WYNIKI BADAŃ GEOFIZYCZNYCH

Monika KAŹMIERCZUK, Jadwiga JARZYNA

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

CEL I ZAKRES WYKONANYCH BADAŃ

Przedstawiony opis pomiarów i wyników interpretacji w zakresie geofizyki otworowej wykonano na podstawie dokumentacji oraz zbiorów scyfrowanych danych pomiarowych znajdujących się w zasobach Państwowego Instytutu Geologicznego.

Otwór Budziszewice IG 1 odwiercono w miejscowości Regny, na obszarze antyklinorium rawsko-gielniowskiego, na wysokości 199,9 m n.p.m. Profilowania geofizyki otworowej przeprowadzono w okresie od 15.07.1979 do 08.02.1983 r. Wykonawcą profilowań był Zakład Poszukiwań Nafty i Gazu w Wołominie oraz Przedsiębiorstwo Geofizyki i Górnictwa Naftowego w Toruniu.

Celem badań geofizycznych przeprowadzonych w otworze Budziszewice IG 1 było:

- określenie profilu litologicznego i uzupełnienie informacji stratygraficznych;
- wydzielenie poziomów zbiornikowych;
- określenie charakteru nasycenia poziomów zbiornikowych oraz ich parametrów zbiornikowych;
- określenie stanu technicznego odwiertu.

PRZEPROWADZONE BADANIA GEOFIZYCZNE

W otworze Budziszewice IG 1 badania geofizyczne wykonano w interwale 0–5585 m w formie badań odcinkowych w postaci 11 odcinków pomiarowych. Zestaw pomiarów geofizycznych przeprowadzonych w kolejnych odcinkach pomiarowych był zgodny z wymogami Zakładu Geofizyki PIG.

Metodyka wykonanych badań była uzależniona od warunków panujących w odwiercie oraz od możliwości technicznych i sprzętowych wykonawcy. Wykonane podstawowe pomiary geofizyczne były zestawiane na tzw. arkuszach "A", a wszystkie pomiary uzupełniające oraz dotyczące stanu technicznego odwiertu – na arkuszach dodatkowych. Pełny komplet odcinkowych badań geofizycznych, pozwalający na realizację zadań, jakie zleceniodawca postawił przed geofizyką wiertniczą, obejmował następujące pomiary podstawowe oraz pomiary uzupełniające.

Pomiary podstawowe obejmowały:

- profilowanie średnicy odwiertu (PŚr) do buta rur;
- profilowanie krzywizny odwiertu (PK);
- profilowanie potencjałów polaryzacji naturalnej (PS) do buta rur;
- profilowanie promieniowania naturalnego gamma (PG);
- profilowanie neutron-gamma (PNG);
- profilowanie metodą gamma-gamma (PGG);
- profilowanie oporności (PO) sondami gradientowymi o następujących rozstawach elektrod: A2.5M0.25N, A2M0.5N, A2M0.1N i sondami potencjałowymi:

N5.7M0.4A, N8M0.5A, N8.5M0.5A, N2.5M0.25A, N6MO.5;

- profilowanie temperatury dna odwiertu (PT);
- punktowy pomiar oporności płuczki rezistiwimetrem powierzchniowym z jednoczesnym pomiarem temperatury.
 Pomiary uzupełniajace obejmowały:
- boczne sondowanie oporności dla płuczek słabo zmineralizowanych (BSO) pięcioma sondami gradientowymi o różnych rozstawach;
- skrócone sondowanie oporności dla płuczek zmineralizowanych (SSO) sondami gradientowymi;
- mikroprofilowanie oporności (mPO);
- sterowane profilowanie oporności (POst);
- sterowane mikroprofilowanie oporności (mPOst);
- profilowanie indukcyjne (PI);
- profilowanie akustyczne prędkości (PA) w wersji DT, T1, T2.

Ponadto w otworze Budziszewice IG 1 wykonano następujące pomiary techniczne:

- profilowanie temperatury w celu określenia miejsc ucieczki płuczki (23.11.1979, 4–6.02.1980 oraz 4.04.1980 r.);
- profilomierz (5.01.1980 i 27.06.1980 r.);
- profilowanie temperatury w celu określenia wysokości wytłoczenia cementu poza rurami;
- profilowanie akustyczne w wersji cementomierza w celu określenia jakości zacementowania rur Ø 9 5/8";

- profilowanie akustyczne w wersji cementomierza w celu określenia jakości zacementowania rur Ø 7" i 6 5/8";
- profilowanie temperatury odwiertu przy ustalonej równowadze po zakończeniu wiercenia.

Wykaz oznaczeń profilowań geofizyki otworowej, które scyfrowano i zapisano w standardowym formacie LAS, przedstawiono w tabeli 11, podając mnemoniki międzynarodowe i polskie skróty profilowań. W tabeli 12 zamieszczono

Tabela 11

Oznaczenia profilowań geofizyki otworowej

Codes of well logs

Rodzaj profilowań – mnemoniki polskie [mnemoniki międzynarodowe]	Jednostki	Rodzaj profilowań – opis
PŚr [CALI]	mm	profilowanie średnicy otworu
CALX	mm	profilomierz X
CALY	mm	profilomierz Y
PS [SP]	mv	profilowanie potencjałów polaryzacji naturalnej
GSP		gradient PS
PG [GR]	imp./min	profilowanie gamma
PGGg [GGDN]	imp./min	profilowanie gamma-gamma gęstościowe
PNG, NEGR [NPHI]	imp./min	profilowanie neutron-gamma
EN10 – N2.5M0.25A, B2.5A0.25M	omm	profilowanie oporności, sonda potencjałowa 0,25 m
EN16 – N5.7M0.4A	omm	profilowanie oporności, sonda potencjałowa spągowa 0,4 m
EN20 – N8.5M0.5A, N6.0M0.5A, N2.0M0.5A	omm	profilowanie oporności, sonda potencjałowa 0,5 m
EL02 – A0.5M0.1N, M0.5A0.1B, A0.4M0.1N	omm	profilowanie oporności, sonda gradientowa spągowa 0,55 m
EL03 – A1.0M0.1N, M1.0A0.1B	omm	profilowanie oporności, sonda gradientowa spągowa 1,05 m
EL07 – A2.0M0.5N	omm	profilowanie oporności, sonda gradientowa spągowa 2,25 m
E07L - N0.6M2.0A	omm	profilowanie oporności, sonda gradientowa stropowa 2,5 m
EL09 – A2.5M0.25N, M2.5A0.25B	omm	profilowanie oporności, sonda gradientowa spągowa 2,625 m
EL14 – A4.0M0.5N	omm	profilowanie oporności, sonda gradientowa spągowa 4,25 m
EL19 – A5.7M0.4N	omm	profilowanie oporności, sonda gradientowa spągowa 5,9 m
EL28 – A8.0M1.0N	omm	profilowanie oporności, sonda gradientowa spągowa 8,5 m
POst3 [LL3]	omm	sterowane profilowanie oporności, laterolog 3
IL	omm	indukcyjne profilowanie oporności
mPO [MLL]	omm	mikroprofilowanie oporności, mikrolaterolog
MINV	omm	mikroprofilowanie oporności, sonda gradientowa 0,0375 m
MNOR	omm	mikroprofilowanie oporności, sonda potencjałowa 0,05 m
SATT	db	profilowanie akustyczne tłumienia
DT	s/m	profilowanie akustyczne, czas interwałowy
T1	μs	profilowanie akustyczne, Tl
T2	μs	profilowanie akustyczne, T2
TEMP	°C	profilowanie temperatury
MTEM	°C	profilowanie temperatury płuczki
CBLT	μs	cementomierz, czas

Wykaz profilowań geofizycznych wykonanych w otworze wiertniczym Budziszewice IG 1

Budziszewice IG 1 well logs

Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębo- kościowy odcin- ka otworu [m]
	CALI, GR, SP, GGDN, EN16, EL09, NEGR	0,0–708,0
15.07.79	GR, GGDN, NEGR	651,5-707,5
	EL02, EL03, EL19, EL28	45,0–711,0
	CALI, GR, SP, GGDN, EN16, EL09, NEGR	650,0–1567,0
	DT, T2, T1, MLL	650,0–1569,0
22.08.79	EL02, EL03, EL19, EL28	709,5–1565,0
	MLL	709,0–1569,0
	GR, GGDN, NEGR	1500,0–1567,0
	CALI, SP, GGDN, GR, EN20, EL07, NEGR	691,5–2307,5
12.10.79	LL3, MINV, MNOR, DT, T2, MTEM	1465,0–2310,0
	GGDN, GR, NEGR	1489,0–1555,0
	EL02, EL03, EL14, EL28	1500,0–2308,0
	CALI, SP	700,0–2695,0
	GGDN, GR, EN20, EL07, NEGR	2170,5–2703,0
22.11.79	LL3, MINV, MNOR	2169,0-2696,5
	EL02, EL03, EL14, EL28	2206,0–2692,5
	GGDN, GR, NEGR	2614,0–2672,5
23.11.79	ТЕМР, ТЕМР	12,5–2706,0
08.12.79	DT, T2	2033,5–2852,5
05.01.00	CALX, CALY	681,0–2948,5
05.01.80	EN10, EL02, EL03	2582,5–3052,5
0.6.02.00	ТЕМР, ТЕМР	6,0–2743,5
06.02.80	CALI	5,0–708,0
04.04.80	TEMP	9,0–747,0
27.06.80	CALX, CALY, CALI	703,0–3038,0
	CALI, SP, GR, EN20, EL07	2594,5–3106,0
27.07.90	EL02, EL03, LL3, EL14, EL28	2643,5-3102,5
27.07.80	DT, T2	2690,5–3107,0
	GR	3012,0-3100,0
15.01.81	TEMP	12,0–1760,0
06.02.91	CBLT	83,0–3185,0
00.03.81	CALI	3146,5–3381,5

Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębo- kościowy odcin- ka otworu [m]
	CALI, TEMP, GGDN, GR, EN20, EL07, LL3	3031,5–3491,5
	NEGR	2576,0-3491,5
21.03.81	GGDN, GR, NEGR	3147,5–3224,0
	EL03, EL14, EL28	3156,0-3492,5
	EN20	3156,5–3490,0
	GR, GGDN, EN10, EL09, NEGR, LL3, TEMP	3378,0–3680,0
11.05.81	GR, GGDN, NEGR	3610,0–3686,5
	CALI	3143,0–3665,0
	EN10	3435,0–3680,0
	GGDN, GR, TEMP, EN20, EL07, NEGR, LL3	3521,0-4380,0
	GGDN, GR, NEGR	3651,0–3719,0
04.08.81	EL02, EL03, EL14, EL28	3605,0-4372,0
	CALI, DT, T1	3141,0-4379,0
	LL3, EL03	3530,0-4372,0
	GGDN, GR, TEMP, EN10, EL09, NEGR	4300,0-4583,5
	DT, T1, LL3	4285,5-4588,0
04.10.81	CALI, GSP	3147,5–4582,5
	GGDN	4350,5-4403,0
	GR, NEGR	4525,0-4590,0
	GR, TEMP, GGDN, NEGR	5000,0-5583,5
	CALI, SP, GR, GGDN, EL20, EL07, NEGR	4504,0–5080,5
11.07.82	EL02, EL03, E07L, EL14, EL28, LL3, IL	4583,0–5078,0
	DT, T1, T2	4562,5–5076,5
	GR, GGDN, NEGR	4997,5–5089,0
	GR, GGDN, NEGR	5005,0–5087,0
28.01.83	SP, EN20, EL02, EL03, EL07, EL14, EL28, LL3	4950,0–5588,0
	CALI	4550,0–5557,0
	SP, EL28	4952,0–5576,5
	TEMP	0,0–5500,0
08 02 83	SATT, T2	2567,5-4588,0
00.02.05	CALI_C, GR_C [API], NEGR_C	0,0–5565,75
	[a_unit], DT_C, EL09_C, EN10_C	krok: 0,25

Fig. 17. Schematyczne zestawienie typów badań geofizycznych wykonanych w otworze wiertniczym Budziszewice IG 1

Schematic depth presentation of well logging types performed in Budziszewice IG 1 borehole

interwały głębokościowe, w których wykonano odpowiednie pomiary. Dodatkowo na figurze 17 zilustrowano zestaw pomiarów wykonanych w poszczególnych odcinkach otworu.

Od głęb. 1465 m wykonano sterowane profilowanie oporności (LL3). Pomiar ten jest bardzo przydatny ze względu na dużą zdolność rozdzielczą, symetryczny charakter zapisu oraz możliwość uzyskania dodatkowych informacji o oporności strefy filtracji i niezmienionej części warstwy. W osadach cechsztyńskich, w których płuczka jest silnie zmineralizowana, POst jest podstawowym pomiarem do oceny oporności właściwej poziomów węglanowych.

Prawie w całym badanym profilu wykonano pełne sondowanie oporności, wyjątek stanowią interwały: 3480–3675 i 4315–4582 m. W interwale 3155–4365 m wykonano skrócone sondowanie oporności. Rozstawy stosowanych sond były następujące: A0.5M0.1N, A0.4M0.1N, A1M0.1N, A2.5M0.25N, A2M0.1N, A2M0.5N, A4M0.5N, A5.7M0.4N, A8M1N, N5.7M0.4A, N8M0.5A, N8.5M0.5A, N2.5M0.25A, N2M0.5A i N6M0.5A. Ze względu na możliwości techniczne aparatury w interwale 4315–4582 m zastosowano zamiennie zamiast sondy potencjałowej o rozstawie N2.5M0.25A sondę B2.5A0.25M, podobnie zamiast sondy gradientowej A2.5M0.25N zastosowano sondę M2.5A0.25B. Profilowania tymi sondami dały takie same wyniki. Sterowane mikroprofilowanie oporności wykonano jedynie w drugim odcinku pomiarowym, w interwale 709–1569 m. W interwale 4585–5073 m wykonano profilowanie indukcyjne, które jest efektywną metodą do określenia oporności właściwej warstw przy słabo zmineralizowanej płuczce wiertniczej.

Możliwości sprzętowe grupy pomiarowej oraz warunki panujące w odwiercie decydowały o możliwości wykonania w danym odcinku ustalonego zestawu pomiarów geofizycznych. W odcinku pomiarowym obejmującym interwał 2640–3100 m nie wykonano profilowania PNG, pomiar ten został uzupełniony w następnym odcinku 2580–3485 m. Jednak znaczną część pomiaru PNG wykonano w odwiercie zarurowanym w interwale 2580–3155 m. Ze względu na zły stan techniczny odwiertu w interwale 2580–3155 m nie wykonano profilowania PGG, z obawy przed wystąpieniem dużych trudności w zapuszczeniu sond do otworu i możliwości przychwycenia przyrządów.

Fig. 18. Zestawienie profilowań gamma i neutron-gamma w otworze wiertniczym Budziszewice IG 1

 \rightarrow

Charakterystyka termiczna otworu Budziszewice IG 1

Thermal profile of Budziszewice IG 1 borehole

Stratygrafia	Głębokość spągu forma- cji [m]	Temperatura [°C]	Stopień geotermicz- ny [m/1°C]	Gradient geotermiczny [°C/100 m]
Czwartorzęd	60,0	21,5	-	-
Jura	1357,0	46,2	52,5	1,9
Trias	3605,5	115,5	33,7	3,0
Perm	5050,0	138,0	61,2	1,6
Karbon	5601,0	147,5	52,6	1,9

W interwałach 4585–5073 i 5000–5570 m nie wykonano profilowania akustycznego prędkości.

Odzwierciedleniem charakterystyki termicznej odwiertu są pomiary temperatury dna odwiertu wykonywane w kolejnych odcinkach przekroju oraz pomiar profilowania temperatury wykonany w interwale 0–5500 m przy ustalonej równowadze termicznej po zakończeniu wiercenia i 14-dniowej stójce.

Profilowanie neutron-gamma (PNG) oraz sterowane profilowanie oporności (POst) w niektórych odcinkach zapisano zarówno w skali liniowej, jak i logarytmicznej.

WYNIKI KOMPLEKSOWEJ INTERPRETACJI PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Profilowania geofizyki otworowej przeprowadzone w otworze Budziszewice IG 1 pozwoliły określić profil litologiczny. Na podstawie znajomości wykształcenia litologicznego oraz następstwa zalegania poszczególnych kompleksów ustalono ich przynależność stratygraficzną. Ponadto wykonane badania geofizyczne pozwoliły wydzielić poziomy zbiornikowe, dokonać jakościowej oceny wybranych poziomów, a w niektórych przypadkach oceny ilościowej ich właściwości zbiornikowych oraz charakteru nasycenia.

Wyniki profilowań z grupy geofizyki jądrowej są wyrażone w impulsach na minutę. Są to jednostki fizyczne, które wymagają standaryzacji, w celu umożliwienia porównania wyników uzyskanych w różnych odcinkach pomiarowych. Krzywe odcinkowe profilowania neutron-gamma oraz wykres połączonych wyników pomiarów odcinkowych w otworze Budziszewice IG 1 znajduje się na figurze 18. Połączona krzywa PNG jest wyrażona w umownych jednostkach z przedziału 0–1000 a_unit, podczas gdy krzywe odcinkowe są zapisane w impulsach na minutę w przedziale 0–50 000. Dla uzyskania wiarygodnego wyniku, pozwalającego na porównanie wartości porowatości neutronowej, NPHI, uzyskanej Największy problem stanowiła poprawna rejestracja profilowania potencjałów polaryzacji naturalnej (PS). Wprawdzie pomiar ten wykonano niemal w każdym odcinku pomiarowym, jednak wpływ prądów błądzących wywołanych pracą agregatu prądotwórczego był tak duży, że krzywej PS nie można było wykorzystać do interpretacji całego profilu Budziszewice IG 1. Wysoka mineralizacja płuczki w interwale przewiercającym utwory cechsztynu również nie sprzyjała wykształceniu anomalii na profilowaniu PS.

Pomiar temperatury przy nieustalonej równowadze termicznej wykorzystano do bieżącej interpretacji, natomiast pomiar temperatury przy ustalonej równowadze termicznej (po zakończeniu wiercenia i 14-dniowej stójce) – do obliczenia stopni i gradientów geotermicznych. Otrzymane stopnie i gradienty geotermiczne przedstawiono w tabeli 13. Profilowania temperatury wykorzystano także do oceny stanu zacementowania odwiertu (głębokości zacementowania).

Wykaz profilowań wykonanych w poszczególnych interwałach głębokościowych wraz z zaznaczeniem czasu ich przeprowadzenia zamieszczono w tabeli 12. Zawarte w niej profilowania: CALI_C, GR_C [API], NEGR_C [a_unit], DT_C, EL09_C, EN10_C, zostały utworzone w wyniku połączenia profilowań tego samego typu, wykonanych dla różnych odcinków pomiarowych. Przykładowe zestawienie profilowań połączonych NEGR_C i GR_C wraz z wynikami pomiarów odcinkowych pokazano na figurze 18.

W ramach oceny stanu technicznego otworu wykonano profilowanie krzywizny oraz średnicy otworu. Stan zacementowania odwiertu badano przy pomocy profilowania temperatury i profilowania akustycznego.

z profilowania neutronowego w poszczególnych odcinkach pomiarowych, należy obliczyć parametr różnicowy, zdefiniowany następująco:

$$\Delta I_{NG} = \frac{I_{NG} - I_{NG}^{\min}}{I_{NG}^{\max} - I_{NG}^{\min}}$$

gdzie:

- I_{NG} bieżąca wartość mierzonego parametru;
- I_{NG}^{max} maksymalna wartość mierzonego parametru, wybrana dla interpretowanego poziomu stratygraficznego;
- I_{NG}^{\min} minimalna wartość mierzonego parametru, wybrana dla interpretowanego poziomu stratygraficznego.

Parametr różnicowy należy obliczać jedynie dla zadanej jednostki litostratygraficznej.

W celu sprowadzenia wyników pomiarów geofizyki jądrowej do wspólnego poziomu odniesienia można także posłużyć się innymi metodami standaryzacji. Zawsze jednak wymagają one znajomości warstw reperowych o znanych z innych źródeł parametrach.

CHARAKTERYSTYKA LITOLOGICZNA I OCENA WŁAŚCIWOŚCI ZBIORNIKOWYCH POZIOMÓW STRATYGRAFICZNYCH

Poziomy stratygraficzne występujące w otworze wiertniczym Budziszewice IG 1 omówiono pod względem wykształcenia litologicznego oraz właściwości zbiornikowych i złożowych. Profil litologiczny na podstawie badań geofizycznych określono od głęb. 50 m, ponieważ powyżej otwór został zarurowany. Osady występujące w tym interwale prawdopodobnie odpowiadają utworom czwartorzędowym.

Na głęb. 60–693 m występują utwory jury środkowej i górnej, wykształcone jako piaskowce mniej lub bardziej zailone, zawierające domieszki węglanów, mułowców piaszczysto-ilastych oraz mułowców ilastych. Skały jury środkowej uznano za mające średnie właściwości zbiornikowe. Ich porowatości są rzędu 7–12%. Jedynie piaskowce z interwału 647–697 m mają porowatości rzędu 24%.

Osady **jury dolnej** (głęb. 693–1358 m) to przeważnie czyste piaskowce, rzadziej zailone, przedzielone pakietami utworów iłowcowo-mułowcowych. Ze względu na izolację utworami ilastymi warstwy piaskowców stanowią odrębne poziomy zbiornikowe. Występujące warstwy piaskowców są bardzo dobrymi skałami zbiornikowymi, jednak ocena ilościowa tych poziomów była utrudniona ze względu na złą jakość pomiarów PA oraz brak PS. Piaskowce jury dolnej są nasycone wodami o mineralizacji mniejszej od mineralizacji płuczki.

Osady **retyku, noryku i kajpru** (głęb. 1358,0–2117,5 m) można potraktować jako kompleks mułowcowo-iłowcowy z nielicznymi warstwami piaskowców, piaskowców zailonych, a także z wtrąceniami wapieni. Do poziomów o właściwościach zbiornikowych zaliczono nieliczne warstwy piaskowców oraz serie mułowców. Osady retyku i kajpru oceniono negatywnie pod względem nasycenia bituminami.

Osady **wapienia muszlowego** (głęb. 2117,5–2342,0 m) są zbudowane z wapieni i wapieni zailonych z dość licznymi wkładkami iłowców wapnistych. Miejscami wapienie te stają się mniej lub bardziej dolomityczne. Ogólnie utwory wapienia muszlowego nie mają właściwości zbiornikowych. Wartości współczynnika porowatości ogólnej określone na podstawie PA nie przekraczają 5%, jedynie w interwałach 2220,0–2242,5 oraz 2279–2305 m porowatości kształtują się w przedziale 7,5–8,0%. Wzrost oporności tych skał może być częściowo spowodowany dolomityzacją wapieni, niemniej jednak nie można wykluczyć nasycenia bituminami. Poziomy te zostały zaproponowane do opróbowania.

Trias dolny jest wykształcony w postaci utworów pstrego piaskowca. Utwory formacji retu (głęb. 2342,0– 2515,0 m) są zbudowane z wapieni, niekiedy wapieni zailonych lub marglistych oraz 2 serii iłowców wapnistych, przewarstwionych mułowcami wapnistymi, mułowcami, iłowcami, czasami piaskowcami. Serie ilaste występują na głęb. 2342–2378 i 2419–2430 m. Pod względem właściwości zbiornikowych osady te oceniono negatywnie. Porowatości określone z krzywej PA nie przekraczają 5%. Nieco lepsze właściwości zbiornikowe obserwuje się w cienkich warstwach wapieni oraz piaskowców, w których porowatości wahają się od 6 do 12%. Również podczas oceny charakteru nasycenia nie wykazano nasycenia bituminami. Osady pstrego piaskowca środkowego-dolnego (głęb. 2515,0-3605,5 m) do głęb. 2822,5 m są wykształcone w facji ilastej z domieszkami węglanów. Są to głównie iłowce wapniste, iłowce margliste przewarstwione mułowcami wapnistymi, mułowcami oraz iłowcami. Od głęb. 2822,5 m zaznacza się nieco większy udział materiału piaszczystego, w obrębie utworów iłowcowo-mułowcowych podrzędnie występują przewarstwienia zailonych piaskowców, prawdopodobnie wapnistych lub marglistych. Na głęb. 3068-3074 m występują iłowce glaukonitowe. W interwale głęb. 3155–3557 m utwory pstrego piaskowca są wykształcone w facji ilasto-piaszczystej; tworzą je mułowce przewarstwione piaskowcami, iłowcami oraz warstwy piaskowców przekładane mułowcami i iłowcami. Spąg osadów pstrego piaskowca stanowia mułowce, miejscami zapiaszczone, z przewarstwieniami iłowców. W obrębie piaskowców zalegających na głęb. 3230-3557 m obserwuje się wtrącenia muskowitu. Osady pstrego piaskowca są bardzo słabymi skałami zbiornikowymi. Oceniono je negatywnie pod względem nasycenia bituminami.

Potencjalną skałą zbiornikową występującą w profilu litologicznym **permu górnego** (cechsztynu) jest wapień podstawowy. Porowatość tego poziomu określona na podstawie PA wyniosła ok. 3%. Wapień podstawowy nie jest poziomem perspektywicznym pod względem akumulacji węglowodorów. Z powodu nietypowego i bardzo skomplikowanego wykształcenia litologicznego cechsztynu oraz braku możliwości skorelowania z innymi otworami nie wykonano pełnego podziału osadów cechsztynu na poszczególne cyklotemy.

Poniżej utworów cechsztynu zalegają utwory **permu dolnego** (czerwonego spągowca) (głęb. 4560–5050 m). Utwory te są wykształcone w facji piaszczysto-ilastej. Budują je piaskowce, piaskowce mułowcowe, mułowce oraz iłowce. Jednak dominującą rolę odgrywają piaskowce. W obrębie utworów czerwonego spągowca wydzielono pięć serii:

- I seria piaszczysto-ilasta (głęb. 4560–4585 m) zbudowana głównie z piaskowców. W spągu tej serii występują piaskowce mułowcowe przewarstwione mułowcami.
- II seria iłowcowo-mułowcowa (głęb. 4585,0–4630,5 m) reprezentowana przez iłowce, mułowce przekładane cienkimi warstwami piaskowców oraz piaskowców mułowcowych.
- III seria piaszczysta (głęb. 4630,5–4812,5 m) zbudowana z piaskowców i piaskowców mułowcowych. Piaskowce przewarstwione są iłowcami i mułowcami. W obrębie tej serii, na głęb. 4736–4759 m, występuje piaskowiec, który prawdopodobnie zawiera wtrącenia pirytu. W interwałach głęb. 4716–4718 i 4723,0–4726,5 m stwierdzono okruchy skał wylewnych o podwyższonej naturalnej promieniotwórczości.
- IV seria iłowcowo-mułowcowa (głęb. 4812,5–4885 m) z przewarstwieniami piaskowców mułowcowych. Dominują w tej serii utwory ilaste.

 V seria piaszczysto-ilasta (głęb. 4885–5050 m) zbudowana z piaskowców, piaskowców mułowcowych i zlepieńcowatych, zlepieńców przekładanych warstwami iłowca lub mułowca. Większy udział materiału ilastego zaznacza się na głęb. 4918,0–4930,5 i 4945–4977 m. Od głęb. 4918 m pojawiają się zlepieńce.

Piaskowce czerwonego spągowca są słabymi skałami zbiornikowymi, niemającymi przemysłowego znaczenia. Warstwy piaskowców i piaskowców mułowcowych o właściwościach zbiornikowych występują w seriach piaszczystych w obrębie interwałów 4630,5–4812,5; 4885–5050 i 4560–4585 m. Porowatości określone na podstawie PNG nie przekraczają 5%. W poziomach wykazujących właściwości zbiornikowe nie obserwuje się anomalii, które świadczyłyby o nasyceniu bituminami.

Osady **karbonu** (głęb. 5050–5570 m) są reprezentowane przez mułowce, mułowce piaszczyste, iłowce oraz piaskow-

ce mułowcowe. W interwale 5050-5286 m obserwuje się większy udział materiału piaszczystego, warstwy piaskowców mułowcowych są przekładane mułowcami piaszczystymi i iłowcami. W stropie osadów karbonu, na głęb. 5050-5063 m, przeważają utwory iłowcowo-mułowcowe. W obrębie piaskowców mułowcowych na głęb. 5090,5-5095,5 i 5111-5115 m występują osady o podwyższonej naturalnej promieniotwórczości, spowodowanej być może domieszką łyszczyków. Od głęb. 5286 m wzrasta udział utworów iłowcowo-mułowcowych, są to głównie mułowce, iłowce, mułowce piaszczyste, rzadko przewarstwione piaskowcami mułowcowymi. Utwory karbonu charakteryzują się bardzo słabymi właściwościami zbiornikowymi. Na uwagę zasługuje poziom zalegający w interwale 5190-5227 m. Może on być nasycony bituminami lub mieć specyficzny typ przestrzeni porowej (kawernistość).

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

PROFILOWANIE PRĘDKOŚCI ŚREDNICH

W otworze wiertniczym Budziszewice IG 1 profilowanie prędkości średnich przeprowadziło Przedsiębiorstwo Geofizyki Górnictwa Naftowego Toruń w lutym 1983 r.

Pomiarami objęto odcinki do głęb. 5580 m, przy głębokości końcowej otworu 5601 m. Można więc przyjąć, że pomiar obejmuje cały zakres odwierconego otworu. Stosowano aparaturę CS-5G, sondę jednogeofonową i piętnastometrowy interwał pomiarowy. Wzbudzanie energii prowadzono z trzech punktów PW metodą bezdynamitową.

Parametry punktów wzbudzania odpowiednio wynosiły:

PW 1	d = 50 m	A = 340°	N = 0,0 m	<i>hpo</i> = 0,0 m
PW 2	<i>d</i> = 100 m	A = 55°	N = 0,0 m	<i>hpo</i> = 0,0 m
PW 3	d = 50 m	A = 130°	N = 0.0 m	hpo = 0.0 m

gdzie:

- *d* odległość punktu wzbudzania od głębokiego otworu;
- A azymut mierzony w punkcie głębokiego otworu w kierunku punktu wzbudzania;
- N wysokość względna punktu wzbudzania w stosunku do otworu wiertniczego (niwelacja);
- hpo średnia głębokość wzbudzania.

Do obliczenia krzywej prędkości średnich przyjęto jako poziom odniesienia 199 m n.p.m., przy tej samej wysokości wylotu otworu.

Głębokość zredukowana do poziomu odniesienia została obliczona ze wzoru:

$$hr = h - hpo \pm N \pm \Delta h$$

gdzie:

- hr głębokość zredukowana punktu pomiarowego;
- *h* głębokość zanurzenia geofonu głębinowego;
- Δh różnica głębokości między hpo i poziomem odniesienia [m].

Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

$$tp = tobs + \Delta th$$

gdzie:

- *tp* czas poprawiony;
- tobs czas obserwowany;
- Δth poprawka wynikająca z głębokości punktu wzbudzania, poziomu odniesienia, miąższości strefy małych prędkości, prędkości w tej strefie i prędkości pod nią.

Do obliczenia poprawki Δth pomiędzy średnią głębokością wzbudzania a poziomem odniesienia stosowano od powierzchni terenu do poziomu odniesienia następujące prędkości [m/s] :

PW1	<i>ho</i> = 1,4 m	Vo = 1900	h1 = 7,1 m	V1 = 500
	<i>h</i> 2 = 190,5 m	V2=1750		
PW2	<i>ho</i> = 1,4 m	Vo = 200	h1 = 8,0 m	V1 = 510
	<i>h</i> 2 = 189,6 m	V2 = 1840		
PW3	<i>ho</i> = 1,4 m	<i>Vo</i> = 185	<i>h</i> 1 = 6,3 m	V1 = 500
	<i>h</i> 2 = 191,3 m	<i>V</i> 3 = 166		

Geofony korekcyjne były usytuowane 25 m od głębokiego otworu i 5 m od PW.

Czas zredukowany dla poszczególnych punktów wzbudzania *tr* 1, *tr* 2 i *tr* 3 liczono na podstawie wzoru:

$$tr = \frac{hr}{\sqrt{hr^2 + d^2}} \times tp$$

W celu wyeliminowania anizotropii ośrodka obliczono średni czas redukowany (tr), jako średnią arytmetyczną po-

miarów czasu zredukowanego z poszczególnych punktów wzbudzania.

Wartości hr i tr posłużyły do obliczenia prędkości średnich (Vśr) zgodnie ze wzorem:

$$V \text{sr} = \frac{hr}{tr}$$

Wszystkie wartości hr, tr 1, tr 2, tr 3, tr, Vśr, zestawiono w tabeli 14. Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego.

Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 19A) i hodografu pionowego (fig. 19B). Do wykreślenia krzywej prędkości średnich wykorzystano wartości uśrednione z trzech punktów wzbudzania.

Przedstawiony na figurze 19B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem jej wykorzystania jest jednakowy odstęp między punktami pomiarowymi.

Podaną metodę zastosowano do wygładzania odczytów czasu z pomiarów prędkości średnich w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując pomiary czasu zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu odniesienia pomiaru i ich interpolacji dla znormalizowanych przedziałów głębokości, co 20 m. Następnie wyznaczone wartości wygładzono przy użyciu specjalnego programu przez zastosowanie operacji splotu z filtrem trójkatnym, stosując 20 razy filtr 0,25; 0,5 i 0,25. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia predkości interwałowych.

Przy pierwszym wygładzaniu zmniejszają się przypadkowe skoki wartości czasu spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory, obejmujące przetworzone pomiary czasu (po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości, co 20 m i wygładzeniu) oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje sa zawarte w banku danych predkościowych, utworzonym w latach 90. XX wieku w Zakładzie Geofizyki Państwowego Instytutu Geologicznego na potrzeby interpretacji prac sejsmicznych.

Fig. 19. Wykres prędkości średnich (A) i hodograf pionowy (B) (poz. odn. 199 m n.p.m.)

Oznaczenia stratygraficzne wg słownika kodowego sytemu SADOG (Geonafta)

Average seismic velocity (A) and travel-time curve (B) (reference level 199 m a.s.l.)

Stratigraphical symbols according to the SADOG coding system of Geonafta

Różnice wartości pomiaru czasu pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasu wygładzonego n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wyróżniają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości obliczonych prędkości odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości Vw (prędkość wygładzona), Vi (prędkość interwałowa) oraz Vk (prędkość kompleksowa) obliczonych z pomiarów czasu wygładzonego zawarto w tabeli 15. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 20.

Powyższe wykresy wzbogacono profilem stratygraficznym otworu wiertniczego, co umożliwia bezpośrednie

Fig. 20. Wykresy prędkości wygładzonych (*Vw*), interwałowych (*Vi*) i kompleksowych (*Vk*) (poz. odn. 199 m n.p.m.)

Oznaczenia stratygraficzne wg słownika kodowego sytemu SADOG (Geonafta)

Smoothed velocity (*Vw*), interval velocity (*Vi*) and complex velocity (*Vk*) (reference level 199 m a.s.l.)

Stratigraphical symbols according to the SADOG coding system of Geonafta

powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi przekroju geologicznego w otworze oraz z refleksami sejsmicznymi.

Na wykresie prędkości średnich (fig. 19) zaznacza się stały wzrost prędkości wraz z głębokością otworu. Wyjątek stanowi początkowy odcinek krzywej, gdzie wartość ta gwałtownie rośnie. Jest to wynik dużych prędkości (ponad 2500 m/s) w utworach jury, występujących bezpośrednio pod utworami czwartorzędu.

W wyniku analizy wykonanych pomiarów określono prędkości kompleksowe, które odpowiednio dla poszczególnych warstw geologicznych wynoszą:

_	jura środkowa	2900 m/s,
_	jura dolna	3700 i 4000 m/s,
_	trias górny	3700 m/s,
_	trias środkowy	5100 m/s,
_	trias dolny	4500 m/s
_	perm górny (cechsztyn)	4700 m/s,
_	perm dolny	
	(czerwony spągowiec)	5600 i 5400 m/s,
_	karbon	5100 m/s.

Obserwuje się dobrą zgodność granic kontrastów prędkości z kompleksami stratygraficznymi oraz dość duże zróżnicowanie prędkości w obrębie tych samych utworów geologicznych.

Osady jurajskie rozpoczynają się serią weglanowych utworów jury górnej. Jurę środkową i dolną tworzą serie klastyczne. Zwiększone wartości prędkości odpowiadają wzrostowi składników węglanowych. Poniżej występuje kompleks utworów ilastych triasu (o znacznej miąższości), przedzielonych skałami węglanowymi wapienia muszlowego, który zaznacza się bardzo dużymi wartościami prędkości. Kompleksy o wyższych wartościach prędkości w triasie górnym są związane z miejscami przechodzenia osadów klastycznych utworów kajpru w margle oraz mułowce wapniste. Pod cienką, kilkudziesięciometrową pokrywą terygeniczną występują cztery cyklotemy utworów salinarnych permu górnego na tle powtarzających się sekwencji skał ilastych i weglanowych, osiągających dużą miąższość - 954 m. Wzrost miąższości utworów salinarnych na głęb. ok. 4000 m zaznacza się kompleksem obniżonych prędkości. Utwory permu dolnego, o wyjątkowo dużej miąższości - 490 m, tworzą osady klastyczne z lokalnym wzrostem prędkości w obrębie formacji noteckiej. Najstarszym utworom wieku karbońskiego towarzyszy obniżenie prędkości. Wykonane pomiary dostarczają danych do interpretacji głębokościowej przekrojów sejsmicznych.

Analizując uzyskane wyniki pomiarowe należy liczyć się z występowaniem w rejonie otworu wiertniczego Budziszewice IG 1 najwyraźniejszych sejsmicznych granic odbijających na granicy stropu i spągu triasu środkowego oraz stropu cechsztynu.

Potwierdza to obraz falowy zaprezentowanego z obszaru Łódź–Tomaszów Mazowiecki przekroju sejsmicznego 19/20-12-75K (fig. 3) po reprocesingu dokonanym w 1997 r.

Zestawienie wartości głębokości (H), czasu zredukowanego (Tr) i prędkości średnich (Vśr) dla otworu wiertniczego Budziszewice IG 1

Depth (H), reduced time (Tr) and average velocity (Vsr) values for the Budziszewice IG 1

Н	Tr 1	Tr 2	Tr 3	Tr	Vśr
[m]	[s]	[s]	[s]	[s]	[m/s]
1	2	3	4	5	6
45	0,0400	0,0340	0,0400	0,0380	1184
60	0,0480	0,0400	0,0480	0,0453	1324
75	0,0530	0,0440	0,0530	0,0500	1500
90	0,0580	0,0480	0,0590	0,0550	1636
105	0,0620	0,0540	0,0630	0,0597	1760
120	0,0660	0,0590	0,0660	0,0637	1885
135	0,0700	0,0640	0,0700	0,0680	1985
150	0,0750	0,0700	0,0760	0,0737	2036
165	0,0810	0,0750	0,0810	0,0790	2089
180	0,0880	0,0810	0,0880	0,0857	2101
195	0,0930	0,0870	0,0940	0,0913	2135
210	0,0990	0,0930	0,0980	0,0967	2172
225	0,1050	0,1000	0,1030	0,1027	2192
240	0,1120	0,1050	0,1090	0,1087	2209
255	0,1170	0,1110	0,1150	0,1143	2230
270	0,1210	0,1160	0,1180	0,1183	2282
285	0,1260	0,1210	0,1220	0,1230	2317
300	0,1310	0,1250	0,1280	0,1280	2344
315	0,1380	0,1320	0,1340	0,1347	2339
330	0,1450	0,1370	0,1390	0,1403	2352
345	0,1500	0,1440	0,1440	0,1460	2363
360	0,1570	0,1500	0,1540	0,1537	2343
375	0,1640	0,1570	0,1630	0,1613	2324
390	0,1680	0,1620	0,1680	0,1660	2349
405	0,1730	0,1670	0,1730	0,1710	2368
420	0,1780	0,1720	0,1770	0,1757	2391
435	0,1850	0,1770	0,1820	0,1813	2399
450	0,1910	0,1830	0,1860	0,1867	2411
465	0,1950	0,1880	0,1910	0,1913	2430
480	0,1990	0,1920	0,1960	0,1957	2453
495	0,2030	0,1960	0,2000	0,1997	2479
510	0,2070	0,2010	0,2040	0,2040	2500
525	0,2110	0,2060	0,2080	0,2083	2520
540	0,2160	0,2110	0,2120	0,2130	2535

<i>H</i> [m]	<i>Tr</i> 1 [s]	<i>Tr</i> 2 [s]	<i>Tr</i> 3 [s]	Tr [s]	Vśr [m/s]
1	2	3	4	5	6
555	0,2220	0,2170	0,2160	0,2183	2542
570	0,2280	0,2210	0,2200	0,2230	2556
585	0,2340	0,2250	0,2270	0,2287	2558
600	0,2400	0,2320	0,2350	0,2357	2546
615	0,2450	0,2390	0,2430	0,2423	2538
630	0,2500	0,2450	0,2490	0,2480	2540
645	0,2550	0,2500	0,2540	0,2530	2549
660	0,2600	0,2550	0,2590	0,2580	2558
675	0,2650	0,2590	0,2630	0,2623	2573
690	0,2700	0,2630	0,2670	0,2667	2588
705	0,2740	0,2670	0,2710	0,2707	2605
720	0,2780	0,2710	0,2750	0,2747	2621
735	0,2830	0,2750	0,2790	0,2790	2634
750	0,2870	0,2800	0,2830	0,2833	2647
765	0,2910	0,2830	0,2860	0,2867	2669
780	0,2950	0,2860	0,2900	0,2903	2687
795	0,2990	0,2910	0,2950	0,2950	2695
810	0,3030	0,2960	0,3000	0,2997	2703
825	0,3070	0,3010	0,3050	0,3043	2711
840	0,3120	0,3060	0,3100	0,3093	2716
855	0,3170	0,3100	0,3140	0,3137	2726
870	0,3210	0,3140	0,3180	0,3177	2739
885	0,3250	0,3170	0,3220	0,3213	2754
900	0,3290	0,3200	0,3260	0,3250	2769
915	0,3340	0,3250	0,3310	0,3300	2773
930	0,3380	0,3300	0,3350	0,3343	2782
945	0,3420	0,3350	0,3390	0,3387	2790
960	0,3470	0,3400	0,3430	0,3433	2796
975	0,3520	0,3440	0,3460	0,3473	2807
990	0,3560	0,3480	0,3500	0,3513	2818
1005	0,3600	0,3520	0,3540	0,3553	2828
1020	0,3650	0,3560	0,3580	0,3597	2836
1035	0,3700	0,3610	0,3620	0,3643	2841
1050	0,3740	0,3650	0,3660	0,3683	2851

						-						
1	2	3	4	5	6		1	2	3	4	5	6
1065	0,3780	0,3690	0,3700	0,3723	2860		1650	0,5270	0,5210	0,5180	0,5220	3161
1080	0,3820	0,3740	0,3750	0,3770	2865		1665	0,5320	0,5250	0,5230	0,5267	3161
1095	0,3860	0,3790	0,3790	0,3813	2872		1680	0,5360	0,5290	0,5270	0,5307	3166
1110	0,3900	0,3830	0,3830	0,3853	2881		1695	0,5400	0,5330	0,5300	0,5343	3172
1125	0,3940	0,3870	0,3860	0,3890	2892		1710	0,5440	0,5370	0,5350	0,5387	3175
1140	0,3980	0,3910	0,3900	0,3930	2901		1725	0,5490	0,5410	0,5390	0,5430	3177
1155	0,4020	0,3950	0,3940	0,3970	2909		1740	0,5530	0,5450	0,5430	0,5470	3181
1170	0,4060	0,3980	0,3970	0,4003	2923		1755	0,5560	0,5490	0,5470	0,5507	3187
1185	0,4100	0,4010	0,4010	0,4040	2933		1770	0,5590	0,5530	0,5510	0,5543	3193
1200	0,4140	0,4050	0,4050	0,4080	2941		1785	0,5620	0,5570	0,5550	0,5580	3199
1215	0,4180	0,4090	0,4090	0,4120	2949		1800	0,5650	0,5610	0,5590	0,5617	3205
1230	0,4220	0,4130	0,4130	0,4160	2957		1815	0,5700	0,5650	0,5640	0,5663	3205
1245	0,4260	0,4150	0,4160	0,4190	2971		1830	0,5750	0,5690	0,5690	0,5710	3205
1260	0,4300	0,4180	0,4200	0,4227	2981		1845	0,5790	0,5730	0,5730	0,5750	3209
1275	0,4340	0,4230	0,4240	0,4270	2986		1860	0,5830	0,5770	0,5770	0,5790	3212
1290	0,4370	0,4270	0,4280	0,4307	2995		1875	0,5880	0,5810	0,5810	0,5833	3214
1305	0,4400	0,4310	0,4320	0,4343	3005		1890	0,5930	0,5860	0,5850	0,5880	3214
1320	0,4440	0,4340	0,4360	0,4380	3014		1905	0,5980	0,5910	0,5880	0,5923	3216
1335	0,4480	0,4390	0,4400	0,4423	3018		1920	0,6020	0,5940	0,5920	0,5960	3221
1350	0,4510	0,4430	0,4440	0,4460	3027		1935	0,6060	0,5980	0,5960	0,6000	3225
1365	0,4540	0,4470	0,4480	0,4497	3036		1950	0,6100	0,6020	0,6000	0,6040	3228
1380	0,4580	0,4510	0,4520	0,4537	3042		1965	0,6150	0,6060	0,6050	0,6087	3228
1395	0,4620	0,4540	0,4550	0,4570	3053		1980	0,6200	0,6110	0,6100	0,6137	3227
1410	0,4660	0,4570	0,4590	0,4607	3061		1995	0,6240	0,6150	0,6140	0,6177	3230
1425	0,4690	0,4620	0,4630	0,4647	3067		2010	0,6280	0,6190	0,6180	0,6217	3233
1440	0,4740	0,4670	0,4670	0,4693	3068		2025	0,6320	0,6230	0,6200	0,6250	3240
1455	0,4790	0,4710	0,4710	0,4737	3072		2040	0,6360	0,6260	0,6250	0,6290	3243
1470	0,4810	0,4750	0,4750	0,4770	3082		2055	0,6390	0,6290	0,6290	0,6323	3250
1485	0,4840	0,4780	0,4780	0,4800	3094		2070	0,6420	0,6330	0,6330	0,6360	3255
1500	0,4870	0,4810	0,4810	0,4830	3106		2085	0,6450	0,6370	0,6360	0,6393	3261
1515	0,4900	0,4850	0,4840	0,4863	3115		2100	0,6490	0,6410	0,6400	0,6433	3264
1530	0,4930	0,4890	0,4870	0,4897	3125		2115	0,6530	0,6450	0,6430	0,6470	3269
1545	0,4960	0,4920	0,4900	0,4927	3136		2130	0,6560	0,6480	0,6460	0,6500	3277
1560	0,4990	0,4950	0,4930	0,4957	3147		2145	0,6590	0,6510	0,6490	0,6530	3285
1575	0,5040	0,4990	0,4970	0,5000	3150		2160	0,6620	0,6540	0,6520	0,6560	3293
1590	0,5090	0,5030	0,5010	0,5043	3153		2175	0,6650	0,6570	0,6550	0,6590	3300
1605	0,5130	0,5060	0,5040	0,5077	3162		2190	0,6680	0,6600	0,6580	0,6620	3308
1620	0,5170	0,5110	0,5070	0,5117	3166		2205	0,6710	0,6630	0,6610	0,6650	3316
1635	0,5220	0,5160	0,5120	0,5167	3165		2220	0,6740	0,6660	0,6640	0,6680	3323

						-						
1	2	3	4	5	6		1	2	3	4	5	6
2235	0,6770	0,6690	0,6670	0,6710	3331		2820	0,8080	0,8010	0,8000	0,8030	3512
2250	0,6790	0,6720	0,6700	0,6737	3340		2835	0,8110	0,8040	0,8030	0,8060	3517
2265	0,6810	0,6740	0,6720	0,6757	3352		2850	0,8140	0,8080	0,8070	0,8097	3520
2280	0,6830	0,6760	0,6740	0,6777	3364		2865	0,8170	0,8110	0,8100	0,8127	3525
2295	0,6850	0,6790	0,6760	0,6800	3375		2880	0,8210	0,8140	0,8140	0,8163	3528
2310	0,6880	0,6820	0,6790	0,6830	3382		2895	0,8240	0,8170	0,8180	0,8197	3532
2325	0,6910	0,6850	0,6820	0,6860	3389		2910	0,8280	0,8200	0,8220	0,8233	3534
2340	0,6940	0,6880	0,6850	0,6890	3396		2925	0,8310	0,8240	0,8250	0,8267	3538
2355	0,6980	0,6910	0,6890	0,6927	3400]	2940	0,8340	0,8280	0,8280	0,8300	3542
2370	0,7040	0,6850	0,6930	0,6940	3415]	2955	0,8370	0,8320	0,8310	0,8333	3546
2385	0,7060	0,6990	0,6960	0,7003	3406]	2970	0,8400	0,8350	0,8350	0,8367	3550
2400	0,7090	0,7020	0,6990	0,7033	3412]	2985	0,8430	0,8380	0,8380	0,8397	3555
2415	0,7120	0,7030	0,7030	0,7060	3421		3000	0,8470	0,8410	0,8410	0,8430	3559
2430	0,7150	0,7050	0,7070	0,7090	3427]	3015	0,8510	0,8440	0,8440	0,8463	3562
2445	0,7190	0,7110	0,7100	0,7133	3428]	3030	0,8540	0,8470	0,8470	0,8493	3568
2460	0,7230	0,7150	0,7140	0,7173	3429]	3045	0,8570	0,8510	0,8500	0,8527	3571
2475	0,7260	0,7190	0,7170	0,7207	3434]	3060	0,8600	0,8540	0,8530	0,8557	3576
2490	0,7290	0,7220	0,7200	0,7237	3441]	3075	0,8630	0,8570	0,8560	0,8587	3581
2505	0,7330	0,7250	0,7230	0,7270	3446		3090	0,8660	0,8600	0,8580	0,8613	3587
2520	0,7370	0,7290	0,7270	0,7310	3447		3105	0,8690	0,8630	0,8600	0,8640	3594
2535	0,7400	0,7320	0,7300	0,7340	3454		3120	0,8720	0,8660	0,8630	0,8670	3599
2550	0,7430	0,7350	0,7340	0,7373	3458		3135	0,8750	0,8700	0,8660	0,8703	3602
2565	0,7460	0,7390	0,7380	0,7410	3462		3150	0,8780	0,8740	0,8690	0,8737	3605
2580	0,7490	0,7430	0,7420	0,7447	3465		3165	0,8810	0,8770	0,8720	0,8767	3610
2595	0,7520	0,7470	0,7460	0,7483	3468		3180	0,8850	0,8800	0,8750	0,8800	3614
2610	0,7560	0,7510	0,7500	0,7523	3469		3195	0,8890	0,8830	0,8790	0,8837	3616
2625	0,7600	0,7540	0,7540	0,7560	3472		3210	0,8920	0,8860	0,8830	0,8870	3619
2640	0,7640	0,7570	0,7580	0,7597	3475		3225	0,8950	0,8890	0,8870	0,8903	3622
2655	0,7680	0,7610	0,7610	0,7633	3478		3240	0,8990	0,8920	0,8910	0,8940	3624
2670	0,7720	0,7650	0,7650	0,7673	3480		3255	0,9020	0,8950	0,8940	0,8970	3629
2685	0,7760	0,7690	0,7680	0,7710	3482		3270	0,9050	0,8980	0,8970	0,9000	3633
2700	0,7800	0,7720	0,7710	0,7743	3487		3285	0,9080	0,9010	0,9000	0,9030	3638
2715	0,7830	0,7750	0,7740	0,7773	3493		3300	0,9110	0,9040	0,9030	0,9060	3642
2730	0,7860	0,7790	0,7780	0,7810	3496		3315	0,9140	0,9080	0,9060	0,9093	3646
2745	0,7890	0,7830	0,7820	0,7847	3498		3330	0,9170	0,9110	0,9090	0,9123	3650
2760	0,7930	0,7860	0,7860	0,7883	3501		3345	0,9200	0,9140	0,9130	0,9157	3653
2775	0,7970	0,7890	0,7890	0,7917	3505		3360	0,9230	0,9170	0,9170	0,9190	3656
2790	0,8010	0,7930	0,7930	0,7957	3506		3375	0,9260	0,9200	0,9200	0,9220	3661
2805	0,8050	0,7970	0,7970	0,7997	3508		3390	0,9290	0,9230	0,9230	0,9250	3665

1	2	3	4	5	6]	1	2	3	4	5	6
3405	0,9320	0,9260	0,9260	0,9280	3669		3990	1,0610	1,0530	1,0540	1,0560	3778
3420	0,9350	0,9290	0,9290	0,9310	3673		4005	1,0640	1,0560	1,0570	1,0590	3782
3435	0,9380	0,9320	0,9320	0,9340	3678		4020	1,0680	1,0600	1,0600	1,0627	3783
3450	0,9410	0,9350	0,9350	0,9370	3682		4035	1,0720	1,0640	1,0630	1,0663	3784
3465	0,9440	0,9380	0,9380	0,9400	3686	1	4050	1,0760	1,0680	1,0660	1,0700	3785
3480	0,9470	0,9410	0,9410	0,9430	3690		4065	1,0790	1,0720	1,0690	1,0733	3787
3495	0,9500	0,9440	0,9440	0,9460	3695		4080	1,0820	1,0750	1,0720	1,0763	3791
3510	0,9530	0,9470	0,9470	0,9490	3699		4095	1,0850	1,0780	1,0750	1,0793	3794
3525	0,9560	0,9500	0,9500	0,9520	3703		4110	1,0880	1,0820	1,0790	1,0830	3795
3540	0,9600	0,9530	0,9540	0,9557	3704		4125	1,0910	1,0850	1,0830	1,0863	3797
3555	0,9640	0,9560	0,9580	0,9593	3706		4140	1,0930	1,0880	1,0870	1,0893	3800
3570	0,9670	0,9590	0,9610	0,9623	3710		4155	1,0970	1,0910	1,0900	1,0927	3803
3585	0,9700	0,9630	0,9640	0,9657	3712		4170	1,1010	1,0940	1,0930	1,0960	3805
3600	0,9730	0,9670	0,9670	0,9690	3715		4185	1,1050	1,0960	1,0960	1,0990	3808
3615	0,9760	0,9700	0,9700	0,9720	3719		4200	1,1090	1,0990	1,0990	1,1023	3810
3630	0,9790	0,9730	0,9730	0,9750	3723		4215	1,1120	1,1020	1,1030	1,1057	3812
3645	0,9820	0,9760	0,9760	0,9780	3727		4230	1,1150	1,1050	1,1070	1,1090	3814
3660	0,9850	0,9790	0,9790	0,9810	3731		4245	1,1180	1,1090	1,1100	1,1123	3816
3675	0,9880	0,9820	0,9820	0,9840	3735		4260	1,1210	1,1130	1,1140	1,1160	3817
3690	0,9910	0,9850	0,9850	0,9870	3739		4275	1,1240	1,1160	1,1180	1,1193	3819
3705	0,9940	0,9890	0,9880	0,9903	3741		4290	1,1270	1,1190	1,1210	1,1223	3822
3720	0,9970	0,9920	0,9910	0,9933	3745		4305	1,1300	1,1220	1,1240	1,1253	3826
3735	1,0010	0,9950	0,9940	0,9967	3747		4320	1,1330	1,1250	1,1270	1,1283	3829
3750	1,0050	0,9980	0,9970	1,0000	3750		4335	1,1360	1,1280	1,1300	1,1313	3832
3765	1,0090	1,0010	1,0000	1,0033	3752		4350	1,1390	1,1310	1,1330	1,1343	3835
3780	1,0130	1,0050	1,0040	1,0073	3752		4365	1,1420	1,1340	1,1360	1,1373	3838
3795	1,0160	1,0090	1,0080	1,0110	3754		4380	1,1450	1,1370	1,1390	1,1403	3841
3810	1,0190	1,0130	1,0110	1,0143	3756		4395	1,1480	1,1400	1,1420	1,1433	3844
3825	1,0220	1,0160	1,0140	1,0173	3760		4410	1,1510	1,1430	1,1450	1,1463	3847
3840	1,0260	1,0190	1,0180	1,0210	3761		4425	1,1540	1,1460	1,1480	1,1493	3850
3855	1,0300	1,0220	1,0220	1,0247	3762		4440	1,1570	1,1490	1,1510	1,1523	3853
3870	1,0330	1,0260	1,0260	1,0283	3763		4455	1,1600	1,1520	1,1540	1,1553	3856
3885	1,0360	1,0300	1,0300	1,0320	3765		4470	1,1630	1,1550	1,1570	1,1583	3859
3900	1,0400	1,0330	1,0330	1,0353	3767		4485	1,1660	1,1580	1,1600	1,1613	3862
3915	1,0440	1,0360	1,0360	1,0387	3769		4500	1,1690	1,1610	1,1630	1,1643	3865
3930	1,0480	1,0390	1,0390	1,0420	3772		4515	1,1720	1,1650	1,1660	1,1677	3867
3945	1,0520	1,0420	1,0420	1,0453	3774		4530	1,1750	1,1680	1,1690	1,1707	3870
3960	1,0550	1,0450	1,0460	1,0487	3776		4545	1,1790	1,1710	1,1720	1,1740	3871
3975	1,0580	1,0490	1,0500	1,0523	3777		4560	1,1830	1,1740	1,1750	1,1773	3873

1	2	3	4	5	6	1	2	3	4	5	6
4575	0,0000	1,1770	1,1780	1,1775	3885	5085	0,0000	1,2730	1,2730	1,2730	3995
4590	0,0000	1,1790	1,1810	1,1800	3890	5100	0,0000	1,2760	1,2750	1,2755	3998
4605	0,0000	1,1820	1,1840	1,1830	3893	5115	0,0000	1,2790	1,2770	1,2780	4002
4620	0,0000	1,1850	1,1870	1,1860	3895	5130	0,0000	1,2820	1,2810	1,2815	4003
4635	0,0000	1,1880	1,1900	1,1890	3898	5145	0,0000	1,2850	1,2840	1,2845	4005
4650	0,0000	1,1910	1,1930	1,1920	3901	5160	0,0000	1,2870	1,2870	1,2870	4009
4665	0,0000	1,1940	1,1960	1,1950	3904	5175	0,0000	1,2900	1,2900	1,2900	4012
4680	0,0000	1,1960	1,1990	1,1975	3908	5190	0,0000	1,2920	1,2930	1,2925	4015
4695	0,0000	1,1980	1,2010	1,1995	3914	5205	0,0000	1,2950	1,2950	1,2950	4019
4710	0,0000	1,2010	1,2030	1,2020	3918	5220	0,0000	1,2980	1,2970	1,2975	4023
4725	0,0000	1,2040	1,2050	1,2045	3923	5235	0,0000	1,3010	1,3000	1,3005	4025
4740	0,0000	1,2070	1,2070	1,2070	3927	5250	0,0000	1,3040	1,3030	1,3035	4028
4755	0,0000	1,2100	1,2090	1,2095	3931	5265	0,0000	1,3070	1,3060	1,3065	4030
4770	0,0000	1,2130	1,2120	1,2125	3934	5280	0,0000	1,3100	1,3090	1,3095	4032
4785	0,0000	1,2160	1,2150	1,2155	3937	5295	0,0000	1,3130	1,3120	1,3125	4034
4800	0,0000	1,2190	1,2180	1,2185	3939	5310	0,0000	1,3150	1,3150	1,3150	4038
4815	0,0000	1,2230	1,2210	1,2220	3940	5325	0,0000	1,3180	1,3180	1,3180	4040
4830	0,0000	1,2270	1,2240	1,2255	3941	5340	0,0000	1,3210	1,3210	1,3210	4042
4845	0,0000	1,2300	1,2260	1,2280	3945	5355	0,0000	1,3240	1,3240	1,3240	4045
4860	0,0000	1,2330	1,2280	1,2305	3950	5370	0,0000	1,3270	1,3270	1,3270	4047
4875	0,0000	1,2350	1,2310	1,2330	3954	5385	0,0000	1,3300	1,3300	1,3300	4049
4890	0,0000	1,2370	1,2340	1,2355	3958	5400	0,0000	1,3340	1,3330	1,3335	4049
4905	0,0000	1,2400	1,2370	1,2385	3960	5415	0,0000	1,3360	1,3360	1,3360	4053
4920	0,0000	1,2420	1,2400	1,2410	3965	5430	0,0000	1,3390	1,3390	1,3390	4055
4935	0,0000	1,2450	1,2430	1,2440	3967	5445	0,0000	1,3410	1,3420	1,3415	4059
4950	0,0000	1,2480	1,2460	1,2470	3970	5460	0,0000	1,3430	1,3450	1,3440	4063
4965	0,0000	1,2510	1,2490	1,2500	3972	5475	0,0000	1,3460	1,3480	1,3470	4065
4980	0,0000	1,2540	1,2520	1,2530	3974	5490	0,0000	1,3490	1,3510	1,3500	4067
4995	0,0000	1,2570	1,2560	1,2565	3975	5505	0,0000	1,3520	1,3540	1,3530	4069
5010	0,0000	1,2600	1,2590	1,2595	3978	5520	0,0000	1,3550	1,3570	1,3560	4071
5025	0,0000	1,2620	1,2620	1,2620	3982	5535	0,0000	1,3580	1,3600	1,3590	4073
5040	0,0000	1,2650	1,2650	1,2650	3984	5550	0,0000	1,3600	1,3670	1,3635	4070
5055	0,0000	1,2680	1,2680	1,2680	3987	5565	0,0000	1,3630	0,0000	1,3630	4083
5070	0,0000	1,2700	1,2710	1,2705	3991	5580	0,0000	1,3660	0,0000	1,3660	4085

Zestawienie uśrednionych wartości prędkości interwałowej (*Vi*), prędkości kompleksowej (*Vk*) i prędkości wygładzonej (*Vw*) obliczonych z czasu wygładzonego dla otworu wiertniczego Budziszewice IG 1

Averaged interval velocity (Vi), complex velocity (Vk) and smoothed velocity (Vw) values calculated from smoothed time for the Budziszewice IG 1 borehole

<i>Н</i> [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s]	
1	2	3	4	
20	1840	1900	_	
40	1840	1900	1753	
60	1840	1900	1893	
80	1840	1900	2073	
100	1840	1900	2269	
120	2585	2643	2449	
140	2585	2643	2585	
160	2585	2643	2668	
180	2585	2643	2708	
200	2585	2643	2723	
220	2704	2643	2724	
240	2704	2643	2717	
260	2704	2643	2703	
280	2704	2643	2681	
300	2704	2643	2656	
320	2659	2710	2636	
340	2659	2710	2631	
360	2659	2710	2650	
380	2659	2710	2695	
400	2659	2710	2763	
420	2950	2710	2847	
440	2950	2710	2934	
460	2950	3007	3005	
480	2950	3007	3046	
500	2950	3007	3050	
520	2946	3007	3019	
540	2946	3007	2967	
560	2946	3007	2915	
580	2946	2997	2880	
600	2946	2997	2876	
620	3046	2997	2911	
640	3046	2997	2984	
660	3046	2997	3086	

<i>Н</i> [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s]
1	2	3	4
680	3046	2997	3203
700	3046	2997	3317
720	3046	3471	3411
740	3046	3471	3472
760	3046	3471	3502
780	3046	3471	3508
800	3466	3471	3501
820	3494	3471	3493
840	3494	3569	3489
860	3494	3569	3491
880	3494	3569	3497
900	3494	3569	3504
920	3521	3569	3511
940	3521	3569	3517
960	3521	3569	3524
980	3521	3569	3532
1000	3521	3569	3543
1020	3606	3569	3560
1040	3606	3569	3584
1060	3606	3569	3616
1080	3606	3569	3658
1100	3606	3569	3710
1120	3840	3569	3765
1140	3840	3569	3821
1160	3840	3935	3871
1180	3840	3935	3912
1200	3840	3935	3941
1220	3959	3935	3957
1240	3959	3935	3964
1260	3959	3935	3963
1280	3959	3935	3957
1300	3959	3935	3950
1320	3945	3935	3942

<i>Н</i> [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s]
1	2	3	4
1340	3945	3989	3938
1360	3945	3989	3940
1380	3945	3989	3952
1400	3945	3989	3978
1420	4101	3989	4020
1440	4101	3989	4075
1460	4101	3989	4135
1480	4101	4069	4184
1500	4101	4069	4203
1520	4025	4069	4178
1540	4025	4069	4104
1560	4025	4069	3994
1580	4025	4069	3869
1600	4025	4069	3751
1620	3612	3615	3658
1640	3612	3615	3599
1660	3612	3615	3576
1680	3612	3615	3584
1700	3612	3615	3613
1720	3670	3615	3648
1740	3670	3665	3676
1760	3670	3665	3689
1780	3670	3665	3684
1800	3670	3665	3664
1820	3602	3665	3636
1840	3602	3665	3608
1860	3602	3962	3586
1880	3602	3962	3573
1900	3602	3962	3572
1920	3646	3962	3584
1940	3646	3962	3611
1960	3646	3962	3655
1980	3646	3962	3718

Т	a	b	e	l	a	15	cd.
---	---	---	---	---	---	----	-----

1	2	3	4
2000	3646	3962	3799
2020	4071	3962	3897
2040	4071	3962	4009
2060	4071	3962	4131
2080	4071	3962	4261
2100	4071	3962	4398
2120	4765	3962	4542
2140	4765	3962	4693
2160	4765	3962	4850
2180	4765	3962	5008
2200	4765	5187	5155
2220	5294	5187	5274
2240	5294	5187	5345
2260	5294	5187	5348
2280	5294	5187	5278
2300	5294	5187	5148
2320	4757	5187	4984
2340	4757	5187	4818
2360	4757	4334	4673
2380	4757	4334	4559
2400	4757	4334	4476
2420	4375	4334	4420
2440	4375	4334	4384
2460	4375	4334	4357
2480	4375	4334	4334
2500	4375	4334	4309
2520	4223	4334	4278
2540	4223	4334	4242
2560	4223	4334	4204
2580	4223	4334	4168
2600	4223	4334	4141
2620	4138	4334	4127
2640	4138	4334	4126
2660	4138	4349	4137
2680	4138	4349	4154
2700	4138	4349	4172
2720	4214	4349	4189
2740	4214	4349	4204
2760	4214	4349	4220

1	2	3	4
2780	4214	4349	4240
2800	4214	4349	4266
2820	4348	4349	4296
2840	4348	4349	4331
2860	4348	4349	4366
2880	4348	4349	4401
2900	4348	4349	4439
2920	4555	4349	4479
2940	4555	4349	4525
2960	4555	4349	4577
2980	4555	4349	4636
3000	4555	4349	4699
3020	4812	4349	4760
3040	4812	4804	4812
3060	4812	4804	4846
3080	4812	4804	4854
3100	4812	4804	4836
3120	4718	4804	4794
3140	4718	4804	4740
3160	4765	3962	4693
3180	4765	3962	4850
3200	4765	3962	5008
3220	4765	5187	5155
3240	5294	5187	5274
3260	4718	4804	4687
3280	4718	4662	4646
3300	4718	4662	4626
3320	4669	4662	4627
3340	4669	4662	4648
3360	4669	4662	4679
3380	4669	4662	4715
3400	4669	4662	4749
3420	4823	4838	4781
3440	4823	4838	4811
3460	4823	4838	4840
3480	4823	4838	4866
3500	4823	4838	4886
3520	4866	4838	4895
3540	4866	4838	4889

		1 a D	ela 15 cu
1	2	3	4
3560	4866	4838	4866
3580	4866	4838	4830
3600	4866	4838	4789
3620	4733	4838	4750
3640	4733	4731	4724
3660	4733	4731	4717
3680	4733	4731	4725
3700	4733	4731	4743
3720	4743	4731	4761
3740	4743	4687	4768
3760	4743	4687	4753
3780	4743	4687	4714
3800	4743	4687	4654
3820	4481	4687	4583
3840	4481	4687	4509
3860	4481	4353	4441
3880	4481	4353	4386
3900	4481	4353	4347
3920	4320	4353	4323
3940	4320	4353	4314
3960	4320	4353	4315
3980	4320	4353	4322
4000	4320	4353	4331
4020	4351	4353	4341
4040	4351	4403	4348
4060	4351	4403	4355
4080	4351	4403	4362
4100	4351	4403	4374
4120	4442	4403	4394
4140	4442	4403	4423
4160	4442	4403	4457
4180	4442	4403	4492
4200	4442	4403	4525
4220	4566	4566	4550
4240	4566	4566	4566
4260	4566	4566	4575
4280	4566	4566	4578
4300	4566	4566	4585
4320	4659	4685	4601

1	2	3	4	1	2	3	4	1	2	3	
4340	4659	4685	4630	4760	5634	5668	5609	5180	5462	5418	
4360	4659	4685	4672	4780	5634	5668	5543	5200	5462	5418	
4380	4903	4937	4955	4800	5634	5493	5500	5220	5256	5418	
4400	4903	4937	4964	4820	5484	5493	5484	5240	5256	5418	
4420	4941	4937	4960	4840	5484	5493	5487	5260	5256	5418	
4440	4941	4937	4948	4860	5484	5493	5491	5280	5256	5135	
4460	4941	4937	4934	4880	5484	5438	5480	5300	5256	5135	
4480	4941	5098	4922	4900	5484	5438	5447	5320	5111	5135	
4500	4941	5098	4919	4920	5337	5438	5396	5340	5111	5135	
4520	5010	5098	4933	4940	5337	5438	5343	5360	5111	5135	
4540	5010	5098	4966	4960	5337	5333	5302	5380	5111	5127	
4560	5010	5098	5021	4980	5337	5333	5289	5400	5111	5127	
4580	5010	5098	5100	5000	5337	5333	5305	5420	5146	5127	
4600	5010	5098	5203	5020	5410	5333	5343	5440	5146	5146	
4620	5498	5098	5323	5040	5410	5333	5392	5460	5146	5146	
4640	5498	5098	5452	5060	5410	5333	5441	5480	5146	5146	
4660	5498	5098	5575	5080	5410	5418	5476	5500	5146	5146	
4680	5498	5668	5673	5100	5410	5418	5492	5520	5092	5092	
4700	5498	5668	5725	5120	5462	5418	5492	5540	5092	5092	
4720	5634	5668	5722	5140	5462	5418	5480	5560	5092	5092	
4740	5634	5668	5676	5160	5462	5418	5458	5580	5092	5092	

w ramach tematu: "Polska Centralna. Blok – A; rejon Piotrków Trybunalski–Rawa Mazowiecka". Reprocesing obejmujący nowoczesne przetwarzanie został wykonany na stacji roboczej SUN w systemie interpretacyjnym OASSIS firmy Landmark przez Oddział Geofizyka Kraków PGNiG w Warszawie dla potrzeb firmy Amoco.

W porównaniu do materiałów dawnych, profil charakteryzuje się lepszą jakością. Obserwuje się poprawę dynamiki i rozdzielczości refleksów sejsmicznych, szczególnie głębszych.

Najlepiej rejestrującymi się granicami w rejonie otworu Budziszewice IG 1, zlokalizowanego na skłonie struktury, są bardzo dynamiczne i charakterystyczne w zapisie falowym odbicia pochodzące od stropu wapienia muszlowego (Tm) i górnego pstrego piaskowca (Tp₃). Ponadto zinterpretowano następujące granice sejsmiczne:

- słaba, związana ze spągiem utworów jury (Jsp);
- granica śródkajprowa (Tk);
- odbicie od przystropowej części cechsztynu P₂ (Z₃), jako bezpośredni kontakt z solami;
- kontakt soli młodszych Na₃ i anhydrytu głównego A₃;
- granica między cyklotemami Z₂ i Z₁, jako rozdział kompleksów utworów o różnej zawartości soli;
- strop czerwonego spągowca (P_1);
- umowna granica ze stropu karbonu (Cstr).

Piotr KRZYWIEC

DANE SEJSMICZNE

Otwór wiertniczy Budziszewice IG 1 jest ulokowany w kujawskim segmencie bruzdy śródpolskiej, na północno--wschodnim skłonie antykliny rozwiniętej ponad poduszką solną Gałkówka, w stosunkowo niewielkiej odległości od poduszki solnej Jeżowa (por. Dadlez, Marek, 1998). Dla otworu Budziszewice IG 1 były dostępne pomiary prędkości średnich oraz dane akustyczne, dzięki czemu możliwe było precyzyjne dowiązanie głębokościowych danych otworowych (stratygrafia, karotaże) do czasowych danych sejsmicznych. Otwór ten znajduje się w odległości ok. 4 km od profilu sejsmicznego 5-12-75K, obrazującego budowę piętra cechsztyńsko-mezozoicznego (fig. 4). Dowiązania otworu Budziszewice IG 1 i profilu 5-12-75K dokonano przy wykorzystaniu poprzecznego profilu sejsmicznego 8-12-74K, ulokowanego w najbliższym sąsiedztwie tego otworu.

Profil 5-12-75K charakteryzuje się (w szczególności biorąc pod uwagę rok jego pomierzenia – 1975) stosunkowo wysoką jakością pola falowego. Zaprezentowana wersja profilu powstała w efekcie *reprocessingu* danych polowych, wykonanego przez Geofizykę Toruń na zlecenie PGNiG S.A. w 1997 r., w trakcie przygotowywania regionalnych profili sejsmicznych przecinających bruzdę śródpolską (por. Dadlez, 2001; Krzywiec i in., 2006).

Otwór Budziszewice IG 1 nawiercił poniżej cechsztynu utwory czerwonego spągowca i karbonu, jednak ze względu na złą jakość zapisu sejsmicznego wywołaną tłumieniem pola falowego przez ewaporaty cechsztynu (co jest regułą w obrębie całej bruzdy śródpolskiej) nie jest możliwe wiarygodne wyinterpretowanie przebiegu tych granic stratygraficznych na profilu sejsmicznym.

Utwory triasu ponad poduszką solną Gałkówka charakteryzują się stosunkowo stałą miąższością, jednak ponad poduszką solną Jeżowa wyraźnie widać lokalną redukcję miąższości utworów triasu środkowego i – przede wszystkim – górnego w kierunku tej poduszki solnej. Tego typu geometria pokrywy osadowej wskazuje na wzrost struktur solnych w tej części bruzdy śródpolskiej, począwszy od triasu środkowego, co jest zgodne z regionalnym rozwojem tektoniki solnej w tym basenie osadowym (szersze omówienie patrz Krzywiec, 2006a; Krzywiec i in., 2006). Utwory jurajskie charakteryzują się podobną redukcją miąższości w kierunku poduszki solnej Jeżowa, co wskazuje na wczesno- i środkowojurajski etap wzrostu tej struktury solnej.

Finalnym etapem ewolucji tektonicznej omawianego fragmentu bruzdy śródpolskiej była późnokredowo-paleogeńska inwersja, która doprowadziła do uniesienia osiowej części basenu i uformowania wału śródpolskiego (szersze omówienie patrz Krzywiec, 2006b; Krzywiec i in., 2006). Poinwersyjna erozja usunęła całość kredowej pokrywy osadowej, w związku z czym nie ma obecnie możliwości przeanalizowania przebiegu procesu inwersji na tym obszarze na podstawie danych sejsmicznych.