Kamila WAWRZYNIAK, Jadwiga JARZYNA

WYNIKI BADAŃ GEOFIZYKI WIERTNICZEJ

INFORMACJE OGÓLNE

Wrotnów IG 1 jest otworem parametryczno-strukturalnym, odwierconym w miejscowości Grzymały, w północno-zachodniej części obniżenia podlaskiego, na wysokości 160 m n.p.m. Lokalizację otworu wybrano opierając się na profilu sejsmicznym 22-XXXV-6 na obszarze słabo rozpoznanym przez wiercenia. Wiercenia rozpoczęto 6.03.1972 r., a zakończono 26.07.1972 r. Końcowa głębokość odwiertu wynosi 2063,0 m. Profilowania geofizyki wiertniczej wykonano do głębokości 2055,0 m.

Pomiary geofizyczne wykonano w pięciu odcinkach, w okresie między 7 marca a 7 sierpnia 1972 r. Inwestorem badań był Państwowy Instytut Geologiczny z Warszawy, wykonawcą było Przedsiębiorstwo Geologiczne z Warszawy, a podwykonawcą – Przedsiębiorstwo Poszukiwań Geofizycznych z Warszawy. Pomiary akustyczne wykonało Przedsiębiorstwo Geofizyki Górnictwa Naftowego z Torunia.

Dane techniczne otworu zestawiono w tabelach 11 (wartości średnicy nominalnej) oraz 12 (schemat zarurowania otworu). Ocenę stanu technicznego otworu wykonano na podstawie profilowania średnicy i krzywizny otworu. Skawernowane odcinki otworu scharakteryzowano w tabeli 13. W pozostałych interwałach średnica rzeczywista otworu jest zbliżona do nominalnej. Ogólne skrzywienie otworu jest niewielkie. Największy kąt skrzywienia nie przekracza 3°. Poza interwałem 425,0–1030,0 m, gdzie krzywizna wynosi 2–3° przy średnim azymucie 120°, kąty skrzywienia nie przekraczają 1°30". Odejście dna otworu od pionu wynosi 24,7 m przy średnim azymucie 89°.

W otworze Wrotnów IG 1 zostały pobrane rdzenie. Rdzeniowanie całości wyniosło 11% (por. Wstęp, str. 6)

	Tabela 11			Tabela 12					
Średnic	a nominalna		Schemat zarurowania						
Bit s	ize values		Scheme	of casing					
Średnica nominalna [mm]	Interwał według miary wiertniczej [m]		Średnica rur [cale]	Głębokość zarurowania według miary					
308	0,0–351,0			[m]					
216	351,0–1606,5		13 3/8	4,0					
143	1606,5–1960,0		9 5/8	225,0					
141	1960 0-2063 0		6 5/8	1606.5					

Tabela 13

Charakterystyka skawernowania otworu Wrotnów IG 1

Characteristics of caverns in the Wrotnów IG 1 borehole

Interwał głębokościowy [m]	Średnica nominalna [mm]	Opis skawernowania	Litostratygrafía
4,0-69,0	308	duża kawerna sięgająca 640 mm	piaszczysto-ilaste utwory czwartorzędu
107,5–123,0	308	kawerna sięgająca 400 mm	piaszczysto-ilaste utwory czwartorzędu i neogenu
351,0-672,5	216	niewielkie powiększenie średnicy miejscami do 280 mm	wapienie margliste kredy
1765,0–1782,0	143	pojedyncza niewielka kawerna do 210 mm	mułowce kambru

CEL BADAŃ GEOFIZYCZNYCH

Ogólnym celem badań geofizycznych było zbadanie litologii i weryfikacja stratygrafii skał osadowych oraz nawiercenie podłoża krystalicznego. Głównym zadaniem było przebadanie osadów dolnego paleozoiku, w szczególności ordowiku i kambru, pod względem występowania węglowodorów oraz wyznaczenie zasięgu utworów syluru przykrywającego osady ropo- i gazonośne dolnego paleozoiku. Badania miały również wyjaśnić budowę geologiczną, tektonikę i strefy dyslokacji w brzeżnej, północno-zachodniej części obniżenia podlaskiego.

Poszczególne zadania postawione przed geofizyką otworową obejmowały:

- ustalenie litologii przewiercanych skał, określenie głębokości zalegania warstw i ich miąższości;
- weryfikacja stratygrafii;
- określenie stanu technicznego otworu;
- określenie stopnia geotermicznego;
- wyznaczenie warstw wykazujących właściwości zbiornikowe;
- ilościowa ocena parametrów zbiornikowych;
- wykonanie korelacji poziomów stratygraficznych wyznaczonych w pobliskich otworach.

Zadania postawione przed geofizyką otworową zostały zrealizowane.

ZAKRES WYKONANYCH BADAŃ

Badania geofizyczne wykonano w dwóch etapach obejmujących pomiary podstawowe i pomiary uzupełniające.

Pomiary podstawowe, wykonane w utworach kenozoiku, kredy i jury, obejmowały następujące profilowania:

- profilowanie oporności sondą potencjałową (EN10),
- profilowanie oporności sondą gradientową (EL09),
- profilowanie potencjałów polaryzacji naturalnej (PS),
- profilowanie gamma (PG),
- profilowanie neutron-gamma (PNG),
- profilowanie średnicy (PŚr),
- profilowanie krzywizny otworu (PK),
- powierzchniowy pomiar oporności płuczki z podaniem jej temperatury,
- pomiar temperatury dna odwiertu wykonany maksymalnym termometrem rtęciowym (PTmax).

Pomiary uzupełniające wykonywano w przypadku występowania warstw zbiornikowych i obejmowały:

- sondowania oporności gradientowe lub gradientowo-potencjałowe wykonane zestawem sond gradientowych lub potencjałowych o różnej długości (EL02, EL03, EL14, EL18, EL26, EN04, EN16, EN64),
- sterowane profilowanie oporności laterologiem trójelektrodowym (LL3),
- profilowanie temperatury w stanie nieustalonym (PTn).

W utworach kambryjskich, z uwagi na bardzo niską oporność piaskowców, wykonano dodatkowe sondowanie potencjałowo-gradientowe dla uzyskania dokładności wyników. Na odcinku 1230,0–1630,0 m, ze względu na duże zakłócenia w pomiarze potencjałów naturalnych, wykonano profilowanie gradientu potencjałów naturalnych (PSgrad). Dodatkowo w całym odcinku otworu (0,0–2055,0 m) zestawiono pomiary PG i PNG (fig. 17). Profilowanie PNG wykorzystano jedynie w interpretacji jakościowej. W interwale 166,0–2060,0 m wykonano również profilowanie temperatury w stanie ustalonym PTu po ośmiu dniach stójki.

Szczegółowy wykaz badań geofizycznych wykonanych w otworze Wrotnów IG 1 przedstawia tabela 14. Pomiary geofizyczne zostały zapisane analogowo w skali głębokościowej 1:500. Obecnie wszystkie profilowania zostały scyfrowane, z wyjątkiem profilowania krzywizny i są zapisane w plikach o formacie LAS (Log ASCII Standard). Dodatkowo, profilowania: średnicy, gamma, neutron-gamma, oporności wykonane sondą gradientową EL09 i potencjałową EN10, zostały połączone w krzywe kompozytowe obejmujące cały otwór. Profilowania gamma i neutron-gamma podano w niestandardowych jednostkach (wartości profilowania PG sięgają 300 jednostek, a PNG ok. 700). Tabele 14 sporządzono na podstawie dostępnej dokumentacji otworu oraz profilowania w postaci cyfrowej. W tabeli 15 objaśniono skróty nazw profilowań (mnemoniki) oraz jednostki, w jakich zostały wykonane pomiary. Figura 18 w sposób graficzny przedstawia zasięg głębokościowy wszystkich profilowań wykonanych w otworze (z wyjątkiem profilowania krzywizny).

Fig. 17. Zestawienie profilowań gamma i neutron gamma w otworze Wrotnów IG 1

Gamma ray and neutron logs in the Wrotnów IG 1 borehole

Wykaz profilowań geofizycznych wykonanych w otworze Wrotnów IG 1

Data wykonania pomiarów	Rodzaj wykonanych badań – mnemoniki profilowań	Interwał głębokościowy odcinka otworu [m]	Rzeczywisty interwał głębokościowy profilowań
1	2	3	4
	РК	0–490	brak informacji
	PNG		0,25–489,75
	PG		0,25–485,75
07.02.1072	PŚr	4–490	0,50–489,75
07.03.1972	PS	4-486	10,25-480,25
	PS		10,25–484,75
	EL09	10–490	10,25–489,75
	EN10		10,25–489,75
	PS	226-1025	225,25–1024,75
	PS		225,75–1024,75
	PŚr	226–1033	203,00–1032,5
	EL09		210,50–1032,75
22.03.1972	EN10	440–1033	440,25–1032,75
	PG		440,25–1032,75
	PNG		440,50–1032,75
	РК	400-1030	brak informacji
	PŚr	225-1630	201,25–1627,50
	РАР		brak informacji
	РК	975–1630	brak informacji
	PG	980–1615	980,25–1617,75
	PNG		980,25–1614,50
	PTn		980,50–1613,50
27-28.04.1972	EN10	1230–1630	980,25–1629,50
	EL02		1220,25–1629,75
	EL03		1220,25–1629,75
	EL09		201,75–1629,75
	EL14		1220,25–1629,75
	EL26		1220,25–1629,75
	PS (PSgrad)		222,25-1629,75
15.06.1972	PŚr (przed próbnikiem)	1605–1791	brak informacji
03.07.1972	PŚr (przed próbnikiem)	1606,5–1910	brak informacji
	PG	1550–1960	1550,50–1959,50
	PNG		1550,75–1959,75
08-09.07.1972	РК		brak informacji
	DC	1606 5 1057	1606 75 1957 25

Well logs in the Wrotnów IG 1 borehole

1	2	3	4
	PS		1607,25–1947,00
	PŚr	1606,5–1960	1679,00–1959,75
	PTn		1607,25–1959,75
	EN04		1588,50–1960,25
	EN10		1584,25–1959,75
00.00.07.1070	EN16		1585,50–1960,25
08-09.07.1972	EN64		1585,75–1959,75
	EL02		1585,25–1960,75
	EL03		1585,50–1960,75
	EL09		1586,25–1959,75
	EL18		1588,75–1960,25
	EL26		1587,25–1960,25
	PG – profilowanie połączone	0–2055	0,75–2054,75
	PNG – profilowanie połączone		100,50–2054,75
	T1	1590–2055	1589,50–2055,25
	T2		1589,50–2054,75
	EL09	1606,5–2055	1584,75–2054,25
	LL3		1593,25–2054,75
	PŚR		1594,00–2054,00
	PS		1606,75–2054,25
	РК	1900–2055	brak informacji
26, 20,07, 1072	EL02	1910–2055	1910,25–2054,75
20-29.07.1972	EL03		1911,25–2054,50
	EL18		1910,50–2054,75
	EL26		1910,25–2054,75
	EN04		1910,25–2054,75
	EN10		1910,50–2054,50
	EN16		1910,25–2054,75
	EN64		1910,25–2054,75
	PTn		1910,25–2054,50
	PG		1910,50–2054,75
	PNG		1910,25–2054,75
	PTu – po 8 dniach stójki	166–2060	165,75–2059,75
	PŚr_C	_	0,25–2054,00
07.09.1072	PG_C	_	0,5–2054,75
07.08.1972	PNG_C	_	0,25–2054,75
	EL09_C	_	10,25–2054,75
	EN10_C	-	10,25–2054,75

Table 14 cd.

Oznaczenia profilowań geofizyki otworowej

Codes of well logs

Rodzaj profilowań – mnemoniki polskie [mnemoniki międzynarodowe]	Jednostki	Rodzaj profilowań – opis
РК	0	profilowanie krzywizny otworu
PŚr [CALI]	mm	profilowanie średnicy
EL02 - M0.5A0.1B	omm	profilowanie oporności, sonda gradientowa spągowa 0,55 m
EL03 - M1.0A0.1B	omm	profilowanie oporności, sonda gradientowa spągowa 1,05 m
EL09 – M2.5A0.25B	omm	profilowanie oporności, sonda gradientowa spągowa 2,625 m
EL14 - M4.0A0.5B	omm	profilowanie oporności, sonda gradientowa spągowa 4,25 m
EL18 – M5.28A0.82B	omm	profilowanie oporności, sonda gradientowa spągowa 5,69 m
EL26 - M8.0A1.0B	omm	profilowanie oporności, sonda gradientowa spągowa 8,5 m
EN04 - B1.0A0.1M	omm	profilowanie oporności, sonda potencjałowa stropowa 0,1 m
EN10 – B2.5A0.25M	omm	profilowanie oporności, sonda potencjałowa stropowa 0,25 m
EN16 - B5.7A0.4M	omm	profilowanie oporności, sonda potencjałowa stropowa 0,4 m
EN64 – B4.48A1.62M	omm	profilowanie oporności, sonda potencjałowa stropowa 1,62 m
PG [GR]	imp/min	profilowanie gamma
LL3	omm	profilowanie oporności, Laterolog 3
PNG, NEGR [NPHI]	imp/min	profilowanie neutron-gamma
PS [SP]	mV	profilowanie potencjałów polaryzacji naturalnej
Τ1	μs	profilowanie akustyczne T1
Τ2	μs	profilowania akustyczne T2
PTmax [BHT]	°C	pomiar temperatury dna otworu maksymalnym termometrem rtęciowym
PTn [TEMP]	°C	profilowanie temperatury w stanie nieustalonym
PTu [TEMU]	°C	profilowanie temperatury w stanie ustalonym
PŚr_C	mm	profilowanie kompozytowe (połączone) średnicy
PG_C	jednostki umowne	profilowanie kompozytowe gamma
PNG_C	jednostki umowne	profilowanie kompozytowe neutron-gamma
EL09_C	omm	profilowanie kompozytowe oporności, sonda gradientowa spągowa 2,625 m
EN10_C	omm	profilowanie kompozytowe oporności, sonda potencjałowa stropowa 0,25 m

Fig. 18. Schematyczne zestawienie typów badań geofizycznych wykonanych w otworze Wrotnów IG 1

Schematic depth show of well logging type of logs performed in the Wrotnów IG 1 borehole

CHARAKTERYSTYKA TERMICZNA OTWORU

Pomiar temperatury dna otworu (PTmax) wykonywano maksymalnym termometrem rtęciowym w pomiarach podstawowych. Wyniki przedstawia tabela 16. W kompleksie uzupełniającym mierzono temperaturę otworu w stanie nieustalonym (PTn). Po odwierceniu całego otworu wykonano również pomiar temperatury w stanie ustalonym (PTu) po ośmiu dniach stójki, na podstawie którego wyznaczono gradient i stopień geotermiczny. Wyniki umieszczono w tabeli 17. Zmiany gradientu geotermicznego pokrywają się z granicami stratygraficznymi.

Wyniki gradientu i stopnia geotermicznego z uwagi na słabą jakość pomiaru mogą być obarczone błędem.

Tabela 17

Tabela 16

Temperatura dna otworu Wrotnów IG 1

Bottom hole temperature at the Wrotnów IG 1 borehole

Głębokość [m]	Temperatura dna otworu [°C]
490	15
1033	29
1615	42
1960	50
2055	49

Charakterystyka termiczna otworu Wrotnów IG 1

Thermal profile of the Wrotnów IG 1 borehole

Interwał głębokościowy [m]	Średni stopień geotermiczny [m/ºC]	Średni gradient geotermiczny [°C/100 m]
200–940	55,6	1,8
940–1316,5	41,7	2,4
1316,5–1606	33,0	3,0
1606–2063	47,7	2,1

INTERPRETACJA POMIARÓW GEOFIZYKI WIERTNICZEJ

Interpretację pomiarów geofizyki wiertniczej wykonano w trzech etapach:

1. Interpretacja wstępna – wykonana została bezpośrednio po ukończeniu pomiarów na terenie otworu. Polegała na wyznaczeniu interwałów głębokościowych, w których należało wykonać pomiary uzupełniające, ocenie jakości wykonanych profilowań, sporządzeniu przybliżonego profilu litologicznego oraz ocenie stanu technicznego otworu w badanym odcinku.

2. Interpretacja odcinkowa – polegała na ustaleniu dokładnego profilu litologicznego, wykonaniu oceny jakościowej przewierconych utworów oraz wydzieleniu i scharakteryzowaniu warstw o właściwościach zbiornikowych.

3. Interpretacja końcowa – polegała na sporządzeniu dokumentacji geofizycznej zawierającej analizę wyników interpretacji jakościowej i ilościowej wykonanej dla całego otworu.

W wyniku interpretacji wyznaczano następujące parametry, zamieszczone w tabeli 18:

- oporność płuczki Rm (oporność płuczki została pomierzona powierzchniowym rezistiwimetrem i wartość została odniesiona do temperatury warstwy, w której interpretowano sondowanie oporności – kolumna 8),
- oporność filtratu płuczkowego Rmf (wyznaczona na podstawie Rm przy wykorzystaniu nomogramu – kolumna 9),
- oporność strefy filtracji Ri (wyznaczona na podstawie sondowania oporności – kolumna 10),
- oporność właściwa warstwy Rt (wyznaczona na podstawie sondowania oporności – kolumna 11 i profilowania sondą sterowaną – kolumna 12),
- oporność wody złożowej Rw (wyznaczona na podstawie interpretacji ilościowej krzywej PS – kolumna 13; oraz badań laboratoryjnych – kolumna 15),
- mineralizacja wody złożowej Cw (wyznaczona na podstawie interpretacji ilościowej krzywej PS – kolumna 14 oraz badań laboratoryjnych – kolumna 16),
- parametr porowatości F:
 - F(1) = Ri/(q Rmf) gdzie q jest poprawką na resztkowe nasycenie wodą złożową – kolumna 17.
 - F(2) = R0/Rw, gdzie R0 jest opornością warstwy w 100% nasyconej wodą, i przyjęto, że R0 = Rt – kolumna 18 w warstwach wodonośnych.
- współczynnik porowatości efektywnej:

- na podstawie sondowania oporności (z równania Archie'go: F= 1/m) wykorzystując parametr porowatości F(1) oraz współczynnik zwięzłości skały m z kolumny 26 – kolumna 19,
- na podstawie sondowania oporności (z równania Archie'go: F= 1/m) wykorzystując parametr porowatości F(2) oraz współczynnik zwięzłości skały m z kolumny 26 – kolumna 20,
- na podstawie sondowania oporności (z równania Archie'go: F= 1/m) wykorzystując parametr porowatości F(2) oraz współczynnik zwięzłości skały m = 1,5 otrzymany z PA –kolumna 21,
- na podstawie profilowania akustycznego porowatość ogólną wyznaczono z równania Wyllie'go:= (DT – DTma)/(DTf – DTma, gdzie DT, DTma, DTf to odpowiednio: czas interwałowy fali P w ośrodku, czas interwałowy w szkielecie skalnym, czas interwałowy w cieczy) – kolumna 23,
- zailenie Vsh (wyznaczone na podstawie profilowania PG) – kolumna 24,
- nasycenie wodą złożową Sw (wyznaczone według nomogramów akustyczno-opornościowych) – kolumna 25.

Do obliczenia współczynnika porowatości nie zostało wykorzystane profilowanie PNG (kolumna 22) z uwagi na brak dobrych reperów w profilu, niemożność standaryzacji sondy i braku danych laboratoryjnych o współczynniku porowatości z badań rdzeni.

Dla utworów triasu i permu parametr porowatości został obliczony tylko ze strefy filtracji (F(1)) nie uwzględniając współczynnika q, gdyż nie była znana oporność wody złożowej w tym interwale (brak danych laboratoryjnych i pro-filowania PS – ze względu na duże zakłócenia wykonano PS-grad).

W piaskowcach kambru współczynnik porowatości wykazuje duże różnice między wartościami obliczonymi ze strefy filtracji, strefy niezmienionej i profilowania akustycznego. Generalnie ze strefy filtracji ma wyższe wartości niż ze strefy niezmienionej, najniższe wartości otrzymano z interpretacji profilowania akustycznego.

Wartości mineralizacji wody złożowej wyliczone z krzywej PS bardzo dobrze zgadzają się z wynikami oznaczeń laboratoryjnych.

Interpretacja danych geofizyki wiertniczej nie wykazała występowania złóż ropy i gazu. Potwierdzają to wyniki opróbowania złoża, przedstawione w tabeli 19.

	igewU		m =	26	1,55	1,35	1,35	1,55	1,55	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65	
	Współczynnik Modą Modą		Sw [%]	25	I	I	I	I	I	100	100	100	100	100	100	100	100	100	100	100	100	
	Sailenie		əinəlis.	Vsh [%]	24	30	10	15	60	40	5	5	10	10	10	5	10	30	30	25	15-25	35
			PA	ф [%]	23	I	15,0	11,0	14,0	10,0	17,5	16,5	14,0	14,0	14,0	13,0	10,6	5,5	5,5	7,0	11,0	5,5
	watości		PNG	ф [%]	22	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
	nik poro			φ [%] (F(2), m = 1,5 z PA)	21	I	I	I	I	I	22,0	22,0	22,0	22,0	15,0	11,0	14,0	8,5	15,0	6,5	12,0	9,5
	'spółczyn		РО	φ[%] (F(2), m - kol. 26)	20	I	I	I	I	I	22	22	22	20	13	13	12	11	13	8	13	11
le	М			φ [%] (F(1), m - kol. 26)	19	30	22	14	21	21	27	27	27	27	33	17	17	?12	17	12	20	20
boreho		netr itości		F(2) (Rt/R w)	18	I	I	I	1	I	10	10	10	10	16,7	30	30	38	30	60	24	36
ow IG 1		Paran porowa		F(1) (Ri/q Rmf)	17	6,5	8,0	14,7	10,0	10,0	8,0	8,0	8,0	8,0	11,0	18,0	18,0	?11,0	18,0	21,0	15,6	?16,6
Wrotnó			ary oryjne	C _w [g/l]	16	I	I	I	I	I	I	66		I	86	I	113	I	I	I	I	127
g in the	ożowa		pomi laborato	Rw [Ωm]	15	I	I	I	I	I	I	0,075		I	0,080	I	0,050	I	I	I	I	0,045
l loggin	Woda zł PS		C _w [g/l]	14	I	I	I	I	I	60	60	60	60	86	86	113	113	113	140	140	140	
of wel		PS	Rw [Ωm]	13	I	I	I	I	I	0,08	0,08	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04	
oretation	lość wy m]		(LL3)	12	I	I	I	I	I	I	I		I	1,5	1,0	1,5	2,8 lub 2,0	1,5	2,5	0,5	2,5	
/e interp	Onor	właśc wars	Rt [5	(SO)	11	3,90	7,00	12,00	16,00	12,00	0,80	0,80	0,80	0,80	1,00	1,80	1,60	1,90	1,6 lub 1,5	2,40	0,95	1,40
lantitativ			ijərnlit yî	Oporność stre Ri [Ωm] (SO)	10	9,5	12,0	22,0	16,0	15,0	1,6	21,6	1,6	1,6	2,5	3,6	3,6	4,9	3,6	3,4	2,5	2,5
lts of qu		ივაოი	oyzonyd me.	ttlît ôsomoqO [mΩ] îmЯ	6	1,55	1,50	1,50	1,50	1,50	0,32	0,32	0,32	0,32	0,32	0,31	0,31	0,31	0,31	0,24	0,24	0,24
Resu			iylza	oułą żżorroqO [mΩ] mЯ	8	1,90	1,82	1,82	1,80	1,80	0,55	0,55	0,55	0,55	0,55	0,53	0,53	0,52	0,52	0,41	0,41	0,41
		[ጋ	o°] t iAzəntç	Temperatura I	7	31,3	32,2	32,4	32,5	32,6	43,2	43,5	43,6	43,7	43,8	45,5	46,0	46,4	46,5	48,0	48,5	48,6
				P/Q	9	2	2	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2
			[1	Średnica otworu d [mm	5	230	220	220	224	230	143	143	143	143	143	138	138	136	i	143	143	143
	òżozszpiM [m] d		òèozsźsiM [m] đ	4	16,5	10,5	$_{3,0}$	7,0	11,5	33,5	14,0	4,0	17,5	7,0	5,5	22,5	7,5	5,0	28,0	16,0	12,5	
				Stratygrafia	3	Т		ĥ	<u>ب</u>								Х					
				Litologia	2	n	q	q	d	d	d	d	d	d	d	d	d	d	d	d	d	d
	[m] głębokości [m]		1	1220,0-1236,5	1272,5-1283,0	1288,0-1291,0	1296,0-1303,0	1303,0–1314,5	1613,5–1647,0	1654,0–1668,0	1670,0–1674,0	1675,5-1693,0	1697,5–1704,5	1843,0–1848,5	1856,5–1879,0	1895,0–1902,5	1911,0–1916,0	1919,0–1947,0	1967,5–1983,0	1983,5–1996,0		

Wyniki ilościowej interpretacji pomiarów geofizycznych w otworze Wrotnów IG 1

s of munitative intermetation of well locarina in the Wrotnów IG 1

Interpretacja pomiarów geofizyki wiertniczej

71

Litologia/lithology: u – utwory piaszczysto-ilaste/sandy-clayey deposits, d – dolomity/dolomites, p – piaskowce/sandstones; stratygrafia/stratigraphy: T – trias/Triassic, P – perm/Permian, K – kambr/Cambrian

Opróbowanie	otworu	Wrotnów	IG	1
-------------	--------	---------	----	---

Data	Rodzaj próbnika	Głębokość [m]	Ciśnienie złożowe [at]	Rodzaj medium	Wielkość przypływu		
		1615,0	brak danych	filtrat płuczki	brak danych		
28.04.1972		1609,0	brak danych	brak danych brak przypływu			
		1315,0	brak danych	brak przypływu	-		
	próbnik kablowy	1265,0	brak danych	_			
		1095,0	brak danych	brak danych			
		1010,0	brak danych	filtrat płuczki	brak danych		
		922,0	brak danych	filtrat płuczki	brak danych		
		733,0	brak danych	brak przypływu	-		
6-7.06.1972	próbnik rurowy	1679,7–1611,0	159	solanka	12990		
15-16.06.1972	próbnik rurowy	1792,2–1761,0	181	solanka	60		
3-4.07.1972	próbnik rurowy	1910,8–1871,8	192	solanka	8124		
18-19.07.1972	próbnik rurowy	2043,7–2001,0	203,85	solanka	8460		

Testing at the Wrotnów IG 1 borehole

WYNIKI KORELACJI MIĘDZYOTWOROWEJ

Wykonano korelację warstw wyznaczonych w otworze Wrotnów IG 1 z odpowiednimi warstwami w dwóch otworach: Łochów IG 2, leżącym ok. 25,5 km w kierunku zachodnim oraz Stadniki IG 1, leżącym ok. 42,0 km na wschód od Wrotnowa IG 1. Przy korelacji korzystano ze wszystkich krzywych geofizycznych, na których obserwowano anomalie dobrze korelujące się z kompleksami stratygraficznymi.

Osady mezozoiczne silnie wyklinowują się w kierunku wschodnim. Różnice miąższości osadów poszczególnych systemów są dość znaczne. Zestawienie miąższości utworów kredy, jury i triasu we wszystkich korelowanych otworach przedstawiono w tabeli 20.W miąższości osadów paleozoicznych nie ma takich różnic. Poszczególne kompleksy wypiętrzają się ku górze w kierunku wschodnim o kilkaset metrów.

Kreda górna ma podobne wykształcenie we wszystkich korelowanych otworach. Jest to mało zróżnicowany kompleks wapieni marglistych. Alb stanowi doskonały reper korelacyjny; są to warstwy piaskowców z glaukonitem, występujące na znacznym obszarze, zachowujące podobne miąższości. W kredzie górnej obserwuje się znaczne różnice w litologii. W otworze Łochów IG 2 są to piaskowce z glaukonitem i mułowce, w otworze Wrotnów IG 1 występują wapienie z krzemieniami i margle, w otworze Stadniki IG 1 – mułowce.

Jura górna w otworze Wrotnów IG 1 różni się występowaniem dolomitów w części spągowej, których brak w pozostałych korelowanych otworach.

Trias ma podobne wykształcenie w otworach Wrotnów IG 1 i Łochów IG 2, gdzie występuje noryk, prawdopodobnie kajper, wapień muszlowy i pstry piaskowiec. Natomiast w otworze Stadniki IG 1 brak jest górnych pięter, występuje tylko mułowcowo-piaszczysty pstry piaskowiec.

Perm w części stropowej ma podobne wykształcenie we wszystkich korelowanych otworach. Są to dolomity, dolomity z anhydrytem i gipsem oraz anhydryty. W dolnej części permu niepewne jest oznaczenie litologii występujących utworów. W otworach Łochów IG 2 i Stadniki IG 1 występują dolomity, w otworze Wrotnów IG 1 wyinterpretowano w tym przedziale piaskowce z glaukonitem. Możliwe, że są to fragmentarycznie występujące piaskowce czerwonego spągowca.

Sylur we wszystkich otworach jest wykształcony w postaci kompleksu mułowców z nielicznymi cienkimi wkładkami wapienia. W otworze Ło-

Tabela 20

Miąższość osadów mezozoicznych w otworach Łochów IG 1, Wrotnów IG 1 i Stadniki IG 1

Thickness of Mesozoic sediments at Łochów IG 1, Wrotnów IG 1 and Stadniki IG 1 boreholes

Miąższość [m] Stratygrafia Łochów IG 2 Stadniki IG 1 Wrotnów IG 1 432,5 292,5 Kreda 563,0 396,0 308,0 Jura 152,5 281,5 Trias 382,5 148,5

chów IG 2 występuje w tym kompleksie warstwa diabazów. Nie zaznacza się ona w otworach Wrotnów IG 1 i Stadniki IG 1.

W kambrze środkowym i dolnym wydzielono kilka poziomów geofizycznych dobrze korelujących się we wszystkich otworach.