WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

Edyta PUSKARCZYK, Jadwiga JARZYNA

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ W OTWORZE JAMNO IG 1

WSTĘP

Zakres wykonanych badań

Badania geofizyki otworowej wykonane zostały w pięciu odcinkach badań strefowych w okresie od 2 maja 1966 do 4 maja 1967 roku. Wysokość otworu wynosiła 10 m n.p.m. Głębokość odwiertu wynosiła 2801,5 m, zaś końcowa głębokość osiągnięta przez badania geofizyczne – 2742,75 m. Badania wykonane zostały standardowymi aparaturami analogowymi. Zleceniodawcą był Państwowy Instytut Geologiczny w Warszawie, wykonawcą badań było Przedsiębiorstwo Poszukiwań Naftowych w Pile.

W trakcie wiercenia wystąpiły problemy techniczne związane z ukręceniem przewodu oraz przechwyceniem przewodu. W związku z tym podjęto decyzję o wcześniejszym zakończeniu wiercenia. Wyniki danych pomiarowych zarejestrowano w formie analogowej. Dane, których jakość pozwalała na przeprowadzenie dalszych analiz geofizycznych i geologicznych, zostały scyfrowane. Krzywe pomiarowe zostały zapisane w standardowym formacie danych geofizycznych LAS (Log ASCII Standard) i znajdują się w Centralnej Bazie Danych Geologicznych, opisane numerem 26507. Figura 58 przedstawia schematyczne zestawienie odcinków pomiarowych profilowań geofizycznych wykonanych w otworze Jamno IG 1 i dostępnych w formie cyfrowej.

Wykonane badania geofizyczne (tab. 31) obejmowały profilowanie średnicy (CALI), profilowanie potencjałów naturalnych (SP), profilowania oporności i profilowania radiometryczne oraz profilowanie temperatury w tzw. stanie usta-

Tabela 31

Schematyczne zestawienie typów pomiarów geofizycznych wykonanych w otworze Jamno IG 1

Schematic depth presentation of logs performed in Jamno IG 1 borehole

Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębokościowy [m]	Rzeczywisty interwał głębokościowy profilowań [m]
1	2	3	4
08.05.1966	CALI SP EL18 EN64 EN16	30–309,75	30,25–309,75 31,50–309,75 30,25–309,75
03.07.1966	SP EL02 EL03 EL14 EL26 EL01 EL09 EN10 EN04	305–1544,75	305,50–1544,50
04.07.1966	GR NEGR	12–1644,75	12,50–1643,50 15,25–1644,50

1	2	3	4
08.08.1966	EL07L EL09 EL01 EL14 EL26 EL03 EL02 EN10 NEGR GR CALI	1510–1849,75 300–1847,75	$\begin{array}{c} 1510,50{-}1842,75\\ 1512,25{-}1844,75\\ 1510,50{-}1844,75\\ 1511,25{-}1844,75\\ 1511,75{-}1844,75\\ 1510,50{-}1844,75\\ 1512,25{-}1844,75\\ 1510,50{-}1842,75\\ 1551,25{-}1849,75\\ 1550,25{-}1847,50\\ 300,25{-}1847,75\\ \end{array}$
29.11,1966	GR NEGR SP EL02 EL03 EL14 EL26 EL01 EL09 EN10 E07L	1795–2439,75	$\begin{array}{c} 1795,50{-}2436,75\\ 1798,25{-}2439,25\\ 1846,25{-}2432,75\\ 1845,50{-}2433,25\\ 1845,50{-}2433,75\\ 1845,50{-}2433,75\\ 1845,50{-}2433,75\\ 1845,50{-}2433,50\\ 1845,50{-}2433,75\\ 1845,50{-}2433,75\\ 1845,50{-}2433,75\\ 1845,50{-}2433,75\\ 1845,50{-}2431,75\\ \end{array}$
30.01.1967	GR NEGR SP EL02 EL03 EL14 EL26 EL01 EL09 EN10 E07L CALI	2342–2737,75 1850–2742,75	$\begin{array}{c} 2342,50-2737,50\\ 2345,25-2737,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,75-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 2350,25-2734,75\\ 1850,50-2742,75\\ \end{array}$
22.05.1967	TEMU	5-2742,75	5,25–2742,50
	CALI_C GR_C NEGR_C EL09_C EN10_C	0–2737,75	30,25–2737,75 12,50–2737,75 15,00–2737,75 305,50–2734,75

Tabela 31 cd.

lonym (TEMU).W całym otworze wykonano profilowania oporności sondami gradientowymi (EL) i potencjałowymi (EN) o różnym zasięgu. Pomiary oporności gradientowe wykonano sondami o długościach od 0,275 do 8,5 m, natomiast pomiary oporności potencjałowe sondami o długościach od 0,4 do 2,0 m. Tabela 32 zawiera objaśnienia skrótów nazw profilowań (mnemoniki) wraz z jednostkami. Wykonane badania pozwoliły na przeprowadzenie ogólnego rozpoznania profilu wiercenia. W profilu otworu występują utwory czwartorzędu lub neogenu, mezozoiku (kreda, jura i trias) oraz najbardziej perspektywiczne pod względem właściwości zbiornikowych utwory paleozoiczne – dewonu i ordowiku. Dla utworów perspektywicznych, zalegających na głębokości 1663,0–2801,5 m wykonano 91,7% rdzeniowania profilu otworu. Autorki opracowania nie posiadały danych uzyskanych z rdzeni wiertniczych.

Cele badań geofizycznych

Celem wiercenia otworu Jamno IG 1, podobnie jak dwóch pozostałych otworów Jamno IG 2 i IG 3, było wyjaśnienie zagadnień związanych z istnieniem regionalnej strefy dyslokacyjnej Koszalin–Chojnice. Bezpośrednim celem wiercenia było rozpoznanie podłoża cechsztynu, rozwoju facjalnego tej formacji oraz określenie budowy geologicznej i tektoniki w związku z wyklinowywaniem się ogniw mezozoiku w obszarze położonym w centrum strefy dyslokacyjnej.

Poszczególne zadania postawione przed geofizyką otworową obejmowały:

- określenie litologii przewiercanych skał,

 określenie miąższości warstw i głębokości ich zalegania oraz wskazanie warstw o dobrych właściwościach zbiornikowych,

Fig. 58. Schematyczne zestawienie profilowań geofizyki wiertniczej wykonanych w otworze Jamno IG 1

Schematic depth presentation of well logging in Jamno IG 1 borehole

- określenie stratygrafii nawierconych utworów,

określenie parametrów termicznych, tj. strumienia cieplnego i stopnia geotermicznego.

Litostratygrafia

Profil stratygraficzny, opracowany był na podstawie pomiarów wykonanych w otworze oraz danych dostarczonych przez geologów. Profil stratygraficzny otworu Jamno IG 1 obejmuje utwory kredy, jury, triasu, częściowo utwory cyklotemu Z3 – dolomit płytowy i szary ił solny. Poniżej znajdują się paleozoiczne utwory dewonu i ordowiku. W obrębie każdego okresu wydzielić można zróżnicowane pod względem właściwości zbiornikowych kompleksy geologiczne.

Warunki geotermiczne w otworze

W otworze Jamno IG 1 w interwale głębokości 5,00– 2742,75 m wykonano pomiary temperatury w tzw. ustalonych warunkach termicznych (TEMU). Na figurze 59 przedstawiono zestawienie głębokościowe profilowania TEMU. Istnienie zakłóceń pola termicznego zaobserwowano w osadach czwartorzędowych i neogeńskich. Pomiar temperatury w otworze pozwala na obliczenie gradientu i stopnia geotermicznego. Parametry te wyznaczono uwzględniając występujące w otworze granice stratygraficzne. Wyniki obliczeń stopnia i gradientu geotermicznego zamieszczono w tabeli 33. Średni gradient geotermiczny w całym profilu pomiarowym otworu wynosi 2,4°C/100 m, natomiast średni stopień geotermiczny wynosi 41,3 m/°C.

Opis mnemoników profilowań w otworze Jamno IG 1

Rodzaj profilowań – mnemoniki międzynarodowe [mnemoniki polskie]	Jednostki	Rodzaj profilowań – opis
CALI [Pśr]	mm	profilowanie średnicy
EL02-A0.25M0.05N	Ω m	profilowanie oporności, sonda gradientowa spągowa 0,275 m
EL02 - A0.5M0.1N	Ωm	profilowanie oporności, sonda gradientowa spągowa 0,55 m
EL03 - A1.0M0.1N	Ωm	profilowanie oporności, sonda gradientowa spągowa 1,05 m
EL09 - A2.0M0.5N	Ωm	profilowanie oporności, sonda gradientowa spągowa 2,25 m
EL14 – A4.0M0.5N	Ωm	profilowanie oporności, sonda gradientowa spągowa 4,25 m
EL18 - M5.28A0.81B	Ωm	profilowanie oporności, sonda gradientowa spągowa 5,69 m
EL26 – A8.0M1.0N	Ωm	profilowanie oporności, sonda gradientowa spągowa 8,5 m
EN04 - B0.1A1.0M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 1,0 m
EN10-N8.5M0.5A	Ωm	profilowanie oporności, sonda potencjałowa stropowa 0,5 m
EN16-B5.7A0.4M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 0,4 m
EN64 - B4.48A1.62M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 1,62 m
E07L - N0.5M2.0A	Ωm	profilowanie oporności, sonda gradientowa stropowa 2,25 m
GR [PG]	imp/min	profilowanie gamma
NEGR [PNG]	imp/min	profilowanie neutron-gamma
SP [PS]	mV	profilowanie potencjałów polaryzacji naturalnej
TEMU [PTu]	°C	profilowanie temperatury w stanie ustalonym

Mnemonics description in Jamno IG 1 borehole

Tabela 33

Średni stopień geotermiczny i średni gradient geotermiczny dla wydzielonych przedziałów głębokościowych w otworze Jamno IG 1

Mean geothermal degree and mean geothermal gradient in the selected depth sections in Jamno IG 1 borehole

Interwał głębokościowy [m]	Średni stopień geotermiczny [m/°C]	Średni gradient geotermiczny [°C/100 m]
145,00–778,00	44,3	2,3
778,00-851,00	52,9	1,9
851,00–999,00	56,9	1,8
999,00–1182,00	38,5	2,6
1182,00-1202,00	28,2	3,6
1202,00-1663,00	38,6	2,6
1663,00–1696,00	47,8	2,1
1696,00–1946,70	39,9	2,5
1946,70–2286,50	40,8	2,4
2286,50-2742,25	38,0	2,6

Fig. 59. Profilowanie temperatury w otworze Jamno IG 1

Temperature logs in Jamno IG 1 borehole

ść		GR_C (a_un)	NEGR_C (a_un)	CALI_C (mm)
je ko	Stratygrafia	0.0 500.0	0.0 2000.0	0.0 1000.0
Del Del	Stratigraphy	GR_C- (a_un)	NEGR_C- (a_un)	
Ō		500.0 0.0	2000.0 0.0	
	czwartorzed	<u> </u>	<u> </u>	
	lub neogen	Y.	1	= ==
			÷.	<u>+</u>
				<u> </u>
	kroda górna			<u>}</u>
- 500 -	kieua goina	solution statements		
		<u>-</u>		<u> </u>
				<u>£</u>
	jura srodkowa		T. T	
	in the later			
	jura doina			
- 1000 -			× ×	
	trias górny	<u> </u>	Å.	
	thas going			<u> </u>
	trias środkowv=		T T	
			<u>}</u>	
				ξ
	trias dolnv			
1500			\$	LIC
- 1500 -			T	2
				<u></u>
	perin goiny			
	dewon górny		Ż.	
				E
- 2000 -				
			2	
	aewon srodkowy			┥┥ ╞╡ ┥╵╵╵╵╵
2500-			1	
			S.	
	dewon dolny ?			
	ordowik			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		┫┼┼┼┼┼┼┼┼

Fig. 60. Połączone i unormowane wartości profilowania naturalnego promieniowania gamma i profilowania naturalnego w otworze Jamno IG 1

Joined and normalized GR and neutron logs in Jamno IG 1 borehole

Presentation of selected well logs in Jamno IG 1 borehole

INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Wyniki profilowań naturalnego promieniowania gamma (GR) oraz profilowań neutronowych (NEGR) zostały unormowane oraz połączone w obrębie całego otworu. Na figurach 60 i 61 przedstawione zostały wykresy głębokościowe tych profilowań, a także połączonych wzdłuż całego otworu profilowań średnicy i profilowań oporności wykonanych sondami: gradientową o długości 2,25 m oraz potencjałową o długości 0,5 m. Zastosowano również zestawienie krzywej gamma GR_C oraz odbicie "lustrzane" tej krzywej GR_C uzyskane poprzez wyskalowanie krzywej GR w przeciwnym kierunku (fig. 60). Takie zestawienie krzywych profilowania naturalnej promieniotwórczości gamma umożliwia obserwację udziału składników piaskowcowego i ilastego wzdłuż profilu otworu. Istnieje również możliwość określenia, na podstawie kształtu separacji krzywych, środowiska tworzenia się osadów. W utworach iłowcowych, mułowcowych krzywe gamma przebiegają blisko siebie. W miarę spadku zailenia i wzrostu udziału składnika piaskowcowego, rośnie separacja krzywych. Podobną separację krzywych uzyskano dla profilowania neutronowego NPHI.

Wysokie wskazania na krzywej profilowania gamma GR świadczą przede wszystkim o obecności utworów ilastych lub silnie zailonych (iłowce, mułowce, łupki ilaste). W piaskowcach, wapieniach i dolomitach obserwuje się niskie wartości na krzywej profilowania gamma, jednakże mogą one wzrastać przy zwiększaniu zailenia tych skał. Bardzo niskie wartości anomalii rejestruje się na krzywej promieniotwórczości naturalnej dla utworów chemicznych (gips, anhydryt, sole) z wyjątkiem soli potasowych i potasowo-magnezowych, gdzie obecność potasu wpływa na wzrost wskazań na krzywej profilowania gamma.

Krzywa profilowania średnicy CALI wskazuje miejsca zmian średnicy otworu wynikające ze zmiany rozmiaru świdra użytego do wiercenia otworu (fig. 61), ponadto daje informację o zmienności litologicznej utworów. Największe powiększenie średnicy obserwuje się w utworach miękkich, słabo zwięzłych lub łatwo rozpuszczalnych w wodzie. W taki sposób identyfikuje się niektóre utwory ilaste, słabo zwięzłe piaskowce lub sole. Obecność porowatych, przepuszczalnych poziomów w profilu otworu można wyznaczyć dzięki występowaniu osadu ilastego na ściance otworu. Zmniejszenie średnicy otworu następuje również na skutek pęcznienia utworów zawierających minerały ilaste (montmorylonit) absorbujące wodę. Dla poziomów zbudowanych ze zbitych wapieni, anhydrytów lub zwięzłych piaskowców nie obserwuje się znacznych zmian średnicy w stosunku do wartości nominalnej.

Na figurze 61 zestawiono dwie krzywe oporności EL09 i EN10 wykonane sondami odpowiednio gradientową o długości 2,625 m i potencjałową o długości 0,25 m. Wybrano skalę logarytmiczną w przedziale wartości 0,1-100 Ωm. Różna długość sond daje zróżnicowanie w zasięgu radialnym profilowań oporności. Separacja krzywych świadczy o obecności strefy filtracji. Profilowania oporności stanowią podstawę do określenia porowatości efektywnej oraz rodzaju i wielkości nasycenia przestrzeni porowej skał. Skały ilaste na krzywych profilowania oporności zaznaczają się niskimi wskazaniami. Wartości te mogą wzrastać ze wzrostem głębokości, zawartości spoiwa węglanowego lub krzemionkowego, z obniżeniem się koncentracji soli w danym basenie sedymentacyjnym oraz obniżeniem stopnia odsortowania ziaren skalnych. Profilowania oporności wykazują bardzo zróżnicowane oporności dla skał węglanowych, w zależności od porowatości, szczelinowatości, obecności minerałów ilastych, rodzaju medium nasycającego, struktury i tekstury utworów. Niższe wskazania osiągają wapienie i dolomity silnie skawernowane, szczelinowate, porowate. Wzrost oporności obserwuje się w zbitych, krystalicznych węglanach, bądź nasyconych węglowodorami. W poziomach piaskowcowych krzywe profilowania oporności wykazują największe zróżnicowanie. Wartości oporności piaskowców zmieniają się w zależności od stopnia ich scementowania, rodzaju spoiwa, współczynnika porowatości i medium nasycającego. Na oporność piaskowców obniżający wpływ ma zailenie. W otworze Jamno IG 1 najwyższe oporności obserwuje się dla utworów cechsztynu i dewonu górnego.

Wykonane profilowania geofizyki otworowej stanowią podstawę do dalszych prac interpretacyjnych. Dla podniesienia wiarogodności wyników przydatne okazałyby się informacje uzyskane z rdzeni wiertniczych – rdzeniowanie w utworach cechsztynu, dewonu i ordowiku wynosiło 91,7%. Kompleksowa interpretacja profilowań i danych laboratoryjnych pozwoli na uzyskanie szczegółowego profilu litologicznego wraz z zaznaczeniem obszarów o najlepszych właściwościach zbiornikowych.

Edyta PUSKARCZYK, Jadwiga JARZYNA

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ W OTWORZE JAMNO IG 2

WSTĘP

Zakres wykonanych badań

Badania geofizyki otworowej wykonane zostały w czterech odcinkach badań strefowych w okresie od 20 września 1965 do 8 września 1966 roku. Wysokość otworu wynosiła 6 m n.p.m. Głębokość odwiertu wynosiła 2600 m. Końcowa głębokość osiągnięta przez badania geofizyczne wynosiła 2469,75 m (profilowanie temperatury w stanie ustalonym przeprowadzono do głębokości 2519,75 m). Badania wykonane zostały standardowymi aparaturami analogowymi. Zleceniodawcą był Państwowy Instytut Geologiczny, a wykonawcą badań – Przedsiębiorstwo Geologiczne w Warszawie. W trakcie wiercenia miały miejsce dwie dłuższe instrumentacje oraz kilka kilkudniowych. Wyniki danych pomiarowych zarejestrowano w formie analogowej. Dane, których jakość pozwalała na przeprowadzenie dalszych analiz geofizycznych i geologicznych, zostały scyfrowane. Krzywe pomiarowe zostały zapisane w standardowym formacie danych geofizycznych LAS (Log ASCII Standard). Dane te znajdują się w Centralnej Bazie Danych Geologicznych i są opisane numerem 26489. Figura 62 przedstawia schematyczne zestawienie odcinków pomiarowych profilowań geofizycznych wykonanych w otworze Jamno IG 2 i dostępnych w formie cyfrowej.

Zakres wykonanych badań geofizycznych (tab. 34) obejmował profilowania: średnicy, potencjałów naturalnych, oporności, radiometryczne i termiczne. W tabeli 35 podano objaśnienia skrótów nazw profilowań (mnemoniki) wraz z jednostkami. Wykonane badania pozwoliły na przeprowadzenie ogólnego rozpoznania profilu wiercenia. Otwór przewiercał utwory czwartorzędu lub neogenu, jury, triasu, cechsztynu, dewonu i ordowiku. W całym otworze wykonano profilowania oporności sondami gradientowymi (EL) o różnym zasięgu (najkrótsza sonda 0,275 m, najdłuższa sonda 4,25 m) i sondami potencjałowymi EN. W odcinku przewiercającym utwory zbiornikowe wykonano sterowane profilowanie oporności laterologiem trójelektrodowym (LL3) oraz profilowanie oporności sondą gradientową długiego zasięgu (EL26 – 8,5 m). Na odcinku 1676–2465 m, z powodu dużych zakłóceń podczas pomiaru, zaniechano profilowania potencjałów naturalnych (SP) i profilowania gamma-gamma (GGDN). W całym otworze wykonano profilowanie oporności płuczki oraz profilowanie temperatury w stanie ustalonym. W odcinkach 675–1450 i 1676–2465 m wykonano profilowanie temperatury w stanie nieustalonym.

Cele badań geofizycznych

Ogólnym celem wiercenia było wyjaśnienie zagadnień związanych z występowaniem regionalnej strefy dyslokacyj-

Fig. 62. Schematyczne zestawienie profilowań geofizyki wiertniczej wykonanych w otworze Jamno IG 2

Schematic depth presentation of well logging in Jamno IG 2 borehole

Schematyczne zestawienie typów pomiarów geofizycznych wykonanych w otworze Jamno IG 2

Schematic depth presentation of logs performed in Jamno IG 2 borehole

Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębokościowy [m]	Rzeczywisty interwał głębokościowy profilowań [m]	
17.10.1965	CALI GR GGDN NEGR EN04 EN10 MRES EL09 EL03 EL02 EL07 SP	0–674,75 42–674,75	$\begin{array}{c} 45,50-674,50\\ 0,50-674,50\\ 10,25-674,50\\ 204,50-674,50\\ 42,25-674,50\\ 43,25-674,50\\ 43,25-674,50\\ 44,50-674,50\\ 44,50-674,50\\ 45,50-674,50\\ 44,75-674,50\\ 45,25-674,50\\ 49,25-651,75\end{array}$	
31.12.1965	GGDN GR NEGR SP EL07 EL02 EL03 EL14 EL09 MRES EN10 EN04 CALI TEMN	650–1449,75 658–1449,75	674,50–1449,75 675,25–1449,75 665,25–1449,75 650,25–1449,75 651,50–1449,75 659,75–1449,75 658,25–1449,75 669,50–1449,75 660,25–1449,75 661,25–1449,75 661,25–1449,75	
27.02.1966	GGDN GR NEGR SP EL07 EL03 EL14 EL09 EN10 EN10 EN04 CALI EL02 MRES	1400–1699,75 1429–1695,75	1405,25-1695,75 1400,25-1694,25 1400,25-1699,75 1400,25-1694,25 1400,25-1692,50 1400,25-1692,75 1400,25-1692,75 1400,25-1692,75 1400,25-1692,75 1400,25-1692,75 1400,25-1692,75 1400,25-1692,75 1429,25-1695,50 1466,25-1693,75	
28.08.1966	EL26 EL07 EL02 EL03 EL14 EL09 MRES EN10 LL3 EN04 CALI GR NEGR TEMN	1664–2468,50 1600–2469,75	$\begin{array}{c} 1670,25-2467,75\\ 1670,25-2467,75\\ 1670,25-2467,75\\ 1670,25-2467,75\\ 1670,25-2468,50\\ 1670,25-2466,25\\ 1666,75-2268,75\\ 1670,25-2468,50\\ 1668,25-2468,50\\ 1668,25-2468,50\\ 1664,25-2465,75\\ 1664,25-2462,75\\ 1600,25-2469,25\\ 1600,25-2467,50\\ 1600,25-2466,75\\ \end{array}$	
30.09.1966	TEMU	50-2519,75	50,25-2519,75	
	CALI_C GR_C NEGR_C EL09_C EN10_C	0–2469,75	45,50–2463,00 0,50–2469,50 204,50–2467,50 43,00–2469,75 44,50–2466,50	

Opis mnemoników profilowań w otworze Jamno IG 2

Mnemonics of	description	in Jamno	IG 2	borehole
--------------	-------------	----------	------	----------

Rodzaj profilowań – mnemoniki międzynarodowe [mnemoniki polskie]	Jednostki	Rodzaj profilowań – opis
CALI [Pśr]	mm	profilowanie średnicy
EL07 – M0.5A0.1B	Ωm	profilowanie oporności, sonda gradientowa spągowa 0,275 m
EL02 - M0.5A0.1B	Ωm	profilowanie oporności, sonda gradientowa spągowa 0,55 m
EL03 - M1.0A0.1B	Ωm	profilowanie oporności, sonda gradientowa spągowa 1,05 m
EL09 - M2.5A0.25B	Ωm	profilowanie oporności, sonda gradientowa spągowa 2,626 m
EL14 - M4.0A0.5B	Ωm	profilowanie oporności, sonda gradientowa spągowa 4,25 m
EL26 - A8.0M1.0N	Ωm	profilowanie oporności, sonda gradientowa spągowa 8,5 m
EN04 - B0.1A1.0M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 1,0 m
EN10-B2.5A0,25M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 0,25
LL3	Ωm	profilowanie oporności, laterolog 3
GR [PG]	imp/min	profilowanie gamma
NEGR [PNG]	imp/min	profilowanie neutron-gamma
GGDN [PGGg]	imp/min	profilowanie gamma-gamma gęstościowe
SP [PS]	mV	profilowanie potencjałów polaryzacji naturalnej
TEMU [PTu]	°C	profilowanie temperatury w stanie ustalonym
TEMN [PTn]	°C	profilowanie temperatury w stanie nieustalonym
MRES	Ωm	profilowanie oporności płuczki

nej Koszalin–Chojnice. Dla rozwiązania tego problemu odwiercono trzy otwory Jamno IG 1, Jamno IG 2 i Jamno IG 3.

Głównym zadaniem było przebadanie osadów dolnego paleozoiku, w szczególności ordowiku i dewonu, pod względem występowania węglowodorów oraz wyznaczenie kartograficznego zasięgu utworów syluru przykrywających osady ropo- i gazonośne dolnego paleozoiku. Badania miały również wyjaśnić budowę geologiczną i tektonikę obszaru.

Poszczególne zadania postawione przed geofizyką otworową obejmowały:

 ustalenie litologii przewiercanych skał, określenie głębokości zalegania i miąższości warstw,

- określenie stratygrafii nawierconych utworów,

 – określenie parametrów geotermicznych – strumienia cieplnego i stopnia geotermicznego,

 wyznaczenie warstw wykazujących właściwości zbiornikowe,
 określenie zmienności głębokościowej parametrów fizycznych skał

- określenie stanu technicznego otworu.

Z powodu braku części danych przedstawione cele badawcze mogły być zrealizowane tylko częściowo. Przy braku pomiarów krzywizny otworu oraz stopnia zacementowania trudno jest wnioskować o stanie technicznym otworu wiertniczego. Autorki opracowania nie posiadały danych uzyskanych w wyniku badań laboratoryjnych rdzeni wiertniczych. W związku z tym przeprowadzona analiza profilowań geofizyki otworowej nie została uzupełniona o te wyniki.

Litostratygrafia

Stratygrafia otworu została ustalona na podstawie wykonanych w otworze pomiarów geofizycznych oraz danych dostarczonych przez zespół geologów. Figura 63 przedstawia uproszczony profil stratygraficzny w zestawieniu z ujednoliconymi profilowaniami naturalnej promieniotwórczości, profilowaniem neutronowym oraz profilowaniem średnicy.

Warunki geotermiczne w otworze

W otworze Jamno IG 2, w trakcie pomiaru wykonane zostały profilowania temperatury w tzw. nieustalonych warunkach termicznych (TEMN) dla dwóch odcinków pomiarowych. Po odwierceniu całego otworu wykonano również pomiar temperatury w stanie ustalonym (TEMU), który był podstawą do wyznaczenia gradientu i stopnia geotermicznego. Wyniki umieszczono w tabeli 36. Zmiany gradientu geotermicznego pokrywają się granicami stratygraficznymi. Średni gradient geotermiczny w całym profilu pomiarowym otworu wynosi 1,7 °C/100 m, natomiast średni stopień geotermiczny wynosi 59,4 m/°C. Figura 64 przedstawia zestawienie profilowań temperatury.

Fig. 63. Połączone i unormowane wartości profilowania naturalnego promieniowania gamma i profilowania neutronowego w otworze Jamno IG 2

Joined normalized GR and neutron logs in Jamno IG 2 borehole

Średni gradient

geotermiczny

[°C/100 m] 1,5

1.6

1.1

1,9

1,7

1,2

1,6

2,5

Fig. 64. Profilowania temperatury w otworze Jamno IG 2

Temperature logs in Jamno 2 borehole

INTERPRETACJA PROFILOWAŃ GEOFIZYKI WIERTNICZEJ

Profilowania geofizyki otworowej, połączone i unormowane w obrębie całego otworu, zilustrowano na figurach 63 i 65.

Średni stopień geotermiczny i średni gradient geotermiczny

dla wydzielonych przedziałów głębokościowych w otworze Jamno IG 2

Mean geothermal degree and mean geothermal gradient

in the selected depth sections in Jamno IG 2 borehole

Średni stopień

geotermiczny

 $[m/^{\circ}C]$

68,5

62.0

89,4

53,7

58,8

80,2

63,3

40,0

Interwał głębokościowy

[m]

50,26-116,00

116,00-261,00

261,00-759,00

759,00-1140,00

1140,00-1685,00

1685,00-1917,50

1917,50-2096,00

2096,00-2519,75

Profilowanie naturalnej promieniotwórczości: jako nie różnicujące poszczególnych emiterów naturalnej promieniotwórczości, służy głównie do identyfikacji litologicznej przewierconych utworów. Wysokie wskazania na krzywej profilowania gamma świadczą przede wszystkim o obecności utworów ilastych lub silnie zailonych (iłowce, mułowce, łupki ilaste). Ogólnie w piaskowcach, wapieniach i dolomitach obserwuje się niskie wartości na krzywej profilowania gamma, jednakże mogą one wzrastać przy zwiększaniu zailenia tych skał. Bardzo niskie wartości anomalii rejestruje się na krzywej promieniotwórczości naturalnej dla utworów chemicznych (gips, anhydryt, sole) z wyjątkiem soli potasowych i potasowo-magnezowych, gdzie obecność potasu wpływa na wzrost wskazań na krzywej profilowania gamma. Zastosowano również zestawienie krzywej gamma GR_C oraz odbicie "lustrzane" tej krzywej GR C- uzyskane poprzez wyskalowanie krzywej GR w przeciwnym kierunku (fig. 63). Dzięki temu dobrze widoczny jest udział składników piaskowcowego i ilastego wzdłuż profilu otworu. Istnieje również możliwość określenia, na podstawie kształtu separacji krzywych, środowiska tworzenia się osadów. W utworach iłowcowych, czy mułowcowych krzywe gamma przebiegają blisko siebie. W miarę spadku zailenia i wzrostu udziału składnika piaskowcowego, rośnie separacja krzywych. Podobną separację krzywych uzyskano dla profilowania neutronowego NPHI. Krzywa profilowania średnicy CALI wskazuje miejsca zmian średnicy otworu wynikające ze zmiany rozmiaru świdra użytego do wiercenia otworu, ponadto daje informację o zmienności litologicznej utworów. W panelu 4 figury 65 zestawiono dwie krzywe oporności EL09 i EN10 wykonane sondami odpowiednio gradientową o długości 2,625 m i potencjałową o długości 0,25 m. Należy zaznaczyć, że wybrana została skala logarytmiczna w przedziale wartości 0,1-100 Ωm. Różna długość sond daje zróżnicowanie w zasięgu radialnym profilowania. Separacja krzywych świadczy o obecności strefy filtracji.

Podsumowanie

Wykonane profilowania geofizyki otworowej stanowić mogą podstawę do dalszych prac interpretacyjnych. Informacja geologiczna może być wzbogacona przez opisy rdzeni wiertniczych i wyniki pomiarów laboratoryjnych.

Fig. 65. Zestawienie wybranych profilowań geofizyki otworowej w otworze Jamno IG 2

Presentation of selected well logs in Jamno IG 2 borehole

Kamila WAWRZYNIAK, Jadwiga JARZYNA

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ W OTWORZE JAMNO IG 3

DANE DOKUMENTACYJNE

Informacje ogólne

Wiercenie Jamno IG 3 wykonano w ramach prac badawczych drugiego etapu rozpoznania budowy geologicznej Niżu Polskiego na obszarze NW Polski. Lokalizację otworu ustalono na podstawie "Ramowego projektu robót geologicznych w rejonie Koszalin–Kołobrzeg" i zatwierdzono pod symbolem "Jamno IG 4". Dla zachowania kolejności numeracji wierceń zmieniono jego sygnaturę na Jamno IG 3.

Otwór odwiercono w miejscowości Chłopy, na wysokości 4 m n.p.m. Wiercenia rozpoczęto 15.03.1965 r., a zakończono 22.11.1965 r. Końcowa głębokość otworu wynosi 2200 m, profilowania geofizyczne wykonano do głębokości 2197 m.

Pomiary geofizyczne wykonano w ośmiu odcinkach, w okresie między 26 marca 1965 r. a 30 stycznia 1966 r. Zleceniodawcą badań był Instytut Geologiczny w Warszawie, Zakład Geologii Niżu, a wykonawcą Przedsiębiorstwo Geologiczne w Warszawie. Dane techniczne otworu dotyczące średnicy nominalnej i stanu zarurowania otworu zawarto w tabelach 37 i 38. W otworze Jamno IG 3 zostały pobrane rdzenie. Do głębokości około 1600 m, na której spodziewano się nawiercenia cechsztynu, zaplanowano rdzeniowanie otworu 20%, poniżej, aż do spodu otworu, miało wynieść 100%. W rzeczywistości rdzeniowanie do głębokości 1600 m wyniosło 23%, od 1600 do końca otworu – 84%. Rdzeniowanie całości wyniosło średnio 40,1%. Rzeczywisty zakres rdzeniowania poszczególnych formacji przedstawiono w tabeli 39.

Cel badań geofizycznych

Celem wiercenia, podobnie jak dwóch pozostałych otworów Jamna IG 1 i IG 2, było wyjaśnienie zagadnień związanych z istnieniem regionalnej strefy dyslokacyjnej Mielno–Koszalin. Bezpośrednim celem wiercenia było rozpoznanie podłoża cechsztynu, rozwoju facjalnego tej formacji oraz określenie strefy i rozmiarów wyklinowywania się ogniw mezozoiku w obszarze położonym w centrum tej strefy dyslokacyjnej.

Tabela 37 Wartości średnicy nominalnej w otworze Jamno IG 3

Bit size values of Jamno IG 3 borehole

Średnica nominalna [mm]	Interwał wg pomiarów geofizycznych [m]
308	0-1085
216	1085–2200

Tabela 38

Schemat zarurowania otworu Jamno IG 3

Scheme of casing of Jamno IG 3 borehole

Średnica rur [cale]	Głębokość zarurowania wg miary wiertniczej [m]	Uwagi
18 5/8"	0,0–46,7	cement do wierzchu
13 3/8"	0,0–224,5	cement do wierzchu
9 5/8"	0,0–1091,0	cement do wierzchu
6 5/8"	888,0–2103,4	

Rdzeniowanie w otworze Jamno IG 3

Coring at Jamno IG 3 borehole

Interwał głębokościowy [m]	Jednostki stratygraficzne	Uzysk rdzenia [%]
0,0–61,0	czwartorzęd lub neogen	0,0
61,0–220,0	jura górna	8,1
220,0-531,5	jura środkowa	24,0
531,5-1045,0	jura dolna	25,0
1045,0–1557,0	trias górny, środkowy i wyż- sza część triasu dolnego	22,0
1557,0–2059,1	niższa część triasu dolnego, cechsztynu i najwyższa część dewonu	100,0
2059,1-2200,0	dewon	37,0
0,0–2200,0	rdzeniowanie całości	40,1

Projektowana głębokość otworu wynosiła 2000 m. Ponieważ otwór do planowanej głębokości nie spełnił swojego geologicznego zadania, tj. przewiercenia utworów cechsztynu, otwór pogłębiono do 2200 m.

Zakres wykonanych badań

Pomiary geofizyczne wykonane w otworze Jamno IG 3 obejmowały profilowania:

 – oporności sondami gradientowymi (EL01, EL02, EL03, E03L, EL09, EL14, EL26),

- oporności sondami potencjałowymi (EN02, EN04, EN10, EN20),

- oporności laterologiem (LL3).

- polaryzacji naturalnej (PS),
- gamma (PG),
- oporności płuczki (MRES),
- średnicy (PŚr),
- krzywizny otworu (PK),
- termiczne termometrem ETMI (CBT, TEMP),
- gamma-gamma (PGG),
- neutron-gamma (PNG),
 Część pomiarów została scyfrowana. Obecnie są dostępne

w plikach o formacie LAS (ang. *Log ASCII Standard*) profilowania wykonane w dniach: 26.03.1965 r., 19.05.1965 r., 11–15.06.1965 r., 8–11.07.1965 r. i 15–17.11.1965 r. Pomiary z dn. 23–29.11.1965 r., 15, 16.11.1965 r. i 30.01.1966 r. oraz profilowania krzywizny nie są dostępne w postaci cyfrowej.

Fig. 66. Schematyczne zestawienie typów profilowań geofizyki wiertniczej wykonanych w otworze Jamno IG 3 Schematic depth presentation of well logging in Jamno IG 3 borehole

Schematyczne zestawienie typów pomiarów geofizycznych wykonanych w otworze Jamno IG 3

		[1				
Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębokościowy [m]	Rzeczywisty interwał głębokościowy profilowań [m]	Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębokościowy [m]	Rzeczywisty interwał głębokościowy profilowań [m]
26.03.1965	PG EN10 EN20 EL02 EL03 EL09 EL14 PS MRES Pśr PK	22–196 46–196 60–200	22,50–196,50 45,25–194,50 45,25–194,50 45,25–194,50 45,25–193,75 45,25–193,75 49,25–194,25 46,25–191,75 45,25–194,50 43,25–195,75 brak informacji	15–17.09.1965	PG EN04 EN10 EL01 EL02 EL03 EL03 EL09 EL14 EL26 MRES D'	1090–1882,5 1620–1881	$1090,25-1852,50\\1620,25-1876,75\\1620,25-1831,25\\1620,25-1879,75\\1620,25-1879,75\\1620,25-1879,75\\1620,25-1828,75\\1620,50-1830,50\\1620,25-1829,75\\1620,25-1829,75\\1620,25-1828$
19.05.1065	CBT1 CBT2	20–1000	20,25–199,75 199,50–999,75		PSr PK PS	1625–1881 1625–1875 brak informacij	brak informacji 1620 25–1870 50
11–15.06.1965	TEMP PG PK Pśr EN10 EL01 EL02 EL03 E03L EL09 EL14 EL 26	62,5–1084,5 196–1090 225,5–1085 225,5–1086 222,5–1090,5	62,50–1082,50 195,50–1086,75 brak informacji 212,75–1083,50 220,25–1089,75 220,25–1089,75 220,25–1089,75 220,25–1089,75 224,25–1089,75 220,25–1089,75 220,25–1089,75 220,25–1089,75	23–29.11.1965	PNG PGG Pśr Laterolog PG PO MRES Profil. termiczne PK	90–2197 1091–2049 1091–2197 1852,5–2197 1881–2197 1900–2195	brak informacji brak informacji brak informacji brak informacji brak informacji brak informacji brak informacji brak informacji brak informacji
8-11.07.1965	MRES EN02	222,5–1093 1095–1625	219,50–1089,75 1088.25–1624.75	30.01.1966	PGG Profil. termiczne	85–2050 40–1935	brak informacji
	EN04 EN10 EL02	-070 1020	1085,25-1624,75 1085,25-1624,75 1085,25-1624,75 1090,25-1624,75				
	EL03 EL09 EL14 EL26 PS		1090,75–1624,75 1090,50–1624,75 1085,25–1624,75 1087,25–1624,75 1087,25–1624,75		Pśr_C PG_C PNG_C EL 09_C		37,00–2198,75 22,25–2198,50 89,25–2197,75 45,25–2197,00
	Pśr PK	1095–1627 1100–1620	1085,25–1624,75 brak informacji		EN10_C	-	45,25–2197,00

Schematic depth presentation of logs performed in Jamno IG 3 borehole

Zasięg głębokościowy profilowań wykonanych w otworze otworze Jamno IG 3 przedstawiono schematycznie na figurze 66. Dodatkowo, profilowania: średnicy, gamma, neutron--gamma, oporności wykonane sondą gradientową EL09 i potencjałową EN10, zostały połączone w krzywe kompozytowe obejmujące cały otwór. Kompozytowe profilowanie gamma zostało przeliczone na jednostki API (fig. 67). Profilowanie neutron-gamma podano w niestandardowych jednostkach (wartości profilowania PNG zawierają się między 0–750). Szczegółowy wykaz badań, sporządzony w oparciu o dostępna dokumentację techniczną otworu oraz pliki LAS, przedstawiono w tabeli 40. W tabeli 41 objaśniono stosowane mnemoniki oraz jednostki w jakich zostały wykonane profilowania.

Opróbowanie otworu wykonano między 6 lutego a 2 kwietnia 1966 r. Opróbowane horyzonty przedstawiono w tabeli 42. Wykonano siedem analiz wody z wyszczególnionych horyzontów oraz cztery analizy gazu.

W otworze Jamno IG 3 nie dysponowano wynikami żadnej interpretacji, a wykonywanie interpretacji dla niniejszego opracowania uznano za niepotrzebne.

Gamma Ray and Neutron logs in Jamno IG 3 borehole

Opis mnemoników profilowań w otworze Jamno IG 3

Mnemonics description in Jamno IG 3 borehole

Rodzaj profilowań – mnemoniki międzynarodowe [mnemoniki polskie]	Jednostki	Rodzaj profilowań – opis
GR [PG]	imp/min	profilowanie gamma
NEGR [PNG]	imp/min	profilowanie neutron-gamma
SP [PS]	mV	profilowanie potencjałów polaryzacji naturalnej
CALI [Pśr]	mm	profilowanie średnicy otworu
EN02 - N0.25A0,05B	Ω m	profilowanie oporności, sonda potencjałowa spągowa 0,25 m
EN04 - B0.1A1.0M	Ωm	profilowanie oporności, sonda potencjałowa stropowa 1 m
EN10 – N2.5M0.25A, B2.5A0.25M	Ω m	profilowanie oporności, sonda potencjałowa stropowa 0,25 m
EN20 - N4.0M0.5A	Ωm	profilowanie oporności, sonda potencjałowa stropowa 0,5 m
EL01 – A0.25M0.05N, M0.25A0.05B	Ω m	profilowanie oporności, sonda gradientowa spągowa 0,275 m
EL02 – A0.5M0.1N, M0.5A0.1B	Ω m	profilowanie oporności, sonda gradientowa spągowa 0,55 m
EL03 – A1.0M0.1N, M1.0A0.1B	Ω m	profilowanie oporności, sonda gradientowa spągowa 1,05 m
E03L - N0.1M1.0A	Ωm	profilowanie oporności, sonda gradientowa stropowa 1,05 m
EL09 – A2.5M0.25N, M2.5A0.25B	Ω m	profilowanie oporności, sonda gradientowa spagowa 2,625 m
EL14 – A4.0M0.5N, M4.0A0.5B	Ωm	profilowanie oporności, sonda gradientowa spagowa 4,25 m
EL26 – A8.0M0.5N, M8.0A0.5B	Ωm	profilowanie oporności, sonda gradientowa spągowa 8,5 m
CBT	Ω m	profilowanie temperatury (termiczne)
MRES	Ω m	profilowanie oporności płuczki
TEMP	°C	profilowanie temperatury (termiczne)
Pśr_C	mm	profilowanie kompozytowe (połączone) średnicy
PG_C	API?	profilowanie kompozytowe gamma
PNG_C	?	profilowanie kompozytowe neutron-gamma
EL09_C	Ωm	profilowanie kompozytowe oporności, sonda gradientowa spagowa 2,625 m
EN10_C	Ω m	profilowanie kompozytowe oporności, sonda potencjałowa stropowa 0,25 m

Tabela 42

Horyzonty opróbowane w otworze Jamno IG 3

Horizons tested at Jamno IG 3 borehole

Interwał głębokościowy [m]	Stratygrafia	
2200,0–2103,4	dewon	
2000,0–1990,0	pogranicze dewonu i cechsztynu	
1980,0–1970,0		
1853,0–1837,0	cechsztyn	
1818,0–1801,0	cechsztyn	
1300,0-1270,0	trias – pstry piaskowiec	
1190,0–1160,0	trias – wapień muszlowy	
895,0-875,0	jura dolna	