Model deformacji strefy krawędziowej centralno-wschodniej mikropłyty irańskiej w warunkach konwergencji płyt litosfery — na podstawie badań geologiczno-geofizycznych i modelowań numerycznych

Andrzej Konon¹, Marcin Barski¹, Marek Koprianiuk², Alireza Nadimi³, Ewa Słaby^{1, 4}, Rafał Szaniawski⁵, Anna Wysocka¹

A. Konon

M. Barski

M. Koprianiuk A. M

A. Nadimi

E. Słaby

R. Szaniawski

A. Wysocka

Obszar Iranu jest *idealnym*, *naturalnym laboratorium do badania kinematyki i dynamiki oddziaływań płyt litosferycznych z powodu wielu tektonicznych procesów, które na nim zachodziły, jak i aktywnych również współcześnie* (Vernant i in., 2004), co skłania do podejmowania badań w tym rejonie nie tylko naukowców irańskich, ale również wielu innych z całego świata, z najlepszych ośrodków badawczych.

Tektonika kenozoiczna Iranu została zdominowana przez kolizję płyt arabskiej i euroazjatyckiej (np. McKenzie, 1972). W wyniku kolizji tych dwóch kontynentalnych płyt, rozpoczętej prawdopodobnie w oligocenie (Yilmaz, 1993), powstały dwie główne strefy deformacji (ryc. 1): południowa, obejmująca głównie pasmo fałdowo-nasunięciowe orogenu Zagros, kontynuująca się po aktywną współcześnie strefę subdukcji w rejonie Makranu, oraz północna, do której należą pasma deformacyjne od Kaukazu przez Talesh i Alborz po Kopet-Dagh, stanowiące do dziś główne obszary akomodacji ruchów zbieżnych (np. Vernant i in., 2004). Pasma tych deformacji występują wzdłuż granic płyty irańskiej, w skład której wchodzi centralno-wschodnia mikropłyta irańska (CWMI), składająca się z kilku mniejszych bloków tektonicznych (ryc. 1): Yazd, Poshti-e-Badam, Tabas (Tabas-Kerman), Lut (Dasht-e-Lut) oraz Anarak-Khur (np. Davoudzadeh & Schmidt, 1984; Soffel i in., 1996, Shojaat i in., 2003). Od północy CWMI jest ograniczona uskokiem Wielkiej Pustyni, nazywanym również uskokiem Doruneh (Walker & Jackson, 2004), o charakterystycznym, łukowatym kształcie, stwierdzonym na długości około 770 km, od granicy irańsko-afganistańskiej poprzez

miejscowości Kashmar i Torbat-e-Heydariyeh do miejscowości Anarak (ryc. 1). Od zachodu i południowego zachodu CWMI jest ograniczona przez uskok Nain–Baft (Deh-Shir), od południa prawdopodobnie przez system uskoków (ryc. 1), między innymi przez uskok Jazmurian, a od wschodu przez strefę szwu Sistan — uskok Harirud (np. Tirrul i in., 1983; Soffel i in., 1996; Walker & Jackson, 2004).

W ramach polsko-irańskiej współpracy międzynarodowej wzdłuż północnej strefy krawędziowej CWMI od października 2009 r. jest realizowany 33-miesięczny projekt badawczy, który ma na celu rozpoznanie deformacji tektonicznych wynikających z konwergencji dwóch dużych płyt litosferycznych w strefie krawędziowej występującej pomiędzy nimi znacznie mniejszej mikropłyty kontynentalnej. Badania prowadzi grupa naukowców z Wydziału Geologii Uniwersytetu Warszawskiego, Instytutu Nauk Geologicznych i Instytutu Geofizyki Polskiej Akademii Nauk oraz Wydziału Geologii Uniwersytetu Payame Noor w Isfahanie. Planowane jest przeprowadzenie interdyscyplinarnych badań: strukturalnych, geochemicznych, paleomagnetycznych, sedymentologicznych, stratygraficznych oraz modelowań numerycznych. Projekt ten jest finansowany przez Ministerstwo Nauki i Szkolnictwa Wyższego.

Podczas kenozoicznej konwergencji dużych płyt litosfery: arabskiej i euroazjatyckiej, nastąpiła ich interakcja z CWMI, dlatego jest to obszar wyjątkowy, umożliwiający przeprowadzenie szeroko zakrojonych obserwacji geologicznych, unikalnych ze względu na złożoną historię tektoniczną tej mikropłyty, która obejmuje:

- zamykanie (już od kredy) okalających CWMI niewielkich basenów oceanicznych (ryc. 2): Sistan, Sabzevar i Fannuj (np. Taking, 1972; Davoudzadeh & Schmidt, 1984; Şengör, 1990; Shojaat i in., 2003), co doprowadziło do obdukcji ofiolitów w późnej kredzie lub paleocenie (Shojaat i in., 2003);
- duże zmiany w budowie tektonicznej, które zaszły w wyniku trwających kilkadziesiąt milionów lat złożonych etapów deformacji — częściowo przeciwstawnych pod względem zwrotu ruchu w stosunku do poprzednich;
- bardzo aktywną do dziś tektonikę przesuwczą, wynikającą z akomodacji ruchów zbieżnych pomiędzy

¹Wydział Geologii, Uniwersytet Warszawski, ul. Żwirki i Wigury 93, 02-089 Warszawa; andrzej.konon@uw.edu.pl

²Departament Poszukiwania Złóż, Polskie Górnictwo Naftowe i Gazownictwo SA, ul. Kasprzaka 25, 01-224 Warszawa

³Geology Department, Payame Noor University of Isfahan, Kohandej, POB. 81456-617, Isfahan, Iran

⁴Instytut Nauk Geologicznych, Polska Akademia Nauk, ul. Twarda 51/55, 00-818 Warszawa

⁵Instytut Geofizyki, Polska Akademia Nauk, ul. Księcia Janusza 64, 01-452 Warszawa

Ryc. 1. Lokalizacja obszaru badań przedstawiona na tle modelu cyfrowego terenu, wykonanego przez autorów projektu na podstawie danych SRTM – NASA

 \rightarrow

Ryc. 2. Lokalizacja głównych wystąpień przedplioceńskich sekwencji ofiolitowych (objaśnienia w tekście) wg Shojaata i in. (2003). Położenie sekwencji ofiolitowych przedstawione przez Shojaata i in. (2003) nie odzwierciedla sytuacji geodynamicznej z czasu obdukcji, a jedynie pokazuje obecną lokalizację stanowisk z ofiolitami wzdłuż krawędzi CWMI

poszczególnymi fragmentami płyt kontynentalnych i w związku z tym ciągłe powstawanie licznych struktur tektonicznych, umożliwiające obserwacje współczesnych form morfologicznych, takich jak skarpy uskokowe (ryc. 3), złożone stożki aluwialne oraz systemy koryt rzecznych o zmiennym biegu (ryc. 4);

powstanie basenów przyprzesuwczych, wypełnianych osadami co najmniej od pliocenu do dziś.

W eocenie i oligocenie (56–25 mln lat temu) kierunek przemieszczeń płyty arabskiej względem euroazjatyckiej zmieniał się stopniowo z SW-NE na S-N (McQuarrie i in., 2003). Zmieniała się przez to wielkość subdukcji prostopadłej do łuku magmowego, który był zlokalizowany na płycie irańskiej. W ciągu 10 mln lat w wyniku skośnej konwergencji nastąpiło rozdzielenie na składową prostopadłą do łuku (szacowaną na 17 mm/rok), co znalazło odzwierciedlenie w pasmach deformacji Zagrosu i Alborz, oraz przesuwczą, równoległą do łuku (szacowaną na 14 mm/rok) (McQuarrie i in., 2003). Zmiany kierunków skracania mogły się zaznaczyć również w obrębie CWMI. Na obecność wieloetapowych deformacji wskazuje np. niezgodny kontakt paleogeńskich konglomeratów Kerman ze sfałdowanymi skałami mezozoicznymi. Wiek początkowych deformacji jest szacowany na późną kredę–paleocen, a następnych na eocen–oligocen (np. Aghanabati, 1994). Kolejne deformacje zachodziły w pliocenie. W ich wyniku nastąpiła reaktywacja starszych stref uskokowych, np. rozdzielających bloki w obrębie CWMI, oraz powstały nowe struktury, w tym również i fałdy, np. w basenie Tabas (Bavandpur i in., 2002). Kierunki kompresji wyznaczone na podstawie analizy pierwszego ruchu sejsmografu podczas trzęsień Ziemi (*focal mechanism*) są prostopadłe do płaszczyzn osiowych fałdów, co sugeruje, że skracanie fałdów trwa do dziś (Hessami i in., 2003).

Deformacje pomiędzy płytami arabską a euroazjatycką we wschodniej części Iranu kończą się wzdłuż południka 61°E (ryc. 1), wzdłuż uskoku Sistan (Harirud) (Allen i in., 2004). Szacowana wielkość konwergencji płyt arabskiej i euroazjatyckiej zwiększa się w kierunku wschodnim o

Ryc. 3. Skarpa uskoku Wielkiej Pustyni koło Jandaq. W skrzydle wiszącym odsłaniają się eoceńskie skały osadowe

Ryc. 4. Pokryte poligonami szczelin z wysychania wyschnięte koryto rzeki okresowej w rejonie Jandaq. Obie fot. A. Konon

10 mm/rok w stosunku do zachodniego Iranu i obecnie wynosi wzdłuż południka 60°E 26 mm/rok. Konwergencja jest akomodowana w obrębie CWMI poprzez przesuwczość (aktywną co najmniej od 3-7 mln lat do dzisiaj) wzdłuż głównych uskoków o kierunku S-N, rozgraniczających poszczególne bloki tektoniczne (np. Walker & Jackson, 2004; Allen i in., 2004). Wzdłuż tych uskoków występują prawoskrętne przemieszczenia: 70 km wzdłuż uskoku Sistan i 12 km wzdłuż uskoku Neyband-Gowk, co oznacza minimum 80 km przemieszczenia pomiędzy blokami afgańskimi a płytą irańską i wchodzącą w jej skład CWMI (op. cit.). Wyniki badań, m.in. Allena i in. (2004) oraz Walkera i Jacksona (2004), wskazują, że na przełomie miocenu i pliocenu doszło do dużej reorganizacji deformacji, związanej prawdopodobnie z rozpoczętą już przed pliocenem główną fazą kolizji płyt arabskiej i euroazjatyckiej, gdy w strefie bezpośredniej kolizji doszło do nasunięcia bloku Sanandaj-Sirjan (ryc. 2) na przedpole (np. Agard i in., 2005).

Deformacje tektoniczne CWMI wywołane konwergencją pomiędzy płytami arabską i euroazjatycką były do tej pory opisywane głównie jako prawoskrętna przesuwczość wzdłuż uskoków o kierunkach S-N w okresie od 3-7 mln lat do dziś (np. Walker & Jackson, 2004; Allen i in., 2004, 2006). Wcześniejsze deformacje - późnoeoceńsko-wczesnomioceńskie - były sugerowane jedynie wzdłuż wschodniej granicy CWMI, w rejonie szwu Sistan (Tirrul i in., 1983), a w obrębie CWMI do tej pory nie zostały szczegółowo opisane (Allen i in., 2004 — tabela 1). Do badania przedplioceńskiego etapu ewolucji CWMI są wykorzystywane głównie metody paleomagnetyczne (Davoudzadeh & Schmidt, 1984; Soffel i in., 1996). Wyniki tych badań sugerują, że w kenozoiku (przed środkowym miocenem?), w trakcie końcowych etapów dokowania do płyty irańskiej i płyty euroazjatyckiej (tarcza Turan), CWMI podlegała znacznej rotacji wokół osi pionowej (do ok. 35°) w kierunku przeciwnym do ruchu wskazówek zegara (op. cit.). Tak duże wartości rotacji budzą jednak kontrowersje (np. Zanchi i in., 2007). Ponadto ograniczonej rotacji mogły podlegać również poszczególne mniejsze bloki tektoniczne, z których jest zbudowana CWMI (Şengör, 1990).

Możliwość przedplioceńskich ruchów CWMI sugeruje występowanie wokół wszystkich jej krawędzi sekwencji ofiolitowych — Sabzevar, Nain, Shahr-e-Babak, Band-e-Zeyarat i Tchehel–Kureh (Shojaat i in., 2003). Jak już wspomniano, wyniki badań tych sekwencji wskazują, że mikropłyta ta była otoczona niewielkimi basenami oceanicznymi.

Zgodnie z dotychczasowymi koncepcjami (np. Allen i in., 2004, 2006; Walker & Jackson, 2004), od południowego zachodu na CWMI oddziałują siły nacisku płyty arabskiej, od północy zaś siły tektoniczne wynikające z kolizji CWMI z płytą euroazjatycką. Na szczególną uwagę zasługują zmiany kierunków skróceń wzdłuż północnej granicy CWMI, którą obecnie stanowi uskok przesuwczy Wielkiej Pustyni (Doruneh). Kierunki te zmieniały się w czasie i były różne wzdłuż poszczególnych odcinków tego uskoku. Do tej pory w znikomym stopniu zostały rozpoznane związki pomiędzy zewnętrznymi siłami tektonicznymi i wewnętrznymi czynnikami kształtującymi rozkład naprężeń w CWMI, takimi jak np. aktywność dużych przesuwczych stref uskokowych w obrębie mikropłyty CWMI. Planujemy podjąć próbę rozpoznania tej złożonej i bardzo ciekawej problematyki dotyczącej kenozoicznej ewolucji tektonicznej północnej

krawędzi centralno-wschodniej mikropłyty irańskiej, na podstawie badań deformacji tektonicznych oraz ich zapisu w osadach od momentu zamykania otaczających mikropłytę CWMI basenów oceanicznych, związanych z etapami kenozoicznej konwergencji znacznie większych płyt litosfery — arabskiej i euroazjatyckiej. Obszar planowanych badań znajduje się w miejscu unikalnym pod względem możliwości przeprowadzenia takich obserwacji, gdyż charakteryzuje go ciągłość deformacji, od zamykania basenów oceanicznych poprzez kolizję kontynentalną aktywną do dziś, bez nałożenia się innych znaczących etapów deformacji.

Literatura

AGARD P., OMRANI J., JOLIVET L. & MOUTHEREAU F. 2005 — Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Intern. J. Earth Sc., 94: 401–419. AGHANABATI A. 1994 — Mapa geologiczna w skali 1 : 100 000, arkusz Shirgesht. Geological Survey of Iran.

ALLEN M., JACKSON J. & WALKER R. 2004 — Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, TC2008, doi:10.1029/2003TC001530: 1–16.

ALLEN M., BLANC E. J.-P., WALKER R. JACKSON J., TALEBIAN M.& GHASSEMI M.R. 2006 — Contrasting styles of convergence in the Arabia-Eurasia collision: why escape tectonics does not occur in Iran. [W:] Dilek Y. & Pavlides S. (eds.), Postcollisional tectonics and magamatism in the Mediterranean region and Asia. Geol. Soc. America Sp. Paper, 409: 579–589.

BAVANDPUR A.K., HAJIHOSAINI A. & AGHANABATI A. 2002 – Mapa geologiczna w skali 1 : 100 000, arkusz Tabas. Geological Survey of Iran.

DAVOUDZADEH M. & SCHMIDT K. 1984 — A review of the mesozoic palogeography and paleotectonic evolution of Iran. Neues Jahrb. Geol. Paläontol. Abh., 168: 182–207.

HESSAMI K., JAMALI F. & TABASSI H. 2003 — Major active faults of Iran. Seismotectonic Department, Seismology Research Centre, Tehran, Iran.

MCKENZIE D.P. 1972 — Active tectonics of the Mediterranean region. Geophys. J. Royal Astronomic. Soc., 30: 109–185.

MCQUARRIE N., STOCK J.M., VERDEL C. & WERNICKE B.P. 2003 — Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Letters, 30, 2036, doi: 10.1029/2003GL017992.

SENGÖR A.M.C. 1990 — A new model for the late Paleozoic –Mesozoic tectonic evolution of Iran and implication for Oman. [W:] Robertson A.H.F., Searle M.P. & Ries A.C. (eds), The geology and tectonics of the Oman region. Geol. Soc. London, Sp. Publ., 49: 797–831.

SHOJAAT B., HASSANIPAK A.A., MOBASHER K & GHAZI A.M. 2003 — Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. J. Asian Earth Sc., 21: 1053–1067.

SOFFEL H.C., DAVOUDZADEH M., ROLF C. & SCHMIDT S. 1996 — New palaemagnetic data from Central Iran and a Triassic palaereconstruction. Geol. Rundsch., 85: 293–302.

TAKING M. 1972 — Iranian geology and continental drift in the Middle East. Nature, 235: 147–150.

TIRRUL R., BELL I.R., GRIFFIS R.J. & CAMP V.E. 1983 - The Sistan suture zone of eastern Iran. Geol. Soc. Amer. Bull., 94: 134-150. VERNANT P.H., NILFOROUSHAN F., HATZFELD D., ABBASSI M.R., VIGNY C., MASSON F., NANKALI H., MARTINOD J., ASHTIANI A., BAYER R., TAVAKOLI F. & CHERY J. 2004 - Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Intern., 157, doi: 10.1111/j.1365-246X.2004.02222.x: 381-398. WALKER R. & JACKSON J. 2004 - Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23, art, no TC5010, doi:10.1029/2003TC001529: 1-24 YILMAZ Y. 1993 - New evidence and model on the evolution of the southeast Anatolian orogen. Geol. Soc. Amer. Bull., 105: 251-271 ZANCHI M., BALINI F., BERRA E., GARZANTI M., MATTEI G., MUTTONI S., ZANCHETTA A., NICORA I., BOLLATI F. & MOSSAVAR I. 2007 — The Cimmerian evolution of the Nakhlak-Anarak area (Central Iran) and its bearing for the reconstruction of the history of the Eurasian margin. Geophys. Res. Abstracts, 9: 05059, European Geosciences Union.

przegląd GEOLOGICZNY

Cena 12,00 zł (w tym 0% VAT)

TOM 58 • NR 1 (STYCZEŃ) • 2010

Indeks 370908 ISSN-0033-2151 **Zdjęcia na okładce: górne** — Synklina w górach Zagros, na południe od Isfahanu, Iran; **dolne** — Wychodnie skał kredowych i kenozoicznych w górach Wysokiego Zagrosu w rejonie Semirom, na południe od Isfahanu, Iran. Fot. A. Konon (patrz str. 42) **Cover photos: upper** — A syncline in the Zagros Mountains south of Isfahan, Iran; **lower** — Outcrops of Cretaceous and Cenozoic rocks in the High Zagros Mts, Semiron area south of Isfahan, Iran. Photo by A. Konon (see p. 42)