WYNIKI BADAŃ GEOFIZYCZNYCH

Jan SZEWCZYK

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

Badania geofizyki wiertniczej wykonano w dziesięciu odcinkach badań strefowych w okresie od 19 grudnia 1973 do 17 maja 1975 roku. Badania te przeprowadzono standardowymi aparaturami analogowymi produkcji radzieckiej, a wykonawcą badań były grupy pomiarowe Przedsiębiorstwa Badań Geofizycznych z bazy z Lublina. Na figurze 47 przedstawiono w formie graficznej odcinki wspomnianych badań strefowych, wyszczególnione rodzaje wykonanych badań, a także numery katalogowe poszczególnych badań przyjęte w systemie GEO-FLOG dla otworu Busówno IG 1.

Praktycznie w profilu całego otworu wiertniczego wykonano pełny zestaw badań możliwych do wykonania standardowymi analogowymi aparaturami karotażowymi. Ze względu na zrealizowany równolegle obszerny zakres badań laboratoryjnych parametrów petrofizycznych, dane z omawianego otworu stanowią cenny materiał faktograficzny do analiz metodycznych, związanych między innymi z problematyką ilościowej interpretacji niekalibrowanych danych analogowych. Zdecydowana dominacja danych analogowych o takim charakterze dla wykonanych w przeszłości otworów badawczych wpływa na duże znaczenie omawianych danych dla problematyki badawczej. Wyniki źródłowych danych pomiarowych, zarejestrowane w formie analogowej w skali głębokościowej 1:500, zostały zdigitalizowane oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych (numer katalogowy otworu Busówno IG 1 w bazie CDBG: 118564).

W ramach prac interpretacyjnych, związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowania neutronowe (PNG lub PNN), zostały unormowane oraz połączone w obrębie całego otworu wiertniczego. Na figurze 48 zostały przedstawione głębokościowe zestawienie unormowanych i połączonych wartości naturalnego promieniowania gamma, a także profilowania średnicy otworu, ze wskazaniem głębokości połączenia poszczególnych odcinków badań. Pokazany został równocześnie wiertniczy profil litologiczny (LITO) z uwzględnieniem odcinków rdzeniowanych. Zastosowana metodyka normowania profilowań gamma została opisana w pracy Szewczyka (2000).

CELE BADAŃ GEOFIZYCZNYCH

Podstawowymi celami badawczymi postawionymi do rozwiązania w otworze Busówno IG 1 były:

- określenie w połączeniu z danymi wiertniczymi (rdzeniami oraz próbkami okruchowymi) litologii skał występujących w profilu;
- ustalenie zmienności głębokościowej parametrów fizycznych skał niezbędnych do wydzieleń skał wykazujących własności zbiornikowe;
- wydzielenie warstw przepuszczalnych ze wskazaniem warstw kluczowych do ustalenia możliwości występowania bituminów oraz uzyskania informacji istotnych do rozpoznania hydrogeologicznego;
- ustalenie modeli zmienności głębokościowej parametrów fizycznych wykorzystywanych w analizach wyników powierzchniowych geofizycznych metod badawczych (głównie grawimetrii oraz sejsmiki),
- określenie stanu technicznego otworu, w zakresie niezbędnym do właściwej jego realizacji, oraz warunków i możliwości wykonywania badań hydrogeologicznych zarówno w trakcie prowadzenia wiercenia (badania próbnikami złoża), jak i po jego zakończeniu (badania przez perforacje rur okładzinowych).

Wyniki źródłowych danych pomiarowych zarejestrowanych w formie analogowej zostały zdigitalizowane oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych systemu interpretacyjnego GEOFLOG (Szewczyk, 1994). W wyniku tych prac zostały utworzone, zarówno w odniesieniu do wyników badań odcinkowych, jak i do danych połączonych i unormowanych, zbiory danych geofizycznych w formacie LAS (Log ASCII Standard).

- PG profilowanie naturalnego promieniowania gamma natural gamma ray
- PN profilowanie neutronowe neutron porosity
- PS profilowanie potencjałów samoistnych spontaneuose potential
- SR profilowanie średnicy otworu caliper log
- RL profilowanie oporności długą sondą gradientową resistivity lateral deep
- RS profilowanie oporności krótką sondą potencjałową resistivity natural shallow

- RT profilowanie oporności polem sterowanym laterolog 3
- GG profilowanie gęstości typu gamma-gamma bulk density
- PA profilowanie akustyczne sonic log
- R? profilowania (sondowania) oporności resistivity
- PT profilowanie temperatury formation temperature

Fig. 47. Schematyczne zestawienie typów badań geofizycznych wykonanych w otworze wiertniczym Busówno IG 1

Przy opisie profilowania podano jego numer identyfikacyjny, w systemie GEOFLOG

Schematic depth presentation of types well logging methods performed in Busówno IG 1 borehole

It was given a number of file used in GEOFLOG interpretation system

Fig. 48. Unormowane wartości profilowania naturalnego promieniowania gamma

Na wykresie profilowania średnicy otworu wskazano miejsca połączeń poszczególnych odcinków pomiarowych. Przedstawiono również odcinki rdzeniowane z informacją na temat uzysków rdzenia

Normalized values of natural gamma logs

A depth point is shown on caliper logs for joined of runs of well logs. A depth interval of coring is given

W trakcie badań geofizycznych były wykonywane wstępne interpretacje danych geofizycznych, których podstawowym celem było dokonanie wybranie profilu pod kątem możliwości występowania w ich obrębie warstw zbiornikowych mogących zawierać bituminy. Podsumowanie wyników tych interpretacji zostało omówione w dokumentacjach wyników badań odcinkowych oraz podsumowane w dokumentacji wynikowej otworu Busówno IG 1, opracowanej przez wykonawców badań geofizycznych (Masłowski, 1975).

WYNIKI LABORATORYJNYCH BADAŃ PARAMETRÓW PETROFIZYCZNYCH

Na podstawie próbek z otworu Busówno IG 1 badania parametrów petrofizycznych wykonano w ograniczonym zakresie. Prace laboratoryjne objęły badania:

- gęstości objętościowej,
- porowatości efektywnej,
- przepuszczalności w kierunku poziomym oraz pionowym,
- zawartości kalcytu oraz dolomitu (badania wykonywane zarówno dla rdzeni wiertniczych, jak i dla próbek okruchowych).

Ze względu na brak wyników badań porowatości całkowitej w procesie kalibracji profilowań radiometrycznych wykorzystano informacje o porowatości efektywnej, co wpłynęło na zmniejszenie dokładności obliczeń porowatości całkowitej, opartej na interpretacji danych geofizycznych.

Ogółem zostały wykonane badania parametrów petrofizycznych w odniesieniu do 801 próbek, łącznie rdzeniowych oraz okruchowych (w tym z 372).

WYNIKI INTERPRETACJI DANYCH GEOFIZYCZNYCH

Wyniki badań geofizycznych były wykorzystane zarówno w trakcie ustalania profilu litologicznego-stratygraficznego, jak i przy wyborze odcinków (interwałów głębokościowych) do badań hydrogeologicznych. Wyniki prac interpretacyjnych prezentowane w niniejszej pracy zostały wykonane przy zastosowaniu programów interpretacyjnych systemu GEOFLOG. W ramach tych prac wykonano:

- opracowanie cyfrowej wersji profilu wiertniczego (LITO);
- opracowanie warstwowego (GEO) oraz objętościowego (VOL) geofizycznego profilu litologicznego;
- określenie wielkości przesunięć głębokościowych, między głębokościami określanymi na podstawie długości przewodu wiertniczego a głębokościami określanymi na podstawie pomiarów geofizycznych;
- kalibrację profilowań radiometrycznych na podstawie danych petrofizycznych;
- obliczenie porowatości całkowitej, gęstości objętościowej oraz prędkości fal akustycznych;
- obliczenie przewodności cieplnej skał wraz z określeniem wielkości strumienia cieplnego.

Na figurze 49 zostały przedstawione w syntetycznej zgeneralizowanej formie podstawowe wyniki ilościowej interpretacji profilu litologicznego oraz parametrów petrofizycznych, tj. porowatości całkowitej oraz gęstości objętościowej (szczegółowe dane zawarte są w cyfrowych zbiorach danych wynikowych).

Wiertniczy profil litologiczny (LITO) zawiera opisy rdzeni wiertniczych oraz próbek okruchowych w formie umożliwiającej jego numeryczne przetwarzanie i stosowanie w procedurach interpretacyjnych systemu GEOFLOG. Zasady stosowanego w tym celu numerycznego opisu litologii zostały przedstawione w pracy Gientki i Szewczyka (1996). W zastosowanej procedurze interpretacyjnej został przyjęty 3-składnikowy model objętościowy skały (przestrzeń porowa + zailenie + szkielet skały). Obliczony geofizyczny objętościowy profil litologiczny (VOL) stanowi uogólnienie, za pośrednictwem danych geofizycznych, danych z rdzeni oraz próbek okruchowych, na badany odcinek profilu. W procesie interpretacji uwzględniane są zarówno wzajemne przesunięcia głębokościowe obu typów informacji, jak i niepełny uzysk rdzenia. W interpretacjach danych rdzeniowych, w przypadku niepełnego uzysku rdzenia przyjęto zasadę dowiązywania głębokościowego do stropu odcinka rdzeniowanego.

Na figurze 49 zostały przedstawione w formie profilowej wyniki obliczeń porowatości całkowitej oraz gęstości objętościowej w stanie powietrzno-suchym. Prezentowane wyniki mogą być wykorzystane w analizach związanych z pozyskiwaniem energii geotermalnej, hydrogeologii, czy też w modelowniach wyników powierzchniowych badań geofizycznych, takich jak badania sejsmiczne czy grawimetryczne.

Fig. 49. Głębokościowe zestawienie wyników obliczeń porowatości całkowitych oraz gęstości objętościowej

Dla porównania pokazano wyniki badań laboratoryjnych porowatości efektywnej oraz gęstości objętościowej w stanie powietrzno-suchym. Zestawiono równocześnie profil stratygraficzny, profil wiertniczy (LITO) z odcinkami rdzeniowanymi, a także obliczony geofizyczny profil porowatościowo-objętościowy (VOL)

Results of calculation of total porosity and bulk density

It was shown for comparison results of calculation with point laboratory petrophysical data. Depth of coring, litho profile (LITO) and calculated bulk litho-porosity geophysical profile (VOL) was shown also

WARUNKI GEOTERMICZNE

W otworze Busówno IG 1 zostały wykonane po około 12 dobach stabilizacji badania w quasi-ustalonych warunkach termicznych, pomiary temperatury, a ponadto w czterech odcinkach badań strefowych zostały wykonane pomiary termiczne w nieustabilizowanych warunkach termicznych (fig. 50). Na podstawie interpretacji wyników badań geofizycznych został obliczony profil przewodności skał występujących w profilu. Z wykorzystaniem tych danych obliczona została wartość strumienia cieplnego, która wynosi dla otworu Busówno IG 1 69,4 mW/m². Wartość ta odpowiada wartościom strumienia typowym dla strefy przejściowej między platformą paleozoiczną a kratonem wschodnioeuropejskim.

Fig. 50. Temperatura obserwowana (T) w otworze wiertniczym Busówno IG 1 wraz z wartościami temperatury maksymalnej (T_{max})

Dla porównania przedstawiono wartość paleotemperatury (T_s) obliczonej na podstawie interpretacji danych geofizycznych (Szewczyk, 2002)

Observed (T) and bottom hole temperature (T_{max}) in Busówno IG 1 borehole

It was shown for comparison results of calculated palaeotemperatute (T_s) after geophysical data (Szewczyk, 2002)

WARSTWY WODONOŚNE, MINERALIZACJA WÓD PODZIEMNYCH

Jednym z ważnych celów badawczych wykonanego otworu wiertniczego było wydzielenie warstw wodonośnych ze szczególnym uwzględnieniem warstw potencjalnie mogących zawierać bituminy. Na figurze 51 został przestawiony profil otworu z wydzielonymi poziomami wodonośnymi, z obliczoną średnią porowatością efektywną dla tych poziomów. Badania hydrogeologiczne wykazały bardzo złe własności zbiornikowe, a uzyskane w kilku przypadkach niewielkie przypływy były związane z filtratem płuczki, a nie wodami złożowymi. Jedynie utwory kredy górnej na podstawie interpretacji danych geofizycznych mogą stanowić poziom wodonośny o dobrych właściwościach zbiornikowych, mogące być potencjalnymi poziomami użytkowymi wód słonawych bądź lekko zmineralizowanych.

PODSUMOWANIE WYNIKÓW BADAŃ GEOFIZYCZNYCH

Wykonane badania z zakresu geofizyki wiertniczej umożliwiły rozpoznanie zarówno profilu litologicznego, jak i podstawowych cech petrofizycznych utworów występujących w profilu otworu Busówno IG 1. Prezentowane wyniki mogą być wykorzystane w analizach związanych z pozyskiwaniem energii geotermalnej, hydrogeologii czy też w modelowniach wyników powierzchniowych badań geofizycznych, takich jak badania sejsmiczne czy grawimetryczne.

Fig. 51. Warstwy wodonośne w profilu otworu wiertniczym Busówno IG 1 wydzielone na podstawie interpretacji danych geofizycznych

Podana została średnia wartość porowatości efektywnej dla tych warstw. Dolna część figury przedstawia mineralizację wód uzyskaną w trakcie opróbowań na tle zmienności mineralizacji wód na obszarze Niżu Polskiego. Pokazana została wartość średnia mineralizacji tych wód, obliczona metodą najmniejszych kwadratów

> Aquifers in Busówno IG 1 borehole based on geophysical well logging interpretation

Average effective porosity for aquifers and depth intervals with hydrogeological tests results (discharge in m^3/h and total mineralization in g/dm³). Lower part of the figure shows results o performed tests with all results for Polish Lowlands in the background

warstwa izolacyjna confined bed

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

PROFILOWANIE PRĘDKOŚCI ŚREDNICH I PIONOWE PROFILOWANIE SEJSMICZNE

W otworze Busówno IG 1 profilowanie prędkości średnich i pionowe profilowanie sejsmiczne zostało wykonane przez Przedsiębiorstwo Geofizyki Górnictwa Naftowego – Kraków w czerwcu 1975 r.

Pomiarami zostały objęte odcinki do głębokości 3680,0 m, przy głębokości końcowej otworu 4154,0 m. Pomiar wykonano z dwóch pól strzałowych. W celu doboru optymalnych warunków strzelania przeprowadzono mikroprofilowanie oraz dynamikę. Pomiar zrealizowano aparaturą SS-24-61M oraz sondą pieciogeofonową. Rejestracji dokonano na taśmach magnetycznych i na bloku oscylograficznym. Rejestracje z bloku oscylograficznego wykorzystano do opracowania średnich prędkości. Odległości między geofonami wynosiły 20 m, a średnie ładunki 0,25 kg.

Taśmy magnetyczne z pomiaru PPS opracowano cyfrowo. W ramach obróbki materiałów wykonano wyrównanie dynamiki, zastosowano filtrację przy użyciu filtrów wycinających i oplotowych. W wyniku tych operacji otrzymano właściwie opracowany sejsmogram zbiorczy. W celu dokładniejszej korelacji fal odbitych jedno- i wielokrotnie przeprowadzono sumowanie kierunkowe na podstawie hodografu pionowego

Parametry punktów strzałowych odpowiednio wynosiły: PS 1 d = 200 m $A = 50^{\circ}$ N = -3,0 m hpo = 20,0 mPS 2 d = 710 m $A = 50^{\circ}$ N = -1,0 m hpo = 20,0 mgdzie: d – odległość punktu strzałowego (wzbudzania) od głębokiego otworu,

A – azymut mierzony w punkcie głębokiego otworu w kierunku punktu strzałowego (wzbudzania),

N– wysokość względna punktu strzałowego w stosunku do otworu wiertniczego,

hpo – średnia głębokość wzbudzania.

Podczas pomiarów wystąpiły trudności z uzyskaniem poprawnych rejestracji w przedziale głębokości 0,0–580,0 m, dla którego jakość materiałów podstawowych została oceniona jako zła. Dla przedziału 600,0–3680,0 m uzyskane sejsmogramy zaliczono do oceny dobrej. Dotyczy to obu PS.

Do obliczenia krzywej prędkości średnich przyjęto jako poziom odniesienia poziom pomiaru, czyli 158,5 m n.p.m. przy wysokości otworu wynoszącej 178,5 m.

Głębokość zredukowana do poziomu odniesienia została obliczona ze wzoru:

$h_r = h - hpo \pm N \pm \Delta h$

gdzie: h_r – głębokość zredukowana punktu pomiarowego h – głębokość zanurzenia geofonu głębinowego

 Δh – różnica głębokości między hpo i poziomem odniesienia w m

Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

$$t_p = t_{obs} + \Delta th$$

gdzie: t_p – czas poprawiony t_{obs} – czas obserwowany Δth – poprawka wynikająca z głębokości strzelania, poziomu odniesienia, miąższości strefy małych pręd-

kości, prędkości w tej strefie i prędkości pod nią Czas zredukowany dla poszczególnych punktów strzałowych *tr* 1 i *tr* 2 liczono na podstawie wzoru:

$$tr = \frac{hr}{\sqrt{hr^2 + d^2}} \times tp$$

W celu wyeliminowania anizotropii ośrodka obliczono średni czas redukowany (*tr*) jako średnią arytmetyczną pomiarów czasu zredukowanego z poszczególnych punktów strzałowych.

Wartości *hr* i *tr* posłużyły do obliczenia prędkości średnich (*V*śr), zgodnie ze wzorem:

$$V \acute{s} r = \frac{hr}{tr}$$

Wszystkie wartości *hr*, *tr* 1, *tr* 2, *tr*, *V*śr, zestawiono w tabeli 19. Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego.

Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 52A) i hodografu pionowego (fig. 52B). Do wykreślenia krzywej prędkości średnich wykorzystano wartości uśrednione z dwóch PS.

Przedstawiony na figurze 52B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, został zastosowany sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp między punktami pomiarowymi.

Podany sposób zastosowano do wygładzania odczytów czasu z pomiarów prędkości średnich, w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując pomiary czasu zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu odniesienia pomiaru i ich interpolacji dla znormalizowanych przedziałów głębokości co 20 m. Następnie wyznaczone wartości wygładzono specjalnym programem przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtr 0,25; 0,5; 0,25. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych, wynikających z nie-

Tabela 19

Zestawienie wartości głębokości (H), czasu zredukowanego (Tr) i średniej prędkości (Vśr)

Depth (H), reduced time (Tr) and average velocity (Vsr) values

Н	Tr 1	Tr 2	Tr	Vśr]	Н	Tr 1	Tr 2	Tr	Vśr
[m]	[s]	[s]	[s]	[m/s]		[m]	[s]	[s]	[s]	[m/s]
1	2	3	4	5		1	2	3	4	5
20,0	0,0120	0,0110	0,011500	1739		640,0	0,2740	0,2360	0,255000	2510
40,0	0,0230	0,0210	0,022000	1818		660,0	0,2780	0,2420	0,260000	2538
60,0	0,0340	0,0310	0,032500	1846		680,0	0,2860	0,2490	0,267500	2542
80,0	0,0450	0,0410	0,043000	1860		700,0	0,2920	0,2550	0,273500	2559
100,0	0,0570	0,0500	0,053500	1869		720,0	0,2940	0,2610	0,277500	2595
120,0	0,0680	0,0600	0,064000	1875		740,0	0,2990	0,2680	0,283500	2610
140,0	0,0790	0,0690	0,074000	1892		760,0	0,3040	0,2740	0,289000	2630
160,0	0,0890	0,0790	0,084000	1905		780,0	0,3060	0,2810	0,293500	2658
180,0	0,0980	0,0870	0,092500	1946		800,0	0,3110	0,2870	0,299000	2676
200,0	0,1070	0,0960	0,101500	1970		820,0	0,3170	0,2930	0,305000	2689
220,0	0,1140	0,1050	0,109500	2009		840,0	0,3240	0,2990	0,311500	2697
240,0	0,1260	0,1120	0,119000	2017		860,0	0,3290	0,3050	0,317000	2713
260,0	0,1370	0,1190	0,128000	2031		880,0	0,3320	0,3130	0,322500	2729
280,0	0,1450	0,1270	0,136000	2059		900,0	0,3390	0,3180	0,328500	2740
300,0	0,1520	0,1340	0,143000	2098		920,0	0,3420	0,3240	0,333000	2763
320,0	0,1610	0,1410	0,151000	2119		940,0	0,3460	0,3300	0,338000	2781
340,0	0,1690	0,1480	0,158500	2145		960,0	0,3510	0,3360	0,343500	2795
360,0	0,1730	0,1550	0,164000	2195		980,0	0,3580	0,3430	0,350500	2796
380,0	0,1800	0,1620	0,171000	2222		1000,0	0,3620	0,3470	0,354500	2821
400,0	0,1860	0,1680	0,177000	2260		1020,0	0,3680	0,3520	0,360000	2833
420,0	0,1960	0,1740	0,185000	2270		1040,0	0,3720	0,3590	0,365500	2845
440,0	0,2020	0,1800	0,191000	2304		1060,0	0,3770	0,3650	0,371000	2857
460,0	0,2090	0,1850	0,197000	2335		1080,0	0,3820	0,3710	0,376500	2869
480,0	0,2200	0,1910	0,205500	2336		1100,0	0,3870	0,3760	0,381500	2883
500,0	0,2250	0,1960	0,210500	2375		1120,0	0,3910	0,3810	0,386000	2902
520,0	0,2340	0,2020	0,218000	2385		1140,0	0,3980	0,3880	0,393000	2901
540,0	0,2420	0,2070	0,224500	2405		1160,0	0,4040	0,3930	0,398500	2911
560,0	0,2470	0,2120	0,229500	2440		1180,0	0,4080	0,3980	0,403000	2928
580,0	0,2590	0,2170	0,238000	2437		1200,0	0,4130	0,4030	0,408000	2941
600,0	0,2640	0,2230	0,243500	2464		1220,0	0,4190	0,4070	0,413000	2954
620,0	0,2680	0,2290	0,248500	2495		1240,0	0,4240	0,4110	0,417500	2970

Tabela 1	19 cd.
----------	--------

1	2	3	4	5]	1	2	3	4	5
1260,0	0,4300	0,4180	0,424000	2972		1960,0	0,6040	0,5950	0,599500	3269
1280,0	0,4350	0,4230	0,429000	2984		1980,0	0,6080	0,6010	0,604500	3275
1300,0	0,4400	0,4270	0,433500	2999		2000,0	0,6130	0,6060	0,609500	3281
1320,0	0,4430	0,4320	0,437500	3017		2020,0	0,6180	0,6110	0,614500	3287
1340,0	0,4500	0,4380	0,444000	3018		2040,0	0,6250	0,6180	0,621500	3282
1360,0	0,4550	0,4440	0,449500	3026		2060,0	0,6300	0,6230	0,626500	3288
1380,0	0,4590	0,4500	0,454500	3036		2080,0	0,6350	0,6300	0,632500	3289
1400,0	0,4650	0,4530	0,459000	3050		2100,0	0,6400	0,6340	0,637000	3297
1420,0	0,4690	0,4560	0,462500	3070		2120,0	0,6460	0,6390	0,642500	3300
1440,0	0,4750	0,4630	0,469000	3070		2140,0	0,6510	0,6450	0,648000	3302
1460,0	0,4800	0,4680	0,474000	3080		2160,0	0,6560	0,6500	0,653000	3308
1480,0	0,4850	0,4740	0,479500	3087		2180,0	0,6610	0,6540	0,657500	3316
1500,0	0,4900	0,4790	0,484500	3096		2200,0	0,6660	0,6600	0,663000	3318
1520,0	0,4940	0,4840	0,489000	3108		2220,0	0,6710	0,6660	0,668500	3321
1540,0	0,5000	0,4900	0,495000	3111		2240,0	0,6780	0,6710	0,674500	3321
1560,0	0,5050	0,4960	0,500500	3117		2260,0	0,6840	0,6770	0,680500	3321
1580,0	0,5090	0,5000	0,504500	3132		2280,0	0,6900	0,6840	0,687000	3319
1600,0	0,5130	0,5030	0,508000	3150		2300,0	0,6940	0,6880	0,691000	3329
1620,0	0,5170	0,5070	0,512000	3164		2320,0	0,7000	0,6910	0,695500	3336
1640,0	0,5220	0,5110	0,516500	3175		2340,0	0,7050	0,6980	0,701500	3336
1660,0	0,5270	0,5140	0,520500	3189		2360,0	0,7110	0,7020	0,706500	3340
1680,0	0,5300	0,5180	0,524000	3206		2380,0	0,7130	0,7070	0,710000	3352
1700,0	0,5350	0,5210	0,528000	3220		2400,0	0,7180	0,7110	0,714500	3359
1720,0	0,5390	0,5250	0,532000	3233		2420,0	0,7250	0,7160	0,720500	3359
1740,0	0,5430	0,5310	0,537000	3240		2440,0	0,7300	0,7200	0,725000	3366
1760,0	0,5490	0,5350	0,542000	3247		2460,0	0,7360	0,7270	0,731500	3363
1780,0	0,5550	0,5430	0,549000	3242		2480,0	0,7390	0,7330	0,736000	3370
1800,0	0,5590	0,5510	0,555000	3243		2500,0	0,7440	0,7370	0,740500	3376
1820,0	0,5640	0,5550	0,559500	3253		2520,0	0,7480	0,7410	0,744500	3385
1840,0	0,5700	0,5610	0,565500	3254		2540,0	0,7520	0,7470	0,749500	3389
1860,0	0,5760	0,5670	0,571500	3255		2560,0	0,7590	0,7520	0,755500	3388
1880,0	0,5820	0,5730	0,577500	3255		2580,0	0,7650	0,7600	0,762500	3384
1900,0	0,5860	0,5760	0,581000	3270		2600,0	0,7690	0,7640	0,766500	3392
1920,0	0,5920	0,5830	0,587500	3268		2620,0	0,7730	0,7700	0,771500	3396
1940,0	0,5980	0,5880	0,593000	3272		2640,0	0,7770	0,7750	0,776000	3402

Tabela 19 cd.

1	2	3	4	5		1	2	3	4	5
2660,0	0,7840	0,7790	0,781500	3404]	3180,0	0,9000	0,8920	0,896000	3549
2680,0	0,7870	0,7850	0,786000	3410		3200,0	0,9050	0,8950	0,900000	3556
2700,0	0,7930	0,7880	0,790500	3416		3220,0	0,9080	0,8980	0,903000	3566
2720,0	0,8000	0,7930	0,796500	3415		3240,0	0,9110	0,9030	0,907000	3572
2740,0	0,8040	0,7990	0,801500	3419		3260,0	0,9160	0,9080	0,912000	3575
2760,0	0,8090	0,8030	0,806000	3424]	3280,0	0,9200	0,9110	0,915500	3583
2780,0	0,8110	0,8080	0,809500	3434]	3300,0	0,9220	0,9150	0,918500	3593
2800,0	0,8150	0,8110	0,813000	3444]	3320,0	0,9280	0,9190	0,923500	3595
2820,0	0,8190	0,8150	0,817000	3452]	3340,0	0,9310	0,9230	0,927000	3603
2840,0	0,8240	0,8200	0,822000	3455]	3360,0	0,9350	0,9300	0,932500	3603
2860,0	0,8280	0,8240	0,826000	3462		3380,0	0,9410	0,9340	0,937500	3605
2880,0	0,8370	0,8310	0,834000	3453		3400,0	0,9460	0,9380	0,942000	3609
2900,0	0,8430	0,8350	0,839000	3456		3420,0	0,9500	0,9410	0,945500	3617
2920,0	0,8460	0,8410	0,843500	3462		3440,0	0,9540	0,9450	0,949500	3623
2940,0	0,8490	0,8450	0,847000	3471		3460,0	0,9580	0,9500	0,954000	3627
2960,0	0,8540	0,8490	0,851500	3476		3480,0	0,9620	0,9540	0,958000	3633
2980,0	0,8610	0,8540	0,857500	3475		3500,0	0,9660	0,9570	0,961500	3640
3000,0	0,8660	0,8580	0,862000	3480		3520,0	0,9700	0,9620	0,966000	3644
3020,0	0,8700	0,8620	0,866000	3487		3540,0	0,9740	0,9660	0,970000	3649
3040,0	0,8740	0,8660	0,870000	3494		3560,0	0,9800	0,9740	0,977000	3644
3060,0	0,8770	0,8690	0,873000	3505		3580,0	0,9830	0,9780	0,980500	3651
3080,0	0,8800	0,8730	0,876500	3514		3600,0	0,9860	0,9810	0,983500	3660
3100,0	0,8850	0,8770	0,881000	3519		3620,0	0,9930	0,9850	0,989000	3660
3120,0	0,8870	0,8800	0,883500	3531		3640,0	0,9990	0,9910	0,995000	3658
3140,0	0,8900	0,8830	0,886500	3542		3660,0	1,0030	0,9970	1,000000	3660
3160,0	0,8940	0,8860	0,890000	3551						

H – głębokość, Tr 1 – czas zredukowany z punktu pomiarowego 1, Tr 2 – czas zredukowany z punktu pomiarowego 2, Tr – średni czas zredukowany, Vśr – prędkość średnia

H - depth, Tr 1 - reduced time from measuring point 1, Tr 2 - reduced time from measuring point 2, Tr - average reduced time, Vśr - average velocity

dokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zmniejszone zostają przypadkowe skoki wartości, spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej czynności powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory, obejmujące przetworzone pomiary czasu po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje zawarte są w banku danych prędkościowych utworzonym w latach 90. XX wieku w Zakładzie Geofizyki PIG dla potrzeb interpretacji prac sejsmicznych.

Tr - średni czas zredukowany, Vśr - prędkość średnia, H - głębokość; oznaczenia stratygraficzne według słownika kodowego sytemu SADOG (Geonafta)

Average seismic velocity (A) and travel-time curve (B) (reference level 158.5 m a.s.l.)

Tr – average reduced time, $V \acute{sr}$ – average velocity, H – depth; stratigraphical symbols according to the SADOG coding system of Geonafta

Różnice wartości czasu pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasu wygładzonego n i n + 1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Mak-

symalne i minimalne wartości obliczonych prędkości odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi.

Zestawienie uśrednionych wartości Vw (prędkości wygładzone), Vi (prędkości interwałowe) i Vk (prędkości kompleksowe) obliczonych z czasu wygładzonego zawiera tabela 20. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 53.

Vw – prędkość wygładzona, Vi – prędkość interwałowa, Vk – prędkość kompleksowa, H – głębokość; oznaczenia stratygraficzne według słownika kodowego sytemu SADOG (Geonafta)

Smoothed velocity (Vw), interval velocity (Vi) and complex velocity (Vk) (reference level 158.5 m a.s.l.)

Vw – smoothed velocity, Vi – interval velocity, Vk – complex velocity, H – depth; stratigraphical symbols according to the SADOG coding system of Geonafta

Tabela 20

Zestawienie uśrednionych wartości prędkości wygładzonych (Vw), interwałowych (Vi) i kompleksowych (Vk) obliczonych z czasu wygładzonego

Averaged smoothed (Vw), interval (Vi) and complex velocity (Vk) values calculated from smoothed time

Н	Vi	Vk	Vw	Н	Vi	Vk	Vw
[m]	[m/s]	[m/s]	[m/s]	[m]	[m/s]	[m/s]	[m/s]
1	2	3	4	1	2	3	4
20	1902	2142	-	640	3397	3102	3371
40	1902	2142	1886	660	3397	3102	3424
60	1902	2142	1906	680	3397	3102	3478
80	1902	2142	1935	700	3397	3593	3529
100	1902	2142	1970	720	3593	3593	3571
120	2091	2142	2014	740	3593	3593	3599
140	2091	2142	2063	760	3593	3593	3611
160	2091	2142	2118	780	3593	3593	3607
180	2091	2142	2175	800	3593	3593	3596
200	2091	2142	2237	820	3600	3593	3587
220	2410	2142	2301	840	3600	3613	3587
240	2410	2142	2371	860	3600	3613	3598
260	2410	2142	2448	880	3600	3613	3618
280	2410	2142	2531	900	3600	3613	3642
300	2410	2142	2618	920	3686	3613	3665
320	2808	2142	2705	940	3686	3747	3683
340	2808	3102	2786	960	3686	3747	3696
360	2808	3102	2856	980	3686	3747	3705
380	2808	3102	2909	1000	3686	3747	3712
400	2808	3102	2947	1020	3726	3747	3718
420	3002	3102	2974	1040	3726	3747	3723
440	3002	3102	2993	1060	3726	3747	3728
460	3002	3102	3011	1080	3726	3747	3734
480	3002	3102	3031	1100	3726	3747	3744
500	3002	3102	3057	1120	3797	3747	3759
520	3151	3102	3089	1140	3797	3747	3781
540	3151	3102	3127	1160	3797	3747	3808
560	3151	3102	3170	1180	3797	3747	3837
580	3151	3102	3218	1200	3797	3747	3864
600	3151	3102	3267	1220	3903	3922	3886
620	3397	3102	3318	1240	3903	3922	3901

Tabela 20 cd.

				1				
1	2	3	4		1	2	3	4
1260	3903	3922	3911		1960	3616	3649	3615
1280	3903	3922	3919		1980	3616	3649	3618
1300	3903	3922	3926		2000	3616	3649	3625
1320	3946	3922	3934		2020	3672	3649	3638
1340	3946	3922	3944		2040	3672	3649	3656
1360	3946	3922	3952		2060	3672	3649	3681
1380	3946	3954	3958		2080	3672	3649	3710
1400	3946	3954	3957		2100	3672	3649	3737
1420	3956	3954	3952		2120	3748	3747	3756
1440	3956	3954	3946		2140	3748	3747	3762
1460	3956	4118	3947		2160	3748	3747	3753
1480	3956	4118	3966		2180	3748	3747	3733
1500	3956	4118	4011		2200	3748	3747	3711
1520	4260	4118	4086		2220	3737	3773	3699
1540	4260	4118	4190		2240	3737	3773	3705
1560	4260	4118	4317		2260	3737	3773	3735
1580	4260	4118	4454		2280	3737	3773	3786
1600	4260	4496	4580		2300	3737	3773	3853
1620	4624	4496	4668		2320	3983	3773	3922
1640	4624	4496	4698		2340	3983	4004	3980
1660	4624	4496	4656		2360	3983	4004	4018
1680	4624	4496	4546	1	2380	3983	4004	4035
1700	4624	4496	4387	1	2400	3983	4004	4035
1720	3962	4496	4204		2420	4002	4004	4025
1740	3962	4496	4025		2440	4002	4004	4011
1760	3962	3649	3872		2460	4002	4004	3996
1780	3962	3649	3756		2480	4002	4004	3980
1800	3962	3649	3678		2500	4002	4004	3959
1820	3620	3649	3634		2520	3921	4004	3936
1840	3620	3649	3614	1	2540	3921	4042	3917
1860	3620	3649	3609	1	2560	3921	4042	3908
1880	3620	3649	3610	1	2580	3921	4042	3913
1900	3620	3649	3613	1	2600	3921	4042	3935
1920	3616	3649	3614	1	2620	4040	4042	3969
1940	3616	3649	3614	1	2640	4040	4042	4011

				•				
1	2	3	4		1	2	3	4
2660	4040	4042	4060		3180	5221	5276	5111
2680	4040	4042	4117		3200	5221	4899	5049
2700	4040	4042	4184		3220	4929	4899	5001
2720	4332	4042	4257		3240	4929	4899	4959
2740	4332	4042	4329		3260	4929	4899	4913
2760	4332	4347	4380		3280	4929	4899	4856
2780	4332	4347	4394		3300	4929	4899	4789
2800	4332	4347	4365		3320	4677	4899	4725
2820	4211	4347	4302		3340	4677	4653	4673
2840	4211	4347	4226		3360	4677	4653	4645
2860	4211	4405	4164		3380	4677	4653	4643
2880	4211	4405	4134		3400	4677	4653	4661
2900	4211	4405	4143		3420	4681	4653	4687
2920	4351	4405	4192		3440	4681	4529	4704
2940	4351	4405	4277		3460	4681	4529	4697
2960	4351	4405	4392		3480	4681	4529	4661
2980	4351	4405	4534		3500	4681	4529	4599
3000	4351	4405	4700		3520	4378	4529	4518
3020	5097	4405	4879		3540	4378	4529	4428
3040	5097	4405	5056		3560	4378	4529	4335
3060	5097	5276	5208		3580	4378	4529	4244
3080	5097	5276	5310		3600	4378	4074	4162
3100	5097	5276	5350		3620	4074	4074	4094
3120	5221	5276	5331		3640	4074	4074	4049
3140	5221	5276	5269		3660	4074	4074	4049
3160	5221	5276	5188					

Tabela 20 c

H - głębokość, Vi - prędkość interwałowa, Vk - prędkość kompleksowa, Vw - prędkość wygładzona

H-depth, Vi - interval velocity, Vk - complex velocity, Vw - smoothed velocity

Wykresy powyższe wzbogacono profilem stratygraficznym otworu, co pozwoliło na bezpośrednie powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi przekroju geologicznego w otworze oraz z refleksami sejsmicznymi.

Istotnych informacji o istnieniu granic refleksyjnych dostarcza pionowe profilowanie sejsmiczne (PPS).

Analizę obrazu falowego przeprowadzono na podstawie sejsmogramów zbiorczych i sejsmogramów z sumowania. Otrzymane wyniki zestawiono z przekrojem geologicznym otworu, co pozwoliło na powiązanie fal odbitych z odpowiednimi warstwami.

Analiza otrzymanych materiałów wykazuje, że przedział użytecznego zapisu nie przekracza 2,4 s. Na sejsmogramach zbiorczych z PS 1 i PS 2, w ich górnej części (0–700 m) zarejestrowano dużą liczba zakłóceń uniemożliwiających korelację.

W trakcie dalszej obróbki zakłócenia te zostały usunięte w wyniku sumowania, tak że można jednoznacznie przeprowadzić oś zgodności fazowej refleksów aż do powierzchni.

Na podstawie otrzymanego obrazu falowego można stwierdzić, że w całym kompleksie osadowym istnieje dużo granic odbijających. Otrzymane wyniki zestawiono podając kolejno głębokość zalegania granicy odbijającej, czas rejestracji fali na powierzchni, współczynniki odbicia, profil stratygraficzny (tab. 21).

Wydzielono kilka wyraźnie zaznaczających się grup fal odbitych, związanych z poszczególnymi granicami odbijającymi.

Pierwsza grupa refleksów rejestrujących się na powierzchni na czasie od 0,550–0,950 s, pochodzi od granic odbijających w środkowej i spągowej części górnego karbonu. Druga grupa fal przychodząca na powierzchnię o czasie 1,120–1,310 s pochodzi od utworów dewońskich.

Trzecia grupa fal o czasie przyjścia na powierzchnię 1,490–1,770 s, charakteryzująca się silną dynamiką i wielofazowością, pochodzi od otworów syluru. Czwarta grupa fal o czasie przyjścia na powierzchnię 1,820–2,060 s pochodzi od utworów kambru.

Oprócz tego, na sejsmogramach jest widoczna grupa refleksów pochodzących od głębszych granic odbijających (ediakar–neoproterozoik), nieobjętych pomiarem PPS, a rejestrujących się przy powierzchni ziemi w przedziale czasowym 2,100–2,350 s.

Przypuszczalne głębokości granic odbijających, wyznaczone na podstawie ekstrapolacji krzywej *V*śr, wynoszą 3750, 3800, 4020, 4080, 4120 i 4200 m.

Fale wielokrotne, to rejestrują się w całym przedziale czasowym, nie zakłócając jednak przebiegu fal odbitych.

Powyższe wydzielenia korelują się z granicami kompleksów prędkościowych, zaznaczającymi się na wykresach prędkości średnich (fig. 53). W związku z tym, podsumowując wyniki profilowania prędkości średnich i pionowego profilowania sejsmicznego, należy stwierdzić, że w obrębie otworu Busówno IG 1 istnieją dobre warunki powstawania refleksów i to nawet pochodzących od głębokich granic odbijającycych.

Tabela 21

Zestawienie wyników pionowego profilowania sejsmicznego

Results of measurements of vertical seismic profilling

	1	1	1	
Głębokość [m]	Czas rejestracji [s]	Współczynniki odbicia	Stratygrafia	
780–840	0,550–0,570	- 0,206	karbon górny	
1020–1080	0,700–0,730	_	karbon górny	
1260–1360	0,900–0,950	_	karbon górny (spag)	
1680–1760	1,120–1,190	0,084–0,150	dewon	
1920–1940	1,280–1,310	_	dewon	
2300–2500	1,490–1,580	0,092–0,136; 0,170	sylur	
2740–2860	1,700–1,770	0,208–0,256	sylur	
2960–3060	1,820–1,879	0,219–0,155; 0,201	kambr	
3280–3400	1,990–2,060	0,071–0,152	kambr (spag)	