WYNIKI BADAŃ GEOFIZYCZNYCH

Jan SZEWCZYK

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

Badania geofizyki wiertniczej przeprowadzono w pięciu odcinkach badań strefowych w okresie od 12.10.1989 r. do 11.05.1990 r. Badania te wykonano przy użyciu standardowej aparatury analogowej produkcji radzieckiej, a wykonawcą badań były grupy pomiarowe Przedsiębiorstwa Badań Geofizycznych z bazy w Poznaniu. Na figurze 27 przedstawiono w formie graficznej odcinki wspomnianych badań strefowych, w których wyszczególniono rodzaje wykonanych ba-

Fig. 27. Schematyczne zestawienie typów badań geofizycznych wykonanych w otworze Ciechocinek IG 2

Typy profilowań geofizycznych: PG – profilowanie naturalnego promieniowania gamma, PN – profilowanie neutronowe, PS – profilowanie potencjałów samoistnych, SR – profilowanie średnicy otworu, RL – profilowanie oporności długą sondą gradientową, RS – profilowanie oporności krótką sondą potencjałową, RT – profilowanie oporności polem sterowanym, GG – profilowanie gęstości typu gamma-gamma, PA – profilowanie akustyczne, R? – profilowania (sondowania) oporności, PT – profilowanie temperatury; przy opisie profilowania podano jego numer identyfikacyjny w systemie GEOFLOG

Schematic presentation of types well logging methods performed in Ciechocinek IG 2 borehole

Types of borehole logging methods: PG – natural gamma log, PN – neutron log, PS – spontaneous log, SR – caliper, RL – resistivity lateral, RS – resistivity normal, RT – laterolog, GG – density log, PA – sonic log, R? – resistivity, PT – temperature log; it was given a number of file used in GEOFLOG interpretation system

dań oraz pokazano numery katalogowe przyjęte dla poszczególnych badań w systemie GEOFLOG dla otworu wiertniczego Ciechocinek IG 2. Praktycznie w profilu całego otworu wykonano pełny zestaw badań możliwych do wykonania przy użyciu standardowej analogowej aparatury karotażowej. Ze względu na zrealizowany równolegle obszerny zakres badań laboratoryjnych parametrów petrofizycznych, dane z omawianego otworu wiertniczego stanowią cenny materiał faktograficzny do analiz metodycznych, związanych m.in. z problematyką ilościowej interpretacji niekalibrowanych danych analogowych. Zdecydowana dominacja danych analogowych o takim charakterze dla wykonanych w przeszłości otworów badawczych wpływa na duże znaczenie omawianych danych dla problematyki badawczej.

Wyniki źródłowych danych pomiarowych, zarejestrowane w formie analogowej w skali głębokościowej 1:500, zostały zdigitalizowane oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych (numer katalogowy otworu wiertniczego Ciechocinek IG 2 w bazie – CDBG 23143).

W ramach prac interpretacyjnych, związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne, tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowania neutronowe (PNG lub PNN), zostały unormowane oraz połączone w obrębie całego otworu. Na figurze 28 przedstawiono wyniki unormowanych i połączonych wartości naturalnego promieniowania gamma, a także profilowania średnicy otworu ze wskazaniem głębokości połączenia poszczególnych odcinków badań. Zastosowaną metodykę normowania profilowań gamma opisano w pracy Szewczyka (2000).

Fig. 28. Unormowane wartości profilowania naturalnego promieniowania gamma

Na wykresie profilowania średnicy otworu wskazano miejsca połączeń poszczególnych odcinków pomiarowych; przedstawiono odcinki rdzeniowane z informacją na temat uzysków rdzenia

Normalized values of natural gamma logs

A depth point is shown on caliper logs for joined of runs of well logs; a depth interval of coring is given

CEL BADAŃ GEOFIZYCZNYCH

Podstawowymi celami badawczymi w otworze wiertniczym Ciechocinek IG 2 były:

 określenie w połączeniu z danymi wiertniczymi (rdzeniami oraz próbkami okruchowymi) litologii skał występujących w profilu;

 ustalenie zmienności głębokościowej parametrów fizycznych skał niezbędnych do wydzielenia skał wykazujących właściwości zbiornikowe;

 wydzielenie warstw przepuszczalnych ze wskazaniem warstw kluczowych dla ustalenia możliwości występowania bituminów oraz uzyskania informacji istotnych do rozpoznania hydrogeologicznego;

4) ustalenie modeli zmienności głębokościowej parametrów fizycznych wykorzystywanych w analizach wyników powierzchniowych geofizycznych metod badawczych (głównie grawimetrii oraz sejsmiki);

5) określenie stanu technicznego otworu w zakresie niezbędnym do jego właściwej realizacji, m.in. warunków i możliwości wykonywania badań hydrogeologicznych w trakcie prowadzenia wiercenia (badania próbnikami złoża) oraz po jego zakończeniu (badania przez perforacje rur okładzinowych).

Wyniki źródłowych danych pomiarowych zarejestrowanych w formie analogowej zostały zdigitalizowane oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych systemu interpretacyjnego GEOFLOG (Szewczyk, 1994). W wyniku tych prac utworzono, zarówno w odniesieniu do wyników badań odcinkowych, jak i do danych połączonych i unormowanych, zbiory danych geofizycznych w formacie LAS (Log ASCII Standard).

W trakcie badań geofizycznych wykonywano wstępne interpretacje danych geofizycznych, których podstawowym celem było dokonanie wyboru odcinków profilu pod kątem możliwości występowania w ich obrębie warstw zbiornikowych mogących zawierać bituminy. Podsumowanie wyników tych interpretacji omówiono w dokumentacjach wyników badań odcinkowych oraz podsumowano w dokumentacji końcowej otworu wiertniczego Ciechocinek IG 2, opracowanej przez wykonawców badań geofizycznych (Bielawska, 1990).

WYNIKI BADAŃ

Wyniki laboratoryjnych badań parametrów petrofizycznych

Jednym z celów badawczych otworu wiertniczego Ciechocinek IG 2 było uzyskanie informacji na temat głębokościowej zmienności parametrów petrofizycznych skał występujących w profilu. Ważnym źródłem informacji na temat tych parametrów były wyniki laboratoryjnych badań rdzeni. W zakres laboratoryjnych badań parametrów petrofizycznych próbek pobranych z rdzeni wiertniczych wchodziły badania:

- gęstości objętościowej,
- gęstości właściwej,
- porowatości całkowitej,
- porowatości efektywnej,
- przepuszczalności w kierunku poziomym oraz pionowym,
- zawartości kalcytu oraz dolomitu (badania wykonywane dla rdzeni wiertniczych i na próbkach okruchowych).

Ogółem wykonano badania tych parametrów w odniesieniu do 399 próbek rdzeniowych oraz okruchowych. Wyniki badań parametrów petrofizycznych wykorzystano zarówno w trakcie interpretacji profilu litologicznego, jak i kalibracji danych geofizycznych (głównie radiometrycznych). Na figurze 29 przedstawiono informacje dotyczące wyników tych badań. Są to zestawienia głębokościowe: gęstości objętościowej oraz właściwej, porowatości całkowitej oraz efektywnej, a także przepuszczalności oraz relacje między tymi parametrami. Uwagę zwraca znaczne zróżnicowanie omawianych parametrów petrofizycznych, brak wyraźnego wpływu kompakcji na gęstość objętościową oraz porowatość, a także relatywnie małe zróżnicowanie porowatości całkowitej oraz efektywnej, szczególnie dla piaskowców o dużej porowatości. Bardzo wyraźną zmienność, nawet w obrębie tych samych typów litologicznych, wykazuje gęstość właściwa. Wskazuje to na konieczność uwzględniania występowania zjawiska w interpretacjach geofizycznych wykonywanymi również przy użyciu współczesnej aparatury cyfrowej z sondami kalibrowanymi.

Otwór wiertniczy Ciechocinek IG 2 jest, ze względu na obszerny zakres wykonanych badań petrofizycznych, jednym z kluczowych reperowych otworów kalibracyjnych, najpełniej zbadanych pod względem parametrów petrofizycznych na obszarze centralnej części Niżu Polskiego. Dane z tego otworu stanowią cenne źródło informacji metodycznych związanych z interpretacją klasycznych analogowych typów profilowań wykonanych na obszarze Polski przed 1993 r. sondami niekalibrowanymi. Dane z tego otworu mogą stanowić źródło ważnych informacji metodycznych, związanych m.in. z interpretacją parametrów geofizycznych uzyskanych obecnie aparaturami cyfrowymi.

Wyniki interpretacji danych geofizycznych

Wyniki badań geofizycznych wykorzystano w trakcie ustalania profilu litologicznego-stratygraficznego, a także przy wyborze odcinków (interwałów głębokościowych) do badań hydrogeologicznych. Prezentowane tu prace interpretacyjne wykonano przy zastosowaniu programów interpretacyjnych systemu GEOFLOG. Objęły one:

opracowanie cyfrowej wersji profilu wiertniczego (LITO);

– opracowanie warstwowego (GEO) oraz objętościowego (VOL) geofizycznego profilu litologicznego;

Fig. 29. Zbiorcze zestawienie graficzne wyników laboratoryjnych badań parametrów petrofizycznych

A, B - gestość właściwa oraz objętościowa; C, D - porowatość całkowita oraz efektywna; E - gestość właściwa dla podstawowych typów litologicznych; F - przepuszczalność

Depth diagram of results of petrophysical parameters

A, B - matrix or bulk density; C, D - total or effective porosity; E - matrix density for main type of lithology; F - permeability

 określenie wielkości przesunięć głębokościowych między głębokościami – określanymi na podstawie długości przewodu wiertniczego a głębokościami określanymi na podstawie pomiarów geofizycznych;

 kalibrację profilowań radiometrycznych na podstawie danych petrofizycznych;

 obliczenie porowatości całkowitej, gęstości objętościowej oraz prędkości fal akustycznych;

 obliczenie przewodności cieplnej skał wraz z określeniem wielkości strumienia cieplnego.

Na figurze 30 przedstawiono w syntetycznej, zgeneralizowanej formie podstawowe wyniki ilościowej interpretacji profilu litologicznego oraz parametrów petrofizycznych, tj. porowatości całkowitej oraz gęstości objętościowej. Wiertniczy profil litologiczny (LITO) zawiera opisy rdzeni wiertniczych oraz próbek okruchowych w formie umożliwiającej jego numeryczne przetwarzanie i stosowanie w procedurach interpretacyjnych systemu GEOFLOG. Zasady stosowanego w tym celu numerycznego opisu litologii przedstawiono w pracy Gientkowej i Szewczyka (1996). W zastosowanej procedurze interpretacyjnej przyjęto 3-składnikowy model objętościowy skały (przestrzeń porowa + zailenie + szkielet skały). Obliczony geofizyczny objętościowy profil litologiczny (VOL) stanowi uogólnienie, za pośrednictwem danych geofizycznych, danych z rdzeni oraz próbek okruchowych na badany odcinek profilu. W procesie interpretacji uwzględniane są zarówno wzajemne przesunięcia głębokościowe obu typów informacji, jak i niepełny uzysk rdzenia. W interpretacjach danych rdzeniowych, w przypadku niepełnego uzysku rdzenia, przyjęto zasadę dowiązywania głębokościowego do stropu odcinka rdzeniowanego.

Na omawianej figurze przedstawiono w formie profilowej wyniki obliczeń porowatości całkowitej oraz gęstości objętościowej w stanie powietrzno-suchym. Dla porównania uzyskane wyniki interpretacji porównywano z wynikami badań parametrów fizycznych, uzyskanymi na podstawie badań laboratoryjnych. Prezentowane wyniki mogą być wykorzystane w analizach związanych z pozyskiwaniem energii geotermalnej, hydrogeologii, czy też w modelowniach wyników powierzchniowych badań geofizycznych, tj. badania sejsmiczne czy grawimetryczne.

Fig. 30. Głębokościowe zestawienie wyników obliczeń porowatości całkowitych oraz gęstości objętościowej

> Results of calculation of total porosity and bulk density

Prędkości fal akustycznych oraz sejsmicznych

Wyniki bezpośrednich rejestracji prędkości fal akustycznych (DT) realizowanych w trakcie badań w otworze Ciechocinek IG 2 (podobnie jak w większości otworów wykonywanych przed 1993 r.), ze względu na zła jakość sprzetu pomiarowego, nie pozwoliły na dostatecznie wiarygodne rozpoznanie tej ważnej, szczególnie dla badań sejsmicznych, cechy badanych skał. Zmienność prędkości akustycznej może być określana w sposób pośredni na drodze obliczeniowej poprzez obliczenie syntetycznego profilowania akustycznego (DTS). Również w przypadku istnienia wyników bezpośrednich pomiarów tego parametru, jego niezależne obliczenie może stanowić istotne narzędzie weryfikacji zarówno poprawności zapisu bezpośredniego pomiaru, jak również poprawności obliczeń profilu objętościowego skały stanowiącego punkt wyjściowy do obliczeń również innych parametrów petrofizycznych (Szewczyk, 1998, 2001). W procedurze interpretacyjnej zastosowano model Hana i in. (1986), uwzględniający wpływ ciśnienia litostatycznego. Na figurze 31 przedstawiono zestawienie głębokościowe wyników obliczonych wartości prędkości akustycznych (DTS) z wynikami bezpośrednich pomiarów akustycznych (DT), a także tzw. sejsmicznymi prędkościami pseudoakustycznymi (DT VSP), określonymi na podstawie pionowych profilowań prędkości fal sejsmicznych. Obserwowana jest wyraźnie lepsza zgodność obliczonych wartości DTS z wynikami DT VSP w stosunku do bezpośrednich pomiarów prędkości fal akustycznych (DT). Obliczone wartości prędkości pozwalają m.in. na wyeliminowane błędów związanych z istnieniem przeskoków faz występujących w bezpośrednio rejestrowanych pomiarach akustycznych.

Uzyskane dane dotyczące rozpoznania prędkościowego (łącznie z obliczonymi wartościami gęstości objętościowych) mogą stanowić materiał wyjściowy dla szczegółowych modelowań sejsmicznych oraz grawimetrycznych w omawianym rejonie.

Warunki geotermiczne

W otworze Ciechocinek IG 2 nie prowadzono obserwacji geotermicznych w warunkach ustalonych, jedynie w dolnym spośród 5 odcinków badań strefowych w najgłębszych odcinkach profilu wykonano pomiary termiczne w nieustabilizowanych warunkach termicznych. Z wykorzystaniem tych danych

Fig. 31. Wyniki obliczeń syntetycznego profilowania akustycznego (DTS)

Dla porównania przedstawiono wyniki wykonanego profilowania akustycznego (DT) oraz profilowania pseudoakustycznego, obliczonego na podstawie sejsmicznych pomiarów prędkości średnich (DT_VSP)

Calculated synthetic sonic log (DTS)

It was shown for comparison results of calculation with sonic log (DT) and pseudosonic log based on vertical seismic profile data (VSP)

Fig. 32. Warstwy wodonośne w profilu otworu wiertniczego Ciechocinek IG 2, wydzielone na podstawie interpretacji danych geofizycznych

A – podano średnią wartość porowatości efektywnej dla warstw. Wskazano interwały głębokościowe, w których wykonano badania hydrogeologiczne – podano wielkość obserwowanych przypływów (w m³/h) oraz mineralizację wód (w g/dm³); B – mineralizacja wód uzyskana w trakcie opróbowań na tle zmienności mineralizacji wód na obszarze Niżu Polskiego, krzywa oznacza wartość średnią mineralizacji tych wód, obliczoną metodą najmniejszych kwadratów

Aquifers in Ciechocinek IG 2 borehole based on geophysical well logging methods interpretation

 ${\bf A}$ – average effective porosity of aquifers and depth intervals with hydrogeological tests results (discharge in m³/h and total mineralization in g/dm³); ${\bf B}$ – results of tests with all results for Polish Lowlands in the background

obliczono przybliżoną wartość strumienia cieplnego dla omawianego otworu, która wynosi 70,5 mW/m². Wynik ten potwierdza istnienie strefy podwyższonych wartości strumienia cieplnego dla centralnej części fragmentu wału pomorsko-kujawskiego.

Warstwy wodonośne, mineralizacja wód podziemnych

Jednym z ważnych celów badawczych otworu wiertniczego było wydzielenie warstw wodonośnych ze szczególnym uwzględnieniem warstw mogących potencjalnie zawierać bituminy. Na figurze 32 przedstawiono profil otworu z wydzielonymi poziomami wodonośnymi, z obliczoną średnią porowatością efektywną, a także wyniki opróbowań pięciu poziomów wodonośnych. Wyniki opróbowań potwierdzają monotoniczny wzrost mineralizacji wody wraz z głębokością. W strefie do głębokości około 350 m występują wody o niskiej mineralizacji, mogące być potencjalnymi poziomami użytkowymi wód słodkich, poniżej tej głębokości zaznacza się stopniowy wzrost mineralizacji. Wody podziemne występujące w otworze Ciechocinek IG 2 wykazują relatywnie niższe mineralizacje od wartości średnich obserwowanych na obszarze Niżu Polskiego. Może to być związane z prawdopodobną infiltracją wód z płytszych poziomów w kierunku głębszych poziomów (descencja). Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

PROFILOWANIE PRĘDKOŚCI ŚREDNICH

W otworze wiertniczym Ciechocinek IG 2 profilowanie prędkości średnich wykonało Przedsiębiorstwo Geofizyki Górnictwa Naftowego Toruń w maju 1990 r.

Pomiarami zostały objęte odcinki do głębokości 1980 m, przy głębokości końcowej otworu 1981 m, można więc przyjąć, że pomiar obejmuje cały zakres odwierconego otworu. Stosowano aparaturę CS-5G, sondę jednogeofonową oraz piętnastometrowy interwał pomiarowy. Prace pomiarowe prowadzono metodą bezdynamitową z trzech punktów wzbudzania, usytuowanych następująco:

PW 1	d = 90 m	A = 50	N = 0,0 m
PW 2	d = 45 m	A = 200	N = 0,0 m
PW 3	d = 60 m	A = 270	N = 0.0 m

gdzie:

d - odległość punktu wzbudzania od głębokiego otworu,

- A azymut mierzony w punkcie głębokiego otworu w kierunku punktu wzbudzania,
- N wysokość względna punktu wzbudzania w stosunku do otworu wiertniczego.

Do obliczenia krzywej prędkości średnich przyjęto jako poziom odniesienia poziom pomiaru, czyli 50 m n.p.m., przy wysokości otworu wynoszącej 85 m.

Głębokość zredukowana do poziomu odniesienia została obliczona ze wzoru:

$$hr = h - hpo \pm N \pm \Delta h$$

gdzie:

hr - głębokość zredukowana punktu pomiarowego

h – głębokość zanurzenia geofonu głębinowego

hpo – średnia głębokość wzbudzania

 Δh – różnica głębokości między *hpo* i poziomem odniesienia w metrach.

Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

$$tp = tobs + \Delta th$$

gdzie:

- tp czas poprawiony
- tobs czas obserwowany
- Δth poprawka wynikająca z głębokości punktu wzbudzania, poziomu odniesienia, miąższości strefy małych prędkości, prędkości w tej strefie i prędkości pod nią.

Redukcje do pionu wykonano przy założeniu jednorodnego ośrodka, a więc przy założeniu prostoliniowego przebiegu promienia sejsmicznego pomiędzy punktem wzbudzania a geofonem umieszczonym w głębokim otworze.

Czas obserwowany redukuje się do pionu, mnożąc go przez głębokość zanurzenia geofonu i dzieląc przez odległość w linii prostej od punktu wzbudzania do geofonu.

Zgodnie z tym czas zredukowany dla poszczególnych punktów wzbudzania *tr* 1, *tr* 2 i *tr* 3 liczono na podstawie wzoru:

$$tr = \frac{hr}{\sqrt{hr^2 + d^2}} \times tp$$

W celu wyeliminowania anizotropii ośrodka obliczono średni czas zredukowany (*tr*) jako średnią arytmetyczną pomiarów czasu zredukowanego z poszczególnych punktów wzbudzania.

Wartości *hr* i *tr* posłużyły do obliczenia prędkości średnich (*Vśr*) zgodnie ze wzorem:

$$V_{\text{śr}} = \frac{hr}{tr}$$

Wszystkie wartości *tr* 1, *tr* 2, *tr* 3, *tr*, *V*śr zestawiono w tabeli 7. Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego.

Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 33A) i hodografu pionowego (fig. 33B). Do wykreślenia krzywej prędkości średnich wykorzystano wartości uśrednione z trzech punktów wzbudzania. Do takiego postępowania uprawnia stosunkowo mały rozrzut pomierzonych wielkości przy wzbudzaniu z trzech różnych punktów. Przedstawiony na figurze 33B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

Fig. 33. Wykres prędkości średnich (A) i hodograf pionowy (B) (poz. odn. 50 m n.p.m.)

Tr – średni czas zredukowany, Vśr – prędkość średnia, H – głębokość; oznaczenia stratygraficzne wg słownika kodowego sytemu SADOG (Geonafta)

Average seismic velocity (A) and travel-time curve (B) (reference level 50 m a.s.l.)

Tr – average reduced time, $V \acute{sr}$ – average velocity, H – depth; stratigraphical symbols according to the SADOG coding system of Geonafta

Tabela 7

Zestawienie wartości głębokości (H), czasu zredukowanego (Tr) i prędkości średnich (Vśr)

Depth (H), reduced time (Tr) and average velocity (Vśr) values

H [m]	Tr 1 [s]	<i>Tr</i> 2 [s]	<i>Tr</i> 3 [s]	<i>Tr</i> [s]	Vśr [m/s]	H [m]	<i>Tr</i> 1 [s]	<i>Tr</i> 2 [s]	<i>Tr</i> 3 [s]	Tr [s]	Vśr [m/s]
40,0	0,0000	0,0200	0,0220	0,021000	1905	595,0	0,2290	0,2260	0,2270	0,227333	2617
55,0	0,0310	0,0280	0,0300	0,029667	1854	610,0	0,2350	0,2310	0,2320	0,232667	2622
70,0	0,0380	0,0360	0,0370	0,037000	1892	625,0	0,2400	0,2360	0,2370	0,237667	2630
85,0	0,0440	0,0420	0,0440	0,043333	1962	640,0	0,2440	0,2400	0,2420	0,242000	2645
100,0	0,0510	0,0500	0,0510	0,050667	1974	655,0	0,2480	0,2440	0,2470	0,246333	2659
115,0	0,0580	0,0570	0,0580	0,057667	1994	670,0	0,2520	0,2480	0,2510	0,250333	2676
130,0	0,0660	0,0640	0,0640	0,064667	2010	685,0	0,2560	0,2520	0,2550	0,254333	2693
145,0	0,0740	0,0700	0,0720	0,072000	2014	700,0	0,2600	0,2570	0,2590	0,258667	2706
160,0	0,0810	0,0760	0,0800	0,079000	2025	715,0	0,2640	0,2610	0,2630	0,262667	2722
175,0	0,0870	0,0830	0,0870	0,085667	2043	730,0	0,2680	0,2650	0,2670	0,266667	2737
190,0	0,0910	0,0880	0,0910	0,090000	2111	745,0	0,2720	0,2690	0,2710	0,270667	2752
205,0	0,0950	0,0930	0,0950	0,094333	2173	760,0	0,2760	0,2730	0,2760	0,275000	2764
220,0	0,1000	0,0960	0,0990	0,098333	2237	775,0	0,2800	0,2770	0,2810	0,279333	2774
235,0	0,1030	0,0990	0,1030	0,101667	2311	790,0	0,2850	0,2810	0,2860	0,284000	2782
250,0	0,1070	0,1020	0,1060	0,105000	2381	805,0	0,2890	0,2850	0,2900	0,288000	2795
265,0	0,1090	0,1060	0,1100	0,108333	2446	820,0	0,2940	0,2890	0,2930	0,292000	2808
280,0	0,1130	0,1100	0,1140	0,112333	2493	835,0	0,2970	0,2930	0,2970	0,295667	2824
295,0	0,1170	0,1140	0,1180	0,116333	2536	850,0	0,3000	0,2960	0,3010	0,299000	2843
310,0	0,1210	0,1180	0,1220	0,120333	2576	865,0	0,3030	0,3000	0,3050	0,302667	2858
325,0	0,1270	0,1220	0,1270	0,125333	2593	880,0	0,3060	0,3040	0,3090	0,306333	2873
340,0	0,1330	0,1280	0,1320	0,131000	2595	895,0	0,3090	0,3080	0,3130	0,310000	2887
355,0	0,1390	0,1340	0,1370	0,136667	2598	910,0	0,3120	0,3120	0,3160	0,313333	2904
370,0	0,1450	0,1400	0,1420	0,142333	2600	925,0	0,3150	0,3170	0,3190	0,317000	2918
385,0	0,1500	0,1460	0,1480	0,148000	2601	940,0	0,3190	0,3210	0,3220	0,320667	2931
400,0	0,1560	0,1530	0,1530	0,154000	2597	955,0	0,3230	0,3250	0,3250	0,324333	2945
415,0	0,1630	0,1600	0,1580	0,160333	2588	970,0	0,3270	0,3280	0,3290	0,328000	2957
430,0	0,1680	0,1660	0,1630	0,165667	2596	985,0	0,3310	0,3310	0,3330	0,331667	2970
445,0	0,1730	0,1720	0,1680	0,171000	2602	1000,0	0,3360	0,3340	0,3370	0,335667	2979
460,0	0,1780	0,1770	0,1740	0,176333	2609	1015,0	0,3410	0,3370	0,3410	0,339667	2988
475,0	0,1830	0,1820	0,1800	0,181667	2615	1030,0	0,3460	0,3410	0,3450	0,344000	2994
490,0	0,1880	0,1870	0,1860	0,187000	2620	1045,0	0,3500	0,3450	0,3490	0,348000	3003
505,0	0,1930	0,1920	0,1920	0,192333	2626	1060,0	0,3540	0,3490	0,3540	0,352333	3009
520,0	0,1980	0,1980	0,1980	0,198000	2626	1075,0	0,3590	0,3530	0,3590	0,357000	3011
535,0	0,2040	0,2040	0,2040	0,204000	2623	1090,0	0,3640	0,3570	0,3630	0,361333	3017
550,0	0,2110	0,2100	0,2100	0,210333	2615	1105,0	0,3700	0,3610	0,3680	0,366333	3016
565,0	0,2170	0,2160	0,2160	0,216333	2612	1120,0	0,3750	0,3660	0,3730	0,371333	3016
580,0	0,2230	0,2210	0,2220	0,222000	2613	1135,0	0,3800	0,3710	0,3770	0,376000	3019

Т	a	b	e]	la	7	cd.
-		~	•			

						-						
H [m]	<i>Tr</i> 1 [s]	<i>Tr</i> 2 [s]	<i>Tr</i> 3 [s]	<i>Tr</i> [s]	Vśr [m/s]		H [m]	<i>Tr</i> 1 [s]	<i>Tr</i> 2 [s]	<i>Tr</i> 3 [s]	<i>Tr</i> [s]	Vśr [m/s]
1150,0	0,3840	0,3760	0,3820	0,380667	3021		1555,0	0,5060	0,5020	0,5050	0,504333	3083
1165,0	0,3860	0,3810	0,3870	0,384667	3029		1570,0	0,5110	0,5060	0,5100	0,509000	3084
1180,0	0,3910	0,3860	0,3920	0,389667	3028		1585,0	0,5160	0,5100	0,5150	0,513667	3086
1195,0	0,3960	0,3910	0,3970	0,394667	3028		1600,0	0,5210	0,5140	0,5200	0,518333	3087
1210,0	0,4000	0,3960	0,4010	0,399000	3033		1615,0	0,5260	0,5180	0,5250	0,523000	3088
1225,0	0,4040	0,4010	0,4050	0,403333	3037		1630,0	0,5310	0,5230	0,5310	0,528333	3085
1240,0	0,4090	0,4060	0,4090	0,408000	3039		1645,0	0,5360	0,5280	0,5360	0,533333	3084
1255,0	0,4130	0,4110	0,4130	0,412333	3044		1660,0	0,5410	0,5330	0,5410	0,538333	3084
1270,0	0,4170	0,4160	0,4180	0,417000	3046		1675,0	0,5460	0,5380	0,5450	0,543000	3085
1285,0	0,4210	0,4210	0,4230	0,421667	3047		1690,0	0,5510	0,5430	0,5500	0,548000	3084
1300,0	0,4260	0,4250	0,4280	0,426333	3049		1705,0	0,5550	0,5480	0,5540	0,552333	3087
1315,0	0,4310	0,4290	0,4330	0,431000	3051		1720,0	0,5590	0,5530	0,5590	0,557000	3088
1330,0	0,4360	0,4340	0,4370	0,435667	3053		1735,0	0,5630	0,5580	0,5630	0,561333	3091
1345,0	0,4410	0,4390	0,4410	0,440333	3055		1750,0	0,5680	0,5630	0,5670	0,566000	3092
1360,0	0,4460	0,4440	0,4460	0,445333	3054		1765,0	0,5730	0,5670	0,5710	0,570333	3095
1375,0	0,4500	0,4490	0,4510	0,450000	3056		1780,0	0,5780	0,5720	0,5750	0,575000	3096
1390,0	0,4540	0,4540	0,4550	0,454333	3059		1795,0	0,5830	0,5770	0,5790	0,579667	3097
1405,0	0,4590	0,4590	0,4590	0,459000	3061		1810,0	0,5870	0,5820	0,5840	0,584333	3098
1420,0	0,4630	0,4640	0,4630	0,463333	3065		1825,0	0,5910	0,5860	0,5890	0,588667	3100
1435,0	0,4680	0,4690	0,4680	0,468333	3064		1840,0	0,5960	0,5900	0,5940	0,593333	3101
1450,0	0,4730	0,4730	0,4730	0,473000	3066		1855,0	0,6010	0,5950	0,5990	0,598333	3100
1465,0	0,4780	0,4770	0,4770	0,477333	3069		1870,0	0,6050	0,5990	0,6040	0,602667	3103
1480,0	0,4830	0,4810	0,4820	0,482000	3071		1885,0	0,6100	0,6040	0,6090	0,607667	3102
1495,0	0,4880	0,4860	0,4870	0,487000	3070		1900,0	0,6150	0,6090	0,6130	0,612333	3103
1510,0	0,4920	0,4900	0,4910	0,491000	3075		1915,0	0,6200	0,6140	0,6180	0,617333	3102
1525,0	0,4970	0,4940	0,4950	0,495333	3079		1930,0	0,6240	0,6190	0,6220	0,621667	3105
1540,0	0,5020	0,4980	0,5000	0,500000	3080		1945,0	0,6290	0,6240	0,6260	0,626333	3105

H-glębokość, Tr 1-czas zredukowany z punktu pomiarowego 1, Tr 2-czas zredukowany z punktu pomiarowego 2, Tr 3-czas zredukowany z punktu pomiarowego 3, Tr - średni czas zredukowany, Vśr - prędkość średnia

H – depth, Tr 1 – reduced time from measuring point 1, Tr 2 – reduced time from measuring point 2, Tr 3 – reduced time from measuring point 3, Tr – average reduced time, Vsr – average velocity

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, zastosowano sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem jej wykorzystania jest jednakowy odstęp między punktami pomiarowymi.

Podaną metodę zastosowano do wygładzania odczytów czasu z pomiarów prędkości średnich w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując pomiary czasu zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu wartości czasu i prędkości do poziomu odniesienia pomiaru oraz ich interpolacji dla znormalizowanych przedziałów głębokości, co 20 m. Następnie wyznaczone wartości wygładzono przy

Zestawienie uśrednionych wartości prędkości interwałowej (Vi), prędkości kompleksowej (Vk) i prędkości wygładzonej (Vw) obliczonych z czasu wygładzonego

Averaged interval velocity (Vi), complex velocity (Vk) and smoothed velocity (Vw) values calculated from smoothed time

H [m]	Vi [m/s]	<i>Vk</i> [m/s]	<i>Vw</i> [m/s]	H [m]	Vi [m/s]	<i>Vk</i> [m/s]	<i>Vw</i> [m/s]
20	2025	2237	1993	740	3637	3798	3613
40	2025	2237	1993	760	3637	3798	3663
60	2025	2237	2034	780	3637	3798	3718
80	2025	2237	2093	800	3637	3798	3783
100	2025	2237	2173	820	3943	3798	3854
120	2500	2237	2278	840	3943	3798	3925
140	2500	2237	2413	860	3943	3798	3986
160	2500	2237	2580	880	3943	3798	4028
180	2500	2237	2775	900	3943	3798	4042
200	2500	2237	2983	920	3930	3798	4027
220	3269	3240	3173	940	3930	3798	3983
240	3269	3240	3308	960	3930	3798	3914
260	3269	3240	3360	980	3930	3798	3827
280	3269	3240	3325	1000	3930	3798	3729
300	3269	3240	3226	1020	3494	3798	3628
320	2931	3240	3098	1040	3494	3295	3531
340	2931	3240	2972	1060	3494	3295	3445
360	2931	2810	2866	1080	3494	3295	3374
380	2931	2810	2789	1100	3494	3295	3321
400	2931	2810	2739	1120	3269	3295	3286
420	2698	2810	2711	1140	3269	3295	3266
440	2698	2810	2698	1160	3269	3295	3258
460	2698	2810	2691	1180	3269	3295	3257
480	2698	2810	2688	1200	3269	3295	3260
500	2698	2810	2690	1220	3254	3295	3261
520	2767	2810	2701	1240	3254	3295	3259
540	2767	2810	2727	1260	3254	3295	3254
560	2767	2810	2775	1280	3254	3295	3246
580	2767	2810	2849	1300	3254	3295	3239
600	2767	2810	2946	1320	3236	3246	3234
620	3231	2810	3062	1340	3236	3246	3232
640	3231	2810	3185	1360	3236	3246	3234
660	3231	2810	3305	1380	3236	3246	3239
680	3231	3798	3411	1400	3236	3246	3247
700	3231	3798	3495	1420	3268	3246	3256
720	3637	3798	3560	1440	3268	3246	3265

H [m]	Vi [m/s]	<i>Vk</i> [m/s]	Vw [m/s]
1460	3268	3246	3274
1480	3268	3244	3279
1500	3268	3244	3278
1520	3237	3244	3270
1540	3237	3244	3253
1560	3237	3244	3229
1580	3237	3244	3202
1600	3237	3244	3178
1620	3169	3179	3163
1640	3169	3179	3158
1660	3169	3179	3165
1680	3169	3179	3182
1700	3169	3179	3204
1720	3242	3179	3226
1740	3242	3247	3243
1760	3242	3247	3252
1780	3242	3247	3254
1800	3242	3247	3249
1820	3224	3247	3239
1840	3224	3247	3228
1860	3224	3207	3218
1880	3224	3207	3211
1900	3224	3207	3206
1920	3204	3207	3204
1940	3204	3207	3204

Tabela 8 cd.

Fig. 34. Wykresy prędkości wygładzonych (Vw), interwałowych (Vi) i kompleksowych (Vk) (poz. odn. 50 m n.p.m.)

 ${\rm H}-{\rm glębokość};$ oznaczenia stratygraficzne w
g słownika kodowego sytemu SADOG (Geonafta)

Smoothed velocity (*Vw*), interval velocity (*Vi*) and complex velocity (*Vk*) (reference level 50 m a.s.l.) H – depth; stratigraphical symbols according to the SADOG coding system of Geonafta

użyciu specjalnego programu przez zastosowanie operacji splotu z filtrem trójkątnym stosując 20 razy filtr 0,25; 0,5 i 0,25. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zmniejszone zostają przypadkowe skoki wartości czasu, spowodowane ich zaokrągleniem do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu), spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory, obejmujące przetworzone pomiary czasu po ich zredukowaniu do poziomu odniesienia, wyinterpretowaniu wartości co 20 m i wygładzeniu oraz odpowiadające im wartości prędkości średnich. Powyższe informacje są zawarte w banku danych prędkościowych utworzonym w latach 90. XX w. w Zakładzie Geofizyki PIG dla potrzeb interpretacji prac sejsmicznych.

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami są spowodowane zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasu wygładzonego n i n+1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasu wygładzonego odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi. Zestawienie uśrednionych wartości *Vw* (prędkości wygładzone), *Vi* (prędkości interwałowe), *Vk* (prędkości kompleksowe) obliczonych z czasu wygładzonego zawiera tabela 8. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 34.

Wykresy powyższe wzbogacono profilem stratygraficznym otworu, co umożliwia bezpośrednie powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi przekroju geologicznego w otworze oraz z refleksami sejsmicznymi.

W obrębie utworów kredy dolnej i jury górnej obserwuje się kilka granic kontrastów prędkości. W utworach kredy zaznacza się kompleks podwyższonych prędkości, przypisany mułowcowym, względnie wapiennym utworom beriasu. Najbardziej wyraźna granica jest związana z wysokoprędkościowymi przystropowymi utworami wapiennymi oksfordu. Jura środkowa ma prędkości kompleksowe obniżone w stosunku do nadkładu. Granica kontrastu prędkości oddziela węglanowe osady jury górnej od osadów terrygenicznych. Utwory jury środkowej charakteryzują się małym zróżnicowaniem prędkości kompleksowych ze względu na jej dość monotonne wykształcenie litologiczne (mułowce, iłowce, piaskowce).

Obserwowane lekkie podwyższenia prędkości odpowiadają piaskowcom batonu górnego oraz bajosu górnego i dolnego.

Uzyskane wyniki pomiarowe dostarczają danych do identyfikacji granic odbijających na przekrojach sejsmicznych oraz ich interpretacji głębokościowej.