WYNIKI BADAŃ GEOFIZYCZNYCH

Jan SZEWCZYK

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

ZAKRES WYKONANYCH BADAŃ

Badania geofizyki wiertniczej wykonane zostały w pięciu odcinkach badań strefowych, w okresie od 24 listopada 1972 do stycznia 1974, do końcowej głębokości wynoszącej 5115 m, standardowymi aparaturami analogowymi produkcji radzieckiej. Wykonawcą było Przedsiębiorstwo Badań Geofizycznych z bazy w Poznaniu. Zakres badań geofizycznych, jak i ich jakość odpowiadała uwarunkowaniom metodyczno-technicznym istniejącym w okresie czasu, w którym odwiercony był otwór Słupsk IG 1.

Zakres badań geofizycznych (tabela 15) pozwalał na zrealizowanie podstawowych celów badawczych związanych z ogólnym rozpoznaniem profilu wiercenia, w bardzo natomiast ograniczonym zakresie możliwe było wypełnienie zadań związanych z ilościowym rozpoznaniem cech petrofizycznych utworów występujących w profilu.

W całym profilu wykonane zostały standardowe pomiary naturalnego promieniowania gamma (PG), profilowania tzw. porowatości neutronowej (PNG), klasyczne gradientowe profilowania oporności oraz pomiary stanu technicznego otworu, tj. profilowanie średnicy otworu, a także jego krzywizny (PK). W odniesieniu do pomiarów radiometrycznych, każdorazowo przy badaniach w poszczególnych odcinkach badań strefowych, w ich dolnej strefie, wykonywane były pomiary kontrolne dla odcinka o długości około 50 metrów. W dolnej części otworu obejmującej utwory kambru przeprowadzono ponadto sondowania oporności (SO), a także pomiary oporności polem sterowanym (POst + mPOst). Profilowanie akustyczne sondą dwuodbiornikową wykonane zostało dla odcinka 650–2100 m. Wszystkie pomiary rejestrowane były analogowo w standardowej skali głębokościowej 1:500.

Po zakończeniu wiercenia wykonano pomiary termiczne w ustalonych warunkach termicznych, przy czasie stabilizacji otworu wynoszącym 15 dni. Każdorazowo w przypadku badań strefowych przeprowadzano pomiary temperatury maksymalnej, rejestrowanej w danym odcinku pomiarowym (temperatury dna otworu). Wyniki tych badań przedstawiono na figurze 38.

Dla uzyskania ujednoliconej głębokościowo informacji, a także śledzenia zmienności czasowej wybranych parametrów fizycznych w całym, odsłoniętym pod rurami okładzinowymi, profilu, wykonywane były profilowania wybranymi metodami badawczymi (najczęściej były to pomiary POg, PS oraz Pśr). Pomiary w poszczególnych odcinkach nie były wzajemnie normowane głębokościowo (!).

Tabela 15

Wykaz typów pomiarów geofizycznych wykonanych w otworze Słupsk IG 1

Types of the geophysical measurements from Słupsk IG 1 borehole

Rodzaj badań (typ sondy)	Interwał głębokościowy [m]	Data wykonania badania		
PO (M2.5A0.24B; B2.5A0, 25M)	102,5–645,0	24.11.1972		
PS, Pśr	102,5-645,0	25.11.1972		
PG, PNG, PK	0,0–645,0			
РА	65,0–650,0			
PO (M2.5A0.24B; B2.5A0, 25M) PS, Pśr	650,0-2100,0 650,0-2100,0 650,0-2100,0 650,0-1220,0 (10,0,2100,0	4.12.1973		
PG, PNG, PK	610,0-2100,0	8.02.1973		
mPOst				
PA				
PO (M2.5A0.24B; B2.5A0, 25M) PS, Pśr, PK PG, PNG, PK PA (cementomierz)	2100,0-3230,0 2100,0-3230,0 2050,0-3230,0 300,0-2100,0	2, 3.04.1073		
PO (M2.5A0.24B; B2.5A0, 25M) PS, Pśr PG, PNG, PK	2100,0-4606,0	25, 26.07.1973		
SO PS, Pśr, PG, PNG PK, Post	4570,0–5115,0	31.01.1974		
PT (po 15 dniach stabilizacji)	0,0–5115,0	10.01.1974		

W górnej części profilu (<1100 m) wyraźne zaburzenie równowagi termicznej

Results of measurements observed temperature (T), battom hole temperature (T_{max}) and calculated paleotemperature (T_s)

Clear a temperature disturbance in upon part (<1100 m) of profile

Pomiary radiometryczne wykonywane były sondami niestandaryzowanymi i niekalibrowanymi, a wyniki rejestracji zapisywane w nieporównywalnych jednostkach względnych (impulsach na minutę). Wyniki pomiarów, szczególnie przy większych głębokościach oraz temperaturach, mogą być obarczone istotnymi błędami, związanymi z niestabilną pracą przyrządów pomiarowych, niemożliwymi na ogół do jednoznacznego stwierdzenia oraz wyeliminowania. Wyniki źródłowych danych pomiarowych zarejestrowane w formie analogowej zostały zdigitalizowane ze stałym krokiem interpolacji równym 25 cm oraz unormowane w zakresie przewidzianym programem prac związanych z wprowadzeniem omawianych danych do Centralnej Bazy Danych Geologicznych (CBDG). W ramach prac interpretacyjnych, związanych z wprowadzaniem danych geofizycznych do CBDG, pomiary radiometryczne, tj. profilowanie naturalnego promieniowania gamma (PG) oraz profilowania neutronowe (PNG lub PNN), zostały unormowane oraz połączone w obrębie profilu całego otworu.

Na figurze 39 przedstawiono m.in. wynik unormowanych i połączonych wartości naturalnego promieniowania gamma, a także profilowania średnicy otworu ze wskazaniem głębokości połączenia poszczególnych odcinków badań. Zastosowana metodyka normowania opisana była w 2000 r. przez Szewczyka. W wyniku tych prac utworzone zostały, zarówno w odniesieniu do wyników badań odcinkowych, jak i do danych połączonych i unormowanych, zbiory danych geofizycznych w formacie LAS (Log ASCII Standard). Dane te posiadają w CBDG numer katalogowy 29075.

CELE BADAŃ GEOFIZYKI WIERNICZEJ

Podstawowymi problemami do rozwiązania w badanym otworze były:

- określenie w połączeniu z danymi wiertniczymi (rdzeniami oraz próbami okruchowymi) litologii skał występujących w profilu,
- obliczenie (ustalenie) zmienności głębokościowej parametrów fizycznych skał niezbędnych dla wydzieleń skał wykazujących własności zbiornikowe,
- wydzielenie warstw przepuszczalnych wraz ze wskazaniem warstw kluczowych dla ustalenia możliwości występowania bituminów,
- określenie parametrów geotermicznych, w tym zmienności temperatur górotworu oraz wartości strumienia cieplnego,
- ustalenie modeli zmienności głębokościowej parametrów fizycznych wykorzystywanych w analizach wyników powierzchniowych geofizycznych metod badawczych (głównie grawimetrii oraz sejsmiki),
- określenie stanu technicznego otworu w zakresie niezbędnym dla właściwej jego realizacji, jak warunków i możliwości wykonywania badań hydrogeologicznych zarówno w trakcie prowadzenia wiercenia (badania próbnikami złoża), jak i po jego zakończeniu (badania przez perforacje rur okładzinowych).

W trakcie badań geofizycznych wykonywane były wstępne interpretacje danych geofizycznych, których podstawowym celem było dokonanie wyboru odcinków profilu pod kątem możliwości występowania w ich obrębie warstw zbiornikowych mogących zawierać bituminy. Podsumowanie wyników tych interpretacji omówione zostało w dokumentacjach wyników badań odcinkowych oraz podsumowane w dokumentacji końcowej otworu Słupsk IG 1 opracowanej przez wykonawców badań geofizycznych (Rogala, 1974).

WYNIKI BADAŃ

Wyniki laboratoryjnych badań parametrów petrofizycznych

Ważnym źródłem informacji na temat parametrów petrofizycznych skał występujących w profilu były wyniki laboratoryjnych badań rdzeni (tab. 14). Ze względu na ograniczony zakres rdzeniowania wyniki badań mają charakter informacji wskaźnikowej. Dane te służyły m.in. jako parametry kalibracyjne w odniesieniu do pomiarów geofizycznych. Brak kalibracji tych profilowań wpłynął na konieczność wykonania jej *post factum*, na podstawie wyników danych laboratoryjnych.

[m] C

Fig. 39. Unormowane wartości profilowania naturalnego gamma

Schematic depth presentation of types well jogging methods performerd

Metodyka realizacji procedur kalibracyjnych opisana została we wcześniejszym opracowaniu Szewczyka (1998).

Prace laboratoryjne nad parametrami petrofizycznymi próbek pobranych z rdzeni wiertniczych obejmowały badania:

- gęstości objętościowej,

porowatości całkowitej (tylko w odniesieniu do utworów kambru),

- porowatości efektywnej,

przepuszczalności w kierunku poziomym oraz pionowym,

 – zawartości kalcytu oraz dolomitu (badania zarówno na próbach rdzeni wiertniczych, jak i na próbach okruchowych).

Ponadto, już po zakończeniu realizacji otworu wiertniczego, wykonane zostały badania przewodności cieplnej 24 próbek.

Wyniki wymienionych badań parametrów petrofizycznych wykorzystane zostały zarówno w trakcie interpretacji profilu litologicznego, jak i kalibracji danych geofizycznych (głównie radiometrycznych). Otwór wiertniczy Słupsk IG 1 jest jednym z najpełniej zbadanych pod względem parametrów petrofizycznych otworów wiertniczych w tej części obniżenia bałtyckiego i z tego względu może być traktowany, jako kalibracyjny otwór reperowy dla innych wykonanych na tym obszarze otworów wiertniczych, tak w zakresie modelowań wyników powierzchniowych metod geofizycznych, jak i analiz geologicznych.

Na figurze 40 przedstawione zostało zestawienie, obliczonych na podstawie interpretacji danych geofizycznych, wartości gęstości objętościowej dla całego badanego profilu. Ogółem badania te objęły (tab. 14) łącznie do 537 próbek, z których dla 174 próbek wykonane zostały badania gęstości objętościowej oraz porowatości efektywnej. Zdecydowanie największa zmienność zarówno gęstości objętościowej, jak i porowatości efektywnej obserwowana jest do głębokości około 1100 metrów, tj. w obrębie utworów mezozoicznych. Najbardziej stabilne pod względem zmienności parametrów petrofizycznych są, ze względu na jednorodność litologiczną, utwory syluru.

Wyniki interpretacji danych geofizycznych

Wyniki badań geofizycznych wykorzystane były w trakcie ustalania profilu litologicznego-stratygraficznego, a także przy wyborze odcinków (interwałów głębokościowych) dla wykonania badań hydrogeologicznych.

Prezentowane wyniki prac interpretacyjnych wykonano przy zastosowaniu programów interpretacyjnych systemu GEOFLOG. Prace te poprzedzone były, jak wcześniej wspomniano, zdigitalizowaniem danych źródłowych oraz unormowaniem profilowań radiometrycznych, a także ich kalibracją.

Wykonane, w ramach badań prowadzonych w Państwowym Instytucie Geologicznym, prace interpretacyjne objęły:

Depth diagram of results of petrophysical parameters effective porosity, bulk density, calcium content

- opracowanie cyfrowej wersji profilu wiertniczego (LITO),
- opracowanie warstwowego profilu geofizycznego (GEO),
- określenie wielkości przesunięć głębokościowych między głębokościami określanymi na podstawie długości przewodu wiertniczego a głębokościami na podstawie pomiarów geofizycznych,
- kalibrację profilowań radiometrycznych na podstawie danych petrofizycznych,
- obliczenie porowatości całkowitej, gęstości objętościowej oraz prędkości fal akustycznych,
- obliczenie przewodności cieplnej skał wraz z określeniem wielkości strumienia cieplnego.

Na figurze 41 przedstawione zostały w formie syntetycznej podstawowe wyniki interpretacji profilu litologicznego oraz podstawowych parametrów petrofizycznych. Wiertniczy profil litologiczny (LITO) zawiera opisy rdzeni wiertniczych oraz prób okruchowych w formie umożliwiającej jego numeryczne przetwarzanie i stosowanie w procedurach interpretacyjnych systemu GEOFLOG. Zasady stosowanego w tym celu numerycznego opisu litologii prezentuje praca Gientki i Szewczyka (1996). Geofizyczny profil litologiczny (GEO) zawiera informacje dotyczące litologii, stanowiące uogólnienie na cały badany profil danych z rdzeni (w mniejszym stopniu prób okruchowych) za pośrednictwem danych geofizycznych. W procesie interpretacji uwzględniane są zarówno wzajemne przesunięcia głębokościowe obu typów informacji, jak i niepełny uzysk rdzenia. W interpretacjach danych rdzeniowych, w przypadku niepełnego uzysku rdzenia przyjęto zasadę dowiązywania głębokościowego do stropu odcinka rdzeniowanego.

Na figurze przedstawione zostały w formie profilowej wyniki obliczeń porowatości całkowitej, gęstości objętościowej w stanie powietrzno-suchym. Wyniki interpretacji każdorazowo porównywano z wynikami badań parametrów fizycznych uzyskanymi na podstawie badań laboratoryjnych. Zastosowana metodyka prac interpretacyjnych była opisana we wcześniejszym opracowaniu Szewczyka (1998).

Warunki geotermiczne

W otworze Słupsk wykonane zostały, jak już wcześniej wspomniano, pomiary termiczne w tzw. ustalonych warunkach termicznych, a także pomiary temperatury maksymalnej dla odcinków badań strefowych. Wyniki tych badań przedstawiono na figurze 38. W górnej części profilu obserwowany jest bardzo wyraźny efekt niepełnej stabilizacji termicznej otworu, związanej prawdopodobnie z obecnością mezozoicznych poziomów wodonośnych, w obrębie których nastąpiła silna infil-

Fig. 41. Głębokościowe zestawienie wyników obliczonych porowatości całkowitej oraz gęstości objętościowej

Krzyżyki i kółka – wyniki badań laboratoryjnych analogicznych parametrów petrofizycznych

Results of calculation of total porosity and bulk density

Crosses and circles - results of calculated parameters with cores laboratory petrophysical data

VOL – geofizyczny objętościowy profil litologiczny VOL – geophysical volumetric lithological profile tracja filtratu płuczki wiertniczej o temperaturze wyższej od temperatury niezaburzonej. Przyjęty czas stabilizacji termicznej wynoszący 15 dni okazał się niewystarczający dla uzyskania stabilizacji warunków termicznych. W wyniku interpretacji danych geofizycznych uzyskano ponadto ciągły profil przewodności cieplnej dla całego otworu wiertniczego, opracowany na podstawie zaproponowanej niedawno metodyki jego obliczeń (Szewczyk, 2001). Wykonane zostały również w odniesieniu do 24 próbek laboratoryjne badania przewodności cieplnej. Na figurze 42 przedstawiono zestawienie tego parametru dla obydwu typów danych. Wykorzystując skalkulowane powyższym sposobem wartości przewodności cieplnej, obliczono syntetyczne profilowanie temperatury (T_s) oraz wartość strumienia cieplnego. Geofizyczna metoda określania tego parametru opisana została w pracy Szewczyka (2001). Obliczona powyższym sposobem wartość gęstości wgłębnego strumienia cieplnego wynosi 78,6 mW/m². Jest to wartość wyższa od wartości strumienia obliczonych dla obszarów sasiednich, dla których wartości strumienia sięgają 55–65 mW/m². Dalsze badania wartości strumienia cieplnego w innych otworach wiertniczych z tego obszaru (łącznie z Bałtykiem) powinny określić dokładniej charakter oraz zasięg wyłaniającej się strefy anomalnej.

Fig. 42. Zmienność głębokościowa przewodności cieplnej

Szare skupienia – dane geofizyczne, czarne trójkąty – badania laboratoryjne

Depth chaning of the thermal conductivity

 $Grey\ concentration-geophysical\ data,\ black\ triangles-laboratory\ calculation$

Warstwy wodonośne, mineralizacja wód podziemnych

Jednym z ważnych celów badawczych wykonanego otworu wiertniczego było wydzielenie warstw wodonośnych, ze szczególnym uwzględnieniem warstw mogącymi być potencjalnymi nośnikami bituminów w formie ciekłej bądź gazowej. Na figurze 43 przedstawiony został profil z wydzielonymi warstwami (poziomami wodonośnymi), z obliczoną na podstawie danych geofizycznych średnią porowatością efektywną, a także określoną przybliżoną wartością mineralizacji ogólnej wód podziemnych w nich występujących. Warstwy o takim charakterze występują praktycznie wyłącznie w obrębie utworów mezozoicznych oraz w utworach kambru dolnego.

Po zakończeniu wiercenia na podstawie analiz profilu litologicznego, danych geofizycznych oraz petrofizycznych wydzielone zostały trzy poziomy zbiornikowe, w odniesieniu do których wykonane zostały opróbowania hydrogeologiczne. Wyniki tych badań omówione zostały w innej części niniejszej pracy. W przypadku dwóch pierwszych mezozoicznych poziomów wodonośnych uzyskano znaczące wielkości przypływów wód, najgłębszy kambryjski poziom zbiornikowy okazał się praktycznie nieprzepuszczalnym. Wyniki te generalnie potwierdzają własności zbiornikowe wynikające z interpretacji danych geofizycznych, jak również ocen parametrów petrofizycznych na podstawie badań laboratoryjnych. W strefie do głębokości około 300 metrów występują wody o niskiej mineralizacji mogące być potencjalnymi poziomami użytkowymi wód słodkich, poniżej tej głębokości zaznacza się stopniowy wzrost mineralizacji. Na figurze 44 przedstawiona zostały wartości mineralizacji wód uzyskane na podstawie omawianych badań, na tle zmienności głębokościowej obserwowanej dla całego Niżu Polskiego (patrz Szewczyk i in, 2007). Mineralizacje stwierdzone w otworze Słupsk IG 1 wykazują wartości wyższe od przeciętnych, co może świadczyć o istnieniu descenzji wód w tym obszarze.

Warunki techniczne występujące w otworze

Jednym z celów pomiarów geofizycznych było określenie stanu technicznego otworu, w tym możliwości prowadzenia obserwacji hydrogeologicznych, a także jakości zacementowania rur okładzinowych, decydującego o możliwości kontaktów hydraulicznych wód podziemnych z różnych poziomów wodonośnych.

Pomiar krzywizny otworu wykazał, że sumaryczne odchylenie dna otworu od pionu wyniosło około 166 metrów w azymucie 72 stopnie. W poszczególnych interwałach głębokościowych odchylenie osi otworu od pionu wykazywało zmienny zarówno kąt odchylenia, jak i azymut odchylenia (Rogala, 1974). Na podstawie pomiaru stopnia (jakości) zacementowania, wykonanego dla odcinka 300–2100 m, wynika, że rury okładzinowe wykazują słaby stopień wiązania cementu z górotworem, co może być powodem występowania łączności hydraulicznej szczególnie mezozoicznych poziomów wodonośnych.

Fig. 43. Warstwy wodonośne w profilu otworu Słupsk IG 1

Podano średnie wartości porowatości efektywnej tych warstw

Aquifers in Słupsk IG 1 borehole

Average effective porosity of aquifer is given

PODSUMOWANIE WYNIKÓW BADAŃ

Wykonane badania z zakresu geofizyki wiertniczej umożliwiły rozpoznanie zarówno profilu litologicznego, jak i podstawowych cech petrofizycznych utworów w profilu otworu Słupsk IG 1, w tym ich przewodności cieplnej. Dane te stanowić mogą podstawę dla prowadzenia dalszych prac modelowych związanych z interpretacją wyników powierzchniowych metod geofizycznych. W wyniku wykonanych prac interpretacyjnych w obrębie utworów mezozoicznych wydzielono szereg warstw wodonośnych wypełnionych wodami zmineralizowanymi, które stanowić mogą potencjalne źródło energii geotermalnej. Wykonane prace interpretacyjne wykazały równocześnie brak w otworze Słupsk IG 1 warstw zbiornikowych wykazujących nasycenie bituminami.

Fig. 44. Mineralizacja wód z poziomów wodonośnych otworu Słupsk IG 1 (trójkąty) na tle mineralizacji wód podziemnych obszaru Niżu Polskiego

Mineralization of some aquifers tested in Słupsk IG 1 borehole show also all tests hydrogeological data for whole Polish Lowlands

Lidia DZIEWIŃSKA, Waldemar JÓŹWIAK

PROFILOWANIE PRĘDKOŚCI ŚREDNICH I PIONOWE PROFILOWANIE SEJSMICZNE

W otworze Słupsk IG 1 profilowanie prędkości średnich i pionowe profilowanie sejsmiczne wykonało Przedsiębiorstwo Geofizyki Górnictwa Naftowego – Toruń w lutym 1974 roku.

Pomiarami zostały objęte odcinki do 4545 m, przy głębokości końcowej otworu 5120 m. Pomiar wykonano z dwóch pól strzałowych. Kontrolę kształtu impulsu, głębokości strzelania i momentu wybuchu zapewniały geofony korekcyjne, jeden położony przy PS, a drugi przy głębokim otworze. Ładunek dynamitu wynosił 0,250 do 0,500 kg. Pomiar wykonano aparaturą POISK SK, pięciopunktową sondą na kablu KORDG. Krok pomiaru wynosił 15 m. Zapis pierwszych wstąpień prowadzono na papierze światłoczułym. Rejestrację PPS prowadzono na taśmie magnetycznej z równoczesnym zapisem kontrolnym na papierze światłoczułym.

Parametry punktów strzałowych odpowiednio wynosiły:

PS 1d = 300 m $A = 330^{\circ}$ N = 0,0hpo = 12,0PS 2d = 1000 m $A = 190^{\circ}$ N = -2,0hpo = 10,0

 $d-{\rm odległość punktu strzałowego /wzbudzania/ od głębokiego otworu$

A – azymut mierzony w punkcie głębokiego otworu w kierunku punktu strzałowego /wzbudzania/

N-wysokość względna punktu strzałowego w stosunku do otworu wiertniczego

hpo – średnia głębokość wzbudzania [m].

Do obliczenia krzywej prędkości średnich przyjęto, jako poziom odniesienia, poziom pomiaru, czyli 30 m n.p.m. przy wysokości otworu wynoszącej 42 m.

Głębokość zredukowaną do poziomu odniesienia została obliczona ze wzoru:

$$hr = h - hpo \pm N \pm \Delta h$$

hr – głębokość zredukowana punktu pomiarowego [m] h – głębokość zanurzenia geofonu głębinowego

 Δh – różnica głębokości między *hpo* i poziomem odniesienia Czas obserwowany na sejsmogramach przeliczono na czas poprawiony zgodnie ze wzorem:

 $tp = tobs - \Delta th$

tp – *czas poprawiony*

tobs - czas obserwowany

 Δ *th* – poprawka wynikająca z głębokości strzelania, poziomu odniesienia, miąższości strefy małych prędkości, prędkości w tej strefie i prędkości pod nią

Dla obliczenia poprawki Δ th, pomiędzy średnią głębokością wzbudzania a poziomem odniesienia, przyjęto prędkość 1780 m/s.

Wyniki uzyskane z PS 2 pominięto w obliczeniach z uwagi na dużą odległość od otworu wiertniczego. Ma to negatywny wpływ na ostateczny rezultat pomiaru, gdyż nie daje możliwości analizy wpływu anizotropii ośrodka na rozkład prędkości średnich.

Czas zredukowany liczono na podstawie wzoru:

$$tr = \frac{hr}{\sqrt{hr^2 + d^2}} \times tp$$

Czas zredukowany został obliczony przy założeniu jednorodności ośrodka od punktu wybuchu do głębokości zanurzenia geofonu. Pozwoliło to na dokonanie redukcji czasu do pionu.

Wartości *hr* i *tr* posłużyły do obliczenia prędkości średnich /*V*śr/ zgodnie ze wzorem:

Wszystkie wartości hr, tr, Vśr, zestawiono w tabeli 16.

$$V \text{sr} = \frac{hr}{tr}$$

Obliczenia wykonano przy pomocy odpowiedniego programu komputerowego. Uzyskane wyniki stanowiły podstawę do konstrukcji krzywych prędkości średnich (fig. 45 A) i hodografu pionowego (fig. 45 B). Hodograf pionowy obliczono

Fig. 45. Wykres prędkości średnich (A) i hodograf pionowy (B)

tr-czas zredukowany, $V \pm r-$ prędkość średnia, h-głębokość; poz. odniesienia 30 m n.p.m.

Average seismic velocity (A) and travel-time curve (B)

tr – average reduced time, $V {\rm \acute{s}r}$ – average velocity, h – depth; reference level 30 m a.s.l.

Tabela 16

Zestawienie wartości h, tr, Vśr

H, tr and Vsr values

h [m]	<i>tr</i> [s]	Vśr [m/s]	h [m]	tr [s]	Vśr [m/s]	h [m]	tr [s]	Vśr [m/s]
1	2	3	1	2	3	1	2	3
93,0	0,056000	1661	618,0	0,300000	2060	1143,0	0,489000	2337
108,0	0,065000	1662	633,0	0,306000	2069	1158,0	0,494000	2344
123,0	0,074000	1662	648,0	0,311000	2084	1173,0	0,500000	2346
138,0	0,082000	1683	663,0	0,320000	2072	1188,0	0,504000	2357
153,0	0,090000	1700	678,0	0,326000	2080	1203,0	0,509000	2363
168,0	0,098000	1714	693,0	0,331000	2094	1218,0	0,513000	2374
183,0	0,106000	1726	708,0	0,337000	2101	1233,0	0,519000	2376
198,0	0,108000	1833	723,0	0,344000	2102	1248,0	0,523000	2386
213,0	0,114000	1868	738,0	0,349000	2115	1263,0	0,527000	2397
228,0	0,120000	1900	753,0	0,355000	2121	1278,0	0,531000	2407
243,0	0,126000	1929	768,0	0,360000	2133	1293,0	0,537000	2408
258,0	0,134000	1925	783,0	0,364000	2151	1308,0	0,541000	2418
273,0	0,141000	1936	798,0	0,371000	2151	1323,0	0,545000	2428
288,0	0,149000	1933	813,0	0,376000	2162	1338,0	0,549000	2437
303,0	0,155000	1955	828,0	0,382000	2168	1353,0	0,554000	2442
318,0	0,163000	1951	843,0	0,389000	2167	1368,0	0,559000	2447
333,0	0,169000	1970	858,0	0,395000	2172	1383,0	0,563000	2456
348,0	0,175000	1989	873,0	0,400000	2183	1398,0	0,569000	2457
363,0	0,182000	1995	888,0	0,405000	2193	1413,0	0,572000	2470
378,0	0,189000	2000	903,0	0,411000	2197	1428,0	0,577000	2475
393,0	0,195000	2015	918,0	0,416000	2207	1443,0	0,582000	2479
408,0	0,203000	2010	933,0	0,423000	2206	1458,0	0,588000	2480
423,0	0,209000	2024	948,0	0,429000	2210	1473,0	0,591000	2492
438,0	0,216000	2028	963,0	0,434000	2219	1488,0	0,594000	2505
453,0	0,223000	2031	978,0	0,439000	2228	1503,0	0,598000	2513
468,0	0,231000	2026	993,0	0,444000	2236	1518,0	0,603000	2517
483,0	0,238000	2029	1008,0	0,449000	2245	1533,0	0,608000	2521
498,0	0,246000	2024	1023,0	0,453000	2258	1548,0	0,611000	2534
513,0	0,253000	2028	1038,0	0,457000	2271	1563,0	0,616000	2537
528,0	0,259000	2039	1053,0	0,463000	2274	1578,0	0,620000	2545
543,0	0,267000	2034	1068,0	0,468000	2282	1593,0	0,624000	2553
558,0	0,273000	2044	1083,0	0,470000	2304	1608,0	0,628000	2561
573,0	0,279000	2054	1098,0	0,474000	2316	1623,0	0,631000	2572
588,0	0,287000	2049	1113,0	0,480000	2319	1638,0	0,636000	2575
603,0	0,294000	2051	1128,0	0,484000	2331	1653,0	0,641000	2579

Tabela 16 cd.

1	2	3	1	2	3	1		2	3
1668,0	0,645000	2586	2253,0	0,797000	2827	2853	,0	0,936000	3048
1683,0	0,649000	2593	2268,0	0,802000	2828	2868	,0	0,938000	3058
1698,0	0,654000	2596	2283,0	0,805000	2836	2883	,0	0,942000	3061
1713,0	0,657000	2607	2298,0	0,810000	2837	2898	,0	0,945000	3067
1728,0	0,663000	2606	2328,0	0,816000	2853	2913	,0	0,951000	3063
1743,0	0,667000	2613	2343,0	0,820000	2857	2928	,0	0,954000	3069
1758,0	0,672000	2616	2358,0	0,824000	2862	2943	,0	0,958000	3072
1773,0	0,674000	2631	2373,0	0,828000	2866	2958	,0	0,961000	3078
1788,0	0,678000	2637	2388,0	0,831000	2874	2973	,0	0,964000	3084
1803,0	0,681000	2648	2403,0	0,834000	2881	2988	,0	0,967000	3090
1818,0	0,687000	2646	2418,0	0,837000	2889	3003	,0	0,970000	3096
1833,0	0,690000	2657	2433,0	0,840000	2896	3018	,0	0,974000	3099
1848,0	0,697000	2651	2448,0	0,844000	2900	3033	,0	0,976000	3108
1863,0	0,700000	2661	2463,0	0,848000	2904	3048	,0	0,979000	3113
1878,0	0,703000	2671	2478,0	0,851000	2912	3063	,0	0,982000	3119
1893,0	0,706000	2681	2493,0	0,854000	2919	3078	,0	0,985000	3125
1908,0	0,712000	2680	2508,0	0,858000	2923	3093	,0	0,988000	3131
1923,0	0,716000	2686	2523,0	0,861000	2930	3108	,0	0,990000	3139
1938,0	0,720000	2692	2538,0	0,863000	2941	3123	,0	0,993000	3145
1953,0	0,724000	2698	2553,0	0,867000	2945	3138	,0	0,998000	3144
1968,0	0,728000	2703	2568,0	0,871000	2948	3153	,0	1,002000	3147
1983,0	0,732000	2709	2583,0	0,874000	2955	3168	,0	1,005000	3152
1998,0	0,735000	2718	2598,0	0,878000	2959	3183	,0	1,008000	3158
2013,0	0,738000	2728	2613,0	0,881000	2966	3198	,0	1,011000	3163
2028,0	0,742000	2733	2628,0	0,885000	2969	3213	,0	1,014000	3169
2043,0	0,746000	2739	2643,0	0,888000	2976	3228	,0	1,017000	3174
2058,0	0,750000	2744	2658,0	0,891000	2983	3243	,0	1,021000	3176
2073,0	0,754000	2749	2673,0	0,894000	2990	3258	,0	1,024000	3182
2088,0	0,757000	2758	2688,0	0,898000	2993	3273	,0	1,027000	3187
2103,0	0,761000	2763	2703,0	0,903000	2993	3288	,0	1,031000	3189
2118,0	0,765000	2769	2718,0	0,907000	2997	3303	,0	1,034000	3194
2133,0	0,768000	2777	2733,0	0,910000	3003	3318	,0	1,037000	3200
2148,0	0,772000	2782	2748,0	0,913000	3010	3333	,0	1,039000	3208
2163,0	0,776000	2787	2763,0	0,917000	3013	3363	,0	1,045000	3218
2178,0	0,779000	2796	2778,0	0,920000	3020	3348	,0	1,042000	3213
2193,0	0,783000	2801	2793,0	0,924000	3023	3378	,0	1,048000	3223
2208,0	0,790000	2795	2808,0	0,927000	3029	3393	,0	1,053000	3222
2223,0	0,790000	2814	2823,0	0,929000	3039	3408	,0	1,057000	3224
2238,0	0,794000	2819	2838,0	0,932000	3045	3423	,0	1,059000	3232

1	2	3	1	2	3		1	2	3
3438,0	1,061000	3240	3723,0	1,115000	3339		4083,0	1,188000	3437
3453,0	1,063000	3248	3738,0	1,119000	3340		4098,0	1,191000	3441
3468,0	1,065000	3256	3753,0	1,123000	3342		4128,0	1,198000	3446
3483,0	1,068000	3261	3768,0	1,127000	3343		4158,0	1,204000	3453
3498,0	1,070000	3269	3783,0	1,130000	3348		4173,0	1,207000	3457
3513,0	1,073000	3274	3798,0	1,132000	3355		4203,0	1,214000	3462
3528,0	1,078000	3273	3813,0	1,135000	3359		4233,0	1,220000	3470
3543,0	1,082000	3274	3828,0	1,137000	3367		4248,0	1,224000	3471
3558,0	1,085000	3279	3843,0	1,139000	3374		4308,0	1,236000	3485
3573,0	1,089000	3281	3858,0	1,142000	3378		4323,0	1,241000	3483
3588,0	1,092000	3286	3873,0	1,146000	3380		4353,0	1,248000	3488
3603,0	1,094000	3293	3888,0	1,149000	3384		4383,0	1,253000	3498
3618,0	1,097000	3298	3903,0	1,153000	3385		4398,0	1,259000	3493
3633,0	1,099000	3306	3933,0	1,157000	3399		4458,0	1,271000	3507
3648,0	1,101000	3313	3963,0	1,165000	3402		4473,0	1,274000	3511
3663,0	1,104000	3318	3978,0	1,168000	3406		4503,0	1,278000	3523
3678,0	1,107000	3322	4008,0	1,176000	3408		4533,0	1,291000	3511
3693,0	1,109000	3330	4023,0	1,178000	3415	_			
3708,0	1,112000	3335	4053,0	1,182000	3429				

Tabela 16 cd.

h – głębokość, depth; tr – czas zredykowany z punktu pomiarowego, reduced time from measuring point; Vśr – prędkość średnia, average velocity

przy założeniu jednorodnego ośrodka. Materiały PPS przetworzono komputerowo. Wykonano analizę filtracji (cztery filtracje na każdym PS) oraz dla PS 1 sumowanie fal padających i odbitych.

Przedstawiony na figurze 45 B hodograf pionowy wskazuje na zależność między wzrostem głębokości a czasem rejestracji.

W celu wyznaczenia poszczególnych kompleksów prędkościowych, a szczególnie ich średnich wartości, został zastosowany sposób wygładzania wartości pomiarów geofizycznych.

Metoda ta może być stosowana w przypadku, gdy wartości zmierzone zmieniają się przypadkowo z punktu na punkt w granicach błędu pomiarowego. Warunkiem możliwości jej wykorzystania jest stały odstęp między punktami pomiarowymi.

Podany sposób zastosowano do wygładzania czasów z pomiarów prędkości średnich w celu obliczenia prędkości interwałowych bez przypadkowych skoków wartości wywołanych błędami pomiaru czasu. Krzywe wygładzone prędkości interwałowych obliczono w celu wyznaczenia stref maksymalnych gradientów prędkości, które odpowiadają granicom prędkościowym poszczególnych kompleksów.

Krzywe prędkości obliczono wyrównując zmierzone czasy zredukowane do pionu przy pomocy splotu z odpowiednim filtrem. Przetwarzanie to polegało na przeliczaniu czasów i prędkości do poziomu odniesienia pomiaru i interpolacji tych wartości dla znormalizowanych przedziałów głębokości co 20 m. Następnie czasy te wygładzono specjalnym programem przez zastosowanie operacji splotu z filtrem trójkątnym, stosując 20 razy filtr 0,25; 0,5; 0,25. Celem tych przekształceń, usuwających przypadkowe odchylenia poszczególnych danych pomiarowych wynikających z niedokładności pomiarów, było przygotowanie materiałów do obliczenia prędkości interwałowych.

Przy pierwszym wygładzaniu zmniejszone zostają przypadkowe skoki wartości czasów spowodowane zaokrągleniem ich wartości do 1 ms lub błędami pomiarowymi. Kolejne powtarzanie wymienionych wyżej operacji powoduje zaokrąglenie załamań (hodografu) spowodowanych zmianami prędkości w kolejnych warstwach. W ten sposób powstały dodatkowe zbiory obejmujące przetworzone czasy pomiarów, po ich zredukowaniu do poziomu odniesienia wyinterpretowaniu wartości co 20 m i wygładzeniu, oraz odpowiadające im wartości prędkości średnich.

Powyższe informacje zawarte są w banku danych prędkościowych utworzonym w latach 90. w Zakładzie Geofizyki PIG dla potrzeb interpretacji prac sejsmicznych.

Różnice wartości czasów pomiędzy kolejnymi wygładzeniami spowodowane są zmianami prędkości w warstwach o określonej miąższości. Zjawisko to wykorzystano do wyznaczenia granic kompleksów prędkościowych w miejscach maksymalnych bezwzględnych wartości różnic czasów

wygładzonych n i n +1 razy. Granice kompleksów wyznacza się w miejscach maksymalnych gradientów prędkości interwałowych.

Przy tym sposobie obliczeń wydzielają się wyraźnie tylko kompleksy prędkościowe o miąższości powyżej od 100 m. Maksymalne i minimalne wartości prędkości obliczonych z czasów wygładzonych odpowiadają uśrednionym wartościom kompleksów warstw o prędkościach zmniejszonych lub zwiększonych w porównaniu z sąsiednimi. Zestawienie uśrednionych wartości *V*w (prędkości wygładzone), *V*i (prędkości interwałowe), *V*k (prędkości kompleksowe) obliczonych z czasów wygładzonych zawiera tabela 17. Krzywe prędkości wygładzonych, interwałowych i kompleksowych przedstawiono na figurze 46.

Wykresy powyższe wzbogacono profilem stratygraficznym otworu, co pozwoliło na bezpośrednie powiązanie zmian prędkości z kompleksami stratygraficzno-litologicznymi przekroju geologicznego w otworze oraz z refleksami sejsmicznymi.

Istotnych informacji o istnieniu granic refleksyjnych dostarcza pionowe profilowanie sejsmiczne (PPS). Na podstawie analizy opracowanych materiałów PPS wydzielono podstawową granicę odbijająca w cechsztynie (głębokość około 1060 m). Obserwuje się również niezbyt intensywne fale odbite od granic w sylurze w interwale 1535–2000m i na głębokości 3175 m. Jeśli chodzi o fale zakłócające to najintensywniejszą z fal krotnych jest fala wielokrotna od cechsztynu. Obecność intensywnych krotnych fal padających opóźnionych względem fali padającej o 300–700 m/s, świadczy o występowaniu silnych granic odbijających w nadkładzie nad cechsztynem. Wielofazowość fali padającej jest spowodowana skomplikowaną budową strefy przypowierzchniowej.

Z wykresów prędkości średnich widać, że mamy do czynienia generalnie biorąc ze stałym wzrostem prędkości średniej wraz z głębokością.

W wyniku analizy wykonanych pomiarów określono prędkości kompleksowe (*V*k) (fig. 46), które odpowiednio dla poszczególnych utworów geologicznych wynoszą:

Kreda	1750–2200 m/s
Trias	2250–2850 m/s
Cechsztyn	3250 m/s
Sylur	3250–5300 m/s

Zasadniczy kontrast prędkości istnieje między triasem a cechsztynem. Sylur posiada podwyższone prędkości w stosunku do cechsztynu i ordowiku. Przebite osady syluru w otworze Słupsk IG 1 o dużej miąższości 3340 m budują se-

Fig. 46. Wykresy prędkości wygładzonych (Vw), interwałowych (Vi) i kompleksowych (Vk)

Poz. odniesienia 30 m n.p.m.; h – głębokość

Smoothed velocity (*V*w), interval velocity (*V*i) and complex velocity (*V*k)

Reference level 30 m a.s.l.; h - depth

137

rie iłowców i mułowców. Dlatego w sylurze ze względu na jego monotonne wykształcenie litologiczne nie obserwuje się dużych kontrastów prędkości. Największe są związane z przystropowymi częściami kompleksów mułowcowych.

Wykorzystując analizę profilowania prędkości średnich i pionowego profilowania sejsmicznego w otworze można stwierdzić, że w sejsmicznym obrazie falowym w sposób najbardziej dynamiczny powinien zaznaczyć się horyzont związany z cechsztynem. Poziomy refleksyjne w obrębie utworów kredy i triasu mogą występować w sposób znacznie mniej intensywny. Można spodziewać się też rzeczywistego poziomu refleksyjnego w obrębie utworów syluru związanego na podstawie uzyskanych danych z przystropową częścią kompleksu mułowcowego. Potwierdzeniem tezy o możliwości otrzymania rzeczywistych refleksów sejsmicznych w obrębie utworów syluru są też wyniki PPS wykonane w otworze. Bardziej problematyczna jest korelacja uzyskiwanych ewentualnie wyników sejsmicznych w przedziale głębokościowym odpowiadającym utworom starszym od syluru. Głębsze poziomy sejsmiczne na podstawie danych w otworze Słupsk IG 1 nie mogą być interpretowane, ponieważ nie dysponujemy pomiarami dla tych głębokości.

Tabela 17

						_	
h [m]	V i [m/s]	<i>V</i>k [m/s]	V w [m/s]	h [m]	V i [m/s]	<i>V</i>k [m/s]	<i>V</i> w [m/s]
1	2	3	4	1	2	3	4
20,0	1710	1795	1580	520,0	2201	2227	2161
40,0	1710	1795	1691	540,0	2201	2227	2185
60,0	1710	1795	1713	560,0	2201	2227	2213
80,0	1710	1795	1749	580,0	2201	2227	2245
100,0	1710	1795	1800	600,0	2201	2227	2280
120,0	1985	1795	1867	620,0	2382	2227	2317
140,0	1985	1795	1947	640,0	2382	2227	2358
160,0	1985	1795	2034	660,0	2382	2227	2403
180,0	1985	2160	2117	680,0	2382	2227	2452
200,0	1985	2160	2183	700,0	2382	2668	2501
220,0	2228	2160	2223	720,0	2588	2668	2546
240,0	2228	2160	2239	740,0	2588	2668	2584
260,0	2228	2160	2237	760,0	2588	2668	2610
280,0	2228	2160	2227	780,0	2588	2668	2625
300,0	2228	2197	2216	800,0	2588	2668	2630
320,0	2197	2197	2208	820,0	2647	2668	2632
340,0	2197	2197	2202	840,0	2647	2668	2636
360,0	2197	2197	2195	860,0	2647	2668	2646
380,0	2197	2197	2185	880,0	2647	2668	2665
400,0	2197	2197	2171	900,0	2647	2668	2695
420,0	2144	2227	2156	920,0	2842	2668	2739
440,0	2144	2227	2143	940,0	2842	2668	2799
460,0	2144	2227	2135	960,0	2842	2668	2873
480,0	2144	2227	2135	980,0	2842	2668	2958
500,0	2144	2227	2144	1000,0	2842	3200	3046

Zestawienie wartości Vi, Vk, Vw Averaged Vi, Vk, Vw values calculated from smoothed velocity

1	2	3	4	1	2	3	4
1020,0	3194	3200	3128	1780,0	3595	3688	3628
1040,0	3194	3200	3194	1800,0	3595	3688	3638
1060,0	3194	3200	3235	1820,0	3659	3688	3643
1080,0	3194	3200	3248	1840,0	3659	3688	3648
1100,0	3194	3200	3240	1860,0	3659	3688	3658
1120,0	3197	3200	3219	1880,0	3659	3688	3679
1140,0	3197	3196	3196	1900,0	3659	3688	3710
1160,0	3197	3196	3182	1920,0	3832	3688	3753
1180,0	3197	3196	3181	1940,0	3832	3688	3804
1200,0	3197	3196	3194	1960,0	3832	3688	3860
1220,0	3252	3196	3217	1980,0	3832	4059	3914
1240,0	3252	3196	3243	2000,0	3832	4059	3959
1260,0	3252	3316	3268	2020,0	4012	4059	3992
1280,0	3252	3316	3287	2040,0	4012	4059	4013
1300,0	3252	3316	3296	2060,0	4012	4059	4023
1320,0	3298	3316	3298	2080,0	4012	4059	4027
1340,0	3298	3316	3296	2100,0	4012	4059	4030
1360,0	3298	3316	3295	2120,0	4040	4059	4032
1380,0	3298	3316	3301	2140,0	4040	4059	4036
1400,0	3298	3316	3317	2160,0	4040	4059	4042
1420,0	3412	3316	3346	2180,0	4040	4059	4050
1440,0	3412	3316	3387	2200,0	4040	4059	4058
1460,0	3412	3316	3433	2220,0	4081	4059	4067
1480,0	3412	3563	3480	2240,0	4081	4059	4075
1500,0	3412	3563	3522	2260,0	4081	4059	4082
1520,0	3573	3563	3554	2280,0	4081	4059	4097
1540,0	3573	3563	3577	2300,0	4081	4059	4120
1560,0	3573	3563	3587	2320,0	4231	4059	4155
1580,0	3573	3563	3587	2340,0	4231	4059	4201
1600,0	3573	3563	3577	2360,0	4231	4059	4255
1620,0	3543	3563	3561	2380,0	4231	4420	4311
1640,0	3543	3543	3544	2400,0	4231	4420	4363
1660,0	3543	3543	3532	2420,0	4442	4420	4405
1680,0	3543	3543	3530	2440,0	4442	4420	4439
1700,0	3543	3543	3540	2460,0	4442	4420	4462
1720,0	3595	3543	3561	2480,0	4442	4420	4475
1740,0	3595	3543	3586	2500,0	4442	4420	4479
1760,0	3595	3688	3610	2520,0	4431	4420	4471

Tabela	17	cd.
--------	----	-----

1	2	3	4	1
2540,0	4431	4420	4452	3300
2560,0	4431	4420	4423	3320
2580,0	4431	4420	4388	3340
2600,0	4431	4420	4352	3360
2620,0	4272	4420	4313	3380
2640,0	4272	4279	4277	3400
2660,0	4272	4279	4250	3420
2680,0	4272	4279	4237	3440
2700,0	4272	4279	4248	3460
2720,0	4379	4279	4284	3480
2740,0	4379	4279	4342	3500
2760,0	4379	4279	4414	3520
2780,0	4379	4512	4480	3540
2800,0	4379	4512	4523	3560
2820,0	4468	4512	4531	3580
2840,0	4468	4512	4501	3600
2860,0	4468	4512	4451	3620
2880,0	4468	4432	4401	3640
2900,0	4468	4432	4373	3660
2920,0	4490	4432	4380	3680
2940,0	4490	4432	4429	3700
2960,0	4490	4432	4513	3720
2980,0	4490	4432	4618	3740
3000,0	4490	4827	4725	3760
3020,0	4827	4827	4810	3780
3040,0	4827	4827	4858	3800
3060,0	4827	4827	4860	3820
3080,0	4827	4827	4822	3840
3100,0	4827	4827	4762	3860
3120,0	4642	4635	4696	3880
3140,0	4642	4635	4642	3900
3160,0	4642	4635	4609	3920
3180,0	4642	4635	4600	3940
3200,0	4642	4635	4611	3960
3220,0	4694	4635	4637	3980
3240,0	4694	4635	4671	4000
3260,0	4694	4635	4712	4020
3280,0	4694	4893	4755	4040

	4
3300,0 4694 489	93 4796
3320,0 4917 489	4836
3340,0 4917 489	4881
3360,0 4917 489	93 4936
3380,0 4917 489	93 5006
3400,0 4917 489	5085
3420,0 5136 513	39 5151
3440,0 5136 513	39 5183
3460,0 5136 513	39 5163
3480,0 5136 513	39 5096
3500,0 5136 513	39 5008
3520,0 4969 497	70 4936
3540,0 4969 497	70 4911
3560,0 4969 497	70 4945
3580,0 4969 497	70 5031
3600,0 4969 497	70 5141
3620,0 5226 523	33 5236
3640,0 5226 523	33 5281
3660,0 5226 523	33 5260
3680,0 5226 523	33 5185
3700,0 5226 523	33 5089
3720,0 4992 496	56 5006
3740,0 4992 496	66 4962
3760,0 4992 496	66 4963
3780,0 4992 496	66 4998
3800,0 4992 505	50 5042
3820,0 5026 505	50 5072
3840,0 5026 505	50 5068
3860,0 5026 505	50 5029
3880,0 5026 505	50 4966
3900,0 5026 485	52 4900
3920,0 4852 485	52 4846
3940,0 4852 485	52 4821
3960,0 4852 485	52 4832
3980,0 4852 485	52 4875
4000,0 4852 485	52 4938
4020,0 5014 499	99 5002
4040,0 5014 499	99 5043

1	2	3	4	1	2	3	4
4060,0	5014	4999	5045	4300,0	4522	4404	4423
4080,0	5014	4999	5006	4320,0	4401	4404	4397
4100,0	5014	4999	4938	4340,0	4401	4404	4386
4120,0	4758	4999	4858	4360,0	4401	4404	4392
4140,0	4758	4627	4782	4380,0	4401	4404	4412
4160,0	4758	4627	4719	4400,0	4401	4431	4436
4180,0	4758	4627	4667	4420,0	4415	4431	4449
4200,0	4758	4627	4623	4440,0	4415	4431	4442
4220,0	4522	4627	4583	4460,0	4415	4431	4413
4240,0	4522	4627	4544	4480,0	4415	4431	4372
4260,0	4522	4627	4502	4500,0	4415	4322	4336
4280,0	4522	4404	4460	4520,0	4322	4322	4336

Tabela 17 cd.

h – głębokość, *depth*; Vi – prędkość interwałowa, *interval velocity*; Vw – prędkość wygładzona, *smoothed velocity*; Vk – prędkość kompleksowa, complex velocity