958 | 4862 | 4965 |
| 2580 | 4958 | 4862 | 4875 |
| 2600 | 4958 | 4862 | 4764 |
| 2620 | 4548 | 4862 | 4652 |
| 2640 | 4548 | 4417 | 4559 |
| 2660 | 4548 | 4417 | 4495 |
|      |      |      |      |

| 1    | 2    | 3    | 4    |
|------|------|------|------|
| 2680 | 4548 | 4417 | 4462 |
| 2700 | 4548 | 4417 | 4452 |
| 2720 | 4411 | 4417 | 4451 |
| 2740 | 4411 | 4417 | 4441 |
| 2760 | 4411 | 4417 | 4412 |
| 2780 | 4411 | 4417 | 4362 |
| 2800 | 4411 | 4417 | 4298 |
| 2820 | 4165 | 4417 | 4231 |
| 2840 | 4165 | 4162 | 4173 |
| 2860 | 4165 | 4162 | 4132 |
| 2880 | 4165 | 4162 | 4111 |
| 2900 | 4165 | 4162 | 4106 |
| 2920 | 4138 | 4162 | 4111 |
| 2940 | 4138 | 4162 | 4125 |
| 2960 | 4138 | 4162 | 4143 |
| 2980 | 4138 | 4162 | 4167 |
| 3000 | 4138 | 4162 | 4196 |
| 3020 | 4273 | 4162 | 4228 |
| 3040 | 4273 | 4162 | 4261 |
| 3060 | 4273 | 4162 | 4292 |
| 3080 | 4273 | 4332 | 4316 |
| 3100 | 4273 | 4332 | 4333 |
| 3120 | 4338 | 4332 | 4342 |
| 3140 | 4338 | 4332 | 4344 |
| 3160 | 4338 | 4332 | 4340 |
| 3180 | 4338 | 4332 | 4330 |
| 3200 | 4338 | 4332 | 4314 |
| 3220 | 4294 | 4332 | 4296 |
| 3240 | 4294 | 4367 | 4282 |
| 3260 | 4294 | 4367 | 4280 |
| 3280 | 4294 | 4367 | 4300 |
| 3300 | 4294 | 4367 | 4343 |
| 3320 | 4508 | 4367 | 4408 |
| 3340 | 4508 | 4367 | 4483 |

|      |      | Tabela 33 cd. |      |
|------|------|---------------|------|
| 1    | 2    | 3             | 4    |
| 3360 | 4508 | 4367          | 4554 |
| 3380 | 4508 | 4596          | 4606 |
| 3400 | 4508 | 4596          | 4637 |
| 3420 | 4645 | 4596          | 4650 |
| 3440 | 4645 | 4596          | 4650 |
| 3460 | 4645 | 4596          | 4645 |
| 3480 | 4645 | 4596          | 4638 |
| 3500 | 4645 | 4596          | 4630 |
| 3520 | 4602 | 4596          | 4621 |
| 3540 | 4602 | 4596          | 4609 |
| 3560 | 4602 | 4596          | 4597 |
| 3580 | 4602 | 4596          | 4583 |
| 3600 | 4602 | 4596          | 4568 |
| 3620 | 4507 | 4596          | 4547 |
| 3640 | 4507 | 4596          | 4522 |
| 3660 | 4507 | 4596          | 4494 |
| 3680 | 4507 | 4596          | 4468 |
| 3700 | 4507 | 4430          | 4447 |
| 3720 | 4507 | 4430          | 4434 |
| 3740 | 4507 | 4430          | 4426 |
| 3760 | 4507 | 4430          | 4419 |
| 3780 | 4507 | 4353          | 4407 |
| 3800 | 4421 | 4353          | 4385 |
| 3820 | 4304 | 4353          | 4355 |
| 3840 | 4304 | 4353          | 4320 |
| 3860 | 4304 | 4353          | 4285 |
| 3880 | 4304 | 4183          | 4255 |
| 3900 | 4304 | 4183          | 4229 |
| 3920 | 4172 | 4183          | 4205 |
| 3940 | 4172 | 4183          | 4181 |
| 3960 | 4172 | 4183          | 4158 |
| 3980 | 4172 | 4183          | 4141 |
| 4000 | 4172 | 4183          | -    |

# Tabela 34

# Zestawienie uśrednionych wartości prędkości interwałowej (*Vi*), prędkości kompleksowej (*Vk*) i prędkości wygładzonej (*Vw*) obliczonych z czasu wygładzonego dla otworu wiertniczego Brześć Kujawski IG 3

Averaged interval velocity (Vi), complex velocity (Vk) and smoothed velocity (Vw) values calculated from smoothed time for the Brześć Kujawski IG 3 borehole

| <i>H</i> [m] | Vi [m/s] | <i>Vk</i> [m/s] | Vw [m/s] |
|--------------|----------|-----------------|----------|
| 1            | 2        | 3               | 4        |
| 20           | 2936     | 3049            | _        |
| 40           | 2936     | 3049            | 2890     |
| 160          | 2936     | 3049            | 2953     |
| 80           | 2936     | 3049            | 3037     |
| 100          | 2936     | 3049            | 3136     |
| 120          | 3376     | 3049            | 3241     |
| 140          | 3376     | 3049            | 3344     |
| 160          | 3376     | 3813            | 3435     |
| 180          | 3376     | 3813            | 3513     |
| 200          | 3376     | 3813            | 3577     |
| 220          | 3709     | 3813            | 3633     |
| 240          | 3709     | 3813            | 3684     |
| 260          | 3709     | 3813            | 3736     |
| 280          | 3709     | 3813            | 3788     |
| 300          | 3709     | 3813            | 3840     |
| 320          | 3942     | 3813            | 3888     |
| 340          | 3942     | 3813            | 3931     |
| 360          | 3942     | 3813            | 3965     |
| 380          | 3942     | 3813            | 3992     |
| 400          | 3942     | 3813            | 4012     |
| 420          | 4032     | 3813            | 4026     |
| 440          | 4032     | 3813            | 4035     |
| 460          | 4032     | 3813            | 4039     |
| 480          | 4032     | 3813            | 4034     |
| 500          | 4032     | 3813            | 4019     |
| 520          | 3914     | 3813            | 3991     |
| 540          | 3914     | 3813            | 3949     |
| 560          | 3914     | 3813            | 3897     |
| 580          | 3914     | 3813            | 3835     |
| 600          | 3914     | 3813            | 3766     |
| 620          | 3575     | 3813            | 3692     |
| 640          | 3575     | 3813            | 3616     |
| 660          | 3575     | 3813            | 3539     |
| 680          | 3575     | 3057            | 3464     |
| 700          | 3575     | 3057            | 3395     |

| <i>H</i> [m] | Vi [m/s] | <i>Vk</i> [m/s] | Vw [m/s] |
|--------------|----------|-----------------|----------|
| 1            | 2        | 3               | 4        |
| 720          | 3233     | 3057            | 3330     |
| 740          | 3233     | 3057            | 3269     |
| 760          | 3233     | 3057            | 3206     |
| 780          | 3233     | 3057            | 3139     |
| 800          | 3233     | 3057            | 3065     |
| 820          | 2889     | 3057            | 2988     |
| 840          | 2889     | 3057            | 2914     |
| 860          | 2889     | 3057            | 2849     |
| 880          | 2889     | 3057            | 2800     |
| 900          | 2889     | 3057            | 2770     |
| 920          | 2795     | 3057            | 2761     |
| 940          | 2795     | 3057            | 2771     |
| 960          | 2795     | 3097            | 2799     |
| 980          | 2795     | 3097            | 2838     |
| 1000         | 2795     | 3097            | 2887     |
| 1020         | 3055     | 3097            | 2943     |
| 1040         | 3055     | 3097            | 3008     |
| 1060         | 3055     | 3097            | 3086     |
| 1080         | 3055     | 3097            | 3183     |
| 1100         | 3055     | 3097            | 3303     |
| 1120         | 3668     | 3097            | 3446     |
| 1140         | 3668     | 3097            | 3607     |
| 1160         | 3668     | 3097            | 3768     |
| 1180         | 3668     | 3965            | 3907     |
| 1200         | 3668     | 3965            | 3998     |
| 1220         | 3921     | 3965            | 4025     |
| 1240         | 3921     | 3965            | 3989     |
| 1260         | 3921     | 3856            | 3908     |
| 1280         | 3921     | 3856            | 3807     |
| 1300         | 3921     | 3856            | 3708     |
| 1320         | 3586     | 3592            | 3629     |
| 1340         | 3586     | 3592            | 3577     |
| 1360         | 3586     | 3592            | 3555     |
| 1380         | 3586     | 3592            | 3556     |
| 1400         | 3586     | 3765            | 3572     |

| <i>H</i> [m] | <i>Vi</i> [m/s] | <i>Vk</i> [m/s] | <i>Vw</i> [m/s] |
|--------------|-----------------|-----------------|-----------------|
| 1            | 2               | 3               | 4               |
| 1420         | 3628            | 3765            | 3596            |
| 1440         | 3628            | 3765            | 3618            |
| 1460         | 3628            | 3765            | 3638            |
| 1480         | 3628            | 3765            | 3660            |
| 1500         | 3628            | 3765            | 3692            |
| 1520         | 3875            | 3765            | 3743            |
| 1540         | 3875            | 3765            | 3816            |
| 1560         | 3875            | 3765            | 3912            |
| 1580         | 3875            | 3765            | 4025            |
| 1600         | 3875            | 3765            | 4146            |
| 1620         | 4391            | 3765            | 4263            |
| 1640         | 4391            | 4429            | 4367            |
| 1660         | 4391            | 4429            | 4452            |
| 1680         | 4391            | 4429            | 4514            |
| 1700         | 4391            | 4429            | 4552            |
| 1720         | 4502            | 4429            | 4564            |
| 1740         | 4502            | 4429            | 4546            |
| 1760         | 4502            | 4429            | 4500            |
| 1780         | 4502            | 4429            | 4429            |
| 1800         | 4502            | 4429            | 4338            |
| 1820         | 4088            | 4429            | 4237            |
| 1840         | 4088            | 4429            | 4135            |
| 1860         | 4088            | 3829            | 4038            |
| 1880         | 4088            | 3829            | 3951            |
| 1900         | 4088            | 3829            | 3875            |
| 1920         | 3761            | 3829            | 3814            |
| 1940         | 3761            | 3829            | 3767            |
| 1960         | 3761            | 3829            | 3734            |
| 1980         | 3761            | 3829            | 3715            |
| 2000         | 3761            | 3829            | 3708            |
| 2020         | 4176            | 3829            | 3708            |
| 2040         | 4176            | 3714            | 3712            |
| 2060         | 4176            | 3714            | 3716            |
| 2080         | 4176            | 3714            | -               |