

Państwowy Instytut Geologiczny Państwowy Instytut Badawczy Państwowa służba geologiczna Państwowa służba hydrogeologiczna

Monitoring osiadania powierzchni terenu w 3 wybranych lokalizacji poszukiwań gazu w formacjach łupkowych – projekt pilotażowy"

RAPORT ZADANIE [9.0] Analiza i opracowanie wyników każdej sesji pomiarowej GNSS 5 dokumentacji

Główny autor

Kierownik projektu

Dr Zbigniew Perski

dr Zbigniew Perski

Sfinansowano ze środków Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej Szczegóły dokumentu:

Numer podzadania	9.0
Autorzy	Zestawił: Zbigniew Perski
	Opracował: zespół UWM pod kierunkiem dr. Hab. Inż. Pawła
	Wielgosza
Uwagi	Raport sporządzono w listopadzie 2016

1 Wstęp

Niniejszy raport stanowi zestawienie opracowań z zakresu "Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej". Zadanie to wykonywał zespół pracowników Uniwersytetu Warmińsko-Mazurskiego (UWM) i PIG-PIB pod kierunkiem dr hab. Inż. Pawła Wielgosza. Opracowanie składa się z 5 raportów zawierających wyniki pomiarów terenowych na 3 poligonach badawczych oraz opracowanie wyników.

Badania terenowe prowadzone były w następujących terminach:

Kampania pomiarowa	data
I	19 08-30 08 2014
	19100 2010012011
II	02.02-09.02.2015
	10.00.10.00.0015
111	19.08-12.09.2015
IV	02.03-14.04.2016
V	26.07-02.08.2016

Szczegółowa I kompleksowa analiza otrzymanych wyników została przedstawiona w dokumencie "Opracowanie naukowo-badawcze"

Uniwersytet Warmińsko- Mazurski w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Instytut Geodezji

Olsztyn, 12 listopada 2014 r.

Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej

Raport z realizacji pierwszej kampanii pomiarowej przeprowadzonej w dniach 19-30 sierpnia 2014 r.

Hide

Kierownik tematu: dr hab. inż. Paweł Wielgosz, prof. UWM

Spis treści

I Dan	e formalno-prawne	5
1. Zle	eceniodawca	6
2. W	vkonawca	6
3. Au	itorzy raportu	6
4. Ze	spół pomiarowy	6
4.1	Pomiary GNSS	6
4.2	Niwelacja precyzyjna	7
II Niv	welacia satelitarna	8
1. Ce	l przeprowadzonych pomiarów	9
2. Oh	przepre (rudzen) en permare (r pszar opracowania	9
2.1	Lokalizacia	9
2.2	Charakterystyka poligonów doświadczalnych oraz lokalizacia punktów	10
2.2	2.1 Lewino	10
2.2	2.2 Babiak	11
2.2	2.3 Berejów	
3. Op	bis techniczny	12
3.1	Sprzet pomiarowy	12
3.2	Procedura pomiaru GNSS	15
3.2	2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i	
we	wnętrznych.	15
3.2	2.2 Procedura pomiarowa na reflektorach typu B	17
3.2	2.3 Procedura pomiarowa na reflektorach typu A	17
3.3	Podsumowanie pomiarów GNSS	17
4. Op	pracowanie wyników obserwacji	18
4.1	Nawiązanie do sieci ASG-EUPOS – poligon Lewino	18
4.1	.1 Sposób nawiązania	18
4.1	.2 Strategia obliczeniowa	19
4.1	.3 Analiza liczby obserwacji	20
4.1	.4 Analiza wyznaczenia nieoznaczoności	20
4.1	.5 Analiza wyznaczonych współrzędnych punktów referencyjnych	21
4.2	Wyznaczenie ostatecznych współrzędnych punktów referencyjnych – poligon	
Lewi	no	22
4.2	2.1 Geometria rozwiązania	22
4.2	2.2 Strategia obliczeniowa	23
4.2	2.3 Analiza liczby obserwacji	24
4.2	2.4 Analiza wyznaczenia nieoznaczoności	24
4.2	2.5 Analiza wyznaczonych współrzędnych punktów referencyjnych	24
4.2	2.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych w ukła	dzie
IT	RF2008 (2014.63)	24
4.3	Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino	25
4.3	3.1 Geometria rozwiązania	25
4.3	3.2 Strategia obliczeniowa	25
4.3	3.3 Analiza liczby obserwacji	25
4.3	B.4 Analiza wyznaczenia nieoznaczoności	26
4.3	B.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	27

4.3.6	Zestawienie ostatecznych współrzędnych punktów kontrolowanych w ukła	dzie
ITRF2(008 epoka kampanii	27
4.4 Na	wiązanie do ASG-EUPOS – poligon Babiak	28
4.4.1	Sposób nawiązania	28
4.4.2	Strategia obliczeniowa	28
4.4.3	Analiza liczby obserwacji	28
4.4.4	Analiza wyznaczenia nieoznaczoności	29
4.4.5	Analiza wyznaczonych współrzędnych punktów referencyjnych	29
4.5 Wy	znaczenie ostatecznych współrzędnych punktów referencyjnych – poligon	
Babiak		30
4.5.1	Geometria rozwiązania	30
4.5.2	Strategia obliczeniowa	30
4.5.3	Analiza liczby obserwacji	30
4.5.4	Analiza wyznaczenia nieoznaczoności	31
4.5.5	Analiza wyznaczonych współrzędnych punktów referencyjnych	31
4.5.6	Zestawienie ostatecznych współrzędnych punktów referencyjnych w układ	zie
ITRF2(008 epoka kampanii	32
4.6 Wy	znaczenie współrzędnych punktów kontrolowanych – poligon Babiak	32
4.6.1	Geometria rozwiązania	32
4.6.2	Strategia obliczeniowa	32
4.6.3	Analiza liczby obserwacji	33
4.6.4	Analiza wyznaczenia nieoznaczoności	34
4.6.5	Analiza wyznaczonych współrzędnych punktów kontrolowanych	34
4.6.6	Zestawienie ostatecznych współrzędnych punktów kontrolowanych w ukła	dzie
ITRF2(008.64	34
4.7 Na	wiązanie do ASG-EUPOS – poligon Berejów	35
4.7.1	Sposób nawiązania	35
4.7.2	Strategia obliczeniowa	36
4.7.3	Analiza liczby obserwacji	36
4.7.4	Analiza wyznaczenia nieoznaczoności	36
4.7.5	Analiza wyznaczonych współrzędnych punktów referencyjnych	37
4.8 Wy	znaczenie ostatecznych współrzędnych punktów referencyjnych – poligon	
Berejów.		38
4.8.1	Geometria rozwiazania	38
4.8.2	Strategia obliczeniowa	38
4.8.3	Analiza liczby obserwacji	38
4.8.4	Analiza wyznaczenia nieoznaczoności	39
4.8.5	Analiza wyznaczonych współrzednych punktów referencyjnych	39
4.8.6	Zestawienie ostatecznych współrzednych punktów referencyjnych w układ	zie
ITRF2(008 epoka kampanii	39
4.9 Wv	znaczenie współrzednych punktów kontrolowanych – poligon Berejów	40
4.9.1	Geometria rozwiazania	40
4.9.2	Strategia obliczeniowa	40
4.9.3	Analiza liczby obserwacji	40
4.9.4	Analiza wyznaczenia nieoznaczoności	41
4.9.5	Analiza wyznaczonych współrzednych punktów kontrolowanych.	41
4.9.6	Zestawienie ostatecznych współrzednych punktów kontrolowanych w ukła	Idzie
ITRF2	008 epoka kampanii	42

III Niwelacja geometryczna	43
1. Cel przeprowadzonych pomiarów	44
2. Obszar opracowania	44
2.1 Lokalizacja	44
2.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	44
2.2.1 Lewino	44
2.2.2 Babiak	45
2.2.3 Berejów	45
3. Opis techniczny	46
4. Opracowanie wyników obserwacji	48
4.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR	48
4.2 Wyznaczenie wysokości w układzie kronsztadt'86	49
4.3 Ścisłe wyrównanie sieci kontrolnych	51
4.4 Podsumowanie	55
Spis rysunków	56
Spis tabel	57
Załączniki	58

I Dane formalno-prawne

1. Zleceniodawca

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy ul. Rakowiecka 4 00-975 Warszawa

2. Wykonawca

Uniwersytet Warmińsko-Mazurski w Olsztynie

Wydział Geodezji i Gospodarki Przestrzennej

Instytut Geodezji

ul. Oczapowskiego 1

10-719 Olsztyn

3. Autorzy raportu

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Katarzyna Stępniak

4. Zespół pomiarowy

4.1 Pomiary GNSS

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Katarzyna Stępniak
- mgr inż. Paweł Przestrzelski
- dr Zbigniew Perski
- dr Tomasz Wojciechowski
- dr Piotr Nescieruk
- mgr Marcin Wódka
- mgr inż. Katarzyna Chowaniec Tobiasz

- mgr inż. Maria Przyłucka
- mgr Jerzy Frydel
- mgr inż. Leszek Jurys

4.2 Niwelacja geometryczna

- dr inż. Radosław Baryła organizacja i nadzór prac terenowych
- Aleksander Jurczyk
- Adrian Kochanowski
- Łukasz Mokrzycki

II Niwelacja satelitarna

1. Cel przeprowadzonych pomiarów

Celem przeprowadzonych pomiarów jest wyznaczenie pozycji referencyjnej punktów referencyjnych oraz punktów kontrolnych, które mają posłużyć do badań odkształceń terenu, które mogą powstać podczas wykonywania szczelinowań.

2. Obszar opracowania

2.1 Lokalizacja

Pomiarami objęto trzy poligony doświadczalne zlokalizowane w pobliżu następujących miejscowości: Lewino (woj. pomorskie, powiat wejherowski), Babiak (woj. warmińsko-mazurskie, powiat lidzbarski) oraz Berejów (woj. lubelskie, powiat lubartowski). Punkty referencyjne zlokalizowano poza przewidywanym obszarem odkształceń terenu. Lokalizację poligonów badawczych przedstawia rysunek 1.

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)

2.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

2.2.1 <u>Lewino</u>

Teren głównie rolniczy z dość znaczącym udziałem gruntów leśnych. Obszar objęty badaniami jest pofałdowany ze znacznymi deniwelacjami.

Punkty referencyjne zlokalizowano za zewnątrz obszaru zagrożonego odkształceniami. Część punktów referencyjnych, na przykład punkt GG24 na poligonie badawczym w Lewinie (Rys. 2), zlokalizowana była w pobliżu zasłon terenowych, co niekorzystnie wpływa na pomiar GNSS, a w konsekwencji na wyniki pomiarów.

Rysunek 2 Zasłony terenowe - punkt GG24, poligon Lewino

Reflektory (punkty kontrolne), służące do pomiarów odkształceń, rozmieszczone są równomiernie na całym badanym terenie. Część z nich także jest zlokalizowana w pobliżu zasłon terenowych. Rozmieszczenie punktów pomiarowych przedstawia rysunek 3.

Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)

2.2.2 <u>Babiak</u>

Teren objęty badaniami jest pofałdowany, ze znacznymi deniwelacjami, głownie rolniczy.

Podobnie jak Lewinie, punkty referencyjne na poligonie w Babiaku zostały zlokalizowane poza obszarem narażonym na odkształcenia. Reflektory zostały rozmieszczone równomiernie na badanym terenie, przy czym także na tym poligonie część punktów referencyjnych i część reflektorów została zlokalizowana w pobliżu zasłon terenowych. Na rysunku 4 przedstawiono rozmieszczenie punktów pomiarowych na obszarze Babiaka.

Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)

2.2.3 <u>Berejów</u>

Teren objęty badaniami położony jest na równinie, deniwelacje terenu są bardzo małe. Obszar głównie rolniczy.

Punkty referencyjne zlokalizowane na zewnątrz obszaru zagrożonego odkształceniem. Reflektory rozmieszczone są równomiernie na całym obszarze. Na rysunku 5 przedstawiono rozmieszczenie punktów pomiarowych na poligonie badawczym w Berejowie.

Rysunek 5 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)

3. Opis techniczny

3.1 Sprzęt pomiarowy

Do przeprowadzenia precyzyjnych pomiarów satelitarnych wykorzystano dwuczęstotliwościowe odbiorniki GNSS:

- Javad Alpha z anteną GrAnt-G3T
- Hi-Target V30
- Topcon Hiper Plus
- Trimble R8
- Trimble SPS881.

Centrowanie anten GPS na punktach referencyjnych realizowane było przy użyciu spodarek przykręcanych bezpośrednio do głowic tych punktów (Rys. 6 - 7). Wysokość anteny wyznaczana była suwmiarką, w zależności od odbiornika: względem trzech punktów wysokościowych znajdujących się w każdej głowicy (Trimble R8 oraz Trimble SPS881), względem głowicy punktu referencyjnego w trzech miejscach (Javad Alpha z anteną GrAnt G3T) lub w dwóch miejscach (Topcon Hiper Pro).

Rysunek 6 Głowica punktu referencyjnego

Rysunek 7 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego

Na poligonach badawczych w Lewinie oraz Berejowie na reflektorach centrowanie anten następowało na zainstalowanym w tym celu trzpieniu. Na trzpień zakładane było przenośne urządzenie dające możliwość przykręcenia anteny GNSS. Urządzenie to miało 50mm wysokości. Trzpień przymocowany był do reflektora pod kątem, tak aby antena skierowana była pionowo w górę.

Na poligonie badawczym w Babiaku centrowanie anteny zależało od typu reflektora. Na reflektorach typu B centrowanie odbywało się analogicznie jak na poligonach w Lewinie i Berejowie, z tą różnicą, że trzpienie zamontowane były zgodnie z osią reflektora, a tym samym, to urządzenia służące przykręceniu anteny GNSS, zamontowane na stałe, umożliwiało ustawienie anteny pionowo w górę, wysokości tego urządzenia nie wyznaczono. Na pozostałych reflektorach centrowanie przebiegało w ten sam sposób, co na pozostałych dwóch poligonach badawczych.

Rysunek 8 przedstawia reflektor z zamontowaną anteną GNSS.

Rysunek 8 Reflektor z anteną GNSS

3.2 Procedura pomiaru GNSS

W Projekcie Technicznym dla każdego obiektu przewidziano cztery punkty referencyjne zewnętrzne, cztery punkty referencyjne wewnętrzne oraz osiemnaście reflektorów do pomiaru techniką GNSS.

W pomiarach uczestniczyło 10 odbiorników GNSS. Pomiary na poszczególnych obiektów przebiegały według następującego schematu:

- punkty referencyjne zewnętrzne - dwie ośmiogodzinne sesje pomiarowe;

- punkty referencyjne wewnętrzne:
 - dwa wybrane punkty dwie ośmiogodzinne sesje pomiarowe,
 - pozostałe dwa punkty jedna sesja ośmiogodzinna;
- reflektory jedna sesja dwugodzinna.

Plan sesji pomiarowych przedstawia tabela 1.

W przeprowadzonych kampaniach pomiarowych GNSS przyjęto następujące parametry pomiaru:

- interwał pomiarowy: 10 s,
- minimalna wysokość satelity nad horyzontem: 0°,
- długość sesji pomiarowej: 8 godzin (punkty referencyjne) oraz 2 godziny (reflektory).

3.2.1 <u>Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych</u>

Przed przystąpieniem do realizacji pomiarów GNSS na punkcie referencyjnym obserwator powinien dokładnie sprawdzić stan głowicy znaku oraz śruby(Rys. 6), a następnie przeprowadzić następujące czynności:

- przykręcić i spoziomować spodarkę (Rys. 7),
- umieścić antenę GNSS w spodarce,
- skierować antenę w kierunku północnym,
- podłączyć antenę do odbiornika GNSS (w przypadku anteny zewnętrznej),
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika GNSS,
- wykonać suwmiarką pomiar wysokości anteny GNSS.

Procedurę pomiaru wysokości anteny GNSS należało przeprowadzać co najmniej trzy razy w trakcie wykonywania obserwacji.

Tabela 1 Plan sesji pomiarowych

					l i	LEWIN	Ю		
Data	19.08.2014r. 20.08.2014r.		L 4r.						
Sesja pomiarowa	D1a	D1b	D1c	D2a	D2b	D2c	Odbiornik	Antena	Numer przyrządu
PIG 1		g30			g30		Hi-Target V30	Zintegrowana	-
PIG 2		g32			g32		Trimble SPS881	Zintegrowana	-
PIG 3		g33			g33		Trimble SPS881	Zintegrowana	-
PIG 4		g34			g34		Trimble R8	Zintegrowana	-
PIG 5	r16	r20	r11	r14	r13	r02	Trimble R8	Zintegrowana	1
PIG 6	r17	r19	r10	r15	r12	r08	Topcon Hiper +	Zintegrowana	2
UWM 1		g23			g23		Javad Alpha	Javad GrAnt-G3T	-
UWM 2		g29			g29		Javad Alpha	Javad GrAnt-G3T	-
UWM 3		g24		r07	r06	r03	Topcon Hiper +	Zintegrowana	3
UWM 4		g25		r01	r05	r04	Topcon Hiper +	Zintegrowana	4
						BABIA	λK		
Data	22	.08.201	4r.	23	.08.201	.4r.			
Sesja pomiarowa	D1a	D1b	D1c	D2a	D2b	D2c	Odbiornik	Antena	przyrządu
PIG 1		g31			g31		Hi-Target V30	Zintegrowana	-
PIG 2		g32		g32		Trimble SPS881	Zintegrowana	-	
PIG 3		g33			g33		Trimble SPS881	Zintegrowana	-
PIG 4		g34		g34		Trimble R8	Zintegrowana	-	
PIG 5	r06	r15	r07	r20	r17	r11	Trimble R8	Zintegrowana	1
PIG 6	r05	r16	r08	r19	r18	r12	Topcon Hiper +	Zintegrowana	2
		g21			g21	-	Topcon Hiper +	Zintegrowana	-
		g29		r10			Topcon Hiper +	Zintegrowana	4
1114/04/2		g30			g30	-	Javad Alpha	Javad GrAnt-G3T	-
					r13	r14	Topcon Hiper +	Zintegrowana	4
UWM 3		g26		r01	r02	r03	Javad Alpha	Javad GrAnt-G3T	3
	_			_	B	BEREJĆ	ŚW		
Data	25	.08.201	4r.	26	.08.201	L4r.			Numer
Sesja pomiarowa	D1a	D1b	D1c	D2a	D2b	D2c	Odbiornik	Antena	przyrządu
PIG 1		g31			g31		Hi-Target V30	Zintegrowana	-
PIG 2		g32			g32		Trimble SPS881	Zintegrowana	-
PIG 3		g33			g33		Trimble SPS881	Zintegrowana	-
PIG 4		g34			g34		Trimble R8	Zintegrowana	-
PIG 5	r03	r05	r17	r09	r19	r14	Trimble R8	Zintegrowana	
PIG 6	r04	r06	r18	r10	r20	r11	Topcon Hiper +	Zintegrowana	
UWM 1		g22			g22		Javad Alpha	Javad GrAnt-G3T	-
		g21			g21		Javad Alpha	Javad GrAnt-G3T	-
		g26		r01	r08	r15	Topcon Hiper +	Zintegrowana	3
UWM 3		g23		r02	r12	r13	Topcon Hiper +	Zintegrowana	4

3.2.2 <u>Procedura pomiarowa na reflektorach typu B</u>

Przed przystąpieniem do realizacji pomiarów GNSS na reflektorze obserwator powinien dokładnie sprawdzić stan urządzenia służącego do zamontowania anteny na reflektorze, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na reflektorze,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

3.2.3 Procedura pomiarowa na reflektorach typu A

Przed przystąpieniem do realizacji pomiarów na reflektorze obserwator powinien dokładnie sprawdzić trzpień służący centrowaniu anteny GNSS, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na trzpieniu,
- umieścić antenę wraz z przejściówką na trzpieniu,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

3.3 Podsumowanie pomiarów GNSS

Kampania pomiarowa GNSS przeprowadzona, w okresie od 19 do 26 sierpnia 2014 roku, na terenie znajdującym się bezpośrednio przy zaworach służących do szczelinowania oraz w miejscach stabilizacji punktów referencyjnych nie przebiegła według przyjętego wcześniej planu sesji pomiarowych. Pomiary nie rozpoczynały się o zaplanowanych wcześniej godzinach z uwagi na nieprzewidziane problemy techniczne. Na części punktów referencyjnych stwierdzono usterki znaków, między innymi: śruba służąca przykręceniu spodarki, do głowicy znaku miała zbyt dużą średnicę, co spowodowało, że spodarka nie stykała się z głowicą, lub w innym przypadku śruba wykręcała się razem ze spodarką. Na reflektorach typu B, urządzenia służące do przymocowania anteny GNSS miały zbyt małą średnicę, co spowodowało konieczność spiłowania trzpienia i zamontowania

tych urządzeń na stałe, natomiast urządzenia służące do zamontowania anteny na pozostałych reflektorach uniemożliwiały dokręcenie odbiorników zintegrowanych Trimble R8 oraz Trimble SPS881 – odbiornik nie stykał się z urządzeniem. Dodatkowo część punktów referencyjnych oraz wybrane reflektory zostały zlokalizowane w pobliżu zasłon terenowych, co może niekorzystnie wpłynąć na wyniki pomiarów. Pozostałe uwagi uwzględniono w dziennikach obserwacyjnych zawartych w załączniku 18.

4. Opracowanie wyników obserwacji

4.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino

4.1.1 Sposób nawiązania

Nawiązanie lokalnej sieci kontrolnej do sieci stacji permanentnych, a tym samym do satelitarnego układu ITRF2008, pozwala na wykorzystanie precyzyjnych produktów IGS w jej opracowaniu (np. precyzyjnych orbit, modeli jonosfery, parametrów ruchu obrotu Ziemi ERP). Nawiązanie punktów referencyjnych sieci kontrolnej na obiekcie Lewino przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 4 stacje najbliżej położone obszaru objętego siecią – GDAN, KOSC, REDZ, WLAD (Rys. 9). W systemie ASG-EUPOS funkcjonują współrzędne stacji w układzie PL-ETRF2000 (epoka odniesienia 2011,0). Przed przystąpieniem do opracowania konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS do układu ITRF2008 na epokę kampanii według algorytmu opracowanego przez Boucher i Altamimi "*Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign*" (2011).

Rysunek 9 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)

4.1.2 <u>Strategia obliczeniowa</u>

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych zakłada dowiązania do 4 stacji ASG-EUPOS przy wstępnym założeniu ich błędów *a priori* na poziomie 1 mm dla każdej składowej. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 32 km do 70 km.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L3;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 10 °;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity satelitów, parametry orientacji Ziemi, zegary satelitów IGS;
- międzyczęstotliwościowe opóźnienia sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L5/L3;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 5 m/0.01 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

W etapie pierwszym opracowania współrzędne punktów referencyjnych sieci kontrolnej na epokę pierwszej kampanii (2014.63) w układzie ITRF2008 otrzymano z wyrównania łącznego równań normalnych z dwóch dni pomiarowych modułem ADDNEQ2. Równania normalne z poszczególnych sesji pomiarowych otrzymano z rozwiązania każdej sesji pomiarowej używając modułu GPSEST. Nawiązanie do sieci ASG-EUPOS zrealizowane metodą *minimumconstraint*.

4.1.3 <u>Analiza liczby obserwacji</u>

W trakcie opracowania utworzono sieć wektorów łączących każdy zewnętrzny punkt referencyjny ze stacjami ASG-EUPS, bez wektorów pomiędzy punktami referencyjnymi oraz pomiędzy stacjami ASG-EUPOS. W ten sposób utworzono następujące wektory:

GDAN-GG30	GDAN-GG32	GDAN-GG33	GDAN-GG34
KOSC-GG30	KOSC-GG32	KOSC-GG33	KOSC-GG34
REDZ-GG30	REDZ-GG32	REDZ-GG33	REDZ-GG34
WLAD-GG30	WLAD-GG32	WLAD-GG33	WLAD-GG34

W pierwszej kolejności przeprowadzono analizę liczby obserwacji dla każdego wektora. Należy zauważyć, że punkt GG30 był mierzony tylko podczas jednej sesji pomiarowej w czasie drugiego dnia pomiarowego (ze względu na awarię sprzętu pomiarowego pierwszego dnia). Dla wektorów do punktu referencyjnego GG30 uzyskano średnią liczbę obserwacji wynoszącą 4375, dla wektorów z punktem GG32 – 6122 (średnia z 2 sesji pomiarowych), dla wektorów z punktem GG33 – 6137 (średnia z 2 sesji pomiarowych), natomiast dla wektorów z punktem GG34 – 4811 (średnia z 2 sesji pomiarowych). Z tego wynika, że najlepsze warunki obserwacyjne występowały na punktach GG32 i GG33. Biorąc pod uwagę wektory, które zostały utworzone do stacji GDAN, średnia liczba obserwacji wynosiła 5988, do stacji KOSC – 6093, do stacji REDZ – 6019, natomiast w przypadku wektorów do stacji WLAD – 3909. Szczegółowe informacje dotyczące liczby obserwacji znajdują się w załączniku nr 1.

4.1.4 <u>Analiza wyznaczenia nieoznaczoności</u>

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej bazującej na metodzie rozwiązania nieoznaczoności SIGMA z zastosowaniem kombinacji liniowych "Wide-Lane" i "Narrow-Lane". Metoda ta opiera się na 3 etapach:

- W pierwszej iteracji wyznaczane są przybliżone wartości nieoznaczoności ("float solution").
- 2) Rozwiązanie nieoznaczoności metodą "Wide-Lane" wykorzystaniem modelu jonosfery *a priori*.
- Kombinacja liniowa "Ionosphere free" (L3) z wprowadzonymi nieoznaczoności wyznaczonymi w poprzednim etapie i ostateczne rozwiązanie nieoznaczoności metodą "Narrow-Lane".

Najlepszy poziom wyznaczenia nieoznaczoności otrzymano dla wektorów do stacji REDZ – około 80%, podczas gdy dla wektorów do pozostałych stacji ASG-EUPOS poziom

rozwiązania nieoznaczoności mieści się w przedziale 37% – 39%. Fakt ten, może mieć związek z wykorzystaniem na tych stacjach odbiorników Leica GR10.

Biorąc pod uwagę wektory do poszczególnych stacji referencyjnych sieci kontrolnej, dla wektorów do punktów GG30, GG32, GG33 nieoznaczoności zostały rozwiązane na poziomie około 53%, natomiast najniższy procent wyznaczonych nieoznaczoności zaobserwowano dla wektorów do punktu GG34 (37,6%).

Wyniki rozwiązania nieoznaczoności, otrzymane w programie Bernese, zawiera załącznik nr 2.

4.1.5 <u>Analiza wyznaczonych współrzędnych punktów referencyjnych</u>

Końcowy etap tej części opracowania stanowi wyznaczenie współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę 1 kampanii (2014.63) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych sesji pomiarowych łączone są modułem ADDNEQ2, a wyniki stanowią współrzędne punktów dla okresu całej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Należy tutaj zauważyć, że punkt GG30 był mierzony w jednej sesji pomiarowej, dlatego niemożliwe było wyznaczenie jego powtarzalności. Powtarzalność otrzymanych współrzednych poziomych jest mniejsza niż 1 mm dla punktu GG32 oraz nie przekracza 1,4 mm dla punktu GG33. Powtarzalność wyznaczeń wysokości nieznacznie przekracza 4 mm dla punktu GG32, natomiast w przypadku punkt GG33 wynosi 2,6 mm. Dla punktu GG34 zaobserwowano znacznie gorszą powtarzalność otrzymanych wyników – dla składowej północnej wynosi prawie 14 mm, dla składowej wschodniej 4,5 mm, natomiast dla wysokości 2.8 mm. Ze względu na fakt, że punkt GG34 był niestabilny podczas pomiarów, w każdej sesji pomiarowej otrzymał nowe oznaczenie, tj. G34A i G34B.

Na rysunku 10 przedstawiono średni błąd kwadratowy RMS uzyskanych współrzędnych z pierwszego etapu obliczeń. W przypadku składowych poziomych maksymalne wartości RMS nieznacznie przekraczają 0.5 mm, a dla składowej pionowej nie przekraczają 2,5 mm (dla punktów GG30, GG32, GG33). Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w etapie pierwszym opracowania zawiera załącznik nr 3.

Rysunek 10 Wartość średnich błędów RMS uzyskanych współrzędnych

4.2 Wyznaczenie ostatecznych współrzędnych punktów referencyjnych – poligon Lewino

4.2.1 Geometria rozwiązania

Celem drugiego etapu opracowania było wyznaczenie właściwych współrzędnych punktów referencyjnych sieci kontrolnej obiektu Lewino. Na podstawie analiz opisanych w rozdziale 1, wybrano punkt GG33, który cechuje się uzyskaną najwyższą dokładnością oraz najlepszą powtarzalnością spośród zewnętrznych punktów referencyjnych. Współrzędne tego punktu uznano za bezbłędne i utworzono sieć wektorów pomiędzy punkiem GG33 i wszystkimi pozostałymi punktami referencyjnymi, bez wektorów pomiędzy innymi punktami referencyjnymi (Rys. 11).

Rysunek 11 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)

4.2.2 <u>Strategia obliczeniowa</u>

Strategia opracowania obserwacji GPS w celu uzyskania ostatecznych współrzędnych punktów referencyjnych opiera się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km. Ze względu na niewielką długość wektorów wyznaczanych, do opracowania wykorzystano obserwacje kodowe i fazowe na częstotliwości L1. Na tak krótkich wektorach wpływ opóźniania troposferycznego oraz jonosferycznego jest eliminowany poprzez tworzenie podwójnych różnic obserwacji, zatem nie ma potrzeby stosowania kombinacji liniowej L3 do eliminacji wpływu jonosfery. Ponadto, kombinacja liniowa L3 charakteryzują się trzykrotnie większym szumem, co ogranicza precyzję uzyskiwanych wyników. W tym etapie do rozwiązania nieoznaczoności zastosowano metodę SIGMA L1.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L1;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 10 °;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity satelitów, parametry orientacji Ziemi, zegary satelitów IGS;
- międzyczęstotliwościowe opóźniania sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L1;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 0.0001 m/0.0001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

Ostateczne współrzędne punktów referencyjnych sieci kontrolnej na epokę pierwszej kampanii (2014.63) w układzie ITRF2008 otrzymano przy wykorzystaniu modułu COMPAR jako średnie współrzędne punktów dla okresu całej kampanii pomiarowej.

4.2.3 <u>Analiza liczby obserwacji</u>

Analizując liczbę obserwacji dla poszczególnych wektorów można zauważyć, że dla wektorów do punktu GG34 (G34A, G34B) istnieje mała liczba obserwacji, odpowiednio 3950 z pierwszego dnia pomiarowego oraz 2731 z drugiego dnia pomiarowego. Dla pozostałych wektorów średnia liczba obserwacji z dwóch sesji pomiarowych wynosi powyżej 5500 obserwacji. Szczegółowe dane dotyczące liczy obserwacji znajdują się w załączniku nr 1.

4.2.4 <u>Analiza wyznaczenia nieoznaczoności</u>

Podczas tego etapu opracowania, nieoznaczoności rozwiązane metodą SIGMA L1 zostały wyznaczone na poziomie około 94% zarówno dla pierwszej jak i drugiej sesji pomiarowej, niezależnie od wykorzystywanych odbiorników GNSS. Najwyższy poziom rozwiązania nieoznaczoności otrzymano dla wektorów GG33-GG25 oraz GG33-GG29.

4.2.5 <u>Analiza wyznaczonych współrzędnych punktów referencyjnych</u>

Końcowy etap tej części opracowania stanowi wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę 1 kampanii (2014.63).

Określenie powtarzalności wyznaczeń współrzędnych punktów referencyjnych była możliwa jedynie dla 4 punktów (GG23, GG29, GG32, GG33) ze względu na to, ze były one mierzone w dwóch sesjach pomiarowych. Dla wszystkich punktów powtarzalność otrzymanych współrzędnej pionowych nie jest gorsza niż 2 mm, natomiast powtarzalność składowej poziomej nie jest gorsza niż 1,2 mm.

W tym etapie opracowania średni błąd kwadratowy RMS dla składowych poziomych nie przekracza 0,5 mm, natomiast dla składowej wysokościowej maksymalnie wynosi 1,2 mm.

Wyniki rozwiązania, powtarzalności oraz ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik nr 3.

4.2.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2014.63)

W wyniku opracowania uzyskano ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 na epokę kampanii (2014.63), które zestawiono w tabeli 2. Otrzymane

współrzędne zostały użyte jako *a priori* w dalszej części opracowania do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów).

	X [m]	Y [m]	Z [m]	h _{el} [m]
G34A	3528975.22606	1158811.39639	5167860.92959	207.691
G34B	3528975.11684	1158811.42474	5167860.93403	207.639
GG23	3533568.53600	1154842.06372	5165628.23061	210.017
GG24	3533426.06406	1152853.03585	5166156.94598	202.388
GG25	3532567.26488	1155302.87078	5166168.62457	179.534
GG29	3530393.23449	1156942.67525	5167316.71573	209.278
GG30	3535551.89480	1149886.60547	5165369.45719	202.837
GG32	3531726.20873	1152619.61623	5167332.33594	177.347
GG33	3533443.73219	1158199.64751	5164985.47895	225.619

Tabela 2 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2014.63), obiekt Lewino

4.3 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino

4.3.1 Geometria rozwiązania

W przypadku badań prowadzonych na obszarze Lewino analizowana sieć kontrolna składa się z 4 zewnętrznych punktów referencyjnych, 4 wewnętrznych punktów referencyjnych oraz 18 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Ze względu na niestabilność punktu referencyjnego GG34, został on wyłączony z tej części opracowania. Utworzone wektory zostały przedstawione w tabeli 3.

4.3.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych wykorzystano obserwacje fazowe na częstotliwości L1 oraz zastosowano strategię obliczeniowa opisaną w podrozdziale 4.2.2.

4.3.3 <u>Analiza liczby obserwacji</u>

Liczba obserwacji dla wektorów tej siec miesi się w granicach od 1080 do 1861. Najmniejszą średnią liczbą obserwacji cechują się wektory do punktu referencyjnego GG30, gdzie średnia wynosi 1405 obserwacji, natomiast dla wektorów do punktu referencyjnego GG25 stwierdzono największa liczbę obserwacji – 1682. Biorąc pod uwagę średnią liczbę

obserwacji dla wektorów do punktów kontrolowanych, najmniej obserwacji istnieje dla wektorów do punktu RR11 (1135), natomiast najwięcej obserwacji zarejestrowano dla wektorów do punktu RR19 (1819). Szczegółowe dane dotyczące liczby obserwacji znajdują się w załączniku 2.

]	Dzień 23	31, 2014	1				
GG23	-RR10	GG24	-RR10	GG25	-RR10	GG29-	-RR10	GG32	-RR10	GG33	-RR10
GG23	-RR11	GG24	-RR11	GG25	-RR11	GG29-	-RR11	GG32-	-RR11	GG33	-RR11
GG23	-RR16	GG24	RR16	GG25	-RR16	GG29-	-RR16	GG32	-RR16	GG33	-RR16
GG23	-RR17	GG24	-RR17	GG25	-RR17	GG29-	-RR17	GG32	-RR17	GG33	-RR17
GG23	-RR19	GG24	-RR19	GG25	-RR19	GG29-	-RR19	GG32-	-RR19	GG33-	-RR19
GG23	-RR20	GG24	-RR20	GG25	-RR20	GG29-	-RR20	GG32-	-RR20	GG33-	-RR20
				I	Dzień 23	32, 2014	4				
	GG23-	-RR01	GG29-	-RR01	GG30-	-RR01	GG32-	RR01	GG33-	-RR01	
	GG23	-RR02	GG29	-RR02	GG30-	-RR02	GG32-	RR02	GG33-	-RR02	
	GG23	-RR03	GG29	-RR03	GG30-	-RR03	GG32-	RR03	GG33-	-RR03	
	GG23	-RR04	GG29	-RR04	GG30-	-RR04	GG32-	RR04	GG33-	-RR04	
	GG23	-RR05	GG29	-RR05	GG30-	-RR05	GG32-	RR05	GG33-	-RR05	
	GG23	-RR06	GG29	-RR06	GG30-	-RR06	GG32-	RR06	GG33-	-RR06	
	GG23	-RR07	GG29	-RR07	GG30-	-RR07	GG32-	RR07	GG33-	-RR07	
	GG23	-RR08	GG29	-RR08	GG30-	-RR08	GG32-	RR08	GG33-	-RR08	
	GG23	-RR12	GG29	-RR12	GG30-	-RR12	GG32-	RR12	GG33-	-RR12	
	GG23-	-RR13	GG29-	-RR13	GG30-	-RR13	GG32-	RR13	GG33-	-RR13	
	GG23	-RR14	GG29-	-RR14	GG30-	-RR14	GG32-	RR14	GG33-	-RR14	
	GG23	-RR15	GG29	-RR15	GG30-	-RR15	GG32-	RR15	GG33-	-RR15	

Tabela 3 Wykaz wektorów utworzonych podczas opracowania

4.3.4 <u>Analiza wyznaczenia nieoznaczoności</u>

W celu wyznaczenia współrzędnych punktów kontrolowanych zastosowano metodę rozwiązania nieoznaczoność SIGMA L1. Podczas opracowania danych z pierwszej sesji obserwacyjnej wyznaczono nieoznaczoności na średnim poziomie 95.6%, natomiast z drugiej sesji na poziomie 98,5%. Dla większości wektorów zostało rozwiązanych 100% nieznaczności, jedynie dla 4 wektorów wyznaczanych podczas pierwszego dnia pomiarowego poziom wyznaczenia nieoznaczoności był niższy i wynosił: dla wektora GG23-RR11 – 88,9%, dla wektora GG29-RR11 – 84,6%, dla wektora GG33-RR11 – 75,0% oraz dla wektora GG24-RR17 – 88,9%. Wyniki rozwiązania nieoznaczoności z etapu trzeciego, otrzymane w programie Bernese, zawiera załącznik nr 2.

4.3.5 <u>Analiza wyznaczonych współrzędnych punktów kontrolowanych</u>

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.63) w oparciu o współrzędne punktów referencyjnych.

W tym etapie opracowania nie jest możliwe określenie powtarzalności punktów kontrolowanych, ponieważ wszystkie punkty były mierzone jedynie w pojedynczej sesji pomiarowej. Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik nr 3.

4.3.6 <u>Zestawienie ostatecznych współrzędnych punktów kontrolowanych w układzie</u> <u>ITRF2008 epoka kampanii</u>

W wyniku opracowania uzyskano współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 na epokę kampanii (2014.63), które zestawiono w tabeli 4.

	X [m]	Y [m]	Z [m]	h _{el} [m]
RR01	3532704.65782	1154367.02393	5166308.94705	200.564
RR02	3532531.08024	1154787.68862	5166300.40045	173.666
RR03	3533644.52963	1153902.06310	5165786.09582	210.705
RR04	3533826.88539	1153501.13428	5165742.42597	203.625
RR05	3533491.57514	1154526.84069	5165756.56710	214.942
RR06	3533867.88739	1154619.00296	5165483.33670	217.329
RR07	3533314.34476	1154495.97541	5165869.53413	203.310
RR08	3532940.86126	1155107.60914	5165964.91817	184.979
RR10	3531712.20152	1155838.31440	5166643.11013	189.928
RR11	3531456.98230	1155706.79940	5166820.68680	169.646
RR12	3532562.83332	1155563.00284	5166137.07885	198.438
RR13	3533028.50642	1155581.81548	5165832.39885	211.310
RR14	3532634.37041	1156532.20512	5165889.18679	211.564
RR15	3533812.48046	1156089.92106	5165206.96200	227.723
RR16	3530712.63465	1156092.20586	5167270.39913	194.125
RR17	3530418.49114	1157071.07195	5167270.90578	209.186
RR19	3531188.90036	1156559.78354	5166867.24726	213.709
RR20	3531075.87403	1156389.13443	5166967.30032	201.818

Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.63), obiekt Lewino

4.4 Nawiązanie do ASG-EUPOS – poligon Babiak

4.4.1 Sposób nawiązania

Nawiązanie punktów referencyjnych sieci kontrolnej na obiekcie Babiak przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 2 stacje najbliżej położone obszaru objętego siecią – BART i LAMA (Rys. 12). Podobnie jak przy opracowaniu sieci obiektu Lewino, również w tym przypadku przed przystąpieniem do obliczeń konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011,0) do układu ITRF2008 na epokę kampanii (2014,64).

Rysunek 12 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)

4.4.2 <u>Strategia obliczeniowa</u>

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych na obiekcie Babiak jest oparta o rozwiązanie wykorzystujące obserwacje na częstotliwości L3 i została opisana w podrozdziale 4.1.2. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 26 km do 40 km.

4.4.3 <u>Analiza liczby obserwacji</u>

Na obiekcie Babiak została utworzona siec wektorów pomiędzy punktami referencyjnymi a punktami sieci ASG-EUPOS. Średnia liczba obserwacji dla wektorów mierzonych podczas pierwszej sesji pomiarowej wynosi 6727, natomiast podczas drugiej sesji pomiarowej – 6741. Liczba obserwacji dla poszczególnych wektorów mieści się w przedziale

od 6550 do 6919. Szczegółowe informacje dotyczące liczby obserwacji znajdują się w załączniku nr 4.

4.4.4 <u>Analiza wyznaczenia nieoznaczoności</u>

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej bazującej na metodzie rozwiązania nieoznaczoności SIGMA z zastosowaniem kombinacji liniowych "Wide-Lane" i "Narrow-Lane". Metoda ta została opisana w podrozdziale 4.1.4..

Biorąc uwagę wektory do punktów sieci ASG-EUPOS, średni poziom wyznaczenia nieoznaczoności z 2 dni pomiarowych wynosił odpowiednio: dla stacji LAMA ok. 27% oraz dla stacji BART ok. 61%. Rozważając wektory do poszczególnych punktów referencyjnych sieci kontrolnej na obiekcie Babiak, najniższy poziom rozwiązania nieoznaczoności stwierdzono dla wektorów do punkty GG31 (39%), natomiast najwięcej nieoznaczoności wyznaczono dla wektorów do punktu GG34 – prawie 48%. Wyniki rozwiązania nieoznaczoności w tym etapie opracowania znajdują się w załączniku nr 5.

4.4.5 <u>Analiza wyznaczonych współrzędnych punktów referencyjnych</u>

W ramach pierwszego etapu opracowania wyznaczono współrzędne punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę 1 kampanii (2014.64) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych sesji pomiarowych łączone są modułem ADDNEQ2, a wyniki stanowią współrzędne punktów dla okresu całej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność wyznaczeń składowej północnej dla punktów referencyjnych wynosiła od 1,13 mm dla GG34 do 3,3 mm dla GG33. W przypadku składowej wschodniej, największa wartość powtarzalności wyników uzyskano dla punktu GG32 – 8,7 mm, natomiast najlepszą powtarzalność o wartości 0,4 mm uzyskano dla punktu GG33. Powtarzalność wyznaczeń wysokości mieści się w przedziale od 4,6 mm dla punktu GG32 do 7,8 mm dla punktu GG34.

Na podstawie uzyskanych współrzędnych punktów referencyjnych obliczono średni błąd kwadratowy RMS dla poszczególnych punktów. W przypadku składowych horyzontalnych uzyskano maksymalny błąd na poziomie 0.6 mm, natomiast dla współrzędnej wysokościowej maksymalna wartość błędu wynosiła 1,9 mm. Uzyskane współrzędne wraz z charakterystyką dokładnościową zostały przedstawione w załączniku nr 6.

4.5 Wyznaczenie ostatecznych współrzędnych punktów referencyjnych – poligon Babiak

4.5.1 Geometria rozwiązania

Celem drugiego etapu opracowania było wyznaczenie właściwych współrzędnych punktów referencyjnych sieci kontrolnej obiektu Babiak. Na podstawie analiz opisanych w podrozdziale 4.4, wybrano punkt GG33, który cechuje się uzyskaną najlepsza charakterystyką dokładnościową spośród zewnętrznych punktów referencyjnych. Współrzędne tego punktu uznano za bezbłędne i utworzono sieć wektorów pomiędzy punkiem GG33 i wszystkimi pozostałymi punktami referencyjnymi, bez wektorów pomiędzy innymi punktami referencyjnymi (Rys. 13).

Rysunek 13 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)

4.5.2 <u>Strategia obliczeniowa</u>

W celu uzyskania ostatecznych współrzędnych punktów referencyjnych zastosowano strategia opracowania obserwacji GPS opierającą się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km, która została opisana w podrozdziale 4.2.2.

4.5.3 <u>Analiza liczby obserwacji</u>

Dla wektorów utworzonych w tej części opracowani mierzonych podczas pierwszej sesji pomiarowej, uzyskano średnio 5744 obserwacji, natomiast w przypadku drugiego dnia pomiarowego, dla wektorów istniało średnio 5668 obserwacji. Najmniejszą liczbę obserwacji (4890) uzyskano dla wektora GG33-GG21 mierzonego podczas drugiego dnia pomiarowego, natomiast największą liczbę obserwacji (6083) uzyskano dla wektora GG33-GG31

mierzonego również podczas drugiego dnia pomiarowego. Dane dotyczące ilości obserwacji znajdują się w załączniku nr 4.

4.5.4 Analiza wyznaczenia nieoznaczoności

W tym etapie opracowania nieoznaczoności zostały wyznaczone przy zastosowaniu metody SIGMA L1. Dla wektorów z pierwszej sesji pomiarowej, średni poziom wyznaczenia nieoznaczoności wynosi 97,6%, natomiast dla wektorów z drugiej sesji pomiarowej zostało wyznaczonych 100% nieoznaczoności. Najmniejsza ilość nieoznaczoności został rozwiązana dla wektora GG33-GG26 – 90,5%, natomiast dla wektora GG33-GG34 zostało rozwiązanych 94.1% nieoznaczoności. W przypadku pozostałych wektorów wyznaczono 100% nieoznaczoności. W załaczniku nr 5 zostały zawarte wyniki rozwiazania nieoznaczoności podczas tego etapu opracowania.

4.5.5 Analiza wyznaczonych współrzędnych punktów referencyjnych

Celem tej części opracowania jest wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę 1 kampanii (2014.64).

Określenie powtarzalności wyznaczeń współrzędnych punktów referencyjnych nie była możliwa dla 2 punktów referencyjnych (GG26, GG29) ze względu na to, ze były one mierzone w pojedynczej sesji pomiarowej. Dla składowej północnej otrzymano powtarzalność wyników w przedziale od 0,67 mm dla GG34 do 1,67 mm dla GG31. W przypadku składowej wschodniej dla wszystkich punktów referencyjnych powtarzalność wyznaczeń nie przekroczyła wartości 0,4 mm. Największe wartości powtarzalności wysokości otrzymano dla punktu GG31 (2,22 mm), natomiast najlepszą powtarzalnością wysokości charakteryzuje się punkt GG34 (0,41 mm).

W tym etapie opracowania średni błąd kwadratowy RMS dla składowych poziomych nie przekracza 0,3 mm, natomiast dla składowej wysokościowej wynosi maksymalnie 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik nr 6.

4.5.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 epoka kampanii

W wyniku opracowania uzyskano ostateczne współrzędne punktów referencyjnych obiektu Babiak w układzie ITRF2008 na epokę kampanii (2014.64), które zestawiono w tabeli 5. Otrzymane współrzędne zostały następnie zastosowane jako referencyjne w dalszej części opracowania w celu wyznaczenia współrzędnych punktów kontrolowanych (reflektorów).

Tabela 5 Wykaz ostatecznych współrzędne punktów referencyjnych w układzie ITRF2008 (2014.64), obiekt Babiak

	X [m]	Y [m]	Z [m]	h _{el} [m]
GG21	3508213.81139	1302609.50208	5147754.39309	132,333
GG26	3508629.45750	1303513.12821	5147232.99458	121.970
GG29	3508561.95001	1302983.91055	5147419.00925	127.817
GG30	3508807.60803	1304067.63075	5146958.87352	110.644
GG31	3509750.61729	1300739.15916	5147164.88018	117.174
GG32	3505850.49499	1301701.69498	5149617.20039	161.323
GG33	3504471.86991	1305017.86592	5149694.96700	144.589
GG34	3508264.47593	1307553.02718	5146454.58271	115.766

4.6 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak

4.6.1 Geometria rozwiązania

Sieć kontrolna na obszarze Babiak jest zbudowana z 4 zewnętrznych punktów referencyjnych, 4 wewnętrznych punktów referencyjnych oraz 18 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 6.

4.6.2 <u>Strategia obliczeniowa</u>

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano strategię obliczeniową wykorzystującą obserwacje GPS na częstotliwości L1, która została opisana w podrozdziale 4.2.2.

4.6.3 <u>Analiza liczby obserwacji</u>

Rozważając liczbę obserwacji dla poszczególnych wektorów można zauważyć, że w przypadku tej sieci liczba obserwacji waha się od 1355 dla wektora GG33-RR03 do 2046 dla wektora GG30-RR01. Biorąc pod uwagę liczbę obserwacji na wektorach do punktów kontrolowanych, największa średnia liczba obserwacji istnieje dla wektorów utworzonych do punktu RR01 (1837), natomiast najmniej obserwacji zostało zarejestrowanych na wektorach do punktu RR03 (1404). Szczegółowe informacje dotyczące obserwacji znajdują się w załączniku nr 4.

	Dzień 234, 2014					
	GG31-RR05	GG33-RR05	GG21-RR05	GG29-RR05		
	GG31-RR06	GG33-RR06	GG21-RR06	GG29-RR06		
	GG31-RR07	GG33-RR07	GG21-RR07	GG29-RR07		
	GG31-RR08	GG33-RR08	GG21-RR08	GG29-RR08		
	GG31-RR15	GG33-RR15	GG21-RR15	GG29-RR15		
	GG31-RR16	GG33-RR16	GG21-RR16	GG29-RR16		
	GG32-RR05	GG34-RR05	GG26-RR05	GG30-RR05		
	GG32-RR06	GG34-RR06	GG26-RR06	GG30-RR06		
	GG32-RR07	GG34-RR07	GG26-RR07	GG30-RR07		
	GG32-RR08	GG34-RR08	GG26-RR08	GG30-RR08		
	GG32-RR15	GG34-RR15	GG26-RR15	GG30-RR15		
	GG32-RR16	GG34-RR16	GG26-RR16	GG30-RR16		
		Dzień 2.	35, 2014			
GG31-RR01	GG32-RR01	GG33-RR01	GG34-RR01	GG21-RR01	GG30-RR01	
GG31-RR02	GG32-RR02	GG33-RR02	GG34-RR02	GG21-RR02	GG30-RR02	
GG31-RR03	GG32-RR03	GG33-RR03	GG34-RR03	GG21-RR03	GG30-RR03	
GG31-RR10	GG32-RR10	GG33-RR10	GG34-RR10	GG21-RR10	GG30-RR10	
GG31-RR11	GG32-RR11	GG33-RR11	GG34-RR11	GG21-RR11	GG30-RR11	
GG31-RR12	GG32-RR12	GG33-RR12	GG34-RR12	GG21-RR12	GG30-RR12	
GG31-RR13	GG32-RR13	GG33-RR13	GG34-RR13	GG21-RR13	GG30-RR13	
GG31-RR14	GG32-RR14	GG33-RR14	GG34-RR14	GG21-RR14	GG30-RR14	
GG31-RR17	GG32-RR17	GG33-RR17	GG34-RR17	GG21-RR17	GG30-RR17	
GG31-RR18	GG32-RR18	GG33-RR18	GG34-RR18	GG21-RR18	GG30-RR18	
GG31-RR19	GG32-RR19	GG33-RR19	GG34-RR19	GG21-RR19	GG30-RR19	
GG31-RR20	GG32-RR20	GG33-RR20	GG34-RR20	GG21-RR20	GG30-RR20	

Tabela 6 Wykaz wektorów utworzonych podczas każdej sesji pomiarowej

4.6.4 <u>Analiza wyznaczenia nieoznaczoności</u>

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano metodę rozwiązania nieoznaczoności SIGMA L1. Dla wektorów mierzonych podczas pierwszej sesji pomiarowej, poziom rozwiązania nieoznaczoności wynosi 99,5%. Jedynie dla dwóch wektorów nie udało się wyznaczyć wszystkich nieoznaczoności – dla wektora GG31-RR08 rozwiązano 87,5%, natomiast dla wektora GG33-RR16 wyznaczono 90,0% nieoznaczoności. W przypadku wektorów utworzonych podczas drugiej sesji pomiarowej, rozwiązano 97,6% nieoznaczoności. Najmniejszy procent rozwiązanych nieoznaczoności zaobserwowano dla wektorów GG30-RR12, GG32-RR12 oraz GG30-RR14.

4.6.5 <u>Analiza wyznaczonych współrzędnych punktów kontrolowanych</u>

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Babiak było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.64) w oparciu o współrzędne punktów referencyjnych.

W tym etapie opracowania nie jest możliwe określenie powtarzalności punktów kontrolowanych, ponieważ wszystkie punkty były mierzone jedynie w pojedynczej sesji pomiarowej. Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik nr 6.

4.6.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych w układzie ITRF2008.64

W wyniku opracowania uzyskano współrzędne punktów kontrolowanych (reflektorów) na obszarze Babiak w układzie ITRF2008 na epokę kampanii (2014,64), które zostały zestawione w tabeli 7.

Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.64), obiekt Babiak

	X [m]	Y [m]	Z [m]	h _{el} [m]
RR01	3509248.80165	1303365.88240	5146877.71198	143.923
RR02	3509882.37154	1303145.95165	5146473.96544	119.671
RR03	3507638.22401	1301458.26671	5148462.85678	156.387
RR05	3508573.06944	1301306.64106	5147840.40902	133.885
RR06	3508136.61937	1301602.97791	5148082.63387	151.065
RR07	3507765.40942	1302409.38742	5148123.53805	144.770
RR08	3507622.22549	1302826.40394	5148113.68105	143.187
RR10	3508179.73927	1302386.19905	5147838.20892	136.086
RR11	3508429.93023	1303135.45477	5147480.90272	136.424
RR12	3508544.49590	1303409.32188	5147327.67343	130.922
RR13	3508871.06536	1303886.90208	5146961.78473	110.969
RR14	3508964.02014	1304320.29647	5146790.12546	111.266
RR15	3508392.68343	1302176.75184	5147743.91477	133.838
RR16	3508549.76079	1302245.71517	5147624.28267	137.112
RR17	3508838.14775	1302483.39436	5147371.50702	138.907
RR18	3509090.91741	1302610.08315	5147170.18560	140.274
RR19	3509493.76207	1302150.91848	5146993.10332	124.332
RR20	3509277.47114	1302258.04269	5147118.57002	129.117

4.7 Nawiązanie do ASG-EUPOS – poligon Berejów

4.7.1 Sposób nawiązania

Nawiązanie punktów referencyjnych sieci kontrolnej na obiekcie Berejów przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 2 stacje najbliżej położone obszaru objętego siecią – LUBL i WLDW (Rys. 14). Przed przystąpieniem do obliczeń niezbędne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011,0) do układu ITRF2008 na epokę kampanii (2014,65).

Rysunek 14 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)

4.7.2 <u>Strategia obliczeniowa</u>

W przypadku nawiązania sieci kontrolnej na obiekcie Berejów do sieci ASG-EUPOS, wyznaczono współrzędne 4 zewnętrznych punktów referencyjnych na podstawie opracowania obserwacji GPS z wykorzystaniem kombinacji liniowej L3. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 29 km do 62 km. Strategia obliczeniowa zastosowana w tym etapie opracowania została opisana w podrozdziale 4.1.2.

4.7.3 <u>Analiza liczby obserwacji</u>

Dla wektorów do punktu referencyjnego GG31 uzyskano średnią liczbę obserwacji wynoszącą 6875, dla wektorów z punktem GG32 – 6854, dla wektorów z punktem GG33 – 6888, natomiast dla wektorów z punktem GG34 – 6876. Biorąc pod uwagę wektory, które zostały utworzone do stacji LUBL, średnia liczba obserwacji wynosiła 7021, natomiast do stacji WLDW – 6706. Szczegółowe informacje dotyczące liczy obserwacji na poszczególnych wektorach znajdują się w załączniku nr 7.

4.7.4 <u>Analiza wyznaczenia nieoznaczoności</u>

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej bazującej na metodzie rozwiązania nieoznaczoności SIGMA z zastosowaniem kombinacji liniowych "Wide-Lane" i "Narrow-Lane", która została opisana w rozdziale 1.4.

Dla wektorów do stacji LUBL i WLDW otrzymano poziom wyznaczenia nieoznaczoności około 73%. Biorąc pod uwagę wektory do poszczególnych stacji referencyjnych sieci kontrolnej, dla wektorów do punktu GG31 nieoznaczoności zostały rozwiązane na poziomie 67%, dla wektorów do punktu GG32 procent wyznaczonych nieoznaczoności wynosi 79%, dla wektorów do punktu GG33 oraz do punktu GG34 wyznaczono odpowiednio 71% oraz 70% nieoznaczoności.

Wyniki rozwiązania nieoznaczoności otrzymane w programie Bernese, zawiera załącznik nr 8.

4.7.5 <u>Analiza wyznaczonych współrzędnych punktów referencyjnych</u>

Końcowym etapem tej części opracowania jest wyznaczenie współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 (2014.64) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych sesji pomiarowych łączone są modułem ADDNEQ2, a wyniki stanowią współrzędne punktów dla okresu całej kampanii pomiarowej.

Na podstawie otrzymanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych.

Dla punktów GG33 oraz GG34 powtarzalność otrzymanych współrzędnych poziomych nie przekracza 1 mm, natomiast powtarzalność otrzymanej wysokości punktu GG33 osiąga 4,6 mm, a dla punktu GG34 – 2,2 mm. W przypadku analizy punktu GG31, powtarzalność współrzędnej północnej wynosi 2,6 mm, wschodniej 0,9 mm, natomiast wysokości 1,7 mm. Dla punktu GG32 zaobserwowano znacznie gorszą powtarzalność otrzymanych wyników – dla współrzędnej wysokościowej wynosi prawie 17,0 mm, dla składowej północnej 7,7 mm, natomiast dla składowej wschodniej 1,1 mm. Ze względu na fakt, że punkt GG32 był niestabilny w czasie trwania pomiarów, w każdej sesji pomiarowej otrzymał nowe oznaczenie, tj. G32A i G32B.

Biorąc pod uwagę otrzymany średni błąd kwadratowy RMS uzyskanych współrzędnych z pierwszego etapu obliczeń można stwierdzić, że w przypadku składowych poziomych maksymalne wartości RMS nie przekraczają 0,7 mm, a dla składowej pionowej nie przekraczają 2,7 mm. Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w etapie pierwszym opracowania zawiera załącznik nr 9.

4.8 Wyznaczenie ostatecznych współrzędnych punktów referencyjnych – poligon Berejów

4.8.1 <u>Geometria rozwiązania</u>

Celem drugiego etapu opracowania było wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej na obiekcie Berejów. Na podstawie analiz opisanych w podrozdziale 4.7, wybrano punkt GG31, który charakteryzuje się najwyższą dokładnością oraz najlepszą powtarzalnością spośród zewnętrznych punktów referencyjnych. Współrzędne tego punktu uznano za bezbłędne i utworzono sieć wektorów pomiędzy punkiem GG31 i pozostałymi punktami referencyjnymi, bez wektorów pomiędzy innymi punktami referencyjnymi (Rys. 15).

Rysunek 15 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)

4.8.2 <u>Strategia obliczeniowa</u>

W celu wyznaczenia ostatecznych współrzędnych punktów referencyjnych na obiekcie Berejów, ze względu na długość wektorów pomiędzy wyznaczanymi punktami nieprzekraczającą 10 km, wykonano opracowanie obserwacji GPS na częstotliwości L1. Opis strategii obliczeniowej został zamieszczony w podrozdziale 4.2.2.

4.8.3 <u>Analiza liczby obserwacji</u>

Analizując liczbę obserwacji dla poszczególnych wektorów można zauważyć, że dla wektorów do punktu GG34 (G34A) istnieje mała liczba obserwacji – 5206 z pierwszego dnia pomiarowego. Jednak podczas drugiego dnia pomiarowego na tym punkcie

(G32B) zarejestrowano 6184 obserwacji. Najwięcej obserwacji istnieje dla wektora GG31-GG33 – 7043 obserwacje. Średnia liczba obserwacji z dwóch sesji pomiarowych wynosi 6362 obserwacje. Szczegółowe dane dotyczące liczy obserwacji znajdują się w załączniku nr 7.

4.8.4 <u>Analiza wyznaczenia nieoznaczoności</u>

Na tym etapie opracowania wyznaczono nieoznaczoności wykorzystując metodę SIGMA L1, która została opisana w rozdziale 2.4. Zarówno z pierwszej jak i drugiej sesji pomiarowej rozwiązano nieoznaczoności na poziomie ponad 99%. Najniższy poziom wyznaczenia nieoznaczoności osiągnięto dla wektora GG31-GG26 (94,7%), który był mierzony podczas pierwszego dnia pomiarowego, oraz dla wektora GG31-GG33 (95,5%) z drugiego dnia pomiarowego. Na pozostałych wektorach rozwiązano 100% nieoznaczoności. Wyniki tej części opracowania zostały zapisane w załączniku nr 8.

4.8.5 <u>Analiza wyznaczonych współrzędnych punktów referencyjnych</u>

Końcowy etap tej części opracowania stanowi wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę 1 kampanii (2014.65).

Określenie powtarzalności wyznaczeń współrzędnych punktów referencyjnych była możliwa jedynie dla 5 punktów (GG21, GG22, GG31, GG33, GG34) ze względu na to, ze były one mierzone w dwóch sesjach pomiarowych. Dla tych punktów powtarzalność uzyskanej współrzędnej pionowej nie przekracza 0,7 mm, natomiast w przypadku współrzędnych poziomych, powtarzalność nie przekracza 1,5 mm dla składowej północnej oraz 0,7 mm dla składowej wschodniej.

Analizując dokładność uzyskanych współrzędnych, średni błąd kwadratowy RMS wysokości nie przekracza 0,5 mm dla żadnego punktu, natomiast dla składowych poziomych maksymalnie wynosi 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 (2014.65) zawiera załącznik nr 9.

4.8.6 <u>Zestawienie ostatecznych współrzędnych punktów referencyjnych w układzie</u> <u>ITRF2008 epoka kampanii</u>

W tabeli 8 przedstawiono ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 (2014,65), na podstawie których w dalszej części opracowania obliczono współrzędne punktów kontrolowanych.

	X [m]	Y [m]	Z [m]	h _{el} [m]
G32A	3665388.49255	1538927.07761	4971235.48021	193.572
G32B	3665388.49120	1538927.07769	4971235.47825	193.569
GG21	3667925.33652	1537171.76393	4969922.61179	198.622
GG22	3668512.53929	1535892.33157	4969892.14641	204.203
GG23	3667765.50573	1536218.58491	4970337.05698	202.182
GG26	3668190.29765	1536985.41234	4969786.27180	199.139
GG31	3670978.96303	1533678.36869	4968752.00421	196.266
GG33	3665152.07047	1535424.21659	4972477.96353	188.568
GG34	3669292.93941	1540082.74564	4968028.06957	201.554

Tabela 8 Wykaz ostatecznych współrzędne punktów referencyjnych w układzie ITRF2008 (2014.65), obiekt Berejów

4.9 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów

4.9.1 Geometria rozwiązania

Sieć kontrolna na obiekcie Berejów składa się z 4 zewnętrznych i z 4 wewnętrznych punktów referencyjnych oraz z 18 punktów kontrolowanych (reflektorów). W celu wyznaczenia współrzędnych punktów kontrolowanych, utworzono sieć wektorów łączącą każdy punkt wyznaczany z punktami referencyjnymi, bez wektorów pomiędzy punktami wyznaczanymi. Ze względu na niestabilność punktu referencyjnego GG32, został on wyłączony z tej części opracowania. Wykaz utworzonych wektorów został przedstawiony w tabeli 9.

4.9.2 <u>Strategia obliczeniowa</u>

W tej części opracowania wykorzystano strategię obliczeniową opartą na opracowaniu obserwacji na częstotliwości L1, która została opisana w podrozdziale 4.3.2.

4.9.3 Analiza liczby obserwacji

Średnia liczba obserwacji dla wszystkich analizowanych wektorów wynosi 1695 obserwacji. Rozważając wektory do poszczególnych punktów kontrolowanych, największą średnią ilością obserwacji charakteryzują się wektory do punktu RR02 (1845 obserwacji), natomiast najmniejszą ilością obserwacji – wektory do punktu RR14 (1405 obserwacji). Szczegółowe informacje dotyczące liczby obserwacji zostały zamieszczone w załączniku nr 7.

Tabela 9 Wykaz wektorów utworzonych podczas każdej sesji pomiarowej

Dzień 237, 2014						
GG21-RR03	GG22-RR03	GG23-RR03	GG26-RR03	GG31-RR03	GG33-RR03	GG34-RR03
GG21-RR04	GG22-RR04	GG23-RR04	GG26-RR04	GG31-RR04	GG33-RR04	GG34-RR04
GG21-RR05	GG22-RR05	GG23-RR05	GG26-RR05	GG31-RR05	GG33-RR05	GG34-RR05
GG21-RR06	GG22-RR06	GG23-RR06	GG26-RR06	GG31-RR06	GG33-RR06	GG34-RR06
GG21-RR17	GG22-RR17	GG23-RR17	GG26-RR17	GG31-RR17	GG33-RR17	GG34-RR17
GG21-RR18	GG22-RR18	GG23-RR18	GG26-RR18	GG31-RR18	GG33-RR18	GG34-RR18
		J	Dzień 238, 2014	1		
	GG21-RR01	GG22-RR01	GG31-RR01	GG33-RR01	GG34-RR01	
	GG21-RR02	GG22-RR02	GG31-RR02	GG33-RR02	GG34-RR02	
	GG21-RR08	GG22-RR08	GG31-RR08	GG33-RR08	GG34-RR08	
	GG21-RR09	GG22-RR09	GG31-RR09	GG33-RR09	GG34-RR09	
	GG21-RR10	GG22-RR10	GG31-RR10	GG33-RR10	GG34-RR10	
	GG21-RR11	GG22-RR11	GG31-RR11	GG33-RR11	GG34-RR11	
	GG21-RR12	GG22-RR12	GG31-RR12	GG33-RR12	GG34-RR12	
	GG21-RR13	GG22-RR13	GG31-RR13	GG33-RR13	GG34-RR13	
	GG21-RR14	GG22-RR14	GG31-RR14	GG33-RR14	GG34-RR14	
	GG21-RR15	GG22-RR15	GG31-RR15	GG33-RR15	GG34-RR15	
	GG21-RR19	GG22-RR19	GG31-RR19	GG33-RR19	GG34-RR19	
	GG21-RR20	GG22-RR20	GG31-RR20	GG33-RR20	GG34-RR20	

4.9.4 <u>Analiza wyznaczenia nieoznaczoności</u>

W celu określenia ostatecznych współrzędnych punktów kontrolowanych, nieoznaczoności fazy zostały wyznaczone za pomocą metody SIGMA L1. Średni poziom rozwiązania nieoznaczoności zarówno z opracowania pierwszej, jak i drugiej sesji pomiarowej wynosi 99,5%. Najniższy poziom wyznaczenia nieoznaczoności osiągnięto dla dwóch wektorów mierzonych podczas pierwszego dnia pomiarowego: GG21-RR03 i GG21-RR04, odpowiednio: 90,9% i 90,0%, oraz dla trzech wektorów wyznaczanych podczas drugiego dnia pomiarowego: GG33-RR11, GG33-RR13, GG33-RR15 – dla każdego 90,0%. Wyniki rozwiązania nieoznaczoności z etapu III opracowania otrzymane w programie Bernese, zawiera załącznik nr 8.

4.9.5 <u>Analiza wyznaczonych współrzędnych punktów kontrolowanych</u>

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.63)

w oparciu o współrzędne punktów referencyjnych. Podczas pierwszej kampanii pomiarowej, punkty kontrolowane były wyznaczane w pojedynczej sesji pomiarowej, dlatego nie jest możliwe wyznaczenie ich powtarzalności. Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik nr 9.

4.9.6 <u>Zestawienie ostatecznych współrzędnych punktów kontrolowanych w układzie</u> <u>ITRF2008 epoka kampanii</u>

W tabeli 10 zestawiono ostateczne współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014,65) wyznaczone podczas pierwszej kampanii pomiarowej.

Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.65), obiekt Berejów

	X [m]	Y [m]	Z [m]	h _{el} [m]
RR01	3667843.53017	1537125.23129	4969999.85436	200.953
RR02	3667569.30861	1536980.42342	4970242.64437	198.839
RR03	3668400.20733	1535826.31491	4969996.54163	205.589
RR04	3668644.98996	1535964.54524	4969771.61408	203.226
RR05	3667669.71588	1536166.77497	4970427.28113	205.397
RR06	3667864.02462	1536272.60224	4970248.12076	202.074
RR08	3667927.20243	1537415.22034	4969845.53983	197.916
RR09	3668385.08334	1537644.25309	4969446.48566	203.424
RR10	3668311.40390	1537857.78220	4969433.54041	202.377
RR11	3668135.47814	1536705.33807	4969911.44174	198.317
RR12	3668304.64494	1536802.88806	4969757.66416	198.482
RR13	3668030.73601	1536896.68904	4969931.29579	199.757
RR14	3668295.35984	1537237.81796	4969633.75640	200.751
RR15	3668115.84520	1537105.49818	4969803.82662	199.030
RR17	3668741.55994	1536357.85160	4969572.70738	197.485
RR18	3668548.86611	1536320.94124	4969726.64846	198.511
RR19	3668614.32828	1537208.71348	4969411.63660	202.959
RR20	3668798.37139	1536877.38967	4969369.58642	196.007

III Niwelacja geometryczna

1. Cel przeprowadzonych pomiarów

Celem opracowania jest przeprowadzenie precyzyjnej niwelacji geometrycznej na trzech obiektach testowych objętych eksploatacją gazu ziemnego ze złóż łupkowych, ścisłe wyrównanie sieci kontrolno-pomiarowej oraz wyznaczenie wysokości punktów: referencyjnych, kontrolowanych, reflektorów InSAR. Uzyskane wyniki są danymi uzupełniającymi do prowadzenia rozszerzonego monitoringu deformacji terenu z wykorzystaniem technologii satelitarnych.

2. Obszar opracowania

2.1 Lokalizacja

Precyzyjną niwelacją geometryczną objęto trzy sieci kontrolno-pomiarowe zlokalizowane w miejscowościach:

- Lewino, gmina Linia, powiat wejherowski, województwo pomorskie,
- Babiak, gmina Lidzbark Warmiński, powiat lidzbarski, województwo warmińskomazurskie,
- Berejów, gmina Niedźwiada, powiat lubartowski, województwo lubelskie.

Każda sieć składa się z 4 punktów referencyjnych, 26 punktów kontrolowanych oraz 20 reflektorów InSAR, rozmieszczonych zgodnie z kierunkami prowadzenia odwiertów poziomych w celu eksploatacji gazu łupkowego.

2.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

2.2.1 <u>Lewino</u>

- a) województwo pomorskie, powiat wejherowski, gmina Linia,
- b) obręby ewidencyjne wsi: Lewino, Zęblewo, Łebno, Lewinko, Będargowo,
- c) długość linii niwelacyjnej ok. 18 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren górzysty, przewyższenia do 65 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Lewino o powierzchni ok. 20 km², jest największy oraz charakteryzuje się największym zróżnicowaniem rzeźby terenu od 135 do 200 m n.p.m. Jest to obszar

typowo rolniczy o przeważającej powierzchni gruntów ornych, o średnim zagęszczeniu gruntami leśnymi.

2.2.2 <u>Babiak</u>

- a) województwo warmińsko-mazurskie, powiat lidzbarski, gmina Lidzbark Warmiński,
- b) obręby ewidencyjne wsi: Babiak, Miejska Wola, Bugi,
- c) długość linii niwelacyjnej ok. 10 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren o zróżnicowanej rzeźbie z przewyższeniami do 22 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Babiak o powierzchni ok. 6 km², charakteryzuje się umiarkowanym zróżnicowaniem rzeźby terenu od 78 do 125 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni użytków zielonych.

2.2.3 <u>Berejów</u>

- a) województwo lubelskie, powiat lubartowski, gmina Niedźwiada,
- b) obręby ewidencyjne wsi: Berejów, Brzeźnica Bychawska, Brzeźnica Bychawska-Kolonia,
- c) długość linii niwelacyjnej ok. 8 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren równinny,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Berejów o powierzchni ok. 4 km², charakteryzuje się małym zróżnicowaniem rzeźby terenu od 164 do 173 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych.

3. Opis techniczny

Precyzyjną niwelację geometryczną przeprowadzono w dniach od 18 do 29 sierpnia 2014 roku z zachowaniem procedur pomiarowych oraz dokładności niwelacji precyzyjnej II klasy wg wytycznych technicznych G – 2.1. Warunki pogodowe występujące w okresie przeprowadzania pomiarów niwelacyjnych były sprzyjające, temperatura mieściła się w granicach od 16° C do 27° C. Do przeprowadzenia niwelacji wykorzystano cyfrowy niwelator precyzyjny Leica DNA 03 z kompletem precyzyjnych łat kodowych oraz sprzęt pomocniczy. Łaty inwarowe do niwelacji precyzyjnej ustawiano na klinach stalowych wbijanych w grunt. Ogółem zaniwelowano ok. 36 km ciągów, przedstawionych na rysunkach 1, 2, 3, w dwóch kierunkach: tam i z powrotem, co daje ogólną długość wykonanej niwelacji ok. 72 km. Zgromadzone obserwacje przewyższeń dla poszczególnych obiektów: Babiak, Berejów, Lewino zestawiono odpowiednio w załącznikach nr 10, 11, 12.

Utworzone sieci ciągów niwelacyjnych mają kształt rozet z punktami węzłowymi, skracającymi oraz ułatwiającymi proces pomiarowy. Przyjęto następujące punkty węzłowe:

- Babiak (Rys. 16): g06, g09, g18,
- Berejów (Rys.17): ref21, ref26, b12, b16, b18,
- Lewino (Rys. 18): 102, 109, 112, 116.

Rysunek 16 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)

Rysunek 17 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)

Rysunek 18 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)

4. Opracowanie wyników obserwacji

4.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR

Punkty referencyjne, zastabilizowane specjalnymi fundamentalnymi znakami nadziemnymi (Rys. 19), wymagały wyznaczenia wysokości reperów bocznych oraz trzech punktów wysokościowych umieszczonych w głowicy każdego znaku. Dodatkowo pomierzone zostały wysokości płaszczyzn samych głowic. Reper boczny stanowi podstawę pomiaru niwelacji geometrycznej, natomiast do integracji z niwelacją satelitarną niezbędne jest wyznaczenie przyrostu wysokości do punktów umieszczonych w głowicy znaku punktu referencyjnego, względem których wyznacza się wysokość anteny GNSS. Pomiar realizowano w następującej kolejności (cztery odczyty): boczny reper – 1 reper głowicy – 2 reper głowicy – 3 reper głowicy – 11 głowica – 12 głowica – 13 głowica – reper boczny. Obserwacje zgromadzone na punktach referencyjnych dla wszystkich obiektów zestawione zostały w załączniku nr 13.

Rysunek 19 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny

Konstrukcja oraz ustawienie reflektorów InSAR w znacznym stopniu utrudniały interpretację punktu wysokościowego do pomiaru niwelacją geometryczną. Rozwiązaniem okazał się punkt pośredni jednoznacznie realizowany poprzez umieszczaną w zwieńczeniu trzech płaszczyzn konstrukcji reflektorów kuli stalowej o średnicy 72,7 mm. Wysokości reflektorów wyznaczone zostały na podstawie pomiaru względem punktów kontrolowanych stabilizowanych, w bezpośrednim ich sąsiedztwie, fundamentalnymi znakami podziemnymi (Rys. 20). Przewyższenia wyznaczone na pośrednich punktach wysokościowych reflektorów InSAR względem bliskich punktów kontrolowanych dla wszystkich obiektów zestawione zostały w załączniku nr 14.

Rysunek 20 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni

4.2 Wyznaczenie wysokości w układzie kronsztadt'86

Wyznaczenie pozycji punktu terenowego w pomiarach satelitarnych GNSS odbywa się w układzie globalnym odniesionym do konkretnej elipsoidy odniesienia. Pozycja ta wyrażana jest przez współrzędne elipsoidalne (geodezyjne), szerokość i długość geodezyjną punktu będącego rzutem, wzdłuż normalnej do elipsoidy, punktu na fizycznej powierzchni Ziemi. Trzecią współrzędną jest wysokość elipsoidalna punktu, wyznaczana bezpośrednio w pomiarach satelitarnych, będącą miarą odległości punktu terenowego wzdłuż normalnej do elipsoidy (Rys. 21).

Rysunek 21 Wysokość punktu względem powierzchnią odniesienia geoidą i elipsoidą

Wysokość punktu uzyskana w procesie precyzyjnej niwelacji geometrycznej odniesiona jest do powierzchni geoidy pokrywającej się ze swobodnym poziomem wód morskich i oceanicznych. Geoida jest powierzchnią wybraną ze zbioru powierzchni ekwipotencjalnych o wyznaczonej wartości potencjału rzeczywistego W_o. Przez każdy punkt znajdujący się w wektorowym polu siły ciężkości Ziemi przechodzi tylko jedna powierzchnia ekwipotencjalna. Wysokość punktu w niwelacji geometrycznej wyrażona jako odległość punktu od geoidy wzdłuż rzeczywistej linii pionu (prostopadłej do kolejnych powierzchni ekwipotencjalnych – poziomych, przez które przechodzi) nazywana jest wysokością ortometryczną H^{ort}. W celu uzyskania wysokości ortometrycznej z niwelacji satelitarnej, wymagana jest znajomość relacji przebiegu geoidy względem elipsoidy. Dysponując modelem geoidy opracowanym względem konkretnej elipsoidy odniesienia, na podstawie znanych z pomiarów satelitarnych współrzędnych elipsoidalnych przeprowadza się interpolację powierzchniową wyznaczając N odległość geoidy od elipsoidy w tym punkcie. Ostatecznie wysokość ortometryczną wyznacza się z równania:

$\mathbf{H}=\mathbf{h}-\mathbf{N}.$

W Polsce przyjęty został system wysokości normalnych definiowany w normalnym wektorowym polu siły ciężkości z układem wysokościowym Kronsztadt 86. W celu uproszczenia istoty skomplikowanych definicji, możemy utożsamić wyżej opisaną wysokość ortometryczną z wysokością normalną punktu (uwaga: nie wzdłuż normalnej do elipsoidy!) a geoidę z geoidą niwelacyjną (quasigeoidą). Wysokość normalna definiowana jest jako wartość liczby geopotencjalnej, wyznaczona w danym punkcie, podzielona przez przeciętne przyspieszenie normalne między powierzchnią sferopotencjalną o wartości potencjału

normalnego równego wartości potencjału rzeczywistego w punkcie na fizycznej powierzchni Ziemi a quasigeoidą. Wysokość normalna definiowana jest w wektorowym polu normalnej siły ciężkości, w którym powierzchnie sferopotencjalne, quasigeoida oraz linie normalnego pionu są odpowiednikami powierzchni ekwipotencjalnych, geoidy oraz linii rzeczywistego pionu w wektorowym rzeczywistym polu siły ciężkości.

Nawiązanie każdej sieci do układu Kronsztadt'86 zrealizowano jednopunktowo na podstawie wyników pomiarów satelitarnych oraz modelu geoidy niwelacyjnej 2011. Przyjęto następujące punkty nawiązania:

- Babiak: GG21 = 103.6470, h = 132.3327, N = 28.6857,
- Berejów: GG22 = 174.1053, h = 204.2031, N = 30.0978,
- Lewino: GG23 = 179.7151, h = 210.0166, N = 30.3015.

4.3 Ścisłe wyrównanie sieci kontrolnych

Zgromadzone w terenie dane obserwacyjne z formatu GSI przetworzono do formatu ASCII. Następnie w arkuszu kalkulacyjnym programu Excel, Pakietu Office, oraz na podstawie notatek terenowych wyznaczone zostały uśrednione, uzyskane z dwóch kierunków niwelacji (tam i z powrotem), przewyższenia między punktami kontrolowanymi. Dokonano również kontroli sumarycznego zamknięcia ciągów w dwóch kierunkach, która nie wykazała przekroczenia dopuszczalnych dokładności pomiaru. Wyrównanie całej sieci kontrolnej przeprowadzono w programie GEONET 2006, przyjmując wyznaczone przewyższenia, wagując po ilości stanowisk pomiarowych między punktami końcowymi linii, w dowiązaniu do jednego punktu referencyjnego znajdującego się w środku danej sieci. Wykaz punktów nawiązania w układzie Kronsztadt'86 zestawiono w podrozdziale 4.2. Wyrównane wysokości punktów znajdują się w tabelach 11 - 13, a szczegółowe wyniki wyrównania zawierają załączniki nr 15, 16, 17.

Babiak					
NRP	H [m]	MH [m]	NRP	H [m]	MH [m]
1 s	112.31639	0.00090	1RR	113.97146	0.00091
2s	88.66692	0.00097	2RR	90.23191	0.00098
3 s	125.33279	0.00072	3RR	127.01874	0.00074
4 s	104.43678	0.00065	4RR	106.39309	0.00067
5s	103.00898	0.00071	5RR	104.49499	0.00072
6 s	119.55479	0.00057	6RR	121.10997	0.00059
7s	113.89827	0.00053	7RR	115.36577	0.00055
8 s	112.32905	0.00062	8RR	113.82151	0.00064
9s	106.75248	0.00040	9RR	108.59007	0.00043
10s	105.07676	0.00032	10RR	106.71228	0.00035
11s	105.56248	0.00049	11RR	107.00229	0.00051
12s	100.02477	0.00057	12RR	101.52442	0.00059
13s	79.41109	0.00077	13RR	81.02507	0.00078
14s	80.19275	0.00082	14 R R	81.85703	0.00083
15s	102.80276	0.00047	15RR	104.41339	0.00049
16s	105.68441	0.00053	16RR	107.18248	0.00055
17s	107.88630	0.00064	17 R R	109.47202	0.00065
18 s	109.42570	0.00071	18RR	110.86657	0.00072
19s	93.35688	0.00082	19RR	94.91788	0.00083
20s	98.10388	0.00078	20RR	99.66920	0.00079
22s	101.96101	0.00028	21rep	102.34978	0.00014
23s	102.57059	0.00038	26rep	91.96752	0.00064
24s	106.82239	0.00047	29rep	97.82373	0.00049
25s	106.56980	0.00051	30rep	80.63683	0.00077
27s	93.96734	0.00068	21GG	103.64700	0.00000
28s	81.47238	0.00074	26GG	93.28020	0.00065
			29GG	99.11974	0.00051
			30GG	81.94927	0.00078

Tabela 11 Wyrównane wysokości punktów - obiekt Babiak (oznaczenie punktów: s - studzienka, RR - reflektor, GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS)

Berejów					
NRP	Н	MH	NRP	H [m]	MH [m]
1 s	168.40934	0.00064	1RR	170.22391	0.00065
2s	166.49622	0.00070	2RR	168.11750	0.00071
3 s	172.69235	0.00028	3RR	174.34127	0.00032
4 s	170.27263	0.00025	4RR	171.97895	0.00028
5s	172.86320	0.00077	5RR	174.63897	0.00078
6s	169.24849	0.00071	6RR	170.87663	0.00072
7 s	165.80259	0.00062	7RR	167.59015	0.00064
8 s	164.86626	0.00068	8RR	166.75036	0.00070
9s	170.89847	0.00074	9RR	172.67645	0.00075
10s	169.92340	0.00078	10RR	171.64753	0.00079
11s	165.95777	0.00057	11 RR	167.56083	0.00059
12s	166.00347	0.00051	12RR	167.71561	0.00053
13s	167.32047	0.00060	13RR	169.01081	0.00062
14s	167.86893	0.00067	14RR	169.54850	0.00068
15s	166.58636	0.00059	15RR	168.28509	0.00060
16s	164.52091	0.00045	16RR	166.25486	0.00047
17s	165.03239	0.00047	17RR	166.67699	0.00049
18 s	165.88205	0.00038	18RR	167.71230	0.00040
19s	170.43572	0.00070	19RR	172.18199	0.00071
20s	163.50135	0.00060	20RR	165.21711	0.00062
24s	167.09319	0.00065	21rep	167.32840	0.00062
25s	166.19263	0.00064	22rep	172.84943	0.00014
27s	169.39193	0.00062	23rep	170.86715	0.00074
28s	166.27134	0.00053	26rep	167.83349	0.00057
29 s	163.25742	0.00051	21GG	168.59340	0.00064
30s	167.29740	0.00065	22GG	174.10530	0.00000
			23GG	172.12656	0.00075
			26GG	169.07971	0.00059

Tabela 12 Wyrównane wysokości punktów - obiekt Berejów (oznaczenie punktów: s - studzienka, RR - reflektor, GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS)

Lewino					
NRP	Η	MH	NRP	H [m]	MH [m]
1 s	167.96598	0.00067	23rep	178.45389	0.00014
2 s	140.97152	0.00078	24rep	170.78788	0.00095
3 s	178.13555	0.00060	25rep	147.99261	0.00091
4 s	171.01640	0.00071	29rep	177.83928	0.00144
5 s	182.20530	0.00040	23GG	179.71510	0.00000
6s	184.57726	0.00040	24GG	172.04906	0.00096
7 s	170.50779	0.00049	25GG	149.25385	0.00092
8 s	151.88616	0.00091	29GG	179.09625	0.00145
9s	160.28049	0.00112	1RR	169.57732	0.00068
10s	156.94325	0.00117	2RR	142.66847	0.00079
11s	137.28408	0.00122	3RR	179.67627	0.00062
12s	165.78976	0.00096	4RR	172.58396	0.00072
13s	178.04707	0.00103	5RR	183.93449	0.00043
14s	178.94247	0.00132	6RR	185.87134	0.00043
15s	195.02895	0.00118	7RR	172.30584	0.00051
16s	161.13579	0.00135	8RR	153.54289	0.00092
17s	176.68120	0.00146	9RR	161.74941	0.00113
18s	136.16991	0.00140	10RR	158.54159	0.00118
19s	181.08091	0.00145	11 RR	138.69757	0.00123
20s	169.36664	0.00141	12RR	167.47204	0.00097
21s	162.23479	0.00062	13RR	179.88373	0.00104
22s	159.79623	0.00083	14 R R	180.60815	0.00133
26s	178.43774	0.00129	15RR	196.73745	0.00119
27s	200.24583	0.00115	16RR	162.76880	0.00136
28 s	191.66095	0.00122	17 R R	178.29906	0.00146
31 s	146.48904	0.00104	18RR	137.62806	0.00141
			19RR	182.79508	0.00146
			20RR	170.89250	0.00142

Tabela 13 Wyrównane wysokości punktów - obiekt Lewino (oznaczenie punktów: s - studzienka, RR - reflektor, GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS)

4.4 Podsumowanie

Warunki atmosferyczne, w jakich przeprowadzona została precyzyjna niwelacja geometryczna były zmienne, lecz nie przeszkodziły w przeprowadzeniu pomiarów precyzyjnej niwelacji geometrycznej. Występujące utrudnienie pomiaru były spowodowane głównie występującym okresowo silnym wiatrem, wywołującym drżenie kompensatora instrumentu – wibracje osi celowej.

Osiągnięte dokładności niwelacji na podstawie porównania wyników otrzymanych bezpośrednio z pomiaru w dwóch kierunkach, jak i wyniki wyrównania ścisłego wskazują na osiągniecie dokładności precyzyjnej niwelacji geometrycznej II klasy, czyli dokładności lepszej niż 2 mm/km.

Wysokości punktów w procesie wyrównania wyznaczone zostały w układzie wysokościowym Kronsztadt'86. Punktami wyznaczanymi są: punkty referencyjne (repery boczne oraz wysokości głowic), punkty kontrolowane (repery podziemne stabilizowane w bezpośrednim sąsiedztwie reflektorów InSAR), reflektory InSAR (wysokość punktów pośrednich definiowanych przez kulę umieszczaną w reflektorach).

Spis rysunków

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)	9
Rysunek 2 Zasłony terenowe - punkt GG24, poligon Lewino	. 10
Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)	. 11
Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)	. 11
Rysunek 5 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)	. 12
Rysunek 6 Głowica punktu referencyjnego	. 13
Rysunek 7 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego	. 13
Rysunek 8 Reflektor z anteną GNSS	. 14
Rysunek 9 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)	. 18
Rysunek 10 Wartość średnich błędów RMS uzyskanych współrzędnych	. 22
Rysunek 11 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)	. 22
Rysunek 12 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)	. 28
Rysunek 13 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)	. 30
Rysunek 14 Nawiązanie punktów referencyjnych do sieci ASG-EUPOS (źródło podkładu mapowego: Google Earth)	. 36
Rysunek 15 Geometria rozwiązania punktów referencyjnych (źródło podkładu mapowego: Google Earth)	. 38
Rysunek 16 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)	. 46
Rysunek 17 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)	o . 47
Rysunek 18 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)) . 47
Rysunek 19 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny	. 48
Rysunek 20 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni	. 49
Rysunek 21 Wysokość punktu względem powierzchnią odniesienia geoidą i elipsoidą	. 50

Spis tabel

Tabela 1	Plan sesji pomiarowych	16
Tabela 2	Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2014.63), obiek Lewino	t 25
Tabela 3	Wykaz wektorów utworzonych podczas opracowania	26
Tabela 4	Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.63), obie Lewino	ekt 27
Tabela 5	Wykaz ostatecznych współrzędne punktów referencyjnych w układzie ITRF2008 (2014.64), obiekt Babiak	32
Tabela 6	Wykaz wektorów utworzonych podczas każdej sesji pomiarowej	33
Tabela 7	Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.64), obie Babiak	ekt 35
Tabela 8	Wykaz ostatecznych współrzędne punktów referencyjnych w układzie ITRF2008 (2014.65), obiekt Berejów	40
Tabela 9	Wykaz wektorów utworzonych podczas każdej sesji pomiarowej	41
Tabela 1	Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2014.65), obiekt Berejów	42
Tabela 11	I Wyrównane wysokości punktów - obiekt Babiak (oznaczenie punktów: s - studzienka, RR - reflekto GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS).	or, 52
Tabela 12	2 Wyrównane wysokości punktów - obiekt Berejów (oznaczenie punktów: s - studzienka, RR - reflektor, GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS).	53
Tabela 13	3 Wyrównane wysokości punktów - obiekt Lewino (oznaczenie punktów: s - studzienka, RR - reflekt GG - punkt referencyjny GNSS, rep - głowica reperu znajdującego się na punkcie referencyjnym GNSS)	or, 54

Załączniki

Pomiary GNSS

Załącznik_1_Lewino.pdf – statystyki obserwacji, obiekt Lewino Załącznik_2_Lewino.pdf – rozwiązanie nieoznaczoności, obiekt Lewnio Załącznik_3_Lewino.pdf – statystyki otrzymanych współrzędnych, obiekt Lewnio Załącznik_4_Babiak.pdf – statystyki obserwacji, obiekt Babiak Załącznik_5_Babiak.pdf – rozwiązanie nieoznaczoności, obiekt Babiak Załącznik_6_Babiak.pdf – statystyki otrzymanych współrzędnych, obiekt Babiak Załącznik_7_Berejów.pdf – statystyki obserwacji, obiekt Berejów Załącznik_8_Berejów.pdf – rozwiązanie nieoznaczoności, obiekt Berejów Załącznik_9 Berejów.pdf – statystyki otrzymanych współrzędnych, obiekt Berejów

Niwelacja geometryczna

- Załącznik_10_Babiak_obserwacje.pdf
- Załącznik_11_Berejów_obserwacje.pdf
- Załącznik_12_Lewino_obserwacje.pdf
- Załącznik_13_Wyznaczenie wysokości punktów referencyjnych.pdf
- Załącznik_14_Przewyższenia reflektorów względem punktów kontrolowanych.pdf
- Załącznik_15_Babiak_wyrownanie.pdf
- Załącznik_16_Berejow_wyrownanie.pdf
- Załącznik_17_Lewino_wyrownanie.pdf

Załącznik_18_Dzienniki_pomiarowe.pdf - dzienniki obserwacyjne z pomiarów satelitarnych

Uniwersytet Warmińsko- Mazurski w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Instytut Geodezji

Olsztyn, 2 maja 2015 r.

Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej

Raport z realizacji drugiej kampanii pomiarowej przeprowadzonej w dniach 2-9 lutego 2015 r.

Kierownik pracy: dr hab. inż. Paweł Wielgosz, prof. UWM

Spis treści

	DANE FORMALNO-PRAWNE	4
2.	Zleceniodawca	5
3.	Wykonawca	5
4.	Autorzy raportu	5
5.	Zespół pomiarowy	5
	5.1 Pomiary GNSS	5
	5.2 Niwelacja geometryczna	6
П	NIWELACIA SATELITARNA	7
6	Col programadronych nomiorów	0
о. _		0
7.	Obszar opracowania	8
	7.1 LUKdIIZdLjd	ة
		و
	7.2.1 Lewino	و
	7.2.2 Bousiak	10
_		
8.	Opis techniczny	11
	8.1 Sprzęt pomiarowy	11
	8.2 Procedura pomiaru GNSS	13
	8.2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych	15
	8.2.2 Procedura pomiarowa na reflektorach typu B	15
	8.2.3 Procedura pomiarowa na reflektorach typu A	15
	8.3 Pousuriowanie pomiarow GNSS	10
9.	Opracowanie wyników obserwacji	17
	9.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino	17
	9.1.1 Sposób nawiązania	17
	9.1.2 Strategia obliczeniowa	17
	9.1.3 Analiza liczby obserwacji	18
	9.1.4 Analiza wyznaczenia nieoznaczoności	19
	9.1.5 Analiza wyznaczonych współrzędnych punktów referencyjnych	20
	9.1.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych	21
	9.2 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino	21
	9.2.1 Geometria rozwiązania	21
	9.2.2 Strategia obliczeniowa	22
	9.2.3 Analiza liczby obserwacji	23
	9.2.4 Analiza wyznaczenia nieoznaczoności	23
	9.2.5 Analiza wyznaczonych wspołrzędnych punktów kontrolowanych	24
	9.2.6 Zestawienie ostatecznych wspołrzędnych punktów kontrolowanych	24
	 3.3 Ναψιφζατιτέ Ου Αδύ-Ευγύ5 – μυτιχυτι Βαυίακ 0.2.1 Sposéh powiozonia 	20
	2.2. Uusuu IldWiqLaliid	20 76
	0.3.2 Analiza liczby obserwacji	20 26
	9.3.4 Analiza III.2.09 00501 wacji	20 77
	9.3.5 Analiza wyznaczonych współrzednych nunktów referencyjnych	27
	9.3.6. Zestawienie ostatecznych współrzednych punktów referencyjnych	27
	9.4 Wyznaczenie współrzednych punktów kontrolowanych – poligon Babiak	29
	,	

9.4.	l Geometria rozwiązania	29
9.4.	2 Strategia obliczeniowa	29
9.4.	3 Analiza liczby obserwacji	
9.4.	1 Analiza wyznaczenia nieoznaczoności	
9.4.	5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	
9.4.	5 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	
9.5	Nawiązanie do ASG-EUPOS – poligon Berejów	
9.5.	L Sposób nawiązania	
9.5.	2 Strategia obliczeniowa	
9.5.	3 Analiza liczby obserwacji	
9.5.	1 Analiza wyznaczenia nieoznaczoności	
9.5.	5 Analiza wyznaczonych współrzędnych punktów referencyjnych	
9.5.	5 Zestawienie ostatecznych współrzędnych punktów referencyjnych	
9.6	Nyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów	
9.6.	l Geometria rozwiązania	
9.6.	2 Strategia obliczeniowa	
9.6.	3 Analiza liczby obserwacji	
9.6.	1 Analiza wyznaczenia nieoznaczoności	
9.6.	5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	
9.6.	5 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	
9.7	Podsumowanie	
III NIWE		
10. Ce	l przeprowadzonych pomiarów	
11 0	szar opracowania	40
11. 0		
11.1	Charakterystyka noligonów doświadczalnych oraz lokalizacja nunktów	
11.2		
12. O	is techniczny	
13. O	racowanie wyników obserwacji	
13.1	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR	
13.1 13.2	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86	44 45
13.1 13.2 13.3	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych	
13.1 13.2 13.3 13.4	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych Analiza wyników ścisłego wyrównania sieci niwelacyjnej	
13.1 13.2 13.3 13.4 13.5	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych Analiza wyników ścisłego wyrównania sieci niwelacyjnej Podsumowanie.	
13.1 13.2 13.3 13.4 13.5 Spis tabe	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych Analiza wyników ścisłego wyrównania sieci niwelacyjnej Podsumowanie	
13.1 13.2 13.3 13.4 13.5 Spis tabe Spis rysu	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych Analiza wyników ścisłego wyrównania sieci niwelacyjnej Podsumowanie	
13.1 13.2 13.3 13.4 13.5 Spis tabe Spis rysu	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR Wyznaczenie wysokości w układzie Kronsztadt'86 Ścisłe wyrównanie sieci kontrolowanych Analiza wyników ścisłego wyrównania sieci niwelacyjnej Podsumowanie	

I Dane formalno-prawne

2. Zleceniodawca

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy ul. Rakowiecka 4 00-975 Warszawa

3. Wykonawca

Uniwersytet Warmińsko-Mazurski w Olsztynie

Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa

Instytut Geodezji

ul. Oczapowskiego 1

10-719 Olsztyn

4. Autorzy raportu

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Katarzyna Stępniak

5. Zespół pomiarowy

5.1 Pomiary GNSS

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Katarzyna Stępniak
- dr Zbigniew Perski
- mgr inż. Maria Przyłucka
- mgr inż. Zbigniew Kowalski
- mgr Jerzy Frydel
- mgr Michał Krawczyk
- mgr Marta Tomaszczuk
- mgr Marcin Wódka

- mgr Jacek Dacka

5.2 Niwelacja geometryczna

- dr inż. Radosław Baryła organizacja i nadzór prac terenowych
- inż. Aleksander Jurczyk
- inż. Adrian Kochanowski
- inż. Łukasz Mokrycki
- inż. Łukasz Witwicki
- inż. Grzegorz Zdanio

II Niwelacja satelitarna

6. Cel przeprowadzonych pomiarów

Celem przeprowadzonych badań jest wykonanie i opracowanie statycznych pomiarów GPS oraz określenie wpływu szczelinowania na powierzchnię terenu, na podstawie obserwacji przemieszczeń punktów kontrolowanych przy wykorzystaniu technologii precyzyjnych, satelitarnych pomiarów GPS.

W celu przeprowadzenia badań pionowych i poziomych ruchów fizycznej powierzchni Ziemi na obszarze oddziaływań wykonano drugą kampanię statycznych pomiarów satelitarnych. W tej kampanii wykorzystano doświadczenia z pierwszej, testowej kampanii obserwacyjnej wykonanej w sierpniu 2014 r. Opracowano zmodyfikowaną koncepcje pomiarów, która została zastosowana w bieżącej kampanii. Modyfikacje dotyczyły liczby i długości sesji obserwacyjnych na reflektorach miały na celu osiągnięcie jeszcze wyższych dokładności wyników, porównywalnych z niwelacja geometryczną. Nowa metodologia pomiarów będzie wykorzystywana w kolejnych kampaniach pomiarowych GNSS.

7. Obszar opracowania

7.1 Lokalizacja

Pomiarami objęto trzy poligony doświadczalne zlokalizowane w pobliżu następujących miejscowości: Lewino (woj. pomorskie, powiat wejherowski), Babiak (woj. warmińskomazurskie, powiat lidzbarski) oraz Berejów (woj. lubelskie, powiat lubartowski). Punkty referencyjne zlokalizowano poza przewidywanym obszarem odkształceń terenu. Lokalizację poligonów badawczych przedstawia rysunek 1.

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)

7.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

7.2.1 Lewino

Teren głównie rolniczy z dość znaczącym udziałem gruntów leśnych. Obszar objęty badaniami jest pofałdowany ze znacznymi deniwelacjami. Punkty referencyjne zlokalizowano za zewnątrz obszaru zagrożonego odkształceniami. Reflektory (punkty kontrolowane), służące do pomiarów odkształceń, rozmieszczone są równomiernie na całym badanym terenie. Na poligonie badawczym w Lewinie za pomocą techniki GNSS pomierzono 10 punktów kontrolowanych. Część z nich także jest zlokalizowana w pobliżu zasłon terenowych. Rozmieszczenie punktów pomiarowych przedstawia rysunek 2.

Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)

7.2.2 Babiak

Teren objęty badaniami jest pofałdowany, ze znacznymi deniwelacjami, głownie rolniczy. Podobnie jak Lewinie, punkty referencyjne na poligonie w Babiaku zostały zlokalizowane poza obszarem narażonym na odkształcenia. Reflektory (w sumie osiem) zostały rozmieszczone równomiernie na badanym terenie, przy czym także na tym poligonie część punktów referencyjnych i część reflektorów została zlokalizowana w pobliżu zasłon terenowych. Na rysunku 3 przedstawiono rozmieszczenie punktów pomiarowych na obszarze Babiaka.

Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)

7.2.3 Berejów

Teren objęty badaniami położony jest na równinie, deniwelacje terenu są bardzo małe. Obszar głównie rolniczy. Punkty referencyjne zlokalizowane na zewnątrz obszaru zagrożonego odkształceniem. Reflektory (w sumie osiem) rozmieszczone są równomiernie na całym obszarze. Na rysunku 4 przedstawiono rozmieszczenie punktów pomiarowych na poligonie badawczym w Berejowie.

Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)

8. Opis techniczny

8.1 Sprzęt pomiarowy

Do przeprowadzenia precyzyjnych pomiarów satelitarnych wykorzystano dwuczęstotliwościowe odbiorniki GNSS:

- Javad Alpha z anteną GrAnt-G3T,
- Hi-Target V30,
- Topcon Hiper Pro,
- Trimble R8,
- Trimble SPS881.

Centrowanie anten GPS na punktach referencyjnych realizowane było przy użyciu spodarek przykręcanych bezpośrednio do głowic tych punktów (Rys. 5, 6). Wysokość anteny wyznaczana była suwmiarką, w zależności od odbiornika: względem trzech punktów wysokościowych znajdujących się w każdej głowicy (Trimble R8 oraz Trimble SPS881), względem głowicy punktu referencyjnego w trzech miejscach (Javad Alpha z anteną GrAnt-G3T) lub w dwóch miejscach (Topcon Hiper Pro).

Rysunek 5 Głowica punktu referencyjnego

Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego

Na poligonach badawczych w Lewinie oraz Berejowie na reflektorach centrowanie anten następowało na zainstalowanym w tym celu trzpieniu. Na trzpień zakładane było przenośne urządzenie dające możliwość przykręcenia anteny GNSS. Urządzenie to miało 50 mm wysokości. Trzpień przymocowany był do reflektora pod kątem, tak aby antena skierowana była pionowo w górę.

Na poligonie badawczym w Babiaku centrowanie anteny zależało od typu reflektora. Na reflektorach typu B centrowanie odbywało się analogicznie jak na poligonach w Lewinie i Berejowie, z tą różnicą, że trzpienie zamontowane były zgodnie z osią reflektora, a tym samym, to urządzenia służące przykręceniu anteny GNSS, zamontowane na stałe, umożliwiało ustawienie anteny pionowo w górę, wysokości tego urządzenia nie wyznaczono. Na pozostałych reflektorach centrowanie przebiegało w ten sam sposób, co na pozostałych dwóch poligonach badawczych.

Rysunek 7 przedstawia reflektor z zamontowaną anteną GNSS.

Rysunek 7 Reflektor z anteną GNSS

8.2 Procedura pomiaru GNSS

Na podstawie wniosków wyciągniętych z poprzedniej kampanii pomiarowej zmieniono procedurę pomiaru GNSS. Dla każdego obiektu przewidziano cztery punkty referencyjne zewnętrzne, trzy punkty referencyjne wewnętrzne (poprzednio cztery punkty referencyjne wewnętrzne) oraz osiem lub dziesięć punktów kontrolowanych. Pozwoliło to na wydłużenie czasu obserwacji na reflektorach aż do dwóch 4-godzinnych sesji, co przełożyło się bezpośrednio na uzyskane lepsze dokładności niwelacji satelitarnej. Plan sesji pomiarowych przedstawia tabela 1.

W pomiarach wykorzystano jedenaście (lub dwanaście) odbiorników GNSS. Pomiary na poszczególnych obiektów przebiegały według następującego schematu:

- punkty referencyjne zewnętrzne dwie 8-godzinne sesje pomiarowe;
- punkty referencyjne wewnętrzne dwie 8-godzinne sesje pomiarowe;
- reflektory dwie 4-godzinne sesje pomiarowe.

W przeprowadzonych kampaniach GNSS przyjęto następujące parametry pomiaru:

- interwał pomiarowy: 10 s,
- minimalna wysokość satelity nad horyzontem: 0°,
- długość sesji pomiarowej: osiem godzin (punkty referencyjne) oraz cztery godziny (reflektory).

	-			LEVVIN	10		
Data	08.02.	2015r.	09.02.	.2015r.			Numer
Sesja pomiarowa	D1a	D1b	D2a	D2b	Odbiornik	Antena	przyrządu
PIG 1	g	30	g	30	Hi-Target V30	Zintegrowana	-
PIG 2	g	32	g	32	Trimble SPS881	Zintegrowana	-
PIG 3	g	33	g	33	Trimble SPS881	Zintegrowana	-
PIG 4	g	34	g	34	Trimble R8	Zintegrowana	-
PIG 5	r07	r03	r03	r07	Trimble R8	Zintegrowana	1
PIG 6	r01	r02	r02	r01	Topcon Hiper +	Zintegrowana	2
PIG 7	r09	r10	r10	r09	Topcon Hiper +	Zintegrowana	3
UWM 1	gź	29	g	29	Javad Alpha	Javad GrAnt G3T	-
	gź	23	g	23	Javad Alpha	Javad GrAnt G3T	-
000002	r05	r06	r06	r05	Topcon Hiper +	Zintegrowana	
UWM 3	gź	25	g	25	Topcon Hiper +	Zintegrowana	-
011113	r12	r13	r13	r13	Topcon Hiper +	Zintegrowana	4
				BABIA	٨K		
Data	05.02.	2015r.	06.02.	2015r.			Numer
Sesja pomiarowa	D1a	D1b	D2a	D2b	Odbiornik	Antena	przyrządu
PIG 1	g3	- 31	g	31	Hi-Target V30	Zintegrowana	-
PIG 2	g3	32	g32		Trimble SPS881	Zintegrowana	-
PIG 3	g3	33	g33		Trimble SPS881	Zintegrowana	-
PIG 4	g3	34	g	34	Trimble R8	Zintegrowana	-
PIG 5	r16	r17	r17	r16	Trimble R8	Zintegrowana	1
PIG 6	r06	r10	r10	r06	Topcon Hiper +	Zintegrowana	2
PIG 7	r07	r09	r09	r07 Topcon Hiper +		Zintegrowana	3
UWM 1	g	21	g	21	Javad Alpha	Javad GrAnt G3T	_
	σ	30	σ	30	lavad Alpha	Javad GrAnt G3T	_
	σ?	26	ه و	26	Toncon Hiner +	Zintegrowana	_
UWM 3	r11	r12	r12	 r11	Topcon Hiper +	Zintegrowana	4
		112	112	BEREJÓ	ów	Lintegrowand	
Data	02.02.	2015r.	03.02.	.2015r.			
Sesja pomiarowa	D1a	D1b	D2a	D2b	Odbiornik	Antena	Numer przyrządu
PIG 1	g	31	g	31	Hi-Target V30	Zintegrowana	_
	δ·	32	σ ⁻	32	Trimble SPS881	Zintegrowana	_
PIG 3	δ` σ`	22	σ ⁻	32	Trimble SPS881	Zintegrowana	
	5. 	24	5. 	37	Trimble B8	Zintegrowana	
	r05	r06	r06	r05	Trimble R8	Zintegrowana	1
PIGE	r17	r18	r18	r17		Zintegrowana	2
PIG 7	r15	r08	r08	r15	Topcon Hiper +	Zintegrowana	3
	g	22	g	22	Javad Alpha	Javad GrAnt G3T	-
UWM 1	g	23	g	23	Javad Alpha	Javad GrAnt G3T	-
	g	21	g	21	Topcon Hiper +	Zintegrowana	-
UWM 2	r01	r13	r13	r01	Topcon Hiper +	Zintegrowana	4

TT 1 1	DI		•	1
Tabela	Plan	Ses11	pomiarowy	ch.
1 uoolu	I Iull	50011	pommutowy	

8.2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych

Przed przystąpieniem do realizacji pomiarów GNSS na punkcie referencyjnym obserwator powinien dokładnie sprawdzić stan głowicy znaku oraz śruby (Rys. 5), a następnie przeprowadzić następujące czynności:

- przykręcić i spoziomować spodarkę (Rys. 6),
- umieścić antenę GNSS w spodarce,
- skierować antenę w kierunku północnym,
- połączyć antenę do odbiornika GNSS (w przypadku anteny zewnętrznej),
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika GNSS,
- wykonać suwmiarką pomiar wysokości anteny GNSS.

Procedurę pomiaru wysokości anteny GNSS należało przeprowadzać co najmniej trzy razy w trakcie wykonywania obserwacji.

8.2.2 Procedura pomiarowa na reflektorach typu B

Przed przystąpieniem do realizacji pomiarów GNSS na reflektorze obserwator powinien dokładnie sprawdzić stan urządzenia służącego do zamontowania anteny na reflektorze, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na reflektorze,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.2.3 Procedura pomiarowa na reflektorach typu A

Przed przystąpieniem do realizacji pomiarów na reflektorze obserwator powinien dokładnie sprawdzić trzpień służący centrowaniu anteny GNSS, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na trzpieniu,
- umieścić antenę wraz z przejściówką na trzpieniu,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,

- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.3 Podsumowanie pomiarów GNSS

Kampania pomiarowa dla poszczególnych obiektów została przeprowadzona w dniach: Berejów: 2-3 lutego 2015r., Babiak: 5-6 lutego 2015r., Lewino: 8-9 lutego 2015r. Pomiary były wykonywane na terenach znajdujących się bezpośrednio przy zaworach służących do szczelinowania oraz w miejscach stabilizacji punktów referencyjnych przebiegła według przyjętego wcześniej planu sesji pomiarowych. Wszelkie uwagi co do prowadzonych pomiarów uwzględniono w dziennikach obserwacyjnych zawartych w załączniku 16.

9. Opracowanie wyników obserwacji

9.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino

9.1.1 Sposób nawiązania

Nawiązanie lokalnej sieci kontrolnej do sieci stacji permanentnych, a tym samym do satelitarnego układu ITRF2008, pozwala na wykorzystanie precyzyjnych produktów IGS w jej opracowaniu (np. precyzyjnych orbit, modeli jonosfery, parametrów ruchu obrotu Ziemi ERP). Nawiązanie punktów referencyjnych sieci kontrolnej na obiekcie Lewino przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 2 stacje najbliżej położone obszaru objętego siecią – REDZ, WLAD (Rys. 8). W opracowaniu uwzględniono również odległą stację WROC, która również należy do sieci ASG-EUPOS, w celu poprawy estymacji parametrów troposfery, niezbędnych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. W systemie ASG-EUPOS współrzędne stacji określone są w układzie PL-ETRF2000 (epoka odniesienia 2011.0). Przed przystąpieniem do opracowania konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS do układu ITRF2008 na epokę kampanii według algorytmu opracowanego przez Boucher i Altamimi "*Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign*" (2011).

Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS

9.1.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych zakłada dowiązania do 3 stacji ASG-EUPOS przy wstępnym założeniu

ich błędów *a priori* na poziomie 1 mm dla każdej składowej. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 40 km do 420 km.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L3;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźnienia sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności w zależności od długości wektorów –
 SIGMA (L1, L1&L2, L5&L3) lub metoda Quasi-Ionosphere-Free (QIF).
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 5 m/0.001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

W etapie pierwszym opracowania współrzędne punktów referencyjnych sieci kontrolnej na epokę kampanii pomiarowej (2015.11) w układzie ITRF2008 otrzymano z wyrównania łącznego równań normalnych z dwóch dni pomiarowych modułem ADDNEQ2. Równania normalne z poszczególnych sesji pomiarowych otrzymano z rozwiązania każdej sesji pomiarowej używając modułu GPSEST. Nawiązanie do sieci ASG-EUPOS zrealizowane zostało metodą *minimum constraint*.

9.1.3 Analiza liczby obserwacji

W trakcie opracowania utworzono sieć wektorów łączących każdy zewnętrzny punkt referencyjny ze stacjami ASG-EUPS, bez wektorów pomiędzy punktami referencyjnymi oraz pomiędzy stacjami ASG-EUPOS. W ten sposób utworzono następujące wektory:

GG23	WLAD	GG23
GG25	WLAD	GG25
GG29	WLAD	GG29
GG32	WLAD	GG32
GG33	WLAD	GG33
WROC	WLAD	WROC
	GG23 GG25 GG29 GG32 GG33 WROC	GG23 WLAD GG25 WLAD GG29 WLAD GG32 WLAD GG33 WLAD WROC WLAD

W pierwszej kolejności przeprowadzono analizę liczby obserwacji dla każdego wektora. Dla wektorów do punktu referencyjnego GG23 uzyskano średnią liczbę obserwacji wynoszącą 10037, dla wektorów z punktem GG25 – 10061 (średnia z 2 sesji pomiarowych), dla wektorów z punktem GG39 – 10210 (średnia z 2 sesji pomiarowych), dla wektorów z punktem GG33 – 9674 (średnia z 2 sesji pomiarowych), natomiast dla wektorów z punktem GG32 – 9748 (średnia z 2 sesji pomiarowych). Z tego wynika, że najlepsze warunki obserwacyjne występowały na punkcie GG29. Biorąc pod uwagę wektory, które zostały utworzone do stacji REDZ średnia liczba obserwacji wynosiła 10218, natomiast w przypadku wektorów do stacji WLAD – 9474. Należy zauważyć, że ze względu na zbyt małą liczbę obserwacji niemożliwe było włączenie do opracowania punktu GG30. Szczegółowe informacje dotyczące liczby obserwacji znajdują się w załączniku 1.

9.1.4 Analiza wyznaczenia nieoznaczoności

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej bazującej na metodzie rozwiązania nieoznaczoności SIGMA z zastosowaniem kombinacji liniowych "Wide-Lane" i "Narrow-Lane". Metoda ta opiera się na 3 etapach:

- W pierwszej iteracji wyznaczane są przybliżone wartości nieoznaczoności ("float solution").
- Rozwiązanie nieoznaczoności metodą "Wide-Lane" wykorzystaniem modelu jonosfery a priori.
- Kombinacja liniowa "Ionosphere free" (L3) z wprowadzonymi nieoznaczoności wyznaczonymi w poprzednim etapie i ostateczne rozwiązanie nieoznaczoności metodą "Narrow-Lane".

Wektory utworzone pomiędzy punktami referencyjnymi poligonu Lewino a stacjami sieci ASG-EUPOS charakteryzowały się następującymi długościami:

REDZ	GG23	63.713	km	WLAD	GG23	44.662	km
REDZ	GG25	64.409	km	WLAD	GG25	43.454	km
REDZ	GG29	66.584	km	WLAD	GG29	40.728	km
REDZ	GG32	62.060	km	WLAD	GG32	42.818	km
REDZ	GG33	67.013	km	WLAD	GG33	44.300	km
REDZ	WROC	373.784	km	WLAD	WROC	419.847	km

Najlepszy poziom wyznaczenia nieoznaczoności otrzymano dla wektorów do stacji REDZ – około 80%, podczas gdy dla wektorów do stacji WLAD poziom rozwiązania nieoznaczoności wynosi 45%. Fakt ten, może mieć związek z wykorzystaniem na tej stacji odbiornika Leica GR10.

Biorąc pod uwagę wektory do poszczególnych stacji referencyjnych sieci kontrolnej, największy procent nieoznaczoności został wyznaczony dla wektorów do punktu GG23 (75% metodą "Wide-Lane" oraz 68% metodą "Narrow-Lane") oraz do punktu GG29 (70% metodą "Wide-Lane" oraz 61% metodą "Narrow-Lane"). Dla wektorów do punktów GG25, GG32, GG33 nieoznaczoności wyznaczane metodą L5/L3 zostały rozwiązane na poziomie około 60%.

Wyniki rozwiązania nieoznaczoności, otrzymane w programie Bernese, zawiera załącznik 2.

9.1.5 Analiza wyznaczonych współrzędnych punktów referencyjnych

Końcowy etap tej części opracowania stanowi wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę kampanii (2015.11) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych sesji pomiarowych zostały połączone modułem ADDNEQ2, a wyniki stanowią współrzędne punktów dla okresu całej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność otrzymanych współrzędnych poziomych jest mniejsza niż 1,0 mm dla punktów GG23, GG25, GG29 oraz GG33. Jedynie dla punktu GG32 powtarzalności uzyskanej składowej północnej współrzędnych wynosi 2,6 mm. Powtarzalność wyznaczeń wysokości nie przekracza 2 mm dla większości punktów, wyłącznie w przypadku punkt GG23 wynosi 2,7 mm. Dla punktu GG34 zaobserwowano znacznie gorszą powtarzalność otrzymanych wyników – różnice pomiędzy składową północną otrzymaną z różnych sesji obserwacyjnych wynosi około 40 mm, natomiast dla wysokości ponad 30 mm. Ze względu na fakt, że punkt GG34 był niestabilny podczas pomiarów, został on pominięty już na wcześniejszym etapie opracowania.

W tym etapie opracowania średni błąd kwadratowy RMS dla składowych poziomych oraz dla wysokości nie przekracza 0,7 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w tym pierwszym opracowania zawiera załącznik 3.

9.1.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych

W wyniku opracowania uzyskano ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 na epokę kampanii (2015.11), które zestawiono w tabeli 2. Ponadto w tabeli podano dokładności współrzędnych w układzie topocentrycznym. Otrzymane współrzędne zostały użyte jako *a priori* w dalszej części opracowania do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów).

Tabela 2 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.11), wysokości elipsoidalne oraz błąd, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
GG23	3533568.52775	1154842.06114	5165628.22983	210.011	0.61	0.94	2.73
GG25	3532567.25115	1155302.86936	5166168.61597	179.519	0.55	0.79	1.87
GG29	3530393.22962	1156942.68227	5167316.71164	209.273	0.56	0.24	1.70
GG32	3531726.19390	1152619.62214	5167332.32662	77.333	2.60	0.34	1.81
GG33	3533443.72591	1158199.65552	5164985.48293	225.620	0.34	0.27	1.49

W ramach kolejnego etapu prac przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 według algorytmu opracowanego przez Boucher i Altamimi "*Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign*" (2011). Współrzędne w układzie PL-ETRF2000 przedstawiono w tabeli 3.

Tabela 3 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]
GG23	3533569.0266	1154841.7077	5165627.9500
GG25	3532567.7500	1155302.5160	5166168.3362
GG29	3530393.7287	1156942.3291	5167316.4320
GG32	3531726.6926	1152619.2688	5167332.0468
GG33	3533444.2250	1158199.3021	5164985.2031

9.2 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino

9.2.1 Geometria rozwiązania

W przypadku badań prowadzonych na obszarze poligonu Lewino, analizowana sieć kontrolna składa się z 5 punktów referencyjnych (2 punkty na zewnątrz oraz 3 punkty wewnątrz obszaru), oraz 10 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały

wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi ani pomiędzy punktami referencyjnymi. Z tej części opracowania zostały wyłączone 2 punkty referencyjne: GG34 (ze względu na niestabilność punktu) oraz GG30 (ze względu na małą liczbę zebranych obserwacji). Utworzone wektory zostały przedstawione w tabeli 4.

GG23-RR01	GG25-RR01	GG29-RR01	GG32-RR01	GG33-RR01
GG23-RR02	GG25-RR02	GG29-RR02	GG32-RR02	GG33-RR02
GG23-RR03	GG25-RR03	GG29-RR03	GG32-RR03	GG33-RR03
GG23-RR05	GG25-RR05	GG29-RR05	GG32-RR05	GG33-RR05
GG23-RR06	GG25-RR06	GG29-RR06	GG32-RR06	GG33-RR06
GG23-RR07	GG25-RR07	GG29-RR07	GG32-RR07	GG33-RR07
GG23-RR09	GG25-RR09	GG29-RR09	GG32-RR09	GG33-RR09
GG23-RR10	GG25-RR10	GG29-RR10	GG32-RR10	GG33-RR10
GG23-RR12	GG25-RR12	GG29-RR12	GG32-RR12	GG33-RR12
GG23-RR13	GG25-RR13	GG29-RR13	GG32-RR13	GG33-RR13

Tabela 4 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Lewino

9.2.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS w celu uzyskania ostatecznych współrzędnych punktów kontrolowanych opiera się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km. Ze względu na niewielką długość wektorów wyznaczanych, do opracowania wykorzystano obserwacje kodowe i fazowe na częstotliwości L1. Na tak krótkich wektorach wpływ opóźniania troposferycznego oraz jonosferycznego jest eliminowany poprzez tworzenie podwójnych różnic obserwacji, zatem nie ma potrzeby stosowania kombinacji liniowej L3 do eliminacji wpływu jonosfery. Ponadto, kombinacja liniowa L3 charakteryzują się trzykrotnie większym szumem, co ogranicza precyzję uzyskiwanych wyników. W tym etapie do rozwiązania nieoznaczoności zastosowano metodę SIGMA L1.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L1;
- czas trwania sesji pomiarowych 2x 4 godziny;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;

- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźniania sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L1;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 0.0001 m/0.0001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co godzinę.

Ostateczne współrzędne punktów referencyjnych sieci kontrolnej na epokę kampanii (2015.11) w układzie ITRF2008 otrzymano poprzez przeprowadzenie wspólnego wyrównania za pomocą modułu ADDNEQ2.

9.2.3 Analiza liczby obserwacji

Liczba obserwacji dla wektorów tej sieci miesi się w granicach od 4448 do 5567. Najmniejszą średnią liczbą obserwacji z dwóch dni pomiarowych cechują się wektory do punktu referencyjnego GG32, gdzie średnia wynosi 4762 obserwacji, natomiast dla wektorów do punktu referencyjnego GG25 opracowano największa liczbę obserwacji – 5102. Biorąc pod uwagę średnią liczbę obserwacji dla wektorów do punktów kontrolowanych, najmniej obserwacji istnieje dla wektorów do punktu RR08 (4817), natomiast najwięcej obserwacji zarejestrowano dla wektorów do punktu RR12 (5178). Szczegółowe dane dotyczące liczby obserwacji znajdują się w załączniku 1.

9.2.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych w sieci, w której maksymalna długość wektorów pomiędzy punktami wynosi nie więcej niż 5 km, zastosowano metodę rozwiązania nieoznaczoność SIGMA L1. Podczas opracowania danych z pierwszej sesji obserwacyjnej wyznaczono nieoznaczoności na średnim poziomie 97,6%, natomiast z drugiej sesji na poziomie 99,1%. Dla większości wektorów zostało rozwiązanych 100% nieznaczności, jedynie dla 2 wektorów (na 100 opracowanych wektorów): GG29-RR03 oraz GG29-RR07 mierzonych podczas drugiego dnia pomiarowego poziom, wyznaczenia nieoznaczoności był nieznacznie niższy niż 90%. Wyniki rozwiązania nieoznaczoności z etapu trzeciego, otrzymane w programie Bernese, zawiera załącznik 2.

9.2.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.11) w oparciu o współrzędne punktów referencyjnych.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność wyznaczeń składowych horyzontalnych dla większości punktów nie przekracza 2,0 mm, jedynie dla punktu RR09 powtarzalność składowej północnej wynosi 2,8 mm, dla punktu RR02 powtarzalność składowej północnej wynosi 2,7 mm, a składowej wschodnie 2,2 mm. Powtarzalność wyznaczeń wysokości dla punktów RR03, RR07, RR12 oraz RR13 jest mniejsza niż 2,0 mm, natomiast dla punktów RR05, RR06 i RR09 jest nie przekracza. Gorszą powtarzalność wysokości uzyskano dla punktów RR02, RR01 oraz RR10 – odpowiednio 4,0 mm, 6,6 mm oraz 7,0 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik 3.

9.2.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania uzyskano współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 na epokę kampanii (2015.11), które wraz z błędami uzyskanymi na postawie powtarzalności wyznaczeń zestawiono w tabeli 5.

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3532704.65463	1154367.03157	5166308.94932	200.566	0.91	1.06	6.62
RR02	3532531.06572	1154787.68786	5166300.38573	173.646	2.68	2.17	4.04
RR03	3533644.51522	1153902.07848	5165786.09575	210.700	1.15	0.44	1.90
RR05	3533491.56287	1154526.84601	5165756.57223	214.941	1.85	0.73	2.68
RR06	3533867.87821	1154619.01047	5165483.33440	217.324	0.94	1.28	2.56
RR07	3533314.33806	1154495.98981	5165869.53872	203.312	1.27	0.63	0.98
RR09	3531819.80672	1155986.29557	5166540.57997	192.711	2.79	0.77	2.55
RR10	3531712.18768	1155838.31677	5166643.10732	189.919	1.07	0.70	7.06
RR12	3532562.82556	1155563.00474	5166137.07960	198.434	1.95	1.53	1.76
RR13	3533028.50666	1155581.85023	5165832.37665	211.299	1.82	1.23	1.39

Tabela 5 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.11), wysokości elipsoidalne oraz ich błędy, poligon Lewino

W wyniku transformacji otrzymano współrzędne punktów kontrolowanych w układzie ETRF2000, które zestawiono w tabeli 6.

Punkt	X [m]	Y [m]	Z [m]
RR01	3532705.1534	1154366.6782	5166308.6695
RR02	3532531.5646	1154787.3345	5166300.1059
RR03	3533645.0139	1153901.7250	5165785.8159
RR05	3533492.0616	1154526.4925	5165756.2924
RR06	3533868.3770	1154618.6570	5165483.0545
RR07	3533314.8368	1154495.6364	5165869.2589
RR09	3531820.3057	1155985.9423	5166540.3002
RR10	3531712.6866	1155837.9635	5166642.8276
RR12	3532563.3245	1155562.6514	5166136.7998
RR13	3533029.0055	1155581.4968	5165832.0968

Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino

9.3 Nawiązanie do ASG-EUPOS – poligon Babiak

9.3.1 Sposób nawiązania

Nawiązanie punktów referencyjnych sieci kontrolnej poligonu Babiak przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 3 stacje najbliżej położone obszaru objętego siecią – BART, ELBL i LAMA (Rys. 9). W opracowaniu uwzględniono również odległą stację WROC w celu poprawy dekorelacji parametrów troposfery, niezbędnych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. Podobnie jak przy opracowaniu sieci obiektu Lewino, również w tym przypadku przed przystąpieniem do obliczeń konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę kampanii (2015.10).

Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS

9.3.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych na obiekcie Babiak jest oparta o rozwiązanie wykorzystujące obserwacje na częstotliwości L1, L2 oraz L3 i została opisana w podrozdziale 9.1.2. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 26 km do 68 km oraz wektory o długości ponad 400 km łączące stacje ASG-EUPOS ze stacją WROC.

9.3.3 Analiza liczby obserwacji

Na obiekcie Babiak została utworzona siec wektorów pomiędzy punktami referencyjnymi a punktami sieci ASG-EUPOS. Najwięcej obserwacji zostało opracowanych

dla wektorów do punktu GG30 – średnia liczba obserwacji z dwóch sesji pomiarowych wynosi 10353. Najmniej obserwacji zarejestrowano dla wektorów do punktu GG31 podczas pierwszej sesji pomiarowej (3139 obserwacji). Średnia liczba obserwacji z dwóch dni pomiarowych dla poszczególnych wektorów mieści się w przedziale od 6481 do 10353. Szczegółowe informacje dotyczące liczby obserwacji znajdują się w załączniku 4.

9.3.4 Analiza wyznaczenia nieoznaczoności

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej opisanej w podrozdziale 9.1.4. Długości wektorów pomiędzy stacjami ASG-EUPOS a punktami referencyjnymi poligonu Babiak wynoszą:

BART	GG21	30.52	km	ELBL	GG21	63.36	km	LAMA	GG21	36.34	km
BART	GG26	30.14	km	ELBL	GG26	64.06	km	LAMA	GG26	35.22	km
BART	GG30	29.86	km	ELBL	GG30	64.52	km	LAMA	GG30	34.59	km
BART	GG31	32.10	km	ELBL	GG31	61.06	km	LAMA	GG31	36.83	km
BART	GG32	29.72	km	ELBL	GG32	63.45	km	LAMA	GG32	39.03	km
BART	GG33	26.19	km	ELBL	GG33	67.04	km	LAMA	GG33	37.48	km
BART	GG34	27.03	km	ELBL	GG34	67.98	km	LAMA	GG34	32.10	km
BART	WROC	431.46	km	ELBL	WROC	373.63	km	LAMA	WROC	394.38	km

Biorąc uwagę wektory do punktów sieci ASG-EUPOS, średni poziom wyznaczenia nieoznaczoności z 2 sesji pomiarowych wynosił odpowiednio: dla wektorów do stacji BART (długość wektorów nieprzekraczająca 40 km) nieoznaczoności rozwiązane metodą SIGMA L1 zostały wyznaczone na poziomie 80%; do stacji ELBL (średnia długość wektorów 65 km) wyznaczono nieoznaczoności metodą SIGMA L5/L3 na poziomie 72%; natomiast dla wektorów do stacji LAMA ok. 50%. Rozważając wektory do poszczególnych punktów referencyjnych sieci kontrolnej poligonu Babiak, najniższy poziom rozwiązania nieoznaczoności stwierdzono dla wektorów do punkty GG21 (66%), natomiast najwięcej nieoznaczoności wyznaczono dla wektorów do punktu GG32 (71%). Wyniki rozwiązania nieoznaczoności w tym etapie opracowania znajdują się w załączniku 5.

9.3.5 Analiza wyznaczonych współrzędnych punktów referencyjnych

Celem tej części opracowania jest wyznaczenie ostatecznych współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 na epokę kampanii (2015.10) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych sesji pomiarowych połączone zostały modułem ADDNEQ2, a wyniki stanowią współrzędne punktów referencyjnych dla okresu całej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Najlepszą powtarzalność uzyskanych wyników otrzymano dla punktu GG34 – powtarzalność wszystkich składowych współrzędnych jest niższa niż 1 mm. Dla pozostałych punktów powtarzalność składowych horyzontalnych współrzędnych nie przekracza wartości 2 mm, natomiast powtarzalność otrzymanej wysokości waha się w granicach od 1,14 mm (dla punktu GG30) do 4,22 mm (dla punktu GG21).

Na podstawie uzyskanych współrzędnych punktów referencyjnych obliczono średni błąd kwadratowy RMS dla poszczególnych punktów. W przypadku składowych horyzontalnych uzyskano maksymalny błąd na poziomie 0,5 mm, natomiast dla współrzędnej wysokościowej maksymalna wartość błędu wynosiła 0,6 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone zawiera załącznik 6.

9.3.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych

W wyniku opracowania uzyskano ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 na epokę kampanii (2015.10), które zestawiono w tabeli 7. Otrzymane współrzędne zostały użyte jako *a priori* w dalszej części opracowania do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów).

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
GG21	3508213.77950	1302609.47447	5147754.35898	132.282	1.70	0.73	4.22
GG26	3508629.41206	1303513.09658	5147232.96820	121.917	1.57	1.42	3.16
GG30	3508807.60004	1304067.59498	5146958.85202	110.615	1.81	0.41	1.14
GG31	3509750.58237	1300739.12098	5147164.84964	117.123	0.94	1.93	1.51
GG32	3505850.46098	1301701.66799	5149617.18121	161.283	0.67	0.34	3.60
GG33	3504471.83472	1305017.83279	5149694.94544	144.545	0.52	0.48	1.59
GG34	3508264.44916	1307553.00040	5146454.56554	115.732	0.87	0.81	1.00

Tabela 7 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak

W ramach kolejnego etapu prac przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 według algorytmu opracowanego przez Boucher i Altamimi "Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign" (2011). Współrzędne w układzie PL-ETRF2000 przedstawiono w tabeli 8.

Punkt	X [m]	Y [m]	Z [m]
GG21	3508214.2918	1302609.1243	5147754.0822
GG26	3508629.9244	1303512.7463	5147232.6915
GG30	3508808.1124	1304067.2447	5146958.5753
GG31	3509751.0944	1300738.7706	5147164.5728
GG32	3505850.9733	1301701.3180	5149616.9046
GG33	3504472.3473	1305017.4829	5149694.6690
GG34	3508264.9618	1307552.6502	5146454.2889

Tabela 8 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Babiak

9.4 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak

9.4.1 Geometria rozwiązania

Sieć kontrolna na obszarze Babiak jest zbudowana z 4 zewnętrznych punktów referencyjnych, 3 wewnętrznych punktów referencyjnych oraz 8 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 9.

GG21-RR06	GG26-RR06	GG30-RR06	GG31-RR06	GG32-RR06	GG33-RR06	GG34-RR06
GG21-RR06	GG26-RR07	GG30-RR07	GG31-RR07	GG32-RR07	GG33-RR07	GG34-RR07
GG21-RR09	GG26-RR09	GG30-RR09	GG31-RR09	GG32-RR09	GG33-RR09	GG34-RR09
GG21-RR10	GG26-RR10	GG30-RR10	GG31-RR10	GG32-RR10	GG33-RR10	GG34-RR10
GG21-RR11	GG26-RR11	GG30-RR11	GG31-RR11	GG32-RR11	GG33-RR11	GG34-RR11
GG21-RR12	GG26-RR12	GG30-RR12	GG31-RR12	GG32-RR12	GG33-RR12	GG34-RR12
GG21-RR16	GG26-RR16	GG30-RR16	GG31-RR16	GG32-RR16	GG33-RR16	GG34-RR16
GG21-RR17	GG26-RR17	GG30-RR17	GG31-RR17	GG32-RR17	GG33-RR17	GG34-RR17

Tabela 9 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak

9.4.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano strategię obliczeniową wykorzystującą obserwacje GPS na częstotliwości L1, która została opisana w podrozdziale 9.2.2.

9.4.3 Analiza liczby obserwacji

Rozważając liczbę obserwacji dla poszczególnych wektorów można zauważyć, że w przypadku tej sieci liczba obserwacji waha się od 3068 dla wektora GG31-RR17 do 5469 dla wektora GG30-RR12. Średnia liczba obserwacji z dwóch sesji pomiarowych wynosi od 4389 dla wektorów do punktu GG31 do 5130 obserwacji dla wektorów do punktu GG30. Biorąc pod uwagę liczbę obserwacji na wektorach do punktów kontrolowanych, największa średnia liczba obserwacji istnieje dla wektorów utworzonych do punktu RR10 (5047), natomiast najmniej obserwacji zostało zarejestrowanych na wektorach do punktu RR16 (4707). Szczegółowe informacje dotyczące obserwacji znajdują się w załączniku 4.

9.4.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano metodę rozwiązania nieoznaczoności SIGMA L1. Dla wektorów mierzonych podczas pierwszej sesji pomiarowej, poziom rozwiązania nieoznaczoności wynosi 98,1%. W przypadku wektorów utworzonych podczas drugiej sesji pomiarowej, rozwiązano 96,9% nieoznaczoności. Analizując poziom wyznaczenia nieoznaczoności dla wektorów do poszczególnych punktów kontrolowanych, najwięcej nieoznaczoności rozwiązano dla wektorów do punktu RR11(98,5%), natomiast najniższy poziom wyznaczenia nieoznaczoności otrzymano dla wektorów do punktu RR07 (95,8%). Dla większości wektorów wchodzących w skład opracowywanej sieci rozwiązano wszystkie nieoznaczoności, a najmniejszy procent zaobserwowano dla wektora GG34-RR17 mierzonego podczas drugiej sesji obserwacyjnej. Wyniki rozwiązania nieoznaczoności z tego etapu opracowania otrzymane w programie Bernese, zawiera załącznik 5.

9.4.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Babiak było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.10) w oparciu o współrzędne punktów referencyjnych.

W celu określenia dokładności oraz precyzji uzyskanych wyników, przeanalizowano powtarzalność poszczególnych składowych współrzędnych z dwóch sesji obserwacyjnych oraz poszczególnych rozwiązań sieci. Dla składowej północnej powtarzalność uzyskanych wyników dla punktów RR06, RR07, RR09, RR12, RR16 oraz RR17 nie przekracza 1,5 mm, natomiast dla punktów RR10 i RR11 wynosi odpowiednio 2,8 mm oraz 2,2 mm. Biorąc pod uwagę składową wschodnią uzyskanych współrzędnych dla wszystkich punktów kontrolowanych powtarzalność wyznaczeń nie przekracza wartości 1,7 mm. Dla punktów RR06, RR12 oraz

RR17 powtarzalność wyznaczeń wysokości nie przekracza 2,0 mm, dla punktów RR09, RR10, RR11, RR16 powtarzalność jest niższa niż 3,0 mm, natomiast dla punktu RR07 wynosi 3,5 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 6.

9.4.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania uzyskano współrzędne punktów kontrolowanych (reflektorów) na obszarze Babiak w układzie ITRF2008 na epokę kampanii (2015.10), które zostały zestawione w tabeli 10.

Punkt	X [m]	Y [m]	Z [m]	hɛl [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR06	3508136.52292	1301602.92171	5148082.54535	150.928	0.77	1.70	1.93
RR07	3507765.35524	1302409.33833	5148123.49285	144.693	1.04	0.72	3.48
RR09	3508181.47644	1302153.26253	5147898.43927	138.416	1.15	1.56	2.29
RR10	3508179.71147	1302386.16897	5147838.19483	136.053	2.80	0.94	2.86
RR11	3508429.87771	1303135.41145	5147480.85540	136.348	2.18	1.36	2.35
RR12	3508544.46820	1303409.28486	5147327.65141	130.881	1.24	1.57	1.39
RR16	3508549.69448	1302245.68123	5147624.23965	137.034	1.47	1.71	2.73
RR17	3508838.09373	1302483.36401	5147371.46396	138.836	1.13	0.49	1.34

Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 11).

Tabela 11 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000 oraz ich błędy, poligon Babiak

Punkt	X [m]	Y [m]	Z [m]
RR06	3508137.0351	1301602.5715	5148082.2686
RR07	3507765.8675	1302408.9882	5148123.2161
RR09	3508181.9887	1302152.9123	5147898.1625
RR10	3508180.2237	1302385.8188	5147837.9181
RR11	3508430.3900	1303135.0612	5147480.5787
RR12	3508544.9805	1303408.9346	5147327.3747
RR16	3508550.2067	1302245.3310	5147623.9629
RR17	3508838.6060	1302483.0137	5147371.1872

9.5 Nawiązanie do ASG-EUPOS – poligon Berejów

9.5.1 Sposób nawiązania

Nawiązanie punktów referencyjnych sieci kontrolnej poligonu Berejów przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. W tym celu wybrano 3 stacje najbliżej położone obszaru objętego siecią – BPDL, LUBL i WLDW (Rys. 10). Do rozwiązania dołączono również stację WROC w celu poprawy estymacji parametrów troposfery mających wpływ na dokładność i precyzję wyznaczania współrzędnych punktów GNSS. Przed przystąpieniem do obliczeń niezbędne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę kampanii (2015.09).

Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS

9.5.2 Strategia obliczeniowa

W przypadku nawiązania sieci kontrolnej na obiekcie Berejów do sieci ASG-EUPOS, wyznaczono współrzędne 6 punktów referencyjnych (3 punkty referencyjne zewnętrzne oraz 3 punkty referencyjne wewnętrzne) na podstawie opracowania obserwacji GPS z wykorzystaniem kombinacji liniowej L3. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 30 km do 65 km. Strategia obliczeniowa zastosowana w tym etapie opracowania została opisana w podrozdziale 9.1.2.

9.5.3 Analiza liczby obserwacji

Analizując liczbę obserwacji dla wektorów utworzonych na poligonie Berejów, największą liczbę obserwacji (11294 obserwacje) uzyskano dla wektora BDPL-GG32 mierzonego podczas pierwszego dnia pomiarowego, natomiast najmniejszą liczbę obserwacji (9791 obserwacji) dla wektora BPDL-GG23 mierzonego również podczas pierwszej sesji obserwacyjnej. Dla wektorów do punktu referencyjnego GG21 uzyskano średnią liczbę obserwacji wynoszącą 10625 obserwacji, dla wektorów do punktu GG22 – 10714 obserwacji, dla wektorów do punktu GG33 – 10461 obserwacji, dla wektorów do punktu GG32 – 10713 obserwacji, dla wektorów do punktu GG33 – 10781 obserwacji, natomiast dla wektorów do punktu GG34 – 10425. Biorąc pod uwagę wektory, które zostały utworzone do stacji BPDL średnia liczba obserwacji wynosi 10805, do stacji LUBL – 10830 obserwacji, natomiast do stacji WLDW – 10225 obserwacji. Szczegółowe informacje dotyczące liczy obserwacji na poszczególnych wektorach znajdują się w załączniku 7.

9.5.4 Analiza wyznaczenia nieoznaczoności

Kolejnym etapem opracowania była analiza wyznaczenia nieoznaczoności fazy, otrzymanych na podstawie strategii obliczeniowej bazującej na metodach rozwiązania nieoznaczoności opisanych w rozdziale 9.1.4.

Dla wektorów do stacji BPDL rozwiązano nieoznaczoności metodą SIGMA z zastosowaniem kombinacji liniowych "Wide-Lane" na średnim poziomie około 80% oraz metodą "Narrow-Lane" na poziomie 73%, dla wektorów do stacji LUBL na poziomie 92% ("Wide-Lane") oraz 81% ("Narrow-Lane"), natomiast dla wektorów do punktu WLDW rozwiązano 93% ("Wide-Lane") oraz 87% ("Narrow-Lane") nieoznaczoności. Rozważając poziom wyznaczenia nieoznaczoności metodą "Narrow-Lane dla wektorów do poszczególnych stacji referencyjnych sieci kontrolnej poligonu Berejów, poziom wyznaczenia nieoznaczoności dla wektorów do punktu G31 wynosi 80%, dla wektorów do punktu GG22 77%, dla wektorów do punktu GG33 – 82% oraz do punktu GG34 – 81%

Wyniki rozwiązania nieoznaczoności otrzymane w programie Bernese, zawiera załącznik 8.

9.5.5 Analiza wyznaczonych współrzędnych punktów referencyjnych

Końcowym etapem tej części opracowania jest wyznaczenie współrzędnych punktów referencyjnych sieci kontrolnej wraz z charakterystyką dokładnościową w układzie ITRF2008 (2014.64) w oparciu o stacje sieci ASG-EUPOS. W tym celu rozwiązania z poszczególnych

sesji pomiarowych łączone są modułem ADDNEQ2, a wyniki stanowią współrzędne punktów dla okresu całej kampanii pomiarowej.

Na podstawie otrzymanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych.

Dla punktów wszystkich punktów referencyjnych sieci kontrolnej poligonu Berejów powtarzalność otrzymanych współrzędnych poziomych nie przekracza 2 mm. Biorąc pod uwagę powtarzalność wysokości punktów, najlepsze wyniki uzyskano dla punktu GG23, dla którego powtarzalność składowej wysokościowej wynosi 0,5 mm. W przypadku punktów GG22, GG33 oraz GG34 powtarzalność wysokości nie przekracza 1,7 mm. Dla punktu GG21 oraz GG32 zaobserwowano gorszą powtarzalność otrzymanej wysokości, która wynosi odpowiednio 3,4 mm oraz 3,7 mm.

Biorąc pod uwagę otrzymany średni błąd kwadratowy RMS (wewnętrzna dokładność sieci) uzyskanych współrzędnych można stwierdzić, że w przypadku składowych poziomych maksymalne wartości RMS nie przekraczają 0,4 mm oraz dla składowej pionowej nie przekraczają 0,5 mm. Wyniki rozwiązania, powtarzalności oraz współrzędne punktów referencyjnych w układzie ITRF2008 obliczone w etapie pierwszym opracowania zawiera załącznik 9.

9.5.6 Zestawienie ostatecznych współrzędnych punktów referencyjnych

W wyniku opracowania uzyskano ostateczne współrzędne punktów referencyjnych w układzie ITRF2008 na epokę kampanii (2015.09), które zestawiono w tabeli 12. Otrzymane współrzędne zostały użyte jako *a priori* w dalszej części opracowania do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów).

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
GG21	3667925.35552	1537171.68005	4969922.60892	198.611	1.33	0.40	3.43
GG22	3668512.58530	1535892.25305	4969892.17390	204.232	0.22	1.31	0.85
GG23	3667765.54597	1536218.51234	4970337.06451	202.193	0.89	1.73	0.48
GG32	3665388.52490	1538926.99965	4971235.48980	193.579	0.25	0.76	3.68
GG33	3665152.09436	1535424.13854	4972477.96638	188.565	1.21	0.18	1.43
GG34	3669292.96107	1540082.66534	4968028.06547	201.544	0.28	1.04	1.66

Tabela 12 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów

W ramach kolejnego etapu prac przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 według algorytmu opracowanego przez

Boucher i Altamimi "Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign" (2011). Współrzędne w układzie PL-ETRF2000 przedstawiono w tabeli 13.

Punkt	X [m]	Y [m]	Z [m]
GG21	3667925.8805	1537171.3164	4969922.3243
GG22	3668513.1101	1535891.8893	4969891.8893
GG23	3667766.0709	1536218.1487	4970336.7799
GG32	3665389.0501	1538926.6363	4971235.2054
GG33	3665152.6193	1535423.7751	4972477.6820
GG34	3669293.4862	1540082.3016	4968027.7808

Tabela 13 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Berejów

9.6 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów

9.6.1 Geometria rozwiązania

Sieć kontrolna na obiekcie Berejów składa się z 3 zewnętrznych i z 3 wewnętrznych punktów referencyjnych oraz z 8 punktów kontrolowanych (reflektorów). W celu wyznaczenia współrzędnych punktów kontrolowanych, utworzono sieć wektorów łączącą każdy punkt wyznaczany z punktami referencyjnymi, bez wektorów pomiędzy punktami wyznaczanymi. Ze względu na małą liczbę zebranych obserwacji oraz niestabilność punktu referencyjnego GG31, został on wyłączony z tej części opracowania. Wykaz utworzonych wektorów został przedstawiony w tabeli 14.

Tabela 14 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów

GG21-RR01	GG22-RR01	GG23-RR01	GG31-RR01	GG32-RR01	GG33-RR01	GG34-RR01
GG21-RR05	GG22-RR05	GG23-RR05	GG31-RR05	GG32-RR05	GG33-RR05	GG34-RR05
GG21-RR06	GG22-RR06	GG23-RR06	GG31-RR06	GG32-RR06	GG33-RR06	GG34-RR06
GG21-RR08	GG22-RR08	GG23-RR08	GG31-RR18	GG32-RR18	GG33-RR18	GG34-RR18
GG21-RR13	GG22-RR13	GG23-RR13	GG31-RR13	GG32-RR13	GG33-RR13	GG34-RR13
GG21-RR15	GG22-RR15	GG23-RR15	GG31-RR15	GG32-RR15	GG33-RR15	GG34-RR15
GG21-RR17	GG22-RR17	GG23-RR17	GG31-RR17	GG32-RR17	GG33-RR17	GG34-RR17
GG21-RR18	GG22-RR18	GG23-RR18	GG31-RR18	GG32-RR18	GG33-RR18	GG34-RR18

9.6.2 Strategia obliczeniowa

W tej części opracowania wykorzystano strategię obliczeniową opartą na opracowaniu obserwacji na częstotliwości L1, która została opisana w podrozdziale 9.1.2.

9.6.3 Analiza liczby obserwacji

Średnia liczba obserwacji dla wszystkich analizowanych wektorów wynosi 5226 obserwacji. Największą liczbę obserwacji (5643 obserwacje) zarejestrowano dla wektora GG22-RR18, natomiast najmniej obserwacji (4781 obserwacji) utworzono dla wektora GG21-RR17. Rozważając wektory do poszczególnych punktów kontrolowanych, największą średnią liczbą obserwacji charakteryzują się wektory do punktu RR05 (5353 obserwacji), natomiast najmniejszą ilością obserwacji – wektory do punktu RR15 (5084 obserwacji). Szczegółowe informacje dotyczące liczby obserwacji zostały zamieszczone w załączniku 7.

9.6.4 Analiza wyznaczenia nieoznaczoności

W celu określenia ostatecznych współrzędnych punktów kontrolowanych, nieoznaczoności fazy zostały wyznaczone za pomocą metody SIGMA L1. Dla większości wektorów sieci poligonu Berejów, nieoznaczoności zostały wyznaczone na poziomie 100%, jedynie dla kilku wektorów poziom rozwiązania nieoznaczoności był nieznacznie niższy i w skrajnym przypadku, dla wektorów GG32-RR15 oraz GG33-RR15 z pierwszej sesji pomiarowej, wynosił 94,1%.

Wyniki rozwiązania nieoznaczoności z etapu II opracowania otrzymane w programie Bernese, zawiera załącznik 8.

9.6.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.09) w oparciu o współrzędne punktów referencyjnych.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność otrzymanej składowej północnej współrzędnych jest mniejsza niż 1,0 mm dla punktów RR01, RR05, RR06, RR08 oraz RR17, dla punktów RR13 oraz RR18 nie przekracza 2,0 mm, natomiast dla punktu RR15 wynosi 2,4 mm. W przypadku składowej wschodniej, powtarzalność wyników dla każdego punktu kontrolowanego jest mniejsza niż 1,5 mm. Powtarzalność wyznaczeń wysokości nie przekracza 2 mm dla większości punktów, jedynie w przypadku punkt RR13 wynosi 2,5 mm oraz dla RR08 wynosi 3,4 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,3 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 9.

9.6.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W tabeli 15 zestawiono ostateczne współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.09) wyznaczone podczas pierwszej kampanii pomiarowej.

Tabela 15 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3667843.56285	1537125.15260	4969999.86551	200.951	1.00	1.17	1.74
RR05	3667669.74101	1536166.69787	4970427.28605	205.385	0.88	1.04	1.83
RR06	3667864.05120	1536272.53083	4970248.13045	202.080	0.77	1.42	1.29
RR08	3667927.23303	1537415.13840	4969845.54652	197.919	0.92	0.96	3.38
RR13	3668030.76846	1536896.60962	4969931.30847	199.767	1.52	0.56	2.50
RR15	3668115.87712	1537105.41689	4969803.83552	199.036	2.41	1.13	2.05
RR17	3668741.58794	1536357.76462	4969572.71104	197.483	0.66	0.65	1.90
RR18	3668548.89206	1536320.85899	4969726.64985	198.507	1.78	0.77	0.90

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 16).

Tabela 16 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000 oraz ich błędy średnie, poligon Berejów

Punkt	X [m]	Y [m]	Z [m]
RR01	3667844.0878	1537124.7890	4969999.5809
RR05	3667670.2659	1536166.3342	4970427.0015
RR06	3667864.5761	1536272.1672	4970247.8459
RR08	3667927.7580	1537414.7748	4969845.2619
RR13	3668031.2934	1536896.2460	4969931.0239
RR15	3668116.4021	1537105.0532	4969803.5509
RR17	3668742.1128	1536357.4009	4969572.4264
RR18	3668549.4169	1536320.4953	4969726.3652

9.7 Podsumowanie

Kampania pomiarowa przebiegła bez zakłóceń, pomiary odbyły się na wszystkich planowanych punktach we wszystkich sesjach obserwacyjnych. Na etapie opracowania obserwacji wykluczono 2 punkty referencyjne na poligonie Lewino: GG34 – ze względu na niestabilność punktu, GG30 – ze względu na małą liczbę zebranych obserwacji oraz 1 punkt na poligonie Berejów: GG31 ze względu na niewystarczającą ilość zgromadzonych obserwacji z powodu problemów technicznych ze sprzętem GNSS. Biorąc pod uwagę punkty kontrolowane (reflektory), praktycznie w każdej sesji zebrano 100% przewidzianych obserwacji.

W wyniku wyrównania sieci wektorów GPS uzyskano finalne współrzędne punktów referencyjnych oraz kontrolowanych w układzie ITRF2008 na epokę poszczególnych kampanii oraz w układzie PL-ETRF2000. Błędy średnie finalnych współrzędnych mieszczą się w przyjętych wymaganiach dokładnościowych. Dla punktów kontrolowanych na poligonie Berejów dokładność uzyskanej wysokości mieści się w granicach od 0,8 mm do 2,4 mm; na poligonie Babiak dokładność wysokości waha się w granicach od 1,3 mm do 3,5 mm. Na poligonie Lewino dwa punkty uzyskały gorszą dokładność wysokości – punkt RR01 (6,6 mm) oraz punkt RR10, natomiast dla pozostałych punktów dokładność mieści się w granicach od 1,0 mm do 4,0 mm.

Określenie przemieszczeń punktów będzie możliwe po wykonaniu 3 kampanii pomiarowej.

III Niwelacja geometryczna

10. Cel przeprowadzonych pomiarów

Celem opracowania jest przeprowadzenie precyzyjnej niwelacji geometrycznej na trzech obiektach testowych objętych eksploatacją gazu ziemnego ze złóż łupkowych, ścisłe wyrównanie sieci kontrolno-pomiarowej oraz wyznaczenie wysokości punktów: referencyjnych, kontrolowanych, reflektorów InSAR. Uzyskane wyniki są danymi uzupełniającymi do prowadzenia rozszerzonego monitoringu deformacji terenu z wykorzystaniem technologii satelitarnych.

11. Obszar opracowania

11.1 Lokalizacja

Precyzyjną niwelacją geometryczną objęto trzy sieci kontrolno-pomiarowe zlokalizowane w miejscowościach:

- Lewino, gmina Linia, powiat wejherowski, województwo pomorskie,
- Babiak, gmina Lidzbark Warmiński, powiat lidzbarski, województwo warmińskomazurskie,
- Berejów, gmina Niedźwiada, powiat lubartowski, województwo lubelskie.

Każda sieć składa się z 4 punktów referencyjnych, 26 punktów kontrolowanych oraz 20 reflektorów InSAR, rozmieszczonych zgodnie z kierunkami prowadzenia odwiertów poziomych w celu eksploatacji gazu łupkowego.

11.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów Lewino

- a) województwo pomorskie, powiat wejherowski, gmina Linia,
- b) obręby ewidencyjne wsi: Lewino, Zęblewo, Łebno, Lewinko, Będargowo,
- c) długość linii niwelacyjnej ok. 18 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren górzysty, przewyższenia do 65 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punkty sieci kontrolnej wyznaczanej pomiarami satelitarnymi.
 Obiekt Lewino o powierzchni ok. 20 km², jest największy oraz charakteryzuje
 się największym zróżnicowaniem rzeźby terenu od 135 do 200 m n.p.m. Jest to obszar typowo

rolniczy o przeważającej powierzchni gruntów ornych, o średnim zagęszczeniu gruntami leśnymi.

<u>Babiak</u>

- a) województwo warmińsko-mazurskie, powiat lidzbarski, gmina Lidzbark Warmiński,
- b) obręby ewidencyjne wsi: Babiak, Miejska Wola, Bugi,
- c) długość linii niwelacyjnej ok. 10 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren o zróżnicowanej rzeźbie z przewyższeniami do 22 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punkty sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Babiak o powierzchni ok. 6 km², charakteryzuje się umiarkowanym zróżnicowaniem rzeźby terenu od 78 do 125 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni użytków zielonych.

<u>Berejów</u>

- a) województwo lubelskie, powiat lubartowski, gmina Niedźwiada,
- b) obręby ewidencyjne wsi: Berejów, Brzeźnica Bychawska, Brzeźnica Bychawska-Kolonia,
- c) długość linii niwelacyjnej ok. 8 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren równinny,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punkty sieci kontrolnej wyznaczanej pomiarami satelitarnymi.
 Obiekt Berejów o powierzchni ok. 4 km², charakteryzuje się małym zróżnicowaniem

rzeźby terenu od 164 do 173 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych.

12. Opis techniczny

Precyzyjną niwelację geometryczną przeprowadzono w dniach od 17 lutego do 8 marca 2015 roku z zachowaniem procedur pomiarowych oraz dokładności niwelacji precyzyjnej IIklasy wg wytycznych technicznych G-2.1. Warunki pogodowe występujące w okresie przeprowadzania pomiarów niwelacyjnych były sprzyjające, temperatura mieściła się w granicach od 3° do 14° C. Do przeprowadzenia niwelacji wykorzystano cyfrowy niwelator precyzyjny Leica DNA 03 z kompletem precyzyjnych łat kodowych oraz sprzęt pomocniczy. Łaty inwarowe do niwelacji precyzyjnej ustawiano na klinach stalowych wbijanych w grunt. Ogółem zaniwelowano ok. 36 km ciągów, przedstawionych na rysunkach 1, 2, 3, w dwóch kierunkach: tam i z powrotem, co daje ogólną długość wykonanej niwelacji ok. 72 km. Zgromadzone obserwacje przewyższeń dla poszczególnych obiektów: Babiak, Berejów, Lewino zestawiono odpowiednio w załącznikach nr 10, 11, 12.

Utworzone sieci ciągów niwelacyjnych mają kształt rozet z punktami węzłowymi, skracającymi oraz ułatwiającymi proces pomiarowy. Przyjęto następujące punkty węzłowe:

- Babiak (Rys. 11): g06, g09, g18,
- Berejów (Rys.12): ref21, ref26, b12, b16, b18,
- Lewino (Rys. 13): 102, 109, 112, 116.

Rysunek 21 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)

Rysunek 32 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)

Rysunek 43 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)

13. Opracowanie wyników obserwacji

13.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR

Punkty referencyjne, zastabilizowane specjalnymi fundamentalnymi znakami nadziemnymi (rysunek 14), wymagały wyznaczenia wysokości reperów bocznych. Reper boczny stanowi podstawę pomiaru niwelacji geometrycznej, natomiast do integracji z niwelacją satelitarną niezbędne jest wyznaczenie przyrostu wysokości do punktów umieszczonych w głowicy znaku punktu referencyjnego, względem których wyznacza się wysokość anteny GNSS. Pomiar tych przewyższeń zrealizowano w pierwszej kampanii pomiarowej realizowanej w sierpniu 2014 r.

Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 - slup żelbetowy, 2 - stopa fundamentowa, 3 - glowica znaku, 4 - śruba mocująca spodarkę, 5 - kotwa, 6 - reper boczny

Konstrukcja oraz ustawienie reflektorów InSAR w znacznym stopniu utrudniały interpretację punktu wysokościowego do pomiaru niwelacją geometryczną. Rozwiązaniem okazał się punkt pośredni jednoznacznie realizowany poprzez umieszczaną w zwieńczeniu trzech płaszczyzn konstrukcji reflektorów kuli stalowej o średnicy 72,7 mm. Wysokości reflektorów wyznaczone zostały na podstawie pomiaru względem punktów kontrolowanych stabilizowanych, w bezpośrednim ich sąsiedztwie, fundamentalnymi znakami podziemnymi (Rys. 15). Przewyższenia wyznaczone na pośrednich punktach wysokościowych reflektorów

InSAR względem bliskich punktów kontrolowanych dla wszystkich obiektów zestawione zostały w załączniku nr 14.

Rysunek 155 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni

13.2 Wyznaczenie wysokości w układzie Kronsztadt'86

Wyznaczenie pozycji punktu terenowego w pomiarach satelitarnych GNSS odbywa się w układzie globalnym odniesionym do konkretnej elipsoidy odniesienia. Pozycja ta wyrażana jest przez współrzędne elipsoidalne (geodezyjne), szerokość i długość geodezyjną punktu będącego rzutem, wzdłuż normalnej do elipsoidy, punktu na fizycznej powierzchni Ziemi. Trzecią współrzędną jest wysokość elipsoidalna punktu, wyznaczana bezpośrednio w pomiarach satelitarnych, będącą miarą odległości punktu terenowego wzdłuż normalnej do elipsoidy.

Nawiązanie każdej sieci do układu Kronsztadt'86 zrealizowano jednopunktowo w pierwszej kampanii pomiarowej, zrealizowanej w sierpniu 2014 roku, na podstawie wyników pomiarów satelitarnych oraz modelu geoidy niwelacyjnej 2011. Przyjęte zostały następujące punkty nawiązania (wysokości wyznaczone są do głowicy znaków referencyjnych):

- Babiak: G21 = 103.6470, h = 132.3327, N = 28.6857,

- Berejów: G22 = 174.1053, h = 204.2031, N = 30.0978,
- Lewino: G23 = 179.7151, h = 210.0166, N = 30.3015.

13.3 Ścisłe wyrównanie sieci kontrolowanych

Zgromadzone w terenie dane obserwacyjne z formatu GSI przetworzono do formatu ASCII. Następnie w arkuszu kalkulacyjnym programu Excel, Pakietu Office, oraz na podstawie notatek terenowych wyznaczone zostały uśrednione, uzyskane z dwóch kierunków niwelacji (tam i z powrotem), przewyższenia między punktami kontrolowanymi. Dokonano również kontroli sumarycznego zamknięcia ciągów w dwóch kierunkach, która nie wykazała przekroczenia dopuszczalnych dokładności pomiaru. Wyrównanie całej sieci kontrolnej przeprowadzono w programie GEONET 2006, przyjmując wyznaczone przewyższenia, wagując po ilości stanowisk pomiarowych między punktami końcowymi linii, w dowiązaniu do czterech punktów referencyjnych, których współrzędne wyznaczane są pomiarami GNSS. Wykaz punktów nawiązania w układzie Kronsztadt'86 zestawiono poniżej (wysokości wyznaczone są do reperów bocznych znaków referencyjnych):

- Babiak: G21=102.3498, G26=91.9675, G29=97.8237, G30=80.6368,
- Berejów: G21=167.3284, G22=172.8494, G23=170.8672, G26=167.8335,
- Lewino: G23=178.4540, G24=170.7880, G25=147.9927, G29=177.8394.

Wyrównane wysokości punktów znajdują się w tabelach 11 - 13, a szczegółowe wyniki wyrównania zawierają załączniki nr 13, 14, 15.

Tabela 17 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa	1 i 2,	zmiany
wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu reference	cyjnego	o GNSS,
R - reflektor)		

Obiekt: Babiak							
	K1: 20	14_08	K2: 20	15_02	K2 – K1		
NRP	H [m]	mH [m]	H [m]	mH [m]	dH [m]		
G1	112,3164	0,0009	112,3152	0,0008	-0,0012		
G10	105,0768	0,0003	105,0765	0,0003	-0,0003		
G11	105,5625	0,0005	105,5631	0,0002	0,0006		
G12	100,0248	0,0006	100,0257	0,0002	0,0009		
G13	79,4111	0,0008	79,4091	0,0002	-0,0020		
G14	80,1928	0,0008	80,1901	0,0003	-0,0027		
G15	102,8028	0,0005	102,8030	0,0004	0,0003		
G16	105,6844	0,0005	105,6851	0,0005	0,0006		
G17	107,8863	0,0006	107,8855	0,0005	-0,0008		
G18	109,4257	0,0007	109,4252	0,0006	-0,0005		

G19	93,3569	0,0008	93,3559	0,0007	-0,0010
G2	88,6669	0,0010	88,6672	0,0009	0,0003
G20	98,1039	0,0008	98,1038	0,0007	-0,0001
G21	102,3498	0,0001	102,3498	0,0000	0,0000
G22	101,9610	0,0003	101,9653	0,0002	0,0043
G23	102,5706	0,0004	102,5713	0,0002	0,0007
G24	106,8224	0,0005	106,8275	0,0002	0,0051
G25	106,5698	0,0005	106,5695	0,0002	-0,0003
G26	91,9675	0,0006	91,9675	0,0000	0,0000
G27	93,9673	0,0007	93,9669	0,0002	-0,0004
G28	81,4724	0,0007	81,4709	0,0002	-0,0015
G29	97,8237	0,0005	97,8237	0,0000	0,0000
G3	125,3328	0,0007	125,3329	0,0006	0,0001
G30	80,6368	0,0008	80,6368	0,0000	0,0000
G4	104,4368	0,0007	104,4358	0,0006	-0,0010
G5	103,0090	0,0007	103,0088	0,0006	-0,0002
G6	119,5548	0,0006	119,5552	0,0005	0,0004
G7	113,8983	0,0005	113,8985	0,0005	0,0003
G8	112,3291	0,0006	112,3299	0,0006	0,0008
G9	106,7525	0,0004	106,7520	0,0004	-0,0005
R1	113,9715	0,0009	113,9685	0,0008	-0,0030
R10	106,7123	0,0004	106,7121	0,0003	-0,0002
R11	107,0023	0,0005	107,0033	0,0002	0,0010
R12	101,5244	0,0006	101,5235	0,0002	-0,0009
R13	81,0251	0,0008	81,0235	0,0003	-0,0015
R14	81,8570	0,0008	81,8537	0,0003	-0,0034
R15	104,4134	0,0005	104,4145	0,0004	0,0011
R16	107,1825	0,0006	107,1826	0,0005	0,0002
R17	109,4720	0,0007	109,4707	0,0005	-0,0013
R18	110,8666	0,0007	110,8658	0,0006	-0,0008
R19	94,9179	0,0008	94,9150	0,0007	-0,0029
R2	90,2319	0,0010	90,2317	0,0009	-0,0002
R20	99,6692	0,0008	99,6707	0,0007	0,0014
R3	127,0187	0,0007	127,0188	0,0006	0,0001
R4	106,3931	0,0007	106,3906	0,0006	-0,0024
R5	104,4950	0,0007	104,4950	0,0006	0,0000
R6	121,1100	0,0006	121,1097	0,0005	-0,0003
R7	115,3658	0,0006	115,3660	0,0005	0,0002
R8	113,8215	0,0006	113,8214	0,0006	-0,0001
R9	108,5901	0,0004	108,5898	0,0004	-0,0003
Tabela 28 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1 i 2, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

Obiekt: Berejów								
	K1: 20	14_08	K2: 20	15_02	K2 – K1			
NRP	H [m]	mH [m]	H [m]	mH [m]	dH [m]			
G1	168,4093	0,0006	168,4097	0,0001	0,0004			
G10	169,9234	0,0008	169,9227	0,0005	-0,0007			
G11	165,9578	0,0006	165,9576	0,0002	-0,0001			
G12	166,0035	0,0005	166,0033	0,0002	-0,0002			
G13	167,3205	0,0006	167,3207	0,0002	0,0002			
G14	167,8689	0,0007	167,8686	0,0003	-0,0004			
G15	166,5864	0,0006	166,5866	0,0001	0,0002			
G16	164,5209	0,0005	164,5209	0,0002	0,0000			
G17	165,0324	0,0005	165,0326	0,0003	0,0002			
G18	165,8821	0,0004	165,8819	0,0002	-0,0001			
G19	170,4357	0,0007	170,4356	0,0005	-0,0002			
G2	166,4962	0,0007	166,4967	0,0003	0,0005			
G20	163,5014	0,0006	163,5018	0,0004	0,0004			
G21	167,3284	0,0006	167,3284	0,0000	0,0000			
G22	172,8494	0,0001	172,8494	0,0000	0,0000			
G23	G23 170,8672		170,8672	0,0000	0,0000			
G24	G24 167,0932		167,0931	0,0003	-0,0001			
G25 166,1926		0,0006	166,1927	0,0001	0,0001			
G26	G26 167,8335		167,8335	0,0000	0,0000			
G27	169,3919	0,0006	0,0006 169,3918		-0,0001			
G28	166,2713	0,0005	166,2713		0,0000			
G29	163,2574	0,0005	163,2579	0,0003	0,0004			
G3	172,6924	0,0003	172,6925	0,0002	0,0001			
G30	167,2974	0,0007	167,2977	0,0005	0,0003			
G4	170,2726	0,0003	170,2726	0,0002	0,0000			
G5	172,8632	0,0008	172,8635	0,0002	0,0003			
G6	169,2485	0,0007	169,2481	0,0002	-0,0004			
G7	165,8026	0,0006	165,8026	0,0003	0,0000			
G8	164,8663	0,0007	164,8661	0,0003	-0,0002			
G9	170,8985	0,0007	170,8980	0,0004	-0,0005			
R1	170,2239	0,0007	170,2238	0,0002	-0,0002			
R10	171,6475	0,0008	171,6475	0,0005	0,0000			
R11	167,5608	0,0006	167,5607	0,0003	-0,0001			
R12	167,7156	0,0005	167,7149	0,0002	-0,0008			
R13	169,0108	0,0006	169,0108	0,0002	0,0000			
R14	169,5485	0,0007	169,5499	0,0004	0,0014			
R15	168,2851	0,0006	168,2852	0,0002	0,0001			
R16	166,2549	0,0005	166,2547	0,0003	-0,0001			
R17	166,6770	0,0005	166,6750	0,0003	-0,0020			

R18	167,7123	0,0004	167,7119	0,0003	-0,0004	
R19	172,1820	0,0007	172,1819	0,0005	-0,0001	
R2	168,1175	0,0007	168,1178	0,0003	0,0003	
R20	165,2171	0,0006	165,2171	0,0004	0,0000	
R3	174,3413	0,0003	174,3416	0,0002	0,0003	
R4	171,9790	0,0003	171,9785	0,0002	-0,0005	
R5	174,6390	0,0008	174,6389	0,0002	-0,0001	
R6	170,8766	0,0007	170,8744	0,0002	-0,0023	
R7	167,5902	0,0006	167,5904	0,0003	0,0003	
R8	166,7504	0,0007	166,7497	0,0003	-0,0007	
R9	172,6765	0,0008	172,6760	0,0005	-0,0005	

Tabela 39 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1 i 2, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

Obiekt: Lewino							
	K1: 20	14_08	K2: 201	K2 – K1			
NRP	H [m]	mH [m]	H [m]	H [m] mH [m]			
G1	167,9661	0,0007	167,9671	0,0004	0,0010		
G10	156,9434	0,0012	156,9440	0,0005	0,0006		
G11	137,2842	0,0012	137,2839	0,0005	-0,0003		
G12	165,7899	0,0010	165,7918	0,0003	0,0019		
G13	178,0472	0,0010	178,0489	0,0005	0,0017		
G14	178,9426	0,0013	178,9441	0,0008	0,0015		
G15	195,0291	0,0012	195,0302	0,0007	0,0012		
G16	161,1359	0,0013	161,1350	0,0004	-0,0009		
G17	176,6813	0,0015	176,6815	0,0003	0,0002		
G18	136,1700 0,0014 136,1695 0,00		0,0005	-0,0005			
G19	181,0810	0,0014	181,0813	0,0005	0,0003		
G2	140,9716	0,0008	140,9719	0,0004	0,0003		
G20	169,3668	0,0014	169,3672	0,0005	0,0005		
G21	162,2349	0,0006 162,2355		0,0004	0,0006		
G22	159,7963	0,0008	159,7962	0,0004	-0,0002		
G23	178,4540	0,0000	178,4540	0,0000	0,0000		
G24	170,7880	0,0009	170,7880	0,0000	0,0000		
G25	147,9927	0,0009	147,9927	0,0000	0,0000		
G26	178,4379	0,0013	178,4386	0,0007	0,0008		
G27	200,2459	0,0012	200,2478	0,0007	0,0018		
G28	191,6611	0,0012	191,6625 0,0008		0,0015		
G29	177,8394	0,0014	177,8394	0,0000	0,0000		
G3	178,1357	0,0006	178,1357	0,0004	0,0000		
G31	146,4892	0,0010	146,4882	0,0005	-0,0010		

G4	171,0165	0,0007	171,0155	0,0004	-0,0010
G5	182,2054	0,0004	182,2064	0,0003	0,0010
G6	184,5774	0,0004	184,5772	0,0003	-0,0002
G7	170,5079	0,0005	170,5077	0,0003	-0,0002
G8	151,8863	0,0009	151,8874	0,0005	0,0011
G9	160,2806	0,0011	160,2808	0,0005	0,0001
R1	169,5774	0,0007	169,5783	0,0004	0,0008
R10	158,5417	0,0012	158,5427	0,0005	0,0010
R11	138,6977	0,0012	138,6968	0,0005	-0,0008
R12	167,4722	0,0010	167,4748	0,0003	0,0026
R13	179,8838	0,0010	179,8875	0,0005	0,0037
R14	180,6083	0,0013	180,6090	0,0008	0,0007
R15	196,7376	0,0012	196,7394	0,0007	0,0018
R16	162,7689	0,0014	162,7678	0,0004	-0,0011 0,0014
R17	178,2992	0,0015	178,3006	0,0003	
R18	137,6282	0,0014	137,6276	0,0006	-0,0005
R19	182,7952	0,0015	15 182,7948 0,0005		-0,0004
R2	142,6686	0,0008	142,6690	0,0004	0,0004
R20	170,8926	0,0014	170,8913	0,0005	-0,0014
R3	179,6764	0,0006	179,6753	0,0004	-0,0011
R4	172,5841	0,0007	172,5815	0,0004	-0,0026
R5	183,9346	0,0004	183,9359	0,0003	0,0013
R6	185,8715	0,0004	185,8715	0,0003	0,0001
R7	172,3060	0,0005	172,3060	0,0004	0,0000
R8	153,5430	0,0009	153,5382	0,0005	-0,0048
R9	161,7495	0,0011	161,7496	0,0005	0,0001

13.4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej

Przeprowadzone ścisłe wyrównania trzech sieci kontrolnych precyzyjnej niwelacji geometrycznej, zlokalizowanych na obiektach: Babiak, Berejów, Lewino, wykazują poprawność przeprowadzonych czynności pomiarowych. Wartości średnich błędów wysokości punktów po wyrównaniu nie przekroczyły wartości 1 mm. Analizując przyrosty wysokości punktów kontrolowanych między dwiema kampaniami pomiarowymi (tabele 17, 18, 19): K1 – 2014_08, K2 – 2015_02, można zauważyć przekroczenie wartości przyjętego błędu średniego (mH) na poziomie ± 2 mm, w przypadku następujących obiektów:

- Babiak: pojedynczej wartości mH 6 punktów, (G12, G13, R1, R4, R14, R19), podwójnej wartość mH 2 punkty (G22, G24),
- Babiak nie stwierdzono,
- Lewino: pojedynczej wartości mH 3 punkty, (R4, R12, R13), podwójnej wartość mH 1 punkt (R8).

Dwukrotne przekroczenie przyjętego błędu średniego mH wysokości punktów kontrolowanych (±2 mm), nie może świadczyć o wystąpieniu deformacji pionowych, dopiero na podstawie przekroczenia potrójnej wartości tego błędu można stwierdzić wystąpienie tego parametru. Na badanych obiektach nie stwierdzono wystąpienia deformacji pionowych.

13.5 Podsumowanie

Warunki atmosferyczne, w jakich przeprowadzona została precyzyjna niwelacja geometryczna, były zmienne lecz nie przeszkodziły w przeprowadzeniu pomiarów precyzyjnej niwelacji geometrycznej. Występujące utrudnienie pomiaru były spowodowane głównie występującym okresowo silnym wiatrem, wywołującym drżenie kompensatora instrumentu – wibracje osi celowej, dodatkowe utrudnienia były spowodowane zmarzliną oraz miejscowymi roztopami, o mogło powodować niekontrolowane osiadanie statywu oraz klinów.

Osiągnięte dokładności niwelacji na podstawie porównania wyników otrzymanych bezpośrednio z pomiaru w dwóch kierunkach, jak i wyniki wyrównania ścisłego wskazują na osiągniecie dokładności precyzyjnej niwelacji geometrycznej 2 klasy, czyli dokładności lepszej niż 2 mm/km.

Porównanie wysokości punktów z dwóch kampanii pomiarowych przeprowadzonych w sierpniu 2014 r. oraz w lutym 2015 r., nie wykazują wystąpienia deformacji pionowych badanych obiektów. W przypadku 3 punktów (2 – Babiak, 1 – Lewino) stwierdzono nieznaczne przekroczenie podwójnej wartości błędu średniego mH (± 2 mm).

Wysokości punktów w procesie wyrównania wyznaczone zostały w układzie wysokościowym Kronsztadt'86. Punktami wyznaczanymi są: punkty referencyjne (repery boczne), punkty kontrolowane (repery podziemne stabilizowane w bezpośrednim sąsiedztwie reflektorów InSAR), reflektory InSAR (wysokość punktów pośrednich definiowanych przez kulę umieszczaną w reflektorach).

Na obiekcie Berejów pominięto punkt wysokościowy B28, który został przysypany gruntem w wyniku prowadzonych zabiegów agrotechnicznych. Z przyczyn technicznych (brak zestawu RTK oraz zamarznięty grunt) zespół pomiarowy nie mógł odszukać znaku tego punktu. Znak tego punktu należy oszukać i zabezpieczyć w trakcie najbliższej kampanii pomiarów GNSS.

Spis tabel

Tabela 1 Plan sesji pomiarowych	14
Tabela 2 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.11),	
wysokości elipsoidalne oraz błąd, poligon Lewino	21
Tabela 3 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Lewind	o.21
Tabela 4 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Lewino	22
Tabela 5 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.11),	
wysokości elipsoidalne oraz ich błędy, poligon Lewino	24
Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewi	no25
Tabela 7 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.10),	
wysokości elipsoidalne oraz błędy średnie, poligon Babiak	28
Tabela 8 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Babiał	< 29
Tabela 9 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Babiak	29
Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.10),	
wysokości elipsoidalne oraz błędy średnie, poligon Babiak	31
Tabela 11 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000 oraz ich błęc	dy,
poligon Babiak	31
Tabela 12 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ITRF2008 (2015.09),	
wysokości elipsoidalne oraz błędy średnie, poligon Berejów	34
Tabela 13 Wykaz ostatecznych współrzędnych punktów referencyjnych w układzie ETRF2000, poligon Berej	jów
	35
Tabela 14 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Berejów	35
Tabela 15 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.09),	
wysokości elipsoidalne oraz błędy średnie, poligon Berejów	37
Tabela 16 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000 oraz ich błęc	dy
średnie, poligon Berejów	37
Tabela 17 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa 1 i 2, zmiany wysokości d	Н
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	46
Tabela 18 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1 i 2, zmiany wysokości	dH
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	48
Tabela 19 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1 i 2, zmiany wysokości d	IH
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	49

Spis rysunków

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth) Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Ea	8 arth) 9
Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Ea	rth)
Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)	10
Rysunek 5 Głowica punktu referencyjnego	11
Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku	
punktu referencyjnego	12
Rysunek 7 Reflektor z anteną GNSS	13
Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS	17
Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS	26
Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS	32
Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło	
podkładu mapowego: Google Earth)	42

Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło	42
podkładu mapowego: Google Earth)	. 43
Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło	
podkładu mapowego: Google Earth)	. 43
Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa	
fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny	. 44
Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa	
fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni	. 45

Załączniki

01_Lewino_obserwacje

02_Lewino_nieoznaczoności

03_Lewino_współrzędne

- 04_Babiak_obserwacje
- 05_Babiak_nieoznaczoności
- 06_Babiak_współrzędne
- 07_Berejów_obserwacje
- 08_Berejów_nieoznaczoności
- 09_Berejów_współrzędne
- 10_Babiak_niw_geom
- 11_Berejow_niw_geom
- 12_Lewino_niw_geom
- 13_wyh.osn_Babiak
- 14_wyh.osn_Berejów
- 15_wyh.osn_Lewino
- 16_Dzienniki_pomiarowe

Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Instytut Geodezji

Olsztyn, 20 października 2015 r.

Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej

Raport z realizacji trzeciej kampanii pomiarowej przeprowadzonej w dniach 19.08-12.09.2015 r.

Kierownik pracy: dr hab. inż. Paweł Wielgosz, prof. UWM

Spis treści

	DAN	IE FORMALNO-PRAWNE	. 4
2.		Zleceniodawca	5
3.		Wykonawca	5
4.		Autorzy raportu	5
5.		Zespół pomiarowy	5
	5.1	Pomiary GNSS	5
	5.2	Niwelacja geometryczna	6
	N I I V A		7
11			/
6.		Cel przeprowadzonych pomiarów	8
7.		Obszar opracowania	8
	7.1	Lokalizacja	8
	7.2	Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	8
	7.2.3	1 Lewino	8
	7.2.2	2 Babiak	9
	7.2.3	3 Berejów	10
8		Onis techniczny	11
0.	81	Sprzet pomiarowy	11
	8.2	Procedura nomiaru GNSS	13
	8.2.1	Procedura pomiarowa na punktach referencyjnych zewnetrznych i wewnetrznych	15
	822	 Procedura pomiarowa na perilektorach typu B 	15
	8.2.3	3 Procedura pomiarowa na reflektorach typu A	15
	8.3	Podsumowanie pomiarów GNSS	16
_			
9.	~ .	Opracowanie obserwacji	17
	9.1	Nawiązanie do sieci ASG-EUPOS – poligon Lewino	1/
	9.1.1	1 Sposob nawiązania	17
	9.1.	2 Strategia obliczeniowa	1/
	9.2	Wyznaczenie wspołrzędnych punktów kontrolowanych – poligon Lewino	19
	9.2.	1 Geometria rozwiązania	19
	9.2.	2 Strategia obliczeniowa	19
	9.2.3	Analiza liczby obserwacji	20
	9.2.4	4 Analiza wyznaczenia nieoznaczonych współrzednych pupitów kontrolewonych	20
	9.2.3	 Analiza wyznaczonych współrzędnych punktów kontrolowanych Zostawienie ostatocznych współrzednych punktów kontrolowanych 	21
	0.2.0	Nawiazania da ASG EUROS – poligan Pabiak	21
	9.5 0.2 ·	Nawiązanie uo ASU-LOFOS – poligon bablak	23
	9.5.	2 Strategia obliczeniowa	23
	9.5.	Wyznaczenie współrzednych nunktów kontrolowanych – poligon Babiak	23
	9.4	1 Geometria rozwiazania	24
	9.4	2 Strategia obliczeniowa	24
	9.4	3 Analiza liczby obserwacii	24
	9.4.4	4 Analiza wyznaczenia nieoznaczoności	25
	9.4	5 Analiza wyznaczonych współrzednych punktów kontrolowanych	25
	9.4.0	6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	25
	9.5	Nawiązanie do ASG-EUPOS – poligon Berejów	26
	9.5.	1 Sposób nawiązania	26

9.5.2	Strategia obliczeniowa	27
9.6	Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów	27
9.6.1	Geometria rozwiązania	27
9.6.2	Strategia obliczeniowa	
9.6.3	Analiza liczby obserwacji	28
9.6.4	Analiza wyznaczenia nieoznaczoności	28
9.6.5	Analiza wyznaczonych współrzędnych punktów kontrolowanych	29
9.6.6	Zestawienie ostatecznych współrzędnych punktów kontrolowanych	29
9.7 I	Podsumowanie	
	ELACJA GEOMETRYCZNA	
10. Ce	l przeprowadzonych pomiarów	
11. Oł	oszar opracowania	
11.1	Lokalizacja	
11.2	Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	
12. Op	ois techniczny	
13. Op	pracowanie wyników obserwacji	
13.1	Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR	
13.2	Wyznaczenie wysokości w układzie Kronsztadt'86	
13.3	Ścisłe wyrównanie sieci kontrolowanych	39
13.4	Analiza wyników ścisłego wyrównania sieci niwelacyjnej	43
14. Po	odsumowanie	
Spis tabe	I	
Spis rysu	nków	
Załącznik	i	

I Dane formalno-prawne

2. Zleceniodawca

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy ul. Rakowiecka 4 00-975 Warszawa

3. Wykonawca

Uniwersytet Warmińsko-Mazurski w Olsztynie

Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa

Instytut Geodezji

ul. Oczapowskiego 1

10-719 Olsztyn

4. Autorzy raportu

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- mgr inż. Katarzyna Stępniak

5. Zespół pomiarowy

5.1 Pomiary GNSS

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- inż. Łukasz Mokrycki
- dr Zbigniew Perski
- mgr Jacek Dacka
- mgr Jerzy Frydel
- mgr inż. Zbigniew Kowalski
- mgr Michał Krawczyk
- mgr inż. Maria Przyłucka
- mgr Marta Tomaszczyk
- mgr Tomasz Wojciechowski

- mgr Marcin Wódka

5.2 Niwelacja geometryczna

- dr inż. Radosław Baryła organizacja i nadzór prac terenowych
- inż. Radosław Dzianok
- inż. Adrian Kochanowski
- inż. Łukasz Mokrycki
- inż. Łukasz Witwicki
- inż. Grzegorz Zdanio

II Niwelacja satelitarna

6. Cel przeprowadzonych pomiarów

Celem badań było przeprowadzenie statycznych pomiarów GNSS na terenach objętych eksploatacją gazu ziemnego ze złóż łupkowych, a także opracowanie zgromadzonych obserwacji na potrzeby określenia deformacji terenu.

W celu określenia przemieszczeń punktów kontrolnych wykonana została kampania pomiarowa, której wyniki odniesiono do wyników poprzedniej kampanii pomiarowej (luty 2015 r.). Zastosowano metodologię pomiarów i opracowania obserwacji satelitarnych określoną podczas wcześniejszej kampanii pomiarowej.

7. Obszar opracowania

7.1 Lokalizacja

Pomiary przeprowadzono na 3 poligonach doświadczalnych w pobliżu miejscowości: Lewino (woj. pomorskie, powiat wejherowski), Babiak (woj. warmińsko-mazurskie, powiat lidzbarski) oraz Berejów (woj. lubelskie, powiat lubartowski). Punkty referencyjne wykorzystane podczas obliczeń zlokalizowane są poza przewidywanym obszarem odkształceń terenu.

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)

7.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

7.2.1 Lewino

Obszar poligonu Lewino jest terenem głównie rolniczym z dość znaczącym udziałem gruntów leśnych. Obszar objęty badaniami jest pofałdowany ze znacznymi deniwelacjami.

Punkty referencyjne zlokalizowano za zewnątrz obszaru zagrożonego odkształceniami. Reflektory (punkty kontrolowane), służące do pomiarów odkształceń, rozmieszczone są równomiernie na całym badanym terenie. Na poligonie badawczym w Lewinie za pomocą techniki GNSS pomierzono 10 punktów kontrolowanych. Część z nich także jest zlokalizowana w pobliżu zasłon terenowych. Rozmieszczenie punktów pomiarowych przedstawia rysunek 2.

Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)

7.2.2 Babiak

Teren objęty badaniami jest pofałdowany, ze znacznymi deniwelacjami, głownie rolniczy. Podobnie jak Lewinie, punkty referencyjne na poligonie w Babiaku zostały zlokalizowane poza obszarem narażonym na odkształcenia. Reflektory (w sumie osiem) zostały rozmieszczone równomiernie na badanym terenie, przy czym także na tym poligonie część punktów referencyjnych i część reflektorów została zlokalizowana w pobliżu zasłon terenowych. Na rysunku 3 przedstawiono rozmieszczenie punktów pomiarowych na obszarze Babiaka.

Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)

7.2.3 Berejów

Teren objęty badaniami położony jest na równinie, deniwelacje terenu są bardzo małe. Obszar głównie rolniczy. Punkty referencyjne zlokalizowane na zewnątrz obszaru zagrożonego odkształceniem. Reflektory (w sumie osiem) rozmieszczone są równomiernie na całym obszarze. Na rysunku 4 przedstawiono rozmieszczenie punktów pomiarowych na poligonie badawczym w Berejowie.

Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)

8. Opis techniczny

8.1 Sprzęt pomiarowy

Do przeprowadzenia precyzyjnych pomiarów satelitarnych wykorzystano następujące dwuczęstotliwościowe odbiorniki GNSS:

- Javad Alpha z anteną GrAnt-G3T,
- Hi-Target V30,
- Topcon Hiper Pro,
- Trimble R8,
- Trimble SPS881.

Na punktach referencyjnych zastosowano centrowanie wymuszone poprzez zamocowanie spodarki bezpośrednio do głowicy punktu (Rys. 5, 6). Wysokość anteny pomierzono suwmiarką względem trzech reperów wysokościowych na głowicy lub względem płaszczyzny głowicy w trzech lub w dwóch miejscach.

Rysunek 5 Głowica punktu referencyjnego z reperami

Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego

Na poligonach badawczych w Lewinie oraz Berejowie na reflektorach centrowanie anten następowało na zainstalowanym w tym celu trzpieniu. Na trzpień zakładane było przenośne urządzenie dające możliwość przykręcenia anteny GNSS. Urządzenie to miało 50 mm wysokości. Trzpień przymocowany był do reflektora pod kątem, tak aby antena skierowana była pionowo w górę.

Na poligonie badawczym w Babiaku centrowanie anteny zależało od typu reflektora. Na reflektorach typu B centrowanie odbywało się analogicznie jak na poligonach w Lewinie i Berejowie, z tą różnicą, że trzpienie zamontowane były zgodnie z osią reflektora, a tym samym, to urządzenia służące przykręceniu anteny GNSS, zamontowane na stałe, umożliwiało ustawienie anteny pionowo w górę, wysokości tego urządzenia nie wyznaczono. Na pozostałych reflektorach centrowanie przebiegało w ten sam sposób, co na pozostałych dwóch poligonach badawczych.

Rysunek 7 przedstawia reflektor z zamontowaną anteną GNSS.

Rysunek 7 Reflektor z zamontowaną anteną GNSS

8.2 Procedura pomiaru GNSS

Podczas pomiaru GNSS zastosowano procedurę opracowaną na potrzeby poprzedniej kampanii pomiarowej z lutego 2015 roku. Każdy poligon posiadał 4 punkty referencyjne zewnętrzne i 3 wewnętrzne oraz od 8 do 10 punktów kontrolowanych. Czas obserwacji na reflektorach wynosił 2x4 godziny. Plan sesji pomiarowych przedstawiono w tabeli 1.

Pomiary wykonano przy użyciu jedenastu lub dwunastu odbiorników według schematu:

- punkty referencyjne zewnętrzne dwie 8-godzinne sesje pomiarowe;
- punkty referencyjne wewnętrzne dwie 8-godzinne sesje pomiarowe;
- reflektory dwie 4-godzinne sesje pomiarowe.

W przeprowadzonych kampaniach GNSS przyjęto następujące parametry pomiaru:

- interwał pomiarowy: 10 s,
- minimalna wysokość satelity nad horyzontem: 0°,
- długość sesji pomiarowej: osiem godzin (punkty referencyjne) oraz cztery godziny (reflektory).

LEWINO								
. .	11.09.	2015r.	12.09.	2015r.		• •	Numer	
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu	
PIG 1	GG	630	GG	630	Hi-Target V30	Zintegrowana	-	
PIG 2	GG	632	GG	632	Trimble SPS881	Zintegrowana	-	
PIG 3	GG	633	GG	633	Trimble SPS881	Zintegrowana	_	
PIG 4	GG	634	GG	634	Trimble R8	Zintegrowana	-	
PIG 5	RR07	RR03	RR03	RR07	Trimble R8	Zintegrowana	1	
PIG 6	RR01	RR02	RR02	RR01	Topcon Hiper +	Zintegrowana	2	
PIG 7	RR09	RR10	RR10	RR09	Topcon Hiper +	Zintegrowana	3	
UWM 1	GG	529	GG	529	Javad Alpha	Javad GrAnt G3T	-	
	GG	623	GG	523	Javad Alpha	Javad GrAnt G3T	-	
00002	RR05	RR06	RR06	RR05	Topcon Hiper +	Zintegrowana		
	GG	525	GG	525	Topcon Hiper +	Zintegrowana	-	
00000	RR12	RR13	RR13	RR13	Topcon Hiper +	Zintegrowana	4	
				BABIA	١K			
Data	08.09.	2015r.	09.09.2015r.		Odhiornik	Antono	Numer	
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu	
PIG 1	GG	i31	GG31		Hi-Target V30	Zintegrowana	-	
PIG 2	GG	i32	GG32		Trimble SPS881	Zintegrowana	_	
PIG 3	GG	i33	GG33		Trimble SPS881	Zintegrowana	-	
PIG 4	GG	i34	GG	i34	Trimble R8	Zintegrowana	-	
PIG 5	RR16	RR17	RR17	RR16	Trimble R8	Zintegrowana	1	
PIG 6	RR06	RR10	RR10	RR06	Topcon Hiper +	Zintegrowana	2	
PIG 7	RR07	RR09	RR09	RR07	Topcon Hiper +	Zintegrowana	3	
UWM 1	GG	21	GG	621	Javad Alpha	Javad GrAnt G3T	_	
UWM 2	GG	i30	GG	i30	Javad Alpha	Javad GrAnt G3T	-	
1.04/0.4.2	GG26		GG26		Topcon Hiper +	Zintegrowana	-	
UWM 3	RR11	RR12	RR12 RR11		Topcon Hiper +	Zintegrowana	4	
				BEREJĆ	ŚW			
_	19.08.	2015r.	20.08.2015r.			_	Numer	
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu	
PIG 1	GG	531	GG	531	Hi-Target V30	Zintegrowana	-	
PIG 2	GG	632	GG	632	Trimble SPS881	Zintegrowana	-	
PIG 3	GG	633	GG	533	Trimble SPS881	Zintegrowana	-	
PIG 4	GG	634	GG	634	Trimble R8	Zintegrowana	-	
PIG 5	RR05	RR06	RR06	RR05	Trimble R8	Zintegrowana	1	
PIG 6	RR17	RR18	RR18	RR17	Topcon Hiper +	Zintegrowana	2	
PIG 7	RR15	RR08	RR08	RR15	Topcon Hiper +	Zintegrowana	3	
11\A/6.4 1	GG	622	GG	622	Javad Alpha	Javad GrAnt G3T	-	
	GG	623	GG	523	Javad Alpha	Javad GrAnt G3T	-	
104/84 2	GG	521	GG	621	Topcon Hiper +	Zintegrowana	-	
	RR01	RR13	RR13	RR01	Topcon Hiper +	Zintegrowana	4	

Tabela 1 Plan sesji pomiarowych

8.2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych

Przed przystąpieniem do realizacji pomiarów GNSS na punkcie referencyjnym obserwator powinien dokładnie sprawdzić stan głowicy znaku oraz śruby (Rys. 5), a następnie przeprowadzić następujące czynności:

- przykręcić i spoziomować spodarkę (Rys. 6),
- umieścić antenę GNSS w spodarce,
- skierować antenę w kierunku północnym,
- połączyć antenę do odbiornika GNSS (w przypadku anteny zewnętrznej),
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika GNSS,
- wykonać suwmiarką pomiar wysokości anteny GNSS.

Procedurę pomiaru wysokości anteny GNSS należało przeprowadzać co najmniej trzy razy w trakcie wykonywania obserwacji.

8.2.2 Procedura pomiarowa na reflektorach typu B

Przed przystąpieniem do realizacji pomiarów GNSS na reflektorze obserwator powinien dokładnie sprawdzić stan urządzenia służącego do zamontowania anteny na reflektorze, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na reflektorze,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.2.3 Procedura pomiarowa na reflektorach typu A

Przed przystąpieniem do realizacji pomiarów na reflektorze obserwator powinien dokładnie sprawdzić trzpień służący centrowaniu anteny GNSS, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na trzpieniu,
- umieścić antenę wraz z przejściówką na trzpieniu,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,

- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.3 Podsumowanie pomiarów GNSS

Kampania pomiarowa na poszczególnych obiektów została przeprowadzona w dniach: na poligonie Berejów: 19-20.08.2015 r., na poligonie Babiak: 8-9.09.2015 r., na poligonie Lewino: 11-12.09.2015 r. Pomiary przeprowadzone na terenach znajdujących się bezpośrednio przy zaworach służących do szczelinowania oraz w miejscach stabilizacji punktów referencyjnych przebiegały według przyjętego wcześniej planu pracy. Wszelkie uwagi odnośnie prowadzonych pomiarów uwzględniono w dziennikach obserwacyjnych zawartych w załączniku 16.

9. Opracowanie obserwacji

9.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino

9.1.1 Sposób nawiązania

W pierwszym etapie prac należało skontrolować stałość sieci referencyjnej obiektu Lewino, czyli sprawdzić, czy współrzędne punktów referencyjnych określone na podstawie pomiarów w trzeciej kampanii nie zmieniły się w porównaniu do współrzędnych tych punktów otrzymanych podczas opracowania drugiej kampanii pomiarowej (luty 2015 r.). W tym celu, podobnie jak podczas opracowania obserwacji z poprzedniej kampanii pomiarowej, nawiązanie punktów referencyjnych sieci kontrolnej na obiekcie Lewino przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 2 dostępne stacje położone najbliżej obszaru objętego siecią - KOSC i REDZ (Rys. 8). W opracowaniu uwzględniono również odległą stację WROC, która również należy do sieci ASG-EUPOS, w celu poprawy estymacji parametrów troposfery, niezbędnych do precvzvinego wyznaczenia współrzędnych punktów pomiarowych. W systemie ASG-EUPOS współrzędne stacji określone są w układzie PL-ETRF2000 (epoka odniesienia Przed przystąpieniem do opracowania konieczne było przeprowadzenie 2011.0). transformacji współrzędnych stacji ASG-EUPOS do układu ITRF2008 na epokę drugiej kampanii pomiarowej według algorytmu opracowanego przez Boucher i Altamimi "Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign" (2011).

Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS

9.1.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych zakłada dowiązania do stacji ASG-EUPOS przy wstępnym założeniu

ich błędów *a priori* na poziomie 1 mm dla każdej składowej. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 35 km do 375 km (wektor do stacji WROC).

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem parametrów, które zostały określone jako optymalne podczas opracowania obserwacji uzyskanych z drugiej kampanii pomiarowej, mianowicie:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L3;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźnienia sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności w zależności od długości wektorów –
 SIGMA (L1, L1&L2, L5&L3) lub metoda Quasi-Ionosphere-Free (QIF).
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 5 m/0.001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

Współrzędne punktów referencyjnych w układzie ITRF2008 otrzymano z wyrównania łącznego równań normalnych z dwóch dni pomiarowych modułem ADDNEQ2. Równania normalne z poszczególnych sesji pomiarowych otrzymano z rozwiązania każdej sesji pomiarowej używając modułu GPSEST. Nawiązanie do sieci ASG-EUPOS zrealizowane zostało metodą *minimum constraint*.

Po wykonaniu opracowania potwierdzono stałość współrzędnych punktów referencyjnych, po czym przystąpiono do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów) w oparciu o punkty referencyjne. Z następnej części opracowania zostały jednak wyłączone 3 punkty referencyjne: GG34 (ze względu na niestabilność punktu) oraz GG23 i GG29 (ze względu na problemy techniczne ze sprzętem).

9.2 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino

9.2.1 Geometria rozwiązania

W przypadku badań prowadzonych na obszarze poligonu Lewino, analizowana sieć kontrolna składa się z 4 punktów referencyjnych (3 punkty na zewnątrz oraz 1 punkt wewnątrz obszaru) oraz 10 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi ani pomiędzy punktami referencyjnymi. Utworzone wektory zostały przedstawione w tabeli 2.

GG25-RR01	GG29-RR01	GG32-RR01	GG33-RR01
GG25-RR02	GG29-RR02	GG32-RR02	GG33-RR02
GG25-RR03	GG29-RR03	GG32-RR03	GG33-RR03
GG25-RR05	GG29-RR05	GG32-RR05	GG33-RR05
GG25-RR06	GG29-RR06	GG32-RR06	GG33-RR06
GG25-RR07	GG29-RR07	GG32-RR07	GG33-RR07
GG25-RR09	GG29-RR09	GG32-RR09	GG33-RR09
GG25-RR10	GG29-RR10	GG32-RR10	GG33-RR10
GG25-RR12	GG29-RR12	GG32-RR12	GG33-RR12
GG25-RR13	GG29-RR13	GG32-RR13	GG33-RR13

Tabela 2 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Lewino

9.2.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS w celu uzyskania ostatecznych współrzędnych punktów kontrolowanych została opracowania podczas prac po drugiej kampanii pomiarowej i opiera się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km. Ze względu na niewielką długość wektorów wyznaczanych, do opracowania wykorzystano obserwacje kodowe i fazowe na częstotliwości L1. Na tak krótkich wektorach wpływ opóźniania troposferycznego oraz jonosferycznego jest eliminowany poprzez tworzenie podwójnych różnic obserwacji, zatem nie ma potrzeby stosowania kombinacji liniowej L3 do eliminacji wpływu jonosfery. Ponadto, kombinacja liniowa L3 charakteryzują się trzykrotnie większym szumem, co ogranicza precyzję uzyskiwanych wyników. W tym etapie do rozwiązania nieoznaczoności zastosowano metodę SIGMA L1.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS na częstotliwości L1;
- czas trwania sesji pomiarowych 2 x 4 godziny;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźniania sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L1;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 0.0001 m/0.0001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co godzinę.

Przyjęto ostateczne współrzędne punktów referencyjnych sieci kontrolnej na epokę kampanii referencyjnej (2015.11) w układzie ITRF2008.

9.2.3 Analiza liczby obserwacji

Liczba obserwacji GPS dla wektorów tej sieci miesi się w granicach od 2805 do 5492. Najmniejszą średnią liczbą obserwacji z dwóch dni pomiarowych cechują się wektory do punktu referencyjnego GG30, gdzie średnia wynosi 3772 obserwacji, natomiast dla wektorów do punktu referencyjnego GG25 opracowano największa liczbę obserwacji – 4870. Biorąc pod uwagę średnią liczbę obserwacji dla wektorów do punktów kontrolowanych, najmniej obserwacji istnieje dla wektorów do punktu RR01 (3924), natomiast najwięcej obserwacji zarejestrowano dla wektorów do punktu RR13 (4556). Szczegółowe dane dotyczące liczby obserwacji znajdują się w załączniku 1.

9.2.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych w sieci, w której maksymalna długość wektorów pomiędzy punktami wynosi nie więcej niż 7 km, zastosowano metodę rozwiązania nieoznaczoność SIGMA L1. Podczas opracowania danych z pierwszej sesji obserwacyjnej wyznaczono nieoznaczoności na średnim poziomie 94,9%, natomiast z drugiej sesji na poziomie 96,3%. Dla większości wektorów zostało rozwiązanych 100% nieznaczności, jedynie dla kilku wektorów (na 100 opracowanych wektorów) do punktu

referencyjnego GG30 poziom wyznaczenia nieoznaczoności był nieznacznie niższy niż 90%. Wyniki rozwiązania nieoznaczoności zawiera załącznik 2.

9.2.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w oparciu o współrzędne punktów referencyjnych na podstawie obserwacji GNSS zebranych podczas trzeciej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność wyznaczeń składowych horyzontalnych dla większości punktów nie przekracza 3,0 mm, jedynie dla punktu RR05 powtarzalność składowej północnej wynosi 4,2 mm, a dla punktu RR06 powtarzalność składowej północnej wynosi 3,4 mm. Powtarzalność wyznaczeń wysokości dla większości punktów jest mniejsza niż 3,0 mm, jedynie dla punktú RR10 wynosi 3,3 mm, dla punktu RR06 wynosi 3,9 mm, natomiast dla punktu RR09 wynosi 9,0 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik 3.

9.2.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania trzeciej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.11), które wraz z błędami uzyskanymi na postawie powtarzalności wyznaczeń zestawiono w tabeli 3.

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3532704.65411	1154367.02916	5166308.95482	200.570	1.46	2.16	1.72
RR02	3532531.06648	1154787.68881	5166300.39429	173.654	2.74	1.32	2.45
RR03	3533644.51687	1153902.07578	5165786.09827	210.703	1.13	1.25	1.89
RR05	3533491.57010	1154526.84635	5165756.57112	214.944	4.24	1.41	2.39
RR06	3533867.88120	1154619.01098	5165483.33998	217.330	3.37	1.56	3.89
RR07	3533314.33951	1154495.99147	5165869.54074	203.315	1.41	1.97	2.19
RR09	3531819.79939	1155986.29369	5166540.57551	192.703	1.70	0.89	8.96
RR10	3531712.19299	1155838.32275	5166643.11370	189.928	1.88	2.27	3.31

Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z trzeciej kampanii pomiarowej w układzie ITRF2008 (2015.11), wysokości elipsoidalne oraz ich błędy, poligon Lewino

RR12	3532562.83162	1155563.01053	5166137.08671	198.445	1.47	1.51	1.70
RR13	3533028.51327	1155581.85040	5165832.38406	211.308	1.50	2.42	1.94

W wyniku transformacji otrzymano współrzędne punktów kontrolowanych w układzie ETRF2000, które zestawiono w tabeli 4.

Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]
RR01	3532705.1630	1154366.6667	5166308.6695
RR02	3532531.5754	1154787.3264	5166300.1090
RR03	3533645.0257	1153901.7132	5165785.8129
RR05	3533492.0790	1154526.4838	5165756.2858
RR06	3533868.3901	1154618.6484	5165483.0546
RR07	3533314.8484	1154495.6289	5165869.2554
RR09	3531820.3084	1155985.9313	5166540.2903
RR10	3531712.7020	1155837.9604	5166642.8285
RR12	3532563.3406	1155562.6481	5166136.8014
RR13	3533029.0222	1155581.4879	5165832.0987

9.3 Nawiązanie do ASG-EUPOS – poligon Babiak

9.3.1 Sposób nawiązania

W celu sprawdzenia stabilności sieci punktów referencyjnych obiektu Babiak, nawiązano punkty referencyjnych do ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru objętego siecią – BART, ELBL i LAMA (Rys. 9). W opracowaniu uwzględniono również odległą stację WROC w celu poprawy dekorelacji parametrów troposfery, niezbędnych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. Podobnie jak przy opracowaniu sieci obiektu Lewino, również w tym przypadku przed przystąpieniem do obliczeń konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej (referencyjnej) kampanii pomiarowej (2015.10).

Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS

9.3.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych na obiekcie Babiak jest oparta o rozwiązanie wykorzystujące obserwacje na częstotliwości L1, L2 oraz kombinację L3 i została opisana w podrozdziale 9.1.2. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 26 km do 68 km oraz wektory o długości ponad 400 km łączące stacje ASG-EUPOS ze stacją WROC.

Po wykonaniu opracowania dla sieci punktów referencyjnych stwierdzono niezmienność położenia punktów w stosunku do poprzedniej kampanii pomiarowej. Z dalszego opracowania wyłączono dwa punkty referencyjne: GG30 oraz GG21 (ze względu na problemy techniczne ze sprzętem pomiarowym).

9.4 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak

9.4.1 Geometria rozwiązania

Sieć kontrolna na obszarze Babiak jest zbudowana z 5 punktów referencyjnych 8 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 5.

Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak

GG26-RR06	GG31-RR06	GG32-RR06	GG33-RR06	GG34-RR06
GG26-RR07	GG31-RR07	GG32-RR07	GG33-RR07	GG34-RR07
GG26-RR09	GG31-RR09	GG32-RR09	GG33-RR09	GG34-RR09
GG26-RR10	GG31-RR10	GG32-RR10	GG33-RR10	GG34-RR10
GG26-RR11	GG31-RR11	GG32-RR11	GG33-RR11	GG34-RR11
GG26-RR12	GG31-RR12	GG32-RR12	GG33-RR12	GG34-RR12
GG26-RR16	GG31-RR16	GG32-RR16	GG33-RR16	GG34-RR16
GG26-RR17	GG31-RR17	GG32-RR17	GG33-RR17	GG34-RR17

9.4.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano strategię obliczeniową wykorzystującą obserwacje GPS na częstotliwości L1, która została opisana w podrozdziale 9.2.2.

9.4.3 Analiza liczby obserwacji

Rozważając liczbę obserwacji dla poszczególnych wektorów można zauważyć, że w przypadku tej sieci liczba obserwacji waha się od 3604 dla wektora GG33-RR16 do 5703 dla wektora GG31-RR11. Średnia liczba obserwacji z dwóch sesji pomiarowych wynosi od 4327 dla wektorów do punktu GG32 do 4672 obserwacji dla wektorów do punktu GG31. Biorąc pod uwagę liczbę obserwacji na wektorach do punktów kontrolowanych, największa średnia liczba obserwacji istnieje dla wektorów utworzonych do punktu RR11 (4741), natomiast najmniej obserwacji zostało zarejestrowanych na wektorach do punktu RR16 (4262). Szczegółowe informacje dotyczące obserwacji znajdują się w załączniku 4.

9.4.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano metodę rozwiązania nieoznaczoności SIGMA L1. Dla wektorów mierzonych podczas pierwszej sesji pomiarowej, poziom rozwiązania nieoznaczoności wynosi 96,5%. W przypadku wektorów utworzonych podczas drugiej sesji pomiarowej, rozwiązano 96,8% nieoznaczoności. Analizując poziom wyznaczenia nieoznaczoności dla wektorów do poszczególnych punktów kontrolowanych, najwięcej nieoznaczoności rozwiązano dla wektorów do punktu RR06 (99,0%), natomiast najniższy poziom wyznaczenia nieoznaczoności otrzymano dla wektorów do punktu RR06 (99,0%), natomiast najniższy poziom wyznaczenia nieoznaczoności otrzymano dla wektorów do punktu RR09 (95,7%). Dla większości wektorów wchodzących w skład opracowywanej sieci rozwiązano nieoznaczoności na poziomie 95%, jedynie dla dwóch wektorów mierzonych w trakcie drugiego dnia pomiarowego poziom wyznaczenia nieoznaczoności jest niższy niż 90%: dla wektora GG31-RR16 (86,7%) oraz GG32-RR09 (88,2%). Wyniki rozwiązania nieoznaczoności otrzymane w programie Bernese, zawiera załącznik 5.

9.4.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Babiak było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) z trzeciej kampanii pomiarowej w układzie ITRF2008 (2015.10) w oparciu o współrzędne punktów referencyjnych.

W celu określenia dokładności oraz precyzji uzyskanych wyników, przeanalizowano powtarzalność poszczególnych składowych współrzędnych z dwóch sesji obserwacyjnych oraz poszczególnych rozwiązań sieci. Dla składowej północnej powtarzalność uzyskanych wyników nie przekracza 3,2 mm. Biorąc pod uwagę składową wschodnią uzyskanych współrzędnych dla wszystkich punktów kontrolowanych powtarzalność wyznaczeń nie przekracza wartości 1,7 mm. Powtarzalność wyznaczeń wysokości wszystkich punktów kontrolowanych jest lepsza niż 3,8 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 6.

9.4.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania obserwacji GNSS zebranych podczas trzeciej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) na obszarze Babiak w układzie ITRF2008 na epokę kampanii referencyjnej (2015.10), które zostały zestawione w tabeli 6.

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR06	3508136.52152	1301602.90218	5148082.54206	150.921	3.12	1.25	2.25
RR07	3507765.36023	1302409.34142	5148123.49072	144.695	1.14	1.30	3.78
RR09	3508181.47887	1302153.26293	5147898.43997	138.418	1.30	0.92	2.32
RR10	3508179.71369	1302386.16722	5147838.19562	136.054	1.16	0.60	2.86
RR11	3508429.88150	1303135.41461	5147480.85912	136.354	1.77	0.47	2.66
RR12	3508544.46248	1303409.28160	5147327.65306	130.878	1.22	0.69	3.40
RR16	3508549.70154	1302245.67785	5147624.22888	139.028	3.21	1.69	3.64
RR17	3508838.09271	1302483.35843	5147371.46204	138.833	1.10	1.11	2.33

Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z trzeciej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 7).

Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak

Punkt	X [m]	Y [m]	Z [m]
RR06	3508137.0441	1301602.5429	5148082.2599
RR07	3507765.8829	1302408.9822	5148123.2086
RR09	3508182.0015	1302152.9037	5147898.1578
RR10	3508180.2363	1302385.8080	5147837.9135
RR11	3508430.4042	1303135.0554	5147480.5769
RR12	3508544.9852	1303408.9223	5147327.3709
RR16	3508550.2242	1302245.3186	5147623.9467
RR17	3508838.6153	1302482.9991	5147371.1798

9.5 Nawiązanie do ASG-EUPOS – poligon Berejów

9.5.1 Sposób nawiązania

Pierwszym etapem prac było stwierdzenie, czy współrzędne punktów referencyjnych nie zmieniły się w porównaniu do współrzędnych określonych podczas opracowania obserwacji z drugiej kampanii pomiarowej. Nawiązanie punktów referencyjnych sieci kontrolnej poligonu Berejów przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru objętego siecią – BPDL, LUBL i WLDW (Rys. 10). Do rozwiązania dołączono również stację WROC, w celu poprawy estymacji parametrów troposfery mających wpływ na dokładność i precyzję wyznaczania współrzędnych punktów GNSS. Przed przystąpieniem do obliczeń niezbędne

było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej kampanii pomiarowej (2015.09).

Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS

9.5.2 Strategia obliczeniowa

W przypadku nawiązania sieci kontrolnej na obiekcie Berejów do sieci ASG-EUPOS, wyznaczono współrzędne 6 punktów referencyjnych na podstawie opracowania obserwacji GPS z wykorzystaniem kombinacji liniowej L3. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 29 km do 67 km oraz około 400 km do stacji WROC. Strategia obliczeniowa zastosowana w tym etapie opracowania została opisana w podrozdziale 9.1.2.

W wyniku opracowania potwierdzono stałość sieci punktów referencyjnych obiektu Berejów. Z dalszego opracowania wykluczono punkt GG33 ze względu na zgromadzoną małą liczbę obserwacji.

9.6 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów

9.6.1 Geometria rozwiązania

Sieć kontrolna na obiekcie Berejów składa się z 6 punktów referencyjnych oraz z 8 punktów kontrolowanych (reflektorów). W celu wyznaczenia współrzędnych punktów kontrolowanych, utworzono sieć wektorów łączącą każdy punkt wyznaczany z punktami

referencyjnymi, bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 8.

GG21-RR01	GG22-RR01	GG23-RR01	GG31-RR01	GG32-RR01	GG34-RR01
GG21-RR05	GG22-RR05	GG23-RR05	GG31-RR05	GG32-RR05	GG34-RR05
GG21-RR06	GG22-RR06	GG23-RR06	GG31-RR06	GG32-RR06	GG34-RR06
GG21-RR08	GG22-RR08	GG23-RR08	GG31-RR18	GG32-RR18	GG34-RR18
GG21-RR13	GG22-RR13	GG23-RR13	GG31-RR13	GG32-RR13	GG34-RR13
GG21-RR15	GG22-RR15	GG23-RR15	GG31-RR15	GG32-RR15	GG34-RR15
GG21-RR17	GG22-RR17	GG23-RR17	GG31-RR17	GG32-RR17	GG34-RR17
GG21-RR18	GG22-RR18	GG23-RR18	GG31-RR18	GG32-RR18	GG34-RR18

Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów

9.6.2 Strategia obliczeniowa

W tej części opracowania wykorzystano strategię obliczeniową opartą na opracowaniu obserwacji na częstotliwości L1, która została opisana w podrozdziale 9.1.2.

9.6.3 Analiza liczby obserwacji

Liczba obserwacji dla wszystkich analizowanych wektorów waha się od 3798 obserwacji do 5591 obserwacji. Największą liczbę obserwacji zarejestrowano dla wektora GG32-RR06, natomiast najmniej obserwacji utworzono dla wektora GG31-RR05. Rozważając wektory do poszczególnych punktów kontrolowanych, największą średnią liczbą obserwacji charakteryzują się wektory do punktu RR06 (4702 obserwacji), natomiast najmniejszą ilością obserwacji – wektory do punktu RR17 (4538 obserwacji). Szczegółowe informacje dotyczące liczby obserwacji zostały zamieszczone w załączniku 7.

9.6.4 Analiza wyznaczenia nieoznaczoności

W celu określenia ostatecznych współrzędnych punktów kontrolowanych, nieoznaczoności fazy zostały wyznaczone za pomocą metody SIGMA L1. Dla większości wektorów sieci poligonu Berejów, nieoznaczoności zostały wyznaczone na poziomie 100%, jedynie dla kilku wektorów poziom rozwiązania nieoznaczoności był nieznacznie niższy.

Wyniki rozwiązania nieoznaczoności z etapu II opracowania otrzymane w programie Bernese, zawiera załącznik 8.

9.6.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej na obiekcie Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) na podstawie obserwacji zebranych w trzeciej kampanii pomiarowej w układzie ITRF2008 (2015.09) w oparciu o współrzędne punktów referencyjnych.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność otrzymanej składowej północnej współrzędnych nie przekracza 2,0 mm, jedynie dla punktu RR17 wynosi 2,6 mm. W przypadku składowej wschodniej, powtarzalność wyników dla każdego punktu kontrolowanego jest mniejsza niż 1,3 mm. Powtarzalność wyznaczeń wysokości nie przekracza 3.0 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 9.

9.6.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W tabeli 9 zestawiono ostateczne współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.63) wyznaczone podczas trzeciej kampanii pomiarowej.

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3667843.56317	1537125.15282	4969999.86147	200.959	1.33	1.02	1.80
RR05	3667669.73781	1536166.69625	4970427.27798	205.388	0.99	1.35	2.71
RR06	3667864.04694	1536272.52705	4970248.12183	202.070	1.98	0.55	1.85
RR08	3667927.23592	1537415.13320	4969845.53733	197.913	1.18	0.74	1.62
RR13	3668030.76612	1536896.60900	4969931.30075	199.759	1.94	0.67	1.74
RR15	3668115.87302	1537105.41473	4969803.83372	199.031	1.22	0.97	2.49
RR17	3668741.58485	1536357.76768	4969572.70850	197.480	2.64	0.52	2.05
RR18	3668548.88847	1536320.86023	4969726.65165	198.507	1.83	0.48	2.06

Tabela 9	Wykaz	współrzędnycł	1 punktów	kontrolowanych	(reflektorów)	w trzeciej	kampanii	pomiarowej	W
układzie I	TRF200)8 (2015.09), w	ysokości el	lipsoidalne oraz b	łędy średnie, p	oligon Bere	ejów		

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 10).

Punkt	X [m]	Y [m]	Z [m]
RR01	3667844.0979	1537124.7806	4969999.5718
RR05	3667670.2725	1536166.3241	4970426.9883
RR06	3667864.5816	1536272.1549	4970247.8321
RR08	3667927.7707	1537414.7610	4969845.2476
RR13	3668031.3008	1536896.2368	4969931.0110
RR15	3668116.4078	1537105.0425	4969803.5440
RR17	3668742.1195	1536357.3954	4969572.4187
RR18	3668549.4231	1536320.4880	4969726.3619

Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejów

9.7 Podsumowanie

Kampania pomiarowa przebiegła bez zakłóceń, pomiary odbyły się na wszystkich planowanych punktach we wszystkich sesjach obserwacyjnych. Na etapie opracowania obserwacji wykluczono 3 punkty referencyjne na poligonie Lewino: GG34 (ze względu na niestabilność punktu) oraz GG23 i GG29 (ze względu na problemy techniczne ze sprzętem); 2 punkty na poligonie Babiak: GG30 oraz GG21 (ze względu na problemy techniczne ze sprzętem pomiarowym); oraz 1 punkt na poligonie Berejów: GG33 ze względu na niewystarczającą liczbę zgromadzonych obserwacji z powodu problemów technicznych ze sprzętem GNSS. Biorąc pod uwagę punkty kontrolowane (reflektory), praktycznie w każdej sesji zebrano wystarczającą liczbę obserwacji.

W wyniku wyrównania sieci wektorów GPS uzyskano finalne współrzędne punktów referencyjnych oraz kontrolowanych w układzie ITRF2008 na epokę kampanii referencyjnej oraz w układzie PL-ETRF2000. Błędy średnie finalnych współrzędnych mieszczą się w przyjętych wymaganiach dokładnościowych. Dla punktów kontrolowanych na poligonie Berejów dokładność uzyskanej wysokości mieści się w granicach od 1,6 mm do 2,7 mm; na poligonie Babiak dokładność wysokości waha się w granicach od 2,3 mm do 3,8 mm. Na poligonie Lewino jeden punkt uzyskał gorszą dokładność wysokości – punkt RR09 (9,0 mm), natomiast dla pozostałych punktów dokładność mieści się w granicach od 1,7 mm do 3,9 mm.

Po opracowaniu obserwacji z trzeciej kampanii pomiarowe możliwe było określenie różnic otrzymanych współrzędnych w odniesieniu do kampanii referencyjnej. W tabeli 11 przedstawiono porównanie wysokości elipsoidalnych reflektorów otrzymanych z drugiej (K2), oraz z trzeciej (K3) kampanii pomiarowej dla każdego poligonu.
Tabela 11 Zmiany wysokości elipsoidalnych reflektorów

	LEWINO								
Punkt	h _{el} K2	h _{el} K3	K2-K3 [m]						
RR01	200.566	200.570	-0.004						
RR02	173.646	173.654	-0.008						
RR03	210.700	210.703	-0.002						
RR05	214.941	214.944	-0.003						
RR06	217.324	217.330	-0.006						
RR07	203.312	203.315	-0.003						
RR09	192.711	192.703	0.008						
RR10	189.919	189.928	-0.009						
RR12	198.435	198.445	-0.010						
RR13	211.299	211.308	-0.010						
	BA	BIAK							
Punkt	h _{el} K2	h _{el} K3	K2-K3 [m]						
RR06	150.928	150.921	0.007						
RR07	144.693	144.695	-0.002						
RR09	138.416	138.418	-0.002						
RR10	136.053	136.055	-0.002						
RR11	136.348	136.354	-0.006						
RR12	130.881	130.878	0.002						
RR16	137.034	137.028	0.006						
RR17	138.836	138.833	0.003						
	BER	REJÓW							
Punkt	h _{el} K2	h _{el} K3	K2-K3 [m]						
RR01	200.962	200.959	0.003						
RR05	205.397	205.388	0.009						
RR06	202.080	202.070	0.010						
RR08	197.919	197.913	0.007						
RR13	199.767	199.759	0.008						
RR15	199.036	199.031	0.004						
RR17	197.483	197.480	0.003						
RR18	198.507	198.507	0.000						

III Niwelacja geometryczna

10. Cel przeprowadzonych pomiarów

Celem opracowania jest przeprowadzenie precyzyjnej niwelacji geometrycznej na trzech obiektach testowych objętych eksploatacją gazu ziemnego ze złóż łupkowych, ścisłe wyrównanie sieci kontrolno-pomiarowej oraz wyznaczenie wysokości punktów: referencyjnych, kontrolowanych, reflektorów InSAR. Uzyskane wyniki są danymi uzupełniającymi do prowadzenia rozszerzonego monitoringu deformacji terenu z wykorzystaniem technologii satelitarnych.

11. Obszar opracowania

11.1 Lokalizacja

Precyzyjną niwelacją geometryczną objęto trzy sieci kontrolno-pomiarowe zlokalizowane w miejscowościach:

- Lewino, gmina Linia, powiat wejherowski, województwo pomorskie,
- Babiak, gmina Lidzbark Warmiński, powiat lidzbarski, województwo warmińskomazurskie,
- Berejów, gmina Niedźwiada, powiat lubartowski, województwo lubelskie.

Każda sieć składa się z 4 punktów referencyjnych, 26 punktów kontrolowanych oraz 20 reflektorów InSAR, rozmieszczonych zgodnie z kierunkami prowadzenia odwiertów poziomych w celu eksploatacji gazu łupkowego.

11.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów Lewino

- a) województwo pomorskie, powiat wejherowski, gmina Linia,
- b) obręby ewidencyjne wsi: Lewino, Zęblewo, Łebno, Lewinko, Będargowo,
- c) długość linii niwelacyjnej ok. 18 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren górzysty, przewyższenia do 65 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,

g) punkty referencyjne – 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi. Obiekt Lewino o powierzchni ok. 20 km², jest największy oraz charakteryzuje się największym zróżnicowaniem rzeźby terenu od 135 do 200 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych, o średnim zagęszczeniu gruntami leśnymi.

<u>Babiak</u>

- a) województwo warmińsko-mazurskie, powiat lidzbarski, gmina Lidzbark Warmiński,
- b) obręby ewidencyjne wsi: Babiak, Miejska Wola, Bugi,
- c) długość linii niwelacyjnej ok. 10 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren o zróżnicowanej rzeźbie z przewyższeniami do 22 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi. Obiekt Babiak o powierzchni ok. 6 km², charakteryzuje się umiarkowanym zróżnicowaniem rzeźby terenu od 78 do 125 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni użytków zielonych.

Berejów

- a) województwo lubelskie, powiat lubartowski, gmina Niedźwiada,
- b) obręby ewidencyjne wsi: Berejów, Brzeźnica Bychawska, Brzeźnica Bychawska-Kolonia,
- c) długość linii niwelacyjnej ok. 8 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren równinny,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.
 Obiekt Berejów o powierzchni ok. 4 km², charakteryzuje się małym zróżnicowaniem

rzeźby terenu od 164 do 173 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych.

12. Opis techniczny

Precyzyjną niwelację geometryczną przeprowadzono w dniach od 31 sierpnia do 18 września 2015 roku, z zachowaniem procedur pomiarowych oraz dokładności wg Rozporządzenia Ministra Administracji i Cyfryzacji z dnia 14 lutego 2012 r. "w sprawie osnów geodezyjnych, grawimetrycznych i magnetycznych" (Dz. U. 2012, poz. 352). Warunki pogodowe występujące w okresie przeprowadzania pomiarów niwelacyjnych były

sprzyjające, temperatura mieściła się w przedziale od 18 do 23° C. Do przeprowadzenia niwelacji wykorzystano cyfrowy niwelator precyzyjny Leica DNA 03 z kompletem precyzyjnych łat kodowych oraz sprzęt pomocniczy. Łaty inwarowe do niwelacji precyzyjnej ustawiano na klinach stalowych wbijanych w grunt. Ogółem zaniwelowano ok. 36 km ciągów, przedstawionych na rysunkach 1, 2, 3, w dwóch kierunkach: tam i z powrotem, co daje ogólną długość wykonanej niwelacji ok. 72 km. Zgromadzone obserwacje przewyższeń dla poszczególnych obiektów: Babiak, Berejów, Lewino zestawiono odpowiednio w załącznikach nr 10, 11, 12.

Utworzone sieci ciągów niwelacyjnych mają kształt rozet z punktami węzłowymi, skracającymi oraz ułatwiającymi proces pomiarowy. Przyjęto następujące punkty węzłowe:

- Babiak (Rys. 11): g06, g09, g18,
- Berejów (Rys.12): ref21, ref26, b12, b16, b18,
- Lewino (Rys. 13): 102, 109, 112, 116.

Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)

Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)

Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)

13. Opracowanie wyników obserwacji

13.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR

Punkty referencyjne, zastabilizowane specjalnymi fundamentalnymi znakami nadziemnymi (Rys. 14), wymagały wyznaczenia wysokości reperów bocznych. Reper boczny stanowi podstawę pomiaru niwelacji geometrycznej, natomiast do integracji z niwelacją satelitarną niezbędne jest wyznaczenie przyrostu wysokości do punktów umieszczonych w głowicy znaku punktu referencyjnego, względem których wyznacza się wysokość anteny GNSS. Pomiar tych przewyższeń zrealizowano w pierwszej kampanii pomiarowej w sierpniu 2014 r.

Rysunek 24 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny

Konstrukcja oraz ustawienie reflektorów InSAR w znacznym stopniu utrudniały interpretację punktu wysokościowego do pomiaru niwelacją geometryczną. Rozwiązaniem okazał się punkt pośredni jednoznacznie realizowany poprzez umieszczaną w zwieńczeniu trzech płaszczyzn konstrukcji reflektorów kuli stalowej o średnicy 72,7 mm. Wysokości reflektorów wyznaczone zostały na podstawie pomiaru względem punktów kontrolowanych stabilizowanych, w bezpośrednim ich sąsiedztwie, fundamentalnymi znakami podziemnymi (Rys. 15). Przewyższenia wyznaczone na pośrednich punktach wysokościowych reflektorów

InSAR względem bliskich punktów kontrolowanych dla wszystkich obiektów zestawione zostały w załączniku nr 14.

Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni

13.2 Wyznaczenie wysokości w układzie Kronsztadt'86

Wyznaczenie pozycji punktu terenowego w pomiarach satelitarnych GNSS odbywa się w układzie globalnym odniesionym do konkretnej elipsoidy odniesienia. Pozycja ta wyrażana jest przez współrzędne elipsoidalne (geodezyjne), szerokość i długość geodezyjną punktu będącego rzutem, wzdłuż normalnej do elipsoidy, punktu na fizycznej powierzchni Ziemi. Trzecią współrzędną jest wysokość elipsoidalna punktu, wyznaczana bezpośrednio w pomiarach satelitarnych, będącą miarą odległości punktu terenowego wzdłuż normalnej do elipsoidy.

Nawiązanie każdej sieci do układu Kronsztadt'86 zrealizowano jednopunktowo w pierwszej kampanii pomiarowej, zrealizowanej w sierpniu 2014 roku, na podstawie wyników pomiarów satelitarnych oraz modelu geoidy niwelacyjnej 2011. Przyjęte zostały następujące punkty nawiązania (wysokości wyznaczone są do głowicy znaków referencyjnych):

- Babiak: G21 = 103.6470, h = 132.3327, N = 28.6857,
- Berejów: G22 = 174.1053, h = 204.2031, N = 30.0978,
- Lewino: G23 = 179.7151, h = 210.0166, N = 30.3015.

13.3 Ścisłe wyrównanie sieci kontrolowanych

Zgromadzone w terenie dane obserwacyjne z formatu GSI przetworzono do formatu ASCII. Następnie w arkuszu kalkulacyjnym programu Excel, Pakietu Office, oraz na podstawie notatek terenowych wyznaczone zostały uśrednione, uzyskane z dwóch kierunków niwelacji (tam i z powrotem), przewyższenia między punktami kontrolowanymi. Dokonano również kontroli sumarycznego zamknięcia ciągów w dwóch kierunkach, która nie wykazała przekroczenia dopuszczalnych dokładności pomiaru. Wyrównanie całej sieci kontrolnej przeprowadzono w programie GEONET 2006, przyjmując wyznaczone przewyższenia, wagując po ilości stanowisk pomiarowych między punktami końcowymi linii, w dowiązaniu do czterech punktów referencyjnych, których współrzędne wyznaczane są pomiarami GNSS. Wykaz punktów nawiązania w układzie Kronsztadt'86 zestawiono poniżej (wysokości wyznaczone są do reperów bocznych znaków referencyjnych):

- Babiak: G21=102.3498, G26=91.9675, G29=97.8237, G30=80.6368,
- Berejów: G21=167.3284, G22=172.8494, G23=170.8672, G26=167.8335,
- Lewino: G23=178.4540, G24=170.7880, G25=147.9927, G29=177.8394.

Wyrównane wysokości punktów znajdują się w tabelach 12 – 14, a szczegółowe wyniki wyrównania zawierają załączniki nr 13, 14, 15.

	Obiekt: Babiak										
	K1: 201	4_08	K2: 201	5_02	K3: 201	5_08	K2 – K1	K3 – K1			
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]			
G1	112,3164	0,0009	112,3152	0,0008	112,3166	0,0008	-0,0012	0,0002			
G10	105,0768	0,0003	105,0765	0,0003	105,0768	0,0003	-0,0003	0,0000			
G11	105,5625	0,0005	105,5631	0,0002	105,5597	0,0002	0,0006	-0,0028			
G12	100,0248	0,0006	100,0257	0,0002	100,0202	0,0002	0,0009	-0,0046			
G13	79,4111	0,0008	79,4091	0,0002	79,4126	0,0004	-0,0020	0,0015			
G14	80,1928	0,0008	80,1901	0,0003	80,1942	0,0005	-0,0027	0,0014			
G15	102,8028	0,0005	102,8030	0,0004	102,8024	0,0004	0,0002	-0,0004			
G16	105,6844	0,0005	105,6851	0,0005	105,6812	0,0005	0,0007	-0,0032			
G17	107,8863	0,0006	107,8855	0,0005	107,8867	0,0005	-0,0008	0,0004			
G18	109,4257	0,0007	109,4252	0,0006	109,4262	0,0006	-0,0005	0,0005			
G19	93,3569	0,0008	93,3559	0,0007	93,3566	0,0007	-0,0010	-0,0003			
G2	88,6669	0,0010	88,6672	0,0009	88,6674	0,0009	0,0003	0,0005			
G20	98,1039	0,0008	98,1038	0,0007	98,1031	0,0007	-0,0001	-0,0008			

Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa 1 i 2, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

G21	102,3498	0,0001	102,3498	0,0000	102,3498	0,0000	0,0000	0,0000
G22	101,9610	0,0003	101,9653	0,0002	101,9552	0,0002	0,0043	-0,0058
G23	102,5706	0,0004	102,5713	0,0002	102,5634	0,0002	0,0007	-0,0072
G24	106,8224	0,0005	106,8275	0,0002	106,8197	0,0002	0,0051	-0,0028
G25	106,5698	0,0005	106,5695	0,0002	106,5701	0,0002	-0,0003	0,0003
G26	91,9675	0,0006	91,9675	0,0000	91,9675	0,0000	0,0000	0,0000
G27	93,9673	0,0007	93,9669	0,0002	93,9667	0,0003	-0,0004	-0,0006
G28	81,4724	0,0007	81,4709	0,0002	81,4725	0,0004	-0,0015	0,0001
G29	97,8237	0,0005	97,8237	0,0000	97,8237	0,0000	0,0000	0,0000
G3	125,3328	0,0007	125,3329	0,0006	125,3325	0,0007	0,0001	-0,0003
G30	80,6368	0,0008	80,6368	0,0000	80,6356	0,0004	0,0000	-0,0012
G4	104,4368	0,0007	104,4358	0,0006	104,4343	0,0006	-0,0010	-0,0025
G5	103,0090	0,0007	103,0088	0,0006	103,0079	0,0006	-0,0002	-0,0011
G6	119,5548	0,0006	119,5552	0,0005	119,5518	0,0005	0,0004	-0,0030
G7	113,8983	0,0005	113,8985	0,0005	113,8960	0,0005	0,0002	-0,0023
G8	112,3291	0,0006	112,3299	0,0006	112,3228	0,0006	0,0008	-0,0063
G9	106,7525	0,0004	106,7520	0,0004	106,7504	0,0004	-0,0005	-0,0021
R1	113,9715	0,0009	113,9685	0,0008	113,9695	0,0008	-0,0030	-0,0020
R10	106,7123	0,0004	106,7121	0,0003	106,7122	0,0003	-0,0002	-0,0001
R11	107,0023	0,0005	107,0033	0,0002	107,0027	0,0002	0,0010	0,0003
R12	101,5244	0,0006	101,5235	0,0002	101,5219	0,0002	-0,0009	-0,0025
R13	81,0251	0,0008	81,0235	0,0003	81,0267	0,0004	-0,0016	0,0016
R14	81,8570	0,0008	81,8537	0,0003	81,8581	0,0005	-0,0033	0,0011
R15	104,4134	0,0005	104,4145	0,0004	104,4137	0,0004	0,0011	0,0003
R16	107,1825	0,0006	107,1826	0,0005	107,1802	0,0005	0,0001	-0,0023
R17	109,4720	0,0007	109,4707	0,0005	109,4722	0,0005	-0,0013	0,0002
R18	110,8666	0,0007	110,8658	0,0006	110,8669	0,0006	-0,0008	0,0003
R19	94,9179	0,0008	94,9150	0,0007	94,9155	0,0007	-0,0029	-0,0024
R2	90,2319	0,0010	90,2317	0,0009	90,2321	0,0009	-0,0002	0,0002
R20	99,6692	0,0008	99,6707	0,0007	99,6688	0,0007	0,0015	-0,0005
R3	127,0187	0,0007	127,0188	0,0006	127,0178	0,0007	0,0001	-0,0009
R4	106,3931	0,0007	106,3906	0,0006	106,3886	0,0006	-0,0025	-0,0045
R5	104,4950	0,0007	104,4950	0,0006	104,4933	0,0006	0,0000	-0,0017
R6	121,1100	0,0006	121,1097	0,0005	121,1051	0,0005	-0,0003	-0,0049
R7	115,3658	0,0006	115,3660	0,0005	115,3641	0,0005	0,0002	-0,0017
R8	113,8215	0,0006	113,8214	0,0006	113,8196	0,0006	-0,0001	-0,0019
R9	108,5901	0,0004	108,5898	0,0004	108,5891	0,0004	-0,0003	-0,0011

	Obiekt: Berejów								
	K1: 201	4_08	K2: 201	5_02	K3: 201	5_09	K2 – K1	K3– K1	
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	
G1	168,4093	0,0006	168,4097	0,0001	168,4092	0,0001	0,0004	-0,0001	
G10	169,9234	0,0008	169,9227	0,0005	169,9226	0,0005	-0,0007	-0,0008	
G11	165,9578	0,0006	165,9576	0,0002	165,9576	0,0003	-0,0001	-0,0002	
G12	166,0035	0,0005	166,0033	0,0002	166,0039	0,0002	-0,0002	0,0004	
G13	167,3205	0,0006	167,3207	0,0002	167,3204	0,0002	0,0002	-0,0001	
G14	167,8689	0,0007	167,8686	0,0003	167,8683	0,0003	-0,0004	-0,0006	
G15	166,5864	0,0006	166,5866	0,0001	166,5863	0,0001	0,0002	-0,0001	
G16	164,5209	0,0005	164,5209	0,0002	164,5212	0,0002	0,0000	0,0003	
G17	165,0324	0,0005	165,0326	0,0003	165,0316	0,0003	0,0002	-0,0008	
G18	165,8821	0,0004	165,8819	0,0002	165,8815	0,0002	-0,0001	-0,0006	
G19	170,4357	0,0007	170,4356	0,0005	170,4350	0,0005	-0,0002	-0,0008	
G2	166,4962	0,0007	166,4967	0,0003	166,4960	0,0003	0,0005	-0,0002	
G20	163,5014	0,0006	163,5018	0,0004	163,5017	0,0004	0,0004	0,0003	
G21	167,3284	0,0006	167,3284	0,0000	167,3284	0,0000	0,0000	0,0000	
G22	172,8494	0,0001	172,8494	0,0000	172,8494	0,0000	0,0000	0,0000	
G23	170,8672	0,0007	170,8672	0,0000	170,8672	0,0000	0,0000	0,0000	
G24	167,0932	0,0007	167,0931	0,0003	167,0932	0,0003	-0,0001	0,0000	
G25	166,1926	0,0006	166,1927	0,0001	166,1921	0,0001	0,0001	-0,0005	
G26	167,8335	0,0006	167,8335	0,0000	167,8335	0,0000	0,0000	0,0000	
G27	169,3919	0,0006	169,3918	0,0003	169,3906	0,0003	-0,0001	-0,0013	
G28	166,2713	0,0005	166,2713	brak	166,2713	0,0002	0,0000	0,0000	
G29	163,2574	0,0005	163,2579	0,0003	163,2581	0,0003	0,0004	0,0007	
G3	172,6924	0,0003	172,6925	0,0002	172,6926	0,0002	0,0001	0,0002	
G30	167,2974	0,0007	167,2977	0,0005	167,2969	0,0005	0,0003	-0,0005	
G4	170,2726	0,0003	170,2726	0,0002	170,2726	0,0002	0,0000	0,0000	
G5	172,8632	0,0008	172,8635	0,0002	172,8635	0,0002	0,0003	0,0003	
G6	169,2485	0,0007	169,2481	0,0002	169,2482	0,0002	-0,0004	-0,0003	
G7	165,8026	0,0006	165,8026	0,0003	165,8027	0,0003	0,0000	0,0001	
G8	164,8663	0,0007	164,8661	0,0003	164,8664	0,0003	-0,0002	0,0001	
G9	170,8985	0,0007	170,8980	0,0004	170,8975	0,0004	-0,0005	-0,0010	
R1	170,2239	0,0007	170,2238	0,0002	170,2234	0,0002	-0,0002	-0,0005	
R10	171,6475	0,0008	171,6475	0,0005	171,6462	0,0005	0,0000	-0,0013	
R11	167,5608	0,0006	167,5607	0,0003	167,5608	0,0003	-0,0001	0,0000	
R12	167,7156	0,0005	167,7149	0,0002	167,6654	0,0002	-0,0008	-0,0502	
R13	169,0108	0,0006	169,0108	0,0002	169,0111	0,0002	0,0000	0,0003	

Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1 i 2, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

		-			-			
R14	169,5485	0,0007	169,5499	0,0004	169,5503	0,0004	0,0014	0,0018
R15	168,2851	0,0006	168,2852	0,0002	168,2852	0,0002	0,0001	0,0001
R16	166,2549	0,0005	166,2547	0,0003	166,2554	0,0003	-0,0001	0,0005
R17	166,6770	0,0005	166,6750	0,0003	166,6746	0,0003	-0,0020	-0,0024
R18	167,7123	0,0004	167,7119	0,0003	167,7121	0,0003	-0,0004	-0,0002
R19	172,1820	0,0007	172,1819	0,0005	172,1814	0,0005	-0,0001	-0,0006
R2	168,1175	0,0007	168,1178	0,0003	168,1178	0,0003	0,0003	0,0003
R20	165,2171	0,0006	165,2171	0,0004	165,2176	0,0004	0,0000	0,0005
R3	174,3413	0,0003	174,3416	0,0002	174,3430	0,0002	0,0003	0,0017
R4	171,9790	0,0003	171,9785	0,0002	171,9803	0,0002	-0,0005	0,0012
R5	174,6390	0,0008	174,6389	0,0002	174,6393	0,0002	-0,0001	0,0003
R6	170,8766	0,0007	170,8744	0,0002	170,8765	0,0002	-0,0023	-0,0001
R7	167,5902	0,0006	167,5904	0,0003	167,5904	0,0003	0,0003	0,0001
R8	166,7504	0,0007	166,7497	0,0003	166,7471	0,0003	-0,0007	-0,0033
R9	172,6765	0,0008	172,6760	0,0005	172,6753	0,0005	-0,0005	-0,0012

Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1 i 2, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

	Obiekt: Lewino									
	K1: 201	4_08	K2: 201	5_02	K3: 2015_09		K2 – K1	K3 – K1		
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]		
G1	167,9661	0,0007	167,9671	0,0004	167,9668	0,0004	0,0010	0,0006		
G10	156,9434	0,0012	156,9440	0,0005	156,9438	0,0005	0,0006	0,0004		
G11	137,2842	0,0012	137,2839	0,0005	137,2846	0,0005	-0,0003	0,0004		
G12	165,7899	0,0010	165,7918	0,0003	165,7910	0,0003	0,0019	0,0011		
G13	178,0472	0,0010	178,0489	0,0005	178,0478	0,0005	0,0017	0,0006		
G14	178,9426	0,0013	178,9441	0,0008	178,9421	0,0008	0,0015	-0,0005		
G15	195,0291	0,0012	195,0302	0,0007	195,0289	0,0007	0,0012	-0,0002		
G16	161,1359	0,0013	161,1350	0,0004	161,1356	0,0004	-0,0009	-0,0003		
G17	176,6813	0,0015	176,6815	0,0003	176,6812	0,0003	0,0002	-0,0001		
G18	136,1700	0,0014	136,1695	0,0005	136,1703	0,0005	-0,0005	0,0003		
G19	181,0810	0,0014	181,0813	0,0005	181,0819	0,0005	0,0003	0,0009		
G2	140,9716	0,0008	140,9719	0,0004	140,9733	0,0004	0,0003	0,0017		
G20	169,3668	0,0014	169,3672	0,0005	169,3676	0,0005	0,0005	0,0008		
G21	162,2349	0,0006	162,2355	0,0004	162,2354	0,0004	0,0006	0,0005		
G22	159,7963	0,0008	159,7962	0,0004	159,7958	0,0004	-0,0002	-0,0005		
G23	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	0,0000	0,0000		
G24	170,7880	0,0009	170,7880	0,0000	170,7880	0,0000	0,0000	0,0000		
G25	147,9927	0,0009	147,9927	0,0000	147,9927	0,0000	0,0000	0,0000		
G26	178,4379	0,0013	178,4386	0,0007	178,4380	0,0007	0,0008	0,0001		

G27	200,2459	0,0012	200,2478	0,0007	200,2455	0,0007	0,0018	-0,0004
G28	191,6611	0,0012	191,6625	0,0008	191,6614	0,0008	0,0015	0,0003
G29	177,8394	0,0014	177,8394	0,0000	177,8394	0,0000	0,0000	0,0000
G3	178,1357	0,0006	178,1357	0,0004	178,1357	0,0004	0,0000	0,0000
G31	146,4892	0,0010	146,4882	0,0005	146,4878	0,0005	-0,0010	-0,0014
G4	171,0165	0,0007	171,0155	0,0004	171,0162	0,0004	-0,0010	-0,0003
G5	182,2054	0,0004	182,2064	0,0003	182,2054	0,0003	0,0010	0,0000
G6	184,5774	0,0004	184,5772	0,0003	184,5777	0,0003	-0,0002	0,0003
G7	170,5079	0,0005	170,5077	0,0003	170,5076	0,0003	-0,0002	-0,0003
G8	151,8863	0,0009	151,8874	0,0005	151,8887	0,0005	0,0011	0,0024
G9	160,2806	0,0011	160,2808	0,0005	160,2811	0,0005	0,0001	0,0005
R1	169,5774	0,0007	169,5783	0,0004	169,5780	0,0004	0,0008	0,0006
R10	158,5417	0,0012	158,5427	0,0005	158,5410	0,0005	0,0010	-0,0007
R11	138,6977	0,0012	138,6968	0,0005	138,6982	0,0005	-0,0008	0,0005
R12	167,4722	0,0010	167,4748	0,0003	167,4727	0,0003	0,0026	0,0005
R13	179,8838	0,0010	179,8875	0,0005	179,8863	0,0005	0,0037	0,0025
R14	180,6083	0,0013	180,6090	0,0008	180,6074	0,0008	0,0007	-0,0010
R15	196,7376	0,0012	196,7394	0,0007	196,7371	0,0007	0,0018	-0,0005
R16	162,7689	0,0014	162,7678	0,0004	162,7662	0,0004	-0,0011	-0,0027
R17	178,2992	0,0015	178,3006	0,0003	178,2998	0,0003	0,0014	0,0006
R18	137,6282	0,0014	137,6276	0,0006	137,6289	0,0005	-0,0005	0,0007
R19	182,7952	0,0015	182,7948	0,0005	182,7963	0,0005	-0,0004	0,0011
R2	142,6686	0,0008	142,6690	0,0004	142,6706	0,0004	0,0004	0,0020
R20	170,8926	0,0014	170,8913	0,0005	170,8922	0,0005	-0,0014	-0,0004
R3	179,6764	0,0006	179,6753	0,0004	179,6753	0,0004	-0,0011	-0,0011
R4	172,5841	0,0007	172,5815	0,0004	172,5819	0,0004	-0,0026	-0,0022
R5	183,9346	0,0004	183,9359	0,0003	183,9349	0,0003	0,0013	0,0003
R6	185,8715	0,0004	185,8715	0,0003	185,8725	0,0003	0,0001	0,0010
R7	172,3060	0,0005	172,3060	0,0004	172,3056	0,0004	0,0000	-0,0004
R8	153,5430	0,0009	153,5382	0,0005	153,5454	0,0005	-0,0048	0,0024
R9	161,7495	0,0011	161,7496	0,0005	161,7498	0,0005	0,0001	0,0003

13.4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej

Przeprowadzone ścisłe wyrównania trzech sieci kontrolnych precyzyjnej niwelacji geometrycznej, zlokalizowanych na obiektach: Babiak, Berejów, Lewino, wykazują poprawność przeprowadzonych czynności pomiarowych. Wartości średnich błędów wysokości punktów po wyrównaniu nie przekroczyły wartości 1 mm. Analizując przyrosty wysokości punktów kontrolowanych między dwiema kampaniami pomiarowymi (tabele 11,

12, 13): K1 – 2014_08, K3 – 2015_09, można zauważyć przekroczenie wartości przyjętego błędu średniego (mH) na poziomie ±2 mm, w przypadku następujących obiektów:

- Babiak: pojedynczej wartości mH 10 punktów (G5, G6, G7, G9, G11, G16, G24, R12, R16, R19), podwójnej wartość mH 4 punkty (G12, G22, R4, R6), potrójnej wartość mH 2 punkty (G8, G23),
- Berejów: pojedynczej wartości mH 2 punkty (R8, R17), podwójnej wartość mH nie stwierdzono, potrójnej wartość mH 1 punkt (R12, -0,0502),
- Lewino: pojedynczej wartości mH 5 punktów (G8, R4, R8, R13, R16), podwójnej wartość mH nie stwierdzono, podwójnej wartość mH nie stwierdzono.

Dwukrotne przekroczenie przyjętego błędu średniego mH wysokości punktów kontrolowanych (±2 mm), nie może świadczyć o wystąpieniu deformacji pionowych, dopiero na podstawie przekroczenia potrójnej wartości tego błędu można stwierdzić wystąpienie tego parametru. Na badanych obiektach nie stwierdzono wystąpienia deformacji pionowych.

14. Podsumowanie

Warunki atmosferyczne, w jakich przeprowadzona została precyzyjna niwelacja geometryczna, były zmienne lecz nie przeszkodziły w przeprowadzeniu pomiarów precyzyjnej niwelacji geometrycznej. Występujące utrudnienie pomiaru były spowodowane głównie występującym okresowo silnym wiatrem, wywołującym drżenie kompensatora instrumentu – wibracje osi celowej.

Osiągnięte dokładności niwelacji na podstawie porównania wyników otrzymanych bezpośrednio z pomiaru w dwóch kierunkach, jak i wyniki wyrównania ścisłego wskazują na osiągniecie dokładności precyzyjnej niwelacji geometrycznej 2 klasy, czyli dokładności lepszej niż 2 mm/km.

Porównanie wysokości punktów z dwóch kampanii pomiarowych przeprowadzonych w sierpniu 2014 r. oraz we wrześniu 2015 r., nie wykazują wystąpienia deformacji pionowych na dwóch obiektach Lewino oraz Berejów. W przypadku obiektu Babiak można stwierdzić deformacje pionowe w otoczeniu dwóch punktów: G8 oraz G23, gdzie stwierdzono przekroczenie potrójnej wartości błędu średniego mH (± 2 mm).

Na obiekcie Berejów wykryta została znaczna zmiana wysokości jednego reflektora R12 na poziomie -0,050 m. Brak wystąpienia podobnej wartości zmiany wysokości na punkcie G12 zlokalizowanym w studni, może wskazywać na przesuniecie reflektora wskutek potrącenia go maszyną rolniczą. Wysokości punktów w procesie wyrównania wyznaczone zostały w układzie wysokościowym Kronsztadt'86. Punktami wyznaczanymi są: punkty referencyjne (repery boczne), punkty kontrolowane (repery podziemne stabilizowane w bezpośrednim sąsiedztwie reflektorów InSAR), reflektory InSAR (wysokość punktów pośrednich definiowanych przez kulę umieszczaną w reflektorach).

Spis tabel

Tabela 1 Plan sesji pomiarowych 1	14
Tabela 2 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Lewino	19
Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z trzeciej kampanii pomiarowej w	
układzie ITRF2008 (2015.11), wysokości elipsoidalne oraz ich błędy, poligon Lewino	21
Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino2	22
Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Babiak2	24
Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z trzeciej kampanii pomiarowej w	
układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak	26
Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak 2	26
Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas	
opracowania, poligon Berejów2	28
Tabela 9 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w trzeciej kampanii pomiarowej w	
układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów	29
Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejó	w
	30
Tabela 11 Zmiany wysokości elipsoidalnych reflektorów 3	31
Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa 1 i 2, zmiany wysokości dH	
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R – reflektor) 3	39
Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1 i 2, zmiany wysokości dH	
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor) 4	11
Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1 i 2, zmiany wysokości dH	
(oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor) 4	12

Spis rysunków

Rysunek 1 Lokalizacja poligonów badawczych	8
Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Ear	th)
Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Ear	th) 10
Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google	10
Earth)	. 10
Rysunek 5 Głowica punktu referencyjnego z reperami	. 11
Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku	
punktu referencyjnego	. 12
Rysunek 7 Reflektor z zamontowaną anteną GNSS	. 13
Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS	. 17
Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS	. 23
Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS	. 27
Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)	. 35
Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)	. 36
Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)	. 36
Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny	. 37
Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni	. 38

Załączniki

01_Lewino_obserwacje 02_Lewino_nieoznaczoności 03_Lewino_współrzędne 04_Babiak_obserwacje 05_Babiak_nieoznaczoności 06_Babiak_współrzędne 07_Berejów_obserwacje 08_Berejów_nieoznaczoności 09_Berejów_współrzędne 10_Babiak_niw_geom 11_Berejow_niw_geom 12_Lewino_niw_geom 13_wyh.osn_Babiak 14_wyh.osn_Berejów 15_wyh.osn_Lewino 16_Dzienniki_pomiarowe

Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Instytut Geodezji

Olsztyn, 5 maja 2016 r.

Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej

Raport z realizacji czwartej kampanii pomiarowej przeprowadzonej w dniach 2.03-14.04.2016 r.

Kierownik pracy: dr hab. inż. Paweł Wielgosz, prof. UWM

Spis treści

	DAN	IE FORMALNO-PRAWNE	4
2.		Zleceniodawca	5
3.		Wykonawca	5
4.		Autorzy raportu	5
5		Zesnół nomiarowy	5
5.	5.1	Pomiary GNSS	5
	5.2	, Niwelacja geometryczna	6
II	NIM	VELACJA SATELITARNA	7
6.		Cel przeprowadzonych pomiarów	8
7.		Obszar opracowania	8
	7.1	Lokalizacja	8
	7.2	Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	9
	7.2.	1 Lewino	9
	7.2.	2 Babiak	9
	7.2.	3 Berejów	10
8		Onis techniczny	11
0.	8.1	Sprzet pomiarowy	11
	8.2	Procedura pomiaru GNSS	13
	8.2.	1 Procedura pomiarowa na punktach referencyjnych zewnetrznych i wewnetrznych	15
	8.2.	 Procedura pomiarowa na reflektorach typu B. 	15
	8.2.	3 Procedura pomiarowa na reflektorach typu A	15
	8.3	Podsumowanie pomiarów GNSS	16
~			
9.	0.1	Opracowanie obserwacji	17
	9.1	Nawiązanie do sieci ASG-EUPOS – poligon Lewino	17
	9.1.	1 Sposob nawiązania	17
	9.1.	2 Strategia obliczeniowa	1/
	9.2	wyznaczenie wspołrzędnych punktów kontrolowanych – poligon Lewino	19
	9.2.	1 Geometria rozwiązania	19
	9.2.	2 Strategia obliczeniowa	19
	9.2.	Analiza ukumaazania nigaznagiangiai	20
	9.2.	4 Analiza wyznaczenia nieoznaczoności	20
	9.2.	 Analiza wyznaczonych współrzędnych punktów kontrolowanych Zostawienie ostatocznych współrzednych punktów kontrolowanych 	21
	9.2.	Nawiazania da ASG EUROS – poligan Pabiak	21
	9.5		23
	9.5.	1 Sposob nawiązania	23
	9.5. Q /	2 Strategia Obliczeniowa	23
	9.4 Q /	1 Geometria rozwiazania	24
	ол	2 Strategia obliczeniowa	24
	9.4	Analiza liczby obserwacji	24
	9.4	4 Analiza wyznaczenia nieoznaczoności	25
	9.4	5 Analiza wyznaczonych współrzednych punktów kontrolowanych	25
	9.4	6 Zestawienie ostatecznych współrzednych punktów kontrolowanych	25
	9.5	Nawiazanie do ASG-EUPOS – poligon Bereiów	26
	9.5.	1 Sposób nawiązania	26
			-

9.5.	.2 Strategia obliczeniowa	27
9.6	Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów	27
9.6.	1 Geometria rozwiązania	27
9.6.	.2 Strategia obliczeniowa	
9.6.	.3 Analiza liczby obserwacji	
9.6.	4 Analiza wyznaczenia nieoznaczoności	
9.6.	5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	29
9.6.	.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	29
9.7	Podsumowanie	
10.	Cel przeprowadzonych pomiarów	
11.	Obszar opracowania	33
11.:	1 Lokalizacja	
11.2	2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	
11.2	2.1 Lewino	
11.2	2.2 Babiak	
11.2	2.3 Berejów	
12.	Opis techniczny	
13.	Opracowanie wyników obserwacji	
13.:	1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR	
13.2	2 Wyznaczenie wysokości w układzie Kronsztadt'86	
13.3	3 Ścisłe wyrównanie sieci kontrolowanych	
13.4	4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej	
14.	Podsumowanie	44
Spis ta	ıbel	46
Spis ry	/sunków	46
Załącz	niki	

I Dane formalno-prawne

2. Zleceniodawca

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy ul. Rakowiecka 4 00-975 Warszawa

3. Wykonawca

Uniwersytet Warmińsko-Mazurski w Olsztynie

Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa

Instytut Geodezji

ul. Oczapowskiego 1

10-719 Olsztyn

4. Autorzy raportu

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- mgr inż. Katarzyna Stępniak

5. Zespół pomiarowy

5.1 Pomiary GNSS

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Paweł Gołaszewski
- dr Zbigniew Perski
- mgr Jacek Dacka
- mgr Jerzy Frydel
- mgr inż. Zbigniew Kowalski
- mgr inż. Maria Przyłucka
- mgr Marta Tomaszczyk
- mgr Tomasz Wojciechowski
- mgr Piotr Nescieruk
- mgr Tomasz Szarafin

5.2 Niwelacja geometryczna

- dr inż. Radosław Baryła organizacja i nadzór prac terenowych
- inż. Adrian Kochanowski
- inż. Karolina Lewandowska
- inż. Beata Pyżanowska
- inż. Adam Czyżewski
- inż. Kacper Wojtkiewicz
- inż. Aleksander Jurczyk
- Tomasz Michalski

II Niwelacja satelitarna

6. Cel przeprowadzonych pomiarów

Celem badań było przeprowadzenie statycznych pomiarów GNSS na terenach objętych eksploatacją gazu ziemnego ze złóż łupkowych, a także opracowanie zgromadzonych obserwacji na potrzeby określenia deformacji terenu.

W celu określenia przemieszczeń punktów kontrolnych wykonana została kampania pomiarowa, której wyniki odniesiono do wyników poprzedniej kampanii pomiarowej (09.2015 r.) oraz referencyjnej kampanii pomiarowej (02.2015 r.). Zastosowano metodologię pomiarów i opracowania obserwacji satelitarnych określoną podczas wcześniejszej kampanii pomiarowej.

7. Obszar opracowania

7.1 Lokalizacja

Pomiary przeprowadzono na 3 poligonach doświadczalnych w pobliżu miejscowości: Lewino (woj. pomorskie, powiat wejherowski), Babiak (woj. warmińsko-mazurskie, powiat lidzbarski) oraz Berejów (woj. lubelskie, powiat lubartowski). Punkty referencyjne wykorzystane podczas obliczeń zlokalizowane są poza przewidywanym obszarem odkształceń terenu.

Rysunek 1 Lokalizacja poligonów badawczych(źródło podkładu mapowego: Google Earth)

7.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

7.2.1 Lewino

Obszar poligonu Lewino jest terenem głównie rolniczym z dość znaczącym udziałem gruntów leśnych. Obszar objęty badaniami jest pofałdowany ze znacznymi deniwelacjami. Punkty referencyjne zlokalizowano za zewnątrz obszaru zagrożonego odkształceniami. Reflektory (punkty kontrolowane), służące do pomiarów odkształceń, rozmieszczone są równomiernie na całym badanym terenie. Na poligonie badawczym w Lewinie za pomocą techniki GNSS pomierzono 10 punktów kontrolowanych. Część z nich także jest zlokalizowana w pobliżu zasłon terenowych. Rozmieszczenie punktów pomiarowych przedstawia rysunek 2.

Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)

7.2.2 Babiak

Teren objęty badaniami jest pofałdowany, ze znacznymi deniwelacjami, głownie rolniczy. Podobnie jak Lewinie, punkty referencyjne na poligonie w Babiaku zostały zlokalizowane poza obszarem narażonym na odkształcenia. Reflektory (w sumie osiem) zostały rozmieszczone równomiernie na badanym terenie, przy czym także na tym poligonie część punktów referencyjnych i część reflektorów została zlokalizowana w pobliżu zasłon terenowych. Na rysunku 3 przedstawiono rozmieszczenie punktów pomiarowych na obszarze Babiaka.

Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)

7.2.3 Berejów

Teren objęty badaniami położony jest na równinie, deniwelacje terenu są bardzo małe. Obszar głównie rolniczy. Punkty referencyjne zlokalizowane na zewnątrz obszaru zagrożonego odkształceniem. Reflektory (w sumie osiem) rozmieszczone są równomiernie na całym obszarze. Na rysunku 4 przedstawiono rozmieszczenie punktów pomiarowych na poligonie badawczym w Berejowie.

Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)

8. Opis techniczny

8.1 Sprzęt pomiarowy

Do przeprowadzenia precyzyjnych pomiarów satelitarnych wykorzystano następujące dwuczęstotliwościowe odbiorniki GNSS:

- Javad Alpha z anteną GrAnt-G3T,
- Hi-Target V30,
- Topcon Hiper Pro,
- Trimble R8,
- Trimble SPS881.

Na punktach referencyjnych zastosowano centrowanie wymuszone poprzez zamocowanie spodarki bezpośrednio do głowicy punktu (Rys. 5, 6). Wysokość anteny pomierzono suwmiarką względem trzech reperów wysokościowych na głowicy lub względem płaszczyzny głowicy w trzech lub w dwóch miejscach.

Rysunek 5 Głowica punktu referencyjnego z reperami

Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego

Na poligonach badawczych w Lewinie oraz Berejowie na reflektorach centrowanie anten następowało na zainstalowanym w tym celu trzpieniu. Na trzpień zakładane było przenośne urządzenie dające możliwość przykręcenia anteny GNSS. Urządzenie to miało 50 mm wysokości. Trzpień przymocowany był do reflektora pod kątem, tak aby antena skierowana była pionowo w górę.

Na poligonie badawczym w Babiaku centrowanie anteny zależało od typu reflektora. Na reflektorach typu B centrowanie odbywało się analogicznie jak na poligonach w Lewinie i Berejowie, z tą różnicą, że trzpienie zamontowane były zgodnie z osią reflektora, a tym samym, to urządzenia służące przykręceniu anteny GNSS, zamontowane na stałe, umożliwiało ustawienie anteny pionowo w górę, wysokości tego urządzenia nie wyznaczono. Na pozostałych reflektorach centrowanie przebiegało w ten sam sposób, co na pozostałych dwóch poligonach badawczych.

Rysunek 7 przedstawia reflektor z zamontowaną anteną GNSS.

Rysunek 7 Reflektor z zamontowaną anteną GNSS

8.2 Procedura pomiaru GNSS

Podczas pomiaru GNSS zastosowano procedurę opracowaną na potrzeby poprzedniej kampanii pomiarowej z lutego 2015 roku. Każdy poligon posiadał 4 punkty referencyjne zewnętrzne i 3 wewnętrzne oraz od 8 do 10 punktów kontrolowanych. Czas obserwacji na reflektorach wynosił 2x4 godziny. Plan sesji pomiarowych przedstawiono w tabeli 1.

Pomiary wykonano przy użyciu jedenastu lub dwunastu odbiorników według schematu:

- punkty referencyjne zewnętrzne dwie 8-godzinne sesje pomiarowe;
- punkty referencyjne wewnętrzne dwie 8-godzinne sesje pomiarowe;
- reflektory dwie 4-godzinne sesje pomiarowe.

W przeprowadzonych kampaniach GNSS przyjęto następujące parametry pomiaru:

- interwał pomiarowy: 10 s,
- minimalna wysokość satelity nad horyzontem: 0°,
- długość sesji pomiarowej: osiem godzin (punkty referencyjne) oraz cztery godziny (reflektory).

Tabela 1 Plan sesji pomiarowych

	LEWINO								
_ .	07.03.	2016r.	08.03.	2016r.			Numer		
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu		
PIG 1	GG	630	GG	630	Hi-Target V30	Zintegrowana	-		
PIG 2	GG32		GG	632	Trimble SPS881	Zintegrowana	-		
PIG 3	GG33		GG33		Trimble SPS881	Zintegrowana	-		
PIG 4	GG	34	GG	634	Trimble R8	Zintegrowana	-		
PIG 5	RR07	RR03	RR03	RR07	Trimble R8	Zintegrowana	1		
PIG 6	RR01	RR02	RR02	RR01	Topcon Hiper +	Zintegrowana	2		
PIG 7	RR09	RR10	RR10	RR09	Topcon Hiper +	Zintegrowana	3		
UWM 1	GG	529	GG29		Javad Alpha	Javad GrAnt G3T	-		
UWM 2	GG	623	GG	623	Javad Alpha	Javad GrAnt G3T	-		
_	RR05	RR06	RR06	RR05	Topcon Hiper +	Zintegrowana			
UWM 3	GG	525 I	GG	525	Topcon Hiper +	Zintegrowana	-		
	RR12	RR13	RR13	RR13	Topcon Hiper +	Zintegrowana	4		
				BABIA	K				
Data	05.03.	2016r.	06.03.	2016r.	Odbiornik	Antona	Numer		
Dala	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu		
PIG 1	GI GG31		GG	i31	Topcon Hiper +	Zintegrowana	-		
PIG 2	PIG 2 GG32		GG	i32	Trimble SPS881	Zintegrowana	-		
PIG 3	PIG 3 GG33		GG	i33	Trimble SPS881	Zintegrowana	-		
PIG 4	4 GG34		GG34		Trimble R8	Zintegrowana	-		
PIG 5	RR16	RR17	RR17	RR16	Trimble R8	Zintegrowana	1		
PIG 6	RR06	RR10	RR10	RR06	Topcon Hiper +	Zintegrowana	2		
PIG 7	RR07	RR09	RR09	RR07	Topcon Hiper +	Zintegrowana	3		
UWM 1	GG	21	GG21		Javad Alpha	Javad GrAnt G3T	-		
UWM 2	GG	30	GG30		Javad Alpha	Javad GrAnt G3T	-		
11\A/N/1 2	GG	26	GG	i26	Topcon Hiper +	Zintegrowana	-		
0 44141 3	RR11	RR12	RR12	RR11	Topcon Hiper +	Zintegrowana	4		
				BEREJĆ	ŚW				
Data	02.03.	2016r.	03.03.	2016r.	O dhi a maile	A	Numer		
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu		
PIG 1	GG	631	GG	631	Hi-Target V30	Zintegrowana	-		
PIG 2	GG	32	GG	632	Trimble SPS881	Zintegrowana	-		
PIG 3	GG	33	GG	633	Trimble SPS881	Zintegrowana	-		
PIG 4	GG	634	GG	634	Trimble R8	Zintegrowana	-		
PIG 5	RR05	RR06	RR06	RR05	Trimble R8	Zintegrowana	1		
PIG 6	RR17	RR18	RR18	RR17	Topcon Hiper +	Zintegrowana	2		
PIG 7	RR15	RR08	RR08	RR15	Topcon Hiper +	Zintegrowana	3		
UWM 1	GG	622	GG	622	Javad Alpha	Javad GrAnt G3T	-		
	GG	523	GG	523	Javad Alpha	Javad GrAnt G3T	-		
UWM 2	GG	521	GG	521	Topcon Hiper +	Zintegrowana	-		
011112	RR01	RR13	RR13	RR01	Topcon Hiper +	Zintegrowana	4		

8.2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych

Przed przystąpieniem do realizacji pomiarów GNSS na punkcie referencyjnym obserwator powinien dokładnie sprawdzić stan głowicy znaku oraz śruby (Rys. 5), a następnie przeprowadzić następujące czynności:

- przykręcić i spoziomować spodarkę (Rys. 6),
- umieścić antenę GNSS w spodarce,
- skierować antenę w kierunku północnym,
- połączyć antenę do odbiornika GNSS (w przypadku anteny zewnętrznej),
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika GNSS,
- wykonać suwmiarką pomiar wysokości anteny GNSS.

Procedurę pomiaru wysokości anteny GNSS należało przeprowadzać co najmniej trzy razy w trakcie wykonywania obserwacji.

8.2.2 Procedura pomiarowa na reflektorach typu B

Przed przystąpieniem do realizacji pomiarów GNSS na reflektorze obserwator powinien dokładnie sprawdzić stan urządzenia służącego do zamontowania anteny na reflektorze, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na reflektorze,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.2.3 Procedura pomiarowa na reflektorach typu A

Przed przystąpieniem do realizacji pomiarów na reflektorze obserwator powinien dokładnie sprawdzić trzpień służący centrowaniu anteny GNSS, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na trzpieniu,
- umieścić antenę wraz z przejściówką na trzpieniu,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,

- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.3 Podsumowanie pomiarów GNSS

Kampania pomiarowa na poszczególnych obiektów została przeprowadzona w dniach: na poligonie Berejów: 02-03.03.2016 r., na poligonie Babiak: 05-06.03.2016 r., na poligonie Lewino: 07-08.03.2016 r. Pomiary przeprowadzone na terenach znajdujących się bezpośrednio przy zaworach służących do szczelinowania oraz w miejscach stabilizacji punktów referencyjnych przebiegały według przyjętego wcześniej planu pracy. Wszelkie uwagi odnośnie prowadzonych pomiarów uwzględniono w dziennikach obserwacyjnych zawartych w załączniku 16.

9. Opracowanie obserwacji

9.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino

9.1.1 Sposób nawiązania

Pierwszy etap opracowania obserwacji GNSS zgromadzonych na punktach sieci obiektu Lewino związany był ze zbadaniem stałości sieci punktów referencyjnych. W tym celu sprawdzono, czy współrzędne punktów referencyjnych określone na podstawie pomiarów w czwartej kampanii pomiarowej nie zmieniły się w porównaniu do współrzędnych tych punktów otrzymanych podczas opracowania drugiej kampanii pomiarowej (luty 2015 r.). Nawiązanie punktów referencyjnych sieci kontrolnej obiektu Lewino przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 2 dostępne stacje położone najbliżej obszaru objętego siecią - KOSC i REDZ (Rys. 8). W opracowaniu uwzględniono również odległą stację WROC, która również należy do sieci ASG-EUPOS, w celu lepszej dekorelacji parametrów troposferycznych, niezbednych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. W systemie ASG-EUPOS współrzędne stacji określone są w układzie PL-ETRF2000 (epoka odniesienia 2011.0). Przed przystąpieniem do opracowania niezbędne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS do układu ITRF2008 na epokę drugiej kampanii pomiarowej według algorytmu opracowanego przez Boucher i Altamimi "Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign" (2011).

Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS

9.1.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych zakłada dowiązania do stacji ASG-EUPOS przy wstępnym założeniu

ich błędów *a priori* na poziomie 1 mm dla każdej składowej. Długości wektorów pomiędzy punktami referencyjnymi lokalnej sieci kontrolnej oraz stacjami ASG-EUPOS wykorzystanymi w opracowaniu wynosiły od 35 km do 375 km (wektor do stacji WROC).

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem parametrów, które zostały określone jako optymalne podczas opracowania obserwacji z drugiej kampanii pomiarowej, mianowicie:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L3;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźnienia sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności w zależności od długości wektorów –
 SIGMA (L1, L1&L2, L5&L3) lub metoda Quasi-Ionosphere-Free (QIF).
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 5 m/0.001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

Współrzędne punktów referencyjnych w układzie ITRF2008 otrzymano z wyrównania łącznego równań normalnych z dwóch dni pomiarowych modułem ADDNEQ2. Równania normalne z poszczególnych sesji pomiarowych otrzymano z rozwiązania każdej sesji pomiarowej używając modułu GPSEST. Nawiązanie do sieci ASG-EUPOS zrealizowane zostało metodą *minimum constraint*.

Po wykonaniu opracowania potwierdzono stałość współrzędnych punktów referencyjnych, a następnie przystąpiono do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów) w oparciu o punkty referencyjne. Z dalszego opracowania zostały jednak wyłączone 3 punkty referencyjne: GG34, GG23 i GG29 (ze względu na niestabilność położenia punktów).

9.2 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino

9.2.1 Geometria rozwiązania

Sieć kontrolna obiektu Lewino składa się z 4 punktów referencyjnych (3 punkty na zewnątrz oraz 1 punkt wewnątrz obszaru) oraz 10 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi, ani pomiędzy punktami referencyjnymi. Utworzone wektory zostały przedstawione w tabeli 2.

Tabela 2	Wykaz	wektorów	pomiędzy	punktami	referencyjnymi	а	kontrolowanymi	utworzonych	podczas
opracowai	nia, polig	gon Lewino							

GG25-RR01	GG30-RR01	GG32-RR01	GG33-RR01
GG25-RR02	GG30-RR02	GG32-RR02	GG33-RR02
GG25-RR03	GG30-RR03	GG32-RR03	GG33-RR03
GG25-RR05	GG30-RR05	GG32-RR05	GG33-RR05
GG25-RR06	GG30-RR06	GG32-RR06	GG33-RR06
GG25-RR07	GG30-RR07	GG32-RR07	GG33-RR07
GG25-RR09	GG30-RR09	GG32-RR09	GG33-RR09
GG25-RR10	GG30-RR10	GG32-RR10	GG33-RR10
GG25-RR12	GG30-RR12	GG32-RR12	GG33-RR12
GG25-RR13	GG30-RR13	GG32-RR13	GG33-RR13

9.2.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych z czwartej kampanii pomiarowej, zastosowano strategię opracowania obserwacji GPS określoną podczas prac po drugiej kampanii pomiarowej. Strategia ta opiera się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km. Ze względu na niewielką długość wektorów wyznaczanych, do opracowania wykorzystano obserwacje kodowe i fazowe na częstotliwości L1. Na tak krótkich wektorach wpływ opóźniania troposferycznego oraz jonosferycznego jest eliminowany poprzez tworzenie podwójnych różnic obserwacji, zatem nie ma potrzeby stosowania kombinacji liniowej L3 do eliminacji wpływu jonosfery. Ponadto, kombinacja liniowa L3 charakteryzują się trzykrotnie większym szumem, co ogranicza precyzję uzyskiwanych wyników.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje - GPS na częstotliwości L1;
- czas trwania sesji pomiarowych 2 x 4 godziny;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźniania sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L1;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 0.0001 m/0.0001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co godzinę.

W rozwiązaniu przyjęto ostateczne współrzędne punktów referencyjnych sieci kontrolnej na epokę kampanii referencyjnej (2015.11) w układzie ITRF2008.

9.2.3 Analiza liczby obserwacji

Liczba obserwacji GPS dla wektorów sieci kontrolnej obiektu Lewino miesi się w granicach od 3328 (wektor GG30-RR02, sesja 2) do 5378 (wektor GG25-RR13, sesja 1). Najmniejszą średnią liczbą obserwacji z dwóch dni pomiarowych cechują się wektory do punktu referencyjnego GG30, gdzie średnia wynosi 3897 obserwacji, natomiast dla wektorów do punktu referencyjnego GG25 opracowano największa liczbę obserwacji – 5014 obserwacji. Biorąc pod uwagę średnią liczbę obserwacji dla wektorów do punktów kontrolowanych, najmniej obserwacji istnieje dla wektorów do punktu RR02 (4244), natomiast najwięcej obserwacji zarejestrowano dla wektorów do punktu RR09 (4679). Szczegółowe dane dotyczące liczby obserwacji znajdują się w załączniku 1.

9.2.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych w sieci, w której maksymalna długość wektorów pomiędzy punktami wynosi nie więcej niż 7 km, zastosowano metodę rozwiązania nieoznaczoność SIGMA L1. Podczas opracowania danych z pierwszej sesji obserwacyjnej wyznaczono nieoznaczoności na średnim poziomie 96,8%, natomiast z drugiej sesji na poziomie 95,6%. Najniższy średni poziom rozwiązania nieoznaczoności uzyskano dla wektorów do puntu referencyjnego GG30 w drugiej sesji pomiarowej (91,2%),

natomiast najwięcej nieoznaczoności wyznaczono dla wektorów do punktu referencyjnego GG32 w drugiej sesji pomiarowej (98,9%). Analizując liczbę rozwiązanych nieoznaczoności do punktów kontrolowanych można stwierdzić, że najwyższy poziom rozwiązanych nieoznaczoności uzyskano dla wektorów do punktu kontrolowanego RR09 (100 % w pierwszej sesji pomiarowej), natomiast najniższy poziom uzyskano dla wektorów do punktu kontrolowanego RR01 (92,5%).

Wyniki rozwiązania nieoznaczoności zawiera załącznik 2.

9.2.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w oparciu o współrzędne punktów referencyjnych na podstawie obserwacji GNSS zebranych podczas czwartej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów kontrolowanych z dwóch sesji pomiarowych. Powtarzalność wyznaczeń składowej północnej dla większości punktów nie przekracza 3,0 mm, jedynie dla punktu RR10 powtarzalność składowej północnej wynosi 4,0 mm. Powtarzalność uzyskanej składowej wschodniej jest lepsza niż 1,5 mm dla wszystkich punktów kontrolowanych. Powtarzalność wyznaczeń wysokości dla większości punktów jest mniejsza niż 3,0 mm, jedynie dla punktów RR130 wynosi 3,9 mm, natomiast dla punktu RR05 wynosi 5,7 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik 3.

9.2.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania czwartej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2016.18), które wraz z błędami uzyskanymi na postawie powtarzalności wyznaczeń zestawiono w tabeli 3.

Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz ich błędy, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3532704.65318	1154367.03288	5166308.95862	200.573	2.17	1.01	1.97
RR02	3532531.06574	1154787.69145	5166300.39479	173.654	2.32	0.45	1.74
RR03	3533644.51462	1153902.07766	5165786.09867	210.702	1.41	0.60	2.77
RR05	3533491.57154	1154526.84875	5165756.57422	214.948	2.11	1.15	5.74
RR06	3533867.87553	1154619.01590	5165483.34939	217.335	2.12	1.07	2.76
RR07	3533314.33522	1154495.99403	5165869.54101	203.314	1.44	0.48	2.90
RR09	3531819.79875	1155986.29419	5166540.56728	192.696	2.78	1.13	3.28
RR10	3531712.19769	1155838.32589	5166643.11645	189.933	3.99	1.07	2.21
RR12	3532562.83316	1155563.00956	5166137.08788	198.446	3.24	0.67	1.65
RR13	3533028.51300	1155581.85269	5165832.38185	211.307	1.37	0.58	3.89

W wyniku transformacji otrzymano współrzędne punktów kontrolowanych w układzie

ETRF2000, które zestawiono w tabeli 4.

Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]
RR01	3532705.1703	1154366.6630	5166308.6688
RR02	3532531.5829	1154787.3216	5166300.1050
RR03	3533645.0316	1153901.7077	5165785.8088
RR05	3533492.0886	1154526.4788	5165756.2844
RR06	3533868.3926	1154618.6459	5165483.0595
RR07	3533314.8523	1154495.6241	5165869.2512
RR09	3531820.3160	1155985.9244	5166540.2776
RR10	3531712.7149	1155837.9561	5166642.8267
RR12	3532563.3504	1155562.6397	5166136.7981
RR13	3533029.0302	1155581.4828	5165832.0920

9.3 Nawiązanie do ASG-EUPOS – poligon Babiak

9.3.1 Sposób nawiązania

W celu zbadania niezmienności położenia sieci punktów referencyjnych obiektu Babiak, wykonano opracowanie, w którym nawiązano punkty referencyjnych do sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru Babiak – BART, ELBL i LAMA (Rys. 9). W opracowaniu uwzględniono również odległą stację WROC w celu poprawy dekorelacji parametrów troposfery, niezbędnych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. Podobnie jak przy opracowaniu sieci obiektu Lewino, również w tym przypadku przed przystąpieniem do obliczeń konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej (referencyjnej) kampanii pomiarowej (2015.10).

Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS

9.3.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS zastosowana w celu wyznaczenia współrzędnych punktów referencyjnych obiektu Babiak jest oparta na rozwiązaniu wykorzystującym obserwacje na częstotliwości L1, L2 oraz kombinację L3. Strategia ta została opisana w podrozdziale 9.1.2. W opracowaniu uwzględniono wektory łączące punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS o długości od 26 km do 68 km oraz wektory łączące stacje ASG-EUPOS ze stacją WROC o długości ponad 400 km.

Po wykonaniu opracowania dla sieci punktów referencyjnych stwierdzono niezmienność położenia punktów w stosunku do poprzedniej kampanii pomiarowej. Z dalszego opracowania wyłączono punkt GG21 ze względu na gorszą powtarzalność uzyskanych współrzędnych.

9.4 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak

9.4.1 Geometria rozwiązania

Sieć kontrolna obiektu Babiak jest zbudowana z 6 punktów referencyjnych 8 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 5.

Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak

GG26-RR06	GG30-RR06	GG31-RR06	GG32-RR06	GG33-RR06	GG34-RR06
GG26-RR07	GG30-RR07	GG31-RR07	GG32-RR07	GG33-RR07	GG34-RR07
GG26-RR09	GG30-RR09	GG31-RR09	GG32-RR09	GG33-RR09	GG34-RR09
GG26-RR10	GG30-RR10	GG31-RR10	GG32-RR10	GG33-RR10	GG34-RR10
GG26-RR11	GG30-RR11	GG31-RR11	GG32-RR11	GG33-RR11	GG34-RR11
GG26-RR12	GG30-RR12	GG31-RR12	GG32-RR12	GG33-RR12	GG34-RR12
GG26-RR16	GG30-RR16	GG31-RR16	GG32-RR16	GG33-RR16	GG34-RR16
GG26-RR17	GG30-RR17	GG31-RR17	GG32-RR17	GG33-RR17	GG34-RR17

9.4.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano strategię obliczeniową wykorzystującą obserwacje GPS na częstotliwości L1, która została opisana w podrozdziale 9.2.2.

9.4.3 Analiza liczby obserwacji

Analizując liczbę obserwacji dla poszczególnych wektorów można zauważyć, że w przypadku sieci kontrolnej obiektu Babiak liczba obserwacji waha się od 3813 dla wektora GG32-RR16 w sesji 1 do 5194 dla wektora GG30-RR06 w sesji drugiej. Najwięcej obserwacji opracowano na wektorach do punktu referencyjnego GG30 (4784 obserwacji), natomiast najmniej obserwacji dla wektorów do punktu referencyjnego GG32 (4283 obserwacji). Biorąc pod uwagę liczbę obserwacji na wektorach do punktów kontrolowanych, największa średnia liczba obserwacji istnieje dla wektorów utworzonych do punktu RR07 (4755), natomiast najmniej obserwacji zostało zarejestrowanych na wektorach do punktu RR16 (4325). Szczegółowe informacje dotyczące obserwacji znajdują się w załączniku 4.

9.4.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano metodę rozwiązania nieoznaczoności SIGMA L1. Dla wektorów mierzonych podczas pierwszej sesji pomiarowej, poziom rozwiązania nieoznaczoności wynosi 96,3%. W przypadku wektorów utworzonych podczas drugiej sesji pomiarowej, rozwiązano 97,3% nieoznaczoności. Dla wszystkich wektorów wchodzących w skład opracowywanej sieci rozwiązano ponad 90% nieoznaczoności. Wyniki rozwiązania nieoznaczoności otrzymane w programie Bernese, zawiera załącznik 5.

9.4.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Babiak było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2016.18) w oparciu o współrzędne punktów referencyjnych.

W celu określenia dokładności oraz precyzji uzyskanych wyników, przeanalizowano powtarzalność poszczególnych składowych współrzędnych z dwóch sesji obserwacyjnych oraz poszczególnych rozwiązań sieci. Biorąc pod uwagę składową północną, dla większości punktów kontrolowanych powtarzalność uzyskanych wyników nie przekracza 3,3 mm, jedynie dla punktu RR10 wynosi 4,2 mm, a dla punktu RR12 wynosi 4,4 mm. Biorąc pod uwagę składową wschodnią uzyskanych współrzędnych, dla wszystkich punktów kontrolowanych powtarzalność wyznaczeń nie przekracza wartości 1,4 mm. Powtarzalność wyznaczeń wysokości punktów RR07, RR11, RR12 oraz RR16 jest lepsza niż 3,5 mm, dla punktów RR06, rr10 oraz rr17 wynosi około 5 mm, natomiast dla punktu RR09 wynosi 7,2 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla wszystkich składowych współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 6.

9.4.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania obserwacji GNSS zebranych podczas czwartej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) na obszarze Babiak w układzie ITRF2008 na epokę kampanii referencyjnej (2015.10), które zostały zestawione w tabeli 6.

Tabela 6 W	Vykaz w	spółrzędnych	punktów	kontrolowanycl	n (reflektorów)	z czwartej	kampanii	pomiarowej	W
układzie ITI	RF2008	(2015.10), wy	ysokości el	ipsoidalne oraz	błędy średnie, p	oligon Bab	iak		

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR06	3508136.52224	1301602.91169	5148082.54856	150.928	1.24	0.70	5.64
RR07	3507765.35857	1302409.33477	5148123.49408	144.696	2.83	0.46	2.84
RR09	3508181.47447	1302153.26437	5147898.43609	138.413	2.76	1.27	7.25
RR10	3508179.71374	1302386.16980	5147838.20065	136.059	4.21	0.75	5.45
RR11	3508429.88143	1303135.41183	5147480.85975	136.354	3.32	1.01	2.37
RR12	3508544.47106	1303409.28740	5147327.64801	130.880	4.41	0.83	2.39
RR16	3508549.69948	1302245.68392	5147624.22994	137.029	1.01	1.40	3.47
RR17	3508838.09495	1302483.36429	5147371.46179	138.835	1.39	0.92	5.28

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 7).

Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak

Punkt	X [m]	Y [m]	Z [m]
RR06	3508137.0534	1301602.5450	5148082.2619
RR07	3507765.8899	1302408.9681	5148123.2074
RR09	3508182.0057	1302152.8976	5147898.1494
RR10	3508180.2450	1302385.8031	5147837.9140
RR11	3508430.4128	1303135.0451	5147480.5731
RR12	3508545.0024	1303408.9206	5147327.3613
RR16	3508550.2307	1302245.3172	5147623.9432
RR17	3508838.6262	1302482.9975	5147371.1751

9.5 Nawiązanie do ASG-EUPOS – poligon Berejów

9.5.1 Sposób nawiązania

W pierwszym etapie prac należało sprawdzić, czy współrzędne punktów referencyjnych z czwartej kampanii pomiarowej nie zmieniły się w porównaniu do współrzędnych wyznaczonych z drugiej kampanii pomiarowej. Nawiązanie punktów referencyjnych sieci kontrolnej poligonu Berejów przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru objętego siecią – BPDL, LUBL i WLDW (Rys. 10). Do rozwiązania dołączono również stację WROC, w celu poprawy estymacji parametrów troposfery mających wpływ na dokładność i precyzję wyznaczania współrzędnych punktów GNSS. Przed przystąpieniem do obliczeń niezbędne

było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej kampanii pomiarowej (2015.09).

Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS

9.5.2 Strategia obliczeniowa

W przypadku nawiązania sieci kontrolnej na obiekcie Berejów do sieci ASG-EUPOS, wyznaczono współrzędne 7 punktów referencyjnych na podstawie opracowania obserwacji GPS z wykorzystaniem kombinacji liniowej L3. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 29 km do 67 km oraz około 400 km do stacji WROC. Strategia obliczeniowa zastosowana w tym etapie opracowania została opisana w podrozdziale 9.1.2.

W wyniku opracowania potwierdzono stałość sieci punktów referencyjnych obiektu Berejów. Z dalszego opracowania wykluczono punkty GG22, GG23 oraz GG32 ze względu na zgromadzoną małą liczbę obserwacji i problemy techniczne ze sprzętem.

9.6 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów

9.6.1 Geometria rozwiązania

Sieć kontrolna na obiekcie Berejów składa się z 4 punktów referencyjnych oraz z 8 punktów kontrolowanych (reflektorów). W celu wyznaczenia współrzędnych punktów kontrolowanych, utworzono sieć wektorów łączącą każdy punkt wyznaczany z punktami

referencyjnymi, bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 8.

GG21-RR01	GG31-RR01	GG32-RR01	GG34-RR01
GG21-RR05	GG31-RR05	GG32-RR05	GG34-RR05
GG21-RR06	GG31-RR06	GG32-RR06	GG34-RR06
GG21-RR08	GG31-RR18	GG32-RR18	GG34-RR18
GG21-RR13	GG31-RR13	GG32-RR13	GG34-RR13
GG21-RR15	GG31-RR15	GG32-RR15	GG34-RR15
GG21-RR17	GG31-RR17	GG32-RR17	GG34-RR17
GG21-RR18	GG31-RR18	GG32-RR18	GG34-RR18

Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów

9.6.2 Strategia obliczeniowa

W tej części opracowania wykorzystano strategię obliczeniową opartą na opracowaniu obserwacji na częstotliwości L1, która została opisana w podrozdziale 9.1.2.

9.6.3 Analiza liczby obserwacji

Liczba obserwacji dla wszystkich analizowanych wektorów waha się od 4074 obserwacji do 5261 obserwacji. Największą liczbę obserwacji zarejestrowano dla wektora GG30-RR06 w pierwszej sesji pomiarowej, natomiast najmniej obserwacji utworzono dla wektora GG34-RR45 również w pierwszej sesji pomiarowej. Rozważając wektory do poszczególnych punktów kontrolowanych, największą średnią liczbą obserwacji charakteryzują się wektory do punktu RR01 oraz RR18 (po 4818 obserwacji), natomiast najmniejszą ilością obserwacji – wektory do punktu RR15 (4595 obserwacji). Szczegółowe informacje dotyczące liczby obserwacji zostały zamieszczone w załączniku 7.

9.6.4 Analiza wyznaczenia nieoznaczoności

W celu określenia ostatecznych współrzędnych punktów kontrolowanych, nieoznaczoności fazy zostały wyznaczone za pomocą metody SIGMA L1. Dla większości wektorów sieci poligonu Berejów, nieoznaczoności zostały wyznaczone na poziomie 100%, jedynie dla kilku wektorów poziom rozwiązania nieoznaczoności był nieznacznie niższy. Najmniej nieoznaczoności rozwiązano na wektorach do punktu referencyjnego GG34 w drugiej sesji pomiarowej (94,7%), oraz do punktu referencyjnego GG31 w pierwszej sesji pomiarowej (94,3%).

Wyniki rozwiązania nieoznaczoności z etapu II opracowania otrzymane w programie Bernese, zawiera załącznik 8.

9.6.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Berejów było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) na podstawie obserwacji zebranych w czwartej kampanii pomiarowej w układzie ITRF2008 (2015.09) w oparciu o współrzędne punktów referencyjnych.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność otrzymanej składowej północnej współrzędnych nie przekracza 4 mm. W przypadku składowej wschodniej, powtarzalność wyników dla każdego punktu kontrolowanego jest mniejsza niż 2,0 mm. Powtarzalność wyznaczeń wysokości nie przekracza 3.0 mm.

Dla punktów kontrolowanych średni błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,5 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 9.

9.6.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W tabeli 9 zestawiono ostateczne współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 (2015.09) wyznaczone podczas czwartej kampanii pomiarowej.

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3667843.55385	1537125.14837	4969999.85865	200.950	2.57	1.99	3.04
RR05	3667669.73178	1536166.69528	4970427.27435	205.381	3.19	0.53	1.90
RR06	3667864.23989	1536272.63079	4970247.94403	202.066	2.67	0.74	2.45
RR08	3667927.22820	1537415.13241	4969845.53635	197.907	2.53	0.96	2.26
RR13	3668030.76103	1536896.60749	4969931.29901	199.754	4.94	1.21	3.03
RR15	3668115.87025	1537105.41411	4969803.82951	199.026	4.85	1.26	1.74
RR17	3668741.57847	1536357.76490	4969572.70882	197.476	3.36	0.93	1.74
RR18	3668548.88091	1536320.86199	4969726.64440	198.497	3.98	0.82	2.22

Tabela 9 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w czwartej kampanii pomiarowej w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 10).

Punkt	X [m]	Y [m]	Z [m]
RR01	3667844.0984	1537124.7677	4969999.5638
RR05	3667670.2762	1536166.3146	4970426.9795
RR06	3667864.7843	1536272.2501	4970247.6492
RR08	3667927.7727	1537414.7517	4969845.2415
RR13	3668031.3055	1536896.2268	4969931.0041
RR15	3668116.4148	1537105.0334	4969803.5346
RR17	3668742.1229	1536357.3841	4969572.4139
RR18	3668549.4253	1536320.4812	4969726.3495

Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejów

9.7 Podsumowanie

Kampania pomiarowa przebiegła bez zakłóceń, pomiary odbyły się na wszystkich planowanych punktach we wszystkich sesjach obserwacyjnych. Na etapie opracowania obserwacji wykluczono 3 punkty referencyjne na poligonie Lewino: GG34 (ze względu na niestabilność punktu) oraz GG23 i GG29 (ze względu na niestabilność położenia punktów w czasie czwartej kampanii pomiarowej); 1 punkt na poligonie Babiak: GG21 (ze względu na niską powtarzalność uzyskanych współrzędnych); oraz 3 punkty na poligonie Berejów: GG22, GG23, GG32 ze względu na niewystarczającą liczbę zgromadzonych obserwacji z powodu problemów technicznych ze sprzętem GNSS. Biorąc pod uwagę punkty kontrolowane (reflektory), w każdej sesji zebrano wystarczającą liczbę obserwacji.

W wyniku wyrównania sieci wektorów GPS uzyskano finalne współrzędne punktów referencyjnych oraz kontrolowanych w układzie ITRF2008 na epokę kampanii referencyjnej oraz w układzie PL-ETRF2000. Błędy średnie finalnych współrzędnych mieszczą się w przyjętych wymaganiach dokładnościowych. Dla punktów kontrolowanych na poligonie Berejów dokładność uzyskanej wysokości (na podstawie powtarzalności wyznaczeń) mieści się w granicach od 1,7 mm do 3,0 mm. Na poligonie Babiak jeden punkt uzyskał gorszą dokładność wysokości – punkt RR09 (7,2 mm), dla pozostałych punktów dokładność wysokości waha się w granicach od 2,3 mm do 5,4 mm. Natomiast na poligonie Lewino dokładność otrzymanej wysokości mieści się w granicach od 1,6 mm do 3,9 mm, jedynie jeden punkt kontrolowany RR05 uzyskał błąd 5,7 mm.

Po opracowaniu obserwacji z czwartej kampanii pomiarowej możliwe było określenie różnic otrzymanych współrzędnych w odniesieniu do kampanii referencyjnej oraz trzeciej kampanii pomiarowej. W tabeli 11 przedstawiono porównanie wysokości elipsoidalnych reflektorów otrzymanych z drugiej (K2), z trzeciej (K3) oraz z czwartej (K4) kampanii pomiarowej dla każdego poligonu.

			LEWINO			
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	K2-K3 [m]	K2-K4 [m]	K3-K4 [m]
RR01	200.566	200.570	200.573	-0.004	-0.007	-0.003
RR02	173.646	173.654	173.654	-0.008	-0.008	0.000
RR03	210.700	210.703	210.702	-0.002	-0.002	0.001
RR05	214.941	214.944	214.948	-0.003	-0.007	-0.004
RR06	217.324	217.330	217.335	-0.006	-0.011	-0.005
RR07	203.312	203.315	203.314	-0.003	-0.002	0.001
RR09	192.711	192.703	192.696	0.008	0.015	0.007
RR10	189.919	189.928	189.933	-0.009	-0.014	-0.005
RR12	198.435	198.445	198.446	-0.010	-0.011	-0.001
RR13	211.299	211.308	211.307	-0.010	-0.008	0.001
			BABIAK			
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	K2-K3 [m]	K2-K4 [m]	K3-K4 [m]
RR06	150.928	150.921	150.928	0.007	0.000	-0.007
RR07	144.693	144.695	144.696	-0.002	-0.003	-0.001
RR09	138.416	138.418	138.413	-0.002	0.003	0.005
RR10	136.053	136.055	136.059	-0.002	-0.006	-0.004
RR11	136.348	136.354	136.354	-0.006	-0.006	0.000
RR12	130.881	130.878	130.880	0.002	0.001	-0.002
RR16	137.034	137.028	137.029	0.006	0.005	-0.001
RR17	138.836	138.833	138.835	0.003	0.001	-0.002
			BEREJÓW	,		
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	K2-K3 [m]	K2-K4 [m]	K3-K4 [m]
RR01	200.962	200.959	200.950	0.003	0.012	0.009
RR05	205.397	205.388	205.381	0.009	0.016	0.007
RR06	202.080	202.070	202.066	0.010	0.014	0.004
RR08	197.919	197.913	197.907	0.007	0.012	0.006
RR13	199.767	199.759	199.754	0.008	0.013	0.005
RR15	199.036	199.031	199.026	0.004	0.010	0.005
RR17	197.483	197.480	197.476	0.003	0.007	0.004
RR18	198.507	198.507	198.497	0.000	0.010	0.010

Tabela 11 Zmiany wysokości elipsoidalnych reflektorów otrzymane z drugiej (K2), z trzeciej (K3) oraz z czwartej (K4) kampanii pomiarowej

III Niwelacja geometryczna

10. Cel przeprowadzonych pomiarów

Celem opracowania jest przeprowadzenie precyzyjnej niwelacji geometrycznej na trzech obiektach testowych objętych eksploatacją gazu ziemnego ze złóż łupkowych, ścisłe wyrównanie sieci kontrolno-pomiarowej oraz wyznaczenie wysokości punktów: referencyjnych, kontrolowanych, reflektorów InSAR. Uzyskane wyniki są danymi uzupełniającymi do prowadzenia rozszerzonego monitoringu deformacji terenu z wykorzystaniem technologii satelitarnych.

11. Obszar opracowania

11.1 Lokalizacja

Precyzyjną niwelacją geometryczną objęto trzy sieci kontrolno-pomiarowe zlokalizowane w miejscowościach:

- Lewino, gmina Linia, powiat wejherowski, województwo pomorskie,
- Babiak, gmina Lidzbark Warmiński, powiat lidzbarski, województwo warmińskomazurskie,
- Berejów, gmina Niedźwiada, powiat lubartowski, województwo lubelskie.

Każda sieć składa się z 4 punktów referencyjnych, 26 punktów kontrolowanych oraz 20 reflektorów InSAR, rozmieszczonych zgodnie z kierunkami prowadzenia odwiertów poziomych w celu eksploatacji gazu łupkowego.

11.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

11.2.1 Lewino

- a) województwo pomorskie, powiat wejherowski, gmina Linia,
- b) obręby ewidencyjne wsi: Lewino, Zęblewo, Łebno, Lewinko, Będargowo,
- c) długość linii niwelacyjnej ok. 18 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren górzysty, przewyższenia do 65 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Lewino o powierzchni ok. 20 km², jest największy oraz charakteryzuje się największym zróżnicowaniem rzeźby terenu od 135 do 200 m n.p.m. Jest to obszar typowo

rolniczy o przeważającej powierzchni gruntów ornych, o średnim zagęszczeniu gruntami leśnymi.

11.2.2 Babiak

- a) województwo warmińsko-mazurskie, powiat lidzbarski, gmina Lidzbark Warmiński,
- b) obręby ewidencyjne wsi: Babiak, Miejska Wola, Bugi,
- c) długość linii niwelacyjnej ok. 10 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren o zróżnicowanej rzeźbie z przewyższeniami do 22 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Babiak o powierzchni ok. 6 km², charakteryzuje się umiarkowanym zróżnicowaniem rzeźby terenu od 78 do 125 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni użytków zielonych.

11.2.3 Berejów

- a) województwo lubelskie, powiat lubartowski, gmina Niedźwiada,
- b) obręby ewidencyjne wsi: Berejów, Brzeźnica Bychawska, Brzeźnica Bychawska-Kolonia,
- c) długość linii niwelacyjnej ok. 8 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren równinny,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.

Obiekt Berejów o powierzchni ok. 4 km², charakteryzuje się małym zróżnicowaniem rzeźby terenu od 164 do 173 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych.

12. Opis techniczny

Czwartą kampanię precyzyjnej niwelacji geometrycznej przeprowadzono w następujących terminach: 13-16.03.2016 – obiekt Lewino, 21-23.03.2016 – obiekt Babiak, 13-

14.04.2016 – obiekt Berejów. Na obiekcie Berejów pomiary zostały opóźnione ze względu na niekorzystne warunki terenowe – zalegające wody roztopowe wzdłuż ciągów niwelacyjnych. Przyjęte procedury pomiarowe oraz dokładności są zgodne z wymaganiami Rozporządzenia Ministra Administracji i Cyfryzacji z dnia 14 lutego 2012 r. "w sprawie osnów geodezyjnych, grawimetrycznych i magnetycznych" (Dz. U. 2012, poz. 352). Warunki pogodowe występujące w okresie przeprowadzania pomiarów niwelacyjnych były sprzyjające, temperatura mieściła się w przedziale od 5 do 15^o C. Do przeprowadzenia niwelacji wykorzystano cyfrowy niwelator precyzyjny Leica DNA 03 z kompletem precyzyjnych łat kodowych oraz sprzęt pomocniczy. Łaty inwarowe do niwelacji precyzyjnej ustawiano na klinach stalowych wbijanych w grunt. Ogółem zaniwelowano ok. 36 km ciągów, przedstawionych na rysunkach 1, 2, 3, w dwóch kierunkach: tam i z powrotem, co daje ogólną długość wykonanej niwelacji ok. 72 km. Zgromadzone obserwacje przewyższeń dla poszczególnych obiektów: Babiak, Berejów, Lewino zestawiono odpowiednio w załącznikach nr 10, 11, 12.

Utworzone sieci ciągów niwelacyjnych mają kształt rozet z punktami węzłowymi, skracającymi oraz ułatwiającymi proces pomiarowy. Przyjęto następujące punkty węzłowe:

- Babiak (Rys. 16): g06, g09, g18,
- Berejów (Rys.17): ref21, ref26, b12, b16, b18,
- Lewino (Rys. 18): 102, 109, 112, 116.

Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)

Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)

Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)

13. Opracowanie wyników obserwacji

13.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR

Punkty referencyjne, zastabilizowane specjalnymi fundamentalnymi znakami nadziemnymi (rysunek 19), wymagały wyznaczenia wysokości reperów bocznych. Reper boczny stanowi podstawę pomiaru niwelacji geometrycznej, natomiast do integracji z niwelacją satelitarną niezbędne jest wyznaczenie przyrostu wysokości do punktów umieszczonych w głowicy znaku punktu referencyjnego, względem których wyznacza się wysokość anteny GNSS. Pomiar tych przewyższeń zrealizowano w pierwszej kampanii pomiarowej realizowanej w sierpniu 2014 r.

Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny

Konstrukcja oraz ustawienie reflektorów InSAR w znacznym stopniu utrudniały interpretację punktu wysokościowego do pomiaru niwelacją geometryczną. Rozwiązaniem okazał się punkt pośredni jednoznacznie realizowany poprzez umieszczaną w zwieńczeniu trzech płaszczyzn konstrukcji reflektorów kuli stalowej o średnicy 72,7 mm. Wysokości reflektorów wyznaczone zostały na podstawie pomiaru względem punktów kontrolowanych

stabilizowanych, w bezpośrednim ich sąsiedztwie, fundamentalnymi znakami podziemnymi (Rys. 20). Przewyższenia wyznaczone na pośrednich punktach wysokościowych reflektorów InSAR względem bliskich punktów kontrolowanych dla wszystkich obiektów zestawione zostały w załączniku nr 14.

Rysunek 152 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni

13.2 Wyznaczenie wysokości w układzie Kronsztadt'86

Wyznaczenie pozycji punktu terenowego w pomiarach satelitarnych GNSS odbywa się w układzie globalnym odniesionym do konkretnej elipsoidy odniesienia. Pozycja ta wyrażana jest przez współrzędne elipsoidalne (geodezyjne), szerokość i długość geodezyjną punktu będącego rzutem, wzdłuż normalnej do elipsoidy, punktu na fizycznej powierzchni Ziemi. Trzecią współrzędną jest wysokość elipsoidalna punktu, wyznaczana bezpośrednio w pomiarach satelitarnych, będącą miarą odległości punktu terenowego wzdłuż normalnej do elipsoidy.

Nawiązanie każdej sieci do układu Kronsztadt'86 zrealizowano jednopunktowo w pierwszej kampanii pomiarowej, zrealizowanej w sierpniu 2014 roku, na podstawie wyników pomiarów satelitarnych oraz modelu geoidy niwelacyjnej 2011. Przyjęte zostały następujące punkty nawiązania (wysokości wyznaczone są do głowicy znaków referencyjnych):

- Babiak: G21 = 103.6470, h = 132.3327, N = 28.6857,

- Berejów: G22 = 174.1053, h = 204.2031, N = 30.0978,
- Lewino: G23 = 179.7151, h = 210.0166, N = 30.3015.

13.3 Ścisłe wyrównanie sieci kontrolowanych

Zgromadzone w terenie dane obserwacyjne z formatu GSI przetworzono do formatu ASCII. Następnie w arkuszu kalkulacyjnym programu Excel, Pakietu Office, oraz na podstawie notatek terenowych wyznaczone zostały uśrednione, uzyskane z dwóch kierunków niwelacji (tam i z powrotem), przewyższenia między punktami kontrolowanymi. Dokonano również kontroli sumarycznego zamknięcia ciągów w dwóch kierunkach, która nie wykazała przekroczenia dopuszczalnych dokładności pomiaru. Wyrównanie całej sieci kontrolnej przeprowadzono w programie GEONET 2006, przyjmując wyznaczone przewyższenia, wagując po ilości stanowisk pomiarowych między punktami końcowymi linii, w dowiązaniu do czterech punktów referencyjnych, których współrzędne wyznaczane są pomiarami GNSS. Wykaz punktów nawiązania w układzie Kronsztadt'86 zestawiono poniżej (wysokości wyznaczone są do reperów bocznych znaków referencyjnych):

- Babiak: G21=102.3498, G26=91.9675, G29=97.8237, G30=80.6368,
- Berejów: G21=167.3284, G22=172.8494, G23=170.8672, G26=167.8335,
- Lewino: G23=178.4540, G24=170.7880, G25=147.9927, G29=177.8394.

Wyrównane wysokości punktów znajdują się w tabelach 11 - 13, a szczegółowe wyniki wyrównania zawierają załączniki nr 13, 14, 15.

	Obiekt: Babiak										
	K1: 201	4_08	K2: 201	.5_02	K3: 201	.5_08	K4: 201	K4: 2016_03		K3 – K1	K4-K1
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]
G1	112,3164	0,0009	112,3152	0,0008	112,3166	0,0008	112,3152	0,0008	-0,0012	0,0002	-0,0012
G10	105,0768	0,0003	105,0765	0,0003	105,0768	0,0003	105,0774	0,0003	-0,0003	0,0000	0,0006
G11	105,5625	0,0005	105,5631	0,0002	105,5597	0,0002	105,5632	0,0002	0,0006	-0,0028	0,0007
G12	100,0248	0,0006	100,0257	0,0002	100,0202	0,0002	100,0263	0,0002	0,0009	-0,0046	0,0015
G13	79,4111	0,0008	79,4091	0,0002	79,4126	0,0004	79,4115	0,0004	-0,0020	0,0015	0,0003
G14	80,1928	0,0008	80,1901	0,0003	80,1942	0,0005	80,1920	0,0005	-0,0027	0,0014	-0,0008

Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

G15	102,8028	0,0005	102,8030	0,0004	102,8024	0,0004	102,8040	0,0004	0,0002	-0,0004	0,0012
G16	105,6844	0,0005	105,6851	0,0005	105,6812	0,0005	105,6863	0,0005	0,0007	-0,0032	0,0019
G17	107,8863	0,0006	107,8855	0,0005	107,8867	0,0005	107,8863	0,0005	-0,0008	0,0004	0,0000
G18	109,4257	0,0007	109,4252	0,0006	109,4262	0,0006	109,4261	0,0006	-0,0005	0,0005	0,0003
G19	93,3569	0,0008	93,3559	0,0007	93 <i>,</i> 3566	0,0007	93,3565	0,0007	-0,0010	-0,0003	-0,0005
G2	88,6669	0,0010	88,6672	0,0009	88,6674	0,0009	88,6654	0,0009	0,0003	0,0005	-0,0015
G20	98,1039	0,0008	98,1038	0,0007	98,1031	0,0007	98,1040	0,0007	-0,0001	-0,0008	0,0001
G21	102,3498	0,0001	102,3498	0,0000	102,3498	0,0000	102,3498	0,0000	0,0000	0,0000	0,0000
G22	101,9610	0,0003	101,9653	0,0002	101,9552	0,0002	101,9674	0,0002	0,0043	-0,0058	0,0064
G23	102,5706	0,0004	102,5713	0,0002	102,5634	0,0002	102,5723	0,0002	0,0007	-0,0072	0,0017
G24	106,8224	0,0005	106,8275	0,0002	106,8197	0,0002	106,8281	0,0002	0,0051	-0,0028	0,0057
G25	106,5698	0,0005	106,5695	0,0002	106,5701	0,0002	106,5695	0,0002	-0,0003	0,0003	-0,0003
G26	91,9675	0,0006	91,9675	0,0000	91,9675	0,0000	91,9675	0,0000	0,0000	0,0000	0,0000
G27	93,9673	0,0007	93,9669	0,0002	93,9667	0,0003	93,9694	0,0003	-0,0004	-0,0006	0,0021
G28	81,4724	0,0007	81,4709	0,0002	81,4725	0,0004	81,4724	0,0004	-0,0015	0,0001	0,0000
G29	97,8237	0,0005	97,8237	0,0000	97,8237	0,0000	97,8237	0,0000	0,0000	0,0000	0,0000
G3	125,3328	0,0007	125,3329	0,0006	125,3325	0,0007	125,3335	0,0007	0,0001	-0,0003	0,0006
G30	80,6368	0,0008	80,6368	0,0000	80,6356	0,0004	80,6386	0,0004	0,0000	-0,0012	0,0018
G4	104,4368	0,0007	104,4358	0,0006	104,4343	0,0006	104,4351	0,0006	-0,0010	-0,0025	-0,0017
G5	103,0090	0,0007	103,0088	0,0006	103,0079	0,0006	103,0095	0,0007	-0,0002	-0,0011	0,0005
G6	119,5548	0,0006	119,5552	0,0005	119,5518	0,0005	119,5580	0,0006	0,0004	-0,0030	0,0032
G7	113,8983	0,0005	113,8985	0,0005	113,8960	0,0005	113,8986	0,0005	0,0002	-0,0023	0,0003
G8	112,3291	0,0006	112,3299	0,0006	112,3228	0,0006	112,3300	0,0006	0,0008	-0,0063	0,0009
G9	106,7525	0,0004	106,7520	0,0004	106,7504	0,0004	106,7526	0,0004	-0,0005	-0,0021	0,0001
R1	113,9715	0,0009	113,9685	0,0008	113,9695	0,0008	113,9687	0,0008	-0,0030	-0,0020	-0,0028
R10	106,7123	0,0004	106,7121	0,0003	106,7122	0,0003	106,7142	0,0003	-0,0002	-0,0001	0,0019
R11	107,0023	0,0005	107,0033	0,0002	107,0027	0,0002	107,0040	0,0003	0,0010	0,0003	0,0016
R12	101,5244	0,0006	101,5235	0,0002	101,5219	0,0002	101,5226	0,0003	-0,0009	-0,0025	-0,0019
R13	81,0251	0,0008	81,0235	0,0003	81,0267	0,0004	81,0261	0,0004	-0,0016	0,0016	0,0010
R14	81,8570	0,0008	81,8537	0,0003	81,8581	0,0005	81,8557	0,0005	-0,0033	0,0011	-0,0014
R15	104,4134	0,0005	104,4145	0,0004	104,4137	0,0004	104,4140	0,0004	0,0011	0,0003	0,0006
R16	107,1825	0,0006	107,1826	0,0005	107,1802	0,0005	107,1845	0,0005	0,0001	-0,0023	0,0020
R17	109,4720	0,0007	109,4707	0,0005	109,4722	0,0005	109,4718	0,0005	-0,0013	0,0002	-0,0002
R18	110,8666	0,0007	110,8658	0,0006	110,8669	0,0006	110,8672	0,0006	-0,0008	0,0003	0,0006
R19	94,9179	0,0008	94,9150	0,0007	94,9155	0,0007	94,9150	0,0007	-0,0029	-0,0024	-0,0029
R2	90,2319	0,0010	90,2317	0,0009	90,2321	0,0009	90,2315	0,0009	-0,0002	0,0002	-0,0004
R20	99,6692	0,0008	99,6707	0,0007	99,6688	0,0007	99,6714	0,0007	0,0015	-0,0005	0,0022
R3	127,0187	0,0007	127,0188	0,0006	127,0178	0,0007	127,0200	0,0007	0,0001	-0,0009	0,0013
R4	106,3931	0,0007	106,3906	0,0006	106,3886	0,0006	106,3880	0,0006	-0,0025	-0,0045	-0,0052
R5	104,4950	0,0007	104,4950	0,0006	104,4933	0,0006	104,4973	0,0007	0,0000	-0,0017	0,0023
R6	121,1100	0,0006	121,1097	0,0005	121,1051	0,0005	121,1084	0,0006	-0,0003	-0,0049	-0,0016

R7	115,3658	0,0006	115,3660	0,0005	115,3641	0,0005	115,3665	0,0005	0,0002	-0,0017	0,0007
R8	113,8215	0,0006	113,8214	0,0006	113,8196	0,0006	113,8225	0,0006	-0,0001	-0,0019	0,0010
R9	108,5901	0,0004	108,5898	0,0004	108,5891	0,0004	108,5905	0,0004	-0,0003	-0,0011	0,0004

Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

	Obiekt: Berejów										
	K1: 2014_08		K2: 201	15_02	_02 K3: 2015		K4: 201	.6_04	K2 – K1	K3– K1	K4– K1
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]
G1	168,4093	0,0006	168,4097	0,0001	168,4092	0,0001	168,4101	0,0001	0,0004	-0,0001	0,0007
G10	169,9234	0,0008	169,9227	0,0005	169,9226	0,0005	169,9230	0,0005	-0,0007	-0,0008	-0,0004
G11	165,9578	0,0006	165,9576	0,0002	165,9576	0,0003	165,9574	0,0003	-0,0001	-0,0001	-0,0004
G12	166,0035	0,0005	166,0033	0,0002	166,0039	0,0002	166,0034	0,0002	-0,0002	0,0004	-0,0001
G13	167,3205	0,0006	167,3207	0,0002	167,3204	0,0002	167,3212	0,0002	0,0002	-0,0001	0,0007
G14	167,8689	0,0007	167,8686	0,0003	167,8683	0,0003	167,8685	0,0003	-0,0004	-0,0007	-0,0004
G15	166,5864	0,0006	166,5866	0,0001	166,5863	0,0001	166,5865	0,0001	0,0002	-0,0001	0,0001
G16	164,5209	0,0005	164,5209	0,0002	164,5212	0,0002	164,5209	0,0002	0,0000	0,0003	0,0000
G17	165,0324	0,0005	165,0326	0,0003	165,0316	0,0003	165,0322	0,0003	0,0002	-0,0007	-0,0002
G18	165,8821	0,0004	165,8819	0,0002	165,8815	0,0002	165,8815	0,0002	-0,0001	-0,0006	-0,0005
G19	170,4357	0,0007	170,4356	0,0005	170,4350	0,0005	170,4354	0,0005	-0,0002	-0,0008	-0,0003
G2	166,4962	0,0007	166,4967	0,0003	166,4960	0,0003	166,4966	0,0003	0,0005	-0,0002	0,0004
G20	163,5014	0,0006	163,5018	0,0004	163,5017	0,0004	163,5006	0,0004	0,0004	0,0004	-0,0007
G21	167,3284	0,0006	167,3284	0,0000	167,3284	0,0000	167,3284	0,0000	0,0000	0,0000	0,0000
G22	172,8494	0,0001	172,8494	0,0000	172,8494	0,0000	172,8494	0,0000	0,0000	0,0000	0,0000
G23	170,8672	0,0007	170,8672	0,0000	170,8672	0,0000	170,8672	0,0000	0,0000	0,0000	0,0000
G24	167,0932	0,0007	167,0931	0,0003	167,0932	0,0003	167,0929	0,0003	-0,0001	0,0000	-0,0003
G25	166,1926	0,0006	166,1927	0,0001	166,1921	0,0001	166,1926	0,0001	0,0001	-0,0006	0,0000
G26	167,8335	0,0006	167,8335	0,0000	167,8335	0,0000	167,8335	0,0000	0,0000	0,0000	0,0000
G27	169,3919	0,0006	169,3918	0,0003	169,3906	0,0003	169,3929	0,0003	-0,0001	-0,0014	0,0009
G28	166,2713	0,0005	166,2713	brak	166,2713	0,0002	166,2710	0,0002	0,0000	-0,0001	-0,0003
G29	163,2574	0,0005	163,2579	0,0003	163,2581	0,0003	163,2570	0,0003	0,0004	0,0006	-0,0005
G3	172,6924	0,0003	172,6925	0,0002	172,6926	0,0002	172,6921	0,0002	0,0001	0,0002	-0,0003
G30	167,2974	0,0007	167,2977	0,0005	167,2969	0,0005	167,2970	0,0005	0,0003	-0,0005	-0,0004
G4	170,2726	0,0003	170,2726	0,0002	170,2726	0,0002	170,2724	0,0002	0,0000	0,0000	-0,0002
G5	172,8632	0,0008	172,8635	0,0002	172,8635	0,0002	172,8623	0,0002	0,0003	0,0003	-0,0009
G6	169,2485	0,0007	169,2481	0,0002	169,2482	0,0002	169,2477	0,0002	-0,0004	-0,0003	-0,0008
G7	165,8026	0,0006	165,8026	0,0003	165,8027	0,0003	165,8025	0,0003	0,0000	0,0001	-0,0001
G8	164,8663	0,0007	164,8661	0,0003	164,8664	0,0003	164,8658	0,0003	-0,0002	0,0002	-0,0005
G9	170,8985	0,0007	170,8980	0,0004	170,8975	0,0004	170,8984	0,0004	-0,0005	-0,0010	-0,0001
R1	170,2239	0,0007	170,2238	0,0002	170,2234	0,0002	170,2242	0,0002	-0,0002	-0,0005	0,0003

R10	171,6475	0,0008	171,6475	0,0005	171,6462	0,0005	171,6471	0,0005	0,0000	-0,0014	-0,0005
R11	167,5608	0,0006	167,5607	0,0003	167,5608	0,0003	167,5607	0,0003	-0,0001	-0,0001	-0,0001
R12	167,7156	0,0005	167,7149	0,0002	167,7156	0,0002	167,7160	0,0002	-0,0008	0,0000	0,0004
R13	169,0108	0,0006	169,0108	0,0002	169,0111	0,0002	169,0114	0,0002	0,0000	0,0003	0,0006
R14	169,5485	0,0007	169,5499	0,0004	169,5503	0,0004	169,5483	0,0004	0,0014	0,0018	-0,0002
R15	168,2851	0,0006	168,2852	0,0002	168,2852	0,0002	168,2855	0,0002	0,0001	0,0001	0,0004
R16	166,2549	0,0005	166,2547	0,0003	166,2554	0,0003	166,2554	0,0003	-0,0001	0,0005	0,0005
R17	166,6770	0,0005	166,6750	0,0003	166,6746	0,0003	166,6746	0,0003	-0,0020	-0,0024	-0,0024
R18	167,7123	0,0004	167,7119	0,0003	167,7121	0,0003	167,7121	0,0003	-0,0004	-0,0002	-0,0002
R19	172,1820	0,0007	172,1819	0,0005	172,1814	0,0005	172,1819	0,0005	-0,0001	-0,0006	-0,0001
R2	168,1175	0,0007	168,1178	0,0003	168,1178	0,0003	168,1181	0,0003	0,0003	0,0003	0,0006
R20	165,2171	0,0006	165,2171	0,0004	165,2176	0,0004	165,2162	0,0004	0,0000	0,0005	-0,0010
R3	174,3413	0,0003	174,3416	0,0002	174,3430	0,0002	174,3409	0,0002	0,0003	0,0017	-0,0004
R4	171,9790	0,0003	171,9785	0,0002	171,9803	0,0002	171,9788	0,0002	-0,0005	0,0013	-0,0002
R5	174,6390	0,0008	174,6389	0,0002	174,6393	0,0002	174,6387	0,0002	-0,0001	0,0003	-0,0002
R6	170,8766	0,0007	170,8744	0,0002	170,8765	0,0002	170,8744	0,0002	-0,0023	-0,0001	-0,0023
R7	167,5902	0,0006	167,5904	0,0003	167,5904	0,0003	167,5901	0,0003	0,0003	0,0002	-0,0001
R8	166,7504	0,0007	166,7497	0,0003	166,7471	0,0003	166,7463	0,0003	-0,0007	-0,0032	-0,0040
R9	172,6765	0,0008	172,6760	0,0005	172,6753	0,0005	172,6768	0,0005	-0,0005	-0,0011	0,0004

Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

	Obiekt: Lewino											
	K1: 201	L4_08	K2: 2015_02		K3: 2015_09		K4: 2016_03		K2 – K1	K3 – K1	K4 – K1	
NRP	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]	
G1	167,9661	0,0007	167,9671	0,0004	167,9668	0,0004	167,9681	0,0004	0,0010	0,0006	0,0020	
G10	156,9434	0,0012	156,9440	0,0005	156,9438	0,0005	156,9448	0,0005	0,0006	0,0004	0,0014	
G11	137,2842	0,0012	137,2839	0,0005	137,2846	0,0005	137,2852	0,0005	-0,0003	0,0004	0,0010	
G12	165,7899	0,0010	165,7918	0,0003	165,7910	0,0003	165,7929	0,0003	0,0019	0,0011	0,0030	
G13	178,0472	0,0010	178,0489	0,0005	178,0478	0,0005	178,0497	0,0005	0,0017	0,0006	0,0025	
G14	178,9426	0,0013	178,9441	0,0008	178,9421	0,0008	178,9447	0,0008	0,0015	-0,0005	0,0021	
G15	195,0291	0,0012	195,0302	0,0007	195,0289	0,0007	195,0297	0,0007	0,0012	-0,0002	0,0006	
G16	161,1359	0,0013	161,1350	0,0004	161,1356	0,0004	161,1360	0,0004	-0,0009	-0,0003	0,0001	
G17	176,6813	0,0015	176,6815	0,0003	176,6812	0,0003	176,6819	0,0003	0,0002	-0,0001	0,0006	
G18	136,1700	0,0014	136,1695	0,0005	136,1703	0,0005	136,1713	0,0005	-0,0005	0,0003	0,0013	
G19	181,0810	0,0014	181,0813	0,0005	181,0819	0,0005	181,0813	0,0005	0,0003	0,0009	0,0003	
G2	140,9716	0,0008	140,9719	0,0004	140,9733	0,0004	140,9735	0,0004	0,0003	0,0017	0,0019	
G20	169,3668	0,0014	169,3672	0,0005	169,3676	0,0005	169,3678	0,0005	0,0005	0,0008	0,0009	
G21	162,2349	0,0006	162,2355	0,0004	162,2354	0,0004	162,2368	0,0004	0,0006	0,0005	0,0019	

G22	159,7963	0,0008	159,7962	0,0004	159,7958	0,0004	159,7959	0,0004	-0,0002	-0,0005	-0,0004
G23	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	0,0000	0,0000	0,0000
G24	170,7880	0,0009	170,7880	0,0000	170,7880	0,0000	170,7880	0,0000	0,0000	0,0000	0,0000
G25	147,9927	0,0009	147,9927	0,0000	147,9927	0,0000	147,9927	0,0000	0,0000	0,0000	0,0000
G26	178,4379	0,0013	178,4386	0,0007	178,4380	0,0007	178,4392	0,0007	0,0008	0,0001	0,0013
G27	200,2459	0,0012	200,2478	0,0007	200,2455	0,0007	200,2480	0,0007	0,0018	-0,0004	0,0021
G28	191,6611	0,0012	191,6625	0,0008	191,6614	0,0008	191,6615	0,0008	0,0015	0,0003	0,0004
G29	177,8394	0,0014	177,8394	0,0000	177,8394	0,0000	177,8394	0,0000	0,0000	0,0000	0,0000
G3	178,1357	0,0006	178,1357	0,0004	178,1357	0,0004	178,1361	0,0004	0,0000	0,0000	0,0003
G31	146,4892	0,0010	146,4882	0,0005	146,4878	0,0005	146,4881	0,0005	-0,0010	-0,0014	-0,0011
G4	171,0165	0,0007	171,0155	0,0004	171,0162	0,0004	171,0162	0,0004	-0,0010	-0,0003	-0,0003
G5	182,2054	0,0004	182,2064	0,0003	182,2054	0,0003	182,2064	0,0003	0,0010	0,0000	0,0009
G6	184,5774	0,0004	184,5772	0,0003	184,5777	0,0003	184,5780	0,0003	-0,0002	0,0003	0,0006
G7	170,5079	0,0005	170,5077	0,0003	170,5076	0,0003	170,5077	0,0003	-0,0002	-0,0003	-0,0002
G8	151,8863	0,0009	151,8874	0,0005	151,8887	0,0005	151,8885	0,0005	0,0011	0,0024	0,0022
G9	160,2806	0,0011	160,2808	0,0005	160,2811	0,0005	160,2816	0,0005	0,0001	0,0005	0,0010
R1	169,5774	0,0007	169,5783	0,0004	169,5780	0,0004	169,5792	0,0004	0,0008	0,0006	0,0018
R10	158,5417	0,0012	158,5427	0,0005	158,5410	0,0005	158,5455	0,0005	0,0010	-0,0007	0,0038
R11	138,6977	0,0012	138,6968	0,0005	138,6982	0,0005	138,6986	0,0005	-0,0008	0,0005	0,0009
R12	167,4722	0,0010	167,4748	0,0003	167,4727	0,0003	167,4747	0,0003	0,0026	0,0005	0,0025
R13	179,8838	0,0010	179,8875	0,0005	179,8863	0,0005	179,8880	0,0005	0,0037	0,0025	0,0042
R14	180,6083	0,0013	180,6090	0,0008	180,6074	0,0008	180,6102	0,0008	0,0007	-0,0010	0,0019
R15	196,7376	0,0012	196,7394	0,0007	196,7371	0,0007	196,7379	0,0007	0,0018	-0,0005	0,0003
R16	162,7689	0,0014	162,7678	0,0004	162,7662	0,0004	162,7695	0,0004	-0,0011	-0,0027	0,0006
R17	178,2992	0,0015	178,3006	0,0003	178,2998	0,0003	178,3001	0,0003	0,0014	0,0006	0,0009
R18	137,6282	0,0014	137,6276	0,0006	137,6289	0,0005	137,6290	0,0005	-0,0005	0,0007	0,0008
R19	182,7952	0,0015	182,7948	0,0005	182,7963	0,0005	182,7950	0,0005	-0,0004	0,0011	-0,0002
R2	142,6686	0,0008	142,6690	0,0004	142,6706	0,0004	142,6700	0,0004	0,0004	0,0020	0,0014
R20	170,8926	0,0014	170,8913	0,0005	170,8922	0,0005	170,8938	0,0005	-0,0014	-0,0004	0,0012
R3	179,6764	0,0006	179,6753	0,0004	179,6753	0,0004	179,6751	0,0004	-0,0011	-0,0011	-0,0013
R4	172,5841	0,0007	172,5815	0,0004	172,5819	0,0004	172,5821	0,0004	-0,0026	-0,0022	-0,0020
R5	183,9346	0,0004	183,9359	0,0003	183,9349	0,0003	183,9347	0,0003	0,0013	0,0003	0,0001
R6	185,8715	0,0004	185,8715	0,0003	185,8725	0,0003	185,8737	0,0003	0,0001	0,0010	0,0022
R7	172,3060	0,0005	172,3060	0,0004	172,3056	0,0004	172,3054	0,0004	0,0000	-0,0004	-0,0006
R8	153,5430	0,0009	153,5382	0,0005	153,5454	0,0005	153,5458	0,0005	-0,0048	0,0024	0,0028
R9	161,7495	0,0011	161,7496	0,0005	161,7498	0,0005	161,7508	0,0005	0,0001	0,0003	0,0013

13.4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej

Przeprowadzone ścisłe wyrównania trzech sieci kontrolnych precyzyjnej niwelacji geometrycznej, zlokalizowanych na obiektach: Babiak, Berejów, Lewino, wykazują poprawność przeprowadzonych czynności pomiarowych. Wartości średnich błędów wysokości punktów po wyrównaniu nie przekroczyły wartości 1 mm. Analizując przyrosty wysokości punktów kontrolowanych między dwiema kampaniami pomiarowymi (tabele 11, 12, 13): K1 – 2014_08, K4 – 2016_03, można zauważyć przekroczenie wartości przyjętego błędu średniego (mH) na poziomie ±2 mm, w przypadku następujących obiektów:

- Babiak: pojedynczej wartości mH 4 punktów (G6=+0,0032, G27=+0,0021, R1=-0,0028, R19=-0,0029), podwójnej wartość mH – 2 punkty (G24=+0,0057, R4=-0,0052), potrójnej wartość mH – 1 punkt (G22=+0,0064),
- Berejów: pojedynczej wartości mH 2 punkty (R6=-0,0023, R17=-0,0024), podwójnej wartość mH – 1 punkt (R8=-0,0040), potrójnej wartość mH – nie stwierdzono,
- Lewino: pojedynczej wartości mH 7 punktów (G8=+0,0022, G12=+0,0030, G13=+0,0025, G14=+0,0021, G27=+0,0021, R8=+0,0028, R12=+0,0025), podwójnej wartość mH 2 punkty (R10=+0,0038, R13=+0,0042), potrójnej wartość mH nie stwierdzono.

Dwukrotne przekroczenie przyjętego błędu średniego mH wysokości punktów kontrolowanych (±2 mm), nie może jeszcze świadczyć o wystąpieniu deformacji pionowych, dopiero na podstawie przekroczenia potrójnej wartości tego błędu można stwierdzić wystąpienie tego parametru. Na badanych obiektach Berejów oraz Lewino nie stwierdzono wystąpienia deformacji pionowych. W przypadku obiektu Babiak można stwierdzić prawdopodobne wystąpienie pionowych deformacji terenu w otoczeniu punktu G22.

14. Podsumowanie

Warunki atmosferyczne, w jakich przeprowadzona została precyzyjna niwelacja geometryczna, były zmienne lecz nie przeszkodziły w przeprowadzeniu pomiarów precyzyjnej niwelacji geometrycznej. Występujące utrudnienie pomiaru były spowodowane głównie występującym okresowo silnym wiatrem, wywołującym drżenie kompensatora instrumentu – wibracje osi celowej.

Osiągnięte dokładności niwelacji na podstawie porównania wyników otrzymanych bezpośrednio z pomiaru w dwóch kierunkach, jak i wyniki wyrównania ścisłego wskazują na

osiągniecie dokładności precyzyjnej niwelacji geometrycznej 2 klasy, czyli dokładności lepszej niż 2 mm/km.

Porównanie wysokości punktów z dwóch kampanii pomiarowych przeprowadzonych w sierpniu 2014 r. oraz w marcu i kwietniu 2016 r., nie wykazują wystąpienia deformacji pionowych na dwóch obiektach Lewino oraz Berejów. W przypadku obiektu Babiak można stwierdzić deformacje pionowe w otoczeniu jednego punktu: G22, gdzie stwierdzono przekroczenie potrójnej wartości błędu średniego mH (\pm 2 mm) na poziomie +0,0064 m.

Wykryta w poprzedniej kampanii pomiarowej na obiekcie Berejów znaczna zmiana wysokości jednego reflektora R12 na poziomie -0,050 m nie została potwierdzona w bieżącej kampanii pomiarowej. Brak możliwości wykrycia źródła powstania tego błędu, postanowiono zdefiniować go jako błąd gruby, następnie zdecydowano wyłączyć ten wynik z analiz danych.

Wysokości punktów w procesie wyrównania wyznaczone zostały w układzie wysokościowym Kronsztadt'86. Punktami wyznaczanymi są: punkty referencyjne (repery boczne), punkty kontrolowane (repery podziemne stabilizowane w bezpośrednim sąsiedztwie reflektorów InSAR), reflektory InSAR (wysokość punktów pośrednich definiowanych przez kulę umieszczaną w reflektorach).

Spis tabel

Tabela 1 Plan sesji pomiarowych	. 14
Tabela 2 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania,	
poligon Lewino	. 19
Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie	
ITRF2008 (2015.10), wysokości elipsoidalne oraz ich błędy, poligon Lewino	. 22
Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino	. 22
Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak	. 24
Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak	. 26
Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak	. 26
Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów.	. 28
Tabela 9 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w czwartej kampanii pomiarowej w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów	. 29
Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejów	. 30
Tabela 11 Zmiany wysokości elipsoidalnych reflektorów otrzymane z drugiej (K2), z trzeciej (K3) oraz z czwartej (K4) kampanii pomiarowej	. 31
Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznaczel punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	nie . 39
Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznacze punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	enie . 41
Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampania pomiarowa 1, 2, 3, zmiany wysokości dH (oznaczer punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)	nie . 42

Spis rysunków

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)	8
Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)	9
Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)	. 10
Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)	. 10
Rysunek 5 Głowica punktu referencyjnego z reperami	. 11
Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego	. 12
Rysunek 7 Reflektor z zamontowaną anteną GNSS	. 13
Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS	. 17
Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS	. 23
Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS	. 27
Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu	
mapowego: Google Earth)	. 35
Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu	
mapowego: Google Earth)	. 36
Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu	
mapowego: Google Earth)	. 36
Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 –	
głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny	. 37
Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 –	
reper, 4 – dren studni, 5 – pokrywa studni	. 38

Załączniki

01_Lewino_obserwacje 02_Lewino_nieoznaczoności 03_Lewino_współrzędne 04_Babiak_obserwacje 05_Babiak_nieoznaczoności 06_Babiak_współrzędne 07_Berejów_obserwacje 08_Berejów_nieoznaczoności 09_Berejów_współrzędne 10_Babiak_niw_geom 11_Berejow_niw_geom 12_Lewino_niw_geom 13_wyh.osn_Babiak 14_wyh.osn_Berejów 15_wyh.osn_Lewino 16_Dzienniki_pomiarowe

Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa Instytut Geodezji

Olsztyn, 5 października 2016 r.

Przeprowadzenie analiz deformacji powierzchni terenu z wykorzystaniem zintegrowanej technologii precyzyjnej niwelacji geometrycznej i satelitarnej

Raport z realizacji piątej kampanii pomiarowej przeprowadzonej w dniach 26.07-02.08.2016 r.

Kierownik pracy: dr hab. inż. Paweł Wielgosz, prof. UWM

Spis treści

	DAN	IE FORMALNO-PRAWNE	4
2.		Zleceniodawca	5
3.		Wykonawca	5
4.		Autorzy raportu	5
5.		Zespół pomiarowy	
	5.1	Pomiary GNSS	5
	5.2	Niwelacja geometryczna	6
			_
П	NIW	VELACIA SATELITARNA	/
6.		Cel przeprowadzonych pomiarów	8
7.		Obszar opracowania	8
	7.1	Lokalizacja	8
	7.2	Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	9
	7.2.	1 Lewino	9
	7.2.2	2 Babiak	9
	7.2.3	3 Berejów	10
8.		Opis techniczny	. 11
•	8.1	Sprzet pomiarowy	11
	8.2	Procedura pomiaru GNSS	13
	8.2.	1 Procedura pomiarowa na punktach referencyjnych zewnetrznych i wewnetrznych	15
	8.2.3	2 Procedura pomiarowa na reflektorach typu B	15
	8.2.3	3 Procedura pomiarowa na reflektorach typu A	15
	8.3	Podsumowanie pomiarów GNSS	16
9		Opracowanie obserwacij	16
5.	9.1	Nawiazanie do sieci ASG-FUPOS – poligon Lewino.	16
	9.1.	1 Sposóh nawiazania	16
	9.1.2	2 Strategia obliczeniowa	17
	9.2	Wyznączenie współrzednych punktów kontrolowanych – poligon Lewino	18
	9.2.	1 Geometria rozwiazania	18
	9.2.	2 Strategia obliczeniowa	19
	9.2.	3 Analiza liczby obserwacji	19
	9.2.4	4 Analiza wyznaczenia nieoznaczoności	20
	9.2.	5 Analiza wyznaczonych współrzednych punktów kontrolowanych	20
	9.2.	6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	21
	9.3	Nawiazanie do ASG-EUPOS – poligon Babiak	22
	9.3.	1 Sposób nawiązania	22
	9.3.2	2 Strategia obliczeniowa	22
	9.4	Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak	23
	9.4.	1 Geometria rozwiązania	23
	9.4.2	2 Strategia obliczeniowa	23
	9.4.3	3 Analiza liczby obserwacji	23
	9.4.4	4 Analiza wyznaczenia nieoznaczoności	24
	9.4.	5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	24
	9.4.	6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	24
	9.5	Nawiązanie do ASG-EUPOS – poligon Berejów	25
	9.5.	1 Sposób nawiązania	25

9.5.	.2 Strategia obliczeniowa	
9.6	Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów	
9.6.	.1 Geometria rozwiązania	
9.6.	.2 Strategia obliczeniowa	27
9.6.	.3 Analiza liczby obserwacji	27
9.6.	.4 Analiza wyznaczenia nieoznaczoności	27
9.6.	.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych	28
9.6.	.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych	28
9.7	Podsumowanie	29
		31
10		
10.	Cel przeprowadzonych pomiarow	
11.	Obszar opracowania	
11.1	1 Lokalizacja	32
11.2	2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów	32
12.	Opis techniczny	
13.	Opracowanie wyników obserwacji	
13.3	1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR	
13.2	2 Wyznaczenie wysokości w układzie Kronsztadt'86	37
13.3	3 Ścisłe wyrównanie sieci kontrolnych	38
13.4	4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej	46
13.5	5 Podsumowanie niwelacji geometrycznej	46
14.	Podsumowanie dotychczasowych kampanii pomiarowych	47
Spis ta	ıbel	49
Spis ry	/sunków	
Załącz	niki	50

I Dane formalno-prawne

2. Zleceniodawca

Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy ul. Rakowiecka 4 00-975 Warszawa

3. Wykonawca

Uniwersytet Warmińsko-Mazurski w Olsztynie

Wydział Geodezji, Inżynierii Przestrzennej i Budownictwa

Instytut Geodezji

ul. Oczapowskiego 1

10-719 Olsztyn

4. Autorzy raportu

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- mgr inż. Katarzyna Stępniak

5. Zespół pomiarowy

5.1 Pomiary GNSS

- dr hab. inż. Paweł Wielgosz, prof. UWM
- dr inż. Radosław Baryła
- dr inż. Jacek Paziewski
- mgr inż. Marta Krukowska
- mgr inż. Paweł Gołaszewski
- dr Zbigniew Perski
- mgr inż. Zbigniew Kowalski
- mgr Marta Tomaszczyk
- mgr Tomasz Wojciechowski
- mgr Marcin Wódka
- i. in.

5.2 Niwelacja geometryczna

- dr inż. Radosław Baryła organizacja i nadzór prac terenowych
- inż. Aleksander Jurczyk
- inż. Tomasz Michalski
- inż. Michał Birkholz

II Niwelacja satelitarna

6. Cel przeprowadzonych pomiarów

Celem badań było przeprowadzenie statycznych pomiarów GNSS na terenach objętych eksploatacją gazu ziemnego ze złóż łupkowych, a także opracowanie zgromadzonych obserwacji na potrzeby określenia deformacji terenu.

W celu określenia przemieszczeń punktów kontrolnych wykonana została kampania pomiarowa, której wyniki odniesiono do wyników poprzednich kampanii pomiarowych oraz referencyjnej kampanii pomiarowej (02.2015 r.). Zastosowano metodologię pomiarów i opracowania obserwacji satelitarnych określoną podczas wcześniejszej kampanii pomiarowej.

7. Obszar opracowania

7.1 Lokalizacja

Pomiary przeprowadzono na 3 poligonach doświadczalnych w pobliżu miejscowości: Lewino (woj. pomorskie, powiat wejherowski), Babiak (woj. warmińsko-mazurskie, powiat lidzbarski) oraz Berejów (woj. lubelskie, powiat lubartowski). Punkty referencyjne wykorzystane podczas obliczeń zlokalizowane są poza przewidywanym obszarem odkształceń terenu.

Rysunek 1 Lokalizacja poligonów badawczych (źródło podkładu mapowego: Google Earth)
7.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów

7.2.1 Lewino

Obszar poligonu Lewino jest terenem głównie rolniczym z dość znaczącym udziałem gruntów leśnych. Obszar objęty badaniami jest pofałdowany ze znacznymi deniwelacjami. Punkty referencyjne zlokalizowano za zewnątrz obszaru zagrożonego odkształceniami. Reflektory (punkty kontrolowane), służące do pomiarów odkształceń, rozmieszczone są równomiernie na całym badanym terenie. Na poligonie badawczym w Lewinie za pomocą techniki GNSS pomierzono 10 punktów kontrolowanych. Część z nich także jest zlokalizowana w pobliżu zasłon terenowych. Rozmieszczenie punktów pomiarowych przedstawia rysunek 2.

Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)

7.2.2 Babiak

Teren objęty badaniami jest pofałdowany, ze znacznymi deniwelacjami, głownie rolniczy. Podobnie jak Lewinie, punkty referencyjne na poligonie w Babiaku zostały zlokalizowane poza obszarem narażonym na odkształcenia. Reflektory (w sumie osiem) zostały rozmieszczone równomiernie na badanym terenie, przy czym także na tym poligonie część punktów referencyjnych i część reflektorów została zlokalizowana w pobliżu zasłon terenowych. Na rysunku 3 przedstawiono rozmieszczenie punktów pomiarowych na obszarze Babiaka.

Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)

7.2.3 Berejów

Teren objęty badaniami położony jest na równinie, deniwelacje terenu są bardzo małe. Obszar głównie rolniczy. Punkty referencyjne zlokalizowane na zewnątrz obszaru zagrożonego odkształceniem. Reflektory (w sumie osiem) rozmieszczone są równomiernie na całym obszarze. Na rysunku 4 przedstawiono rozmieszczenie punktów pomiarowych na poligonie badawczym w Berejowie.

Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)

8. Opis techniczny

8.1 Sprzęt pomiarowy

Do przeprowadzenia precyzyjnych pomiarów satelitarnych wykorzystano następujące dwuczęstotliwościowe odbiorniki GNSS:

- Javad Alpha z anteną GrAnt-G3T,
- Hi-Target V30,
- Topcon Hiper Pro,
- Trimble R8,
- Trimble SPS881.

Na punktach referencyjnych zastosowano centrowanie wymuszone poprzez zamocowanie spodarki bezpośrednio do głowicy punktu (Rys. 5, 6). Wysokość anteny pomierzono suwmiarką względem trzech reperów wysokościowych na głowicy lub względem płaszczyzny głowicy w trzech lub w dwóch miejscach.

Rysunek 5 Głowica punktu referencyjnego z reperami

Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego

Na poligonach badawczych w Lewinie oraz Berejowie na reflektorach centrowanie anten następowało na zainstalowanym w tym celu trzpieniu. Na trzpień zakładane było przenośne urządzenie dające możliwość przykręcenia anteny GNSS. Urządzenie to miało 50 mm wysokości. Trzpień przymocowany był do reflektora pod kątem, tak aby antena skierowana była pionowo w górę.

Na poligonie badawczym w Babiaku centrowanie anteny zależało od typu reflektora. Na reflektorach typu B centrowanie odbywało się analogicznie jak na poligonach w Lewinie i Berejowie, z tą różnicą, że trzpienie zamontowane były zgodnie z osią reflektora, a tym samym, to urządzenia służące przykręceniu anteny GNSS, zamontowane na stałe, umożliwiało ustawienie anteny pionowo w górę, wysokości tego urządzenia nie wyznaczono. Na pozostałych reflektorach centrowanie przebiegało w ten sam sposób, co na pozostałych dwóch poligonach badawczych.

Rysunek 7 przedstawia reflektor z zamontowaną anteną GNSS.

Rysunek 7 Reflektor z zamontowaną anteną GNSS

8.2 Procedura pomiaru GNSS

Podczas pomiaru GNSS zastosowano procedurę opracowaną na potrzeby poprzedniej kampanii pomiarowej z lutego 2015 roku. Każdy poligon posiadał 4 punkty referencyjne zewnętrzne i 3 wewnętrzne oraz od 8 do 10 punktów kontrolowanych. Czas obserwacji na reflektorach wynosił 2x4 godziny. Plan sesji pomiarowych przedstawiono w tabeli 1.

Pomiary wykonano przy użyciu jedenastu lub dwunastu odbiorników według schematu:

- punkty referencyjne zewnętrzne dwie 8-godzinne sesje pomiarowe;
- punkty referencyjne wewnętrzne dwie 8-godzinne sesje pomiarowe;
- reflektory dwie 4-godzinne sesje pomiarowe.

W przeprowadzonych kampaniach GNSS przyjęto następujące parametry pomiaru:

- interwał pomiarowy: 10 s,
- minimalna wysokość satelity nad horyzontem: 0°,
- długość sesji pomiarowej: osiem godzin (punkty referencyjne) oraz cztery godziny (reflektory).

BEREJÓW							
	26.07.	2016r.	27.07.	.2016r.			Numer
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu
PIG 1	GG	31	GG	631	Hi-Target V30	Zintegrowana	-
PIG 2	GG	32	GG	632	Trimble SPS881	Zintegrowana	-
PIG 3	GG	33	GG	633	Trimble SPS881	Zintegrowana	-
PIG 4	GG	34	GG	634	Trimble R8	Zintegrowana	-
PIG 5	RR05	RR06	RR06	RR05	Trimble R8	Zintegrowana	1
PIG 6	RR17	RR18	RR18	RR17	Topcon Hiper +	Zintegrowana	2
PIG 7	RR15	RR08	RR08	RR15	Topcon Hiper +	Zintegrowana	3
UWM 1	GG	22	GG	522	Javad Alpha	Javad GrAnt G3T	-
00001	GG	23	GG	523	Javad Alpha	Javad GrAnt G3T	-
UWM 2	GG	21	GG	521	Topcon Hiper +	Zintegrowana	-
011112	RR01	RR13	RR13	RR01	Topcon Hiper +	Zintegrowana	4
				BABIA	ĸ		
	29.07.	2016r.	30.07.	2016r.		• •	Numer
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu
PIG 1	GG	31	GG	31	Topcon Hiper +	Zintegrowana	-
PIG 2	GG	32	GG	632	Trimble SPS881	Zintegrowana	-
PIG 3	GG	33	GG	633	Trimble SPS881	Zintegrowana	-
PIG 4	GG	34	GG	634	Trimble R8	Zintegrowana	-
PIG 5	RR16	RR17	RR17	RR16	Trimble R8	Zintegrowana	1
PIG 6	RR06	RR10	RR10	RR06	Topcon Hiper +	Zintegrowana	2
PIG 7	RR07	RR09	RR09	RR07	Topcon Hiper +	Zintegrowana	3
UWM 1	GG	21	GG	621	Javad Alpha	Javad GrAnt G3T	-
UWM 2	GG	30	GG	630	Javad Alpha	Javad GrAnt G3T	-
	GG	26	GG	626	Topcon Hiper +	Zintegrowana	-
	RR11	RR12	RR12	RR11	Topcon Hiper +	Zintegrowana	4
				LEWIN	10		
_	01.08.	2016r.	02.08	.2016r.		_	Numer
Data	Sesja 1	Sesja 2	Sesja 1	Sesja 2	Odbiornik	Antena	przyrządu
PIG 1	GG	i30	GG	G30	Hi-Target V30	Zintegrowana	-
PIG 2	GG	i32	GG	532	Trimble SPS881	Zintegrowana	-
PIG 3	GG	33	GG	533	Trimble SPS881	Zintegrowana	-
PIG 4	GG	i34	GG	634	Trimble R8	Zintegrowana	-
PIG 5	RR07	RR03	RR03	RR07	Trimble R8	Zintegrowana	1
PIG 6	RR01	RR02	RR02	RR01	Topcon Hiper +	Zintegrowana	2
PIG 7	RR09	RR10	RR10	RR09	Topcon Hiper +	Zintegrowana	3
UWM 1	GG	629	GG	529	Javad Alpha	Javad GrAnt G3T	-
11/0/04 2	GG	623	GG	523	Javad Alpha	Javad GrAnt G3T	-
	RR05	RR06	RR06	RR05	Topcon Hiper +	Zintegrowana	
111/0/04 2	GG	625	GG	525	Topcon Hiper +	Zintegrowana	-
0 101 101 3	RR12	RR13	RR13	RR13	Topcon Hiper +	Zintegrowana	4

Tabela	1	Plan	sesji	pomiarowy	ych

8.2.1 Procedura pomiarowa na punktach referencyjnych zewnętrznych i wewnętrznych

Przed przystąpieniem do realizacji pomiarów GNSS na punkcie referencyjnym obserwator powinien dokładnie sprawdzić stan głowicy znaku oraz śruby (Rys. 5), a następnie przeprowadzić następujące czynności:

- przykręcić i spoziomować spodarkę (Rys. 6),
- umieścić antenę GNSS w spodarce,
- skierować antenę w kierunku północnym,
- połączyć antenę do odbiornika GNSS (w przypadku anteny zewnętrznej),
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika GNSS,
- wykonać suwmiarką pomiar wysokości anteny GNSS.

Procedurę pomiaru wysokości anteny GNSS należało przeprowadzać co najmniej trzy razy w trakcie wykonywania obserwacji.

8.2.2 Procedura pomiarowa na reflektorach typu B

Przed przystąpieniem do realizacji pomiarów GNSS na reflektorze obserwator powinien dokładnie sprawdzić stan urządzenia służącego do zamontowania anteny na reflektorze, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na reflektorze,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,
- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.2.3 Procedura pomiarowa na reflektorach typu A

Przed przystąpieniem do realizacji pomiarów na reflektorze obserwator powinien dokładnie sprawdzić trzpień służący centrowaniu anteny GNSS, a następnie przeprowadzić następujące czynności:

- umieścić antenę GNSS na urządzeniu umożliwiającym zamontowanie anteny na trzpieniu,
- umieścić antenę wraz z przejściówką na trzpieniu,
- skierować antenę na północ,
- połączyć antenę z odbiornikiem GNSS,

- uruchomić odbiornik,
- wprowadzić (sprawdzić) parametry obserwacyjne odbiornika.

8.3 Podsumowanie pomiarów GNSS

Kampania pomiarowa na poszczególnych obiektów została przeprowadzona w dniach: na poligonie Berejów: 26-27.07.2016 r., na poligonie Babiak: 29-30.07.2016 r., na poligonie Lewino: 01-02.08.2016 r. Pomiary przeprowadzone na terenach znajdujących się bezpośrednio przy zaworach służących do szczelinowania oraz w miejscach stabilizacji punktów referencyjnych przebiegały według przyjętego wcześniej planu pracy. Wszelkie uwagi odnośnie prowadzonych pomiarów uwzględniono w dziennikach obserwacyjnych zawartych w załączniku 16.

9. Opracowanie obserwacji

9.1 Nawiązanie do sieci ASG-EUPOS – poligon Lewino

9.1.1 Sposób nawiązania

Pierwszy etap opracowania obserwacji GNSS zgromadzonych na punktach sieci obiektu Lewino związany był ze zbadaniem stałości sieci punktów referencyjnych. W tym celu sprawdzono, czy współrzędne punktów referencyjnych określone na podstawie pomiarów w piątej kampanii pomiarowej nie zmieniły się w porównaniu do współrzędnych tych punktów otrzymanych podczas opracowania drugiej kampanii pomiarowej (luty 2015 r.). Nawiązanie punktów referencyjnych sieci kontrolnej obiektu Lewino przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 2 dostępne stacje położone najbliżej obszaru objętego siecią - KOSC, REDZ (Rys. 8). W opracowaniu uwzględniono także odległą stację WROC, która również należy do sieci ASG-EUPOS, w celu lepszej dekorelacji parametrów troposferycznych, niezbędnych do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. W systemie ASG-EUPOS współrzędne stacji określone są w układzie PL-ETRF2000 (epoka odniesienia 2011.0). Przed przystąpieniem do opracowania niezbędne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS do układu ITRF2008 na epokę drugiej kampanii pomiarowej według algorytmu opracowanego przez Boucher i Altamimi "Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign" (2011).

Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS

9.1.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS do wyznaczenia współrzędnych punktów referencyjnych zakłada dowiązania do stacji ASG-EUPOS przy wstępnym założeniu ich błędów *a priori* na poziomie 1 mm dla każdej składowej. Długości wektorów pomiędzy punktami referencyjnymi lokalnej sieci kontrolnej oraz stacjami ASG-EUPOS wykorzystanymi w opracowaniu wynosiły od 35 km do 375 km (wektor do stacji WROC).

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem parametrów, które zostały określone jako optymalne podczas opracowania obserwacji z drugiej kampanii pomiarowej, mianowicie:

- wykorzystane obserwacje GPS;
- wykorzystane częstotliwości kombinacja liniowa L3;
- czas trwania sesji pomiarowych 8 godzin;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźnienia sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności w zależności od długości wektorów –
 SIGMA (L1, L1&L2, L5&L3) lub metoda Quasi-Ionosphere-Free (QIF).
- model troposfery dla części suchej dry GMF;

- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 5 m/0.001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co 2 godziny.

Współrzędne punktów referencyjnych w układzie ITRF2008 otrzymano z wyrównania łącznego równań normalnych z dwóch dni pomiarowych modułem ADDNEQ2. Równania normalne z poszczególnych sesji pomiarowych otrzymano z rozwiązania każdej sesji pomiarowej używając modułu GPSEST. Nawiązanie do sieci ASG-EUPOS zrealizowane zostało metodą *minimum constraint*.

Po wykonaniu opracowania potwierdzono stałość współrzędnych punktów referencyjnych, a następnie przystąpiono do wyznaczenia współrzędnych punktów kontrolowanych (reflektorów) w oparciu o punkty referencyjne. Z dalszego opracowania został jednak wyłączony punkt referencyjny GG34 ze względu na niestabilność jego położenia.

9.2 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Lewino

9.2.1 Geometria rozwiązania

Sieć kontrolna obiektu Lewino składa się z 6 punktów referencyjnych (3 punkty na zewnątrz oraz 3 punkty wewnątrz obszaru) oraz 10 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi, ani pomiędzy punktami referencyjnymi. Utworzone wektory zostały przedstawione w tabeli 2.

GG23-RR01	GG25-RR01	GG29-RR01	GG30-RR01	GG32-RR01	GG33-RR01
GG23-RR02	GG25-RR02	GG29-RR02	GG30-RR02	GG32-RR02	GG33-RR02
GG23-RR03	GG25-RR03	GG29-RR03	GG30-RR03	GG32-RR03	GG33-RR03
GG23-RR05	GG25-RR05	GG29-RR05	GG30-RR05	GG32-RR05	GG33-RR05
GG23-RR06	GG25-RR06	GG29-RR06	GG30-RR06	GG32-RR06	GG33-RR06
GG23-RR07	GG25-RR07	GG29-RR07	GG30-RR07	GG32-RR07	GG33-RR07
GG23-RR09	GG25-RR09	GG29-RR09	GG30-RR09	GG32-RR09	GG33-RR09
GG23-RR10	GG25-RR10	GG29-RR10	GG30-RR10	GG32-RR10	GG33-RR10
GG23-RR12	GG25-RR12	GG29-RR12	GG30-RR12	GG32-RR12	GG33-RR12
GG23-RR13	GG25-RR13	GG29-RR13	GG30-RR13	GG32-RR13	GG33-RR13

Tabela 2 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Lewino

9.2.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych w piątej kampanii pomiarowej, zastosowano strategię opracowania obserwacji GPS określoną w opracowaniu po drugiej kampanii pomiarowej. Strategia ta opiera się na rozwiązaniu wektorów o długości nieprzekraczającej 10 km. Ze względu na niewielką długość wektorów wyznaczanych, do opracowania wykorzystano obserwacje kodowe i fazowe na częstotliwości L1. Na tak krótkich wektorach wpływ opóźniania troposferycznego oraz jonosferycznego jest eliminowany poprzez tworzenie podwójnych różnic obserwacji, zatem nie ma potrzeby stosowania kombinacji liniowej L3 do eliminacji wpływu jonosfery. Ponadto, kombinacja liniowa L3 charakteryzuje się trzykrotnie większym szumem, co ogranicza precyzję uzyskiwanych wyników.

Opracowanie wykonano w oprogramowaniu Bernese GNSS Software v. 5.2, z uwzględnieniem następujących parametrów:

- wykorzystane obserwacje GPS na częstotliwości L1;
- czas trwania sesji pomiarowych 2 x 4 godziny;
- minimalna wysokość satelity nad horyzontem 3°;
- interwał obserwacji 30 s;
- precyzyjne finalne orbity oraz zegary satelitów, parametry orientacji Ziemi IGS;
- międzyczęstotliwościowe opóźniania sprzętowe (P1-C1, P1-P2) miesięczne rozwiązanie CODE;
- globalny model jonosfery CODE;
- modele pływów oceanicznych FES2004;
- metoda wyznaczenia nieoznaczoności SIGMA L1;
- model troposfery dla części suchej dry GMF;
- estymacja części mokrej (wet) troposfery funkcja mapująca wet GMF;
- sigma *a priori* parametrów ZTD 0.0001 m/0.0001 m;
- interwał wyznaczanych parametrów ZTD 1 parametr co godzinę.

W rozwiązaniu przyjęto ostateczne współrzędne punktów referencyjnych sieci kontrolnej na epokę kampanii referencyjnej (2015.11) w układzie ITRF2008.

9.2.3 Analiza liczby obserwacji

Liczba obserwacji GPS dla wektorów sieci kontrolnej obiektu Lewino miesi się w granicach od 3668 (wektor GG33-RR13, sesja 1) do 5468 obserwacji (wektor GG29-RR09, sesja 1). Najmniejszą średnią liczbą obserwacji z dwóch dni pomiarowych cechują się

wektory do punktu referencyjnego GG30, gdzie średnia wynosi 4182 obserwacje, natomiast dla wektorów do punktu referencyjnego GG29 opracowano największa liczbę obserwacji – 5057 obserwacji. Biorąc pod uwagę średnią liczbę obserwacji dla wektorów do punktów kontrolowanych, najmniej obserwacji opracowano dla wektorów do punktu RR02 (średnio 4371 obserwacje), natomiast najwięcej obserwacji zarejestrowano dla wektorów do punktu RR09 (średnio 4814 obserwacji). Szczegółowe dane dotyczące liczby obserwacji znajdują się w załączniku 1.

9.2.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych w sieci, w której maksymalna długość wektorów pomiędzy punktami wynosi nie więcej niż 7,5 km, zastosowano metodę rozwiązania nieoznaczoność SIGMA L1. Podczas opracowania danych z pierwszej sesji obserwacyjnej wyznaczono nieoznaczoności na średnim poziomie 98,2%, natomiast z drugiej sesji na poziomie 97,2%. Najniższy średni poziom rozwiązania nieoznaczoności uzyskano dla wektorów do puntu referencyjnego GG32 w drugiej sesji pomiarowej (92,9%), natomiast najwięcej nieoznaczoności wyznaczono dla wektorów do punktu referencyjnego GG23 w pierwszej sesji pomiarowej (100%). Analizując liczbę rozwiązanych nieoznaczoności do punktów kontrolowanych można stwierdzić, że najwyższy średni poziom rozwiązanych nieoznaczoności uzyskano dla wektorów do punktu kontrolowanego RR05 oraz RR12 (99%), natomiast najniższy poziom uzyskano dla wektorów do punktu kontrolowanego RR06 (96,5%).

Wyniki rozwiązania nieoznaczoności zawiera załącznik 2.

9.2.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Lewino było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) w oparciu o współrzędne punktów referencyjnych na podstawie obserwacji GNSS zebranych podczas piątej kampanii pomiarowej.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów kontrolowanych z dwóch sesji pomiarowych. Powtarzalność wyznaczeń składowej północnej dla większości punktów nie przekracza 3,4 mm. Powtarzalność składowej wschodniej jest lepsza niż 3,3 mm dla wszystkich punktów kontrolowanych. Powtarzalność wyznaczeń wysokości dla większości punktów jest mniejsza niż 4,6 mm.

Dla punktów kontrolowanych średni wewnętrzny błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył wartości 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie III opracowania zawiera załącznik 3.

9.2.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania piątej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008, które wraz z błędami uzyskanymi na postawie powtarzalności wyznaczeń zestawiono w tabeli 3.

Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz ich błędy, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3532704.65087	1154367.02447	5166308.94649	200.560	2.38	1.32	2.74
RR02	3532531.06604	1154787.68563	5166300.38642	173.647	2.05	2.77	3.39
RR03	3533644.52102	1153902.06847	5165786.09534	210.701	1.65	2.58	3.10
RR05	3533491.56318	1154526.83960	5165756.56942	214.937	2.35	1.38	4.60
RR06	3533867.87185	1154619.01104	5165483.33752	217.323	2.53	2.50	3.48
RR07	3533314.33603	1154495.98739	5165869.53703	203.310	2.04	3.30	2.86
RR09	3531819.79228	1155986.29018	5166540.56304	192.688	2.67	0.97	2.36
RR10	3531712.19414	1155838.32160	5166643.11623	189.931	2.01	1.23	3.39
RR12	3532562.82962	1155563.00410	5166137.08172	198.438	1.97	2.56	2.41
RR13	3533028.51159	1155581.84766	5165832.37875	211.303	3.37	1.07	2.49

W wyniku transformacji otrzymano współrzędne punktów kontrolowanych w układzie ETRF2000, które zestawiono w tabeli 4.

Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino

Punkt	X [m]	Y [m]	Z [m]
RR01	3532705.1516	1154366.6733	5166308.6693
RR02	3532531.5668	1154787.3345	5166300.1093
RR03	3533645.0216	1153901.7172	5165785.8181
RR05	3533492.0639	1154526.4883	5165756.2922
RR06	3533868.3725	1154618.6597	5165483.0603
RR07	3533314.8367	1154495.6362	5165869.2598
RR09	3531820.2931	1155985.9391	5166540.2860
RR10	3531712.6950	1155837.9705	5166642.8392
RR12	3532563.3304	1155562.6529	5166136.8046
RR13	3533029.0124	1155581.4965	5165832.1016

9.3 Nawiązanie do ASG-EUPOS – poligon Babiak

9.3.1 Sposób nawiązania

W celu zbadania niezmienności położenia sieci punktów referencyjnych obiektu Babiak, wykonano opracowanie, w którym nawiązano punkty referencyjnych do sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru Babiak – BART, ELBL i LAMA (Rys. 9). W opracowaniu uwzględniono również odległą stację WROC w celu prawidłowego wyznaczenia absolutnego opóźnienia troposferycznego, niezbędnego do precyzyjnego wyznaczenia współrzędnych punktów pomiarowych. Podobnie jak przy opracowaniu sieci obiektu Lewino, również w tym przypadku przed przystąpieniem do obliczeń konieczne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej (referencyjnej) kampanii pomiarowej (2015.10).

Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS

9.3.2 Strategia obliczeniowa

Strategia opracowania obserwacji GPS zastosowana w celu wyznaczenia współrzędnych punktów referencyjnych obiektu Babiak jest oparta na rozwiązaniu wykorzystującym obserwacje na częstotliwości L1, L2 oraz kombinację L3. Strategia ta została opisana w podrozdziale 9.1.2. W opracowaniu uwzględniono wektory łączące punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS o długości od 26 km do 68 km oraz wektory łączące stacje ASG-EUPOS ze stacją WROC o długości ponad 400 km.

Po wykonaniu opracowania dla sieci punktów referencyjnych stwierdzono niezmienność położenia punktów w stosunku do poprzedniej kampanii pomiarowej. Z dalszego opracowania wyłączono punkt referencyjny GG32 ze względu na niestabilność jego położenia.

9.4 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Babiak

9.4.1 Geometria rozwiązania

Sieć kontrolna obiektu Babiak jest zbudowana z 6 punktów referencyjnych 8 punktów kontrolowanych (reflektorów). Punkty kontrolowane zostały wyznaczone poprzez rozwiązanie sieci wektorów łączącej każdy punkt wyznaczany (RR) z punktami referencyjnymi (GG), bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 5.

Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak

GG21-RR06	GG26-RR06	GG30-RR06	GG31-RR06	GG33-RR06	GG34-RR06
GG21-RR07	GG26-RR07	GG30-RR07	GG31-RR07	GG33-RR07	GG34-RR07
GG21-RR09	GG26-RR09	GG30-RR09	GG31-RR09	GG33-RR09	GG34-RR09
GG21-RR10	GG26-RR10	GG30-RR10	GG31-RR10	GG33-RR10	GG34-RR10
GG21-RR11	GG26-RR11	GG30-RR11	GG31-RR11	GG33-RR11	GG34-RR11
GG21-RR12	GG26-RR12	GG30-RR12	GG31-RR12	GG33-RR12	GG34-RR12
GG21-RR16	GG26-RR16	GG30-RR16	GG31-RR16	GG33-RR16	GG34-RR16
GG21-RR17	GG26-RR17	GG30-RR17	GG31-RR17	GG33-RR17	GG34-RR17

9.4.2 Strategia obliczeniowa

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano strategię obliczeniową wykorzystującą obserwacje GPS na częstotliwości L1, która została opisana w podrozdziale 9.2.2.

9.4.3 Analiza liczby obserwacji

Analizując liczbę obserwacji dla poszczególnych wektorów można zauważyć, że w przypadku sieci kontrolnej obiektu Babiak liczba obserwacji waha się od 3873 obserwacji dla wektora GG21-RR16 w drugiej sesji pomiarowej do 5190 obserwacji dla wektora GG31-RR07 również w drugiej sesji pomiarowej. Najwięcej obserwacji opracowano dla wektorów do punktu referencyjnego GG31 (średnia z dwóch sesji pomiarowych: 4762 obserwacji), natomiast najmniej obserwacji dla wektorów do punktu referencyjnego GG21 (4317 obserwacji). Biorąc pod uwagę liczbę obserwacji opracowano dla wektorów kontrolowanych, największa średnia liczba obserwacji opracowano dla wektorów utworzonych do punktu RR12 (4715 obserwacji), natomiast najmniej obserwacji zostało zarejestrowanych na wektorach do punktu RR16 (4411). Szczegółowe informacje dotyczące obserwacji znajdują się w załączniku 4.

9.4.4 Analiza wyznaczenia nieoznaczoności

W celu wyznaczenia współrzędnych punktów kontrolowanych, zastosowano metodę rozwiązania nieoznaczoności SIGMA L1. Dla wektorów mierzonych podczas pierwszej sesji pomiarowej, poziom rozwiązania nieoznaczoności wynosi 95,5%. W przypadku wektorów utworzonych podczas drugiej sesji pomiarowej, rozwiązano 98,2% nieoznaczoności. Dla większości utworzonych wektorów rozwiązano 100% nieoznaczoności, jedynie dla 6 z 96 wektorów poziom wyznaczenia nieoznaczoności był niższy niż 90%. Wyniki rozwiązania nieoznaczoności otrzymane w programie Bernese, zawiera załącznik 5.

9.4.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Babiak było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) z piątej kampanii pomiarowej w układzie ITRF2008 w oparciu o współrzędne punktów referencyjnych.

W celu określenia dokładności oraz precyzji uzyskanych wyników, przeanalizowano powtarzalność poszczególnych składowych współrzędnych z dwóch sesji obserwacyjnych. Biorąc pod uwagę składową północną, powtarzalność uzyskanych wyników nie przekracza 2,6 mm, jedynie dla punktu RR06 wynosi 5,6 mm. Powtarzalności składowej wschodniej uzyskanych współrzędnych nie przekracza 2,2 mm. Powtarzalność wyznaczeń wysokości punktów RR06, RR12, RR17 jest lepsza niż 3,0 mm, dla punktów RR09, RR10 oraz RR11 jest niższa niż 9,9 mm, dla punktu RR07 wynosi 5,9 mm, natomiast dla punktu RR16 wynosi 9,2 mm.

Dla punktów kontrolowanych wewnętrzny średni błąd kwadratowy RMS dla wszystkich składowych współrzędnych nie przekroczył wartości 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 6.

9.4.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W wyniku opracowania obserwacji GNSS zebranych podczas piątej kampanii pomiarowej uzyskano współrzędne punktów kontrolowanych (reflektorów) na obszarze Babiak w układzie ITRF2008 na epokę kampanii referencyjnej (2015.10), które zostały zestawione w tabeli 6. Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak

Punkt	X [m]	Y [m]	Z [m]	h₌∟[m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR06	3508136.51078	1301602.91016	5148082.53880	150.914	5.57	0.89	3.08
RR07	3507765.35320	1302409.33520	5148123.48410	144.685	2.60	1.66	5.86
RR09	3508181.47764	1302153.26322	5147898.43449	138.413	1.68	1.79	4.26
RR10	3508179.71191	1302386.16783	5147838.19170	136.051	2.35	1.44	4.90
RR11	3508429.87665	1303135.40612	5147480.84909	136.341	2.26	1.34	4.76
RR12	3508544.46307	1303409.27974	5147327.64160	130.869	1.63	2.24	2.81
RR16	3508549.69542	1302245.68088	5147624.21892	137.017	2.08	0.81	9.25
RR17	3508838.09070	1302483.36119	5147371.45315	138.825	1.79	1.01	3.02

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 7).

Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak

Punkt	X [m]	Y [m]	Z [m]
RR06	3508137.0230	1301602.5599	5148082.2621
RR07	3507765.8655	1302408.9850	5148123.2074
RR09	3508181.9899	1302152.9130	5147898.1578
RR10	3508180.2242	1302385.8176	5147837.9150
RR11	3508430.3890	1303135.0559	5147480.5723
RR12	3508544.9754	1303408.9295	5147327.3649
RR16	3508550.2076	1302245.3306	5147623.9422
RR17	3508838.6029	1302483.0109	5147371.1764

9.5 Nawiązanie do ASG-EUPOS – poligon Berejów

9.5.1 Sposób nawiązania

W pierwszym etapie prac należało sprawdzić, czy współrzędne punktów referencyjnych wyznaczone z piątej kampanii pomiarowej nie zmieniły się w porównaniu do współrzędnych wyznaczonych z drugiej kampanii pomiarowej. Nawiązanie punktów referencyjnych sieci kontrolnej poligonu Berejów przeprowadzono w oparciu o punkty ogólnopolskiej sieci stacji permanentnych ASG-EUPOS. Wybrano 3 stacje najbliżej położone obszaru objętego siecią – BPDL, LUBL i WLDW (Rys. 10). Do rozwiązania dołączono również stację WROC, w celu poprawy estymacji parametrów troposfery mających wpływ na dokładność i precyzję wyznaczania współrzędnych punktów GNSS. Przed przystąpieniem do obliczeń niezbędne było przeprowadzenie transformacji współrzędnych stacji ASG-EUPOS w

układzie PL-ETRF2000 (2011.0) do układu ITRF2008 na epokę drugiej kampanii pomiarowej (2015.09).

Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS

9.5.2 Strategia obliczeniowa

W przypadku nawiązania sieci kontrolnej na obiekcie Berejów do sieci ASG-EUPOS, wyznaczono współrzędne 7 punktów referencyjnych na podstawie opracowania obserwacji GPS z wykorzystaniem kombinacji liniowej L3. Długości wektorów łączących punkty referencyjne lokalnej sieci kontrolnej oraz stacje ASG-EUPOS wykorzystane w opracowaniu wynosiły od 29 km do 67 km oraz około 400 km do stacji WROC. Strategia obliczeniowa zastosowana w tym etapie opracowania została opisana w podrozdziale 9.1.2.

W wyniku opracowania potwierdzono stałość sieci punktów referencyjnych obiektu Berejów. Jednak z dalszego opracowania wykluczono punkt referencyjny GG22 ze względu na awarię sprzętu pomiarowego w trakcie kampanii oraz punkt referencyjny GG21 ze względu na niestabilność jego położenia.

9.6 Wyznaczenie współrzędnych punktów kontrolowanych – poligon Berejów

9.6.1 Geometria rozwiązania

Sieć kontrolna na obiekcie Berejów składa się z 5 punktów referencyjnych oraz z 8 punktów kontrolowanych (reflektorów). W celu wyznaczenia współrzędnych punktów kontrolowanych, utworzono sieć wektorów łączącą każdy punkt wyznaczany z punktami

referencyjnymi, bez wektorów pomiędzy punktami wyznaczanymi. Wykaz utworzonych wektorów został przedstawiony w tabeli 8.

GG21-RR01	GG23-RR01	GG31-RR01	GG32-RR01	GG34-RR01
GG21-RR05	GG23-RR05	GG31-RR05	GG32-RR05	GG34-RR05
GG21-RR06	GG23-RR06	GG31-RR06	GG32-RR06	GG34-RR06
GG21-RR08	GG23-RR08	GG31-RR18	GG32-RR18	GG34-RR18
GG21-RR13	GG23-RR13	GG31-RR13	GG32-RR13	GG34-RR13
GG21-RR15	GG23-RR15	GG31-RR15	GG32-RR15	GG34-RR15
GG21-RR17	GG23-RR17	GG31-RR17	GG32-RR17	GG34-RR17
GG21-RR18	GG23-RR18	GG31-RR18	GG32-RR18	GG34-RR18

Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów

9.6.2 Strategia obliczeniowa

W tej części opracowania wykorzystano strategię obliczeniową opartą na opracowaniu obserwacji na częstotliwości L1, która została opisana w podrozdziale 9.1.2.

9.6.3 Analiza liczby obserwacji

Liczba obserwacji dla wszystkich analizowanych wektorów waha się od 2700 obserwacji do 5410 obserwacji. Największą liczbę obserwacji zarejestrowano dla wektora GG23-RR06 w pierwszej sesji pomiarowej, natomiast najmniej obserwacji utworzono dla wektora GG23-RR15 również w pierwszej sesji pomiarowej. Rozważając wektory do poszczególnych punktów kontrolowanych, największą średnią liczbą obserwacji charakteryzują się wektory do punktu RR06 (4971 obserwacji), natomiast najmniejszą liczbą obserwacji – wektory do punktu RR15 (4332 obserwacji). Szczegółowe informacje dotyczące liczby obserwacji zostały zamieszczone w załączniku 7.

9.6.4 Analiza wyznaczenia nieoznaczoności

W celu określenia ostatecznych współrzędnych punktów kontrolowanych, nieoznaczoności fazy zostały wyznaczone za pomocą metody SIGMA L1. Dla większości wektorów sieci poligonu Berejów, nieoznaczoności zostały wyznaczone na poziomie 100%, jedynie dla kilku wektorów poziom rozwiązania nieoznaczoności był nieznacznie niższy. Najmniej nieoznaczoności rozwiązano na wektorach do punktu referencyjnego GG34 w pierwszej sesji pomiarowej (95,7%), oraz do punktu referencyjnego GG31 w pierwszej sesji pomiarowej (94,3%).

Wyniki rozwiązania nieoznaczoności z etapu II opracowania otrzymane w programie Bernese, zawiera załącznik 8.

9.6.5 Analiza wyznaczonych współrzędnych punktów kontrolowanych

Ostatnim etapem opracowania sieci kontrolnej obiektu Berejów było wyznaczenie współrzędnych punktów kontrolowanych (reflektorów) na podstawie obserwacji zebranych w piątej kampanii pomiarowej w układzie ITRF2008 w oparciu o współrzędne punktów referencyjnych.

Na podstawie uzyskanych wyników obliczono powtarzalność wyznaczeń współrzędnych punktów referencyjnych z dwóch sesji pomiarowych. Powtarzalność otrzymanej składowej północnej współrzędnych nie przekracza 2,9 mm. W przypadku składowej wschodniej, powtarzalność wyników dla każdego punktu kontrolowanego jest mniejsza niż 1,4 mm. Maksymalna wartość powtarzalności wysokości dla punktów kontrolowanych wynosi 7,2 mm.

Dla punktów kontrolowanych średni wewnętrzny błąd kwadratowy RMS dla każdej składowej współrzędnych nie przekroczył 0,4 mm.

Wyniki rozwiązania, powtarzalności oraz współrzędne punktów kontrolowanych w układzie ITRF2008 obliczone w etapie II opracowania zawiera załącznik 9.

9.6.6 Zestawienie ostatecznych współrzędnych punktów kontrolowanych

W tabeli 9 zestawiono ostateczne współrzędne punktów kontrolowanych (reflektorów) w układzie ITRF2008 wyznaczone podczas piątej kampanii pomiarowej.

Punkt	X [m]	Y [m]	Z [m]	h _{EL} [m]	RMS(N) [mm]	RMS(E) [mm]	RMS(U) [mm]
RR01	3667843.54980	1537125.13697	4969999.86940	200.953	2.91	0.89	5.42
RR05	3667669.72958	1536166.68210	4970427.28746	205.387	2.80	1.33	7.20
RR06	3667864.23687	1536272.61760	4970247.95452	202.070	2.87	0.98	4.30
RR08	3667927.22664	1537415.11987	4969845.54188	197.908	2.90	1.34	6.22
RR13	3668030.75527	1536896.59576	4969931.30345	199.752	2.47	1.39	6.27
RR15	3668115.86461	1537105.40127	4969803.84636	199.033	2.86	0.92	5.37
RR17	3668741.57411	1536357.75072	4969572.71733	197.478	2.57	1.15	4.59
RR18	3668548.87673	1536320.84746	4969726.65280	198.498	2.45	1.03	6.11

Tabela 9 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w czwartej kampanii pomiarowej w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów

W dalszej kolejności przeprowadzano transformację współrzędnych punktów kontrolowanych do układu PL-ETRF2000 (tabela 10).

Punkt	X [m]	Y [m]	Z [m]
RR01	3667844.0748	1537124.7733	4969999.5848
RR05	3667670.2545	1536166.3185	4970427.0029
RR06	3667864.7618	1536272.2540	4970247.6699
RR08	3667927.7516	1537414.7562	4969845.2573
RR13	3668031.2802	1536896.2321	4969931.0189
RR15	3668116.3896	1537105.0376	4969803.5618
RR17	3668742.0990	1536357.3870	4969572.4327
RR18	3668549.4016	1536320.4838	4969726.3682

Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejów

9.7 Podsumowanie

Kampania pomiarowa przebiegła bez zakłóceń, pomiary odbyły się na wszystkich planowanych punktach we wszystkich sesjach obserwacyjnych. Na etapie opracowania obserwacji wykluczono 1 punkt referencyjne na poligonie Lewino: GG34 (ze względu na niestabilność punktu); 1 punkt na poligonie Babiak: GG23 (ze względu na niestabilność jego położenia); oraz 2 punkty na poligonie Berejów: GG22 ze względu na awarię sprzętu pomiarowego podczas trwania kampanii oraz GG21 ze względu na niestabilność jego położenia. Biorąc pod uwagę punkty kontrolowane (reflektory), w każdej sesji zebrano wystarczającą liczbę obserwacji do wykonania opracowania z wymaganą dokładnością.

W wyniku wyrównania sieci wektorów GPS uzyskano potwierdzono niezmienności współrzędnych punktów referencyjnych oraz wyznaczono finalne współrzędne punktów kontrolowanych w układzie ITRF2008 na epokę kampanii referencyjnej oraz w układzie PL-ETRF2000. Błędy średnie finalnych współrzędnych mieszczą się w przyjętych wymaganiach dokładnościowych. Dla punktów kontrolowanych na poligonie Lewino dokładność uzyskanej wysokości (na podstawie powtarzalności wyznaczeń) mieści się w granicach od 2,4 mm do 4,6 mm. Na poligonie Babiak, powtarzalność wyznaczeń wysokości punktów RR06, RR12, RR17 jest lepsza niż 3,0 mm, dla punktów RR09, RR10 oraz RR11 jest niższa niż 9,9 mm, dla punktu RR07 wynosi 5,9 mm, natomiast dla punktu RR16 wynosi 9,2 mm. Natomiast na poligonie Berejów, maksymalna wartość powtarzalności wysokości dla punktów kontrolowanych wynosi 7,2 mm dla punktu RR05, dla pozostałych punktów mieści się w granicach do 6 mm.

Po opracowaniu obserwacji z piątej kampanii pomiarowej możliwe było określenie różnic otrzymanych współrzędnych w odniesieniu do kampanii referencyjnej oraz trzeciej i czwartej kampanii pomiarowej. W tabeli 11 przedstawiono porównanie wysokości elipsoidalnych reflektorów otrzymanych z drugiej (K2), z trzeciej (K3), z czwartej (K4) oraz piątej (K5) kampanii pomiarowej dla każdego poligonu.

	LEWINO								
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	h _{el} K5	K2-K3 [m]	K2-K4 [m]	K2-K5 [m]		
RR01	200.566	200.570	200.573	200.560	-0.004	-0.007	0.006		
RR02	173.646	173.654	173.654	173.647	-0.008	-0.008	-0.001		
RR03	210.700	210.703	210.702	210.701	-0.002	-0.002	-0.001		
RR05	214.941	214.944	214.948	214.937	-0.003	-0.007	0.004		
RR06	217.324	217.330	217.335	217.323	-0.006	-0.011	0.001		
RR07	203.312	203.315	203.314	203.310	-0.003	-0.002	0.002		
RR09	192.711	192.703	192.696	192.688	0.008	0.015	0.023		
RR10	189.919	189.928	189.933	189.931	-0.009	-0.014	-0.012		
RR12	198.435	198.445	198.446	198.438	-0.010	-0.011	-0.003		
RR13	211.299	211.308	211.307	211.303	-0.010	-0.008	-0.004		
			BA	BIAK					
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	h _{el} K5	K2-K3 [m]	K2-K4 [m]	K2-K5 [m]		
RR06	150.928	150.921	150.928	150.914	0.007	0.000	0.014		
RR07	144.693	144.695	144.696	144.685	-0.002	-0.003	0.008		
RR09	138.416	138.418	138.413	138.413	-0.002	0.003	0.003		
RR10	136.053	136.055	136.059	136.051	-0.002	-0.006	0.002		
RR11	136.348	136.354	136.354	136.341	-0.006	-0.006	0.007		
RR12	130.881	130.878	130.880	130.869	0.002	0.001	0.012		
RR16	137.034	137.028	137.029	137.017	0.006	0.005	0.017		
RR17	138.836	138.833	138.835	138.825	0.003	0.001	0.011		
			BEF	REJÓW					
Punkt	h _{el} K2	h _{el} K3	h _{el} K4	h _{el} K5	K2-K3 [m]	K2-K4 [m]	K2-K5 [m]		
RR01	200.962	200.959	200.950	200.953	0.003	0.012	0.009		
RR05	205.397	205.388	205.381	205.387	0.009	0.016	0.010		
RR06	202.080	202.070	202.066	202.070	0.010	0.014	0.010		
RR08	197.919	197.913	197.907	197.908	0.007	0.012	0.011		
RR13	199.767	199.759	199.754	199.752	0.008	0.013	0.015		
RR15	199.036	199.031	199.026	199.033	0.004	0.010	0.003		
RR17	197.483	197.480	197.476	197.478	0.003	0.007	0.005		
RR18	198.507	198.507	198.497	198.498	0.000	0.010	0.009		

Tabela 11 Wysokości elipsoidalne reflektorów otrzymane z drugiej (K2), z trzeciej (K3), z czwartej (K4) oraz z piątej (K5) kampanii pomiarowej

III Niwelacja geometryczna

10. Cel przeprowadzonych pomiarów

Celem opracowania jest przeprowadzenie i opracowanie wyników piątej kampanii precyzyjnej niwelacji geometrycznej na trzech obiektach testowych objętych eksploatacją gazu ziemnego ze złóż łupkowych, ścisłe wyrównanie sieci kontrolno-pomiarowych oraz wyznaczenie wysokości punktów: referencyjnych, kontrolowanych, reflektorów InSAR. Uzyskane wyniki są danymi uzupełniającymi do prowadzenia rozszerzonego monitoringu deformacji terenu z wykorzystaniem technologii satelitarnych.

11. Obszar opracowania

11.1 Lokalizacja

Precyzyjną niwelacją geometryczną objęto trzy sieci kontrolno-pomiarowe zlokalizowane w miejscowościach:

- Lewino, gmina Linia, powiat wejherowski, województwo pomorskie,
- Babiak, gmina Lidzbark Warmiński, powiat lidzbarski, województwo warmińskomazurskie,
- Berejów, gmina Niedźwiada, powiat lubartowski, województwo lubelskie.

Każda sieć składa się z 4 punktów referencyjnych, 26 punktów kontrolowanych oraz 20 reflektorów InSAR, rozmieszczonych zgodnie z kierunkami prowadzenia odwiertów poziomych w celu eksploatacji gazu łupkowego.

11.2 Charakterystyka poligonów doświadczalnych oraz lokalizacja punktów Lewino

- a) województwo pomorskie, powiat wejherowski, gmina Linia,
- b) obręby ewidencyjne wsi: Lewino, Zęblewo, Łebno, Lewinko, Będargowo,
- c) długość linii niwelacyjnej ok. 18 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren górzysty, przewyższenia do 65 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,

g) punkty referencyjne – 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.
 Obiekt Lewino o powierzchni ok. 20 km², jest największy oraz charakteryzuje się największym zróżnicowaniem rzeźby terenu od 135 do 200 m n.p.m. Jest to obszar

typowo rolniczy o przeważającej powierzchni gruntów ornych, o średnim zagęszczeniu gruntami leśnymi.

<u>Babiak</u>

- a) województwo warmińsko-mazurskie, powiat lidzbarski, gmina Lidzbark Warmiński,
- b) obręby ewidencyjne wsi: Babiak, Miejska Wola, Bugi,
- c) długość linii niwelacyjnej ok. 10 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren o zróżnicowanej rzeźbie z przewyższeniami do 22 m,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi. Obiekt Babiak o powierzchni ok. 6 km², charakteryzuje się umiarkowanym zróżnicowaniem rzeźby terenu od 78 do 125 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni użytków zielonych.

Berejów

- a) województwo lubelskie, powiat lubartowski, gmina Niedźwiada,
- b) obręby ewidencyjne wsi: Berejów, Brzeźnica Bychawska, Brzeźnica Bychawska-Kolonia,
- c) długość linii niwelacyjnej ok. 8 km (niwelacji w jednym kierunku),
- d) przebieg linii niwelacyjnych: wzdłuż ciągów komunikacyjnych,
- e) teren równinny,
- f) punkty kontrolowane stabilizowane fundamentalnymi znakami podziemnymi w sąsiedztwie reflektorów InSAR,
- g) punkty referencyjne 4 punktów sieci kontrolnej wyznaczanej pomiarami satelitarnymi.
 Obiekt Berejów o powierzchni ok. 4 km², charakteryzuje się małym zróżnicowaniem

rzeźby terenu od 164 do 173 m n.p.m. Jest to obszar typowo rolniczy o przeważającej powierzchni gruntów ornych.

12. Opis techniczny

Precyzyjną niwelację geometryczną przeprowadzono w dniach od 25 sierpnia do 9 września 2016 roku, z zachowaniem procedur pomiarowych oraz dokładności wg Rozporządzenia Ministra Administracji i Cyfryzacji z dnia 14 lutego 2012 r. "w sprawie osnów geodezyjnych, grawimetrycznych i magnetycznych" (Dz. U. 2012, poz. 352). Warunki pogodowe występujące w okresie przeprowadzania pomiarów niwelacyjnych były

sprzyjające, temperatura mieściła się w przedziale od 19 do 25° C. Do przeprowadzenia niwelacji wykorzystano cyfrowy niwelator precyzyjny Leica DNA 03 z kompletem precyzyjnych łat kodowych oraz sprzęt pomocniczy. Łaty inwarowe do niwelacji precyzyjnej ustawiano na klinach stalowych wbijanych w grunt. Ogółem zaniwelowano ok. 36 km ciągów, przedstawionych na rysunkach 1, 2, 3, w dwóch kierunkach: tam i z powrotem, co daje ogólną długość wykonanej niwelacji ok. 72 km. Zgromadzone obserwacje przewyższeń dla poszczególnych obiektów: Babiak, Berejów, Lewino zestawiono odpowiednio w załącznikach nr 10, 11, 12.

Utworzone sieci ciągów niwelacyjnych mają kształt rozet z punktami węzłowymi, skracającymi oraz ułatwiającymi proces pomiarowy. Przyjęto następujące punkty węzłowe:

- Babiak (Rys. 11): g06, g09, g18,
- Berejów (Rys.12): ref21, ref26, b12, b16, b18,
- Lewino (Rys. 13): 102, 109, 112, 116.

Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu mapowego: Google Earth)

Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu mapowego: Google Earth)

Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu mapowego: Google Earth)

13. Opracowanie wyników obserwacji

13.1 Wyznaczenie wysokości punktów referencyjnych oraz reflektorów InSAR

Punkty referencyjne, zastabilizowane specjalnymi fundamentalnymi znakami nadziemnymi (Rys. 14), wymagały wyznaczenia wysokości reperów bocznych. Reper boczny stanowi podstawę pomiaru niwelacji geometrycznej, natomiast do integracji z niwelacją satelitarną niezbędne jest wyznaczenie przyrostu wysokości do punktów umieszczonych w głowicy znaku punktu referencyjnego, względem których wyznacza się wysokość anteny GNSS. Pomiar tych przewyższeń zrealizowano w pierwszej kampanii pomiarowej w sierpniu 2014 r.

Rysunek 24 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny

Konstrukcja oraz ustawienie reflektorów InSAR w znacznym stopniu utrudniały interpretację punktu wysokościowego do pomiaru niwelacją geometryczną. Rozwiązaniem okazał się punkt pośredni jednoznacznie realizowany poprzez umieszczaną w zwieńczeniu trzech płaszczyzn konstrukcji reflektorów kuli stalowej o średnicy 72,7 mm. Wysokości reflektorów wyznaczone zostały na podstawie pomiaru względem punktów kontrolowanych

stabilizowanych, w bezpośrednim ich sąsiedztwie, fundamentalnymi znakami podziemnymi (Rys. 15). Przewyższenia wyznaczone na pośrednich punktach wysokościowych reflektorów InSAR względem bliskich punktów kontrolowanych dla wszystkich obiektów zestawione zostały w załączniku nr 14.

Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 – reper, 4 – dren studni, 5 – pokrywa studni

13.2 Wyznaczenie wysokości w układzie Kronsztadt'86

Wyznaczenie pozycji punktu terenowego w pomiarach satelitarnych GNSS odbywa się w układzie globalnym odniesionym do konkretnej elipsoidy odniesienia. Pozycja ta wyrażana jest przez współrzędne elipsoidalne (geodezyjne), szerokość i długość geodezyjną punktu będącego rzutem, wzdłuż normalnej do elipsoidy, punktu na fizycznej powierzchni Ziemi. Trzecią współrzędną jest wysokość elipsoidalna punktu, wyznaczana bezpośrednio w pomiarach satelitarnych, będącą miarą odległości punktu terenowego wzdłuż normalnej do elipsoidy.

Nawiązanie każdej sieci do układu Kronsztadt'86 zrealizowano jednopunktowo w pierwszej kampanii pomiarowej, zrealizowanej w sierpniu 2014 roku, na podstawie wyników

pomiarów satelitarnych oraz modelu geoidy niwelacyjnej 2011. Przyjęte zostały następujące punkty nawiązania (wysokości wyznaczone są do głowicy znaków referencyjnych):

- Babiak: G21 = 103.6470, h = 132.3327, N = 28.6857,
- Berejów: G22 = 174.1053, h = 204.2031, N = 30.0978,
- Lewino: G23 = 179.7151, h = 210.0166, N = 30.3015.

13.3 Ścisłe wyrównanie sieci kontrolnych

Zgromadzone w terenie dane obserwacyjne z formatu GSI przetworzono do formatu ASCII. Następnie w arkuszu kalkulacyjnym programu Excel, Pakietu Office, oraz na podstawie notatek terenowych wyznaczone zostały uśrednione, uzyskane z dwóch kierunków niwelacji (tam i z powrotem), przewyższenia między punktami kontrolowanymi. Dokonano również kontroli sumarycznego zamknięcia ciągów w dwóch kierunkach, która nie wykazała przekroczenia dopuszczalnych dokładności pomiaru. Wyrównanie całej sieci kontrolnej przeprowadzono w programie GEONET 2006, przyjmując wyznaczone przewyższenia, wagując po ilości stanowisk pomiarowych między punktami końcowymi linii, w dowiązaniu do czterech punktów referencyjnych, których współrzędne wyznaczane są pomiarami GNSS. Wykaz punktów nawiązania w układzie Kronsztadt'86 zestawiono poniżej (wysokości wyznaczone są do reperów bocznych znaków referencyjnych):

- Babiak: G21=102.3498, G26=91.9675, G29=97.8237, G30=80.6368,
- Berejów: G21=167.3284, G22=172.8494, G23=170.8672, G26=167.8335,
- Lewino: G23=178.4540, G24=170.7880, G25=147.9927, G29=177.8394.

Wyrównane wysokości punktów znajdują się w tabelach 12 – 14, a szczegółowe wyniki wyrównania zawierają załączniki nr 13, 14, 15.

	Obiekt: Babiak													
	K1: 201	4_08	K2: 201	5_02	K3: 201	5_08	K4: 201	6_03	K5: 201	6_08	K2 – K1	K3 – K1	K4-K1	K5-K1
NR	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]	dH [m]
G1	112,3164	0,0009	112,3152	0,0008	112,3166	0,0008	112,3152	0,0008	112,3161	0,0008	-0,0012	0,0002	-0,0012	-0,0003
G10	105,0768	0,0003	105,0765	0,0003	105,0768	0,0003	105,0774	0,0003	105,0770	0,0003	-0,0003	0,0000	0,0006	0,0002
G11	105,5625	0,0005	105,5631	0,0002	105,5597	0,0002	105,5632	0,0002	105,5637	0,0002	0,0006	-0,0028	0,0007	0,0012
G12	100,0248	0,0006	100,0257	0,0002	100,0202	0,0002	100,0263	0,0002	100,0268	0,0002	0,0009	-0,0046	0,0015	0,0020
G13	79,4111	0,0008	79,4091	0,0002	79,4126	0,0004	79,4115	0,0004	79,4125	0,0004	-0,0020	0,0015	0,0003	0,0014
G14	80,1928	0,0008	80,1901	0,0003	80,1942	0,0005	80,1920	0,0005	80,1934	0,0005	-0,0027	0,0014	-0,0008	0,0006
G15	102,8028	0,0005	102,8030	0,0004	102,8024	0,0004	102,8040	0,0004	102,8036	0,0004	0,0002	-0,0004	0,0012	0,0008
G16	105,6844	0,0005	105,6851	0,0005	105,6812	0,0005	105,6863	0,0005	105,6858	0,0005	0,0007	-0,0032	0,0019	0,0014
G17	107,8863	0,0006	107,8855	0,0005	107,8867	0,0005	107,8863	0,0005	107,8866	0,0005	-0,0008	0,0004	0,0000	0,0003
G18	109,4257	0,0007	109,4252	0,0006	109,4262	0,0006	109,4261	0,0006	109,4265	0,0006	-0,0005	0,0005	0,0003	0,0008
G19	93,3569	0,0008	93,3559	0,0007	93,3566	0,0007	93,3565	0,0007	93,3568	0,0007	-0,0010	-0,0003	-0,0005	-0,0001
G2	88,6669	0,0010	88,6672	0,0009	88,6674	0,0009	88,6654	0,0009	88,6682	0,0009	0,0003	0,0005	-0,0015	0,0013
G20	98,1039	0,0008	98,1038	0,0007	98,1031	0,0007	98,1040	0,0007	98,1048	0,0007	-0,0001	-0,0008	0,0001	0,0009
G21	102,3498	0,0001	102,3498	0,0000	102,3498	0,0000	102,3498	0,0000	102,3498	0,0000	0,0000	0,0000	0,0000	0,0000
G22	101,9610	0,0003	101,9653	0,0002	101,9552	0,0002	101,9674	0,0002	101,9673	0,0002	0,0043	-0,0058	0,0064	0,0063
G23	102,5706	0,0004	102,5713	0,0002	102,5634	0,0002	102,5723	0,0002	102,5719	0,0002	0,0007	-0,0072	0,0017	0,0013
G24	106,8224	0,0005	106,8275	0,0002	106,8197	0,0002	106,8281	0,0002	106,8280	0,0002	0,0051	-0,0028	0,0057	0,0056
G25	106,5698	0,0005	106,5695	0,0002	106,5701	0,0002	106,5695	0,0002	106,5701	0,0002	-0,0003	0,0003	-0,0003	0,0003
G26	91,9675	0,0006	91,9675	0,0000	91,9675	0,0000	91,9675	0,0000	91,9675	0,0000	0,0000	0,0000	0,0000	0,0000
G27	93,9673	0,0007	93,9669	0,0002	93,9667	0,0003	93,9694	0,0003	93,9695	0,0003	-0,0004	-0,0006	0,0021	0,0022
G28	81,4724	0,0007	81,4709	0,0002	81,4725	0,0004	81,4724	0,0004	81,4736	0,0004	-0,0015	0,0001	0,0000	0,0012

Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R – reflektor)

G29	97,8237	0,0005	97,8237	0,0000	97,8237	0,0000	97,8237	0,0000	97,8237	0,0000	0,0000	0,0000	0,0000	0,0000
G3	125,3328	0,0007	125,3329	0,0006	125,3325	0,0007	125,3335	0,0007	125,3342	0,0007	0,0001	-0,0003	0,0006	0,0014
G30	80,6368	0,0008	80,6368	0,0000	80,6356	0,0004	80,6386	0,0004	80,6392	0,0004	0,0000	-0,0012	0,0018	0,0024
G4	104,4368	0,0007	104,4358	0,0006	104,4343	0,0006	104,4351	0,0006	104,4350	0,0006	-0,0010	-0,0025	-0,0017	-0,0018
G5	103,0090	0,0007	103,0088	0,0006	103,0079	0,0006	103,0095	0,0007	103,0091	0,0007	-0,0002	-0,0011	0,0005	0,0001
G6	119,5548	0,0006	119,5552	0,0005	119,5518	0,0005	119,5580	0,0006	119,5584	0,0006	0,0004	-0,0030	0,0032	0,0036
G7	113,8983	0,0005	113,8985	0,0005	113,8960	0,0005	113,8986	0,0005	113,8990	0,0005	0,0002	-0,0023	0,0003	0,0007
G8	112,3291	0,0006	112,3299	0,0006	112,3228	0,0006	112,3300	0,0006	112,3306	0,0006	0,0008	-0,0063	0,0009	0,0015
G9	106,7525	0,0004	106,7520	0,0004	106,7504	0,0004	106,7526	0,0004	106,7525	0,0004	-0,0005	-0,0021	0,0001	0,0000
R1	113,9715	0,0009	113,9685	0,0008	113,9695	0,0008	113,9687	0,0008	113,9667	0,0008	-0,0030	-0,0020	-0,0028	-0,0048
R10	106,7123	0,0004	106,7121	0,0003	106,7122	0,0003	106,7142	0,0003	106,7135	0,0003	-0,0002	-0,0001	0,0019	0,0012
R11	107,0023	0,0005	107,0033	0,0002	107,0027	0,0002	107,0040	0,0003	107,0040	0,0003	0,0010	0,0003	0,0016	0,0017
R12	101,5244	0,0006	101,5235	0,0002	101,5219	0,0002	101,5226	0,0003	101,5232	0,0003	-0,0009	-0,0025	-0,0019	-0,0012
R13	81,0251	0,0008	81,0235	0,0003	81,0267	0,0004	81,0261	0,0004	81,0252	0,0004	-0,0016	0,0016	0,0010	0,0001
R14	81,8570	0,0008	81,8537	0,0003	81,8581	0,0005	81,8557	0,0005	81,8574	0,0005	-0,0033	0,0011	-0,0014	0,0004
R15	104,4134	0,0005	104,4145	0,0004	104,4137	0,0004	104,4140	0,0004	104,4136	0,0004	0,0011	0,0003	0,0006	0,0002
R16	107,1825	0,0006	107,1826	0,0005	107,1802	0,0005	107,1845	0,0005	107,1835	0,0005	0,0001	-0,0023	0,0020	0,0010
R17	109,4720	0,0007	109,4707	0,0005	109,4722	0,0005	109,4718	0,0005	109,4710	0,0005	-0,0013	0,0002	-0,0002	-0,0010
R18	110,8666	0,0007	110,8658	0,0006	110,8669	0,0006	110,8672	0,0006	110,8676	0,0006	-0,0008	0,0003	0,0006	0,0010
R19	94,9179	0,0008	94,9150	0,0007	94,9155	0,0007	94,9150	0,0007	94,9153	0,0007	-0,0029	-0,0024	-0,0029	-0,0026
R2	90,2319	0,0010	90,2317	0,0009	90,2321	0,0009	90,2315	0,0009	90,2345	0,0009	-0,0002	0,0002	-0,0004	0,0026
R20	99,6692	0,0008	99,6707	0,0007	99,6688	0,0007	99,6714	0,0007	99,6721	0,0007	0,0015	-0,0005	0,0022	0,0029
R3	127,0187	0,0007	127,0188	0,0006	127,0178	0,0007	127,0200	0,0007	127,0209	0,0007	0,0001	-0,0009	0,0013	0,0022
R4	106,3931	0,0007	106,3906	0,0006	106,3886	0,0006	106,3880	0,0006	106,3900	0,0006	-0,0025	-0,0045	-0,0052	-0,0032
R5	104,4950	0,0007	104,4950	0,0006	104,4933	0,0006	104,4973	0,0007	104,4969	0,0007	0,0000	-0,0017	0,0023	0,0019
R6	121,1100	0,0006	121,1097	0,0005	121,1051	0,0005	121,1084	0,0006	121,1103	0,0006	-0,0003	-0,0049	-0,0016	0,0003
R7	115,3658	0,0006	115,3660	0,0005	115,3641	0,0005	115,3665	0,0005	115,3672	0,0005	0,0002	-0,0017	0,0007	0,0014

R8	113,8215	0,0006	113,8214	0,0006	113,8196	0,0006	113,8225	0,0006	113,8240	0,0006	-0,0001	-0,0019	0,0010	0,0025
R9	108,5901	0,0004	108,5898	0,0004	108,5891	0,0004	108,5905	0,0004	108,5895	0,0004	-0,0003	-0,0011	0,0004	-0,0006

Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

	Obiekt: Berejów													
	K1: 201	.4_08	K2: 20	15_02	K3: 201	15_09	K4: 201	6_04	K5: 2016	_04	K2 – K1	К3-К1	K4– K1	K5– K1
NR	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]	dH [m]
G1	168,4093	0,0006	168,4097	0,0001	168,4092	0,0001	168,4101	0,0001	168,4092	0,0003	0,0004	-0,0001	0,0007	-0,0001
G10	169,9234	0,0008	169,9227	0,0005	169,9226	0,0005	169,9230	0,0005	169,9219	0,0006	-0,0007	-0,0008	-0,0004	-0,0015
G11	165,9578	0,0006	165,9576	0,0002	165,9576	0,0003	165,9574	0,0003	165,9571	0,0003	-0,0001	-0,0001	-0,0004	-0,0007
G12	166,0035	0,0005	166,0033	0,0002	166,0039	0,0002	166,0034	0,0002	166,0035	0,0002	-0,0002	0,0004	-0,0001	0,0000
G13	167,3205	0,0006	167,3207	0,0002	167,3204	0,0002	167,3212	0,0002	167,3208	0,0002	0,0002	-0,0001	0,0007	0,0003
G14	167,8689	0,0007	167,8686	0,0003	167,8683	0,0003	167,8685	0,0003	167,8680	0,0004	-0,0004	-0,0007	-0,0004	-0,0009
G15	166,5864	0,0006	166,5866	0,0001	166,5863	0,0001	166,5865	0,0001	166,5864	0,0001	0,0002	-0,0001	0,0001	0,0000
G16	164,5209	0,0005	164,5209	0,0002	164,5212	0,0002	164,5209	0,0002	164,5209	0,0003	0,0000	0,0003	0,0000	-0,0001
G17	165,0324	0,0005	165,0326	0,0003	165,0316	0,0003	165,0322	0,0003	165,0320	0,0003	0,0002	-0,0007	-0,0002	-0,0004
G18	165,8821	0,0004	165,8819	0,0002	165,8815	0,0002	165,8815	0,0002	165,8818	0,0003	-0,0001	-0,0006	-0,0005	-0,0003
G19	170,4357	0,0007	170,4356	0,0005	170,4350	0,0005	170,4354	0,0005	170,4352	0,0005	-0,0002	-0,0008	-0,0003	-0,0005
G2	166,4962	0,0007	166,4967	0,0003	166,4960	0,0003	166,4966	0,0003	166,4965	0,0004	0,0005	-0,0002	0,0004	0,0003
G20	163,5014	0,0006	163,5018	0,0004	163,5017	0,0004	163,5006	0,0004	163,5013	0,0004	0,0004	0,0004	-0,0007	-0,0001
G21	167,3284	0,0006	167,3284	0,0000	167,3284	0,0000	167,3284	0,0000	167,3284	0,0000	0,0000	0,0000	0,0000	0,0000
G22	172,8494	0,0001	172,8494	0,0000	172,8494	0,0000	172,8494	0,0000	172,8494	0,0000	0,0000	0,0000	0,0000	0,0000
G23	170,8672	0,0007	170,8672	0,0000	170,8672	0,0000	170,8672	0,0000	170,8672	0,0000	0,0000	0,0000	0,0000	0,0000
G24	167,0932	0,0007	167,0931	0,0003	167,0932	0,0003	167,0929	0,0003	167,0920	0,0003	-0,0001	0,0000	-0,0003	-0,0012
G25	166,1926	0,0006	166,1927	0,0001	166,1921	0,0001	166,1926	0,0001	166,1927	0,0001	0,0001	-0,0006	0,0000	0,0001

G26	167,8335	0,0006	167,8335	0,0000	167,8335	0,0000	167,8335	0,0000	167,8335	0,0000	0,0000	0,0000	0,0000	0,0000
G27	169,3919	0,0006	169,3918	0,0003	169,3906	0,0003	169,3929	0,0003	169,3902	0,0003	-0,0001	-0,0014	0,0009	-0,0017
G28	166,2713	0,0005	166,2713	brak	166,2713	0,0002	166,2710	0,0002	166,2709	0,0002	0,0000	-0,0001	-0,0003	-0,0004
G29	163,2574	0,0005	163,2579	0,0003	163,2581	0,0003	163,2570	0,0003	163,2575	0,0003	0,0004	0,0006	-0,0005	0,0001
G3	172,6924	0,0003	172,6925	0,0002	172,6926	0,0002	172,6921	0,0002	172,6928	0,0002	0,0001	0,0002	-0,0003	0,0004
G30	167,2974	0,0007	167,2977	0,0005	167,2969	0,0005	167,2970	0,0005	167,2975	0,0005	0,0003	-0,0005	-0,0004	0,0001
G4	170,2726	0,0003	170,2726	0,0002	170,2726	0,0002	170,2724	0,0002	170,2728	0,0002	0,0000	0,0000	-0,0002	0,0002
G5	172,8632	0,0008	172,8635	0,0002	172,8635	0,0002	172,8623	0,0002	172,8624	0,0002	0,0003	0,0003	-0,0009	-0,0008
G6	169,2485	0,0007	169,2481	0,0002	169,2482	0,0002	169,2477	0,0002	169,2472	0,0002	-0,0004	-0,0003	-0,0008	-0,0013
G7	165,8026	0,0006	165,8026	0,0003	165,8027	0,0003	165,8025	0,0003	165,8018	0,0003	0,0000	0,0001	-0,0001	-0,0008
G8	164,8663	0,0007	164,8661	0,0003	164,8664	0,0003	164,8658	0,0003	164,8666	0,0003	-0,0002	0,0002	-0,0005	0,0003
G9	170,8985	0,0007	170,8980	0,0004	170,8975	0,0004	170,8984	0,0004	170,8971	0,0005	-0,0005	-0,0010	-0,0001	-0,0014
R1	170,2239	0,0007	170,2238	0,0002	170,2234	0,0002	170,2242	0,0002	170,2234	0,0003	-0,0002	-0,0005	0,0003	-0,0005
R10	171,6475	0,0008	171,6475	0,0005	171,6462	0,0005	171,6471	0,0005	171,6455	0,0006	0,0000	-0,0014	-0,0005	-0,0020
R11	167,5608	0,0006	167,5607	0,0003	167,5608	0,0003	167,5607	0,0003	167,5601	0,0003	-0,0001	-0,0001	-0,0001	-0,0007
R12	167,7156	0,0005	167,7149	0,0002	167,7156	0,0002	167,7160	0,0002	167,7157	0,0002	-0,0008	0,0000	0,0004	0,0001
R13	169,0108	0,0006	169,0108	0,0002	169,0111	0,0002	169,0114	0,0002	169,0114	0,0002	0,0000	0,0003	0,0006	0,0006
R14	169,5485	0,0007	169,5499	0,0004	169,5503	0,0004	169,5483	0,0004	169,5448	0,0004	0,0014	0,0018	-0,0002	-0,0037
R15	168,2851	0,0006	168,2852	0,0002	168,2852	0,0002	168,2855	0,0002	168,2851	0,0001	0,0001	0,0001	0,0004	0,0000
R16	166,2549	0,0005	166,2547	0,0003	166,2554	0,0003	166,2554	0,0003	166,2553	0,0003	-0,0001	0,0005	0,0005	0,0003
R17	166,6770	0,0005	166,6750	0,0003	166,6746	0,0003	166,6746	0,0003	166,6748	0,0003	-0,0020	-0,0024	-0,0024	-0,0022
R18	167,7123	0,0004	167,7119	0,0003	167,7121	0,0003	167,7121	0,0003	167,7126	0,0003	-0,0004	-0,0002	-0,0002	0,0003
R19	172,1820	0,0007	172,1819	0,0005	172,1814	0,0005	172,1819	0,0005	172,1816	0,0005	-0,0001	-0,0006	-0,0001	-0,0004
R2	168,1175	0,0007	168,1178	0,0003	168,1178	0,0003	168,1181	0,0003	168,1182	0,0004	0,0003	0,0003	0,0006	0,0007
R20	165,2171	0,0006	165,2171	0,0004	165,2176	0,0004	165,2162	0,0004	165,2172	0,0004	0,0000	0,0005	-0,0010	0,0001
R3	174,3413	0,0003	174,3416	0,0002	174,3430	0,0002	174,3409	0,0002	174,3420	0,0002	0,0003	0,0017	-0,0004	0,0007
R4	171,9790	0,0003	171,9785	0,0002	171,9803	0,0002	171,9788	0,0002	171,9792	0,0002	-0,0005	0,0013	-0,0002	0,0002

R5	174,6390	0,0008	174,6389	0,0002	174,6393	0,0002	174,6387	0,0002	174,6376	0,0002	-0,0001	0,0003	-0,0002	-0,0014
R6	170,8766	0,0007	170,8744	0,0002	170,8765	0,0002	170,8744	0,0002	170,8731	0,0002	-0,0023	-0,0001	-0,0023	-0,0035
R7	167,5902	0,0006	167,5904	0,0003	167,5904	0,0003	167,5901	0,0003	167,5898	0,0003	0,0003	0,0002	-0,0001	-0,0004
R8	166,7504	0,0007	166,7497	0,0003	166,7471	0,0003	166,7463	0,0003	166,7468	0,0003	-0,0007	-0,0032	-0,0040	-0,0036
R9	172,6765	0,0008	172,6760	0,0005	172,6753	0,0005	172,6768	0,0005	172,6749	0,0005	-0,0005	-0,0011	0,0004	-0,0016

Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjnego GNSS, R - reflektor)

	Obiekt: Lewino													
	K1: 201	4_08	K2: 20	15_02	K3: 201	15_09	K4: 201	6_03	K5: 2016	6_08	K2 – K1	K3 – K1	K4 – K1	K5 – K1
NR	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	H [m]	mH [m]	dH [m]	dH [m]	dH [m]	dH [m]
G1	167,9661	0,0007	167,9671	0,0004	167,9668	0,0004	167,9681	0,0004	167,9683	0,0004	0,0010	0,0006	0,0020	0,0022
G10	156,9434	0,0012	156,9440	0,0005	156,9438	0,0005	156,9448	0,0005	156,9450	0,0005	0,0006	0,0004	0,0014	0,0016
G11	137,2842	0,0012	137,2839	0,0005	137,2846	0,0005	137,2852	0,0005	137,2858	0,0005	-0,0003	0,0004	0,0010	0,0016
G12	165,7899	0,0010	165,7918	0,0003	165,7910	0,0003	165,7929	0,0003	165,7922	0,0003	0,0019	0,0011	0,0030	0,0023
G13	178,0472	0,0010	178,0489	0,0005	178,0478	0,0005	178,0497	0,0005	178,0483	0,0005	0,0017	0,0006	0,0025	0,0011
G14	178,9426	0,0013	178,9441	0,0008	178,9421	0,0008	178,9447	0,0008	178,9451	0,0008	0,0015	-0,0005	0,0021	0,0025
G15	195,0291	0,0012	195,0302	0,0007	195,0289	0,0007	195,0297	0,0007	195,0292	0,0007	0,0012	-0,0002	0,0006	0,0001
G16	161,1359	0,0013	161,1350	0,0004	161,1356	0,0004	161,1360	0,0004	161,1360	0,0004	-0,0009	-0,0003	0,0001	0,0001
G17	176,6813	0,0015	176,6815	0,0003	176,6812	0,0003	176,6819	0,0003	176,6818	0,0003	0,0002	-0,0001	0,0006	0,0005
G18	136,1700	0,0014	136,1695	0,0005	136,1703	0,0005	136,1713	0,0005	136,1713	0,0005	-0,0005	0,0003	0,0013	0,0013
G19	181,0810	0,0014	181,0813	0,0005	181,0819	0,0005	181,0813	0,0005	181,0814	0,0005	0,0003	0,0009	0,0003	0,0004
G2	140,9716	0,0008	140,9719	0,0004	140,9733	0,0004	140,9735	0,0004	140,9746	0,0004	0,0003	0,0017	0,0019	0,0030
G20	169,3668	0,0014	169,3672	0,0005	169,3676	0,0005	169,3678	0,0005	169,3679	0,0005	0,0005	0,0008	0,0009	0,0011
G21	162,2349	0,0006	162,2355	0,0004	162,2354	0,0004	162,2368	0,0004	162,2374	0,0004	0,0006	0,0005	0,0019	0,0025
G22	159,7963	0,0008	159,7962	0,0004	159,7958	0,0004	159,7959	0,0004	159,7965	0,0004	-0,0002	-0,0005	-0,0004	0,0002

G23	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	178,4540	0,0000	0,0000	0,0000	0,0000	0,0000
G24	170,7880	0,0009	170,7880	0,0000	170,7880	0,0000	170,7880	0,0000	170,7880	0,0000	0,0000	0,0000	0,0000	0,0000
G25	147,9927	0,0009	147,9927	0,0000	147,9927	0,0000	147,9927	0,0000	147,9927	0,0000	0,0000	0,0000	0,0000	0,0000
G26	178,4379	0,0013	178,4386	0,0007	178,4380	0,0007	178,4392	0,0007	178,4396	0,0007	0,0008	0,0001	0,0013	0,0017
G27	200,2459	0,0012	200,2478	0,0007	200,2455	0,0007	200,2480	0,0007	200,2464	0,0007	0,0018	-0,0004	0,0021	0,0005
G28	191,6611	0,0012	191,6625	0,0008	191,6614	0,0008	191,6615	0,0008	191,6608	0,0008	0,0015	0,0003	0,0004	-0,0003
G29	177,8394	0,0014	177,8394	0,0000	177,8394	0,0000	177,8394	0,0000	177,8394	0,0000	0,0000	0,0000	0,0000	0,0000
G3	178,1357	0,0006	178,1357	0,0004	178,1357	0,0004	178,1361	0,0004	178,1360	0,0004	0,0000	0,0000	0,0003	0,0003
G31	146,4892	0,0010	146,4882	0,0005	146,4878	0,0005	146,4881	0,0005	146,4895	0,0005	-0,0010	-0,0014	-0,0011	0,0003
G4	171,0165	0,0007	171,0155	0,0004	171,0162	0,0004	171,0162	0,0004	171,0166	0,0004	-0,0010	-0,0003	-0,0003	0,0001
G5	182,2054	0,0004	182,2064	0,0003	182,2054	0,0003	182,2064	0,0003	182,2069	0,0003	0,0010	0,0000	0,0009	0,0015
G6	184,5774	0,0004	184,5772	0,0003	184,5777	0,0003	184,5780	0,0003	184,5782	0,0003	-0,0002	0,0003	0,0006	0,0008
G7	170,5079	0,0005	170,5077	0,0003	170,5076	0,0003	170,5077	0,0003	170,5087	0,0003	-0,0002	-0,0003	-0,0002	0,0008
G8	151,8863	0,0009	151,8874	0,0005	151,8887	0,0005	151,8885	0,0005	151,8888	0,0005	0,0011	0,0024	0,0022	0,0025
G9	160,2806	0,0011	160,2808	0,0005	160,2811	0,0005	160,2816	0,0005	160,2820	0,0005	0,0001	0,0005	0,0010	0,0014
R1	169,5774	0,0007	169,5783	0,0004	169,5780	0,0004	169,5792	0,0004	169,5798	0,0004	0,0008	0,0006	0,0018	0,0024
R10	158,5417	0,0012	158,5427	0,0005	158,5410	0,0005	158,5455	0,0005	158,5470	0,0005	0,0010	-0,0007	0,0038	0,0053
R11	138,6977	0,0012	138,6968	0,0005	138,6982	0,0005	138,6986	0,0005	138,7002	0,0005	-0,0008	0,0005	0,0009	0,0025
R12	167,4722	0,0010	167,4748	0,0003	167,4727	0,0003	167,4747	0,0003	167,4755	0,0003	0,0026	0,0005	0,0025	0,0033
R13	179,8838	0,0010	179,8875	0,0005	179,8863	0,0005	179,8880	0,0005	179,8859	0,0005	0,0037	0,0025	0,0042	0,0021
R14	180,6083	0,0013	180,6090	0,0008	180,6074	0,0008	180,6102	0,0008	180,6103	0,0008	0,0007	-0,0010	0,0019	0,0019
R15	196,7376	0,0012	196,7394	0,0007	196,7371	0,0007	196,7379	0,0007	196,7378	0,0007	0,0018	-0,0005	0,0003	0,0002
R16	162,7689	0,0014	162,7678	0,0004	162,7662	0,0004	162,7695	0,0004	162,7686	0,0004	-0,0011	-0,0027	0,0006	-0,0003
R17	178,2992	0,0015	178,3006	0,0003	178,2998	0,0003	178,3001	0,0003	178,3002	0,0003	0,0014	0,0006	0,0009	0,0010
R18	137,6282	0,0014	137,6276	0,0006	137,6289	0,0005	137,6290	0,0005	137,6277	0,0005	-0,0005	0,0007	0,0008	-0,0005
R19	182,7952	0,0015	182,7948	0,0005	182,7963	0,0005	182,7950	0,0005	182,7957	0,0005	-0,0004	0,0011	-0,0002	0,0005
R2	142,6686	0,0008	142,6690	0,0004	142,6706	0,0004	142,6700	0,0004	142,6716	0,0004	0,0004	0,0020	0,0014	0,0030
R20	170,8926	0,0014	170,8913	0,0005	170,8922	0,0005	170,8938	0,0005	170,8920	0,0005	-0,0014	-0,0004	0,0012	-0,0006
-----	----------	--------	----------	--------	----------	--------	----------	--------	----------	--------	---------	---------	---------	---------
R3	179,6764	0,0006	179,6753	0,0004	179,6753	0,0004	179,6751	0,0004	179,6750	0,0004	-0,0011	-0,0011	-0,0013	-0,0014
R4	172,5841	0,0007	172,5815	0,0004	172,5819	0,0004	172,5821	0,0004	172,5826	0,0004	-0,0026	-0,0022	-0,0020	-0,0016
R5	183,9346	0,0004	183,9359	0,0003	183,9349	0,0003	183,9347	0,0003	183,9372	0,0003	0,0013	0,0003	0,0001	0,0026
R6	185,8715	0,0004	185,8715	0,0003	185,8725	0,0003	185,8737	0,0003	185,8726	0,0003	0,0001	0,0010	0,0022	0,0011
R7	172,3060	0,0005	172,3060	0,0004	172,3056	0,0004	172,3054	0,0004	172,3069	0,0004	0,0000	-0,0004	-0,0006	0,0009
R8	153,5430	0,0009	153,5382	0,0005	153,5454	0,0005	153,5458	0,0005	153,5472	0,0005	-0,0048	0,0024	0,0028	0,0041
R9	161,7495	0,0011	161,7496	0,0005	161,7498	0,0005	161,7508	0,0005	161,7510	0,0005	0,0001	0,0003	0,0013	0,0015

13.4 Analiza wyników ścisłego wyrównania sieci niwelacyjnej

Przeprowadzone ścisłe wyrównania trzech sieci kontrolnych precyzyjnej niwelacji geometrycznej, zlokalizowanych na obiektach: Babiak, Berejów, Lewino, wykazują poprawność przeprowadzonych czynności pomiarowych. Wartości średnich błędów wysokości punktów po wyrównaniu nie przekroczyły wartości 1 mm. Analizując przyrosty wysokości punktów kontrolowanych między dwiema kampaniami pomiarowymi (tabele 11, 12, 13): K1 – 2014_08, K5 – 2016_08, można zauważyć przekroczenie wartości przyjętego błędu średniego (mH) na poziomie ±2 mm, w przypadku następujących obiektów:

- Babiak: pojedynczej wartości mH 9 punktów (G6, G27, G30, R2, R3, R4, R8, R19, R20), podwójnej wartość mH 2 punkty (G24, R1), potrójnej wartość mH 1 punkt (G22),
- Berejów: pojedynczej wartości mH 4 punkty (R6, R8, R14, R17), podwójnej wartość mH nie stwierdzono, potrójnej wartość mH nie stwierdzono,
- Lewino: pojedynczej wartości mH 12 punktów (G1, G2, G8, G12, G14, G21, R1, R2, R5, R11, R12, R13), podwójnej wartość mH 2 punkty (R8, R10), potrójnej wartość mH nie stwierdzono.

Dwukrotne przekroczenie przyjętego błędu średniego mH wysokości punktów kontrolowanych (±2 mm), nie może świadczyć o wystąpieniu deformacji pionowych, dopiero na podstawie przekroczenia potrójnej wartości tego błędu można stwierdzić wystąpienie tego parametru. Biorąc pod uwagę powyższe założenia, w przypadku obiektu Babiak można stwierdzić wystąpienia deformacji pionowych w otoczeniu tylko jednego punktu G22.

13.5 Podsumowanie niwelacji geometrycznej

Warunki atmosferyczne, w jakich przeprowadzona została precyzyjna niwelacja geometryczna, były sprzyjające. Występujące sporadycznie utrudnienie pomiaru były spowodowane głównie występującym okresowo silnym wiatrem, wywołującym drżenie kompensatora instrumentu – wibracje osi celowej.

Osiągnięte dokładności niwelacji na podstawie porównania wyników otrzymanych bezpośrednio z pomiaru w dwóch kierunkach, jak i wyniki wyrównania ścisłego wskazują na osiągniecie dokładności precyzyjnej niwelacji geometrycznej 2 klasy, czyli dokładności lepszej niż 2 mm/km.

Porównanie wysokości punktów z dwóch kampanii pomiarowych przeprowadzonych w sierpniu 2014 r. oraz w sierpniu i wrześniu 2016 r., nie wykazują wystąpienia deformacji

pionowych na dwóch obiektach Lewino oraz Berejów. W przypadku obiektu Babiak można stwierdzić deformacje pionowe w otoczeniu punktu ziemnego G22 (dh = 0,0064), gdzie zaobserwowano przekroczenie potrójnej wartości błędu średniego mH (± 2 mm).

Wysokości punktów w procesie wyrównania wyznaczone zostały w układzie wysokościowym Kronsztadt'86. Punktami wyznaczanymi są: punkty referencyjne (repery boczne), punkty kontrolowane (repery podziemne stabilizowane w bezpośrednim sąsiedztwie reflektorów InSAR), reflektory InSAR (wysokość punktów pośrednich definiowanych przez kulę umieszczaną w reflektorach).

14. Podsumowanie dotychczasowych kampanii pomiarowych

W ramach realizacji badań przeprowadzono w odstępach półrocznych 5 kampanii pomiarowych precyzyjnej niwelacji geometrycznej w latach 2014-2016. W tym samym okresie przeprowadzono precyzyjne pomiary satelitarne techniką GNSS, a w tym jedną kampanię testową w roku 2014 i cztery kampanie operacyjne w latach 2015-2016.

Zastosowanie dwóch niezależnych technik pomiarowych pozwoliło na ich wzajemną walidację, a uzyskane wyniki potwierdziły wysoką zgodność tych technik. Osiągnięte dokładności niwelacji klasycznej wskazują na osiągniecie dokładności precyzyjnej niwelacji geometrycznej 2 klasy, czyli dokładności lepszej ni $\dot{z} \pm 2$ mm/km. Zaś w przypadku niwelacji satelitarnej bezwzględna dokładność wyznaczenia wysokości punktów kontrolowanych była lepsza ni $\dot{z} \pm 5$ mm.

Porównanie wysokości punktów z kampanii pomiarowych niwelacji geometrycznej przeprowadzonych w sierpniu 2014 r. oraz we wrześniu 2016 r., nie wykazują wystąpienia deformacji pionowych na dwóch obiektach Lewino oraz Berejów. W przypadku obiektu Babiak można podejrzewać deformacje pionowe tylko w otoczeniu punktu G22, gdzie stwierdzono przekroczenie potrójnej wartości błędu średniego (mH = ± 2 mm).

W przypadku niwelacji satelitarnej, na każdym obiekcie zaobserwowano po jednym reflektorze, którego wyznaczone przemieszczenie przekraczało potrójną wartość przyjętego błędu średniego (mh = \pm 5 mm). Były to reflektory RR09 na poligonie Lewino, RR16 na poligonie Babiak i RR13 na poligonie Berejów. Jednak przekroczenia te były stosunkowo niewielkie i mogę wynikać z trudniejszych warunków obserwacyjnych na tych reflektorach (zasłony).

Na podstawie analizy otrzymanych wskaźników geometrycznych nie można jednoznacznie stwierdzić występowania przemieszczeń terenu w analizowanym okresie na badanym obszarze.

Przedstawione wyniki potwierdzają słuszność koncepcji prowadzenia badań deformacji terenu w dłuższym okresie w oparciu o niezależne techniki pomiarowe.

Rekomendacje:

- Pełna integracja pomiarów satelitarnych i klasycznych będzie możliwa poprzez zastosowanie odpowiedniego modelu quasigeoidy opracowanego specjalnie dla obszaru Polski, np. "Quasigeoida 2011". Pozwoli to w przyszłości na wyznaczenie anomalii wysokości dla badanych punktów kontrolowanych i ujednolicenie systemu wysokości.
- W przypadku kontynuacji badań należy wziąć pod uwagę potrzebę zmiany układu wysokości z PL-KRON86-NH na wprowadzany w Polsce PL-EVRF2007-NH.
- Należy nadal doskonalić metody opracowania precyzyjnych obserwacji GNSS w celu dalszej poprawy dokładności otrzymywanych wyników oraz skrócenia wymaganej długości sesji obserwacyjnej.
- Projektując sieć kontrolną na nowych obiektach, należy szczególną uwagę zwracać na lokalizację punktów przeznaczonych do pomiarów technika GNSS (odkryty horyzont).

Spis tabel

Tabela 1 Plan sesji pomiarowych	14
Tabela 2 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Lewino	18
Tabela 3 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz ich błędy, poligon Lewino	21
Tabela 4 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Lewino	21
Tabela 5 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Babiak	23
Tabela 6 Wykaz współrzędnych punktów kontrolowanych (reflektorów) z czwartej kampanii pomiarowej w układzie ITRF2008 (2015.10), wysokości elipsoidalne oraz błędy średnie, poligon Babiak	25
Tabela 7 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Babiak Tabela 8 Wykaz wektorów pomiędzy punktami referencyjnymi a kontrolowanymi utworzonych podczas opracowania, poligon Berejów	25 27
Tabela 9 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w czwartej kampanii pomiarowej w układzie ITRF2008 (2015.09), wysokości elipsoidalne oraz błędy średnie, poligon Berejów	28
Tabela 10 Wykaz współrzędnych punktów kontrolowanych (reflektorów) w układzie ETRF2000, poligon Berejów Tabela 11 Wysokości elipsoidalne reflektorów otrzymane z drugiej (K2), z trzeciej (K3), z czwartej (K4) oraz z piątej (K5) kampanii pomiarowej	29 30
Tabela 12 Wyrównane wysokości punktów - obiekt Babiak, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjne GNSS, R – reflektor)	ego 39
Tabela 13 Wyrównane wysokości punktów - obiekt Berejów, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjne GNSS, R - reflektor)	າ go 41
Tabela 14 Wyrównane wysokości punktów - obiekt Lewino, kampanie pomiarowe 1 - 5, zmiany wysokości dH względem wyników z 1 kampanii pomiarowej (oznaczenie punktów: G - studzienka, reper boczny znaku punktu referencyjne GNSS, R - reflektor)	go 43

Spis rysunków

Rysunek 1 Lokalizacja poligonów badawczych	8
Rysunek 2 Rozmieszczenie punktów pomiarowych - poligon Lewino (źródło podkładu mapowego: Google Earth)	9
Rysunek 3 Rozmieszczenie punktów pomiarowych - poligon Babiak (źródło podkładu mapowego: Google Earth)	10
Rysunek 4 Rozmieszczenie punktów pomiarowych - poligon Berejów(źródło podkładu mapowego: Google Earth)	10
Rysunek 5 Głowica punktu referencyjnego z reperami	11
Rysunek 6 Mocowanie z wymuszonym centrowaniem spodarki wraz z anteną w głowicy znaku punktu referencyjnego	12
Rysunek 7 Reflektor z zamontowaną anteną GNSS	13
Rysunek 8 Nawiązanie punktów referencyjnych poligonu Lewino do sieci ASG-EUPOS	17
Rysunek 9 Nawiązanie punktów referencyjnych poligonu Babiak do sieci ASG-EUPOS	22
Rysunek 10 Nawiązanie punktów referencyjnych poligonu Berejów do sieci ASG-EUPOS	26
Rysunek 11 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Babiak (źródło podkładu	
mapowego: Google Earth)	34
Rysunek 12 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Berejów (źródło podkładu	
mapowego: Google Earth)	35
Rysunek 13 Szkic ciągów precyzyjnej niwelacji geometrycznej przeprowadzonej na obiekcie Lewino (źródło podkładu	
mapowego: Google Earth)	35
Rysunek 14 Fundamentalny znak nadziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 –	
głowica znaku, 4 – śruba mocująca spodarkę, 5 – kotwa, 6 – reper boczny	36
Rysunek 15 Fundamentalny znak podziemnego punktu referencyjnego; 1 – słup żelbetowy, 2 – stopa fundamentowa, 3 –	
reper, 4 – dren studni, 5 – pokrywa studni	37

Załączniki

01_Lewino_obserwacje 02_Lewino_nieoznaczoności 03_Lewino_współrzędne 04_Babiak_obserwacje 05_Babiak_nieoznaczoności 06_Babiak_współrzędne 07_Berejów_obserwacje 08_Berejów_nieoznaczoności 09_Berejów_współrzędne 10_Babiak_niw_geom 11_Berejow_niw_geom 12_Lewino_niw_geom 13_wyh.osn_Babiak 14_wyh.osn_Berejów 15_wyh.osn_Lewino 16_Dzienniki_pomiarowe